CONTENTS

PREFACE

Preface xv
 Audience xv
 Document Conventions xv
 Related Documentation for Cisco Nexus 3600 Series Switches xvi
 Documentation Feedback xvi
 Communications, Services, and Additional Information xvi

CHAPTER 1

New and Changed Information 1
 New and Changed Information 1

CHAPTER 2

Overview 3
 System Management Features 3

CHAPTER 3

Configuring Switch Profiles 7
 About Switch Profiles 7
 Switch Profile Configuration Modes 8
 Configuration Validation 9
 Software Upgrades and Downgrades with Switch Profiles 10
 Prerequisites for Switch Profiles 10
 Guidelines and Limitations for Switch Profiles 10
 Configuring Switch Profiles 11
 Adding a Switch to a Switch Profile 13
 Adding or Modifying Switch Profile Commands 15
 Importing a Switch Profile 17
 Verifying Commands in a Switch Profile 19
 Isolating a Peer Switch 20
Deleting a Switch Profile 21
Deleting a Switch from a Switch Profile 22
Displaying the Switch Profile Buffer 23
Synchronizing Configurations After a Switch Reboot 24
Switch Profile Configuration show Commands 24
Supported Switch Profile Commands 25
Configuration Examples for Switch Profiles 26
 Creating a Switch Profile on a Local and Peer Switch Example 26
 Verifying the Synchronization Status Example 27
 Displaying the Running Configuration 28
 Displaying the Switch Profile Synchronization Between Local and Peer Switches 28
 Displaying Verify and Commit on Local and Peer Switches 29
 Successful and Unsuccessful Synchronization Examples 30
 Configuring the Switch Profile Buffer, Moving the Buffer, and Deleting the Buffer 31

CHAPTER 4 Configuring PTP 33
 About PTP 33
 PTP Device Types 33
 PTP Process 34
 High Availability for PTP 35
 Licensing Requirements for PTP 35
 Guidelines and Limitations for PTP 35
 Default Settings for PTP 35
 Configuring PTP 36
 Configuring PTP Globally 36
 Configuring PTP on an Interface 38
 Verifying the PTP Configuration 40

CHAPTER 5 Configuring NTP 41
 Information About NTP 41
 NTP as Time Server 42
 Distributing NTP Using CFS 42
 Clock Manager 42
 High Availability 42
CHAPTER 7

Configuring Smart Call Home 65
About Smart Call Home 65
 Smart Call Home Overview 66
 Smart Call Home Destination Profiles 66
 Smart Call Home Alert Groups 67
 Smart Call Home Message Levels 68
 Call Home Message Formats 69
Guidelines and Limitations for Smart Call Home 73
Prerequisites for Smart Call Home 73
Default Call Home Settings 74
Configuring Smart Call Home 74
 Registering for Smart Call Home 74
 Configuring Contact Information 75
 Creating a Destination Profile 77
 Modifying a Destination Profile 78
 Associating an Alert Group with a Destination Profile 79
 Adding Show Commands to an Alert Group 80
Configuring E-Mail Server Details 81
Configuring Periodic Inventory Notifications 82
Disabling Duplicate Message Throttling 83
Enabling or Disabling Smart Call Home 84
Testing the Smart Call Home Configuration 85
Verifying the Smart Call Home Configuration 86
Sample Syslog Alert Notification in Full-Text Format 86
Sample Syslog Alert Notification in XML Format 87

CHAPTER 8

Configuring the Scheduler 91
Information About the Scheduler 91
 Remote User Authentication 92
 Scheduler Log Files 92
Licensing Requirements for the Scheduler 92
Prerequisites for OBFL 154
Guidelines and Limitations for OBFL 154
Default Settings for OBFL 154
Configuring OBFL 155
Verifying the OBFL Configuration 157
Configuration Example for OBFL 158
Additional References 158
Related Documents 158

CHAPTER 15
Configuring SPAN 159
Information About SPAN 159
SPAN Sources 159
Characteristics of Source Ports 160
SPAN Destinations 160
Characteristics of Destination Ports 161
Guidelines and Limitations for SPAN 161
Creating or Deleting a SPAN Session 162
Configuring an Ethernet Destination Port 162
Configuring Source Ports 164
Configuring the Rate Limit for SPAN Traffic 164
Configuring Source Port Channels, VSANs, or VLANs 165
Configuring the Description of a SPAN Session 166
Activating a SPAN Session 167
Suspending a SPAN Session 167
Displaying SPAN Information 168
Configuration Examples for SPAN 169
 Configuration Example for a SPAN Session 169
 Configuration Example for a Unidirectional SPAN Session 169
 Configuration Example for a SPAN ACL 170
 Configuration Examples for UDF-Based SPAN 171

CHAPTER 16
Configuring ERSPAN 173
About ERSPAN 173
ERSPAN Sources 173
CHAPTER 19

Configuring Graceful Insertion and Removal 211

About Graceful Insertion and Removal 211

Profiles 212

Snapshots 213

Licensing Requirements for GIR 213

GIR Workflow 213

Configuring the Maintenance-Mode Profile 214

Configuring the Normal-Mode Profile 215

Creating a Snapshot 216

Adding Show Commands to Snapshots 218

Triggering Graceful Removal 220

Triggering Graceful Insertion 222

Maintenance Mode Enhancements 223

Verifying the GIR Configuration 224
Preface

This preface includes the following sections:

- Audience, on page xv
- Document Conventions, on page xv
- Related Documentation for Cisco Nexus 3600 Series Switches, on page xvi
- Documentation Feedback, on page xvi
- Communications, Services, and Additional Information, on page xvi

Audience

This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Document Conventions

Command descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Bold text indicates the commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>Italic</td>
<td>Italic text indicates arguments for which the user supplies the values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>variable</td>
<td>Indicates a variable for which you supply values, in context where italics</td>
</tr>
<tr>
<td></td>
<td>cannot be used.</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string</td>
</tr>
<tr>
<td></td>
<td>or the string will include the quotation marks.</td>
</tr>
</tbody>
</table>

Examples use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen font</td>
<td>Terminal sessions and information the switch displays are in screen font.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Arguments for which you supply values are in italic screen font.</td>
</tr>
<tr>
<td>< ></td>
<td>Nonprinting characters, such as passwords, are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of</td>
</tr>
<tr>
<td></td>
<td>code indicates a comment line.</td>
</tr>
</tbody>
</table>

Related Documentation for Cisco Nexus 3600 Series Switches

The entire Cisco Nexus 3600 Series switch documentation set is available at the following URL:

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to nexus3k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at [Cisco Profile Manager](https://www.cisco.com).
- To get the business impact you’re looking for with the technologies that matter, visit [Cisco Services](https://www.cisco.com/c/en/us/products/collateral/service-delivery/ PICK%20SERVICE%20DELIVERY%20PRODUCTS%20AND%20SERVICES/index.html).
- To submit a service request, visit [Cisco Support](https://www.cisco.com/c/en/us/support/home.html).
- To obtain general networking, training, and certification titles, visit [Cisco Press](https://www.cisco.com/c/en/us/about/about-cisco/career/education/index.html).
- To find warranty information for a specific product or product family, access [Cisco Warranty Finder](https://www.cisco.com/c/en/us/about/about-cisco/career/education/index.html).
Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.
New and Changed Information

This chapter provides release-specific information for each new and changed feature in the *Cisco Nexus 3600 Series NX-OS System Management Configuration Guide, Release 9.2(x)*.

- New and Changed Information, on page 1

New and Changed Information

This table summarizes the new and changed features for the *Cisco Nexus 3600 Series NX-OS System Management Configuration Guide, Release 9.2(x)* and tells you where they are documented.

Table 1: New and Changed Features for Cisco NX-OS Release 9.2(x)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP</td>
<td>Introduced this feature.</td>
<td>9.2(1)</td>
<td>Configuring PTP, on page 33</td>
</tr>
<tr>
<td>PTP</td>
<td>Support for Cisco N9K-X9636C-R, and N9K-X9636Q-R line cards.</td>
<td>9.2(1)</td>
<td>Guidelines and Limitations for PTP, on page 35</td>
</tr>
</tbody>
</table>
Overview

This chapter contains the following sections:

- System Management Features, on page 3

System Management Features

The system management features documented in this guide are described below:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Accounts and RBAC</td>
<td>User accounts and role-based access control (RBAC) allow you to define the rules for an assigned role. Roles restrict the authorization that the user has to access management operations. Each user role can contain multiple rules and each user can have multiple roles.</td>
</tr>
<tr>
<td>Session Manager</td>
<td>Session Manager allows you to create a configuration and apply it in batch mode after the configuration is reviewed and verified for accuracy and completeness.</td>
</tr>
<tr>
<td>Online Diagnostics</td>
<td>Cisco Generic Online Diagnostics (GOLD) define a common framework for diagnostic operations across Cisco platforms. The online diagnostic framework specifies the platform-independent fault-detection architecture for centralized and distributed systems, including the common diagnostics CLI and the platform-independent fault-detection procedures for boot-up and run-time diagnostics. The platform-specific diagnostics provide hardware-specific fault-detection tests and allow you to take appropriate corrective action in response to diagnostic test results.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Configuration Rollback</td>
<td>The configuration rollback feature allows users to take a snapshot, or user checkpoint, of the Cisco NX-OS configuration and then reapply that configuration to a switch at any point without having to reload the switch. A rollback allows any authorized administrator to apply this checkpoint configuration without requiring expert knowledge of the features configured in the checkpoint.</td>
</tr>
<tr>
<td>SNMP</td>
<td>The Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network.</td>
</tr>
<tr>
<td>RMON</td>
<td>RMON is an Internet Engineering Task Force (IETF) standard monitoring specification that allows various network agents and console systems to exchange network monitoring data. Cisco NX-OS supports RMON alarms, events, and logs to monitor Cisco NX-OS devices.</td>
</tr>
<tr>
<td>SPAN</td>
<td>The Switched Port Analyzer (SPAN) feature (sometimes called port mirroring or port monitoring) selects network traffic for analysis by a network analyzer. The network analyzer can be a Cisco SwitchProbe or other Remote Monitoring (RMON) probes.</td>
</tr>
</tbody>
</table>
Feature Description

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| ERSPAN | Encapsulated remote switched port analyzer (ERSPAN) is used to transport mirrored traffic in an IP network. ERSPAN supports source ports, source VLANs, and destinations on different switches, which provide remote monitoring of multiple switches across your network. ERSPAN uses a generic routing encapsulation (GRE) tunnel to carry traffic between switches.
ERSPAN consists of an ERSPAN source session, routable ERSPAN GRE-encapsulated traffic, and an ERSPAN destination session. You separately configure ERSPAN source sessions and destination sessions on different switches.
To configure an ERSPAN source session on one switch, you associate a set of source ports or VLANs with a destination IP address, ERSPAN ID number, and virtual routing and forwarding (VRF) name. To configure an ERSPAN destination session on another switch, you associate the destinations with the source IP address, the ERSPAN ID number, and a VRF name.
The ERSPAN source session copies traffic from the source ports or source VLANs and forwards the traffic using routable GRE-encapsulated packets to the ERSPAN destination session. The ERSPAN destination session switches the traffic to the destinations. |
Configuring Switch Profiles

This chapter contains the following sections:

• About Switch Profiles, on page 7
• Switch Profile Configuration Modes, on page 8
• Configuration Validation, on page 9
• Software Upgrades and Downgrades with Switch Profiles, on page 10
• Prerequisites for Switch Profiles, on page 10
• Guidelines and Limitations for Switch Profiles, on page 10
• Configuring Switch Profiles, on page 11
• Adding a Switch to a Switch Profile, on page 13
• Adding or Modifying Switch Profile Commands, on page 15
• Importing a Switch Profile, on page 17
• Verifying Commands in a Switch Profile, on page 19
• Isolating a Peer Switch, on page 20
• Deleting a Switch Profile, on page 21
• Deleting a Switch from a Switch Profile, on page 22
• Displaying the Switch Profile Buffer, on page 23
• Synchronizing Configurations After a Switch Reboot, on page 24
• Switch Profile Configuration show Commands, on page 24
• Supported Switch Profile Commands, on page 25
• Configuration Examples for Switch Profiles, on page 26

About Switch Profiles

Several applications require consistent configuration across Cisco Nexus Series switches. For example, with a Virtual Port Channel (vPC), you must have identical configurations. Mismatched configurations can cause errors or misconfigurations that can result in service disruptions.

The configuration synchronization (config-syncc) feature allows you to configure one switch profile and have the configuration be automatically synchronized to the peer switch. A switch profile provides the following benefits:

• Allows configurations to be synchronized between switches.
• Merges configurations when connectivity is established between two switches.
• Provides control of exactly which configuration gets synchronized.
• Ensures configuration consistency across peers through merge and mutual-exclusion checks.
• Provides verify and commit semantics.
• Supports configuring and synchronizing port profile configurations.
• Provides an import command to migrate existing vPC configurations to a switch profile.

Switch Profile Configuration Modes

The switch profile feature includes the following configuration modes:
• Configuration Synchronization Mode
• Switch Profile Mode
• Switch Profile Import Mode

Configuration Synchronization Mode

The configuration synchronization mode (config-sync) allows you to create switch profiles using the `config sync` command on the local switch that you want to use as the master. After you create the profile, you can enter the `config sync` command on the peer switch that you want to synchronize.

Switch Profile Mode

The switch profile mode allows you to add supported configuration commands to a switch profile that is later synchronized with a peer switch. Commands that you enter in the switch profile mode are buffered until you enter the `commit` command.

Switch Profile Import Mode

When you upgrade from an earlier release, you have the option to enter the `import` command to copy supported running-configuration commands to a switch profile. After entering the `import` command, the switch profile mode (config-sync-sp) changes to the switch profile import mode (config-sync-sp-import). The switch profile import mode allows you to import existing switch configurations from the running configuration and specify which commands you want to include in the switch profile.

Because different topologies require different commands that are included in a switch profile, the `import` command mode allows you to modify the imported set of commands to suit a specific topology.

You need to enter the `commit` command to complete the import process and move the configuration into the switch profile. Because configuration changes are not supported during the import process, if you added new commands before entering the `commit` command, the switch profile remains unsaved and the switch remains in the switch profile import mode. You can remove the added commands or abort the import. Unsaved configurations are lost if the process is aborted. You can add new commands to the switch profile after the import is complete.
Configuration Validation

Two types of configuration validation checks can identify two types of switch profile failures:

- Mutual Exclusion Checks
- Merge Checks

Mutual Exclusion Checks

To reduce the possibility of overriding configuration settings that are included in a switch profile, mutual exclusion (mutex) checks the switch profile commands against the commands that exist on the local switch and the commands on the peer switch. A command that is included in a switch profile cannot be configured outside of the switch profile or on a peer switch. This requirement reduces the possibility that an existing command is unintentionally overwritten.

As a part of the commit process, the mutex-check occurs on both switches if the peer switch is reachable; otherwise, the mutex-check is performed locally. Configuration changes made from the configuration terminal occur only on the local switch.

If a mutex-check identifies errors, they are reported as mutex failures and they must be manually corrected.

The following exceptions apply to the mutual exclusion policy:

- Interface configuration—Port channel interfaces must be configured fully in either switch profile mode or global configuration mode.

Note

Several port channel subcommands are not configurable in switch profile mode. These commands can be configured from global configuration mode even if the port channel is created and configured in switch profile mode.

For example, the following command can only be configured in global configuration mode:

```
switchport private-vlan association trunk primary-vlan secondary-vlan
```

- Shutdown/no shutdown
- System QoS

Merge Checks

Merge checks are done on the peer switch that is receiving a configuration. The merge checks ensure that the received configuration does not conflict with the switch profile configuration that already exists on the receiving switch. The merge check occurs during the merge or commit process. Errors are reported as merge failures and must be manually corrected.

When one or both switches are reloaded and the configurations are synchronized for the first time, the merge check verifies that the switch profile configurations are identical on both switches. Differences in the switch profiles are reported as merge errors and must be manually corrected.
Software Upgrades and Downgrades with Switch Profiles

When you downgrade to an earlier release, you are prompted to remove an existing switch profile that is not supported on earlier releases.

When you upgrade from an earlier release, you have the option to move some of the running-configuration commands to a switch profile. The import command allows you to import relevant switch profile commands. An upgrade can occur if there are buffered configurations (uncommitted); however, the uncommitted configurations are lost.

Prerequisites for Switch Profiles

Switch profiles have the following prerequisites:

• You must enable Cisco Fabric Series over IP (CFSoIP) distribution over mgmt0 on both switches by entering the cfs ipv4 distribute command.

• You must configure a switch profile with the same name on both peer switches by entering the config sync and switch-profile commands.

• Configure each switch as peer switch by entering the sync-peers destination command

Guidelines and Limitations for Switch Profiles

Consider the following guidelines and limitations when configuring switch profiles:

• You can only enable configuration synchronization using the mgmt0 interface.

• Configuration synchronization is performed using the mgmt0 interface and cannot be performed using a management SVI.

• You must configure synchronized peers with the same switch profile name.

• Commands that are qualified for a switch profile configuration are allowed to be configured in the configuration switch profile (config-sync-sp) mode.

• One switch profile session can be in progress at a time. Attempts to start another session will fail.

• Supported command changes made from the configuration terminal mode are blocked when a switch profile session is in progress. You should not make unsupported command changes from the configuration terminal mode when a switch profile session is in progress.

• When you enter the commit command and a peer switch is reachable, the configuration is applied to both peer switches or neither switch. If there is a commit failure, the commands remain in the switch profile buffer. You can then make necessary corrections and try the commit again.

• Once a port channel is configured using switch profile mode, it cannot be configured using global configuration (config terminal) mode.
Several port channel sub-commands are not configurable in switch profile mode. These commands can be configured from global configuration mode even if the port channel is created and configured in switch profile mode.

For example, the following command can only be configured in global configuration mode:

```
switchport private-vlan association trunk primary-vlan secondary-vlan
```

- Shutdown and no shutdown can be configured in either global configuration mode or switch profile mode.
- If a port channel is created in global configuration mode, channel groups including member interfaces must also be created using global configuration mode.
- Port channels that are configured within switch profile mode may have members both inside and outside of a switch profile.
- If you want to import a member interface to a switch profile, the port channel including the member interface must also be present within the switch profile.
- Defaulting an interface does not remove a channel group from the config-sync configuration for that interface. You must apply the `no channel-group` command on the interface or include the port channel in the config-sync configuration to prevent any conflicting configurations from being pushed by the config-sync module.

Guidelines for Synchronizing After Connectivity Loss

- Synchronizing configurations after mgmt0 interface connectivity loss—When mgmt0 interface connectivity is lost and configuration changes are required, apply the configuration changes on both switches using the switch profile. When connectivity to the mgmt0 interface is restored, both switches synchronize automatically.

 If a configuration change is made on only one switch, a merge will occur when the mgmt0 interface comes up and the configuration is applied on the other switch.

Configuring Switch Profiles

You can create and configure a switch profile. Enter the `switch-profile name` command in the configuration synchronization mode (config-sync).

Before you begin

You must create the switch profile with the same name on each switch and the switches must configure each other as a peer. When connectivity is established between switches with the same active switch profile, the switch profiles are synchronized.

SUMMARY STEPS

1. `configure terminal`
Configuring Switch Profiles

2. `cfs ipv4 distribute`
3. `config sync`
4. `switch-profile name`
5. `sync-peers destination IP-address`
6. (Optional) `show switch-profile name status`
7. `exit`
8. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code>
Example:
switch# configure terminal
switch(config)#</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>cfs ipv4 distribute</code>
Example:
switch(config)# cfs ipv4 distribute
switch(config)#</td>
<td>Enables CFS distribution between the peer switches.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>config sync</code>
Example:
switch# config sync
switch(config-sync)#</td>
<td>Enters configuration synchronization mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch-profile name</code>
Example:
switch(config-sync)# switch-profile abc
switch(config-sync-sp)#</td>
<td>Configures the switch profile, names the switch profile, and enters switch profile synchronization configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>sync-peers destination IP-address</code>
Example:
switch(config-sync-sp)# sync-peers destination 10.1.1.1
switch(config-sync-sp)#</td>
<td>Configures the peer switch.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) <code>show switch-profile name status</code>
Example:
switch(config-sync-sp)# show switch-profile abc status
switch(config-sync-sp)#</td>
<td>Views the switch profile on the local switch and the peer switch information.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>exit</code>
Example:
switch(config-sync-sp)# exit
switch#</td>
<td>Exits the switch profile configuration mode and returns to EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>(Optional)</td>
<td>copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to configure a switch profile and shows the switch profile status.

```
switch# configuration terminal
switch(config)# cfs ipv4 distribute
switch(config-sync)# switch-profile abc
switch(config-sync-sp)# sync-peers destination 10.1.1.1
switch(config-sync-sp)# show switch-profile abc status
Start-time: 15801 usecs after Mon Aug 23 06:21:08 2010
End-time: 6480 usecs after Mon Aug 23 06:21:13 2010

Profile-Revision: 1
Session-type: Initial-Exchange
Peer-triggered: Yes
Profile-status: Sync Success

Local information:
-------------------
Status: Commit Success
Error(s):

Peer information:
-------------------
IP-address: 10.1.1.1
Sync-status: In Sync.
Status: Commit Success
Error(s):
switch(config-sync-sp)# exit
switch#
```

Adding a Switch to a Switch Profile

Enter the `sync-peers destination destination IP` command in switch profile configuration mode to add the switch to a switch profile.

Follow these guidelines when adding switches:

- Switches are identified by their IP address.
- Destination IPs are the IP addresses of the switches that you want to synchronize.
- The committed switch profile is synchronized with the newly added peers (when they are online) if the peer switch is also configured with configuration synchronization.

If you want to import a member interface to a switch profile, the port channel including the member interface must also be present within the switch profile.
Before you begin
After creating a switch profile on the local switch, you must add the second switch that will be included in the synchronization.

SUMMARY STEPS

1. `config sync`
2. `switch-profile name`
3. `sync-peers destination destination IP`
4. `exit`
5. (Optional) `show switch-profile peer`
6. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration synchronization mode.</td>
</tr>
<tr>
<td><code>config sync</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| `switch# config sync`
`switch(config-sync)#` | |
| **Step 2** | Configures switch profile, names the switch profile, and enters switch profile synchronization configuration mode. |
| `switch-profile name` | |
| **Example:** | |
| `switch(config-sync)# switch-profile abc`
`switch(config-sync-sp)#` | |
| **Step 3** | Adds a switch to the switch profile. |
| `sync-peers destination destination IP` | |
| **Example:** | |
| `switch(config-sync-sp)# sync-peers destination 10.1.1.1`
`switch(config-sync-sp)#` | |
| **Step 4** | Exits switch profile configuration mode. |
| `exit` | |
| **Example:** | |
| `switch(config-sync-sp)# exit`
`switch#` | |
| **Step 5** | Displays the switch profile peer configuration. |
| (Optional) `show switch-profile peer` | |
| **Example:** | |
| `switch# show switch-profile peer` | |
| **Step 6** | Copies the running configuration to the startup configuration. |
| (Optional) `copy running-config startup-config` | |
| **Example:** | |
| `switch# copy running-config startup-config` | |
Adding or Modifying Switch Profile Commands

To modify a command in a switch profile, add the modified command to the switch profile and enter the `commit` command to apply the command and synchronize the switch profile to the peer switch if it is reachable.

Follow these guidelines when adding or modifying switch profile commands:

- Commands that are added or modified are buffered until you enter the `commit` command.
- Commands are executed in the same order in which they are buffered. If there is an order-dependency for certain commands, for example, a QoS policy must be defined before being applied, you must maintain that order; otherwise, the commit might fail. You can use utility commands, such as the `show switch-profile name buffer` command, the `buffer-delete` command, or the `buffer-move` command, to change the buffer and correct the order of already entered commands.

Before you begin

After configuring a switch profile on the local and the peer switch, you must add and commit the supported commands to the switch profile. The commands are added to the switch profile buffer until you enter the `commit` command. The `commit` command does the following:

- Triggers the mutex check and the merge check to verify the synchronization.
- Creates a checkpoint with a rollback infrastructure.
- Applies the configuration on the local switch and the peer switch.
- Executes a rollback on all switches if there is a failure with an application on any of the switches in the switch profile.
- Deletes the checkpoint.

SUMMARY STEPS

1. `config sync`
2. `switch-profile name`
3. Command argument
4. (Optional) `show switch-profile name buffer`
5. `verify`
6. `commit`
7. (Optional) `show switch-profile name status`
8. `exit`
9. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>config sync</code></td>
<td>Enters configuration synchronization mode.</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Switch Profiles

Adding or Modifying Switch Profile Commands

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| switch# config sync
switch(config-sync)# | Configures the switch profile, names the switch profile, and enters switch profile synchronization configuration mode. |

Step 2

switch-profile name

Example:

```
switch(config-sync)# switch-profile abc
switch(config-sync-sp)#
```

Purpose: Adds a command to the switch profile.

Step 3

Command argument

Example:

```
switch(config-sync-sp)# interface Port-channel100
switch(config-sync-sp-if)# speed 1000
switch(config-sync-sp-if)# interface Ethernet1/1
switch(config-sync-sp-if)# speed 1000
switch(config-sync-sp-if)# channel-group 100
```

Step 4

(Optional) **show switch-profile name buffer**

Example:

```
switch(config-sync-sp)# show switch-profile abc
buffer
switch(config-sync-sp)#
```

Purpose: Displays the configuration commands in the switch profile buffer.

Step 5

verify

Example:

```
switch(config-sync-sp)# verify
```

Purpose: Verifies the commands in the switch profile buffer.

Step 6

commit

Example:

```
switch(config-sync-sp)# commit
```

Purpose: Saves the commands in the switch profile and synchronizes the configuration with the peer switch.

Step 7

(Optional) **show switch-profile name status**

Example:

```
switch(config-sync-sp)# show switch-profile abc
status
switch(config-sync-sp)#
```

Purpose: Displays the status of the switch profile on the local switch and the status on the peer switch.

Step 8

exit

Example:

```
switch(config-sync-sp)# exit
```

Purpose: Exits the switch profile configuration mode.

Step 9

(Optional) **copy running-config startup-config**

Example:

```
switch# copy running-config startup-config
```

Purpose: Copies the running configuration to the startup configuration.
Example

The following example shows how to create a switch profile, configure a peer switch, and add commands to the switch profile.

```bash
switch# configuration terminal
switch(config)# cfs ipv4 distribute
switch(config-sync)# switch-profile abc
switch(config-sync-sp)# sync-peers destination 10.1.1.1
switch(config-sync-sp)# interface port-channel100
switch(config-sync-sp-if)# speed 1000
switch(config-sync-sp-if)# interface Ethernet1/1
switch(config-sync-sp-if)# speed 1000
switch(config-sync-sp-if)# channel-group 100
switch(config-sync-sp)# verify
switch(config-sync-sp)# commit
switch(config-sync-sp)# exit
switch#
```

The following example shows an existing configuration with a defined switch profile. The second example shows how the switch profile command changed by adding the modified command to the switch profile.

```bash
switch# show running-config
switch-profile abc
  interface Ethernet1/1
    switchport mode trunk
    switchport trunk allowed vlan 1-10

switch# config sync
switch(config-sync)# switch-profile abc
switch(config-sync)# interface Ethernet1/1
switch(config-sync-sp-if)# switchport trunk allowed vlan 5-10
switch(config-sync-sp-if)# commit

switch# show running-config
switch-profile abc
  interface Ethernet1/1
    switchport mode trunk
    switchport trunk allowed vlan 5-10
```

Importing a Switch Profile

You can import a switch profile based on the set of commands that you want to import. Using the configuration terminal mode, you can do the following:

- Add selected commands to the switch profile.
- Add supported commands that were specified for an interface.
- Add supported system-level commands.
- Add supported system-level commands excluding the physical interface commands.

When you import commands to a switch profile, the switch profile buffer must be empty.
If new commands are added during the import, the switch profile remains unsaved and the switch remains in the switch profile import mode. You can enter the `abort` command to stop the import. For additional information importing a switch profile, see the “Switch Profile Import Mode” section.

SUMMARY STEPS

1. `config sync`
2. `switch-profile name`
3. `import {interface port/slot | running-config [exclude interface ethernet]}`
4. `commit`
5. (Optional) `abort`
6. `exit`
7. (Optional) `show switch-profile`
8. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>config sync</code></td>
</tr>
</tbody>
</table>
| **Example:** | `switch# config sync`
| | `switch(config-sync)#` |
| **Purpose:** | Enters configuration synchronization mode. |

| **Step 2** | `switch-profile name` |
| **Example:** | `switch(config-sync)# switch-profile abc`
| | `switch(config-sync-sp)#` |
| **Purpose:** | Configures the switch profile, names the switch profile, and enters switch profile synchronization configuration mode. |

| **Step 3** | `import {interface port/slot | running-config [exclude interface ethernet]}` |
| **Example:** | `switch(config-sync-sp)# import ethernet 1/2`
| | `switch(config-sync-sp-import)#` |
| **Purpose:** | Identifies the commands that you want to import and enters switch profile import mode.
| | • `<CR>`—Adds selected commands.
| | • `interface`—Adds the supported commands for a specified interface.
| | • `running-config`—Adds supported system-level commands.
| | • `running-config exclude interface ethernet`—Adds supported system-level commands excluding the physical interface commands. |

Step 4	`commit`
Example:	`switch(config-sync-sp-import)# commit`
Purpose:	Imports the commands and saves the commands to the switch profile.

<p>| Step 5 | (Optional) <code>abort</code> |
| Example: | <code>switch(config-sync-sp-import)# abort</code> |
| Purpose: | Aborts the import process. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>Exits switch profile import mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
</tbody>
</table>
| **Example:** | switch(config-sync-sp)# exit
switch# | | |
| **Step 7** | Displays the switch profile configuration. | | |
| (Optional) show switch-profile | | |
| **Example:** | switch# show switch-profile | | |
| **Step 8** | Copies the running configuration to the startup configuration. |
| (Optional) copy running-config startup-config | | |
| **Example:** | switch# copy running-config startup-config | | |

Example

The following example shows how to import supported system-level commands excluding the Ethernet interface commands into the switch profile named `sp`:

```plaintext
switch(config-vlan)# conf sync
switch(config-sync)# switch-profile sp
Switch-Profile started, Profile ID is 1
switch(config-sync-sp)# show switch-profile buffer

switch-profile : sp
----------------------------------------------------------
Seq-no Command
----------------------------------------------------------

switch(config-sync-sp)# import running-config exclude interface ethernet
switch(config-sync-sp-import)#
switch(config-sync-sp-import)# show switch-profile buffer

switch-profile : sp
----------------------------------------------------------
Seq-no Command
----------------------------------------------------------
3 vlan 100-299
4 vlan 300
4.1 state suspend
5 vlan 301-345
6 interface port-channel100
6.1 spanning-tree port type network
7 interface port-channel1105

switch(config-sync-sp-import)#
```

Verifying Commands in a Switch Profile

You can verify the commands that are included in a switch profile by entering the `verify` command in switch profile mode.
SUMMARY STEPS

1. `config sync`
2. `switch-profile name`
3. `verify`
4. `exit`
5. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>config sync</code></td>
<td>Enters configuration synchronization mode.</td>
</tr>
<tr>
<td>Example: <code>switch# config sync</code> <code>switch(config-sync)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>switch-profile name</code></td>
<td>Configures the switch profile, names the switch profile, and enters switch profile synchronization configuration mode.</td>
</tr>
<tr>
<td>Example: <code>switch(config-sync)# switch-profile abc</code> <code>switch(config-sync-sp)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>verify</code></td>
<td>Verifies the commands in the switch profile buffer.</td>
</tr>
<tr>
<td>Example: <code>switch(config-sync-sp)# verify</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>exit</code></td>
<td>Exits the switch profile configuration mode.</td>
</tr>
<tr>
<td>Example: <code>switch(config-sync-sp)# exit</code> <code>switch#</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 (Optional) <code>copy running-config startup-config</code></td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example: <code>switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Isolating a Peer Switch

You can isolate a peer switch in order to make changes to a switch profile. This process can be used when you want to block a configuration synchronization or when you want to debug configurations.

Isolating a peer switch requires that you remove the switch from the switch profile and then add the peer switch back to the switch profile.

To temporarily isolate a peer switch, follow these steps:

1. Remove a peer switch from a switch profile.
2. Make changes to the switch profile and commit the changes.
3. Enter debug commands.
4. Undo the changes that were made to the switch profile in Step 2 and commit.
5. Add the peer switch back to the switch profile.

Deleting a Switch Profile

You can delete a switch profile by selecting the **all-config** or the **local-config** option:

- **all-config**—Deletes the switch profile on both peer switches (when both are reachable). If you choose this option and one of the peers is unreachable, only the local switch profile is deleted. The **all-config** option completely deletes the switch profile on both peer switches.

- **local-config**—Deletes the switch profile on the local switch only.

SUMMARY STEPS

1. config sync
2.
3. exit
4. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>config sync</td>
<td>Enters configuration synchronization mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch# config sync</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-sync)#</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>no switch-profile abc</td>
<td>Deletes the switch profile as follows:</td>
</tr>
<tr>
<td></td>
<td>local-config</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-sync-sp)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-sync)# no switch-profile abc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>local-config</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-sync-sp)#</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>exit</td>
<td>Exits configuration synchronization mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-sync-sp)# exit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch#</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(Optional) copy running-config startup-config</td>
<td>Copies the running configuration to the startup</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>configuration.</td>
</tr>
<tr>
<td></td>
<td>switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Deleting a Switch from a Switch Profile

You can delete a switch from a switch profile.

SUMMARY STEPS

1. `config sync`
2. `switch-profile name`
3. `no sync-peers destination destination IP`
4. `exit`
5. (Optional) `show switch-profile`
6. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config sync</td>
</tr>
</tbody>
</table>
| Example: | switch# config sync
switch(config-sync)# |
| **Step 2** | switch-profile name |
| Example: | switch(config-sync)# switch-profile abc
switch(config-sync-sp)# |
| **Step 3** | no sync-peers destination destination IP |
| Example: | switch(config-sync-sp)# no sync-peers destination 10.1.1.1
switch(config-sync-sp)# |
| **Step 4** | exit |
| Example: | switch(config-sync-sp)# exit
switch# |
| **Step 5** | (Optional) show switch-profile |
| Example: | switch# show switch-profile |
| **Step 6** | (Optional) copy running-config startup-config |
| Example: | switch# copy running-config startup-config |
Displaying the Switch Profile Buffer

SUMMARY STEPS

1. `switch# configure sync`
2. `switch(config-sync)# switch-profile profile-name`
3. `switch(config-sync-sp)# show switch-profile profile-name buffer`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure sync</code></td>
<td>Enters configuration synchronization mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config-sync)# switch-profile profile-name</code></td>
<td>Enters switch profile synchronization configuration mode for the specified switch profile.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config-sync-sp)# show switch-profile profile-name buffer</code></td>
<td>Enters interface switch profile synchronization configuration mode for the specified interface.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to display the switch profile buffer for a service profile called `sp`:

```
switch# configure sync
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-sync)# switch-profile sp
Switch-Profile started, Profile ID is 1
switch(config-sync-sp)# show switch-profile sp buffer
-------------------------------------------
Seq-no Command
-------------------------------------------
1 vlan 101
1.1 ip igmp snooping querier 10.101.1.1
2 mac address-table static 0000.0000.0001 vlan 101 drop
3 interface Ethernet1/2
3.1 switchport mode trunk
3.2 switchport trunk allowed vlan 101

switch(config-sync-sp)# buffer-move 3 1
switch(config-sync-sp)# show switch-profile sp buffer
-------------------------------------------
Seq-no Command
-------------------------------------------
1 interface Ethernet1/2
1.1 switchport mode trunk
1.2 switchport trunk allowed vlan 101
2 vlan 101
2.1 ip igmp snooping querier 10.101.1.1
3 mac address-table static 0000.0000.0001 vlan 101 drop
```
Synchronizing Configurations After a Switch Reboot

If a Cisco Nexus 3600 platform switch reboots while a new configuration is being committed on a peer switch using a switch profile, complete the following steps to synchronize the peer switches after reload:

SUMMARY STEPS

1. Reapply configurations that were changed on the peer switch during the reboot.
2. Enter the \texttt{commit} command.
3. Verify that the configuration is applied correctly and both peers are back synchronized.

DETAILED STEPS

Step 1 Reapply configurations that were changed on the peer switch during the reboot.
Step 2 Enter the \texttt{commit} command.
Step 3 Verify that the configuration is applied correctly and both peers are back synchronized.

Example

Switch Profile Configuration show Commands

The following \texttt{show} commands display information about the switch profile.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{show switch-profile name}</td>
<td>Displays the commands in a switch profile.</td>
</tr>
<tr>
<td>\texttt{show switch-profile name buffer}</td>
<td>Displays the uncommitted commands in a switch profile, the commands that were moved, and the commands that were deleted.</td>
</tr>
<tr>
<td>\texttt{show switch-profile name peer IP-address}</td>
<td>Displays the synchronization status for a peer switch.</td>
</tr>
<tr>
<td>\texttt{show switch-profile name session-history}</td>
<td>Displays the status of the last 20 switch profile sessions.</td>
</tr>
<tr>
<td>\texttt{show switch-profile name status}</td>
<td>Displays the configuration synchronization status of a peer switch.</td>
</tr>
<tr>
<td>\texttt{show running-config expand-port-profile}</td>
<td>Displays details about the port profile.</td>
</tr>
<tr>
<td>\texttt{show running-config exclude-provision}</td>
<td>Displays the configurations for offline preprovisioned interfaces that are hidden.</td>
</tr>
<tr>
<td>\texttt{show running-config switch-profile}</td>
<td>Displays the running configuration for the switch profile on the local switch.</td>
</tr>
<tr>
<td>\texttt{show startup-config switch-profile}</td>
<td>Displays the startup configuration for the switch profile on the local switch.</td>
</tr>
</tbody>
</table>
For detailed information about the fields in the output from these commands, see the system management command reference for your platform.

Supported Switch Profile Commands

The following switch profile commands are supported:

- `logging event link-status default`
- `no vlan vlan-range`
- `ip access-list acl-name`
- `policy-map type network-qos jumbo-frames`
 - `class type network-qos class-default`
 - `mtu mtu value`
- `system qos`
 - `service-policy type network-qos jumbo-frames`
- `vlan configuration vlan id`
 - `ip igmp snooping querier ip`
- `spanning-tree port type edge default`
- `spanning-tree port type edge bpduguard default`
- `spanning-tree loopguard default`
- `no spanning-tree vlan vlan id`
- `port-channel load-balance ethernet source-dest-port`
- `interface port-channel number`
 - `description text`
 - `switchport mode trunk`
 - `switchport trunk allowed vlan vlan list`
 - `spanning-tree port type network`
 - `no negotiate auto`
 - `vpc peer-link`
- `interface port-channel number`
 - `switchport access vlan vlan id`
 - `spanning-tree port type edge`
 - `speed 10000`
• `vpc number`
• `interface ethernet x/y`
 • `switchport access vlan vlanid`
 • `spanning-tree port type edge`
 • `channel-group number mode active`

Configuration Examples for Switch Profiles

Creating a Switch Profile on a Local and Peer Switch Example

The following example shows how to create a successful switch profile configuration on a local and peer switch.

SUMMARY STEPS

1. Enable CFSoIP distribution on the local and the peer switch.
2. Create a switch profile on the local and the peer switch.
3. Verify that the switch profiles are the same on the local and the peer switch.
4. Verify the commands in the switch profile.
5. Apply the commands to the switch profile and to synchronize the configurations between the local and the peer switch.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Enable CFSoIP distribution on the local and the peer switch. **Example:**

 switch# configuration terminal
 switch(config)# cfs ipv4 distribute | | |
| **Step 2** | Create a switch profile on the local and the peer switch. **Example:**

 switch(config-sync)# switch-profile abc
 switch(config-sync-sp)# sync-peers destination 10.1.1.1 | | |
| **Step 3** | Verify that the switch profiles are the same on the local and the peer switch. **Example:**

 switch(config-sync-sp)# show switch-profile abc status

 Start-time: 15801 usecs after Mon Aug 23 06:21:08 2010 | | |
Step 4
Verify the commands in the switch profile.

Example:
```
switch(config-sync-sp-if)# verify
Verification Successful
```

Step 5
Apply the commands to the switch profile and to synchronize the configurations between the local and the peer switch.

Example:
```
switch(config-sync-sp)# commit
Commit Successful
```

Verifying the Synchronization Status Example

The following example shows how to verify the synchronization status between the local and the peer switch:
```
switch(config-sync)# show switch-profile switch-profile status
Start-time: 804935 usecs after Mon Aug 23 06:41:10 2010
End-time: 956631 usecs after Mon Aug 23 06:41:20 2010

Profile-Revision: 2
Session-type: Commit
Peer-triggered: No
Profile-status: Sync Success

Local information:
------------------
Status: Commit Success
Error(s):

Peer information:
------------------
IP-address: 10.1.1.1
Sync-status: In Sync.
Status: Commit Success
Error(s):
```
Displaying the Running Configuration

The following example shows how to display the running configuration of the switch profile on the local switch:

```
switch# configure sync
switch(config-sync)# show running-config switch-profile
switch-profile sp
  sync-peers destination 10.1.1.1
  class-map type qos match-all c1
    match cos 2
  class-map type qos match-all c2
    match cos 5
  policy-map type qos p1
    class c1
      set qos-group 2
    class c2
      set qos-group 3
  system qos
    service-policy type qos input p1
  vlan 2-50

  interface port-channel10
    switchport mode trunk
    vpc 1
      switchport trunk allowed vlan 1,10-50

  interface port-channel100
    switchport mode trunk
    vpc peer-link

switch(config-sync)#
```

Displaying the Switch Profile Synchronization Between Local and Peer Switches

This example shows how to display the synchronization status for two peer switches:

```
switch1# show switch-profile sp status

Start-time: 491815 usecs after Thu Aug 12 11:54:51 2010
End-time: 449475 usecs after Thu Aug 12 11:54:58 2010

Profile-Revision: 1
Session-type: Initial-Exchange
Peer-triggered: No
Profile-status: Sync Success

Local information:
-------------------
Status: Commit Success
Error(s):

Peer information:
------------------
IP-address: 10.193.194.52
Sync-status: In Sync.
Status: Commit Success
```
Error(s):
switch1#

switch2# show switch-profile sp status
Start-time: 503194 usecs after Thu Aug 12 11:54:51 2010
End-time: 532989 usecs after Thu Aug 12 11:54:58 2010
Profile-Revision: 1
Session-type: Initial-Exchange
Peer-triggered: Yes
Profile-status: Sync Success

Local information:

Status: Commit Success
Error(s):

Peer information:

IP-address: 10.193.194.51
Sync-status: In Sync.
Status: Commit Success
Error(s):

switch2#

Displaying Verify and Commit on Local and Peer Switches

This example shows how to configure a successful verify and commit of the local and peer switch:

switch1# configure sync
Enter configuration commands, one per line. End with CNTL/Z.
switch1(config-sync)# switch-profile sp
Switch-Profile started, Profile ID is 1
switch1(config-sync-sp)# interface ethernet1/1
switch1(config-sync-sp-if)# description foo
switch1(config-sync-sp-if)# verify
Verification Successful
switch1(config-sync-sp-if)# commit
Commit Successful
switch1(config-sync)# show running-config switch-profile
switch-profile sp
 sync-peers destination 10.193.194.52
 interface Ethernet1/1
description foo
switch1(config-sync)# show switch-profile sp status
End-time: 676451 usecs after Wed Aug 11 17:51:43 2010
Profile-Revision: 3
Session-type: Commit
Peer-triggered: No
Profile-status: Sync Success

Local information:

Status: Commit Success
Error(s):
Successful and Unsuccessful Synchronization Examples

The following example shows a successful synchronization of the switch profile on the peer switch:

```
switch# show switch-profile abc peer
```

```
switch# show switch-profile sp peer 10.193.194.52
Peer-sync-status : In Sync.
Peer-status : Commit Success
Peer-error(s) :
switch1#
```

The following example shows an unsuccessful synchronization of a switch profile on the peer switch, with a peer not reachable status:

```
switch# show switch-profile sp peer 10.193.194.52
Peer-sync-status : Not yet merged. pending-merge:1 received_merge:0
Peer-status : Peer not reachable
Peer-error(s) :
switch#
```
Configuring the Switch Profile Buffer, Moving the Buffer, and Deleting the Buffer

This example shows how to configure the switch profile buffer, the buffer-move configuration, and the buffer-delete configuration:

```plaintext
switch# configure sync
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-sync)# switch-profile sp
Switch-Profile started, Profile ID is 1
switch(config-sync-sp)# vlan 101
switch(config-sync-sp-vlan)# ip igmp snooping querier 10.101.1.1
switch(config-sync-sp-vlan)# exit
switch(config-sync-sp)# mac address-table static 0000.0000.0001 vlan 101 drop
switch(config-sync-sp)# interface ethernet1/2
switch(config-sync-sp-if)# switchport mode trunk
switch(config-sync-sp-if)# switchport trunk allowed vlan 101
switch(config-sync-sp-if)# exit
switch(config-sync-sp)# show switch-profile sp buffer
Seq-no Command
1 vlan 101
1.1 ip igmp snooping querier 10.101.1.1
2 mac address-table static 0000.0000.0001 vlan 101 drop
3 interface Ethernet1/2
3.1 switchport mode trunk
3.2 switchport trunk allowed vlan 101

switch(config-sync-sp)# buffer-move 3 1
switch(config-sync-sp)# show switch-profile sp buffer
Seq-no Command
1 interface Ethernet1/2
1.1 switchport mode trunk
1.2 switchport trunk allowed vlan 101
2 vlan 101
2.1 ip igmp snooping querier 10.101.1.1
3 mac address-table static 0000.0000.0001 vlan 101 drop

switch(config-sync-sp)# buffer-delete 1
switch(config-sync-sp)# show switch-profile sp buffer
Seq-no Command
2 vlan 101
2.1 ip igmp snooping querier 10.101.1.1
3 mac address-table static 0000.0000.0001 vlan 101 drop

switch(config-sync-sp)# buffer-delete all
```

CHAPTER 4

Configuring PTP

This chapter describes how to configure the Precision Time Protocol (PTP) on Cisco NX-OS devices.

This chapter includes the following sections:

- About PTP, on page 33
- PTP Device Types, on page 33
- PTP Process, on page 34
- High Availability for PTP, on page 35
- Licensing Requirements for PTP, on page 35
- Guidelines and Limitations for PTP, on page 35
- Default Settings for PTP, on page 35
- Configuring PTP, on page 36

About PTP

PTP is a time synchronization protocol for nodes distributed across a network. Its hardware timestamp feature provides greater accuracy than other time synchronization protocols such as the Network Time Protocol (NTP).

A PTP system can consist of a combination of PTP and non-PTP devices. PTP devices include ordinary clocks, boundary clocks, and transparent clocks. Non-PTP devices include ordinary network switches, routers, and other infrastructure devices.

PTP is a distributed protocol that specifies how real-time PTP clocks in the system synchronize with each other. These clocks are organized into a master-slave synchronization hierarchy with the grandmaster clock, which is the clock at the top of the hierarchy, determining the reference time for the entire system. Synchronization is achieved by exchanging PTP timing messages, with the members using the timing information to adjust their clocks to the time of their master in the hierarchy. PTP operates within a logical scope called a PTP domain.

PTP Device Types

The following clocks are common PTP devices:

Ordinary clock

Communicates with the network based on a single physical port, similar to an end host. An ordinary clock can function as a grandmaster clock.
Boundary clock

Typically has several physical ports, with each port behaving like a port of an ordinary clock. However, each port shares the local clock, and the clock data sets are common to all ports. Each port decides its individual state, either master (synchronizing other ports connected to it) or slave (synchronizing to a downstream port), based on the best clock available to it through all of the other ports on the boundary clock. Messages that are related to synchronization and establishing the master-slave hierarchy terminate in the protocol engine of a boundary clock and are not forwarded.

Transparent clock

Forwards all PTP messages like an ordinary switch or router but measures the residence time of a packet in the switch (the time that the packet takes to traverse the transparent clock) and in some cases the link delay of the ingress port for the packet. The ports have no state because the transparent clock does not need to synchronize to the grand master clock.

There are two kinds of transparent clocks:

End-to-end transparent clock

Measures the residence time of a PTP message and accumulates the times in the correction field of the PTP message or an associated follow-up message.

Peer-to-peer transparent clock

Measures the residence time of a PTP message and computes the link delay between each port and a similarly equipped port on another node that shares the link. For a packet, this incoming link delay is added to the residence time in the correction field of the PTP message or an associated follow-up message.

PTP Process

The PTP process consists of two phases: establishing the master-slave hierarchy and synchronizing the clocks. Within a PTP domain, each port of an ordinary or boundary clock follows this process to determine its state:

- Examines the contents of all received announce messages (issued by ports in the master state)
- Compares the data sets of the foreign master (in the announce message) and the local clock for priority, clock class, accuracy, and so on
- Determines its own state as either master or slave

After the master-slave hierarchy has been established, the clocks are synchronized as follows:

- The master sends a synchronization message to the slave and notes the time it was sent.
- The slave receives the synchronization message and notes the time that it was received. For every synchronization message, there is a follow-up message. The number of sync messages should be equal to the number of follow-up messages.
• The slave sends a delay-request message to the master and notes the time it was sent.
• The master receives the delay-request message and notes the time it was received.
• The master sends a delay-response message to the slave. The number of delay request messages should be equal to the number of delay response messages.
• The slave uses these timestamps to adjust its clock to the time of its master.

High Availability for PTP

Stateful restarts are not supported for PTP.

Licensing Requirements for PTP

PTP requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Guidelines and Limitations for PTP

• For Cisco Nexus 3600 Series switches, PTP clock correction is expected to be in the 3-digit range, from 100 to 999 nanoseconds.
• PTP operates only in boundary clock mode. End-to-end transparent clock and peer-to-peer transparent clock modes are not supported.
• PTP supports transport over User Datagram Protocol (UDP). Transport over Ethernet is not supported.
• PTP supports only multicast communication. Negotiated unicast communication is not supported.
• PTP is limited to a single domain per network.
• Forwarding PTP management packets is not supported.
• PTP-capable ports do not identify PTP packets and do not time-stamp or redirect those packets unless you enable PTP on those ports.
• 1 packet per second (1 pps) input is not supported.
• PTP over IPv6 is not supported.
• Cisco Nexus switches should be synchronized from the neighboring master using a synchronization log interval that ranges from −2 to −5.

Default Settings for PTP

The following table lists the default settings for PTP parameters.
Table 2: Default PTP Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP</td>
<td>Disabled</td>
</tr>
<tr>
<td>PTP version</td>
<td>2</td>
</tr>
<tr>
<td>PTP domain</td>
<td>0</td>
</tr>
<tr>
<td>PTP priority 1 value when advertising</td>
<td>255</td>
</tr>
<tr>
<td>the clock</td>
<td></td>
</tr>
<tr>
<td>PTP priority 2 value when advertising</td>
<td>255</td>
</tr>
<tr>
<td>the clock</td>
<td></td>
</tr>
<tr>
<td>PTP announce interval</td>
<td>1 log second</td>
</tr>
<tr>
<td>PTP sync interval</td>
<td>– 2 log seconds</td>
</tr>
<tr>
<td>PTP announce timeout</td>
<td>3 announce intervals</td>
</tr>
<tr>
<td>PTP minimum delay request interval</td>
<td>0 log seconds</td>
</tr>
<tr>
<td>PTP VLAN</td>
<td>1</td>
</tr>
</tbody>
</table>

Configuring PTP

Configuring PTP Globally

You can enable or disable PTP globally on a device. You can also configure various PTP clock parameters to help determine which clock in the network has the highest priority to be selected as the grandmaster.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# [no] feature ptp`
3. `switch(config)# [no] ptp source ip-address [vrf vrf]`
4. (Optional) `switch(config)# [no] ptp domain number`
5. (Optional) `switch(config)# [no] ptp priority1 value`
6. (Optional) `switch(config)# [no] ptp priority2 value`
7. (Optional) `switch(config)# show ptp brief`
8. (Optional) `switch(config)# show ptp clock`
9. (Optional) `switch(config)# copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# [no] feature ptp</code></td>
</tr>
</tbody>
</table>
Configuring PTP

Configuring PTP Globally

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Enabling PTP on the switch does not enable PTP on each interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures the source IP address for all PTP packets. The <code>ip-address</code> can be in IPv4 format.</td>
</tr>
<tr>
<td>switch(config) # [no] ptp source ip-address [vrf vrf]</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures the domain number to use for this clock. PTP domains allow you to use multiple independent PTP clocking subdomains on a single network. The range for the <code>number</code> is from 0 to 128.</td>
</tr>
<tr>
<td>(Optional) switch(config) # [no] ptp domain number</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Configures the priority1 value to use when advertising this clock. This value overrides the default criteria (clock quality, clock class, and so on) for the best master clock selection. Lower values take precedence. The range for the <code>value</code> is from 0 to 255.</td>
</tr>
<tr>
<td>(Optional) switch(config) # [no] ptp priority1 value</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Configures the priority2 value to use when advertising this clock. This value is used to decide between two devices that are otherwise equally matched in the default criteria. For example, you can use the priority2 value to give a specific switch priority over other identical switches. The range for the <code>value</code> is from 0 to 255.</td>
</tr>
<tr>
<td>(Optional) switch(config) # [no] ptp priority2 value</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Displays the PTP status.</td>
</tr>
<tr>
<td>(Optional) switch(config) # show ptp brief</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Displays the properties of the local clock.</td>
</tr>
<tr>
<td>(Optional) switch(config) # show ptp clock</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>(Optional) switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Example

The following example shows how to configure PTP globally on the device, specify the source IP address for PTP communications, and configure a preference level for the clock:

```bash
switch# configure terminal
switch(config)# feature ptp
switch(config)# ptp source 10.10.10.1
switch(config)# ptp priority1 1
switch(config)# ptp priority2 1
switch(config)# show ptp brief
PTP port status
-----------------------------------------------
Port State
-----------------------------------------------
switch(config)# show ptp clock
PTP Device Type: Boundary clock
Clock Identity : 0:22:55:ff:ff:79:a4:c1
Clock Domain: 0
```
Configuring PTP on an Interface

After you globally enable PTP, it is not enabled on all supported interfaces by default. You must enable PTP interfaces individually.

Before you begin

Make sure that you have globally enabled PTP on the switch and configured the source IP address for PTP communication.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config) # interface ethernet slot/port
3. switch(config-if) # [no] feature ptp
4. (Optional) switch(config-if) # [no] ptp announce {interval log seconds | timeout count}
5. (Optional) switch(config-if) # [no] ptp delay request minimum interval log seconds
6. (Optional) switch(config-if) # [no] ptp sync interval log seconds
7. (Optional) switch(config-if) # [no] ptp vlan vlan-id
8. (Optional) switch(config-if) # show ptp brief
9. (Optional) switch(config-if) # show ptp port interface interface slot/port
10. (Optional) switch(config-if)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config) # interface ethernet slot/port</td>
<td>Specifies the interface on which you are enabling PTP and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-if) # [no] feature ptp</td>
<td>Enables or disables PTP on an interface.</td>
</tr>
<tr>
<td>Step 4 (Optional) switch(config-if) # [no] ptp announce {interval log seconds</td>
<td>timeout count}</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5 (Optional) switch(config-if) # [no] ptp delay request minimum interval log seconds</td>
<td>The range for the PTP announcement interval is from 0 to 4 seconds, and the range for the interval timeout is from 2 to 10. Configures the minimum interval allowed between PTP delay-request messages when the port is in the master state. The range is from log(-6) to log(1) seconds. Where, log(-2) = 2 frames per second.</td>
</tr>
<tr>
<td>Step 6 (Optional) switch(config-if) # [no] ptp sync interval log seconds</td>
<td>Configures the interval between PTP synchronization messages on an interface. The range for the PTP synchronization interval is from -6 log second to 1 second.</td>
</tr>
<tr>
<td>Step 7 (Optional) switch(config-if) # [no] ptp vlan vlan-id</td>
<td>Specifies the VLAN for the interface where PTP is being enabled. You can only enable PTP on one VLAN on an interface. The range is from 1 to 4094.</td>
</tr>
<tr>
<td>Step 8 (Optional) switch(config-if) # show ptp brief</td>
<td>Displays the PTP status.</td>
</tr>
<tr>
<td>Step 9 (Optional) switch(config-if) # show ptp port interface interface slot/port</td>
<td>Displays the status of the PTP port.</td>
</tr>
<tr>
<td>Step 10 (Optional) switch(config-if)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure PTP on an interface and configure the intervals for the announce, delay-request, and synchronization messages:

```
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# ptp
switch(config-if)# ptp announce interval 3
switch(config-if)# ptp announce timeout 2
switch(config-if)# ptp delay-request minimum interval 4
switch(config-if)# ptp sync interval -1
switch(config-if)# show ptp brief
PTP port status
-----------------------
Port State
------- --------------
Eth2/1 Master
switch(config-if)# show ptp port interface ethernet 2/1
PTP Port Dataset: Eth2/1
Port identity: port number: 1028
PTP version: 2
Port state: Master
Delay request interval(log mean): 4
```
Announce receipt time out: 2
Peer mean path delay: 0
Announce interval (log mean): 3
Sync interval (log mean): -1
Delay Mechanism: End to End
Peer delay request interval (log mean): 0
switch(config-if)#

Verifying the PTP Configuration

Use one of the following commands to verify the configuration:

Table 3: PTP Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ptp brief</td>
<td>Displays the PTP status.</td>
</tr>
<tr>
<td>show ptp clock</td>
<td>Displays the properties of the local clock, including the clock identity.</td>
</tr>
<tr>
<td>show ptp clock foreign-masters-record</td>
<td>Displays the state of foreign masters known to the PTP process. For each foreign master, the output displays the clock identity, basic clock properties, and whether the clock is being used as a grandmaster.</td>
</tr>
<tr>
<td>show ptp corrections</td>
<td>Displays the last few PTP corrections.</td>
</tr>
<tr>
<td>show ptp parent</td>
<td>Displays the properties of the PTP parent.</td>
</tr>
<tr>
<td>show ptp port interface ethernet slot/port</td>
<td>Displays the status of the PTP port on the switch.</td>
</tr>
</tbody>
</table>
Configuring NTP

This chapter contains the following sections:

• Information About NTP, on page 41
• NTP as Time Server, on page 42
• Distributing NTP Using CFS, on page 42
• Clock Manager, on page 42
• High Availability, on page 42
• Virtualization Support, on page 42
• Licensing Requirements, on page 43
• Prerequisites for NTP, on page 43
• Guidelines and Limitations for NTP, on page 43
• Default Settings, on page 44
• Configuring NTP, on page 44
• Verifying the NTP Configuration, on page 57
• Configuration Examples for NTP, on page 58

Information About NTP

The Network Time Protocol (NTP) synchronizes the time of day among a set of distributed time servers and clients so that you can correlate events when you receive system logs and other time-specific events from multiple network devices. NTP uses the User Datagram Protocol (UDP) as its transport protocol. All NTP communications use Coordinated Universal Time (UTC).

An NTP server usually receives its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server, and then distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two machines to within a millisecond of each other.

NTP uses a stratum to describe the distance between a network device and an authoritative time source:

• A stratum 1 time server is directly attached to an authoritative time source (such as a radio or atomic clock or a GPS time source).

• A stratum 2 NTP server receives its time through NTP from a stratum 1 time server.

Before synchronizing, NTP compares the time reported by several network devices and does not synchronize with one that is significantly different, even if it is a stratum 1. Because Cisco NX-OS cannot connect to a
radio or atomic clock and act as a stratum 1 server, we recommend that you use the public NTP servers available on the Internet. If the network is isolated from the Internet, Cisco NX-OS allows you to configure the time as though it were synchronized through NTP, even though it was not.

Note

You can create NTP peer relationships to designate the time-serving hosts that you want your network device to consider synchronizing with and to keep accurate time if a server failure occurs.

The time kept on a device is a critical resource, so we strongly recommend that you use the security features of NTP to avoid the accidental or malicious setting of incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

NTP as Time Server

Other devices can configure it as a time server. You can also configure the device to act as an authoritative NTP server, enabling it to distribute time even when it is not synchronized to an outside time source.

Distributing NTP Using CFS

Cisco Fabric Services (CFS) distributes the local NTP configuration to all Cisco devices in the network.

After enabling CFS on your device, a network-wide lock is applied to NTP whenever an NTP configuration is started. After making the NTP configuration changes, you can discard or commit them.

In either case, the CFS lock is then released from the NTP application.

Clock Manager

Clocks are resources that need to be shared across different processes.

Multiple time synchronization protocol, such as NTP might be running in the system.

High Availability

Stateless restarts are supported for NTP. After a reboot or a supervisor switchover, the running configuration is applied.

You can configure NTP peers to provide redundancy in case an NTP server fails.

Virtualization Support

NTP recognizes virtual routing and forwarding (VRF) instances. NTP uses the default VRF if you do not configure a specific VRF for the NTP server and NTP peer.
Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>NTP requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Prerequisites for NTP

NTP has the following prerequisites:

- To configure NTP, you must have connectivity to at least one server that is running NTP.

Guidelines and Limitations for NTP

NTP has the following configuration guidelines and limitations:

- The show ntp session status CLI command does not show the last action timestamp, the last action, the last action result, and the last action failure reason.

- NTP server functionality is supported.

- You should have a peer association with another device only when you are sure that your clock is reliable (which means that you are a client of a reliable NTP server).

- A peer that is configured alone takes on the role of a server and should be used as a backup. If you have two servers, you can configure several devices to point to one server and the remaining devices to point to the other server. You can then configure a peer association between these two servers to create a more reliable NTP configuration.

- If you have only one server, you should configure all the devices as clients to that server.

- You can configure up to 64 NTP entities (servers and peers).

- If CFS is disabled for NTP, NTP does not distribute any configuration and does not accept a distribution from other devices in the network.

- After CFS distribution is enabled for NTP, the entry of an NTP configuration command locks the network for NTP configuration until a commit command is entered. During the lock, no changes can be made to the NTP configuration by any other device in the network except the device that initiated the lock.

- If you use CFS to distribute NTP, all devices in the network should have the same VRFs configured as you use for NTP.

- If you configure NTP in a VRF, ensure that the NTP server and peers can reach each other through the configured VRFs.
• You must manually distribute NTP authentication keys on the NTP server and Cisco NX-OS devices across the network.

• Use NTP broadcast or multicast associations when time accuracy and reliability requirements are modest, your network is localized, and the network has more than 20 clients. We recommend that you use NTP broadcast or multicast associations in networks that have limited bandwidth, system memory, or CPU resources.

• A maximum of four ACLs can be configured for a single NTP access group.

Note

Time accuracy is marginally reduced in NTP broadcast associations because information flows only one way.

Default Settings

The following are the default settings for NTP parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP</td>
<td>Enabled for all interfaces</td>
</tr>
<tr>
<td>NTP passive (enabling NTP to form associations)</td>
<td>Enabled</td>
</tr>
<tr>
<td>NTP authentication</td>
<td>Disabled</td>
</tr>
<tr>
<td>NTP access</td>
<td>Enabled</td>
</tr>
<tr>
<td>NTP access group match all</td>
<td>Disabled</td>
</tr>
<tr>
<td>NTP broadcast server</td>
<td>Disabled</td>
</tr>
<tr>
<td>NTP multicast server</td>
<td>Disabled</td>
</tr>
<tr>
<td>NTP multicast client</td>
<td>Disabled</td>
</tr>
<tr>
<td>NTP logging</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Configuring NTP

Enabling or Disabling NTP on an Interface

You can enable or disable NTP on a particular interface. NTP is enabled on all interfaces by default.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# [no] ntp disable {ip | ipv6}`
4. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface type slot/port</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-if)# [no] ntp disable {ip</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Step 4 (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to enable or disable NTP on an interface:

```
switch# configure terminal
switch(config)# interface ethernet 6/1
switch(config-if)# ntp disable ip
switch(config-if)# copy running-config startup-config
```

Configuring the Device as an Authoritative NTP Server

You can configure the device to act as an authoritative NTP server, enabling it to distribute time even when it is not synchronized to an existing time server.

SUMMARY STEPS

1. switch# configure terminal
2. [no] ntp master [stratum]
3. (Optional) show running-config ntp
4. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 [no] ntp master [stratum]</td>
<td>Configures the device as an authoritative NTP server. You can specify a different stratum level from which NTP clients get their time synchronized. The range is from 1 to 15.</td>
</tr>
<tr>
<td>Step 3 (Optional) show running-config ntp</td>
<td>Displays the NTP configuration.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 4 | (Optional) switch(config)# copy running-config startup-config | Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration. |

Example

This example shows how to configure the Cisco NX-OS device as an authoritative NTP server with a different stratum level:

```
switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ntp master 5
```

Configuring an NTP Server and Peer

You can configure an NTP server and peer.

Before you begin

Make sure that you know the IP address or DNS names of your NTP server and its peers.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# [no] ntp server {ip-address | ipv6-address | dns-name} [key key-id] [maxpoll max-poll] [minpoll min-poll] [prefer] [use-vrf vrf-name]
3. switch(config)# [no] ntp peer {ip-address | ipv6-address | dns-name} [key key-id] [maxpoll max-poll] [minpoll min-poll] [prefer] [use-vrf vrf-name]
4. (Optional) switch(config)# show ntp peers
5. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# [no] ntp server {ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>Forms an association with a peer. You can specify multiple peer associations. Use the key keyword to configure a key to be used while communicating with the NTP peer. The range for the key-id argument is from 1 to 65535. Use the maxpoll and minpoll keywords to configure the maximum and minimum intervals in which to poll a peer. The range for the max-poll and min-poll arguments is from 4 to 17 seconds, and the default values are 6 and 4, respectively. Use the prefer keyword to make this the preferred NTP peer for the device. Use the use-vrf keyword to configure the NTP peer to communicate over the specified VRF. The vrf-name argument can be default, management, or any case-sensitive alphanumeric string up to 32 characters. Note If you configure a key to be used while communicating with the NTP server, make sure that the key exists as a trusted key on the device.</td>
</tr>
<tr>
<td>switch(config)# [no] ntp peer {ip-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td>Step 4</td>
<td>Displays the configured server and peers. Note A domain name is resolved only when you have a DNS server configured.</td>
</tr>
<tr>
<td>(Optional) switch(config)# show ntp peers</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>(Optional) switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring NTP Authentication

You can configure the device to authenticate the time sources to which the local clock is synchronized. When you enable NTP authentication, the device synchronizes to a time source only if the source carries one of the authentication keys specified by the **ntp trusted-key** command. The device drops any packets that fail the authentication check and prevents them from updating the local clock. NTP authentication is disabled by default.
Before you begin

Authentication for NTP servers and NTP peers is configured on a per-association basis using the key keyword on each ntp server and ntp peer command. Make sure that you configured all NTP server and peer associations with the authentication keys that you plan to specify in this procedure. Any ntp server or ntp peer commands that do not specify the key keyword will continue to operate without authentication.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# [no] ntp authentication-key number md5 md5-string
3. (Optional) switch(config)# show ntp authentication-keys
4. switch(config)# [no] ntp trusted-key number
5. (Optional) switch(config)# show ntp trusted-keys
6. switch(config)# [no] ntp authenticate
7. (Optional) switch(config)# show ntp authentication-status
8. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# [no] ntp authentication-key number md5 md5-string</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config)# show ntp authentication-keys</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# [no] ntp trusted-key number</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) switch(config)# show ntp trusted-keys</td>
</tr>
<tr>
<td>Step 6</td>
<td>switch(config)# [no] ntp authenticate</td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) switch(config)# show ntp authentication-status</td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>
Example

This example shows how to configure the device to synchronize only to time sources that provide authentication key 42 in their NTP packets:

```bash
switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ntp authentication-key 42 md5 aNiceKey
switch(config)# ntp server 10.1.1.1 key 42
switch(config)# ntp trusted-key 42
switch(config)# ntp authenticate
switch(config)# copy running-config startup-config
```

Configuring NTP Access Restrictions

You can control access to NTP services by using access groups. Specifically, you can specify the types of requests that the device allows and the servers from which it accepts responses.

If you do not configure any access groups, NTP access is granted to all devices. If you configure any access groups, NTP access is granted only to the remote device whose source IP address passes the access list criteria.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# [no] ntp access-group match-all | {peer | serve | serve-only | query-only} access-list-name`
3. `switch(config)# show ntp access-groups`
4. (Optional) `switch(config)# copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>`switch(config)# [no] ntp access-group match-all</td>
</tr>
</tbody>
</table>
Configuring NTP

Configuring the NTP Source IP Address

NTP sets the source IP address for all NTP packets based on the address of the interface through which the NTP packets are sent. You can configure NTP to use a specific source IP address.

SUMMARY STEPS

1. switch# configure terminal
2. [no] ntp source ip-address

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The serve-only keyword enables the device to receive only time requests from servers specified in the access list.</td>
<td></td>
</tr>
<tr>
<td>• The query-only keyword enables the device to receive only NTP control queries from the servers specified in the access list.</td>
<td></td>
</tr>
<tr>
<td>• The match-all keyword enables the access group options to be scanned in the following order, from least restrictive to most restrictive: peer, serve, serve-only, query-only. If the incoming packet does not match the ACL in the peer access group, it goes to the serve access group to be processed. If the packet does not match the ACL in the serve access group, it goes to the serve-only access group, and so on.</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

switch(config)# show ntp access-groups
(Optional) Displays the NTP access group configuration.

Step 4

(Optional) switch(config)# copy running-config startup-config

Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

This example shows how to configure the device to allow it to synchronize to a peer from access group "accesslist1":

```
switch# configure terminal
switch(config)# ntp access-group peer accesslist1
switch(config)# show ntp access-groups
Access List Type
---------------------
accesslist1 Peer
switch(config)# copy running-config startup-config
[########################################] 100%
switch(config)#
```
Configuring NTP

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>[no] ntp source ip-address</td>
</tr>
<tr>
<td></td>
<td>Configures the source IP address for all NTP packets. The ip-address can be in IPv4 or IPv6 format.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure an NTP source IP address of 192.0.2.2.

```
switch# configure terminal
switch(config)# ntp source 192.0.2.2
```

Configuring the NTP Source Interface

You can configure NTP to use a specific interface.

SUMMARY STEPS

1. switch# configure terminal
2. [no] ntp source-interface interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>[no] ntp source-interface interface</td>
</tr>
<tr>
<td></td>
<td>Configures the source interface for all NTP packets. The following list contains the valid values for interface.</td>
</tr>
<tr>
<td></td>
<td>- ethernet</td>
</tr>
<tr>
<td></td>
<td>- loopback</td>
</tr>
<tr>
<td></td>
<td>- mgmt</td>
</tr>
<tr>
<td></td>
<td>- port-channel</td>
</tr>
<tr>
<td></td>
<td>- vlan</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the NTP source interface:

```
switch# configure terminal
switch(config)# ntp source-interface ethernet
```
Configuring an NTP Broadcast Server

You can configure an NTP IPv4 broadcast server on an interface. The device then sends broadcast packets through that interface periodically. The client is not required to send a response.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# [no] ntp broadcast [destination ip-address] [key key-id] [version number]`
4. `switch(config-if)# exit`
5. (Optional) `switch(config)# [no] ntp broadcastdelay delay`
6. (Optional) `switch(config)# copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# [no] ntp broadcast [destination ip-address] [key key-id] [version number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) switch(config)# [no] ntp broadcastdelay delay</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure an NTP broadcast server:

```
switch# configure terminal
switch(config)# interface ethernet 6/1
switch(config-if)# ntp broadcast destination 192.0.2.10
switch(config-if)# exit
switch(config)# ntp broadcastdelay 100
switch(config)# copy running-config startup-config
```
Configuring an NTP Multicast Server

You can configure an NTP IPv4 or IPv6 multicast server on an interface. The device then sends multicast packets through that interface periodically.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# [no] ntp multicast [ipv4-address | ipv6-address] [key key-id] [ttl value] [version number]
4. (Optional) switch(config-if)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>En ters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables an NTP IPv4 or IPv6 multicast server on the specified interface.</td>
</tr>
<tr>
<td></td>
<td>• ipv4-address or ipv6-address—Multicast IPv4 or IPv6 address.</td>
</tr>
<tr>
<td></td>
<td>• key key-id—Configures the broadcast authentication key number. The range is from 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• ttl value—Time-to-live value of the multicast packets. The range is from 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• version number—NTP version. The range is from 2 to 4.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure an Ethernet interface to send NTP multicast packets:

```
switch# configure terminal
switch(config)# interface ethernet 2/2
switch(config-if)# ntp multicast FF02::1:FF0E:8C6C
switch(config-if)# copy running-config startup-config
```
Configuring an NTP Multicast Client

You can configure an NTP multicast client on an interface. The device then listens to NTP multicast messages and discards any messages that come from an interface for which multicast is not configured.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# [no] ntp multicast client [ipv4-address | ipv6-address]
4. (Optional) switch(config-if)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# [no] ntp multicast client [ipv4-address</td>
</tr>
<tr>
<td></td>
<td>Enables the specified interface to receive NTP multicast packets.</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config-if)# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure an Ethernet interface to receive NTP multicast packets:

```
switch# configure terminal
switch(config)# interface ethernet 2/3
switch(config-if)# ntp multicast client FF02::1:FF0E:8C6C
switch(config-if)# copy running-config startup-config
```

Configuring NTP Logging

You can configure NTP logging in order to generate system logs with significant NTP events. NTP logging is disabled by default.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# [no] ntp logging
3. (Optional) switch(config)# show ntp logging-status
4. (Optional) switch(config)# copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# [no] ntp logging</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config)# show ntp logging-status</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Example

The following example shows how to enable NTP logging in order to generate system logs with significant NTP events:

```
switch# configure terminal
switch(config)# ntp logging
switch(config)# copy running-config startup-config
[########################################] 100%
switch(config)#
```

Enabling CFS Distribution for NTP

You can enable CFS distribution for NTP in order to distribute the NTP configuration to other CFS-enabled devices.

Before you begin

Make sure that you have enabled CFS distribution for the device.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# [no] ntp distribute
3. (Optional) switch(config)# show ntp status
4. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# [no] ntp distribute</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config)# show ntp status</td>
</tr>
</tbody>
</table>
Committing NTP Configuration Changes

When you commit the NTP configuration changes, the effective database is overwritten by the configuration changes in the pending database and all the devices in the network receive the same configuration.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# ntp commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>switch(config)# ntp commit</code></td>
<td>Distributes the NTP configuration changes to all Cisco NX-OS devices in the network and releases the CFS lock. This command overwrites the effective database with the changes made to the pending database.</td>
</tr>
</tbody>
</table>

Discarding NTP Configuration Changes

After making the configuration changes, you can choose to discard the changes instead of committing them. If you discard the changes, Cisco NX-OS removes the pending database changes and releases the CFS lock.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# ntp abort`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example

This example shows how to enable the device to receive NTP configuration updates through CFS:

```
switch# configure terminal
switch(config)# ntp distribute
switch(config)# copy running-config startup-config
```
Releasing the CFS Session Lock

If you have performed an NTP configuration and have forgotten to release the lock by either committing or discarding the changes, you or another administrator can release the lock from any device in the network. This action also discards pending database changes.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# clear ntp session`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# clear ntp session</td>
<td>Discards the NTP configuration changes in the pending database and releases the CFS lock.</td>
</tr>
</tbody>
</table>

Verifying the NTP Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ntp access-groups</td>
<td>Displays the NTP access group configuration.</td>
</tr>
<tr>
<td>show ntp authentication-keys</td>
<td>Displays the configured NTP authentication keys.</td>
</tr>
<tr>
<td>show ntp authentication-status</td>
<td>Displays the status of NTP authentication.</td>
</tr>
<tr>
<td>show ntp logging-status</td>
<td>Displays the NTP logging status.</td>
</tr>
<tr>
<td>show ntp peer-status</td>
<td>Displays the status for all NTP servers and peers.</td>
</tr>
<tr>
<td>show ntp peer</td>
<td>Displays all the NTP peers.</td>
</tr>
<tr>
<td>show ntp pending</td>
<td>Displays the temporary CFS database for NTP.</td>
</tr>
<tr>
<td>show ntp pending-diff</td>
<td>Displays the difference between the pending CFS database and the current NTP configuration.</td>
</tr>
<tr>
<td>show ntp rts-update</td>
<td>Displays the RTS update status.</td>
</tr>
<tr>
<td>show ntp session status</td>
<td>Displays the NTP CFS distribution session information.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>show ntp source</td>
<td>Displays the configured NTP source IP address.</td>
</tr>
<tr>
<td>show ntp source-interface</td>
<td>Displays the configured NTP source interface.</td>
</tr>
<tr>
<td>show ntp statistics {io</td>
<td>local</td>
</tr>
<tr>
<td>show ntp status</td>
<td>Displays the NTP CFS distribution status.</td>
</tr>
<tr>
<td>show ntp trusted-keys</td>
<td>Displays the configured NTP trusted keys.</td>
</tr>
<tr>
<td>show running-config ntp</td>
<td>Displays NTP information.</td>
</tr>
</tbody>
</table>

Configuration Examples for NTP

Configuration Examples for NTP

This example shows how to configure an NTP server and peer, enable NTP authentication, enable NTP logging, and then save the startup configuration so that it is saved across reboots and restarts:

```plaintext
switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ntp server 192.0.2.105 key 42
switch(config)# ntp peer 192.0.2.105
switch(config)# show ntp peers
--------------------------------------------------
Peer IP Address Serv/Peer
--------------------------------------------------
192.0.2.100 Peer (configured)
192.0.2.105 Server (configured)
switch(config)# ntp authentication-key 42 md5 aNiceKey
switch(config)# show ntp authentication-keys
-----------------------------
Auth key MD5 String
-----------------------------
42 aNicekey
switch(config)# ntp trusted-key 42
switch(config)# show ntp trusted-keys
Trusted Keys: 42
switch(config)# ntp authenticate
switch(config)# show ntp authentication-status
Authentication enabled.
switch(config)# ntp logging
switch(config)# show ntp logging
NTP logging enabled.
switch(config)# copy running-config startup-config
[########################################] 100%
switch(config)#
```

This example shows an NTP access group configuration with the following restrictions:

- Peer restrictions are applied to IP addresses that pass the criteria of the access list named “peer-acl.”
- Server restrictions are applied to IP addresses that pass the criteria of the access list named “serve-acl.”
• Serve-only restrictions are applied to IP addresses that pass the criteria of the access list named “serve-only-acl.”

• Query-only restrictions are applied to IP addresses that pass the criteria of the access list named “query-only-acl.”

```
switch# configure terminal
switch(config)# ntp peer 10.1.1.1
switch(config)# ntp peer 10.2.2.2
switch(config)# ntp peer 10.3.3.3
switch(config)# ntp peer 10.4.4.4
switch(config)# ntp peer 10.5.5.5
switch(config)# ntp peer 10.6.6.6
switch(config)# ntp peer 10.7.7.7
switch(config)# ntp peer 10.8.8.8
switch(config)# ntp access-group peer peer-acl
switch(config)# ntp access-group serve serve-acl
switch(config)# ntp access-group serve-only serve-only-acl
switch(config)# ntp access-group query-only query-only-acl
switch(config)# ip access-list peer-acl
switch(config-acl)# 10 permit ip host 10.1.1.1 any
switch(config-acl)# 20 permit ip host 10.8.8.8 any
switch(config)# ip access-list serve-acl
switch(config-acl)# 10 permit ip host 10.4.4.4 any
switch(config-acl)# 20 permit ip host 10.5.5.5 any
switch(config)# ip access-list serve-only-acl
switch(config-acl)# 10 permit ip host 10.6.6.6 any
switch(config-acl)# 20 permit ip host 10.7.7.7 any
switch(config)# ip access-list query-only-acl
switch(config-acl)# 10 permit ip host 10.2.2.2 any
switch(config-acl)# 20 permit ip host 10.3.3.3 any
```
Configuration Examples for NTP
CHAPTER 6

Configuring Session Manager

This chapter contains the following sections:

- About Session Manager, on page 61
- Guidelines and Limitations for Session Manager, on page 61
- Configuring Session Manager, on page 62
- Verifying the Session Manager Configuration, on page 64

About Session Manager

Session Manager allows you to implement your configuration changes in batch mode. Session Manager works in the following phases:

- Configuration session—Creates a list of commands that you want to implement in session manager mode.
- Validation—Provides a basic semantic check on your configuration. Cisco NX-OS returns an error if the semantic check fails on any part of the configuration.
- Verification—Verifies the configuration as a whole, based on the existing hardware and software configuration and resources. Cisco NX-OS returns an error if the configuration does not pass this verification phase.
- Commit—Cisco NX-OS verifies the complete configuration and implements the changes atomically to the device. If a failure occurs, Cisco NX-OS reverts to the original configuration.
- Abort—Discards the configuration changes before implementation.

You can optionally end a configuration session without committing the changes. You can also save a configuration session.

Guidelines and Limitations for Session Manager

Session Manager has the following configuration guidelines and limitations:

- Session Manager supports only the access control list (ACL) feature.
- You can create up to 32 configuration sessions.
- You can configure a maximum of 20,000 commands across all sessions.
Configuring Session Manager

Creating a Session

You can create up to 32 configuration sessions.

SUMMARY STEPS

1. switch# configure session name
2. (Optional) switch(config-s)# show configuration session [name]
3. (Optional) switch(config-s)# save location

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure session name</td>
</tr>
<tr>
<td>Step 2</td>
<td>(Optional) switch(config-s)# show configuration session [name]</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config-s)# save location</td>
</tr>
</tbody>
</table>

Configuring ACLs in a Session

You can configure ACLs within a configuration session.

SUMMARY STEPS

1. switch# configure session name
2. switch(config-s)# ip access-list name
3. (Optional) switch(config-s-acl)# permit protocol source destination
4. switch(config-s-acl)# interface interface-type number
5. switch(config-s-if)# ip port access-group name in
6. (Optional) switch# show configuration session [name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure session name</td>
</tr>
</tbody>
</table>
Configuring Session Manager

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>switch(config-s)# ip access-list name</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config-s-acl)# permit protocol source destination</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-s-acl)# interface interface-type number</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config-s-if)# ip port access-group name in</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) switch# show configuration session [name]</td>
</tr>
</tbody>
</table>

Verifying a Session

To verify a session, use the following command in session mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-s)# verify [verbose]</td>
<td>Verifies the commands in the configuration session.</td>
</tr>
</tbody>
</table>

Committing a Session

To commit a session, use the following command in session mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-s)# commit [verbose]</td>
<td>Commits the commands in the configuration session.</td>
</tr>
</tbody>
</table>

Saving a Session

To save a session, use the following command in session mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-s)# save location</td>
<td>(Optional) Saves the session to a file. The location can be in bootflash or volatile.</td>
</tr>
</tbody>
</table>

Discarding a Session

To discard a session, use the following command in session mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-s)# abort</td>
<td>Discards the configuration session without applying the commands.</td>
</tr>
</tbody>
</table>

Configuration Example for Session Manager

The following example shows how to create a configuration session for ACLs:
Verifying the Session Manager Configuration

To verify Session Manager configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show configuration session [name]</td>
<td>Displays the contents of the configuration session.</td>
</tr>
<tr>
<td>show configuration session status [name]</td>
<td>Displays the status of the configuration session.</td>
</tr>
<tr>
<td>show configuration session summary</td>
<td>Displays a summary of all the configuration sessions.</td>
</tr>
</tbody>
</table>

```
switch# configure session name test2
switch(config-s)# ip access-list acl2
switch(config-s-acl)# permit tcp any any
switch(config-s-acl)# exit
switch(config-s)# interface Ethernet 1/4
switch(config-s-ip)# ip port access-group acl2 in
switch(config-s-ip)# exit
switch(config-s)# verify
switch(config-s)# exit
switch# show configuration session test2
```
CHAPTER 7

Configuring Smart Call Home

This chapter contains the following sections:

- About Smart Call Home, on page 65
- Guidelines and Limitations for Smart Call Home, on page 73
- Prerequisites for Smart Call Home, on page 73
- Default Call Home Settings, on page 74
- Configuring Smart Call Home, on page 74
- Verifying the Smart Call Home Configuration, on page 86
- Sample Syslog Alert Notification in Full-Text Format, on page 86
- Sample Syslog Alert Notification in XML Format, on page 87

About Smart Call Home

Smart Call Home provides e-mail-based notification of critical system events. Cisco Nexus Series switches provide a range of message formats for optimal compatibility with pager services, standard e-mail, or XML-based automated parsing applications. You can use this feature to page a network support engineer, e-mail a Network Operations Center, or use Cisco Smart Call Home services to automatically generate a case with the Technical Assistance Center (TAC).

If you have a service contract directly with Cisco, you can register your devices for the Smart Call Home service. Smart Call Home provides fast resolution of system problems by analyzing Smart Call Home messages sent from your devices and providing background information and recommendations. For issues that can be identified as known, particularly GOLD diagnostics failures, Automatic Service Requests will be generated by the Cisco TAC.

Smart Call Home offers the following features:

- Continuous device health monitoring and real-time diagnostic alerts.
- Analysis of Smart Call Home messages from your device and, where appropriate, Automatic Service Request generation, routed to the appropriate TAC team, including detailed diagnostic information to speed problem resolution.
- Secure message transport directly from your device or through a downloadable Transport Gateway (TG) aggregation point. You can use a TG aggregation point in cases that require support for multiple devices or in cases where security requirements mandate that your devices may not be connected directly to the Internet.
• Web-based access to Smart Call Home messages and recommendations, inventory and configuration information for all Smart Call Home devices, and field notices, security advisories, and end-of-life information.

Smart Call Home Overview

You can use Smart Call Home to notify an external entity when an important event occurs on your device. Smart Call Home delivers alerts to multiple recipients that you configure in destination profiles.

Smart Call Home includes a fixed set of predefined alerts on your switch. These alerts are grouped into alert groups and CLI commands that are assigned to execute when an alert in an alert group occurs. The switch includes the command output in the transmitted Smart Call Home message.

The Smart Call Home feature offers the following:

• Automatic execution and attachment of relevant CLI command output.

• Multiple message format options such as the following:
 • Short Text—Text that is suitable for pagers or printed reports.
 • Full Text—Fully formatted message information that is suitable for human reading.
 • XML—Matching readable format that uses the Extensible Markup Language (XML) and the Adaptive Messaging Language (AML) XML schema definition (XSD). The XML format enables communication with the Cisco TAC.

• Multiple concurrent message destinations. You can configure up to 50 e-mail destination addresses for each destination profile.

Smart Call Home Destination Profiles

A Smart Call Home destination profile includes the following information:

• One or more alert groups—The group of alerts that trigger a specific Smart Call Home message if the alert occurs.

• One or more e-mail destinations—The list of recipients for the Smart Call Home messages that are generated by alert groups assigned to this destination profile.

• Message format—The format for the Smart Call Home message (short text, full text, or XML).

• Message severity level—The Smart Call Home severity level that the alert must meet before the switch generates a Smart Call Home message to all e-mail addresses in the destination profile. The switch does not generate an alert if the Smart Call Home severity level of the alert is lower than the message severity level set for the destination profile.

You can also configure a destination profile to allow periodic inventory update messages by using the inventory alert group that will send out periodic messages daily, weekly, or monthly.

Cisco Nexus switches support the following predefined destination profiles:

• CiscoTAC-1—Supports the Cisco-TAC alert group in XML message format.

• full-text-destination—Supports the full text message format.
• short-text-destination—Supports the short text message format.

Smart Call Home Alert Groups

An alert group is a predefined subset of Smart Call Home alerts that are supported in all Cisco Nexus devices. Alert groups allow you to select the set of Smart Call Home alerts that you want to send to a predefined or custom destination profile. The switch sends Smart Call Home alerts to e-mail destinations in a destination profile only if that Smart Call Home alert belongs to one of the alert groups associated with that destination profile and if the alert has a Smart Call Home message severity at or above the message severity set in the destination profile.

The following table lists the supported alert groups and the default CLI command output included in Smart Call Home messages generated for the alert group.

Table 4: Alert Groups and Executed Commands

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Description</th>
<th>Executed Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco-TAC</td>
<td>All critical alerts from the other alert groups destined for Smart Call Home.</td>
<td>Execute commands based on the alert group that originates the alert.</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Events generated by diagnostics.</td>
<td>show diagnostic result module all detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show moduleshow version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show tech-support platform callhome</td>
</tr>
<tr>
<td>Supervisor</td>
<td>Events related to supervisor modules.</td>
<td>show diagnostic result module all detail</td>
</tr>
<tr>
<td>hardware</td>
<td></td>
<td>show moduleshow version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show tech-support platform callhome</td>
</tr>
<tr>
<td>Linecard</td>
<td>Events related to standard or intelligent switching modules.</td>
<td>show diagnostic result module all detail</td>
</tr>
<tr>
<td>hardware</td>
<td></td>
<td>show moduleshow version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show tech-support platform callhome</td>
</tr>
<tr>
<td>Configuration</td>
<td>Periodic events related to configuration.</td>
<td>show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show module</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show running-config all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show startup-config</td>
</tr>
<tr>
<td>System</td>
<td>Events generated by a failure of a software system that is critical to unit operation.</td>
<td>show system redundancy status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show tech-support</td>
</tr>
<tr>
<td>Environmental</td>
<td>Events related to power, fan, and environment-sensing elements such as temperature alarms.</td>
<td>show environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show logging last 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show module show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show tech-support platform callhome</td>
</tr>
</tbody>
</table>
Executed Commands

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Description</th>
<th>Executed Commands</th>
</tr>
</thead>
</table>
| Inventory | Inventory status that is provided whenever a unit is cold booted, or when FRUs are inserted or removed. This alert is considered a noncritical event, and the information is used for status and entitlement. | show module
show version
show license usage
show inventory
show sprom all
show system uptime |

Smart Call Home maps the syslog severity level to the corresponding Smart Call Home severity level for syslog port group messages.

You can customize predefined alert groups to execute additional `show` commands when specific events occur and send that `show` output with the Smart Call Home message.

You can add `show` commands only to full text and XML destination profiles. Short text destination profiles do not support additional `show` commands because they only allow 128 bytes of text.

Smart Call Home Message Levels

Smart Call Home allows you to filter messages based on their level of urgency. You can associate each destination profile (predefined and user defined) with a Smart Call Home message level threshold. The switch does not generate any Smart Call Home messages with a value lower than this threshold for the destination profile. The Smart Call Home message level ranges from 0 (lowest level of urgency) to 9 (highest level of urgency), and the default is 0 (the switch sends all messages).

Smart Call Home messages that are sent for syslog alert groups have the syslog severity level mapped to the Smart Call Home message level.

Note

Smart Call Home does not change the syslog message level in the message text.

The following table shows each Smart Call Home message level keyword and the corresponding syslog level for the syslog port alert group.

Table 5: Severity and Syslog Level Mapping

<table>
<thead>
<tr>
<th>Smart Call Home Level</th>
<th>Keyword</th>
<th>Syslog Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Catastrophic</td>
<td>N/A</td>
<td>Network-wide catastrophic failure.</td>
</tr>
<tr>
<td>8</td>
<td>Disaster</td>
<td>N/A</td>
<td>Significant network impact.</td>
</tr>
<tr>
<td>7</td>
<td>Fatal</td>
<td>Emergency (0)</td>
<td>System is unusable.</td>
</tr>
<tr>
<td>6</td>
<td>Critical</td>
<td>Alert (1)</td>
<td>Critical conditions that indicate that immediate attention is needed.</td>
</tr>
<tr>
<td>5</td>
<td>Major</td>
<td>Critical (2)</td>
<td>Major conditions.</td>
</tr>
</tbody>
</table>
Call Home Message Formats

Call Home supports the following message formats:

- Short text message format
- Common fields for all full text and XML messages
- Inserted fields for a reactive or proactive event message
- Inserted fields for an inventory event message
- Inserted fields for a user-generated test message

The following table describes the short text formatting option for all message types.

Table 6: Short Text Message Format

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device identification</td>
<td>Configured device name</td>
</tr>
<tr>
<td>Date/time stamp</td>
<td>Time stamp of the triggering event</td>
</tr>
<tr>
<td>Error isolation message</td>
<td>Plain English description of triggering event</td>
</tr>
<tr>
<td>Alarm urgency level</td>
<td>Error level such as that applied to a system message</td>
</tr>
</tbody>
</table>

The following table describes the common event message format for full text or XML.

Table 7: Common Fields for All Full Text and XML Messages

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time stamp</td>
<td>Date and time stamp of event in ISO time notation:</td>
<td>/aml/header/time</td>
</tr>
<tr>
<td></td>
<td>YYYY-MM-DD HH:MM:SS GMT+HH:MM</td>
<td></td>
</tr>
<tr>
<td>Data Item (Plain Text and XML)</td>
<td>Description (Plain Text and XML)</td>
<td>XML Tag (XML Only)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Message name</td>
<td>Name of message. Specific event names are listed in the preceding table.</td>
<td>/aml/header/name</td>
</tr>
<tr>
<td>Message type</td>
<td>Name of message type, such as reactive or proactive.</td>
<td>/aml/header/type</td>
</tr>
<tr>
<td>Message group</td>
<td>Name of alert group, such as syslog.</td>
<td>/aml/header/group</td>
</tr>
<tr>
<td>Severity level</td>
<td>Severity level of message.</td>
<td>/aml/header/level</td>
</tr>
<tr>
<td>Source ID</td>
<td>Product type for routing.</td>
<td>/aml/header/source</td>
</tr>
</tbody>
</table>
| Device ID | Unique device identifier (UDI) for the end device that generated the message. This field should be empty if the message is nonspecific to a device. The format is \textit{type}@\textit{Sid}@\textit{serial}:
- \textit{type} is the product model number from backplane IDPROM.
- @ is a separator character.
- \textit{Sid} is C, identifying the serial ID as a chassis serial number.
- \textit{serial} is the number identified by the Sid field.
An example is WS-C6509@C@12345678 | /aml/header/deviceID |
<p>| Customer ID | Optional user-configurable field used for contract information or other ID by any support service. | /aml/header/customerID |
| Contract ID | Optional user-configurable field used for contract information or other ID by any support service. | /aml/header/contractID |
| Site ID | Optional user-configurable field used for Cisco-supplied site ID or other data meaningful to alternate support service. | /aml/header/siteID |</p>
<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server ID</td>
<td>If the message is generated from</td>
<td>/aml/header/serverID</td>
</tr>
<tr>
<td></td>
<td>the device, this is the unique</td>
<td></td>
</tr>
<tr>
<td></td>
<td>device identifier (UDI) of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>device. The format is type@Sid@serial:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• type is the product model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number from backplane IDPROM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• @ is a separator character.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sid is C, identifying the serial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID as a chassis serial number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• serial is the number identified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by the Sid field. An example is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS-C6509@C@12345678</td>
<td></td>
</tr>
<tr>
<td>Message description</td>
<td>Short text that describes the</td>
<td>/aml/body/msgDesc</td>
</tr>
<tr>
<td></td>
<td>error.</td>
<td></td>
</tr>
<tr>
<td>Device name</td>
<td>Node that experienced the event</td>
<td>/aml/body/sysName</td>
</tr>
<tr>
<td></td>
<td>(hostname of the device).</td>
<td></td>
</tr>
<tr>
<td>Contact name</td>
<td>Name of person to contact for</td>
<td>/aml/body/sysContact</td>
</tr>
<tr>
<td></td>
<td>issues associated with the node</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that experienced the event.</td>
<td></td>
</tr>
<tr>
<td>Contact e-mail</td>
<td>E-mail address of person</td>
<td>/aml/body/sysContactEmail</td>
</tr>
<tr>
<td></td>
<td>identified as the contact for this unit.</td>
<td></td>
</tr>
<tr>
<td>Contact phone number</td>
<td>Phone number of the person</td>
<td>/aml/body/sysContactPhoneNumber</td>
</tr>
<tr>
<td></td>
<td>identified as the contact for this unit.</td>
<td></td>
</tr>
<tr>
<td>Street address</td>
<td>Optional field that contains the</td>
<td>/aml/body/sysStreetAddress</td>
</tr>
<tr>
<td></td>
<td>street address for RMA part</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shipments associated with this unit.</td>
<td></td>
</tr>
<tr>
<td>Model name</td>
<td>Model name of the device (the</td>
<td>/aml/body/chassis/name</td>
</tr>
<tr>
<td></td>
<td>specific model as part of a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>product family name).</td>
<td></td>
</tr>
<tr>
<td>Serial number</td>
<td>Chassis serial number of the</td>
<td>/aml/body/chassis/serialNo</td>
</tr>
<tr>
<td></td>
<td>unit.</td>
<td></td>
</tr>
<tr>
<td>Chassis part number</td>
<td>Top assembly number of the</td>
<td>/aml/body/chassis/partNo</td>
</tr>
<tr>
<td></td>
<td>chassis.</td>
<td></td>
</tr>
</tbody>
</table>

Fields specific to a particular alert group message are inserted here.

The following fields may be repeated if multiple CLI commands are executed for this alert group.
The following table describes the reactive event message format for full text or XML.

Table 8: Inserted Fields for a Reactive or Proactive Event Message

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis hardware version</td>
<td>Hardware version of chassis.</td>
<td>/aml/body/chassis/hwVersion</td>
</tr>
<tr>
<td>Supervisor module software version</td>
<td>Top-level software version.</td>
<td>/aml/body/chassis/swVersion</td>
</tr>
<tr>
<td>Affected FRU name</td>
<td>Name of the affected FRU that is generating the event message.</td>
<td>/aml/body/fru/name</td>
</tr>
<tr>
<td>Affected FRU serial number</td>
<td>Serial number of the affected FRU.</td>
<td>/aml/body/fru/serialNo</td>
</tr>
<tr>
<td>Affected FRU part number</td>
<td>Part number of the affected FRU.</td>
<td>/aml/body/fru/partNo</td>
</tr>
<tr>
<td>FRU slot</td>
<td>Slot number of the FRU that is generating the event message.</td>
<td>/aml/body/fru/slot</td>
</tr>
<tr>
<td>FRU hardware version</td>
<td>Hardware version of the affected FRU.</td>
<td>/aml/body/fru/hwVersion</td>
</tr>
<tr>
<td>FRU software version</td>
<td>Software version(s) that is running on the affected FRU.</td>
<td>/aml/body/fru/swVersion</td>
</tr>
</tbody>
</table>

The following table describes the inventory event message format for full text or XML.

Table 9: Inserted Fields for an Inventory Event Message

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis hardware version</td>
<td>Hardware version of the chassis.</td>
<td>/aml/body/chassis/hwVersion</td>
</tr>
<tr>
<td>Supervisor module software version</td>
<td>Top-level software version.</td>
<td>/aml/body/chassis/swVersion</td>
</tr>
<tr>
<td>FRU name</td>
<td>Name of the affected FRU that is generating the event message.</td>
<td>/aml/body/fru/name</td>
</tr>
<tr>
<td>FRU s/n</td>
<td>Serial number of the FRU.</td>
<td>/aml/body/fru/serialNo</td>
</tr>
<tr>
<td>FRU part number</td>
<td>Part number of the FRU.</td>
<td>/aml/body/fru/partNo</td>
</tr>
</tbody>
</table>
The following table describes the user-generated test message format for full text or XML.

Table 10: Inserted Fields for a User-Generated Test Message

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRU slot</td>
<td>Slot number of the FRU.</td>
<td>/aml/body/FRU/slot</td>
</tr>
<tr>
<td>FRU hardware version</td>
<td>Hardware version of the FRU.</td>
<td>/aml/body/FRU/hwVersion</td>
</tr>
<tr>
<td>FRU software version</td>
<td>Software version(s) that is running on the FRU.</td>
<td>/aml/body/FRU/swVersion</td>
</tr>
</tbody>
</table>

Guidelines and Limitations for Smart Call Home

- If there is no IP connectivity, or if the interface in the virtual routing and forwarding (VRF) instance to the profile destination is down, the switch cannot send Smart Call Home messages.
- Smart Call Home operates with any SMTP server.
- You can configure up to five SMTP servers for Smart Call Home.
- Link up/down syslog messages do not trigger Smart Call Home messages or alert notifications.
- Beginning with Cisco NX-OS Release 7.0(3)F3(4), the output of the `show environment fan` and `show environment power` commands indicates if the power supply fan fails. In previous releases, only the `show environment fan` command shows the failure.

Note

Starting with Release 7.0(3)I2(1), the SNMP syscontact is not configured by default. You have to explicitly use the `snmp-server contact <sys-contact>` command to configure the SNMP syscontact. When this command is configured, the feature callhome gets enabled.

Prerequisites for Smart Call Home

- You must have e-mail server connectivity.
- You must have access to contact name (SNMP server contact), phone, and street address information.
- You must have IP connectivity between the switch and the e-mail server.
Default Call Home Settings

Table 11: Default Call Home Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination message size for a message sent in full text format</td>
<td>4000000</td>
</tr>
<tr>
<td>Destination message size for a message sent in XML format</td>
<td>4000000</td>
</tr>
<tr>
<td>Destination message size for a message sent in short text format</td>
<td>4000</td>
</tr>
<tr>
<td>SMTP server port number if no port is specified</td>
<td>25</td>
</tr>
<tr>
<td>Alert group association with profile</td>
<td>All for full-text-destination and short-text-destination profiles. The cisco-tac alert group for the CiscoTAC-1 destination profile.</td>
</tr>
<tr>
<td>Format type</td>
<td>XML</td>
</tr>
<tr>
<td>Call Home message level</td>
<td>0 (zero)</td>
</tr>
</tbody>
</table>

Configuring Smart Call Home

Registering for Smart Call Home

Before you begin

- Know the sMARTnet contract number for your switch
- Know your e-mail address
- Know your Cisco.com ID

SUMMARY STEPS

1. In a browser, navigate to the Smart Call Home web page:
2. Under Getting Started, follow the directions to register Smart Call Home.

DETAILED STEPS

Step 1 In a browser, navigate to the Smart Call Home web page:
Step 2 Under **Getting Started**, follow the directions to register Smart Call Home.

What to do next
Configure contact information.

Configuring Contact Information

You must configure the e-mail, phone, and street address information for Smart Call Home. You can optionally configure the contract ID, customer ID, site ID, and switch priority information.

SUMMARY STEPS

1. switch# **configure terminal**
2. switch(config)# **snmp-server contact** *sys-contact*
3. switch(config)# **callhome**
4. switch(config-callhome)# **email-contact** *email-address*
5. switch(config-callhome)# **phone-contact** *international-phone-number*
6. switch(config-callhome)# **streetaddress** *address*
7. (Optional) switch(config-callhome)# **contract-id** *contract-number*
8. (Optional) switch(config-callhome)# **customer-id** *customer-number*
9. (Optional) switch(config-callhome)# **site-id** *site-number*
10. (Optional) switch(config-callhome)# **switch-priority** *number*
11. (Optional) switch# **show callhome**
12. (Optional) switch(config)# **copy running-config startup-config**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# snmp-server contact sys-contact</td>
<td>Configures the SNMP sysContact.</td>
</tr>
<tr>
<td>Step 3 switch(config)# callhome</td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
<tr>
<td>Step 4 switch(config-callhome)# email-contact email-address</td>
<td>Configures the e-mail address for the primary person responsible for the switch. The email-address can be up to 255 alphanumeric characters in an e-mail address format. Note You can use any valid e-mail address. The address cannot contain spaces.</td>
</tr>
<tr>
<td>Step 5 switch(config-callhome)# phone-contact international-phone-number</td>
<td>Configures the phone number in international phone number format for the primary person responsible for the device. The international-phone-number can be up to 17</td>
</tr>
</tbody>
</table>
Configuring Contact Information

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>alphanumericcharactersandmustbeininternationalphonenumberformat. NoteThephonecannotcontainspaces.Use</code> theplus(+)prefixbeforethenumber.</td>
<td></td>
</tr>
</tbody>
</table>

Step 6
```
switch(config-callhome)# streetaddress address
```
Configures the street address for the primary person responsible for the switch.
The *address* can be up to 255 alphanumeric characters. Spaces are accepted.

Step 7
```
(Optional) switch(config-callhome)# contract-id contract-number
```
Configures the contract number for this switch from the service agreement.
The *contract-number* can be up to 255 alphanumeric characters.

Step 8
```
(Optional) switch(config-callhome)# customer-id customer-number
```
Configures the customer number for this switch from the service agreement.
The *customer-number* can be up to 255 alphanumeric characters.

Step 9
```
(Optional) switch(config-callhome)# site-id site-number
```
Configures the site number for this switch.
The *site-number* can be up to 255 alphanumeric characters in free format.

Step 10
```
(Optional) switch(config-callhome)# switch-priority number
```
Configures the switch priority for this switch.
The range is from 0 to 7, with 0 being the highest priority and 7 the lowest. The default is 7.

Step 11
```
(Optional) switch# show callhome
```
Displays a summary of the Smart Call Home configuration.

Step 12
```
(Optional) switch(config)# copy running-config startup-config
```
Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

The following example shows how to configure the contact information for Call Home:

```
switch# configuration terminal
switch(config)# snmp-server contact personname@companyname.com
switch(config)# callhome
switch(config-callhome)# email-contact personname@companyname.com
switch(config-callhome)# phone-contact +1-800-123-4567
switch(config-callhome)# street-address 123 Anystreet St., Anycity, Anywhere
```

What to do next

Create a destination profile.
Creating a Destination Profile

You must create a user-defined destination profile and configure the message format for that new destination profile.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# callhome
3. switch(config-callhome)# destination-profile {ciscoTAC-1 | alert-group group | email-addr address | http URL | transport-method {email | http} | profilename {alert-group group | email-addr address | format {XML | full-txt | short-txt} | http URL | message-level level | message-size size | transport-method {email | http} | full-txt-destination {alert-group group | email-addr address | http URL | message-level level | message-size size | transport-method {email | http} } | short-txt-destination {alert-group group | email-addr address | http URL | message-level level | message-size size | transport-method {email | http} }}
4. (Optional) switch# show callhome destination-profile [profile name]
5. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# callhome</td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-callhome)# destination-profile {ciscoTAC-1</td>
<td>alert-group group</td>
</tr>
<tr>
<td>Step 4 (Optional) switch# show callhome destination-profile [profile name]</td>
<td>Displays information about one or more destination profiles.</td>
</tr>
<tr>
<td>Step 5 (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to create a destination profile for Smart Call Home:
Modifying a Destination Profile

You can modify the following attributes for a predefined or user-defined destination profile:

- **Destination address**—The actual address, pertinent to the transport mechanism, to which the alert should be sent.
- **Message formatting**—The message format used for sending the alert (full text, short text, or XML).
- **Message level**—The Call Home message severity level for this destination profile.
- **Message size**—The allowed length of a Call Home message sent to the e-mail addresses in this destination profile.

Note

You cannot modify or delete the CiscoTAC-1 destination profile.

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# callhome
3. switch(config-callhome)# destination-profile {name | full-txt-destination | short-txt-destination} email-addr address
4. destination-profile {name | full-txt-destination | short-txt-destination} message-level number
5. switch(config-callhome)# destination-profile {name | full-txt-destination | short-txt-destination} message-size number
6. (Optional) switch# show callhome destination-profile [profile name]
7. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# callhome</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-callhome)# destination-profile {name</td>
</tr>
<tr>
<td>Step 4</td>
<td>destination-profile {name</td>
</tr>
</tbody>
</table>
Purpose

Step 5

```
switch(config-callhome)# destination-profile {name | full-txt-destination | short-txt-destination} message-size number
```

Purpose

Configures the maximum message size for this destination profile. The range is from 0 to 5000000 for full-txt-destination and the default is 2500000. The range is from 0 to 100000 for short-txt-destination and the default is 4000. The value is 5000000 for CiscoTAC-1, which is not changeable.

Step 6

(Optional) switch# show callhome destination-profile [profile name]

Purpose

Displays information about one or more destination profiles.

Step 7

(Optional) switch(config)# copy running-config startup-config

Purpose

Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

The following example shows how to modify a destination profile for Smart Call Home:

```
switch# configure terminal
switch(config)# callhome
switch(config-callhome)# destination-profile full-txt-destination email-addr person@example.com
switch(config-callhome)# destination-profile full-txt-destination message-level 5
switch(config-callhome)# destination-profile full-txt-destination message-size 10000
```

What to do next

Associate an alert group with a destination profile.

Associating an Alert Group with a Destination Profile

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# callhome
3. switch(config-callhome)# destination-profile name alert-group {All | Cisco-TAC | Configuration | Diagnostic | Environmental | Inventory | License | Linecard-Hardware | Supervisor-Hardware | Syslog-group-port | System | Test}
4. (Optional) switch# show callhome destination-profile [profile name]
5. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Purpose</td>
<td>En ters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# callhome</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
</tbody>
</table>
Adding Show Commands to an Alert Group

You can assign a maximum of five user-defined `show` commands to an alert group.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# callhome`
3. `switch(config-callhome)# alert-group {Configuration | Diagnostic | Environmental | Inventory | License | Linecard-Hardware | Supervisor-Hardware | Syslog-group-port | System | Test} user-def-cmd show-cmd`
4. (Optional) `switch# show callhome user-def-cmds`
5. (Optional) `switch(config)# copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>En ters global configuration mode.</td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
<tr>
<td><code>switch(config)# callhome</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Add the <code>show</code> command output to any Call Home messages sent for this alert group. Only valid <code>show</code> commands are accepted.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to add the `show ip routing` command to the Cisco-TAC alert group:

```bash
switch# configuration terminal
switch(config)# callhome
switch(config-callhome)# alert-group Configuration user-def-cmd show ip routing
```

What to do next

Configure Smart Call Home to connect to the SMTP e-mail server.

Configuring E-Mail Server Details

You must configure the SMTP server address for the Smart Call Home functionality to work. You can also configure the from and reply-to e-mail addresses.

SUMMARY STEPS

1. switch# `configure terminal`
2. switch(config)# `callhome`
3. switch(config-callhome)# `transport email smtp-server ip-address [port number] [use-vrf vrf-name]`
4. (Optional) switch(config-callhome)# `transport email from email-address`
5. (Optional) switch(config-callhome)# `transport email reply-to email-address`
6. (Optional) switch# `show callhome transport-email`
7. (Optional) switch(config)# `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Smart Call Home

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>switch(config)# callhome</td>
</tr>
<tr>
<td></td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-callhome)# transport email smtp-server ip-address [port number] [use-vrf vrf-name]</td>
</tr>
<tr>
<td></td>
<td>Configures the SMTP server as either the domain name server (DNS) name, IPv4 address, or IPv6 address.</td>
</tr>
<tr>
<td></td>
<td>The number range is from 1 to 65535. The default port number is 25.</td>
</tr>
<tr>
<td></td>
<td>Optionally, you can configure the VRF instance to use when communicating with this SMTP server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config-callhome)# transport email from email-address</td>
</tr>
<tr>
<td></td>
<td>Configures the e-mail from field for Smart Call Home messages.</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) switch(config-callhome)# transport email reply-to email-address</td>
</tr>
<tr>
<td></td>
<td>Configures the e-mail reply-to field for Smart Call Home messages.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) switch# show callhome transport-email</td>
</tr>
<tr>
<td></td>
<td>Displays information about the e-mail configuration for Smart Call Home.</td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to configure the e-mail options for Smart Call Home messages:

```
switch# configuration terminal
switch(config)# callhome
switch(config-callhome)# transport email smtp-server 192.0.2.10 use-vrf Red
switch(config-callhome)# transport email from person@example.com
switch(config-callhome)# transport email reply-to person@example.com
```

What to do next

Configure periodic inventory notifications.

Configuring Periodic Inventory Notifications

You can configure the switch to periodically send a message with an inventory of all software services currently enabled and running on the device with hardware inventory information. The switch generates two Smart Call Home notifications; periodic configuration messages and periodic inventory messages.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# callhome
3. switch(config-callhome)# periodic-inventory notification [interval days] [timeofday time]
4. (Optional) switch# show callhome
5. (Optional) switch(config)# copy running-config startup-config

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2.</td>
<td>switch(config)# callhome</td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
<tr>
<td>3.</td>
<td>switch(config-callhome)# periodic-inventory notification [interval days] [timeofday time]</td>
<td>Configures periodic inventory messages. The interval days range is from 1 to 30 days. The default is 7 days. The timeofday time is in HH:MM format.</td>
</tr>
<tr>
<td>4.</td>
<td>(Optional) switch# show callhome</td>
<td>Displays information about Smart Call Home.</td>
</tr>
<tr>
<td>5.</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to configure the periodic inventory messages to generate every 20 days:

```
switch# configuration terminal
switch(config)# callhome
switch(config-callhome)# periodic-inventory notification interval 20
```

What to do next

Disable duplicate message throttling.

Disabling Duplicate Message Throttling

You can limit the number of duplicate messages received for the same event. By default, the switch limits the number of duplicate messages received for the same event. If the number of duplicate messages sent exceeds 30 messages within a 2-hour time frame, the switch discards further messages for that alert type.

Summary Steps

1. switch# configure terminal
2. switch(config)# callhome
3. switch(config-callhome)# no duplicate-message throttle
4. (Optional) switch(config)# copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# callhome</td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-callhome)# no duplicate-message throttle</td>
<td>Disables duplicate message throttling for Smart Call Home. Duplicate message throttling is enabled by default.</td>
</tr>
<tr>
<td>Step 4 (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to disable duplicate message throttling:

```
switch# configuration terminal
switch(config)# callhome
switch(config-callhome)# no duplicate-message throttle
switch(config-callhome)#
```

What to do next

Enable Smart Call Home.

Enabling or Disabling Smart Call Home

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# callhome
3. switch(config-callhome)# [no] enable
4. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# callhome</td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-callhome)# [no] enable</td>
<td>Enables or disables Smart Call Home. Smart Call Home is disabled by default.</td>
</tr>
<tr>
<td>Step 4 (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
Example
The following example shows how to enable Smart Call Home:

```
switch# configuration terminal
switch(config)# callhome
switch(config-callhome)# enable
```

What to do next
Optionally, generate a test message.

Testing the Smart Call Home Configuration

Before you begin
Verify that the message level for the destination profile is set to 2 or lower.

Important
Smart Call Home testing fails when the message level for the destination profile is set to 3 or higher.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# callhome
3. switch(config-callhome)# callhome send diagnostic
4. switch(config-callhome)# callhome test
5. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# callhome</td>
<td>Enters Smart Call Home configuration mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-callhome)# callhome send diagnostic</td>
<td>Sends the specified Smart Call Home message to all configured destinations.</td>
</tr>
<tr>
<td>Step 4 switch(config-callhome)# callhome test</td>
<td>Sends a test message to all configured destinations.</td>
</tr>
<tr>
<td>Step 5 (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
Example

The following example shows how to enable Smart Call Home:

```
switch# configuration terminal
switch(config)# callhome
callhome send diagnostic
callhome test
```

Verifying the Smart Call Home Configuration

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show callhome</code></td>
<td>Displays the status for Smart Call Home.</td>
</tr>
<tr>
<td><code>show callhome destination-profile name</code></td>
<td>Displays one or more Smart Call Home destination profiles.</td>
</tr>
<tr>
<td><code>show callhome pending-diff</code></td>
<td>Displays the differences between he pending and running Smart Call Home configuration.</td>
</tr>
<tr>
<td><code>show callhome status</code></td>
<td>Displays the Smart Call Home status.</td>
</tr>
<tr>
<td><code>show callhome transport-email</code></td>
<td>Displays the e-mail configuration for Smart Call Home.</td>
</tr>
<tr>
<td><code>show callhome user-def-cmds</code></td>
<td>Displays CLI commands added to any alert groups.</td>
</tr>
<tr>
<td>`show running-config [callhome</td>
<td>callhome-all]`</td>
</tr>
<tr>
<td><code>show startup-config callhome</code></td>
<td>Displays the startup configuration for Smart Call Home.</td>
</tr>
<tr>
<td><code>show tech-support callhome</code></td>
<td>Displays the technical support output for Smart Call Home.</td>
</tr>
</tbody>
</table>

Sample Syslog Alert Notification in Full-Text Format

This sample shows the full-text format for a syslog port alert-group notification:

```
source:MDS9000
Switch Priority:7
Device Id:WS-C6509@C@FG@07120011
Customer Id:Example.com
Contract Id:123
Site Id:San Jose
Server Id:WS-C6509@C@FG@07120011
Time of Event:2004-10-08T11:10:44
Message Name:SYSLOG_ALERT
Message Type:Syslog
Severity Level:2
System Name:10.76.100.177
Contact Name:User Name
Contact Email:person@example.com
```
Sample Syslog Alert Notification in XML Format

This sample shows the XML format for a syslog port alert-group notification:

From: example
Sent: Wednesday, April 25, 2007 7:20 AM
To: User (user)
Subject: System Notification From Router – syslog – 2007-04-25 14:19:55 GMT+00:00

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope">
 <soap-env:Header>
 <aml-session:To>http://tools.example.com/services/DDCEService</aml-session:To>
 <aml-session:Path>
 <aml-session:Via>http://www.example.com/appliance/uri</aml-session:Via>
 </aml-session:Path>
 <aml-session:From>http://www.example.com/appliance/uri</aml-session:From>
 <aml-session:MessageId>M2:69000101:C9D9E20B</aml-session:MessageId>
 </aml-session:Session>
 </soap-env:Header>
 <soap-env:Body>
 <aml-block:Block xmlns:aml-block="http://www.example.com/2004/01/aml-block">
 <aml-block:Header>
 <aml-block:Type>http://www.example.com/2005/05/callhome/syslog</aml-block:Type>
 <aml-block:CreationDate>2007-04-25 14:19:55 GMT+00:00</aml-block:CreationDate>
 <aml-block:Builder>
 <aml-block:Name>Cat6500</aml-block:Name>
 <aml-block:Version>2.0</aml-block:Version>
 </aml-block:Builder>
 </aml-block:Header>
 <aml-block:BlockGroup>
 <aml-block:GroupId>G3:69000101:C9F9E20C</aml-block:GroupId>
 <aml-block:Number>0</aml-block:Number>
 <aml-block:IsLast>true</aml-block:IsLast>
 <aml-block:IsPrimary>true</aml-block:IsPrimary>
 <aml-block:WaitForPrimary>false</aml-block:WaitForPrimary>
 <aml-block:BlockGroup>
 <aml-block:GroupId>G3:69000101:00000000</aml-block:GroupId>
 <aml-block:Number>1</aml-block:Number>
 <aml-block:IsLast>false</aml-block:IsLast>
 <aml-block:IsPrimary>false</aml-block:IsPrimary>
 <aml-block:WaitForPrimary>false</aml-block:WaitForPrimary>
 </aml-block:BlockGroup>
 </aml-block:BlockGroup>
 </aml-block:Block>
 </soap-env:Body>
</soap-env:Envelope>
Sample Syslog Alert Notification in XML Format

```xml
<?xml version="1.0" encoding="UTF-8"?>
<syslog>
  <syslog-group>
    <syslog-source>
      <syslog-id>1</syslog-id>
      <syslog-type>Syslog</syslog-type>
      <syslog-service>Router</syslog-service>
      <syslog-attributes>
        <system-id>WS-C6509-12345</system-id>
        <remote-id>1234 Any Street, Any City, Any State, 12345</remote-id>
      </syslog-attributes>
    </syslog-source>
  </syslog-group>
</syslog>
```

Sample Syslog Alert Notification in XML Format
Compiled Thu 26-Apr-08 16:40 by usernames
00:00:25: DFC1: Currently running ROMMON from F2 region
00:05:30: %DIAG-SP-6-DIAG_OK: Module 4: Passed Online Diagnostics
00:05:31: %SPAN-SP-6-SPAN_EGRESS_REPLICATION_MODE_CHANGE: Span Egress HW Replication Mode Change Detected. Current replication mode for unused asic session 0 is Centralized
00:05:31: %SPAN-SP-6-SPAN_EGRESS_REPLICATION_MODE_CHANGE: Span Egress HW Replication Mode Change Detected. Current replication mode for unused asic session 1 is Centralized
00:05:31: %OIR-SP-6-INSCARD: Card inserted in slot 4, interfaces are now online
00:06:02: %DIAG-SP-6-DIAG_OK: Module 1: Passed Online Diagnostics
00:06:03: %OIR-SP-6-INSCARD: Card inserted in slot 1, interfaces are now online
00:06:31: %DIAG-SP-6-DIAG_OK: Module 2: Passed Online Diagnostics
00:06:33: %OIR-SP-6-INSCARD: Card inserted in slot 2, interfaces are now online
00:04:30: %XDR-6-XDRIPCNOTIFY: Message not sent to slot 4/0 (4) because of IPC error timeout. Disabling linecard. (Expected during linecard OIR)
00:06:59: %DIAG-SP-6-DIAG_OK: Module 8: Passed Online Diagnostics
00:06:59: %OIR-SP-6-DOWNGRADE_EARL: Module 8 DFC installed is not identical to system PFC and will perform at current system operating mode.
00:07:06: %OIR-SP-6-INSCARD: Card inserted in slot 8, interfaces are now online
Router#]>
</aml-block:Data>
</aml-block:Attachment>
</aml-block:Attachments>
</aml-block:Block>
</soap-env:Body>
</soap-env:Envelope>
CHAPTER 8

Configuring the Scheduler

This chapter contains the following sections:

- Information About the Scheduler, on page 91
- Licensing Requirements for the Scheduler, on page 92
- Guidelines and Limitations for the Scheduler, on page 92
- Default Settings for the Scheduler, on page 93
- Configuring the Scheduler, on page 93
- Verifying the Scheduler Configuration, on page 100
- Configuration Examples for the Scheduler, on page 100
- Standards for the Scheduler, on page 102

Information About the Scheduler

The scheduler allows you to define and set a timetable for maintenance activities such as the following:

- Quality of service policy changes
- Data backup
- Saving a configuration

Jobs consist of a single command or multiple commands that define routine activities. Jobs can be scheduled one time or at periodic intervals.

The scheduler defines a job and its timetable as follows:

Job

A routine task or tasks defined as a command list and completed according to a specified schedule.

Schedule

The timetable for completing a job. You can assign multiple jobs to a schedule.

A schedule is defined as either periodic or one-time only:

- Periodic mode—A recurring interval that continues until you delete the job. You can configure the following types of intervals:
 - Daily—Job is completed once a day.
• Weekly—Job is completed once a week.
• Monthly—Job is completed once a month.
• Delta—Job begins at the specified start time and then at specified intervals (days:hours:minutes).
• One-time mode—Job is completed only once at a specified time.

Remote User Authentication

Before starting a job, the scheduler authenticates the user who created the job. Because user credentials from a remote authentication are not retained long enough to support a scheduled job, you must locally configure the authentication passwords for users who create jobs. These passwords are part of the scheduler configuration and are not considered a locally configured user.

Before starting the job, the scheduler validates the local password against the password from the remote authentication server.

Scheduler Log Files

The scheduler maintains a log file that contains the job output. If the size of the job output is greater than the size of the log file, the output is truncated.

Licensing Requirements for the Scheduler

This feature does not require a license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Guidelines and Limitations for the Scheduler

• The scheduler can fail if it encounters one of the following while performing a job:
 • If a feature license is expired when a job for that feature is scheduled.
 • If a feature is disabled at the time when a job for that feature is scheduled.

• Verify that you have configured the time. The scheduler does not apply a default timetable. If you create a schedule, assign jobs, and do not configure the time, the job is not started.

• While defining a job, verify that no interactive or disruptive commands (for example, copy bootflash: file ftp:URI, write erase, and other similar commands) are specified because the job is started and conducted noninteractively.
Default Settings for the Scheduler

Table 12: Default Command Scheduler Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduler state</td>
<td>Disabled</td>
</tr>
<tr>
<td>Log file size</td>
<td>16 KB</td>
</tr>
</tbody>
</table>

Configuring the Scheduler

Enabling the Scheduler

SUMMARY STEPS

1. switch# configure terminal
2. switch(config) # feature scheduler
3. (Optional) switch(config) # show scheduler config
4. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config) # feature scheduler</td>
</tr>
<tr>
<td></td>
<td>Enables the scheduler.</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config) # show scheduler config</td>
</tr>
<tr>
<td></td>
<td>Displays the scheduler configuration.</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>Saves the change persistently through reboots and restarts by copying</td>
</tr>
<tr>
<td></td>
<td>the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to enable the scheduler:

```
switch# configure terminal
switch(config)# feature scheduler
switch(config)# show scheduler config
config terminal
  feature scheduler
  scheduler logfile size 16
end
switch(config)#
```
Defining the Scheduler Log File Size

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# scheduler logfile size value
3. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# scheduler logfile size value</td>
</tr>
<tr>
<td></td>
<td>Defines the scheduler log file size in kilobytes.</td>
</tr>
<tr>
<td></td>
<td>The range is from 16 to 1024. The default log file size is 16.</td>
</tr>
<tr>
<td></td>
<td>Note If the size of the job output is greater than the size of the log file, the output is truncated.</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to define the scheduler log file size:

```
switch# configure terminal
switch(config)# scheduler logfile size 1024
```

Configuring Remote User Authentication

Remote users must authenticate with their clear text password before creating and configuring jobs.

Remote user passwords are always shown in encrypted form in the output of the `show running-config` command. The encrypted option (7) in the command supports the ASCII device configuration.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# scheduler aaa-authentication password [0 | 7] password
3. switch(config)# scheduler aaa-authentication username name password [0 | 7] password
4. (Optional) switch(config)# show running-config | include "scheduler aaa-authentication"
5. (Optional) switch(config)# copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>`switch(config)# scheduler aaa-authentication password [0</td>
<td>7] password`</td>
</tr>
<tr>
<td>3</td>
<td>`switch(config)# scheduler aaa-authentication username name password [0</td>
<td>7] password`</td>
</tr>
<tr>
<td>4</td>
<td>(Optional) `switch(config)# show running-config</td>
<td>include "scheduler aaa-authentication"`</td>
</tr>
<tr>
<td>5</td>
<td>(Optional) <code>switch(config)# copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure a clear text password for a remote user called NewUser:

```
switch# configure terminal
switch(config)# scheduler aaa-authentication username NewUser password z98y76x54b
switch(config)# copy running-config startup-config
switch(config)#
```

Defining a Job

Once a job is defined, you cannot modify or remove a command. To change the job, you must delete it and create a new one.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# scheduler job name name`
3. `switch(config-job)# command1 ; [command2 ;command3 ; ...`
4. (Optional) `switch(config-job)# show scheduler job [name]`
5. (Optional) `switch(config-job)# copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>switch(config)# scheduler job name name</code></td>
<td>Creates a job with the specified name and enters job configuration mode.</td>
</tr>
</tbody>
</table>
Configuring the Scheduler

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>The name is restricted to 31 characters.</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-job) # command1 ; [command2 ; command3 ; ...]</td>
<td>Defines the sequence of commands for the specified job. You must separate commands with a space and a semicolon (;). The filename is created using the current time stamp and switch name.</td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) switch(config-job) # show scheduler job [name]</td>
<td>Displays the job information. The name is restricted to 31 characters.</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) switch(config-job) # copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to create a scheduler job named backup-cfg, save the running configuration to a file in bootflash, copy the file from bootflash to a TFTP server, and save the change to the startup configuration:

```bash
switch# configure terminal
switch(config)# scheduler job name backup-cfg
switch(config-job)# cli var name timestamp $(timestamp) ; copy running-config bootflash:/$(SWITCHNAME)-cfg.$(timestamp) ; copy bootflash:/$(SWITCHNAME)-cfg.$(timestamp) tftp://1.2.3.4/vrf management
switch(config-job)# copy running-config startup-config
```

Deleting a Job

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# no scheduler job name name
3. (Optional) switch(config-job)# show scheduler job [name]
4. (Optional) switch(config-job)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch(config)# no scheduler job name name</td>
<td>Deletes the specified job and all commands defined within it. The name is restricted to 31 characters.</td>
</tr>
</tbody>
</table>
Defining a Timetable

You must configure a timetable. Otherwise, jobs will not be scheduled.

If you do not specify the time for the time commands, the scheduler assumes the current time. For example, if the current time is March 24, 2008, 22:00 hours, jobs are started as follows:

- For the time start 23:00 repeat 4:00:00 command, the scheduler assumes a start time of March 24, 2008, 23:00 hours.
- For the time daily 55 command, the scheduler assumes a start time every day at 22:55 hours.
- For the time weekly 23:00 command, the scheduler assumes a start time every Friday at 23:00 hours.
- For the time monthly 23:00 command, the scheduler assumes a start time on the 24th of every month at 23:00 hours.

The scheduler will not begin the next occurrence of a job before the last one completes. For example, you have scheduled a job to be completed at one-minute intervals beginning at 22:00; but the job requires two minutes to complete. The scheduler starts the first job at 22:00, completes it at 22:02, and then observes a one-minute interval before starting the next job at 22:03.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config) # scheduler schedule name name
3. switch(config-schedule) # job name name
4. switch(config-schedule) # time daily time
5. switch(config-schedule) # time weekly [(day-of-week:) HH:] MM
6. switch(config-schedule) # time monthly [(day-of-month:) HH:] MM
7. switch(config-schedule) # time start {now repeat repeat-interval | delta-time [repeat repeat-interval]}
8. (Optional) switch(config-schedule) # show scheduler config
9. (Optional) `switch(config-schedule) # copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** switch(config) # scheduler schedule name name | Creates a new scheduler and enters schedule configuration mode for that schedule.
The name is restricted to 31 characters. |
| **Step 3** switch(config-schedule) # job name name | Associates a job with this schedule. You can add multiple jobs to a schedule.
The name is restricted to 31 characters. |
| **Step 4** switch(config-schedule) # time daily time | Indicates the job starts every day at a designated time, specified as HH:MM. |
| **Step 5** switch(config-schedule) # time weekly [day-of-week:]HH:] MM | Indicates that the job starts on a specified day of the week.
The day of the week is represented by an integer (for example, 1 for Sunday, 2 for Monday) or as an abbreviation (for example, sun, mon).
The maximum length for the entire argument is 10 characters. |
| **Step 6** switch(config-schedule) # time monthly [day-of-month:]HH:] MM | Indicates that the job starts on a specified day each month. If you specify 29, 30, or 31, the job is started on the last day of each month. |
| **Step 7** switch(config-schedule) # time start [now repeat repeat-interval] delta-time [repeat repeat-interval] | Indicates the job starts periodically.
The start-time format is [[yyyy:]mmm:dd:]HH]:MM.
- **delta-time**—Specifies the amount of time to wait after the schedule is configured before starting a job.
- **now**—Specifies that the job starts two minutes from now.
- **repeat repeat-interval**—Specifies the frequency at which the job is repeated. |
| **Step 8** (Optional) switch(config-schedule) # show scheduler config | Displays the scheduler information. |
| **Step 9** (Optional) switch(config-schedule) # copy running-config startup-config | Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration. |
Example

This example shows how to define a timetable where jobs start on the 28th of each month at 23:00 hours:

```
switch# configure terminal
switch(config)# scheduler schedule name weekendbackupqos
switch(config-scheduler)# job name offpeakzoning
switch(config-scheduler)# time monthly 28:23:00
switch(config-scheduler)# copy running-config startup-config
```

Clearing the Scheduler Log File

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# clear scheduler logfile

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>switch(config)# clear scheduler logfile</td>
<td>Clears the scheduler log file.</td>
</tr>
</tbody>
</table>

Example

This example shows how to clear the scheduler log file:

```
switch# configure terminal
switch(config)# clear scheduler logfile
```

Disabling the Scheduler

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# no feature scheduler
3. (Optional) switch(config)# show scheduler config
4. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
Configuring the Scheduler

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 switch(config) # no feature scheduler</td>
<td>Disables the scheduler.</td>
</tr>
<tr>
<td>Step 3 (Optional) switch(config) # show scheduler config</td>
<td>Displays the scheduler configuration.</td>
</tr>
<tr>
<td>Step 4 (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to disable the scheduler:

```
switch# configure terminal
switch(config) # no feature scheduler
switch(config) # copy running-config startup-config
```

Verifying the Scheduler Configuration

Use one of the following commands to verify the configuration:

Table 13: Scheduler Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show scheduler config</td>
<td>Displays the scheduler configuration.</td>
</tr>
<tr>
<td>show scheduler job [name name]</td>
<td>Displays the jobs configured.</td>
</tr>
<tr>
<td>show scheduler logfile</td>
<td>Displays the contents of the scheduler log file.</td>
</tr>
<tr>
<td>show scheduler schedule [name name]</td>
<td>Displays the schedules configured.</td>
</tr>
</tbody>
</table>

Configuration Examples for the Scheduler

Creating a Scheduler Job

This example shows how to create a scheduler job that saves the running configuration to a file in bootflash and then copies the file from bootflash to a TFTP server (the filename is created using the current time stamp and switch name):

```
switch# configure terminal
switch(config)# scheduler job name backup-cfg
switch(config-job)# cli var name timestamp $(TIMESTAMP) ; copy running-config bootflash:/$(SWITCHNAME)-cfg.$(timestamp) ; copy bootflash:/$(SWITCHNAME)-cfg.$(timestamp) tftp://1.2.3.4/ vrf management
switch(config-job)# end
switch(config)#
```
Scheduling a Scheduler Job

This example shows how to schedule a scheduler job called backup-cfg to run daily at 1 a.m.:

```
switch# configure terminal
switch(config)# scheduler schedule name daily
switch(config-schedule)# job name backup-cfg
switch(config-schedule)# time daily 1:00
switch(config-schedule)# end
switch(config)#
```

Displaying the Job Schedule

This example shows how to display the job schedule:

```
switch# show scheduler schedule
Schedule Name : daily
User Name : admin
Schedule Type : Run every day at 1 Hrs 00 Mins
Last Execution Time : Fri Jan 2 1:00:00 2009
Last Completion Time: Fri Jan 2 1:00:01 2009
Execution count : 2

Job Name Last Execution Status
back-cfg Success (0)
```

Displaying the Results of Running Scheduler Jobs

This example shows how to display the results of scheduler jobs that have been executed by the scheduler:

```
switch# show scheduler logfile
Job Name : back-cfg Job Status: Failed (1)
Schedule Name : daily User Name : admin
Completion time: Fri Jan 1 1:00:01 2009

--------------------------------- Job Output ---------------------------------
`cli var name timestamp 2009-01-01-01.00.00`
`copy running-config bootflash:/$(HOSTNAME)-cfg.$(timestamp)`
`copy bootflash:/switch-cfg.2009-01-01-01.00.00 tftp://1.2.3.4/ vrf management`
copy: cannot access file '/bootflash/switch-cfg.2009-01-01-01.00.00'
==============================================================================
Job Name : back-cfg Job Status: Success (0)
Schedule Name : daily User Name : admin
Completion time: Fri Jan 2 1:00:01 2009

--------------------------------- Job Output ---------------------------------
`cli var name timestamp 2009-01-02-01.00.00`
`copy running-config bootflash:/$(HOSTNAME)-cfg.$(timestamp)`
`copy bootflash:/switch-cfg.2009-01-02-01.00.00 tftp://1.2.3.4/ vrf management`
Connection to Server Established.
[ ] 0.50KB Trying to connect to tftp server......
[##### ] 24.50KB TFTP put operation was successful
==============================================================================
switch#
Standards for the Scheduler

No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.
CHAPTER 9

Configuring SNMP

This chapter contains the following sections:

- About SNMP, on page 103
- Licensing Requirements for SNMP, on page 107
- Guidelines and Limitations for SNMP, on page 107
- Default SNMP Settings, on page 107
- Configuring SNMP, on page 108
- Configuring the SNMP Local Engine ID, on page 120
- Disabling SNMP, on page 121
- Verifying the SNMP Configuration, on page 121

About SNMP

The Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network.

SNMP Functional Overview

The SNMP framework consists of three parts:

- An SNMP manager—The system used to control and monitor the activities of network devices using SNMP.

- An SNMP agent—The software component within the managed device that maintains the data for the device and reports these data, as needed, to managing systems. The Cisco Nexus device supports the agent and MIB. To enable the SNMP agent, you must define the relationship between the manager and the agent.

- A managed information base (MIB)—The collection of managed objects on the SNMP agent

---

Note

Cisco Nexus device does not support SNMP sets for Ethernet MIBs.
The Cisco Nexus device supports SNMPv1, SNMPv2c, and SNMPv3. Both SNMPv1 and SNMPv2c use a community-based form of security.


### SNMP Notifications

A key feature of SNMP is the ability to generate notifications from an SNMP agent. These notifications do not require that requests be sent from the SNMP manager. Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of connection to a neighbor router, or other significant events.

Cisco NX-OS generates SNMP notifications as either traps or informs. A trap is an asynchronous, unacknowledged message sent from the agent to the SNMP managers listed in the host receiver table. Informs are asynchronous messages sent from the SNMP agent to the SNMP manager which the manager must acknowledge receipt of.

Traps are less reliable than informs because the SNMP manager does not send any acknowledgment when it receives a trap. The switch cannot determine if the trap was received. An SNMP manager that receives an inform request acknowledges the message with an SNMP response protocol data unit (PDU). If the Cisco Nexus device never receives a response, it can send the inform request again.

You can configure Cisco NX-OS to send notifications to multiple host receivers.

### SNMPv3

SNMPv3 provides secure access to devices by a combination of authenticating and encrypting frames over the network. The security features provided in SNMPv3 are the following:

- **Message integrity**—Ensures that a packet has not been tampered with in-transit.
- **Authentication**—Determines the message is from a valid source.
- **Encryption**—Scrambles the packet contents to prevent it from being seen by unauthorized sources.

SNMPv3 provides for both security models and security levels. A security model is an authentication strategy that is set up for a user and the role in which the user resides. A security level is the permitted level of security within a security model. A combination of a security model and a security level determines which security mechanism is employed when handling an SNMP packet.

#### Security Models and Levels for SNMPv1, v2, and v3

The security level determines if an SNMP message needs to be protected from disclosure and if the message needs to be authenticated. The various security levels that exist within a security model are as follows:

- **noAuthNoPriv**—Security level that does not provide authentication or encryption. This level is not supported for SNMPv3.
- **authNoPriv**—Security level that provides authentication but does not provide encryption.
- **authPriv**—Security level that provides both authentication and encryption.
Three security models are available: SNMPv1, SNMPv2c, and SNMPv3. The security model combined with the security level determine the security mechanism applied when the SNMP message is processed.

### Table 14: SNMP Security Models and Levels

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v2c</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>No</td>
<td>Provides authentication based on the Hash-Based Message Authentication Code (HMAC) Message Digest 5 (MD5) algorithm or the HMAC Secure Hash Algorithm (SHA).</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>DES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides Data Encryption Standard (DES) 56-bit encryption in addition to authentication based on the Cipher Block Chaining (CBC) DES (DES-56) standard.</td>
</tr>
</tbody>
</table>

### User-Based Security Model

SNMPv3 User-Based Security Model (USM) refers to SNMP message-level security and offers the following services:

- **Message integrity**—Ensures that messages have not been altered or destroyed in an unauthorized manner and that data sequences have not been altered to an extent greater than can occur nonmaliciously.

- **Message origin authentication**—Confirms that the claimed identity of the user who received the data was originated.

- **Message confidentiality**—Ensures that information is not made available or disclosed to unauthorized individuals, entities, or processes.
SNMPv3 authorizes management operations only by configured users and encrypts SNMP messages. Cisco NX-OS uses two authentication protocols for SNMPv3:

- HMAC-MD5-96 authentication protocol
- HMAC-SHA-96 authentication protocol

Cisco NX-OS uses Advanced Encryption Standard (AES) as one of the privacy protocols for SNMPv3 message encryption and conforms with RFC 3826.

The `priv` option offers a choice of DES or 128-bit AES encryption for SNMP security encryption. The `priv` option and the `aes-128` token indicates that this privacy password is for generating a 128-bit AES key. The AES priv password can have a minimum of eight characters. If the passphrases are specified in clear text, you can specify a maximum of 64 characters. If you use the localized key, you can specify a maximum of 130 characters.

For an SNMPv3 operation using the external AAA server, you must use AES for the privacy protocol in user configuration on the external AAA server.

**CLI and SNMP User Synchronization**

SNMPv3 user management can be centralized at the Access Authentication and Accounting (AAA) server level. This centralized user management allows the SNMP agent in Cisco NX-OS to leverage the user authentication service of the AAA server. Once user authentication is verified, the SNMP PDUs are processed further. Additionally, the AAA server is also used to store user group names. SNMP uses the group names to apply the access/role policy that is locally available in the switch.

Any configuration changes made to the user group, role, or password results in database synchronization for both SNMP and AAA.

Cisco NX-OS synchronizes user configuration in the following ways:

- The `auth` passphrase specified in the `snmp-server user` command becomes the password for the CLI user.
- The password specified in the `username` command becomes the `auth` and `priv` passphrases for the SNMP user.
- If you create or delete a user using either SNMP or the CLI, the user is created or deleted for both SNMP and the CLI.
- User-role mapping changes are synchronized in SNMP and the CLI.
- Role changes (deletions or modifications from the CLI) are synchronized to SNMP.

When you configure passphrase/password in localized key/encrypted format, Cisco NX-OS does not synchronize the user information (passwords, rules, etc.).
Group-Based SNMP Access

Because a group is a standard SNMP term used industry-wide, roles are referred to as groups in this SNMP section.

SNMP access rights are organized by groups. Each group in SNMP is similar to a role through the CLI. Each group is defined with three accesses: read access, write access, and notification access. Each access can be enabled or disabled within each group.

You can begin communicating with the agent once your username is created, your roles are set up by your administrator, and you are added to the roles.

Licensing Requirements for SNMP

This feature does not require a license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Guidelines and Limitations for SNMP

SNMP has the following configuration guidelines and limitations:

- Access control list (ACLs) can be applied only to local SNMPv3 users configured on the switch. ACLs cannot be applied to remote SNMPv3 users stored on Authentication, Authorization, and Accounting (AAA) servers.

- Cisco NX-OS supports read-only access to Ethernet MIBs. For more information, see the Cisco NX-OS MIB support list at the following URL http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml.

- Cisco NX-OS does not support the SNMPv3 noAuthNoPriv security level.

Default SNMP Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>license notifications</td>
<td>Enabled</td>
</tr>
<tr>
<td>linkUp/Down notification type</td>
<td>ietf-extended</td>
</tr>
</tbody>
</table>
Configuring SNMP

Configuring the SNMP Source Interface

You can configure SNMP to use a specific interface.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# snmp-server source-interface {inform | trap} type slot/port
3. switch(config)# show snmp source-interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# snmp-server source-interface {inform</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# show snmp source-interface</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the SNMP source interface:

```
switch(config)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# snmp-server source-interface inform ethernet 1/10
switch(config)# snmp-server source-interface trap ethernet 1/10
switch(config)# show snmp source-interface
```

```
Notification source-interface etherent1/10

trap Ethernet1/10
inform Ethernet1/10
```

Configuring SNMP Users

The commands used to configure SNMP users in Cisco NX-OS are different from those used to configure users in Cisco IOS.

**SUMMARY STEPS**

1. configure terminal
2. `switch(config)# snmp-server user name [auth {md5 | sha} passphrase [auto] [priv [aes-128] passphrase] [engineID id] [localizedkey]]`
3. (Optional) `switch# show snmp user`
4. (Optional) `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch# configure terminal</code> <code>switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>`switch(config)# snmp-server user name [auth {md5</td>
<td>sha} passphrase [auto] [priv [aes-128] passphrase] [engineID id] [localizedkey]]`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config)# snmp-server user Admin auth sha abcd1234 priv abcdefgh</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>(Optional) <code>switch# show snmp user</code></td>
<td>Displays information about one or more SNMP users.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config)# show snmp user</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) <code>copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config)# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure an SNMP user:
Enforcing SNMP Message Encryption

You can configure SNMP to require authentication or encryption for incoming requests. By default, the SNMP agent accepts SNMPv3 messages without authentication and encryption. When you enforce privacy, Cisco NX-OS responds with an authorization error for any SNMPv3 PDU request that uses a security level parameter of either `noAuthNoPriv` or `authNoPriv`.

Use the following command in global configuration mode to enforce SNMP message encryption for a specific user:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# snmp-server user name enforcePriv</code></td>
<td>Enforces SNMP message encryption for this user.</td>
</tr>
</tbody>
</table>

Use the following command in global configuration mode to enforce SNMP message encryption for all users:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# snmp-server globalEnforcePriv</code></td>
<td>Enforces SNMP message encryption for all users.</td>
</tr>
</tbody>
</table>

Assigning SNMPv3 Users to Multiple Roles

After you configure an SNMP user, you can assign multiple roles for the user.

**Note**

Only users who belong to a network-admin role can assign roles to other users.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# snmp-server user name group</code></td>
<td>Associates this SNMP user with the configured user role.</td>
</tr>
</tbody>
</table>

Creating SNMP Communities

You can create SNMP communities for SNMPv1 or SNMPv2c.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`switch(config)# snmp-server community name group {ro</td>
<td>rw}`</td>
</tr>
</tbody>
</table>

Filtering SNMP Requests

You can assign an access list (ACL) to a community to filter incoming SNMP requests. If the assigned ACL allows the incoming request packet, SNMP processes the request. If the ACL denies the request, SNMP drops the request and sends a system message.

```
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# snmp-server user Admin auth sha abcd1234 priv abcdefgh
```
Create the ACL with the following parameters:

- Source IP address
- Destination IP address
- Source port
- Destination port
- Protocol (UDP or TCP)

The ACL applies to both IPv4 and IPv6 over UDP and TCP. After creating the ACL, assign the ACL to the SNMP community.

For more information about creating ACLs, see the NX-OS security configuration guide for the Cisco Nexus Series software that you are using.

### Tip

Use the following command in global configuration mode to assign an ACL to a community to filter SNMP requests:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# snmp-server community community name use-acl acl-name</code></td>
<td>Assigns an IPv4 or IPv6 ACL to an SNMP community to filter SNMP requests.</td>
</tr>
</tbody>
</table>

#### Configuring SNMP Notification Receivers

You can configure Cisco NX-OS to generate SNMP notifications to multiple host receivers.

You can configure a host receiver for SNMPv1 traps in a global configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# snmp-server host ip-address traps version 1 community [udp_port number]</code></td>
<td>Configures a host receiver for SNMPv1 traps. The <code>ip-address</code> can be an IPv4 or IPv6 address. The community can be any alphanumeric string up to 255 characters. The UDP port number range is from 0 to 65535.</td>
</tr>
</tbody>
</table>

You can configure a host receiver for SNMPv2c traps or informs in a global configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`switch(config)# snmp-server host ip-address {traps</td>
<td>informs} version 2c community [udp_port number]`</td>
</tr>
</tbody>
</table>

You can configure a host receiver for SNMPv3 traps or informs in a global configuration mode.
Purpose
Command

Configures a host receiver for SNMPv2c traps or informs. The ip-address can be an IPv4 or IPv6 address. The username can be any alphanumeric string up to 255 characters. The UDP port number range is from 0 to 65535.

switch(config)# snmp-server host ip-address {traps | informs} version 3 {auth | noauth | priv} username [udp_port number]

The SNMP manager must know the user credentials (authKey/PrivKey) based on the SNMP engineID of the Cisco Nexus device to authenticate and decrypt the SNMPv3 messages.

The following example shows how to configure a host receiver for an SNMPv1 trap:

switch(config)# snmp-server host 192.0.2.1 traps version 1 public

The following example shows how to configure a host receiver for an SNMPv2 inform:

switch(config)# snmp-server host 192.0.2.1 informs version 2c public

The following example shows how to configure a host receiver for an SNMPv3 inform:

switch(config)# snmp-server host 192.0.2.1 informs version 3 auth NMS

Configuring SNMP Notification Receivers with VRFs

You can configure Cisco NX-OS to use a configured VRF to reach the host receiver. SNMP adds entries into the cExtSnmpTargetVrfTable of the CISCO-SNMP-TARGET-EXT-MIB when you configure the VRF reachability and filtering options for an SNMP notification receiver.

You must configure the host before configuring the VRF reachability or filtering options.

SUMMARY STEPS
1. switch# configure terminal
2. switch# snmp-server host ip-address use-vrf vrf_name [udp_port number]
3. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch# snmp-server host ip-address use-vrf vrf_name [udp_port number]</td>
</tr>
</tbody>
</table>
### Filtering SNMP Notifications Based on a VRF

You can configure Cisco NX-OS filter notifications based on the VRF in which the notification occurred.

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# snmp-server host ip-address filter-vrf vrf_name [udp_port number]`
3. (Optional) `switch(config)# copy running-config startup-config`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# snmp-server host ip-address filter-vrf vrf_name [udp_port number]</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

#### Example

The following example shows how to configure filtering of SNMP notifications based on a VRF:

```
switch# configuration terminal
switch(config)# snmp-server host 192.0.2.1 use-vrf Blue
switch(config)# copy running-config startup-config
```
Configuring SNMP for Inband Access

You can configure SNMP for inband access using the following:

- Using SNMP v2 without context—You can use a community that is mapped to a context. In this case, the SNMP client does not need to know about the context.

- Using SNMP v2 with context—The SNMP client needs to specify the context by specifying a community; for example, `<community>@<context>`.

- Using SNMP v3—You can specify the context.

**SUMMARY STEPS**

1. switch# configuration terminal
2. switch(config)# snmp-server context context-name vrf vrf-name
3. switch(config)# snmp-server community community-name group group-name
4. switch(config)# snmp-server mib community-map community-name context context-name

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# snmp-server context context-name vrf vrf-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# snmp-server community community-name group group-name</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config)# snmp-server mib community-map community-name context context-name</td>
</tr>
</tbody>
</table>

**Example**

The following SNMPv2 example shows how to map a community named snmpdefault to a context:

```
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# snmp-server context snmpdefault group network-admin
switch(config)# snmp-server mib community-map snmpdefault context def
```

---

```
switch# configuration terminal
switch(config)# snmp-server host 192.0.2.1 filter-vrf Red
switch(config)# copy running-config startup-config
```

---

**Cisco Nexus 3600 NX-OS System Management Configuration Guide, Release 9.2(x)**
The following SNMPv2 example shows how to configure and inband access to the community comm which is not mapped:

```
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# snmp-server context def vrf default
switch(config)# snmp-server community comm group network-admin
```

The following SNMPv3 example shows how to use a v3 username and password:

```
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# snmp-server context def vrf default
```

### Enabling SNMP Notifications

You can enable or disable notifications. If you do not specify a notification name, Cisco NX-OS enables all notifications.

**Note**

The `snmp-server enable traps` CLI command enables both traps and informs, depending on the configured notification host receivers.

The following table lists the CLI commands that enable the notifications for Cisco NX-OS MIBs.

<table>
<thead>
<tr>
<th>MIB</th>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>All notifications</td>
<td>snmp-server enable traps</td>
</tr>
<tr>
<td>CISCO-ERR-DISABLE-MIB</td>
<td>snmp-server enable traps show interface status</td>
</tr>
<tr>
<td>Q-BRIDGE-MIB</td>
<td>snmp-server enable traps show mac address-table</td>
</tr>
<tr>
<td>CISCO-SWITCH-QOS-MIB</td>
<td>snmp-server enable traps show hardware internal buffer info pkt-stats</td>
</tr>
<tr>
<td>BRIDGE-MIB</td>
<td>snmp-server enable traps bridge newroot</td>
</tr>
<tr>
<td></td>
<td>snmp-server enable traps bridge topologychange</td>
</tr>
<tr>
<td>CISCO-AAA-SERVER-MIB</td>
<td>snmp-server enable traps aaa</td>
</tr>
<tr>
<td>ENTITY-MIB,</td>
<td>snmp-server enable traps entity</td>
</tr>
<tr>
<td>CISCO-ENTITY-FRU-CONTROL-MIB</td>
<td>snmp-server enable traps entity fru</td>
</tr>
<tr>
<td>CISCO-ENTITY-SENSOR-MIB</td>
<td></td>
</tr>
<tr>
<td>CISCO-LICENSE-MGR-MIB</td>
<td>snmp-server enable traps license</td>
</tr>
<tr>
<td>IF-MIB</td>
<td>snmp-server enable traps link</td>
</tr>
<tr>
<td>CISCO-PSM-MIB</td>
<td>snmp-server enable traps port-security</td>
</tr>
</tbody>
</table>
### Enabling SNMP Notifications

#### MIB

<table>
<thead>
<tr>
<th>MIB</th>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv2-MIB</td>
<td><code>snmp-server enable traps snmp</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps snmp authentication</code></td>
</tr>
<tr>
<td>CISCO-FCC-MIB</td>
<td><code>snmp-server enable traps fcc</code></td>
</tr>
<tr>
<td>CISCO-DM-MIB</td>
<td><code>snmp-server enable traps fcdomain</code></td>
</tr>
<tr>
<td>CISCO-NS-MIB</td>
<td><code>snmp-server enable traps fcns</code></td>
</tr>
<tr>
<td>CISCO-FCS-MIB</td>
<td><code>snmp-server enable traps fcs discovery-complete</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps fcs request-reject</code></td>
</tr>
<tr>
<td>CISCO-FDMI-MIB</td>
<td><code>snmp-server enable traps fdmi</code></td>
</tr>
<tr>
<td>CISCO-FSPF-MIB</td>
<td><code>snmp-server enable traps fsfp</code></td>
</tr>
<tr>
<td>CISCO-PSM-MIB</td>
<td><code>snmp-server enable traps port-security</code></td>
</tr>
<tr>
<td>CISCO-RSCN-MIB</td>
<td><code>snmp-server enable traps rscn</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps rscn els</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps rscn ils</code></td>
</tr>
<tr>
<td>CISCO-ZS-MIB</td>
<td><code>snmp-server enable traps zone</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps zone default-zone-behavior-change</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps zone enhanced-zone-db-change</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps zone merge-failure</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps zone merge-success</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps zone request-reject</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps zone unsupp-mem</code></td>
</tr>
<tr>
<td>CISCO-CONFIG-MAN-MIB</td>
<td><code>snmp-server enable traps config</code></td>
</tr>
</tbody>
</table>

**Note**: Supports no MIB objects except the following notification: `ccmCLIRunningConfigChanged`.

---

**Note**: The license notifications are enabled by default.

To enable the specified notification in the global configuration mode, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# snmp-server enable traps</code></td>
<td>Enables all SNMP notifications.</td>
</tr>
</tbody>
</table>
### Configuring Link Notifications

You can configure which linkUp/linkDown notifications to enable on a device. You can enable the following types of linkUp/linkDown notifications:

- **cieLinkDown**—Enables the Cisco extended link state down notification.
- **cieLinkUp**—Enables the Cisco extended link state up notification.
- **cisco-xcvr-mon-status-chg**—Enables the Cisco interface transceiver monitor status change notification.
- **delayed-link-state-change**—Enables the delayed link state change.
- **extended-linkUp**—Enables the Internet Engineering Task Force (IETF) extended link state up notification.
- **extended-linkDown**—Enables the IETF extended link state down notification.
- **linkDown**—Enables the IETF Link state down notification.
- **linkUp**—Enables the IETF Link state up notification.

### SUMMARY STEPS

1. configure terminal
2. snmp-server enable traps link [cieLinkDown | cieLinkUp | cisco-xcvr-mon-status-chg | delayed-link-state-change] | extended-linkUp | extended-linkDown | linkDown | linkUp]

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
### Disabling Link Notifications on an Interface

You can disable linkUp and linkDown notifications on an individual interface. You can use these limit notifications on a flapping interface (an interface that transitions between up and down repeatedly).

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# no snmp trap link-status`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>Enters global configuration mode.</strong></td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>Specifies the interface to be changed.</strong></td>
</tr>
<tr>
<td><code>switch(config)# interface type slot/port</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>Disables SNMP link-state traps for the interface. This feature is enabled by default.</strong></td>
</tr>
<tr>
<td><code>switch(config-if)# no snmp trap link-status</code></td>
<td></td>
</tr>
</tbody>
</table>

### Enabling One-Time Authentication for SNMP over TCP

You can enable a one-time authentication for SNMP over a TCP session.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# snmp-server tcp-session [auth]</code></td>
<td><strong>Enables a one-time authentication for SNMP over a TCP session. This feature is disabled by default.</strong></td>
</tr>
</tbody>
</table>

### Assigning SNMP Switch Contact and Location Information

You can assign the switch contact information, which is limited to 32 characters (without spaces), and the switch location.

#### SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# snmp-server contact name`
3. `switch(config)# snmp-server location name`
4. (Optional) `switch# show snmp`
5. (Optional) switch# copy running-config startup-config

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configuration terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# snmp-server contact name</td>
<td>Configures sysContact, the SNMP contact name.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config)# snmp-server location name</td>
<td>Configures sysLocation, the SNMP location.</td>
</tr>
<tr>
<td><strong>Step 4</strong> (Optional) switch# show snmp</td>
<td>Displays information about one or more destination profiles.</td>
</tr>
<tr>
<td><strong>Step 5</strong> (Optional) switch# copy running-config startup-config</td>
<td>Saves this configuration change.</td>
</tr>
</tbody>
</table>

### Configuring the Context to Network Entity Mapping

You can configure an SNMP context to map to a logical network entity, such as a protocol instance or VRF.

#### SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# snmp-server context context-name [instance instance-name] [vrf vrf-name] [topology topology-name]
3. switch(config)# snmp-server mib community-map community-name context context-name
4. (Optional) switch(config)# no snmp-server context context-name [instance instance-name] [vrf vrf-name] [topology topology-name]

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configuration terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# snmp-server context context-name [instance instance-name] [vrf vrf-name] [topology topology-name]</td>
<td>Maps an SNMP context to a protocol instance, VRF, or topology. The names can be any alphanumeric string up to 32 characters.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config)# snmp-server mib community-map community-name context context-name</td>
<td>Maps an SNMPv2c community to an SNMP context. The names can be any alphanumeric string up to 32 characters.</td>
</tr>
<tr>
<td><strong>Step 4</strong> (Optional) switch(config)# no snmp-server context context-name [instance instance-name] [vrf vrf-name] [topology topology-name]</td>
<td>Deletes the mapping between an SNMP context and a protocol instance, VRF, or topology. The names can be any alphanumeric string up to 32 characters. <strong>Note</strong> Do not enter an instance, VRF, or topology to delete a context mapping. If you use the instance, vrf, or topology keywords, you configure a mapping between the context and a zero-length string.</td>
</tr>
</tbody>
</table>
# Configuring the SNMP Local Engine ID

Beginning with Cisco NX-OS Release 7.0(3)F3(1), you can configure the engine ID on a local device.

## SUMMARY STEPS

1. configure terminal
2. snmp-server engineID local *engineid-string*
3. show snmp engineID
4. [no] snmp-server engineID local *engineid-string*
5. copy running-config startup-config

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| switch# configure terminal  
switch(config)# |         |
| **Step 2**        | Changes the SNMP engineID of the local device. |
| snmp-server engineID local *engineid-string* |         |
| Example:          |         |
| switch(config)# snmp-server engineID local AA:BB:CC:1A:2C:10 |         |
| **Step 3**        | Displays the identification of the configured SNMP engine. |
| show snmp engineID |         |
| Example:          |         |
| switch(config)# show snmp engineID |         |
| **Step 4**        | Disables the local engine ID and the default auto-generated engine ID is configured. |
| [no] snmp-server engineID local *engineid-string* |         |
| Example:          |         |
| switch(config)# no snmp-server engineID local AA:BB:CC:1A:2C:10 |         |
| **Step 5**        | Copies the running configuration to the startup configuration. |
| Required: copy running-config startup-config |         |
| Example:          |         |
| switch(config)# copy running-config startup-config |         |
Disabling SNMP

SUMMARY STEPS

1. configure terminal
2. switch(config) # no snmp-server protocol enable

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch(config) # no snmp-server protocol enable</td>
<td>Disables SNMP.</td>
</tr>
</tbody>
</table>

Example:

```
switch# configure terminal
switch(config) #
```

SNMP is disabled by default.

Verifying the SNMP Configuration

To display SNMP configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show snmp</td>
<td>Displays the SNMP status.</td>
</tr>
<tr>
<td>show snmp community</td>
<td>Displays the SNMP community strings.</td>
</tr>
<tr>
<td>show interface snmp-ifindex</td>
<td>Displays the SNMP ifIndex value for all interfaces (from IF-MIB).</td>
</tr>
<tr>
<td>show running-config snmp [all]</td>
<td>Displays the SNMP running configuration.</td>
</tr>
<tr>
<td>show snmp engineID</td>
<td>Displays the SNMP engineID.</td>
</tr>
<tr>
<td>show snmp group</td>
<td>Displays SNMP roles.</td>
</tr>
<tr>
<td>show snmp sessions</td>
<td>Displays SNMP sessions.</td>
</tr>
<tr>
<td>show snmp context</td>
<td>Displays the SNMP context mapping.</td>
</tr>
<tr>
<td>show snmp host</td>
<td>Displays information about configured SNMP hosts.</td>
</tr>
<tr>
<td>show snmp source-interface</td>
<td>Displays information about configured source interfaces.</td>
</tr>
<tr>
<td>show snmp trap</td>
<td>Displays the SNMP notifications enabled or disabled.</td>
</tr>
<tr>
<td>show snmp user</td>
<td>Displays SNMPv3 users.</td>
</tr>
</tbody>
</table>
Verifying the SNMP Configuration
CHAPTER 10

Using the PCAP SNMP Parser

This chapter contains the following sections:

• Using the PCAP SNMP Parser, on page 123

Using the PCAP SNMP Parser

The PCAP SNMP parser is a tool to analyze SNMP packets captured in .pcap format. It runs on the switch and generates a statistics report for all of the SNMP get, getnext, getbulk, set, trap, and response requests sent to the switch.

To use the PCAP SNMP parser, use one of the following commands:

• 
  
  debug packet-analysis snmp [mgmt0 | inband] duration seconds [output-file] [keep-pcap]—Captures packets for a specified number of seconds using Tshark, saves them in a temporary .pcap file, and then analyzes them based on this .pcap file.

  The results are saved in the output file or printed to the console, if the output file is not specified. The temporary .pcap file is deleted by default, unless you use the keep-pcap option. Packet capture can be performed on the management interface (mgmt0), which is the default, or the inband interface.

  Examples:

  switch# debug packet-analysis snmp duration 100
  switch# debug packet-analysis snmp duration 100 bootflash:snmp_stats.log
  switch# debug packet-analysis snmp duration 100 bootflash:snmp_stats.log keep-pcap
  switch# debug packet-analysis snmp inband duration 100
  switch# debug packet-analysis snmp inband duration 100 bootflash:snmp_stats.log
  switch# debug packet-analysis snmp inband duration 100 bootflash:snmp_stats.log keep-pcap

• 
  
  debug packet-analysis snmp input-pcap-file [output-file]—Analyzes the captured packets on an existing .pcap file.

  Examples:

  switch# debug packet-analysis snmp bootflash:snmp.pcap
The following example shows a sample statistics report for the `debug packet-analysis snmp [mgmt0 | inband] duration` command:

```
switch# debug packet-analysis snmp duration 10
Capturing on eth0
36
wireshark-cisco-mtc-dissector: ethertype=0xde09, devicetype=0x0
wireshark-broadcom-rcpu-dissector: ethertype=0xde08, devicetype=0x0

Started analyzing. It may take several minutes, please wait!
```

Statistics Report
-------------------
SNMP Packet Capture Duration: 0 seconds
Total Hosts: 1
Total Requests: 18
Total Responses: 18
Total GET: 0
Total GETNEXT: 0
Total WALK: 1 (NEXT: 18)
Total GETBULK: 0
Total BULKWALK: 0 (BULK: 0)
Total SET: 0
Total TRAP: 0
Total INFORM: 0

<table>
<thead>
<tr>
<th>Hosts</th>
<th>GET</th>
<th>GETNEXT</th>
<th>WALK (NEXT)</th>
<th>GETBULK</th>
<th>BULKWALK (BULK)</th>
<th>SET</th>
<th>TRAP</th>
<th>INFORM</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.22.27.244</td>
<td>0</td>
<td>0</td>
<td>1(18)</td>
<td>0</td>
<td>0(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

Sessions
--------
1

MIB Objects GET  GETNEXT  WALK (NEXT)  GETBULK  (Non_rep/Max_rep)  BULKWALK (BULK, Non_rep/Max_rep)
---------------------------------------------------------------
ifName               0   0   1(18)       0       0       0

SET  Hosts
--------
0   10.22.27.244
CHAPTER 11

Configuring RMON

This chapter contains the following sections:

- Information About RMON, on page 125
- Configuration Guidelines and Limitations for RMON, on page 126
- Verifying the RMON Configuration, on page 126
- Default RMON Settings, on page 127
- Configuring RMON Alarms, on page 127
- Configuring RMON Events, on page 128

Information About RMON

RMON is an Internet Engineering Task Force (IETF) standard monitoring specification that allows various network agents and console systems to exchange network monitoring data. The Cisco NX-OS supports RMON alarms, events, and logs to monitor Cisco Nexus devices.

An RMON alarm monitors a specific management information base (MIB) object for a specified interval, triggers an alarm at a specified threshold value (threshold), and resets the alarm at another threshold value. You can use alarms with RMON events to generate a log entry or an SNMP notification when the RMON alarm triggers.

RMON is disabled by default and no events or alarms are configured in Cisco Nexus devices. You can configure your RMON alarms and events by using the CLI or an SNMP-compatible network management station.

RMON Alarms

You can set an alarm on any MIB object that resolves into an SNMP INTEGER type. The specified object must be an existing SNMP MIB object in standard dot notation (for example, 1.3.6.1.2.1.2.1.17 represents ifOutOctets.17).

When you create an alarm, you specify the following parameters:

- MIB object to monitor
- Sampling interval—The interval that the Cisco Nexus device uses to collect a sample value of the MIB object.
- Sample type—Absolute samples take the current snapshot of the MIB object value. Delta samples take two consecutive samples and calculate the difference between them.
• Rising threshold—The value at which the Cisco Nexus device triggers a rising alarm or resets a falling alarm.

• Falling threshold—The value at which the Cisco Nexus device triggers a falling alarm or resets a rising alarm.

• Events—The action that the Cisco Nexus device takes when an alarm (rising or falling) triggers.

Use the hcalarmsoption to set an alarm on a 64-bit integer MIB object.

For example, you can set a delta type rising alarm on an error counter MIB object. If the error counter delta exceeds this value, you can trigger an event that sends an SNMP notification and logs the rising alarm event. This rising alarm does not occur again until the delta sample for the error counter drops below the falling threshold.

The falling threshold must be less than the rising threshold.

**RMON Events**

You can associate a particular event to each RMON alarm. RMON supports the following event types:

• SNMP notification—Sends an SNMP risingAlarm or fallingAlarm notification when the associated alarm triggers.

• Log—Adds an entry in the RMON log table when the associated alarm triggers.

• Both—Sends an SNMP notification and adds an entry in the RMON log table when the associated alarm triggers.

You can specify a different even for a falling alarm and a rising alarm.

**Configuration Guidelines and Limitations for RMON**

RMON has the following configuration guidelines and limitations:

• You must configure an SNMP user and a notification receiver to use the SNMP notification event type.

• You can only configure an RMON alarm on a MIB object that resolves to an integer.

**Verifying the RMON Configuration**

Use the following commands to verify the RMON configuration information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show rmon alarms</td>
<td>Displays information about RMON alarms.</td>
</tr>
</tbody>
</table>
Default RMON Settings

The following table lists the default settings for RMON parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarms</td>
<td>None configured.</td>
</tr>
<tr>
<td>Events</td>
<td>None configured.</td>
</tr>
</tbody>
</table>

Configuring RMON Alarms

You can configure RMON alarms on any integer-based SNMP MIB object.

You can optionally specify the following parameters:

- The event number to trigger if the rising or falling threshold exceeds the specified limit.
- The owner of the alarm.

Ensure you have configured an SNMP user and enabled SNMP notifications.

**Before you begin**

Ensure you have configured an SNMP user and enabled SNMP notifications.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# rmon alarm index mib-object sample-interval [absolute | delta] rising-threshold value [event-index] falling-threshold value [event-index] [owner name]`
3. `switch(config)# rmon hcalarm index mib-object sample-interval [absolute | delta] rising-threshold-high value rising-threshold-low value [event-index] falling-threshold-high value falling-threshold-low value [event-index] [owner name] [storagetype type]`
4. (Optional) `switch# show rmon {alarms | hcalarms}`
5. (Optional) `switch# copy running-config startup-config`
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# rmon alarm index mib-object sample-interval {absolute</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# rmon hcalarm index mib-object sample-interval {absolute</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) switch# show rmon {alarms</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>(Optional) switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure RMON alarms:

```
switch# configure terminal
switch(config)# rmon alarm 1 1.3.6.1.2.1.2.2.1.17.83886080 5 delta rising-threshold 5 1 falling-threshold 0 owner test
switch(config)# exit
switch# show rmon alarms
Alarm 1 is active, owned by test
Monitors 1.3.6.1.2.1.2.2.1.17.83886080 every 5 second(s)
Taking delta samples, last value was 0
Rising threshold is 5, assigned to event 1
Falling threshold is 0, assigned to event 0
On startup enable rising or falling alarm
```

**Configuring RMON Events**

You can configure RMON events to associate with RMON alarms. You can reuse the same event with multiple RMON alarms.

Ensure you have configured an SNMP user and enabled SNMP notifications.

**Before you begin**

Ensure that you have configured an SNMP user and enabled SNMP notifications.
SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# rmon event index [description string] [log] [trap] [owner name]`
3. (Optional) `switch(config)# show rmon {alarms | hcalarms}`
4. (Optional) `switch# copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures an RMON event. The description string and owner name can be any alphanumeric string.</td>
</tr>
<tr>
<td><code>switch(config)# rmon event index [description string] [log] [trap] [owner name]</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Displays information about RMON alarms or high-capacity alarms.</td>
</tr>
<tr>
<td>(Optional) `switch(config)# show rmon {alarms</td>
<td>hcalarms}`</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Saves this configuration change.</td>
</tr>
<tr>
<td>(Optional) <code>switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Online Diagnostics

This chapter contains the following sections:

- Information About Online Diagnostics, on page 131
- Guidelines and Limitations for Online Diagnostics, on page 133
- Configuring Online Diagnostics, on page 133
- Verifying the Online Diagnostics Configuration, on page 134
- Default Settings for Online Diagnostics, on page 134

Information About Online Diagnostics

Online diagnostics provide verification of hardware components during switch bootup or reset, and they monitor the health of the hardware during normal switch operation.

Cisco Nexus 3600 platform switches support bootup diagnostics and runtime diagnostics. Bootup diagnostics include disruptive tests and nondisruptive tests that run during system bootup and system reset.

Runtime diagnostics (also known as health monitoring diagnostics) include nondisruptive tests that run in the background during normal operation of the switch.

Bootup Diagnostics

Bootup diagnostics detect faulty hardware before bringing the switch online. Bootup diagnostics also check the data path and control path connectivity between the supervisor and the ASICs. The following table describes the diagnostics that are run only during switch bootup or reset.

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe</td>
<td>Tests PCI express (PCIe) access.</td>
</tr>
<tr>
<td>NVRAM</td>
<td>Verifies the integrity of the NVRAM.</td>
</tr>
<tr>
<td>In band port</td>
<td>Tests connectivity of the inband port to the supervisor.</td>
</tr>
<tr>
<td>Management port</td>
<td>Tests the management port.</td>
</tr>
</tbody>
</table>
Bootup diagnostics also include a set of tests that are common with health monitoring diagnostics.

Bootup diagnostics log any failures to the onboard failure logging (OBFL) system. Failures also trigger an LED display to indicate diagnostic test states (on, off, pass, or fail).

You can configure Cisco Nexus devices to either bypass the bootup diagnostics or run the complete set of bootup diagnostics.

**Health Monitoring Diagnostics**

Health monitoring diagnostics provide information about the health of the switch. They detect runtime hardware errors, memory errors, software faults, and resource exhaustion.

Health monitoring diagnostics are nondisruptive and run in the background to ensure the health of a switch that is processing live network traffic.

**Expansion Module Diagnostics**

During the switch bootup or reset, the bootup diagnostics include tests for the in-service expansion modules in the switch.

When you insert an expansion module into a running switch, a set of diagnostics tests are run. The following table describes the bootup diagnostics for an expansion module. These tests are common with the bootup diagnostics. If the bootup diagnostics fail, the expansion module is not placed into service.

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPROM</td>
<td>Verifies the integrity of backplane and supervisor SPROMs.</td>
</tr>
<tr>
<td>Fabric engine</td>
<td>Tests the switch fabric ASICs.</td>
</tr>
<tr>
<td>Fabric port</td>
<td>Tests the ports on the switch fabric ASIC.</td>
</tr>
<tr>
<td>Forwarding engine</td>
<td>Tests the forwarding engine ASICs.</td>
</tr>
<tr>
<td>Forwarding engine port</td>
<td>Tests the ports on the forwarding engine ASICs.</td>
</tr>
<tr>
<td>Front port</td>
<td>Tests the components (such as PHY and MAC) on the front ports.</td>
</tr>
</tbody>
</table>

Health monitoring diagnostics are run on in-service expansion modules. The following table describes the additional tests that are specific to health monitoring diagnostics for expansion modules.

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>Monitors port and system status LEDs.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations for Online Diagnostics

Online diagnostics has the following configuration guidelines and limitations:

- You cannot run disruptive online diagnostic tests on demand.
- The BootupPortLoopback test is not supported.
- Interface Rx and Tx packet counters are incremented (approximately four packets every 15 minutes) for ports in the shutdown state.
- On admin down ports, the unicast packet Rx and Tx counters are incremented for GOLD loopback packets. The PortLoopback test is on demand, so the packet counter is incremented only when you run the test on admin down ports.

Configuring Online Diagnostics

You can configure the bootup diagnostics to run the complete set of tests, or you can bypass all bootup diagnostic tests for a faster module boot up time.

Note

We recommend that you set the bootup online diagnostics level to complete. We do not recommend bypassing the bootup online diagnostics.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# diagnostic bootup level [complete | bypass]
3. (Optional) switch# show diagnostic bootup level

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# diagnostic</td>
<td>Configures the bootup diagnostic level to trigger diagnostics</td>
</tr>
<tr>
<td>bootup level [complete</td>
<td>bypass]</td>
</tr>
<tr>
<td></td>
<td>when the device boots, as follows:</td>
</tr>
<tr>
<td></td>
<td>- complete—Performs all bootup diagnostics. This is</td>
</tr>
<tr>
<td></td>
<td>the default value.</td>
</tr>
<tr>
<td></td>
<td>- bypass—Does not perform any bootup diagnostics.</td>
</tr>
</tbody>
</table>
### Verifying the Online Diagnostics Configuration

Use the following commands to verify online diagnostics configuration information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show diagnostic bootup level</code></td>
<td>Displays the bootup diagnostics level.</td>
</tr>
<tr>
<td><code>show diagnostic result module slot</code></td>
<td>Displays the results of the diagnostics tests.</td>
</tr>
</tbody>
</table>

### Default Settings for Online Diagnostics

The following table lists the default settings for online diagnostics parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootup diagnostics level</td>
<td>complete</td>
</tr>
</tbody>
</table>
Configuring the Embedded Event Manager

This chapter contains the following sections:

• About Embedded Event Manager, on page 135
• Configuring Embedded Event Manager, on page 139
• Verifying the Embedded Event Manager Configuration, on page 150
• Configuration Examples for Embedded Event Manager, on page 151
• Additional References, on page 152

About Embedded Event Manager

The ability to detect and handle critical events in the Cisco NX-OS system is important for high availability. The Embedded Event Manager (EEM) provides a central, policy-driven framework to detect and handle events in the system by monitoring events that occur on your device and taking action to recover or troubleshoot these events, based on your configuration.

EEM consists of three major components:

Event statements

Events to monitor from another Cisco NX-OS component that may require some action, workaround, or notification.

Action statements

An action that EEM can take, such as sending an e-mail or disabling an interface, to recover from an event.

Policies

An event paired with one or more actions to troubleshoot or recover from the event.

Without EEM, each individual component is responsible for detecting and handling its own events. For example, if a port flaps frequently, the policy of "putting it into errDisable state" is built into ETHPM.

Embedded Event Manager Policies

An EEM policy consists of an event statement and one or more action statements. The event statement defines the event to look for as well as the filtering characteristics for the event. The action statement defines the action EEM takes when the event occurs.
For example, you can configure an EEM policy to identify when a card is removed from the device and log the details related to the card removal. By setting up an event statement that tells the system to look for all instances of card removal and then with an action statement that tells the system to log the details.

You can configure EEM policies using the command line interface (CLI) or a VSH script.

EEM gives you a device-wide view of policy management. Once EEM policies are configured, the corresponding actions are triggered. All actions (system or user-configured) for triggered events are tracked and maintained by the system.

**Preconfigured System Policies**

Cisco NX-OS has a number of preconfigured system policies. These system policies define many common events and actions for the device. System policy names begin with two underscore characters (_-_).

Some system policies can be overridden. In these cases, you can configure overrides for either the event or the action. The overrides that you configure take the place of the system policy.

---

**Note**

Override policies must include an event statement. Override policies without event statements override all possible events for the system policy.

To view the preconfigured system policies and determine which policies you can override, use the `show event manager system-policy` command.

**User-Created Policies**

User-created policies allow you to customize EEM policies for your network. If a user policy is created for an event, actions in the policy are triggered only after EEM triggers the system policy actions related to the same event.

**Log Files**

The log file that contains data that is related to EEM policy matches is maintained in the `event_archive_1` log file located in the `/log/event_archive_1` directory.

---

**Event Statements**

Any device activity for which some action, such as a workaround or notification, is taken is considered an event by EEM. In many cases, events are related to faults in the device, such as when an interface or a fan malfunctions.

Event statements specify which event or events triggers a policy to run.

---

**Tip**

You can configure EEM to trigger an EEM policy that is based on a combination of events by creating and differentiating multiple EEM events in the policy and then defining a combination of events to trigger a custom action.

EEM defines event filters so that only critical events or multiple occurrences of an event within a specified time period trigger an associated action.
Some commands or internal events trigger other commands internally. These commands are not visible, but will still match the event specification that triggers an action. You cannot prevent these commands from triggering an action, but you can check which event triggered an action.

**Supported Events**

EEM supports the following events in event statements:

- Counter events
- Fan absent events
- Fan bad events
- Memory thresholds events
- Events being used in overridden system policies.
- SNMP notification events
- Syslog events
- System manager events
- Temperature events
- Track events

**Action Statements**

Action statements describe the action that is triggered by a policy when an event occurs. Each policy can have multiple action statements. If no action is associated with a policy, EEM still observes events but takes no actions.

In order for triggered events to process default actions, you must configure the EEM policy to allow the default action. For example, if you match a CLI command in a match statement, you must add the event-default action statement to the EEM policy or EEM does not allow the command to execute.

---

**Note**

When configuring action statements within your user policy or overriding policy, it is important that you confirm that action statements do not negate each other or adversely affect the associated system policy.

**Supported Actions**

EEM supports the following actions in action statements:

- Execute any CLI commands
- Update a counter
- Reload the device
- Generate a syslog message
- Generate an SNMP notification
VSH Script Policies

You can write policies in a VSH script, by using a text editor. Policies that are written using a VSH script have an event statement and action statement(s) just as other policies, and these policies can either augment or override system policies.

After you define your VSH script policy, copy it to the device and activate it.

Licensing Requirements for Embedded Event Manager

This feature does not require a license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Prerequisites for Embedded Event Manager

You must have network-admin privileges to configure EEM.

Guidelines and Limitations for Embedded Event Manager

When you plan your EEM configuration, consider the following:

• The maximum number of configurable EEM policies is 500.

• Action statements within your user policy or overriding policy should not negate each other or adversely affect the associated system policy.

• If you want to allow a triggered event to process any default actions, you must configure the EEM policy to allow the default action. For example, if you match a command in a match statement, you must add the event-default action statement to the EEM policy or EEM does not allow the command to execute.

• An override policy that consists of an event statement and no action statement triggers no action and no notification of failures.

• An override policy without an event statement overrides all possible events in the system policy.

• In regular command expressions: all keywords must be expanded, and only the asterisk (*) symbol can be used for replace the arguments.

• EEM event correlation supports up to four event statements in a single policy. The event types can be the same or different, but only these event types are supported: cli, counter, snmp, syslog, and track.

• When more than one event statement is included in an EEM policy, each event statement must have a tag keyword with a unique tag argument.

• EEM event correlation does not override the system default policies.

• Default action execution is not supported for policies that are configured with tagged events.

• If your event specification matches a CLI pattern, you can use SSH-style wild card characters.
For example, if you want to match all show commands, enter the `show *` command. Entering the `show . *` command does not work.

- If your event specification is a regular expression for a matching syslog message, you can use a proper regular expression.

For example, if you want to detect `ADMIN_DOWN` events on any port where a syslog is generated, use `.ADMIN_DOWN`. Entering the `ADMIN_DOWN` command does not work.

- In the event specification for a syslog, the regex does not match any syslog message that is generated as an action of an EEM policy.

- If an EEM event matches a `show` command in the CLI and you want the output for that `show` command to display on the screen (and to not be blocked by the EEM policy), you must specify the `event-default` command for the first action for the EEM policy.

### Default Settings for Embedded Event Manager

**Table 22: Default EEM Parameters**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Policies</td>
<td>Active</td>
</tr>
</tbody>
</table>

### Configuring Embedded Event Manager

#### Defining an Environment Variable

Defining an environment variable is an optional step but is useful for configuring common values for repeated use in multiple policies.

**SUMMARY STEPS**

1. `configure terminal`  
2. `event manager environment variable-name variable-value`  
3. (Optional) `show event manager environment {variable-name | all}`  
4. (Optional) `copy running-config startup-config`  

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
  - `configure terminal`
    - Example:
      - switch# configure terminal
      - switch(config)# | Enters global configuration mode. |
| Step 2
  - `event manager environment variable-name variable-value`
    - Example: | Creates an environment variable for EEM. |
Purpose

The variable-name can be any case-sensitive, alphanumeric string up to 29 characters.

The variable-value can be any quoted case-sensitive, alphanumeric string up to 39 characters.

Step 3

(Optional) show event manager environment
{variable-name | all}

Example:
switch(config) # show event manager environment all

Displays information about the configured environment variables.

Step 4

(Optional) copy running-config startup-config

Example:
switch(config)# copy running-config startup-config

Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Defining a User Policy Using the CLI

SUMMARY STEPS

1. configure terminal
2. event manager applet applet-name
3. (Optional) description policy-description
4. event event-statement
5. (Optional) tag tag {and | andnot | or} tag [and | andnot | or {tag}] {happens occurs in seconds}
6. action number[number2] action-statement
7. (Optional) show event manager policy-state name [module module-id]
8. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>

Enters global configuration mode.

| Step 2 event manager applet applet-name |
| Example: |
| switch(config)# event manager applet monitorShutdown |
| switch(config-applet)# |

Registers the applet with EEM and enters applet configuration mode.

The applet-name can be any case-sensitive, alphanumeric string up to 29 characters.

| Step 3 (Optional) description policy-description |
| Example: |

Configures a descriptive string for the policy.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config-applet)# description &quot;Monitors interface shutdown.&quot;</code></td>
<td>The string can be any alphanumeric string up to 80 characters. Enclose the string in quotation marks.</td>
</tr>
</tbody>
</table>

**Step 4**

**event event-statement**

**Example:**

```
switch(config-applet)# event cli match "shutdown"
```

Configures the event statement for the policy.

**Step 5**

(Optional) **tag tag \{and | andnot | or\} tag [and | andnot | or] \{happens occurs in \} seconds**

**Example:**

```
switch(config-applet)# tag one or two happens 1 in 10000
```

Correlates multiple events in the policy.

The range for the `occurs` argument is from 1 to 4294967295.

The range for the `seconds` argument is from 0 to 4294967295 seconds.

**Step 6**

**action number[.number2] action-statement**

**Example:**

```
switch(config-applet)# action 1.0 cli show interface e 3/1
```

Configures an action statement for the policy. Repeat this step for multiple action statements.

**Step 7**

(Optional) **show event manager policy-state name \[module module-id\]**

**Example:**

```
switch(config-applet)# show event manager policy-state monitorShutdown
```

Displays information about the status of the configured policy.

**Step 8**

(Optional) **copy running-config startup-config**

**Example:**

```
switch(config)# copy running-config startup-config
```

Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

### Configuring Event Statements

Use one of the following commands in EEM configuration mode (config-applet) to configure an event statement:

Before you begin

Define a user policy.

#### SUMMARY STEPS

1. **event cli \[tag \] match expression \[count \] \{repeats | time \} \{seconds\**
2. **event counter \[tag \] name counter entry-val entry-op \{eq | ge | gt | le | lt | ne\} \{exit-val \} \{exit-op \} \{eq | ge | gt | le | lt | ne\**
3. **event fanabsent \[fan \] number \} \{time \} \{seconds\**
4. **event fanbad \[fan \] number \} \{time \} \{seconds\**
5. **event memory \} \{critical | minor | severe\**
6. **event policy-default count \} \{repeats \} \{time \} \{seconds\**
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
**event cli [tag tag] match expression [count repeats | time seconds**  
**Example:**  
`switch(config-applet) # event cli match "shutdown"`  
**Trigger**
Triggers an event if you enter a command that matches the regular expression.  
The **tag** keyword-argument pair identifies this specific event when multiple events are included in the policy.  
The **repeats** range is from 1 to 65000.  
The **time** range is from 0 to 4294967295, where 0 indicates no time limit. |
| **Step 2**  
**event counter [tag tag] name counter entry-val entry-op {eq | ge | gt | le | lt | ne} {exit-val exit-op {eq | ge | gt | le | lt | ne}**  
**Example:**  
`switch(config-applet) # event counter name mycounter entry-val 20 gt`  
**Trigger**
Triggers an event if the counter crosses the entry threshold based on the entry operation. The event resets immediately.  
Optionally, you can configure the event to reset after the counter passes the exit threshold.  
The **tag** keyword-argument pair identifies this specific event when multiple events are included in the policy.  
The **counter** name can be any case-sensitive, alphanumeric string up to 28 characters.  
The **entry** and **exit** value ranges are from 0 to 2147483647. |
| **Step 3**  
**event fanabsent [fan number] time seconds**  
**Example:**  
`switch(config-applet) # event fanabsent time 300`  
**Trigger**
Triggers an event if a fan is removed from the device for more than the configured time, in seconds.  
The **number** range is from 1 to 1 and is module-dependent.  
The **seconds** range is from 10 to 64000. |
| **Step 4**  
**event fanbad [fan number] time seconds**  
**Example:**  
`switch(config-applet) # event fanbad time 3000`  
**Trigger**
Triggers an event if a fan fails for more than the configured time, in seconds.  
The **number** range is module-dependent.  
The **seconds** range is from 10 to 64000. |
| **Step 5**  
**event memory [critical | minor | severe]**  
**Example:**  
`switch(config-applet) # event memory critical`  
**Trigger**
Triggers an event if a memory threshold is crossed. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>event policy-default count repeats [time seconds]</td>
<td>Uses the event configured in the system policy. Use this option for overriding policies. The <em>repeats</em> range is from 1 to 65000. The <em>seconds</em> range is from 0 to 4294967295, where 0 indicates no time limit.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> switch(config-applet) # event policy-default count 3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>event snmp [tag tag] oid oid get-type {exact</td>
<td>next} entry-op {eq</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> switch(config-applet) # event snmp oid 1.3.6.1.2.1.31.1.1.1.6 get-type next entry-op lt 300 entry-val 0 exit-op eq 400 exit-time 30 polling-interval 300</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>event sysmgr memory [module module-num] major major-percent minor minor-percent clear clear-percent</td>
<td>Triggers an event if the specified system manager memory threshold is exceeded. The <em>percent</em> range is from 1 to 99.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> switch(config-applet) # event sysmgr memory minor 80</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>event temperature [module slot] [sensor number] threshold {any</td>
<td>down</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> switch(config-applet) # event temperature module 2 threshold any</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>event track [tag tag] object-number state {any</td>
<td>down</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> switch(config-applet) # event track 1 state down</td>
<td></td>
</tr>
</tbody>
</table>

**What to do next**

Configure action statements.

If you have already configured action statements or choose not to, complete any of the optional tasks:

- Define a policy using a VSH script. Then, register and activate a VSH script policy.
- Configure memory thresholds
- Configure the syslog as an EEM publisher.
• Verify your EEM configuration.

**Configuring Action Statements**

You can configure an action by using one of the following commands in EEM configuration mode (config-applet):

```plaintext
1. `action number[.number2] cli command1[command2] [local]`
2. `action number[.number2] counter name counter value val [op {dec | inc | nop | set}]`
3. `action number[.number2] event-default`
4. `action number[.number2] policy-default`
5. `action number[.number2] reload [module slot [-slot]]`
6. `action number[.number2] snmp-trap [intdata1 integer-data1] [intdata2 integer-data2] [strdata string-data]`
7. `action number[.number2] syslog [priority prio-val] msg error-message`
```

**Note**

If you want to allow a triggered event to process any default actions, you must configure the EEM policy to allow the default action.

For example, if you match a command in a match statement, you must add the event-default action statement to the EEM policy or EEM does not allow the command to execute. You can use the `terminal event-manager bypass` command to allow all EEM policies with matches to execute the command.

**Before you begin**

Define a user policy.

**SUMMARY STEPS**

1. `action number[.number2] cli command1[command2] [local]`
2. `action number[.number2] counter name counter value val [op {dec | inc | nop | set}]`
3. `action number[.number2] event-default`
4. `action number[.number2] policy-default`
5. `action number[.number2] reload [module slot [-slot]]`
6. `action number[.number2] snmp-trap [intdata1 integer-data1] [intdata2 integer-data2] [strdata string-data]`
7. `action number[.number2] syslog [priority prio-val] msg error-message`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>action number[.number2] cli command1[command2] [local]</code></td>
<td>Runs the configured commands. You can optionally run the commands on the module where the event occurred. The action label is in the format number1.number2. The <code>number</code> can be any number from 1 to 16 digits. The range for <code>number2</code> is from 0 to 9.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>switch(config-applet) # action 1.0 cli &quot;show interface e 3/1&quot;</code></td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** `action number[.number2] counter name counter value val [op {dec | inc | nop | set}]` | Modifies the counter by the configured value and operation. The action label is in the format number1.number2. The `number` can be any number from 1 to 16 digits. The range for `number2` is from 0 to 9. The `counter` can be any case-sensitive, alphanumeric string up to 28 characters. |
| **Example:** `switch(config-applet) # action 2.0 counter name mycounter value 20 op inc` | |
## Configuring Action Statements

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> action number[number2] event-default</td>
<td>Completes the default action for the associated event. The action label is in the format number1.number2. The number can be any number from 1 to 16 digits. The range for number2 is from 0 to 9.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-applet) # action 1.0 event-default</td>
</tr>
<tr>
<td><strong>Step 4</strong> action number[number2] policy-default</td>
<td>Completes the default action for the policy that you are overriding. The action label is in the format number1.number2. The number can be any number from 1 to 16 digits. The range for number2 is from 0 to 9.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-applet) # action 1.0 policy-default</td>
</tr>
<tr>
<td><strong>Step 5</strong> action number[number2] reload [module slot [- slot]]</td>
<td>Forces one or more modules to the entire system to reload. The action label is in the format number1.number2. The number can be any number from 1 to 16 digits. The range for number2 is from 0 to 9.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-applet) # action 1.0 reload module 3-5</td>
</tr>
<tr>
<td><strong>Step 6</strong> action number[number2] snmp-trap [intdata1 integer-data1] [intdata2 integer-data2] [strdata string-data]</td>
<td>Sends an SNMP trap with the configured data. The action label is in the format number1.number2. The number can be any number from 1 to 16 digits. The range for number2 is from 0 to 9. The data elements can be any number up to 80 digits. The string can be any alphanumeric string up to 80 characters.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-applet) # action 1.0 snmp-trap strdata &quot;temperature problem&quot;</td>
</tr>
<tr>
<td><strong>Step 7</strong> action number[number2] syslog [priority prio-val] msg error-message</td>
<td>Sends a customized syslog message at the configured priority. The action label is in the format number1.number2. The number can be any number from 1 to 16 digits. The range for number2 is from 0 to 9. The error-message can be any quoted alphanumeric string up to 80 characters.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-applet) # action 1.0 syslog priority notifications msg &quot;cpu high&quot;</td>
</tr>
</tbody>
</table>

### What to do next

Configure event statements.

If you have already configured event statements or choose not to, complete any of the optional tasks:

- Define a policy using a VSH script. Then, register and activate a VSH script policy.
• Configure memory thresholds
• Configure the syslog as an EEM publisher.
• Verify your EEM configuration.

Defining a Policy Using a VSH Script

This is an optional task. Complete the following steps if you are using a VSH script to write EEM policies:

SUMMARY STEPS

1. In a text editor, list the commands that define the policy.
2. Name the text file and save it.
3. Copy the file to the following system directory: bootflash://eem/user_script_policies

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | configure terminal | Enters global configuration mode.
| | event manager policy policy-script | |
| | (Optional) event manager policy internal name | |
| | (Optional) copy running-config startup-config | |

What to do next

Register and activate a VSH script policy.

Registering and Activating a VSH Script Policy

This is an optional task. Complete the following steps if you are using a VSH script to write EEM policies.

Before you begin

Define a policy using a VSH script and copy the file to the system directory.

SUMMARY STEPS

1. configure terminal
2. event manager policy policy-script
3. (Optional) event manager policy internal name
4. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Overriding a System Policy

#### SUMMARY STEPS

1. configure terminal
2. (Optional) show event manager policy-state **system-policy**
3. event manager applet **applet-name** override **system-policy**
4. description **policy-description**
5. event **event-statement**
6. section **number** **action-statement**
7. (Optional) show event manager policy-state **name**
8. (Optional) copy running-config startup-config

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>
## Configuring the Embedded Event Manager

**Purpose**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>(Optional) show event manager policy-state system-policy</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Displays information about the system policy that you want to override, including thresholds. Use the <strong>show event manager system-policy</strong> command to find the system policy names.</td>
</tr>
<tr>
<td>switch(config-applet)# show event manager policy-state __ethpm_link_flap Policy __ethpm_link_flap Cfg count : 5 Cfg time interval : 10.000000 (seconds) Hash default, Count 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>event manager applet applet-name override system-policy</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Overrides a system policy and enters applet configuration mode. The <strong>applet-name</strong> can be any case-sensitive, alphanumeric string up to 80 characters. The <strong>system-policy</strong> must be one of the system policies.</td>
</tr>
<tr>
<td>switch(config-applet)# event manager applet ethport override __ethpm_link_flap switch(config-applet)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>description policy-description</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Configures a descriptive string for the policy. The <strong>policy-description</strong> can be any case-sensitive, alphanumeric string up to 80 characters, but it must be enclosed in quotation marks.</td>
</tr>
<tr>
<td>switch(config-applet)# description &quot;Overrides link flap policy&quot;</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>event event-statement</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Configures the event statement for the policy.</td>
</tr>
<tr>
<td>switch(config-applet)# event policy-default count 2 time 1000</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>section number action-statement</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Configures an action statement for the policy. For multiple action statements, repeat this step.</td>
</tr>
<tr>
<td>switch(config-applet)# action 1.0 syslog priority warnings msg &quot;Link is flapping.&quot;</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>(Optional) show event manager policy-state name</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Displays information about the configured policy.</td>
</tr>
<tr>
<td>switch(config-applet)# show event manager policy-state ethport</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>(Optional) copy running-config startup-config</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

## Configuring Syslog as an EEM Publisher

Configuring syslog as an EEM publisher allows you to monitor syslog messages from the switch.
The maximum number of searchable strings to monitor syslog messages is 10.

**Before you begin**

- Confirm that EEM is available for registration by the syslog.
- Confirm that the syslog daemon is configured and executed.

**SUMMARY STEPS**

1. `configure terminal`
2. `event manager applet applet-name`
3. `event syslog [tag tag] {occurs number | period seconds | pattern msg-text | priority priority}`
4. (Optional) `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
  configure terminal
  **Example:**
  switch# configure terminal
  switch(config)# | Enters global configuration mode. |
| **Step 2**
  event manager applet applet-name
  **Example:**
  switch(config)# event manager applet abc
  switch (config-applet)# | Registers an applet with EEM and enters applet configuration mode. |
| **Step 3**
  event syslog [tag tag] {occurs number | period seconds | pattern msg-text | priority priority}
  **Example:**
  switch(config-applet)# event syslog occurs 10 | Registers an applet with EEM and enters applet configuration mode. |
| **Step 4**
  (Optional) copy running-config startup-config
  **Example:**
  switch(config)# copy running-config startup-config | Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration. |

**What to do next**

Verify your EEM configuration.

**Verifying the Embedded Event Manager Configuration**

Use one of the following commands to verify the configuration:
### Verifying the Embedded Event Manager Configuration

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show event manager environment [variable-name</td>
<td>all]</td>
</tr>
<tr>
<td>show event manager event-types [event</td>
<td>all</td>
</tr>
<tr>
<td>show event manager history events [detail] [maximum num-events] [severity {catastrophic</td>
<td>minor</td>
</tr>
<tr>
<td>show event manager policy-state policy-name</td>
<td>Displays information about the policy state, including thresholds.</td>
</tr>
<tr>
<td>show event manager script system [policy-name</td>
<td>all]</td>
</tr>
<tr>
<td>show event manager system-policy [all]</td>
<td>Displays information about the predefined system policies.</td>
</tr>
<tr>
<td>show running-config eem</td>
<td>Displays information about the running configuration for EEM.</td>
</tr>
<tr>
<td>show startup-config eem</td>
<td>Displays information about the startup configuration for EEM.</td>
</tr>
</tbody>
</table>
### Configuration Examples for Embedded Event Manager

The following example shows how to override the `__lcm_module_failure` system policy by changing the threshold for only module 3 hitless upgrade failures. It also sends a syslog message. The settings in the system policy, `__lcm_module_failure`, apply in all other cases.

```plaintext
event manager applet example2 override __lcm_module_failure
event module-failure type hitless-upgrade-failure module 3 count 2
 action 1 syslog priority errors msg module 3 "upgrade is not a hitless upgrade!"
 action 2 policy-default
```

The following example shows how to override the `__ethpm_link_flap` system policy and shut down the interface:

```plaintext
event manager applet ethport override __ethpm_link_flap
 event policy-default count 2 time 1000
 action 1 cli conf t
 action 2 cli int et1/1
 action 3 cli no shut
```

The following example shows how to create an EEM policy that allows the command to execute but triggers an SNMP notification when a user enters configuration mode on the device:

```plaintext
event manager applet TEST
 event cli match "conf t"
 action 1.0 snmp-trap strdata "Configuration change"
 action 2.0 event-default
```

---

**Note**

You must add the `event-default` action statement to the EEM policy or EEM does not allow the command to execute.

---

The following example shows how to correlate multiple events in an EEM policy and execute the policy based on a combination of the event triggers. In this example, the EEM policy is triggered if one of the specified syslog patterns occurs within 120 seconds.

```plaintext
event manager applet eem-correlate
 event syslog tag one pattern "copy bootflash:* running-config:*"
 event syslog tag two pattern "copy run start"
 event syslog tag three pattern "hello"
 tag one or two or three happens 1 in 120
 action 1.0 reload module 1
```
## Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEM commands</td>
<td><em>Cisco Nexus 3600 NX-OS Command Reference</em></td>
</tr>
</tbody>
</table>

### Standards

There are no new or modified standards supported by this feature, and support for existing standards has not been modified by this feature.
About OBFL

Cisco NX-OS provides the ability to log failure data to persistent storage, which you can retrieve and display for analysis at a later time. This onboard failure logging (OBFL) feature stores failure and environmental information in nonvolatile memory on the module. The information will help analyze failed modules.

OBFL stores the following types of data:

- Time of initial power-on
- Slot number of the module in the chassis
- Initial temperature of the module
- Firmware, BIOS, FPGA, and ASIC versions
- Serial number of the module
- Stack trace for crashes
- CPU hog information
- Memory leak information
- Software error messages
- Hardware exception logs
• Environmental history
• OBFL-specific history information
• ASIC interrupt and error statistics history
• ASIC register dumps

Licensing Requirements for OBFL

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>OBFL requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Prerequisites for OBFL

You must have network-admin user privileges.

Guidelines and Limitations for OBFL

OBFL has the following guidelines and limitations:

• OBFL is enabled by default.

• OBFL flash supports a limited number of writes and erases. The more logging you enable, the faster you use up this number of writes and erases.

• The show system reset-reason module module num command does not display the reset reason incase of a module failure. Due to lack of persistent storage of the module reset-reason, this command is not effective after a reboot. Since the exception log is available in persistent storage, after a reboot, you can view the reset-reason using the show logging onboard exception-log command.

Note

Be aware that the Cisco NX-OS commands for this feature may differ from those commands used in Cisco IOS.

Default Settings for OBFL

The following table lists the default settings for OBFL parameters.
Configuring OBFL

You can configure the OBFL features on Cisco NX-OS devices.

**Before you begin**

Make sure that you are in global configuration mode.

**SUMMARY STEPS**

1. `configure terminal`
2. `hw-module logging onboard`
3. `hw-module logging onboard counter-stats`
4. `hw-module logging onboard cpuhog`
5. `hw-module logging onboard environmental-history`
6. `hw-module logging onboard error-stats`
7. `hw-module logging onboard interrupt-stats`
8. `hw-module logging onboard module slot`
9. `hw-module logging onboard obfl-logs`
10. (Optional) `show logging onboard`
11. (Optional) `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td></td>
<td><code>switch(config)#</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>hw-module logging onboard</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config)# hw-module logging onboard</code></td>
</tr>
<tr>
<td></td>
<td><code>Module: 7 Enabling ... was successful.</code></td>
</tr>
<tr>
<td></td>
<td><code>Module: 10 Enabling ... was successful.</code></td>
</tr>
<tr>
<td></td>
<td><code>Module: 12 Enabling ... was successful.</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>hw-module logging onboard counter-stats</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config)# hw-module logging onboard counter-stats</code></td>
</tr>
<tr>
<td></td>
<td><code>Module: 7 Enabling counter-stats ... was successful.</code></td>
</tr>
<tr>
<td></td>
<td><code>Module: 10 Enabling counter-stats ... was successful.</code></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong> hw-module logging onboard cpuhog</td>
<td>Enables the OBFL CPU hog events.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>switch(config)# hw-module logging onboard cpuhog</td>
<td></td>
</tr>
<tr>
<td>Module: 7 Enabling cpu-hog ... was successful.</td>
<td></td>
</tr>
<tr>
<td>Module: 10 Enabling cpu-hog ... was successful.</td>
<td></td>
</tr>
<tr>
<td>Module: 12 Enabling cpu-hog ... was successful.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> hw-module logging onboard environmental-history</td>
<td>Enables the OBFL environmental history.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>switch(config)# hw-module logging onboard environmental-history</td>
<td></td>
</tr>
<tr>
<td>Module: 7 Enabling environmental-history ... was successful.</td>
<td></td>
</tr>
<tr>
<td>Module: 10 Enabling environmental-history ... was successful.</td>
<td></td>
</tr>
<tr>
<td>Module: 12 Enabling environmental-history ... was successful.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> hw-module logging onboard error-stats</td>
<td>Enables the OBFL error statistics.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>switch(config)# hw-module logging onboard error-stats</td>
<td></td>
</tr>
<tr>
<td>Module: 7 Enabling error-stats ... was successful.</td>
<td></td>
</tr>
<tr>
<td>Module: 10 Enabling error-stats ... was successful.</td>
<td></td>
</tr>
<tr>
<td>Module: 12 Enabling error-stats ... was successful.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> hw-module logging onboard interrupt-stats</td>
<td>Enables the OBFL interrupt statistics.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>switch(config)# hw-module logging onboard interrupt-stats</td>
<td></td>
</tr>
<tr>
<td>Module: 7 Enabling interrupt-stats ... was successful.</td>
<td></td>
</tr>
<tr>
<td>Module: 10 Enabling interrupt-stats ... was successful.</td>
<td></td>
</tr>
<tr>
<td>Module: 12 Enabling interrupt-stats ... was successful.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> hw-module logging onboard module slot</td>
<td>Enables the OBFL information for a module.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>switch(config)# hw-module logging onboard module 7</td>
<td></td>
</tr>
<tr>
<td>Module: 7 Enabling ... was successful.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> hw-module logging onboard obfl-logs</td>
<td>Enables the boot uptime, device version, and OBFL history.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>switch(config)# hw-module logging onboard obfl-logs</td>
<td></td>
</tr>
</tbody>
</table>
### Verifying the OBFL Configuration

To display OBFL information stored in flash on a module, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging onboard boot-uptime</td>
<td>Displays the boot and uptime information.</td>
</tr>
<tr>
<td>show logging onboard counter-stats</td>
<td>Displays statistics on all ASIC counters.</td>
</tr>
<tr>
<td>show logging onboard credit-loss</td>
<td>Displays OBFL credit loss logs.</td>
</tr>
<tr>
<td>show logging onboard device-version</td>
<td>Displays device version information.</td>
</tr>
<tr>
<td>show logging onboard endtime</td>
<td>Displays OBFL logs to a specified end time.</td>
</tr>
<tr>
<td>show logging onboard environmental-history</td>
<td>Displays environmental history.</td>
</tr>
<tr>
<td>show logging onboard error-stats</td>
<td>Displays error statistics.</td>
</tr>
<tr>
<td>show logging onboard exception-log</td>
<td>Displays exception log information.</td>
</tr>
<tr>
<td>show logging onboard interrupt-stats</td>
<td>Displays interrupt statistics.</td>
</tr>
<tr>
<td>show logging onboard module slot</td>
<td>Displays OBFL information for a specific module.</td>
</tr>
<tr>
<td>show logging onboard obfl-history</td>
<td>Displays history information.</td>
</tr>
<tr>
<td>show logging onboard obfl-logs</td>
<td>Displays log information.</td>
</tr>
<tr>
<td>show logging onboard stack-trace</td>
<td>Displays kernel stack trace information.</td>
</tr>
<tr>
<td>show logging onboard starttime</td>
<td>Displays OBFL logs from a specified start time.</td>
</tr>
<tr>
<td>show logging onboard status</td>
<td>Displays OBFL status information.</td>
</tr>
</tbody>
</table>

Use the show logging onboard status command to display the configuration status of OBFL.

```
switch# show logging onboard status

OBFL Status

Switch OBFL Log: Enabled
```
Configuration Example for OBFL

This example shows how to enable OBFL on module 2 for environmental information:

```
switch# configure terminal
switch(config)# hw-module logging onboard module 2 environmental-history
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration files</td>
<td>Cisco Nexus 3600 NX-OS Fundamentals Configuration Guide</td>
</tr>
</tbody>
</table>
CHAPTER 15

Configuring SPAN

This chapter contains the following sections:

- Information About SPAN, on page 159
- SPAN Sources, on page 159
- Characteristics of Source Ports, on page 160
- SPAN Destinations, on page 160
- Characteristics of Destination Ports, on page 161
- Guidelines and Limitations for SPAN, on page 161
- Creating or Deleting a SPAN Session, on page 162
- Configuring an Ethernet Destination Port, on page 162
- Configuring Source Ports, on page 164
- Configuring the Rate Limit for SPAN Traffic, on page 164
- Configuring Source Port Channels, VSANs, or VLANs, on page 165
- Configuring the Description of a SPAN Session, on page 166
- Activating a SPAN Session, on page 167
- Suspending a SPAN Session, on page 167
- Displaying SPAN Information, on page 168
- Configuration Examples for SPAN, on page 169

Information About SPAN

SPAN Sources

SPAN sources refer to the interfaces from which traffic can be monitored. The Cisco Nexus device supports Ethernet, Fibre Channel, virtual Fibre Channel, port channels, SAN port channels, VSANs and VLANs as SPAN sources. With VLANs or VSANs, all supported interfaces in the specified VLAN or VSAN are included as SPAN sources. You can choose the SPAN traffic in the ingress direction, the egress direction, or both directions for Ethernet, Fibre Channel, and virtual Fibre Channel source interfaces:

- Ingress source (Rx)—Traffic entering the device through this source port is copied to the SPAN destination port.
- Egress source (Tx)—Traffic exiting the device through this source port is copied to the SPAN destination port.
If the SPAN source interface sends more than 6-Gbps traffic or if traffic bursts too much, the device drops traffic on the source interface. You can use the `switchport monitor rate-limit 1G` command on the SPAN destination to reduce the dropping of actual traffic on the source interface; however, SPAN traffic is restricted to 1 Gbps. For additional information see Configuring the Rate Limit for SPAN Traffic, on page 164.

On the Cisco Nexus 5548 device, Fibre Channel ports and VSAN ports cannot be configured as ingress source ports in a SPAN session.

### Characteristics of Source Ports

A source port, also called a monitored port, is a switched interface that you monitor for network traffic analysis. The switch supports any number of ingress source ports (up to the maximum number of available ports on the switch) and any number of source VLANs.

A source port has these characteristics:

- Can be of Ethernet, port channel, or VLAN port type.
- SPAN sources for VLANs cannot be more than 6 VLANs.
- Without an ACL filter configured, the same source can be configured for multiple sessions as long as either the direction or SPAN destination is different. However, each SPAN RX source should be configured for only one SPAN session with an ACL filter.
- Cannot be a destination port.
- Can be configured with a direction (ingress, egress, or both) to monitor. For VLAN sources, the monitored direction can only be ingress and applies to all physical ports in the group. The RX/TX option is not available for VLAN SPAN sessions.
- Ingress traffic can be filtered by using ACLs so that they mirror only those packets of information that match the ACL criteria.
- Can be in the same or different VLANs.

### SPAN Destinations

SPAN destinations refer to the interfaces that monitors source ports. The Cisco Nexus 3600 platform switches support Ethernet interfaces as SPAN destinations.

<table>
<thead>
<tr>
<th>Source SPAN</th>
<th>Dest SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>Fibre Channel</td>
</tr>
<tr>
<td>Fibre Channel (FCoE)</td>
<td>Ethernet (FCoE)</td>
</tr>
<tr>
<td>Virtual Fibre Channel</td>
<td>Fibre Channel</td>
</tr>
<tr>
<td>Virtual Fibre Channel</td>
<td>Ethernet (FCoE)</td>
</tr>
</tbody>
</table>
Characteristics of Destination Ports

Each local SPAN session must have a destination port (also called a monitoring port) that receives a copy of traffic from the source ports, VSANs, or VLANs. A destination port has these characteristics:

- Cannot be a source port.
- Cannot be a port channel or SAN port channel group.
- Does not participate in spanning tree while the SPAN session is active.
- Is excluded from the source list and is not monitored if it belongs to a source VLAN of any SPAN session.
- Receives copies of sent and received traffic for all monitored source ports.

Guidelines and Limitations for SPAN

SPAN has the following guidelines and limitations:

- The same source (ethernet or port-channel) can be a part of multiple sessions. You can configure two monitor session with different destinations, but the same source VLAN is not supported.
- Multiple ACL filters are supported on the same source.
- An egress SPAN copy of an access port on Cisco Nexus 3600 platform switch interfaces will always have a dot1q header.
- ACL filtering is supported only for Rx SPAN. Tx SPAN mirrors all traffics that egresses at the source interface.
- ACL filtering is not supported for IPv6 and MAC ACLs because of ternary content addressable memory (TCAM) width limitations.
- The SPAN TCAM size is 128 or 256, depending on the ASIC. One entry is installed as the default and four are reserved for ERSpan.
- If the same source is configured in more than one SPAN session, and each session has an ACL filter configured, the source interface is programmed only for the first active SPAN session. Hardware entries programmed for ACEs in other sessions is not included in this source interface.
- Both permit and deny access control entries (ACEs) are treated alike. Packets that match the ACE are mirrored irrespective of whether they have a permit or deny entry in the ACL.

Note

A deny ACE does not result in a dropped packet. An ACL configured in a SPAN session determines only whether the packet is mirrored or not.

- It is recommended to use only the RX type of source traffic for SPAN to provide better performance because RX traffic is cut-through, whereas TX is store-and-forward. Hence, when monitoring both directions (RX and TX), the performance is not as good as when monitoring only RX. If you need to monitor both directions of traffic, you can monitor RX on more physical ports to capture both sides of the traffic.
Creating or Deleting a SPAN Session

You create a SPAN session by assigning a session number using the `monitor session` command. If the session already exists, any additional configuration information is added to the existing session.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# monitor session session-number`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the monitor configuration mode. New session configuration is added to the existing session configuration.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure a SPAN monitor session:

```
switch# configure terminal
switch(config) # monitor session 2
switch(config) #
```

Configuring an Ethernet Destination Port

You can configure an Ethernet interface as a SPAN destination port.

**Note**

The SPAN destination port can only be a physical port on the switch.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# interface ethernet slot/port`
3. `switch(config-if)# switchport monitor`
4. `switch(config-if)# exit`
5. `switch(config)# monitor session session-number`
6. `switch(config-monitor)# destination interface ethernet slot/port`
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# interface ethernet slot/port</td>
<td>Enters interface configuration mode for the Ethernet interface with the specified slot and port. <strong>Note</strong> To enable the <code>switchport monitor</code> command on virtual ethernet ports, you can use the <code>interface vethernet slot/port</code> command.</td>
</tr>
<tr>
<td>3</td>
<td>switch(config-if)# switchport monitor</td>
<td>Enters monitor mode for the specified Ethernet interface. Priority flow control is disabled when the port is configured as a SPAN destination.</td>
</tr>
<tr>
<td>4</td>
<td>switch(config-if)# exit</td>
<td>Reverts to global configuration mode.</td>
</tr>
<tr>
<td>5</td>
<td>switch(config)# monitor session session-number</td>
<td>Enters monitor configuration mode for the specified SPAN session.</td>
</tr>
<tr>
<td>6</td>
<td>switch(config-monitor)# destination interface ethernet slot/port</td>
<td>Configures the Ethernet SPAN destination port. <strong>Note</strong> To enable the virtual ethernet port as destination interface in the monitor configuration, you can use the <code>destination interface vethernet slot/port</code> command.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure an Ethernet SPAN destination port (HIF):

```
switch# configure terminal
switch(config)# interface ethernet100/1/24
switch(config-if)# switchport monitor
switch(config-if)# exit
switch(config)# monitor session 1
switch(config-monitor)# destination interface ethernet100/1/24
switch(config-monitor)#
```

The following example shows how to configure a virtual ethernet (VETH) SPAN destination port:

```
switch# configure terminal
switch(config)# interface vethernet10
switch(config-if)# switchport monitor
switch(config-if)# exit
switch(config)# monitor session 2
switch(config-monitor)# destination interface vethernet10
switch(config-monitor)#
```
Configuring Source Ports

SUMMARY STEPS

1. switch# configure terminal
2. switch(config) # monitor session session-number
3. switch(config-monitor) # source interface [rx | tx | both] type slot/port

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config) # monitor session session-number</td>
<td>Enters monitor configuration mode for the specified monitoring session.</td>
</tr>
<tr>
<td>Step 3 switch(config-monitor) # source interface type slot/port [rx</td>
<td>tx</td>
</tr>
</tbody>
</table>

Example

The following example shows how to configure a virtual Fibre Channel SPAN source port:

```
switch# configure terminal
switch(config)# monitor session 2
switch(config-monitor)# source interface vfc 129
```

Configuring the Rate Limit for SPAN Traffic

By configuring a rate limit for SPAN traffic to 1Gbps across the entire monitor session, you can avoid impacting the monitored production traffic.

- When spanning more than 1Gbps to a 1 Gb SPAN destination interface, SPAN source traffic will not drop.
- When spanning more than 6 Gbps (but less than 10Gbps) to a 10Gb SPAN destination interface, the SPAN traffic is limited to 1Gbps even though the destination/sniffer is capable of 10Gbps.
- SPAN is rate-limited to 5 Gbps for every 8 ports (one ASIC).
- RX-SPAN is rate-limited to 0.71 Gbps per port when the RX-traffic on the port exceeds 5 Gbps.
### Configuring SPAN

**SUMMARY STEPS**

1. switch# configure terminal
2. switch(config)# interface ethernet slot/port
3. switch(config-if)# switchport monitor rate-limit 1G
4. switch(config-if)# exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch(config)# interface ethernet slot/port</td>
<td>Enters interface configuration mode for the specified Ethernet interface selected by the slot and port values.</td>
</tr>
<tr>
<td></td>
<td>Note If this is a QSFP+ GEM, the slot/port syntax is slot/QSFP-module/port.</td>
</tr>
<tr>
<td>switch(config-if)# switchport monitor rate-limit 1G</td>
<td>Specifies that the rate limit is 1 Gbps.</td>
</tr>
<tr>
<td>switch(config-if)# exit</td>
<td>Reverts to global configuration mode.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to limit the bandwidth on Ethernet interface 1/2 to 1 Gbps:

```plaintext
switch(config)# interface ethernet 1/2
switch(config-if)# switchport monitor rate-limit 1G
```

### Configuring Source Port Channels, VSANs, or VLANs

You can configure the source channels for a SPAN session. These ports can be port channels SAN port channels, VSANs and VLANs. The monitored direction can be ingress, egress, or both and applies to all physical ports in the group.

**SUMMARY STEPS**

1. switch# configure terminal
2. switch(config)# monitor session session-number
3. switch(config-monitor)# source {interface {port-channel | san-port-channel} channel-number [rx | tx | both] | vlan vlan-range | vsan vsan-range }

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
### Configuring SPAN

#### Configuring the Description of a SPAN Session

For ease of reference, you can provide a descriptive name for a SPAN session.

##### SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# monitor session session-number
3. switch(config-monitor)# description description

##### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters monitor configuration mode for the specified SPAN session.</td>
<td>switch(config) # monitor session session-number</td>
</tr>
<tr>
<td>Configures port channel, SAN port channel, VLAN, or VSAN sources. For VLAN or VSAN sources, the monitored direction is implicit.</td>
<td>switch(config-monitor) # source {interface {port-channel</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

### Example

The following example shows how to configure a port channel SPAN source:

```
switch# configure terminal
switch(config)# monitor session 2
switch(config-monitor)# source interface port-channel 1 rx
switch(config-monitor)# source interface port-channel 3 tx
switch(config-monitor)# source interface port-channel 5 both
```

This example shows how to configure a SAN port channel SPAN source:

```
switch(config-monitor)# switch# configure terminal
switch(config)# monitor session 2
switch(config-monitor)# source interface san-port-channel 3 rx
```

The following example shows how to configure a VLAN SPAN source:

```
switch# configure terminal
switch(config)# monitor session 2
switch(config-monitor)# source vlan 1
```

This example shows how to configure a VSAN SPAN source:

```
switch(config-monitor)# switch# configure terminal
switch(config)# monitor session 2
switch(config-monitor)# source vsan 1
```

---

**Configuring SPAN**	**	**
**Purpose**	**Command or Action**	
Enters monitor configuration mode for the specified SPAN session.	switch(config) # monitor session session-number	
Configures port channel, SAN port channel, VLAN, or VSAN sources. For VLAN or VSAN sources, the monitored direction is implicit.	switch(config-monitor) # source {interface {port-channel	
		san-port-channel} channel-number [rx
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config) # monitor session session-number</td>
</tr>
<tr>
<td></td>
<td>Enters monitor configuration mode for the specified SPAN session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-monitor) # description description</td>
</tr>
<tr>
<td></td>
<td>Creates a descriptive name for the SPAN session.</td>
</tr>
</tbody>
</table>

### Example

The following example shows how to configure a SPAN session description:

```
switch# configure terminal
switch(config) # monitor session 2
switch(config-monitor) # description monitoring ports eth2/2-eth2/4
```

### Activating a SPAN Session

The default is to keep the session state shut. You can open a session that duplicates packets from sources to destinations.

#### SUMMARY STEPS

1. switch# configure terminal
2. switch(config) # no monitor session {all | session-number} shut

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config) # no monitor session {all</td>
</tr>
<tr>
<td></td>
<td>Opens the specified SPAN session or all sessions.</td>
</tr>
</tbody>
</table>

### Example

The following example shows how to activate a SPAN session:

```
switch# configure terminal
switch(config) # no monitor session 3 shut
```

### Suspending a SPAN Session

By default, the session state is shut.

#### SUMMARY STEPS

1. switch# configure terminal
2. switch(config) # monitor session {all | session-number} shut

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config) # monitor session {all</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to suspend a SPAN session:

```
switch# configure terminal
switch(config) # monitor session 3 shut
switch(config) #
```

### Displaying SPAN Information

#### SUMMARY STEPS

1. switch# show monitor [session {all | session-number | range session-range} [brief]]

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# show monitor [session {all</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to display SPAN session information:

```
switch# show monitor
SESSION STATE REASON DESCRIPTION
-------- --------- ----------------- --------------------------------|
2 up The session is up
3 down Session suspended
4 down No hardware resource
```

The following example shows how to display SPAN session details:

```
switch# show monitor session 2
session 2

type : local
state : up
source intf :
source VLANs :
 rx : 100
```
Configuration Examples for SPAN

Configuration Example for a SPAN Session

To configure a SPAN session, follow these steps:

SUMMARY STEPS

1. Configure destination ports in access mode and enable SPAN monitoring.
2. Configure a SPAN session.

DETAILED STEPS

Step 1
Configure destination ports in access mode and enable SPAN monitoring.

Example:

```
switch# configure terminal
switch(config)# interface ethernet 2/5
switch(config-if)# switchport
switch(config-if)# switchport monitor
switch(config-if)# no shut
switch(config-if)# exit
switch(config)#
```

Step 2
Configure a SPAN session.

Example:

```
switch(config)# no monitor session 3
switch(config)# monitor session 3
switch(config-monitor)# source interface ethernet 2/1-3, ethernet 3/1 rx
switch(config-monitor)# source interface port-channel 2
switch(config-monitor)# source interface sup-eth 0 both
switch(config-monitor)# source vlan 3, 6-8 rx
switch(config-monitor)# destination interface ethernet 101/1/1-3
switch(config-monitor)# no shut
switch(config-monitor)# exit
switch(config)# show monitor session 3
switch(config)# copy running-config startup-config
```

Configuration Example for a Unidirectional SPAN Session

To configure a unidirectional SPAN session, follow these steps:
SUMMARY STEPS

1. Configure destination ports in access mode and enable SPAN monitoring.
2. Configure a SPAN session.

DETAILED STEPS

Step 1
Configure destination ports in access mode and enable SPAN monitoring.

Example:
```bash
switch# configure terminal
switch(config)# interface ethernet 2/5
switch(config-if)# switchport
switch(config-if)# switchport monitor
switch(config-if)# no shut
switch(config-if)# exit
switch(config)#
```

Step 2
Configure a SPAN session.

Example:
```bash
switch(config)# no monitor session 3
switch(config)# monitor session 3 rx
switch(config-monitor)# source interface ethernet 2/1-3, ethernet 3/1 rx
switch(config-monitor)# filter vlan 3-5, 7
switch(config-monitor)# destination interface ethernet 2/5
switch(config-monitor)# no shut
switch(config-monitor)# exit
switch(config)# show monitor session 3
switch(config)# copy running-config startup-config
```

Configuration Example for a SPAN ACL

This example shows how to configure a SPAN ACL:
```bash
switch# configure terminal
switch(config)# ip access-list match_11_pkts
switch(config-acl)# permit ip 11.0.0.0 0.255.255.255 any
switch(config-acl)# exit
switch(config)# ip access-list match_12_pkts
switch(config-acl)# permit ip 12.0.0.0 0.255.255.255 any
switch(config-acl)# exit
switch(config)# vlan access-map span_filter 5
switch(config-access-map)# match ip address match_11_pkts
switch(config-access-map)# action forward
switch(config-access-map)# exit
switch(config)# vlan access-map span_filter 10
switch(config-access-map)# match ip address match_12_pkts
switch(config-access-map)# action forward
switch(config-access-map)# exit
switch(config)# monitor session 1
switch(config-erspan-src)# filter access-group span_filter
```
Configuration Examples for UDF-Based SPAN

This example shows how to configure UDF-based SPAN to match on the inner TCP flags of an encapsulated IP-in-IP packet using the following match criteria:

- Outer source IP address: 10.0.0.2
- Inner TCP flags: Urgent TCP flag is set
- Bytes: Eth Hdr (14) + Outer IP (20) + Inner IP (20) + Inner TCP (20, but TCP flags at 13th byte)
- Offset from packet-start: 14 + 20 + 20 + 13 = 67
- UDF match value: 0x20
- UDF mask: 0xFF

```
udf udf_tcpflags packet-start 67 1
hardware access-list tcam region racl qualify udf udf_tcpflags
copy running-config startup-config
reload
ip access-list acl-udf
 permit ip 10.0.0.2/32 any udf udf_tcpflags 0x20 0xff
monitor session 1
 source interface Ethernet 1/1
 filter access-group acl-udf
```

This example shows how to configure UDF-based SPAN to match regular IP packets with a packet signature (DEADBEEF) at 6 bytes after a Layer 4 header start using the following match criteria:

- Outer source IP address: 10.0.0.2
- Inner TCP flags: Urgent TCP flag is set
- Bytes: Eth Hdr (14) + IP (20) + TCP (20) + Payload: 112233445566DEADBEEF7788
- Offset from Layer 4 header start: 20 + 6 = 26
- UDF match value: 0xDEADBEEF (split into two-byte chunks and two UDFs)
- UDF mask: 0xFFFFFFFF

```
udf udf_pktsig_msb header outer l3 26 2
udf udf_pktsig_lsb header outer l3 28 2
hardware access-list tcam region racl qualify udf udf_pktsig_msb udf_pktsig_lsb
copy running-config startup-config
reload
ip access-list acl-udf-pktsig
 permit udf udf_pktsig_msb 0xDEAD 0xFFFF udf udf_pktsig_lsb 0xBEEF 0xFFFF
monitor session 1
 source interface Ethernet 1/1
 filter access-group acl-udf-pktsig
```
Configuring ERSPAN

This chapter contains the following sections:

• About ERSPAN, on page 173
• Licensing Requirements for ERSPAN, on page 174
• Prerequisites for ERSPAN, on page 174
• Guidelines and Limitations for ERSPAN, on page 174
• Default Settings for ERSPAN, on page 177
• Configuring ERSPAN, on page 177
• Configuration Examples for ERSPAN, on page 190
• Additional References, on page 192

About ERSPAN

ERSPAN consists of an ERSPAN source session, routable ERSPAN generic routing encapsulation (GRE)-encapsulated traffic, and an ERSPAN destination session. You can separately configure ERSPAN source sessions and destination sessions on different switches. You can also configure ERSPAN source sessions to filter ingress traffic by using ACLs.

ERSPAN Sources

The interfaces from which traffic can be monitored are called ERSPAN sources. Sources designate the traffic to monitor and whether to copy ingress, egress, or both directions of traffic. ERSPAN sources include the following:

• Ethernet ports, port channels, and subinterfaces.
• VLANs—When a VLAN is specified as an ERSPAN source, all supported interfaces in the VLAN are ERSPAN sources.

ERSPAN source ports have the following characteristics:

• A port configured as a source port cannot also be configured as a destination port.
• ERSPAN does not monitor any packets that are generated by the supervisor, regardless of their source.
• Ingress traffic at source ports can be filtered by using ACLs so that they mirror only those packets of information that match the ACL criteria.
Multiple ERSPAN Sessions

Although you can define up to 18 ERSPAN sessions, only a maximum of four ERSPAN or SPAN sessions can be operational simultaneously. If both receive and transmit sources are configured in the same session, only two ERSPAN or SPAN sessions can be operational simultaneously. You can shut down any unused ERSPAN sessions.

For information about shutting down ERSPAN sessions, see Shutting Down or Activating an ERSPAN Session, on page 188.

High Availability

The ERSPAN feature supports stateless and stateful restarts. After a reboot or supervisor switchover, the running configuration is applied.

Licensing Requirements for ERSPAN

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>ERSPAN requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the License and Copyright Information for Cisco NX-OS Software.</td>
</tr>
</tbody>
</table>

Prerequisites for ERSPAN

ERSPAN has the following prerequisite:

You must first configure the Ethernet interfaces for ports on each device to support the desired ERSPAN configuration. For more information, see the Interfaces configuration guide for your platform.

Guidelines and Limitations for ERSPAN

ERSPAN has the following configuration guidelines and limitations:

- The same source can be part of multiple sessions.
- Multiple ACL filters are supported on the same source.
- ERSPAN supports the following:
  - From 4 to 6 tunnels
  - Nontunnel packets
  - IPinIP tunnels
• IPv4 tunnels (limited)
• ERSPAN source session type (packets are encapsulated as generic routing encapsulation (GRE)-tunnel packets and sent on the IP network. However, unlike other Cisco devices, the ERSPAN header is not added to the packet.).

• ERSPAN packets are dropped if the encapsulated mirror packet fails Layer 2 MTU checks.
• There is a 112-byte limit for egress encapsulation. Packets that exceed this limit are dropped. This scenario might be encountered when tunnels and mirroring are intermixed.
• ERSPAN sessions are shared with local sessions. A maximum of 18 sessions can be configured; however only a maximum of four sessions can be operational at the same time. If both receive and transmit sources are configured in the same session, only two sessions can be operational.
• ERSPAN and ERSPAN ACLs are not supported for packets that are generated by the supervisor.
• ERSPAN and ERSPAN with ACL filtering are not supported for packets that are generated by the supervisor.
• ACL filtering is supported only for Rx ERSPAN. Tx ERSPAN that mirrors all traffic that is egressed at the source interface.
• ACL filtering is not supported for IPv6 and MAC ACLs because of TCAM width limitations.
• If the same source is configured in more than one ERSPAN session, and each session has an ACL filter that is configured, the source interface is programmed only for the first active ERSPAN session. The ACEs that belong to the other sessions will not have this source interface programmed.
• If you configure an ERSPAN session and a local SPAN session (with filter access-group and allow-sharing option) to use the same source, the local SPAN session goes down when you save the configuration and reload the switch.
• The drop action is not supported with the VLAN access-map configuration with the filter access-group for a monitor session. The monitor session goes into an error state if the VLAN access-map with a drop action is configured with the filter access-group in the monitor session.
• Both permit and deny ACEs are treated alike. Packets that match the ACE are mirrored irrespective of whether they have a permit or deny entry in the ACL.
• ERSPAN is not supported for management ports.
• A destination port can be configured in only one ERSPAN session at a time.
• You cannot configure a port as both a source and destination port.
• A single ERSPAN session can include mixed sources in any combination of the following:
  • Ethernet ports or port channels but not subinterfaces.
  • VLANs or port channels, which can be assigned to port channel subinterfaces.
  • Port channels to the control plane CPU.

**Note**
ERSПAN does not monitor any packets that are generated by the supervisor, regardless of their source.
Guidelines and Limitations for ERSPAN

- Destination ports do not participate in any spanning tree instance or Layer 3 protocols.

- When an ERSPAN session contains source ports that are monitored in the transmit or transmit and receive direction, packets that these ports receive may be replicated to the ERSPAN destination port although the packets are not actually transmitted on the source ports. Some examples of this behavior on source ports are as follows:
  - Traffic that results from flooding
  - Broadcast and multicast traffic

- For VLAN ERSPAN sessions with both ingress and egress that is configured, two packets (one from ingress and one from egress) are forwarded from the destination port if the packets get switched on the same VLAN.

- VLAN ERSPAN monitors only the traffic that leaves or enters Layer 2 ports in the VLAN.

- When the Cisco Nexus 3600 platform switch is the ERSPAN destination, GRE headers are not stripped off before sending mirrored packets out of the terminating point. Packets are sent along with the GRE headers as GRE packets and the original packet as the GRE payload.

- The egress interface for the ERSPAN source session is now printed in the output of the `show monitor session <session-number>` CLI command. The egress interface can be a physical port or a port-channel. For ECMP, one interface among the ECMP members is displayed in the output. This particular interface is used for the traffic egress.

- You can view the SPAN/ERSPAN ACL statistics using the `show monitor filter-list` command. The output of the command displays all the entries along with the statistics from the SPAN TCAM. The ACL name is not printed, but only the entries are printed in the output. You can clear the statistics using the `clear monitor filter-list statistics` command. The output is similar to `show ip access-list` command. The Cisco Nexus 3600 platform switch does not provide support per ACL level statistics. This enhancement is supported for both local SPAN and ERSPAN.

- The traffic to and/or from the CPU is spanned. It is similar to any other interface SPAN. This enhancement is supported only in local SPAN. It is not supported with ACL source. The Cisco Nexus 3600 platform switch does not span the packets with (RCPU.dest_port != 0) header that is sent out from the CPU.

- For SPAN forward drop traffic, SPAN only the packets that get dropped due to various reasons in the forwarding plane. This enhancement is supported only for ERSPAN Source session. It is not supported along with SPAN ACL, Source VLAN, and Source interface. Three ACL entries are installed to SPAN dropped traffic. Priority can be set for the drop entries to have a higher or lower priority than the SPAN ACL entries and the VLAN SPAN entries of the other monitor sessions. By default, the drop entries have a higher priority.

- SPAN UDF (User-Defined Field) based ACL support
  - You can match any packet header or payload (certain length limitations) in the first 128 bytes of the packet.
  - You can define the UDFs with particular offset and length to match.
  - You can match the length as 1 or 2 bytes only.
  - Maximum of 8 UDFs are supported.
  - Additional UDF match criteria is added to ACL.
• The UDF match criteria can be configured only for SPAN ACL. This enhancement is not supported for other ACL features, for example, RACL, PACL, and VACL.

• Each ACE can have up to 8 UDF match criteria.

• The UDF and http-redirect configuration should not coexist in the same ACL.

• The UDF names need to be qualified for the SPAN TCAM.

• The UDFs are effective only if they are qualified by the SPAN TCAM.

• The configuration for the UDF definition and the UDF name qualification in the SPAN TCAM require the use of copy r s command and reload.

• The UDF match is supported for both Local SPAN and ERSPAN Src sessions.

• The UDF name can have a maximum length of 16 characters.

• The UDF offset starts from 0 (zero). If offset is specified as an odd number, 2 UDFs are used in the hardware for one UDF definition in the software. The configuration is rejected if the number of UDFs usage in the hardware goes beyond 8.

• The UDF match requires the SPAN TCAM region to go double-wide. Therefore, you have to reduce the other TCAM regions' size to make space for SPAN.

• The SPAN UDFs are not supported in tap-aggregation mode.

• If a sup-eth source interface is configured in the erspan-src session, the acl-span cannot be added as a source into that session and vice versa.

• IPv6 User Defined Field (UDF) on ERSPAN support

• ERSPAN source and ERSPAN destination sessions must use dedicated loopback interfaces. Such loopback interfaces should not be having any control plane protocols.

Default Settings for ERSPAN

The following table lists the default settings for ERSPAN parameters.

**Table 23: Default ERSPAN Parameters**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERSPAN sessions</td>
<td>Created in the shut state.</td>
</tr>
</tbody>
</table>

Configuring ERSPAN

Configuring an ERSPAN Source Session

You can configure an ERSPAN session on the local device only. By default, ERSPAN sessions are created in the shut state.
For sources, you can specify Ethernet ports, port channels, and VLANs. A single ERSPAN session can include mixed sources in any combination of Ethernet ports or VLANs.

**Note**
ERSPAN does not monitor any packets that are generated by the supervisor, regardless of their source.

**SUMMARY STEPS**

1. configure terminal
2. monitor erspan origin ip-address ip-address global
3. no monitor session {session-number | all}
4. monitor session {session-number | all} type erspan-source
5. description description
6. filter access-group acl-name
7. source {interface type [rx | tx | both] | vlan {number | range} [rx]}
8. (Optional) Repeat Step 6 to configure all ERSPAN sources.
9. (Optional) filter access-group acl-filter
10. destination ip ip-address
11. (Optional) ip ttl ttl-number
12. (Optional) ip dscp dscp-number
13. no shut
14. (Optional) show monitor session {all | session-number | range session-range}
15. (Optional) show running-config monitor
16. (Optional) show startup-config monitor
17. (Optional) copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch# config t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>monitor erspan origin ip-address ip-address global</td>
<td>Configures the ERSPAN global origin IP address.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)# monitor erspan origin ip-address 10.0.0.1 global</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>no monitor session {session-number</td>
<td>all}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)# no monitor session 3</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session {session-number</td>
<td>all} type erspan-source</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring ERSPAN

#### Configuring an ERSPAN Source Session

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# monitor session 3 type erspan-source</code> <code>switch(config-erspan-src)#</code></td>
<td></td>
</tr>
</tbody>
</table>

#### Step 5
**description**
Example:
```
switch(config-erspan-src)# description erspan_src_session_3
```
- Configures a description for the session. By default, no description is defined. The description can be up to 32 alphanumeric characters.

#### Step 6
**filter access-group**` acl-name`
Example:
```
switch(config-erspan-src)# filter access-group acl1
```
- Filters ingress traffic at source ports based on the ACL list. Only packets that match the access list are spanned. The *acl-name* is an IP access-list, but not an access-map.

#### Step 7
**source**
```
interface type [rx | tx | both] | vlan {number | range} [rx]
```
Example:
```
switch(config-erspan-src)# source interface ethernet 2/1-3, ethernet 3/1 rx
```
```
switch(config-erspan-src)# source interface port-channel 2
```
```
switch(config-erspan-src)# source interface sup-eth 0 both
```
```
switch(config-monitor)# source interface ethernet 101/1/1-3
```
- Step 6 (Optional) Repeat to configure all ERSPAN sources.

#### Step 8
(Optional) Repeat Step 6 to configure all ERSPAN sources.

#### Step 9
(Optional) **filter access-group**` acl-filter`
Example:
```
switch(config-erspan-src)# filter access-group ACL1
```
- Associates an ACL with the ERSPAN session.

#### Note
You can create an ACL using the standard ACL configuration process. For more information, see the Cisco Nexus NX-OS Security Configuration Guide for your platform.

#### Step 10
**destination ip**` ip-address`
Example:
```
switch(config-erspan-src)# destination ip 10.1.1.1
```
- Configures the destination IP address in the ERSPAN session. Only one destination IP address is supported per ERSPAN source session.

#### Step 11
(Optional) **ip ttl**` ttl-number`
Example:
```
switch(config-erspan-src)# ip ttl 25
```
- Configures the IP time-to-live (TTL) value for the ERSPAN traffic. The range is from 1 to 255.
### Configuring SPAN Forward Drop Traffic for ERSPAN Source Session

**SUMMARY STEPS**

1. configure terminal
2. monitor session {session-number | all} type erspan-source
3. vrf vrf-name
4. destination ip ip-address
5. source forward-drops rx [priority-low]
6. no shut
7. (Optional) show monitor session {all | session-number | range session-range}

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 12</strong></td>
<td>(Optional) ip dscp dscp-number</td>
</tr>
<tr>
<td>Example: switch(config-erspan-src)# ip dscp 42</td>
<td>Configures the differentiated services code point (DSCP) value of the packets in the ERSPAN traffic. The range is from 0 to 63.</td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td>no shut</td>
</tr>
<tr>
<td>Example: switch(config-erspan-src)# no shut</td>
<td>Enables the ERSPAN source session. By default, the session is created in the shut state.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Only two ERSPAN source sessions can be running simultaneously.</td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td>(Optional) show monitor session {all</td>
</tr>
<tr>
<td>Example: switch(config-erspan-src)# show monitor session 3</td>
<td>Displays the ERSPAN session configuration.</td>
</tr>
<tr>
<td><strong>Step 15</strong></td>
<td>(Optional) show running-config monitor</td>
</tr>
<tr>
<td>Example: switch(config-erspan-src)# show running-config monitor</td>
<td>Displays the running ERSPAN configuration.</td>
</tr>
<tr>
<td><strong>Step 16</strong></td>
<td>(Optional) show startup-config monitor</td>
</tr>
<tr>
<td>Example: switch(config-erspan-src)# show startup-config monitor</td>
<td>Displays the ERSPAN startup configuration.</td>
</tr>
<tr>
<td><strong>Step 17</strong></td>
<td>(Optional) copy running-config startup-config</td>
</tr>
<tr>
<td>Example: switch(config-erspan-src)# copy running-config startup-config</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **configure terminal**<br>**Example:**<br>switch# config t  
switch(config)# | Enters global configuration mode. |
| **Step 2** | **monitor session** [session-number | all] type erspan-source<br>**Example:**<br>switch(config)# monitor session 1 type erspan-source  
switch(config-erspan-src)# | Configures an ERSPAN source session. |
| **Step 3** | **vrf vrf-name**<br>**Example:**<br>switch(config-erspan-src)# vrf default | Configures the VRF that the ERSPAN source session uses for traffic forwarding. | | |
| **Step 4** | **destination ip** ip-address<br>**Example:**<br>switch(config-erspan-src)# destination ip 10.1.1.1 | Configures the destination IP address in the ERSPAN session. Only one destination IP address is supported per ERSPAN source session. |
| **Step 5** | **source forward-drops rx** [priority-low]<br>**Example:**<br>switch(config-erspan-src)# source forward-drops rx [priority-low] | Configures the SPAN forward drop traffic for the ERSPAN source session. When configured as a low priority, this SPAN ACE matching drop condition takes less priority over any other SPAN ACEs configured by the interface ACL SPAN or VLAN ACL SPAN. Without the priority-low keyword, these drop ACEs take high priority compared to the regular interface or the VLAN SPAN ACLs. The priority matters only when the packet matching drop ACEs and the interface/VLAN SPAN ACLs are configured. |
| **Step 6** | **no shut**<br>**Example:**<br>switch(config-erspan-src)# no shut | Enables the ERSPAN source session. By default, the session is created in the shut state. <br><br><br><br>Note Only two ERSPAN source sessions can be running simultaneously. |
| **Step 7** | **(Optional) show monitor session** {all | session-number | range session-range}<br>**Example:**<br>switch(config-erspan-src)# show monitor session 3 | Displays the ERSPAN session configuration. |

**Example**

```bash
switch# config t
switch(config)# monitor session 1 type erspan-source
switch(config-erspan-src)# vrf default
switch(config-erspan-src)# destination ip 40.1.1.1
switch(config-erspan-src)# source forward-drops rx
```

---

**Configuring SPAN Forward Drop Traffic for ERSPAN Source Session**

---

**Cisco Nexus 3600 NX-OS System Management Configuration Guide, Release 9.2(x)**
### Configuring an ERSPAN ACL

You can create an IPv4 ERSPAN ACL on the device and add rules to it.

#### Before you begin

To modify the DSCP value or the GRE protocol, you need to allocate a new destination monitor session. A maximum of four destination monitor sessions are supported.

#### SUMMARY STEPS

1. configure terminal
2. ip access-list acl-name
3. [sequence-number] {permit | deny} protocol source destination [set-erspan-dscp dscp-value] [set-erspan-gre-proto protocol-value]
4. (Optional) show ip access-lists name
5. (Optional) show monitor session {all | session-number | range session-range} [brief]
6. (Optional) copy running-config startup-config

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
</tbody>
</table>
| **Example:** | switch(config)# configure terminal  
switch(config)# |
| **Step 2** | **ip access-list acl-name** |
| **Example:** | switch(config)# ip access-list erspan-acl  
switch(config-acl)# |
| **Step 3** | [sequence-number] {permit | deny} protocol source destination [set-erspan-dscp dscp-value] [set-erspan-gre-proto protocol-value] |
| **Example:** | switch(config-acl)# permit ip 192.168.2.0/24 any set-erspan-dscp 40 set-erspan-gre,proto 5555  
switch(config-acl)# permit ip 192.168.2.0/24 any set-erspan-dscp 40 set-erspan-gre,proto 5555  
switch(config-acl)# permit ip 192.168.2.0/24 any set-erspan-dscp 40 set-erspan-gre,proto 5555  
switch(config-acl)# permit ip 192.168.2.0/24 any set-erspan-dscp 40 set-erspan-gre,proto 5555 |

**Purpose**  
Enters global configuration mode.  
Creates the ERSPAN ACL and enters IP ACL configuration mode. The acl-name argument can be up to 64 characters.  
Creates a rule in the ERSPAN ACL. You can create many rules. The sequence-number argument can be a whole number between 1 and 4294967295.  
The permit and deny commands support many ways of identifying traffic.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>set-erspan-dscp</strong> option</td>
<td>The <strong>set-erspan-dscp</strong> option sets the DSCP value in the ERSPAN outer IP header. The range for the DSCP value is from 0 to 63. The DSCP value configured in the ERSPAN ACL overrides the value configured in the monitor session. If you do not include this option in the ERSPAN ACL, 0 or the DSCP value configured in the monitor session will be set.</td>
</tr>
<tr>
<td><strong>set-erspan-gre-proto</strong> option</td>
<td>The <strong>set-erspan-gre-proto</strong> option sets the protocol value in the ERSPAN GRE header. The range for the protocol value is from 0 to 65535. If you do not include this option in the ERSPAN ACL, the default value of 0x88be will be set as the protocol in the GRE header for ERSPAN-encapsulated packets.</td>
</tr>
</tbody>
</table>

Each access control entry (ACE) with the **set-erspan-gre-prot** or **set-erspan-dscp** action consumes one destination monitor session. A maximum of three ACEs with one of these actions is supported per ERSPAN ACL. For example, you can configure one of the following:

- One ERSPAN session with an ACL having a maximum of three ACEs with the **set-erspan-gre-proto** or **set-erspan-dscp** action
- One ERSPAN session with an ACL having two ACEs with the **set-erspan-gre-proto** or set-erspan-dscp action and one additional local or ERSPAN session
- A maximum of two ERSPAN sessions with an ACL having one ACE with the **set-erspan-gre-proto** or **set-erspan-dscp** action

### Step 4
(Optional) **show ip access-lists name**

**Example:**

```
switch(config-acl)# show ip access-lists erpsan-acl
```

Displays the ERSPAN ACL configuration.

### Step 5
(Optional) **show monitor session {all | session-number | range session-range} [brief]**

**Example:**

```
switch(config-acl)# show monitor session 1
```

Displays the ERSPAN session configuration.

### Step 6
(Optional) **copy running-config startup-config**

**Example:**

```
switch(config-acl)# copy running-config startup-config
```

Copies the running configuration to the startup configuration.
Configuring User Defined Field (UDF) Based ACL Support

You can configure User Defined Field (UDF) based ACL support on Cisco Nexus 3600 platform switches. See the following steps to configure ERSPAN based on UDF. See the Guidelines and Limitations for ERSPAN section for more information.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# udf < udf-name> < packet start > < offset > < length >
3. switch(config)# udf < udf-name> header < Layer3/Layer4 > < offset > < length >
4. switch(config)# hardware profile tcam region span qualify udf < name1 > .... < name8 >
5. switch(config)# permit .... < regular ACE match criteria > udf < name1 > < val > < mask > .... < name8 > < val > < mask > .... < name8 >
6. switch(config)# show monitor session < session-number >

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Defines the UDF.</td>
</tr>
<tr>
<td>switch(config)# udf &lt; udf-name&gt; &lt; packet start &gt; &lt; offset &gt; &lt; length &gt;</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>(config)# udf udf1 packet-start 10 2</td>
<td></td>
</tr>
<tr>
<td>(config)# udf udf2 packet-start 50 2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Defines the UDF.</td>
</tr>
<tr>
<td>switch(config)# udf &lt; udf-name&gt; header &lt; Layer3/Layer4 &gt; &lt; offset &gt; &lt; length &gt;</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>(config)# udf udf3 header outer l4 0 1</td>
<td></td>
</tr>
<tr>
<td>(config)# udf udf3 header outer l4 10 2</td>
<td></td>
</tr>
<tr>
<td>(config)# udf udf3 header outer l4 50 1</td>
<td></td>
</tr>
</tbody>
</table>

**Note**

You can define multiple UDFs but it is recommended to configure only the required UDFs. This configuration takes affect only after attaching the UDFs to a TCAM region and rebooting the box, as the UDFs are added to a region's qualifier set at TCAM carving time (boot up time).

**Step 4**	Configure UDF Qualification in SPAN TCAM. Add the UDFs to qualifier set for a TCAM region at TCAM carving time (happens at boot up time). The configuration allows maximum 4 UDFs that can be attached to a span region, all UDFs listed in a single command for a region. A new configuration for a region replaces the current configuration, but note that it needs a reboot for the configuration to come to the effect.
switch(config)# hardware profile tcam region span qualify udf < name1 > .... < name8 >	
Example:	
(config)# hardware profile tcam region span qualify udf udf1 udf2 udf3 udf4 udf5	
[SUCCESS] Changes to UDF qualifier set will be applicable only after reboot. You need to 'copy run start' and 'reload config'	
### Configuring ERSPAN

You can configure IPv6 User Defined Field (UDF) on ERSPAN on Cisco Nexus 3600 platform switches. See the following steps to configure ERSPAN based on IPv6 UDF. See the Guidelines and Limitations for ERSPAN section for more information.

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# udf < udf-name > <packet start> <offset> <length>`
3. `switch(config)# udf < udf-name > header <Layer3/Layer4> <offset> <length>`

### Configuring IPv6 User Defined Field (UDF) on ERSPAN

You can configure IPv6 User Defined Field (UDF) on ERSPAN on Cisco Nexus 3600 platform switches. See the following steps to configure ERSPAN based on IPv6 UDF. See the Guidelines and Limitations for ERSPAN section for more information.

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# udf < udf-name > <packet start> <offset> <length>`
3. `switch(config)# udf < udf-name > header <Layer3/Layer4> <offset> <length>`

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# permit ...... &lt;regular ACE match criteria&gt; udf &lt;name1&gt; &lt; val &gt; &lt;mask&gt; ..... &lt;name8&gt; &lt; val &gt; &lt;mask&gt;</code></td>
<td>Configure an ACL with UDF match.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Displays the ACL using the <code>show monitor session &lt;session-number&gt;</code> command. You can check if the SPAN TCAM region is carved or not using the BCM SHELL command.</td>
</tr>
<tr>
<td><code>switch(config)# show monitor session &lt;session-number&gt;</code></td>
<td>Displays the ACL using the <code>show monitor session &lt;session-number&gt;</code> command. You can check if the SPAN TCAM region is carved or not using the BCM SHELL command.</td>
</tr>
</tbody>
</table>
Configuring IPv6 User Defined Field (UDF) on ERSPAN

4. switch(config)# hardware profile tcam region ipv6-span-l2 512
5. switch(config)# hardware profile tcam region ipv6-span 512
6. switch(config)# hardware profile tcam region span spanv6 qualify udf <name1> …… <name8>
7. switch(config)# hardware profile tcam region spanv6-12 qualify udf <name1> …… <name8>
8. switch(config-erspan-src)# filter …… ipv6 access-group…. <aclname>…… <allow-sharing>
9. switch(config)# permit …… <regular ACE match criteria> udf <name1> < val > <mask> ……
   …… <name8> < val > <mask>
10. switch(config)# show monitor session <session-number>

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><em>Purpose</em></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# udf &lt; udf-name &gt; &lt;packet start&gt; &lt;offset&gt; &lt;length&gt;</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>(config)# udf udf1 packet-start 10 2 (config)# udf udf2 packet-start 50 2</td>
</tr>
<tr>
<td><em>Note:</em> You can define multiple UDFs but it is recommended to configure only the required UDFs. This configuration takes affect only after attaching the UDFs to a TCAM region and rebooting the box, as the UDFs are added to a region's qualifier set at TCAM carving time (boot up time).</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# udf &lt; udf-name &gt; header &lt;Layer3/Layer4&gt; &lt;offset&gt; &lt;length&gt;</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>(config)# udf udf3 header outer 14 0 1 (config)# udf udf3 header outer 14 10 2 (config)# udf udf3 header outer 14 50 1</td>
</tr>
<tr>
<td><em>Purpose</em></td>
<td>Defines the UDF.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config)# hardware profile tcam region ipv6-span-l2 512</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>(config)# hardware profile tcam region ipv6-span-l2 512</td>
</tr>
<tr>
<td><em>Warning:</em> Warning: Please save config and reload the system for the configuration to take effect. (config)#</td>
<td></td>
</tr>
<tr>
<td><em>Purpose</em></td>
<td>Configure IPv6 on UDF on layer 2 ports. A new configuration for a region replaces the current configuration and you must reboot the switch for the configuration to come to the effect.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config)# hardware profile tcam region ipv6-span 512</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>(config)# hardware profile tcam region ipv6-span 512</td>
</tr>
<tr>
<td><em>Warning:</em> Warning: Please save config and reload the system for the configuration to take effect. (config)#</td>
<td></td>
</tr>
<tr>
<td><em>Purpose</em></td>
<td>Configure IPv6 on UDF on layer 3 ports. A new configuration for a region replaces the current configuration and you must reboot the switch for the configuration to come to the effect.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>switch(config)# hardware profile tcam region span spanv6 qualify udf &lt;name1&gt;......&lt;name8&gt;</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>(config)# hardware profile tcam region spanv6 qualify udf udf1</code>&lt;br&gt;<strong>(SUCCESS)</strong> Changes to UDF qualifier set will be applicable only after reboot. You need to 'copy run start' and 'reload'. <code>config)#</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>switch(config)# hardware profile tcam region span spanv6-12 qualify udf &lt;name1&gt;......&lt;name8&gt;</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>(config)# hardware profile tcam region spanv6-12 qualify udf udf1</code>&lt;br&gt;<strong>(SUCCESS)</strong> Changes to UDF qualifier set will be applicable only after reboot. You need to 'copy run start' and 'reload'. <code>config)#</code></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>switch(config-erspan-src)# filter ...... ipv6 access-group......&lt;aclname&gt;....&lt;allow-sharing&gt;</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>(config-erspan-src)# ipv6 filter access-group test</code>&lt;br&gt;<code>(config)#</code></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>switch(config)# permit ...... &lt;regular ACE match criteria&gt; udf &lt;name1&gt; &lt; val &gt; &lt;mask&gt; ......&lt;name8&gt; &lt; val &gt; &lt;mask&gt;</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>(config-erspan-src)# ipv6 access-list test</code>&lt;br&gt;<code>(config-ipv6-acl)# permit ipv6 any any udf udf1 0x1 0x0</code></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>switch(config)# show monitor session &lt;session-number&gt;</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>(config)# show monitor session 1</code>&lt;br&gt;<code>session 1</code>&lt;br&gt;<code>-------------</code>&lt;br&gt;<code>type : erspan-source</code>&lt;br&gt;<code>state : up</code>&lt;br&gt;<code>vrf-name : default</code>&lt;br&gt;<code>destination-ip : 40.1.1.1</code>&lt;br&gt;<code>ip-ttl : 255</code>&lt;br&gt;<code>ip-dscp : 0</code>&lt;br&gt;<code>acl-name : test</code>&lt;br&gt;<code>origin-ip : 100.1.1.10 (global)</code></td>
</tr>
</tbody>
</table>
Shutting Down or Activating an ERSPAN Session

You can shut down ERSPAN sessions to discontinue the copying of packets from sources to destinations. Because only a specific number of ERSPAN sessions can be running simultaneously, you can shut down a session to free hardware resources to enable another session. By default, ERSPAN sessions are created in the shut state.

You can enable ERSPAN sessions to activate the copying of packets from sources to destinations. To enable an ERSPAN session that is already enabled but operationally down, you must first shut it down and then enable it. You can shut down and enable the ERSPAN session states with either a global or monitor configuration mode command.

SUMMARY STEPS

1. configuration terminal
2. monitor session {session-range | all} shut
3. no monitor session {session-range | all} shut
4. monitor session session-number type erspan-source
5. monitor session session-number type erspan-destination
6. shut
7. no shut
8. (Optional) show monitor session all
9. (Optional) show running-config monitor
10. (Optional) show startup-config monitor
11. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configuration terminal</td>
</tr>
</tbody>
</table>
| Example: | switch# configuration terminal  
switch(config)# |
| **Step 2** | monitor session {session-range | all} shut |
| Example: | Shutts down the specified ERSPAN sessions. The session range is from 1-18. By default, sessions are created in the |
### Command or Action

**switch(config)# monitor session 3 shut**

**Purpose:**
Shut state. Four unidirectional sessions or two bidirectional sessions can be active at the same time.

**Note**
- In Cisco Nexus 5000 and 5500 platforms, two sessions can run simultaneously.
- In Cisco Nexus 5600 and 6000 platforms, 16 sessions can run simultaneously.

##### Step 3

**no monitor session {session-range | all} shut**

**Example:**

**switch(config)# no monitor session 3 shut**

**Purpose:**
Resumes (enables) the specified ERSPAN sessions. The session range is from 1-18. The session range is from 1-18. By default, sessions are created in the shut state. Four unidirectional sessions or two bidirectional sessions can be active at the same time.

**Note**
If a monitor session is enabled but its operational status is down, then to enable the session, you must first specify the `monitor session shut` command followed by the `no monitor session shut` command.

##### Step 4

**monitor session session-number type erspan-source**

**Example:**

**switch(config)# monitor session 3 type erspan-source**

**switch(config-erspan-src)#**

**Purpose:**
Enters the monitor configuration mode for the ERSPAN source type. The new session configuration is added to the existing session configuration.

##### Step 5

**monitor session session-number type erspan-destination**

**Example:**

**switch(config-erspan-src)# monitor session 3 type erspan-destination**

**Purpose:**
Enters the monitor configuration mode for the ERSPAN destination type.

##### Step 6

**shut**

**Example:**

**switch(config-erspan-src)# shut**

**Purpose:**
Shuts down the ERSPAN session. By default, the session is created in the shut state.

##### Step 7

**no shut**

**Example:**

**switch(config-erspan-src)# no shut**

**Purpose:**
Enables the ERSPAN session. By default, the session is created in the shut state.

##### Step 8

**(Optional) show monitor session all**

**Example:**

**switch(config-erspan-src)# show monitor session all**

**Purpose:**
Displays the status of ERSPAN sessions.

##### Step 9

**(Optional) show running-config monitor**

**Example:**

**switch(config-erspan-src)# show running-config monitor**

**Purpose:**
Displays the running ERSPAN configuration.
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) <code>show startup-config monitor</code></td>
<td>Displays the ERSPAN startup configuration.</td>
</tr>
<tr>
<td>Example: <code>switch(config-erspan-src)# show startup-config monitor</code></td>
<td></td>
</tr>
<tr>
<td>(Optional) <code>copy running-config startup-config</code></td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example: <code>switch(config-erspan-src)# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

### Verifying the ERSPAN Configuration

Use the following command to verify the ERSPAN configuration information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show monitor session {all</td>
<td>session-number</td>
</tr>
<tr>
<td><code>show running-config monitor</code></td>
<td>Displays the running ERSPAN configuration.</td>
</tr>
<tr>
<td><code>show startup-config monitor</code></td>
<td>Displays the ERSPAN startup configuration.</td>
</tr>
</tbody>
</table>

### Configuration Examples for ERSPAN

#### Configuration Example for an ERSPAN Source Session

The following example shows how to configure an ERSPAN source session:

```
switch# config t
switch(config)# interface e14/30
switch(config-if)# no shut
switch(config-if)# exit
switch(config)# monitor erspan origin ip-address 3.3.3.3 global
switch(config)# monitor session 1 type erspan-source
switch(config-erspan-src)# filter access-group acl1
switch(config-erspan-src)# source interface e14/30
switch(config-erspan-src)# ip ttl 16
switch(config-erspan-src)# ip dscp 5
switch(config-erspan-src)# vrf default
switch(config-erspan-src)# destination ip 9.1.1.2
switch(config-erspan-src)# no shut
switch(config-erspan-src)# exit
switch(config)# show monitor session 1
```

#### Configuration Example for an ERSPAN ACL

This example shows how to configure an ERSPAN ACL:
switch# configure terminal
switch(config)# ip access-list match_11_pkts
switch(config-acl)# permit ip 11.0.0.0 0.255.255.255 any
switch(config-acl)# exit
switch(config)# ip access-list match_12_pkts
switch(config-acl)# permit ip 12.0.0.0 0.255.255.255 any
switch(config-acl)# exit
switch(config)# vlan access-map erspan_filter 5
switch(config-access-map)# match ip address match_11_pkts
switch(config-access-map)# action forward
switch(config-access-map)# exit
switch(config)# vlan access-map erspan_filter 10
switch(config-access-map)# match ip address match_12_pkts
switch(config-access-map)# action forward
switch(config-access-map)# exit
switch(config)# monitor session 1 type erspan-source
switch(config-erspan-src)# filter access_group erspan_filter

Configuration Examples for UDF-Based ERSPAN

This example shows how to configure UDF-based ERSPAN to match on the inner TCP flags of an encapsulated IP-in-IP packet using the following match criteria:

- Outer source IP address: 10.0.0.2
- Inner TCP flags: Urgent TCP flag is set
- Bytes: Eth Hdr (14) + Outer IP (20) + Inner IP (20) + Inner TCP (20, but TCP flags at 13th byte)
- Offset from packet-start: 14 + 20 + 20 + 13 = 67
- UDF match value: 0x20
- UDF mask: 0xFF

udf udf_tcpflags packet-start 67 1
hardware access-list tcam region racl qualify udf udf_tcpflags
copy running-config startup-config
reload
ip access-list acl-udf
permit ip 10.0.0.2/32 any udf udf_tcpflags 0x20 0xff
monitor session 1 type erspan-source
source interface Ethernet 1/1
filter access-group acl-udf

This example shows how to configure UDF-based ERSPAN to match regular IP packets with a packet signature (DEADBEEF) at 6 bytes after a Layer 4 header start using the following match criteria:

- Outer source IP address: 10.0.0.2
- Inner TCP flags: Urgent TCP flag is set
- Bytes: Eth Hdr (14) + IP (20) + TCP (20) + Payload: 112233445566DEADBEEF7788
- Offset from Layer 4 header start: 20 + 6 = 26
- UDF match value: 0xDEADBEEF (split into two-byte chunks and two UDFs)
- UDF mask: 0xFFFFFFFF
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERSPAN commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco Nexus NX-OS System Management Command Reference for your platform.</td>
</tr>
</tbody>
</table>
Configuring DNS

This chapter contains the following sections:

- About DNS Client, on page 193
- Prerequisites for DNS Clients, on page 194
- Licensing Requirements for DNS Clients, on page 194
- Default Settings for DNS Clients, on page 194
- Configuring the DNS Source Interface, on page 195
- Configuring DNS Clients, on page 196

About DNS Client

If your network devices require connectivity with devices in networks for which you do not control name assignment, you can assign device names that uniquely identify your devices within the entire internetwork using the domain name server (DNS). DNS uses a hierarchical scheme for establishing hostnames for network nodes, which allows local control of the segments of the network through a client-server scheme. The DNS system can locate a network device by translating the hostname of the device into its associated IP address.

On the Internet, a domain is a portion of the naming hierarchy tree that refers to general groupings of networks based on the organization type or geography. Domain names are pieced together with periods (.) as the delimiting characters. For example, Cisco is a commercial organization that the Internet identifies by a com domain, so its domain name is cisco.com. A specific hostname in this domain, the File Transfer Protocol (FTP) system, for example, is identified as ftp.cisco.com.

Name Servers

Name servers keep track of domain names and know the parts of the domain tree for which they have complete information. A name server may also store information about other parts of the domain tree. To map domain names to IP addresses in Cisco NX-OS, you must first identify the hostnames, then specify a name server, and enable the DNS service.

Cisco NX-OS allows you to statically map IP addresses to domain names. You can also configure Cisco NX-OS to use one or more domain name servers to find an IP address for a hostname.
**DNS Operation**

A name server handles client-issued queries to the DNS server for locally defined hosts within a particular zone as follows:

- An authoritative name server responds to DNS user queries for a domain name that is under its zone of authority by using the permanent and cached entries in its own host table. If the query is for a domain name that is under its zone of authority but for which it does not have any configuration information, the authoritative name server replies that no such information exists.

- A name server that is not configured as the authoritative name server responds to DNS user queries by using information that it has cached from previously received query responses. If no router is configured as the authoritative name server for a zone, queries to the DNS server for locally defined hosts receive nonauthoritative responses.

Name servers answer DNS queries (forward incoming DNS queries or resolve internally generated DNS queries) according to the forwarding and lookup parameters configured for the specific domain.

**High Availability**

Cisco Nexus 3600 platform switches supports stateless restarts for the DNS client. After a reboot or supervisor switchover, Cisco NX-OS applies the running configuration.

**Prerequisites for DNS Clients**

The DNS client has the following prerequisites:

- You must have a DNS name server on your network.

**Licensing Requirements for DNS Clients**

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>Licence Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>DNS requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

**Default Settings for DNS Clients**

The following table shows the default settings for DNS client parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS client</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Configuring the DNS Source Interface

You can configure DNS to use a specific interface.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# ip dns source-interface type slot/port`
3. `switch(config)# show ip dns source-interface`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 2**

`switch(config)# ip dns source-interface type slot/port`

Configures the source interface for all DNS packets. The following list contains the valid values for `interface`:

- ethernet
- loopback
- mgmt
- port-channel
- vlan

**Note**

When you, configure the source interface for DNS, SCP copy operations initiated from the server fail. To perform an SCP copy operation from the server, remove the DNS source interface configuration.

**Step 3**

`switch(config)# show ip dns source-interface`

Displays the configured DNS source interface.

**Example**

This example shows how to configure the DNS source interface:

```
switch(config)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ip dns source-interface ethernet 1/8
switch(config)# show ip dns source-interface
VRF Name Interface
default Ethernet1/8
```
## Configuring DNS Clients

You can configure the DNS client to use a DNS server on your network.

### Before you begin
- Ensure that you have a domain name server on your network.

### SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# vrf context management
3. switch(config)# {ip | ipv6} host name ipv/ipv6 address1 [ipv/ipv6 address2... ipv/ipv6 address6]
4. (Optional) switch(config)# ip domain name name [use-vrf vrf-name]
5. (Optional) switch(config)# ip domain-list name [use-vrf vrf-name]
6. (Optional) switch(config)# ip name-server ip/ipv6 server-address1 [ip/ipv6 server-address2... ip/ipv6 server-address6] [use-vrf vrf-name]
7. (Optional) switch(config)# ip domain-lookup
8. (Optional) switch(config)# show hosts
9. switch(config)# exit
10. (Optional) switch# copy running-config startup-config

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# vrf context management</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# {ip</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) switch(config)# ip domain name name [use-vrf vrf-name]</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>(Optional) switch(config)# ip domain-list name [use-vrf vrf-name]</td>
</tr>
</tbody>
</table>
### Purpose
Cisco NX-OS uses each entry in the domain list to append that domain name to any hostname that does not contain a complete domain name before starting a domain-name lookup. Cisco NX-OS continues this for each entry in the domain list until it finds a match.

### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(Optional) switch(config)# <strong>ip name-server</strong> ip/ipv6 server-address1 [ip/ipv6 server-address2... ip/ipv6 server-address6] [use-vrf vrf-name]</td>
<td>Defines up to six servers. The address can be either an IPv4 address or an IPv6 address. You can optionally define a VRF that Cisco NX-OS uses to reach this name server if it cannot be reached in the VRF that you configured this name server under.</td>
</tr>
<tr>
<td>7</td>
<td>(Optional) switch(config)# <strong>ip domain-lookup</strong></td>
<td>Enables DNS-based address translation. This feature is enabled by default.</td>
</tr>
<tr>
<td>8</td>
<td>(Optional) switch(config)# <strong>show hosts</strong></td>
<td>Displays information about DNS.</td>
</tr>
<tr>
<td>9</td>
<td>switch(config)# <strong>exit</strong></td>
<td>Exits configuration mode and returns to EXEC mode.</td>
</tr>
<tr>
<td>10</td>
<td>(Optional) switch# <strong>copy running-config startup-config</strong></td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

### Example
The following example shows how to configure a default domain name and enable DNS lookup:

```bash
switch# config t
switch(config)# vrf context management
switch(config)# ip domain-name mycompany.com
switch(config)# ip name-server 172.68.0.10
switch(config)# ip domain-lookup
```
About sFlow

sFlow allows you to monitor the real-time traffic in data networks that contain switches and routers. It uses the sampling mechanism in the sFlow Agent software on switches and routers for monitoring traffic and to forward the sample data on ingress and egress ports to the central data collector, also called the sFlow Analyzer.

For more information about sFlow, see RFC 3176.

sFlow Agent

The sFlow Agent, which is embedded in the Cisco NX-OS software, periodically samples or polls the interface counters that are associated with a data source of the sampled packets. The data source can be an Ethernet interface, an EtherChannel interface, or a range of either. Ethernet or port-channel sub-interfaces are not supported. The sFlow Agent queries the Ethernet port manager for the respective EtherChannel membership information and also receives notifications from the Ethernet port manager for membership changes.

When you enable sFlow sampling in the Cisco NX-OS software, based on the sampling rate and the hardware internal random number, the ingress packets and egress packets are sent to the CPU as an sFlow-sampled packet. The sFlow Agent processes the sampled packets and sends an sFlow datagram to the sFlow Analyzer. In addition to the original sampled packet, an sFlow datagram includes the information about the ingress port, egress port, and the original packet length. An sFlow datagram can have multiple sFlow samples.
Licensing Requirements

This feature does not require a license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Prerequisites

You must enable the sFlow feature using the `feature sflow` command to configure sFlow.

Guidelines and Limitations for sFlow

The sFlow configuration guidelines and limitations are as follows:

- When you enable sFlow for an interface, it is enabled for both ingress and egress. You cannot enable sFlow for only ingress or only egress.
- sFlow egress sampling for multicast, broadcast, or unknown unicast packets is not supported.
- You should configure the sampling rate based on the sFlow configuration and traffic in the system.
- Cisco Nexus 3600 platform switches supports only one sFlow collector.
- Ethernet or port-channel sub-interfaces are not supported as sFlow data-source ports.
- You cannot configure individual port-channel member ports as sFlow data-sources. The port-channel bundle interface can be sFlow enabled data-source ports, such as sFlow data-source interface po1.

Default Settings for sFlow

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFlow sampling-rate</td>
<td>4096</td>
</tr>
<tr>
<td>sFlow sampling-size</td>
<td>128</td>
</tr>
<tr>
<td>sFlow max datagram-size</td>
<td>1400</td>
</tr>
<tr>
<td>sFlow collector-port</td>
<td>6343</td>
</tr>
<tr>
<td>sFlow counter-poll-interval</td>
<td>20</td>
</tr>
</tbody>
</table>
Minimum Requirements for Sampling

Without these configured, no packets will be sampled: After you enable the sFlow feature, you must explicitly configure the following configuration elements for the packet sampling to take effect on the device.

- Sflow Agent-IP
- Sflow Collector-IP
- Sflow Data-source interface

If you do not configure the configuration elements, packets will not be sampled.

The default configuration elements specified as the default settings for sFlow are optional.

Configuring sFlow

Enabling the sFlow Feature

You must enable the sFlow feature before you can configure sFlow on the switch.

**SUMMARY STEPS**

1. switch# configure terminal
2. [no] feature sflow
3. (Optional) show feature
4. (Optional) switch(config)# copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>[no] feature sflow</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) show feature</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to enable the sFlow feature:

```
switch# configure terminal
switch(config)# feature sflow
switch(config)# copy running-config startup-config
```
Configuring the Sampling Rate

Before you begin

Ensure that you have enabled the sFlow feature.

SUMMARY STEPS

1. switch# configure terminal
2. [no] sflow sampling-rate sampling-rate
3. (Optional) show sflow
4. (Optional) switch(config)# copy running-config startup-config

DETAILS STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> [no] sflow sampling-rate sampling-rate</td>
<td>Configures the sFlow sampling rate for packets. The sampling-rate can be an integer between 4096-1000000000. The default value is 4096.</td>
</tr>
<tr>
<td><strong>Step 3</strong> (Optional) show sflow</td>
<td>Displays sFlow information.</td>
</tr>
<tr>
<td><strong>Step 4</strong> (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to set the sampling rate to 50,000:

```
switch# configure terminal
switch(config)# sflow sampling-rate 50000
switch(config)# copy running-config startup-config
```

With the above configuration, approximately 1 out of every 50,000 packets will be sampled and sent to the sFlow collector. Note that there could be a slight variance.

Configuring the Maximum Sampled Size

You can configure the maximum number of bytes that should be copied from a sampled packet.

Before you begin

Ensure that you have enabled the sFlow feature.

SUMMARY STEPS

1. switch# configure terminal
2. `[no] sflow max-sampled-size sampling-size`
3. (Optional) `show sflow`
4. (Optional) `switch(config)# copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>[no] sflow max-sampled-size sampling-size</code></td>
<td>Configures the sFlow maximum sampling size packets. The range for the sampling-size is from 64 to 256 bytes. The default value is 128.</td>
</tr>
<tr>
<td><strong>Step 3</strong> (Optional) <code>show sflow</code></td>
<td>Displays configured sFlow values.</td>
</tr>
<tr>
<td><strong>Step 4</strong> (Optional) <code>switch(config)# copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure the maximum sampling size for the sFlow Agent:

```
switch# configure terminal
switch(config)# sflow max-sampled-size 200
switch(config)# copy running-config startup-config
```

**Configuring the Counter Poll Interval**

You can configure the maximum number of seconds between successive samples of the counters that are associated with the data source. A sampling interval of 0 disables counter sampling.

**Before you begin**

Ensure that you have enabled the sFlow feature.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `[no] sflow counter-poll-interval poll-interval`
3. (Optional) `show sflow`
4. (Optional) `switch(config)# copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
### Configuring the Maximum Datagram Size

You can configure the maximum number of data bytes that can be sent in a single sample datagram.

**Before you begin**

Ensure that you have enabled the sFlow feature.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `[no] sflow max-datagram-size datagram-size`
3. (Optional) `show sflow`
4. (Optional) `switch(config)# copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>[no] sflow max-datagram-size datagram-size</code></td>
<td>Configures the sFlow maximum datagram size. The range for the <code>datagram-size</code> is from 200 to 9000 bytes. The default value is 1400.</td>
</tr>
<tr>
<td><strong>Step 3</strong> (Optional) <code>show sflow</code></td>
<td>Displays configured sFlow values.</td>
</tr>
<tr>
<td><strong>Step 4</strong> (Optional) <code>switch(config)# copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
**Example**

This example shows how to configure the sFlow maximum datagram size:

```
switch# configure terminal
switch(config)# sflow max-datagram-size 2000
[##] 100%
```

**Configuring the sFlow Analyzer Address**

**Before you begin**

Ensure that you have enabled the sFlow feature.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `[no] sflow collector-ip vrf IP-address vrf-instance`
3. (Optional) `show sflow`
4. (Optional) `switch(config)# copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | `[no] sflow collector-ip vrf IP-address vrf-instance` | Configures the IPv4 address for the sFlow Analyzer.  
  * `vrf-instance` can be one of the following:  
    - A user-defined VRF name—You can specify a maximum of 32 alphanumeric characters.  
    - `vrf management`—You must use this option if the sFlow data collector is on the network connected to the management port.  
    - `vrf default`—You must use this option if the sFlow data collector is connected to a network reachable via any front panel port residing on the default vrf. |
| Step 3 | (Optional) `show sflow` | Purpose "Displays configured sFlow values." |
| Step 4 | (Optional) `switch(config)# copy running-config startup-config` | Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration. |
Example

This example shows how to configure the IPv4 address of the sFlow data collector that is connected to the management port:

```
switch# configure terminal
switch(config)# sflow collector-ip 192.0.2.5 vrf management
switch(config)# copy running-config startup-config
```

Configuring the sFlow Analyzer Port

You can configure the destination port for sFlow datagrams.

Before you begin

Ensure that you have enabled the sFlow feature.

SUMMARY STEPS

1. `switch# configure terminal`
2. `no sflow collector-port collector-port`
3. (Optional) `show sflow`
4. (Optional) `switch(config)# copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>no sflow collector-port collector-port</code></td>
<td>Configures the UDP port of the sFlow Analyzer. The range for the <code>collector-port</code> is from 0 to 65535. The default value is 6343.</td>
</tr>
<tr>
<td>3</td>
<td>(Optional) <code>show sflow</code></td>
<td>Displays configured sFlow values.</td>
</tr>
<tr>
<td>4</td>
<td>(Optional) <code>switch(config)# copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the destination port for sFlow datagrams:

```
switch# configure terminal
switch(config)# sflow collector-port 7000
switch(config)# copy running-config startup-config
[#############################] 100%
switch(config)#
```
Configuring the sFlow Agent Address

**Before you begin**
Ensure that you have enabled the sFlow feature.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `[no] sflow agent-ip ip-address`
3. (Optional) `show sflow`
4. (Optional) `switch(config)# copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>[no] sflow agent-ip ip-address</code></td>
<td>Configures the IPv4 address of the sFlow Agent. The default <code>ip-address</code> is 0.0.0.0, which means that all sampling is disabled on the switch. You must specify a valid IP address to enable sFlow functionality. The configured value can be an IP address present on the local system or any other arbitrary IP value desired for a tracking purpose.</td>
</tr>
<tr>
<td>Step 3 (Optional) <code>show sflow</code></td>
<td>Displays sFlow information.</td>
</tr>
<tr>
<td>Step 4 (Optional) <code>switch(config)# copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure the IPv4 address of the sFlow Agent:

```
switch# configure terminal
switch(config)# sflow agent-ip 192.0.2.3
switch(config)# copy running-config startup-config
```

**Configuring the sFlow Sampling Data Source**

The sFlow sampling data source can be an Ethernet port, a range of Ethernet ports, or a port channel.

**Before you begin**

- Ensure that you have enabled the sFlow feature.
- If you want to use a port channel as the data source, ensure that you have already configured the port channel and you know the port channel number.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# [no] sflow data-source interface [ethernet slot/port[-port] | port-channel channel-number]
3. (Optional) switch(config)# show sflow
4. (Optional) switch(config)# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures the sFlow sampling data source. For an Ethernet data source, slot is the slot number and port can be either a single port number or a range of ports designated as port-port.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Displays configured sFlow values.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure Ethernet ports 5 through 12 for the sFlow sampler:

```
switch# configure terminal
switch(config)# sflow data-source interface ethernet 1/5-12
switch(config)# copy running-config startup-config
[##] 100%
switch(config)#
```

This example shows how to configure port channel 100 for the sFlow sampler:

```
switch# configure terminal
switch(config)# sflow data-source interface port-channel 100
switch(config)# copy running-config startup-config
[##] 100%
switch(config)#
```

Verifying the sFlow Configuration

Use the following commands to verify the sFlow configuration information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show sflow</td>
<td>Displays the sFlow global configuration.</td>
</tr>
<tr>
<td>show sflow statistics</td>
<td>Displays the sFlow statistics.</td>
</tr>
</tbody>
</table>
Configuration Examples for sFlow

This example shows how to configure sFlow:

```
feature sflow
sflow sampling-rate 5000
sflow max-sampled-size 200
sflow counter-poll-interval 100
sflow max-datagram-size 2000
sflow collector-ip 192.0.2.5 vrf management
sflow collector-port 7000
sflow agent-ip 192.0.2.3
sflow data-source interface ethernet 1/5
```

Additional References for sFlow

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFlow CLI commands</td>
<td>Cisco Nexus 3600 NX-OS Command Reference.</td>
</tr>
<tr>
<td>RFC 3176</td>
<td>Defines the sFlow packet format and SNMP MIB.</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.sflow.org/rfc3176.txt">http://www.sflow.org/rfc3176.txt</a></td>
</tr>
</tbody>
</table>
CHAPTER 19

Configuring Graceful Insertion and Removal

This chapter contains the following sections:

- About Graceful Insertion and Removal, on page 211
- Licensing Requirements for GIR, on page 213
- GIR Workflow, on page 213
- Configuring the Maintenance-Mode Profile, on page 214
- Configuring the Normal-Mode Profile, on page 215
- Creating a Snapshot, on page 216
- Adding Show Commands to Snapshots, on page 218
- Triggering Graceful Removal, on page 220
- Triggering Graceful Insertion, on page 222
- Maintenance Mode Enhancements, on page 223
- Verifying the GIR Configuration, on page 224

About Graceful Insertion and Removal

You can use graceful insertion and removal to gracefully eject a switch and isolate it from the network in order to perform debugging or upgrade operations. The switch is removed from the regular forwarding path with minimal traffic disruption. When you are finished performing debugging or upgrade operations, you can use graceful insertion to return the switch to its fully operational (normal) mode.

In graceful removal, all protocols and vPC domains are gracefully brought down and the switch is isolated from the network. In graceful insertion, all protocols and vPC domains are restored.

The following protocols are supported (for both IPv4 and IPv6 address families):

- Border Gateway Protocol (BGP)
- Enhanced Interior Gateway Routing Protocol (EIGRP)
- Intermediate System-to-Intermediate System (ISIS)
- Open Shortest Path First (OSPF)
- Protocol Independent Multicast (PIM)
- Routing Information Protocol (RIP)
For graceful insertion and removal, the PIM protocol is applicable only to vPC environments. During graceful removal, the vPC forwarding role is transferred to the vPC peer for all northbound sources of multicast traffic.

Profiles

By default, the system isolates all enabled protocols during graceful removal and restores them during graceful insertion. The protocols are isolated and restored in a predefined order.

If you want to isolate, shut down, or restore the protocols individually (or perform additional configurations), you can create a profile with configuration commands that can be applied during graceful removal or graceful insertion. However, you need to make sure that the order of the protocols is correct and any dependencies are considered.

The switch supports the following profiles:

- Maintenance-mode profile—Contains all the commands that will be executed during graceful removal, when the switch enters maintenance mode.
- Normal-mode profile—Contains all the commands that will be executed during graceful insertion, when the switch returns to normal mode.

The following commands (along with any configuration commands) are supported in the profiles:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolate</td>
<td>Isolates the protocol from the switch and puts the protocol in maintenance mode.</td>
</tr>
<tr>
<td>no isolate</td>
<td>Restores the protocol and puts the protocol in normal mode.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Shuts down the protocol or vPC domain.</td>
</tr>
<tr>
<td>no shutdown</td>
<td>Brings up the protocol or vPC domain.</td>
</tr>
<tr>
<td>system interface shutdown [exclude fex-fabric]</td>
<td>Shuts down the system interfaces (except the management interface).</td>
</tr>
<tr>
<td>no system interface shutdown [exclude fex-fabric]</td>
<td>Brings up the system interfaces.</td>
</tr>
<tr>
<td>sleep instance instance-number seconds</td>
<td>Delays the execution of the command by a specified number of seconds. You can delay multiple instances of the command. The range for the instance-number and seconds arguments is from 0 to 2177483647.</td>
</tr>
</tbody>
</table>
### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>python instance instance-number uri [python-arguments]</code></td>
<td>Configures Python script invocations to the profile. You can add multiple invocations of the command to the profile. You can enter a maximum of 32 alphanumeric characters for the Python arguments.</td>
</tr>
</tbody>
</table>

**Example:** `python instance 1 bootflash://script1.py`

---

### Snapshots

In Cisco NX-OS, a snapshot is the process of capturing the running states of selected features and storing them on persistent storage media.

Snapshots are useful to compare the state of a switch before graceful removal and after graceful insertion. The snapshot process consists of three parts:

- Creating a snapshot of the states of a few preselected features on the switch and storing them on the persistent storage media
- Listing the snapshots taken at various time intervals and managing them
- Comparing snapshots and showing the differences between features

---

### Licensing Requirements for GIR

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>Graceful insertion and removal (GIR) requires no license. Any feature not included in a license package is bundled with the nx-os image and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

---

### GIR Workflow

Follow these steps to complete the graceful insertion and removal (GIR) workflow:

1. (Optional) Create the maintenance-mode profile. (See Configuring the Maintenance-Mode Profile, on page 214.)
2. (Optional) Create the normal-mode profile. (See Configuring the Normal-Mode Profile, on page 215.)
3. Take a snapshot before triggering graceful removal. (See Creating a Snapshot, on page 216.)
4. Trigger graceful removal to put the switch in maintenance mode. (See Triggering Graceful Removal, on page 220.)
5. Trigger graceful insertion to return the switch to normal mode. (See Triggering Graceful Insertion, on page 222.)

6. Take a snapshot after triggering graceful insertion. (See Creating a Snapshot, on page 216.)

7. Use the show snapshots compare command to compare the operational data before and after the graceful removal and insertion of the switch to make sure that everything is running as expected. (See Verifying the GIR Configuration, on page 224.)

### Configuring the Maintenance-Mode Profile

You can create a maintenance-mode profile with configuration commands that can be applied during graceful removal or graceful insertion.

**SUMMARY STEPS**

1. configure maintenance profile maintenance-mode
2. end
3. show maintenance profile maintenance-mode

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure maintenance profile maintenance-mode</td>
<td>Enters a configuration session for the maintenance-mode profile. Depending on which protocols you have configured, you must now enter the appropriate commands to bring down the protocols. For a list of supported commands, see Profiles, on page 212.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-mm-profile)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Closes the maintenance-mode profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-mm-profile)# end</td>
<td></td>
</tr>
<tr>
<td>switch#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>show maintenance profile maintenance-mode</td>
<td>Displays the details of the maintenance-mode profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch#</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

This example shows how to create a maintenance-mode profile:

```
switch# configure maintenance profile maintenance-mode
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-mm-profile)# ip pim isolate
switch(config-mm-profile)# vpc domain 10
switch(config-mm-profile-config-vpc-domain)# shutdown
```
Configuring the Normal-Mode Profile

You can create a normal-mode profile with configuration commands that can be applied during graceful removal or graceful insertion.

SUMMARY STEPS

1. configure maintenance profile normal-mode
2. end
3. show maintenance profile normal-mode

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure maintenance profile normal-mode</td>
<td>Enters a configuration session for the normal-mode profile. Depending on which protocols you have configured, you must now enter the appropriate commands to bring up the protocols. For a list of supported commands, see Profiles, on page 212.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-mm-profile)# configure maintenance profile normal-mode</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>end</td>
<td>Closes the normal-mode profile.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-mm-profile)# end</td>
<td>switch#</td>
</tr>
<tr>
<td>Step 3</td>
<td>show maintenance profile normal-mode</td>
<td>Displays the details of the normal-mode profile.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-mm-profile)# show maintenance profile normal-mode</td>
<td>switch#</td>
</tr>
</tbody>
</table>
Creating a Snapshot

You can create a snapshot of the running states of selected features. When you create a snapshot, a predefined set of `show` commands are run and the outputs are saved.

**SUMMARY STEPS**

1. `snapshot create snapshot-name description`
2. `show snapshots`
3. `show snapshots compare snapshot-name-1 snapshot-name-2 [summary | ipv4routes | ipv6routes]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>snapshot create snapshot-name description</code></td>
<td>Captures the running state or operational data of selected features and stores the data on persistent storage media. You can enter a maximum of 64 alphanumeric chapters for the snapshot name and a maximum of 254 alphanumeric characters for the description. Use the `snapshot delete {all</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to create a maintenance-mode profile:

```plaintext
switch# configure maintenance profile normal-mode
switch(config-mm-profile)# no system interface shutdown
switch(config-mm-profile)# router eigrp 10
switch(config-mm-profile-router)# no shutdown
switch(config-mm-profile-router)# address-family ipv6 unicast
switch(config-mm-profile-router-af)# no shutdown
switch(config-mm-profile)# router bgp 100
switch(config-mm-profile-router)# no shutdown
switch(config-mm-profile-router)# vpc domain 10
switch(config-mm-profile-router)# no ip pim isolate
switch(config-mm-profile)# end
Exit maintenance profile mode.
switch# show maintenance profile normal-mode
[Normal Mode]
no system interface shutdown
router eigrp 10
 no shutdown
 address-family ipv6 unicast
 no shutdown
router bgp 100
 no shutdown
vpc domain 10
 no shutdown
no ip pim isolate
```
### Creating a Snapshot

**Step 2**
**show snapshots**

**Example:**
```
switch# show snapshots
Snapshot Name Time Description
snap_before_maintenance Wed Aug 19 13:53:28 2015 Taken before maintenance
```

**Purpose:** Displays snapshots present on the switch.

**Step 3**
**show snapshots compare snapshot-name-1 snapshot-name-2 [summary | ipv4routes | ipv6routes]**

**Example:**
```
switch# show snapshots compare snap_before_maintenance snap_after_maintenance
```

**Purpose:** Displays a comparison of two snapshots.

- The **summary** option displays just enough information to see the overall changes between the two snapshots.
- The **ipv4routes** and **ipv6routes** options display the changes in IPv4 and IPv6 routes between the two snapshots.

### Example

The following example shows a summary of the changes between two snapshots:

```
switch# show snapshots compare snapshot1 snapshot2 summary
feature snapshot1 snapshot2 changed
basic summary
 # of interfaces 16 12 *
 # of vlans 10 4 *
 # of ipv4 routes 33 3 *

interfaces
 # of eth interfaces 3 0 *
 # of eth interfaces up 2 0 *
 # of eth interfaces down 1 0 *
 # of eth interfaces other 0 0
 # of vlan interfaces 3 1 *
 # of vlan interfaces up 3 1 *
 # of vlan interfaces down 0 0 *
 # of vlan interfaces other 0 1 *
```

The following example shows the changes in IPv4 routes between two snapshots:

```
switch# show snapshots compare snapshot1 snapshot2 ipv4routes
metric snapshot1 snapshot2 changed
 # of routes 33 3 *
 # of adjacencies 10 4 *
```

---

**Cisco Nexus 3600 NX-OS System Management Configuration Guide, Release 9.2(x)**
----- ------------------
23.0.0.0/8 not in snapshot2
10.10.10.1/32 not in snapshot2
21.1.2.3/8 adjacency index has changed from 29 (snapshot1) to 38 (snapshot2)

There were 28 attribute changes detected

# Adding Show Commands to Snapshots

You can specify additional `show` commands to be captured in snapshots. These `show` commands are defined in user-specified snapshot sections.

## SUMMARY STEPS

1. `snapshot section add` `section "show-command" row-id element-key1 [element-key2]`
2. `show snapshots sections`
3. `show snapshots compare` `snapshot-name-1 snapshot-name-2 [summary | ipv4routes | ipv6routes]`

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Adds a user-specified section to snapshots. The <code>section</code> is used to name the <code>show</code> command output. You can use any word to name the section. The <code>show</code> command must be enclosed in quotation marks. <strong>Note</strong> To delete a user-specified section from snapshots, use the <code>snapshot section delete section</code> command.</td>
</tr>
<tr>
<td><code>snapshot section add</code> <code>section &quot;show-command&quot; row-id element-key1 [element-key2]</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> <code>switch# snapshot section add myshow &quot;show ip interface brief&quot; ROW_intf intf-name</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Displays the user-specified snapshot sections.</td>
</tr>
<tr>
<td><code>show snapshots sections</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> <code>switch# show snapshots sections</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Displays a comparison of two snapshots. The <code>summary</code> option displays just enough information to see the overall changes between the two snapshots. The <code>ipv4routes</code> and <code>ipv6routes</code> options display the changes in IPv4 and IPv6 routes between the two snapshots.</td>
</tr>
<tr>
<td><code>show snapshots compare</code> `snapshot-name-1 snapshot-name-2 [summary</td>
<td>ipv4routes</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>switch# show snapshots compare snap1 snap2</code></td>
<td></td>
</tr>
</tbody>
</table>
Example

The following example adds the `show ip interface brief` command to the myshow snapshot section. It also compares two snapshots (snap1 and snap2) and shows the user-specified sections in both snapshots.

```bash
switch# snapshot section add myshow "show ip interface brief" ROW_intf intf-name
switch# show snapshots sections
user-specified snapshot sections

[myshow] cmd: show ip interface brief
 row: ROW_intf
 key1: intf-name
 key2: -
sect2] cmd: show ip ospf vrf all
 row: ROW_ctx
 key1: instance_number
 key2: cname
switch# show snapshots compare snap1 snap2
```

<table>
<thead>
<tr>
<th>Feature</th>
<th>Tag</th>
<th>snap1</th>
<th>snap2</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```bash
[interface:mgmt0]
vdc_lvl_in_pkts 692310 **692317**
vdc_lvl_in_mcast 575281 **575287**
vdc_lvl_in_bcast 77209 **77210**
vdc_lvl_in_bytes 63293252 **63293714**
vdc_lvl_out_pkts 41197 **41198**
vdc_lvl_out_ucast 33966 **33967**
vdc_lvl_out_bytes 6419714 **6419788**
```

| ospf |     |       |       |
|      |     |       |       |

| myshow |     |       |       |
|        |     |       |       |

```bash
[interface:Ethernet1/1]
state up **down**
admin_state up **down**
```

```bash
Cisco Nexus 3600 NX-OS System Management Configuration Guide, Release 9.2(x) 219
```
Triggering Graceful Removal

In order to perform debugging or upgrade operations, you can trigger a graceful removal of the switch, which will eject the switch and isolate it from the network.

Before you begin

If you want the system to use a maintenance-mode profile that you create, see Configuring the Maintenance-Mode Profile, on page 214.

**SUMMARY STEPS**

1. configure terminal
2. system mode maintenance [dont-generate-profile | timeout value | shutdown | on-reload reset-reason reason]
3. (Optional) show system mode
4. (Optional) copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2** system mode maintenance [dont-generate-profile	timeout value	shutdown	on-reload reset-reason reason]	Puts all enabled protocols in maintenance mode (using the isolate command).
Example:				
switch(config)# system mode maintenance	Following configuration will be applied:			
ip pim isolate router bgp 65502 isolate router ospf p1 isolate router ospfv3 p1 isolate	Do you want to continue (y/n)? [no] y			
Generating a snapshot before going into maintenance mode	Starting to apply commands...			
Applying : ip pim isolate	Applying : router bgp 65502			
Applying : isolate	Applying : router ospf p1			
Applying : isolate	Applying : router ospfv3 p1			
Applying : isolate	Applying : isolate			

The following options are available:

- **dont-generate-profile**—Prevents the dynamic searching of enabled protocols and executes commands configured in a maintenance-mode profile. Use this option if you want the system to use a maintenance-mode profile that you have created.

- **timeout value**—Keeps the switch in maintenance mode for a specified number of minutes. The range is from 5 to 65535. Once the configured time elapses, the switch returns to normal mode automatically. The no system mode maintenance timeout command disables the timer.

- **shutdown**—Shuts down all protocols, vPC domains, and interfaces except the management interface (using the shutdown command). This option is disruptive while the default (which uses the isolate command) is not.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Applying : router ospfv3 p1  
Applying : isolate  
Maintenance mode operation successful. | **• on-reload reset-reason reason**—Boots the switch into maintenance mode automatically in the event of a specified system crash. The **no system mode maintenance on-reload reset-reason** command prevents the switch from being brought up in maintenance mode in the event of a system crash. The maintenance mode reset reasons are as follows:  
• HW_ERROR—Hardware error  
• SVC_FAILURE—Critical service failure  
• KERN_FAILURE—Kernel panic  
• WDOG_TIMEOUT—Watchdog timeout  
• FATAL_ERROR—Fatal error  
• LC_FAILURE—Line card failure  
• MATCH_ANY—Any of the above reasons  
The system prompts you to continue. Enter `y` to continue or `n` to terminate the process. |

**Step 3**  
(Optional) **show system mode**  
**Example:**  
```
switch(config)# show system mode
System Mode: Maintenance
```
Displays the current system mode.  
The switch is in maintenance mode. You can now perform any desired debugging or upgrade operations on the switch.

**Step 4**  
(Optional) **copy running-config startup-config**  
**Example:**  
```
switch(config)# copy running-config startup-config
```
Copies the running configuration to the startup configuration. This command is required if you want to preserve maintenance mode following a reboot.

**Example**  
This example shows how to shut down all protocols, vPC domains, and interfaces on the switch:  
```
switch(config)# system mode maintenance shutdown
```
Following configuration will be applied:  
```
vpc domain 10
shutdown
router bgp 65502
shutdown
router ospf p1
shutdown
router ospfv3 p1
shutdown
system interface shutdown
```
Do you want to continue (y/n)? [no] y
Generating a snapshot before going into maintenance mode

Starting to apply commands...

Applying: vpc domain 10
Applying: shutdown
Applying: router bgp 65502
Applying: shutdown
Applying: router ospf p1
Applying: shutdown
Applying: router ospfv3 p1
Applying: shutdown

Maintenance mode operation successful.

This example shows how to automatically boot the switch into maintenance mode if a fatal error occurs:

switch(config)# system mode maintenance on-reload reset-reason fatal_error

### Triggering Graceful Insertion

When you finish performing any debugging or upgrade operations, you can trigger a graceful insertion to restore all protocols.

#### Before you begin

If you want the system to use a normal-mode profile that you create, see Configuring the Maintenance-Mode Profile, on page 214.

#### SUMMARY STEPS

1. `configure terminal`
2. `no system mode maintenance [dont-generate-profile]`
3. (Optional) `show system mode`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
  configure terminal  
  **Example:**
  switch# configure terminal  
  switch(config)# | Enters global configuration mode. |
| **Step 2**
  no system mode maintenance [dont-generate-profile]  
  **Example:**
  switch(config)# no system mode maintenance  
  dont-generate-profile  
  Following configuration will be applied:  
  | Puts all enabled protocols in normal mode (using the no isolate command).  
  The dont-generate-profile option prevents the dynamic searching of enabled protocols and executes commands configured in a normal-mode profile. Use this option if you |
### Command or Action

- `no ip pim isolate`
- `router bgp 65502`
- `no isolate`
- `router ospf p1`
- `no isolate`
- `router ospfv3 p1`
- `no isolate`

Do you want to continue (y/n)? [no] y

Starting to apply commands...

Applying : no ip pim isolate
Applying : router bgp 65502
Applying : no isolate
Applying : router ospf p1
Applying : no isolate
Applying : router ospfv3 p1
Applying : no isolate

Maintenance mode operation successful.

Generating Current Snapshot

---

### Step 3

**Optional** show system mode

**Example:**

```bash
switch(config)# show system mode
System Mode: Normal
```

---

**Maintenance Mode Enhancements**

The following maintenance mode enhancements are added to Cisco Nexus 3600 platform switches:

- In the system maintenance shutdown mode, the following message is added:
  
  ```
 NOTE: The command system interface shutdown will shutdown all interfaces excluding mgmt 0.
  ```

- Entering the CLI command, `system mode maintenance` checks and sends alerts for the orphan ports.

- In isolate mode, when the vPC is configured, the following message is added:
  
  ```
 NOTE: If you have vPC orphan interfaces, please ensure vpc orphan-port suspend is configured under them, before proceeding further.
  ```

- Custom Profile Configuration: A new CLI command, `system mode maintenance always-use-custom-profile` is added for custom profile configuration. A new CLI command, `system mode maintenance non-interactive` is added under #ifdef for Cisco Nexus 9000 Series switches only.

  When you create a custom profile (in maintenance or normal mode), it displays the following message:

  ```
 Please use the command system mode maintenance always-use-custom-profile if you want to always use the custom profile.
  ```

- A delay has been added before the after_maintenance snapshot is taken. The `no system mode maintenance` command exits once all the configuration for the normal mode has been applied, the mode has been changed to normal mode, and a timer has been started to take the after_maintenance snapshot. Once the
timer expires, the after_maintenance snapshot is taken in the background and a new warning syslog, MODE_SNAPSHOT_DONE is sent once the snapshot is complete.

The final output of the CLI command no system mode maintenance indicates when the after_maintenance snapshot is generated:

The after_maintenance snapshot will be generated in <delay> seconds. After that time, please use show snapshots compare before_maintenance after_maintenance to check the health of the system. The timer delay for the after_maintenance snapshot is defaulted to 120 seconds but it can be changed by a new configuration command.

The new configuration command to change the timer delay for the after_maintenance snapshot is system mode maintenance snapshot-delay <seconds>. This configuration overrides the default setting of 120 seconds to any value between 0 and 65535 and it is displayed in the ASCII configuration.

A new show command, show maintenance snapshot-delay has also been added to display the current snapshot-delay value. This new show command supports the XML output.

- A visible CLI indicator has been added to display when the system is in the maintenance mode, for example, switch (m-mode) #.

- Support for the SNMP traps has been added when the device moves from the maintenance mode to the normal mode and vice-versa through CLI reload, or system reset. The snmp-server enable traps mmode cseMaintModeChangeNotify trap is added to enable changing to the maintenance mode trap notification. The snmp-server enable traps mmode cseNormalModeChangeNotify is added to enable changing to the normal mode trap notification. Both the traps are disabled by default.

Verifying the GIR Configuration

To display the GIR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interface brief</td>
<td>Displays abbreviated interface information.</td>
</tr>
<tr>
<td>show maintenance on-reload reset-reasons</td>
<td>Displays the reset reasons for which the switch comes up in maintenance mode. For a description of the maintenance mode reset reasons, see Triggering Graceful Removal, on page 220.</td>
</tr>
<tr>
<td>show maintenance profile [maintenance-mode</td>
<td>normal-mode]</td>
</tr>
<tr>
<td>show maintenance timeout</td>
<td>Displays the maintenance-mode timeout period, after which the switch automatically returns to normal mode.</td>
</tr>
<tr>
<td>show {running-config</td>
<td>startup-config} mmode [all]</td>
</tr>
<tr>
<td>show snapshots</td>
<td>Displays snapshots present on the switch.</td>
</tr>
</tbody>
</table>
### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show snapshots compare snapshot-name-1 snapshot-name-2 [summary</td>
<td>ipv4routes</td>
</tr>
<tr>
<td><code>show snapshots dump snapshot-name</code></td>
<td>Displays the content of each file that was generated when the snapshot was taken.</td>
</tr>
<tr>
<td><code>show snapshots sections</code></td>
<td>Displays the user-specified snapshot sections.</td>
</tr>
<tr>
<td><code>show system mode</code></td>
<td>Displays the current system mode.</td>
</tr>
</tbody>
</table>
Verifying the GIR Configuration
CHAPTER 20

Configuring Rollback

This chapter contains the following sections:

• About Rollbacks, on page 227
• Guidelines and Limitations for Rollbacks, on page 227
• Creating a Checkpoint, on page 228
• Implementing a Rollback, on page 229
• Verifying the Rollback Configuration, on page 230

About Rollbacks

The rollback feature allows you to take a snapshot, or user checkpoint, of the Cisco NX-OS configuration and then reapply that configuration to your switch at any point without having to reload the switch. A rollback allows any authorized administrator to apply this checkpoint configuration without requiring expert knowledge of the features configured in the checkpoint.

You can create a checkpoint copy of the current running configuration at any time. Cisco NX-OS saves this checkpoint as an ASCII file which you can use to roll back the running configuration to the checkpoint configuration at a future time. You can create multiple checkpoints to save different versions of your running configuration.

When you roll back the running configuration, you can trigger an atomic rollback. An atomic rollback implements a rollback only if no errors occur.

Guidelines and Limitations for Rollbacks

A rollback has the following configuration guidelines and limitations:

• You can create up to ten checkpoint copies.

• You cannot apply the checkpoint file of one switch into another switch.

• Your checkpoint file names must be 75 characters or less.

• You cannot start a checkpoint filename with the word system.

• You can start a checkpoint filename with the word auto.

• You can name a checkpoint file summary or any abbreviation of the word summary.
• Only one user can perform a checkpoint, rollback, or copy the running configuration to the startup configuration at the same time.

• After you enter the write erase and reload command, checkpoints are deleted. You can use the clear checkpoint database command to clear out all checkpoint files.

• When checkpoints are created on bootflash, differences with the running-system configuration cannot be performed before performing the rollback, and the system reports “No Changes.”

• Checkpoints are local to a switch.

• Checkpoints that are created using the checkpoint and checkpoint checkpoint_name commands are present upon a switchover for all switches.

• A rollback to files on bootflash is supported only on files that are created using the checkpoint checkpoint_name command and not on any other type of ASCII file.

• Checkpoint names must be unique. You cannot overwrite previously saved checkpoints with the same name.

• The Cisco NX-OS commands may differ from the Cisco IOS commands.

Creating a Checkpoint

You can create up to ten checkpoints of your configuration per switch.

SUMMARY STEPS

1. switch# checkpoint { [cp-name] [description descr] | file file-name
2. (Optional) switch# no checkpoint cp-name
3. (Optional) switch# show checkpoint cp-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Creates a checkpoint of the running configuration to either a user checkpoint name or a file. The checkpoint name can be any alphanumeric string up to 80 characters but cannot contain spaces. If you do not provide a name, Cisco NX-OS sets the checkpoint name to user-checkpoint-<number> where number is from 1 to 10.

The description can contain up to 80 alphanumeric characters, including spaces. |
| switch# checkpoint { [cp-name] [description descr] | file file-name Example: | switch# checkpoint stable |

**Step 2** | You can use the no form of the checkpoint command to remove a checkpoint name. Use the delete command to remove a checkpoint file. |
| (Optional) switch# no checkpoint cp-name Example: | switch# no checkpoint stable |

**Step 3** | Displays the contents of the checkpoint name. |
| (Optional) switch# show checkpoint cp-name Example: | |
Implementing a Rollback

You can implement a rollback to a checkpoint name or file. Before you implement a rollback, you can view the differences between source and destination checkpoints that reference current or saved configurations.

**Note**
If you make a configuration change during an atomic rollback, the rollback will fail.

**SUMMARY STEPS**

1. `show diff rollback-patch {checkpoint src-cp-name | running-config | startup-config | file source-file} {checkpoint dest-cp-name | running-config | startup-config | file dest-file}`
2. `rollback running-config {checkpoint cp-name | file cp-file} atomic`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

  * show diff rollback-patch {checkpoint src-cp-name | running-config | startup-config | file source-file}
  * {checkpoint dest-cp-name | running-config | startup-config | file dest-file}

  * **Example:**
    * `switch# show diff rollback-patch checkpoint stable running-config`

| Step 2

  * rollback running-config {checkpoint cp-name | file cp-file} atomic

  * **Example:**
    * `switch# rollback running-config checkpoint stable atomic`

**Example**

The following example shows how to create a checkpoint file and then implement an atomic rollback to a user checkpoint name:

```
switch# checkpoint stable
switch# rollback running-config checkpoint stable atomic
```
Verifying the Rollback Configuration

Use the following commands to verify the rollback configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show checkpoint</code> <em>name [ all]</em></td>
<td>Displays the contents of the checkpoint name.</td>
</tr>
<tr>
<td><code>show checkpoint all</code> *user</td>
<td>system*</td>
</tr>
<tr>
<td><code>show checkpoint summary</code> *user</td>
<td>system*</td>
</tr>
<tr>
<td><code>show diff rollback-patch</code> *checkpoint src-cp-name</td>
<td>running-config</td>
</tr>
<tr>
<td><code>show rollback log</code> *exec</td>
<td>verify*</td>
</tr>
</tbody>
</table>

**Note**

Use the `clear checkpoint database` command to delete all checkpoint files.
About User Accounts and RBAC

Cisco Nexus 3600 platform switches use role-based access control (RBAC) to define the amount of access that each user has when the user logs into the switch.

With RBAC, you define one or more user roles and then specify which management operations each user role is allowed to perform. When you create a user account for the switch, you associate that account with a user role, which then determines what the individual user is allowed to do on the switch.

User Roles

User roles contain rules that define the operations allowed for the user who is assigned the role. Each user role can contain multiple rules and each user can have multiple roles. For example, if role1 allows access only to configuration operations, and role2 allows access only to debug operations, users who belong to both role1 and role2 can access configuration and debug operations. You can also limit access to specific VLANs, and interfaces.

The switch provides the following default user roles:

**network-admin (superuser)**

Complete read and write access to the entire switch.

**network-operator**

Complete read access to the switch.
If you belong to multiple roles, you can execute a combination of all the commands permitted by these roles. Access to a command takes priority over being denied access to a command. For example, suppose a user has RoleA, which denied access to the configuration commands. However, the user also has RoleB, which has access to the configuration commands. In this case, the user has access to the configuration commands.

## Rules

The rule is the basic element of a role. A rule defines what operations the role allows the user to perform. You can apply rules for the following parameters:

### Command

A command or group of commands defined in a regular expression.

### Feature

Commands that apply to a function provided by the Cisco Nexus device. Enter the `show role feature` command to display the feature names available for this parameter.

### Feature group

Default or user-defined group of features. Enter the `show role feature-group` command to display the default feature groups available for this parameter.

These parameters create a hierarchical relationship. The most basic control parameter is the command. The next control parameter is the feature, which represents all commands associated with the feature. The last control parameter is the feature group. The feature group combines related features and allows you to easily manage the rules.

You can configure up to 256 rules for each role. The user-specified rule number determines the order in which the rules are applied. Rules are applied in descending order. For example, if a role has three rules, rule 3 is applied before rule 2, which is applied before rule 1.

## User Role Policies

You can define user role policies to limit the switch resources that the user can access, or to limit access to interfaces and VLANs.

User role policies are constrained by the rules defined for the role. For example, if you define an interface policy to permit access to specific interfaces, the user does not have access to the interfaces unless you configure a command rule for the role to permit the `interface` command.

If a command rule permits access to specific resources (interfaces, VLANs), the user is permitted to access these resources, even if the user is not listed in the user role policies associated with that user.

## User Account Configuration Restrictions

The following words are reserved and cannot be used to configure users:

- adm
- bin
The Cisco Nexus 3600 platform switch does not support all numeric usernames, even if those usernames were created in TACACS+ or RADIUS. If an all numeric username exists on an AAA server and is entered during login, the switch rejects the login request.

User Password Requirements

Cisco Nexus device passwords are case sensitive and can contain alphanumeric characters only. Special characters, such as the dollar sign ($) or the percent sign (%), are not allowed.

If a password is trivial (such as a short, easy-to-decipher password), the Cisco Nexus device rejects the password. Be sure to configure a strong password for each user account. A strong password has the following characteristics:

- At least eight characters long
- Does not contain many consecutive characters (such as "abcd")
• Does not contain many repeating characters (such as "aaabbb")
• Does not contain dictionary words
• Does not contain proper names
• Contains both uppercase and lowercase characters
• Contains numbers

The following are examples of strong passwords:
• If2CoM18
• 2009AsdfLkj30
• Cb1955S21

Note
For security reasons, user passwords do not display in the configuration files.

Guidelines and Limitations for User Accounts

User accounts have the following guidelines and limitations when configuring user accounts and RBAC:
• Regardless of the read-write rule configured for a user role, some commands can be executed only through the predefined network-admin role.
• Up to 256 rules can be added to a user role.
• A maximum of 64 user roles can be assigned to a user account.
• You can assign a user role to more than one user account.
• Predefined roles such as network-admin and network-operator are not editable.

Note
A user account must have at least one user role.

Configuring User Accounts

Note
Changes to user account attributes do not take effect until the user logs in and creates a new session.

You can use any alphanumeric character (or) an _ (underscore) as the first character in a username. Using any other special characters for the first character is not allowed. If the username contains the characters that are not allowed, the specified user is unable to log in.
SUMMARY STEPS

1. switch# configure terminal
2. (Optional) switch(config)# show role
3. switch(config)# username user-id [password password] [expire date] [role role-name]
4. switch(config)# exit
5. (Optional) switch# show user-account
6. (Optional) switch# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>(Optional) switch(config)# show role</td>
<td>Displays the user roles available. You can configure other user roles, if necessary.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# username user-id [password password] [expire date] [role role-name]</td>
<td>Configures a user account. The user-id is a case-sensitive, alphanumeric character string with a maximum of 28 characters. The default password is undefined.</td>
</tr>
<tr>
<td></td>
<td>Note If you do not specify a password, the user might not be able to log into the switch.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note Starting with Release 7.0(3)F3(1), a new internal function is implemented to check the password strength. The expire date option format is YYYY-MM-DD. The default is no expiry date.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# exit</td>
<td>Exists global configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) switch# show user-account</td>
<td>Displays the role configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) switch# copy running-config startup-config</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

The following example shows how to configure a user account:

switch# configure terminal
switch(config)# username NewUser password 4Ty18Rnt
switch(config)# exit
switch# show user-account

The following example shows the criteria in enabling the password strength-check starting with Release 7.0(3)F3(1):

switch(config)# username xyz password nbv12345
password is weak
Password should contain characters from at least three of the following classes: lower case
### Configuring RBAC

#### Creating User Roles and Rules

The rule number that you specify determines the order in which the rules are applied. Rules are applied in descending order. For example, if a role has three rules, rule 3 is applied before rule 2, which is applied before rule 1.

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config) # role name role-name`
3. `switch(config-role) # rule number {deny | permit} command command-string`
4. `switch(config-role) # rule number {deny | permit} {read | read-write}`
5. `switch(config-role)# rule number {deny | permit} {read | read-write} feature feature-name`
6. `switch(config-role)# rule number {deny | permit} {read | read-write} feature-group group-name`
7. (Optional) `switch(config-role)# description text`
8. `switch(config-role)# end`
9. (Optional) `switch# show role`
10. (Optional) `switch# copy running-config startup-config`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>switch(config) # role name role-name</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>`switch(config-role) # rule number {deny</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>`switch(config-role)# rule number {deny</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>`switch(config-role)# rule number {deny</td>
</tr>
</tbody>
</table>
Creating Feature Groups

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# role feature-group group-name
3. switch(config)# exit
4. (Optional) switch# show role feature-group
5. (Optional) switch# copy running-config startup-config

DETAILLED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Creating Feature Groups

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# role name UserA
3. switch(config)# rule deny command clear users
4. switch(config)# rule deny read-write
5. switch(config)# description This role does not allow users to use clear commands
6. switch(config)# end

Example

This example shows how to create user roles and specify rules:

```
switch# configure terminal
switch(config)# role name UserA
switch(config)# rule deny command clear users
switch(config)# rule deny read-write
switch(config)# description This role does not allow users to use clear commands
switch(config)# end
```

### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2** | `switch(config) # role feature-group group-name`  
Specifies a user role feature group and enters role feature group configuration mode.  
The *group-name* is a case-sensitive, alphanumeric character string with a maximum of 32 characters. |
| **Step 3** | `switch(config) # exit`  
Exits global configuration mode. |
| **Step 4** (Optional) | `switch# show role feature-group`  
Displays the role feature group configuration. |
| **Step 5** (Optional) | `switch# copy running-config startup-config`  
Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration. |

### Example

This example shows how to create a feature group:

```
switch# configure terminal
switch(config)# role feature-group group1
switch(config)# exit
switch# show role feature-group
switch# copy running-config startup-config
switch#
```

### Changing User Role Interface Policies

You can change a user role interface policy to limit the interfaces that the user can access. Specify a list of interfaces that the role can access. You can specify it for as many interfaces as needed.

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# role name role-name`
3. `switch(config-role)# interface policy deny`
4. `switch(config-role-interfaced)# permit interface interface-list`
5. `switch(config-role-interfaced)# exit`
6. (Optional) `switch(config-role)# show role`
7. (Optional) `switch(config-role)# copy running-config startup-config`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `switch# configure terminal`  
Enters global configuration mode. |
| **Step 2** | `switch(config)# role name role-name`  
Specifies a user role and enters role configuration mode. |
| **Step 3** | `switch(config-role)# interface policy deny`  
Enters role interface policy configuration mode. |
<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>switch(config-role-interface) # permit interface interface-list</code></td>
<td>Specifies a list of interfaces that the role can access. Repeat this command for as many interfaces as needed. For this command, you can specify Ethernet interfaces.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>switch(config-role-interface) # exit</code></td>
<td>Exits role interface policy configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) <code>switch(config-role) # show role</code></td>
<td>Displays the role configuration.</td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) <code>switch(config-role) # copy running-config startup-config</code></td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to change a user role interface policy to limit the interfaces that the user can access:

```
switch# configure terminal
switch(config)# role name UserB
switch(config)# interface policy deny
switch(config)# permit interface ethernet 2/1
switch(config)# permit interface fc 3/1
switch(config)# permit interface vfc 30/1
```

**Changing User Role VLAN Policies**

You can change a user role VLAN policy to limit the VLANs that the user can access.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# role name role-name`
3. `switch(config)# vlan policy deny`
4. `switch(config)# permit vlan vlan-list`
5. `switch(config)# exit`
6. (Optional) `show role`
7. (Optional) `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# role name role-name</code></td>
<td>Specifies a user role and enters role configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config)# vlan policy deny</code></td>
<td>Enters role VLAN policy configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch(config)# permit vlan vlan-list</code></td>
<td>Specifies a range of VLANs that the role can access.</td>
</tr>
</tbody>
</table>
Verifying the User Accounts and RBAC Configuration

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show role [role-name]</td>
<td>Displays the user role configuration</td>
</tr>
<tr>
<td>show role feature</td>
<td>Displays the feature list.</td>
</tr>
<tr>
<td>show role feature-group</td>
<td>Displays the feature group configuration.</td>
</tr>
<tr>
<td>show startup-config security</td>
<td>Displays the user account configuration in the startup configuration.</td>
</tr>
<tr>
<td>show running-config security [all]</td>
<td>Displays the user account configuration in the running configuration. The all keyword displays the default values for the user accounts.</td>
</tr>
<tr>
<td>show user-account</td>
<td>Displays user account information.</td>
</tr>
</tbody>
</table>

Default Settings for the User Accounts and RBAC

The following table lists the default settings for user accounts and RBAC parameters.

Table 26: Default User Accounts and RBAC Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>User account password</td>
<td>Undefined.</td>
</tr>
<tr>
<td>User account expiry date</td>
<td>None.</td>
</tr>
<tr>
<td>Interface policy</td>
<td>All interfaces are accessible.</td>
</tr>
<tr>
<td>VLAN policy</td>
<td>All VLANs are accessible.</td>
</tr>
</tbody>
</table>
INDEX

A
action statements 137
EEM 137
action statements, configuring 144
EEM 144
activating sessions 167
SPAN 167
adding show commands, alert groups 80
smart call home 80
additional references 152
EEM 152
agent address 207
sFlow 207
alert groups 67
smart call home 67
analyzer address 205
sFlow 205
analyzer port 206
sFlow 206
associating alert groups 79
smart call home 79

c C

call home notifications 86, 87
full-text format for syslog 86
XML format for syslog 87
clear logging onboard 158
committing 56
NTP configuration changes 56
configuration example 190, 209
ERSPAN 190
source 190
sFlow 209
configuration examples 58, 169
for SPAN 169
NTP 58
configuration sync after reboot 24
switch profiles 24
configuration, verifying 100
scheduler 100
configure maintenance profile maintenance-mode 214
configure maintenance profile normal-mode 215
configuring 45, 46, 47, 49, 50, 51, 54
device as an authoritative NTP server 45
NTP authentication 47, 49
NTP logging 54
NTP server and peer 46
NTP source interface 51
NTP source IP address 50
contact information, configuring 75
smart call home 75
counter poll interval 203
sFlow 203
creating, deleting sessions 162
SPAN 162

d D

datagram size 204
sFlow 204
default parameters 177
ERSPAN 177
default settings 44, 64, 74, 93, 139, 200
EEM 139
rollback 64
scheduler 93
sFlow 200
smart call home 74
default SNMP settings 107
defining EEM policies 146
VSH script 146
description, configuring 166
SPAN 166
destination ports, characteristics 161
SPAN 161
destination profile, creating 77
smart call home 77
destination profile, modifying 78
smart call home 78
destination profiles 66
smart call home 66
destinations 160
SPAN 160
device IDs 69
call home format 69
diagnostics 131, 132, 134
configuring 132
diagnostics (continued)
  - default settings 134
  - expansion modules 132
  - health monitoring 132
  - runtime 131
disabling 99
  - scheduler 99
discarding 56
  - NTP configuration changes 56
displaying information 168
  - SPAN 168
downgrading software 161
  - loss of SPAN configurations 161
duplicate message throttling, disabling 83, 84
  - smart call home 83, 84
E
e-mail details, configuring 81
  - smart call home 81
e-mail notifications 65
  - smart call home 65
EEE 138
  - guidelines and limitations 138
EEM 135, 136, 137, 138, 139, 140, 141, 144, 146, 147, 148, 152
  - action statements 137
  - action statements, configuring 144
  - additional references 152
  - default settings 139
  - defining environment variables 139
  - event statements 136
  - event statements, configuring 141
  - licensing 138
  - policies 135
  - prerequisites 138
  - syslog script 148
  - system policies, overriding 147
  - user policy, defining 140
  - VSH script 146
    - registering and activating 146
  - VSH script policies 138
  - embedded event manager overview 135
enabling 55, 93
  - CFS distribution for NTP 55
  - scheduler 93
environment variables, defining 139
EEM 139
ERSPAN 173, 174, 177, 190, 192
  - configuring source sessions 177
  - default parameters 177
  - high availability 174
  - information about 174
  - licensing requirements 174
  - prerequisites 174
  - related documents 192
ERSPAN (continued)
  - sessions 174
    - multiple 174
    - source 190
      - configuration example 190
      - source sessions 177
      - configuring for ERSpan 177
      - sources 173
  - Ethernet destination port, configuring 162
    - SPAN 162
  - event statements 136
    - EEM 136
  - event statements, configuring 141
    - EEM 141
  - example 100, 101
    - job schedule, displaying 101
    - scheduler job, creating 100
    - scheduler job, scheduling 101
    - scheduler jobs, displaying results 101
  - example, local and peer sync 30
    - switch profiles 30
  - executing a session 63
F
feature groups, creating 237
  - RBAC 237
filtering SNMP requests 110
G
GOLD diagnostics 131, 132
  - configuring 132
  - expansion modules 132
  - health monitoring 132
  - runtime 131
guidelines 200
  - sFlow 200
guidelines and limitations 10, 73, 92, 107, 138, 161, 234
  - EEM 138
  - scheduler 92
  - smart call home 73
  - SNMP 107
  - SPAN 161
  - switch profiles 10
  - user accounts 234
  - guidelines and limitations for configuration rollback 227
H
health monitoring diagnostics 132
  - information 132
high availability 35
  - PTP 35
    - high availability 35
hw-module logging onboard 155
hw-module logging onboard counter-stats 155
hw-module logging onboard cpuhog 156
hw-module logging onboard environmental-history 156
hw-module logging onboard error-stats 156
hw-module logging onboard interrupt-stats 156
hw-module logging onboard module 156
hw-module logging onboard obfl-logs 156

I
IDs 69
  serial IDs 69
  information 41
    ntp 41
  information about 42, 91
    clock manager 42
    distributing NTP using CFS 42
    NTP as time server 42
    scheduler 91
interfaces, configuring 38
  PTP 38
isolate 212

J
job schedule, displaying 101
  example 101
job, deleting 96
  scheduler 96

L
licensing 35, 92, 107, 138, 200
  EEM 138
  PTP 35
    licensing 35
    scheduler 92
  sFlow 200
  SNMP 107
licensing requirements 174
  ERSPAN 174
linkDown notifications 117, 118
linkUp notifications 117, 118
log file size, defining 94
  scheduler 94
log file, clearing 99
  scheduler 99
log files 92
  scheduler 92

M
message encryption 110
  SNMP 110

N
no isolate 212
no shutdown 212
no system interface shutdown 212
no system mode maintenance 222
no system mode maintenance dont-generate-profile 222
no system mode maintenance on-reload reset-reason 221
notification receivers 111
  SNMP 111
NTO on an interface, Enabling and disabling 44
  ntp 41, 42
    information 41
    virtualization 42
NTP Broadcast Server, Configuring 52
NTP multicast client, Configuring 54
NTP multicast server, Configuring 53

O
overview 135
  embedded event manager 135

P
password requirements 233
periodic inventory notifications, configuring 82
  smart call home 82
policies 135
  EEM 135
prerequisites 43, 138, 174, 200
  EEM 138
  ERSPAN 174
  NTP 43
  sFlow 200
PTP 33, 34, 35, 36, 38
  configuring globally 36
    default settings 35
    device types 33
    interface, configuring 38
    overview 33
    process 34
  python instance 213

R
rate limit, configuring 164
  SPAN 164
RBAC 231, 232, 234, 236, 237, 238, 239, 240
  feature groups, creating 237
  rules 232
  user account restrictions 232
  user accounts, configuring 234
  user role interface policies, changing 238
  user role VLAN policies, changing 239
RBAC (continued)
  user roles 231
  user roles and rules, configuring 236
  verifying 240
registering 74
  smart call home 74
related documents 192
ERSPAN 192
releasing 57
  CSF session lock 57
remote user authentication 92
  scheduler 92
remote user authentication, configuring 94, 95
  scheduler 94, 95
requirements 233
  user passwords 233
roles 231
  authentication 231
rollback 61, 64
  checkpoint copy 61
  creating a checkpoint copy 61
  default settings 64
  deleting a checkpoint file 61
  description 61
  example configuration 61
  guidelines 61
  high availability 61
  implementing a rollback 61
  limitations 61
  reverting to checkpoint file 61
  verifying configuration 64
rules 232
  RBAC 232
running config, displaying 28
  switch profiles 28
runtime diagnostics 131
  information 131

S

sampling data source 207
sFlow 208
sampling rate 202
sFlow 202
scheduler 91, 92, 93, 94, 95, 96, 97, 99, 100, 102
  configuration, verifying 100
  default settings 93
  disabling 99
  enabling 93
  guidelines and limitations 92
  information about 91
  job, deleting 96
  licensing 92
  log file size, defining 94
  log file, clearing 99
  log files 92

scheduler (continued)
  remote user authentication 92
  remote user authentication, configuring 94, 95
  standards 102
  timetable, defining 97
scheduler job, creating 100
  example 100
scheduler job, scheduling 101
  example 101
scheduler jobs, displaying results 101
  example 101
serial IDs 69
  description 69
server IDs 69
  description 69
session manager 61, 63, 64
  committing a session 63
  configuring an ACL session (example) 63
  description 61
  discarding a session 63
  guidelines 61
  limitations 61
  saving a session 63
  verifying configuration 64
  verifying the session 63
sFlow 199, 200, 202, 203, 204, 205, 206, 207, 208, 209
  agent address 207
  analyzer address 205
  analyzer port 206
  configuration example 209
  counter poll interval 203
  datagram size 204
  default settings 200
  guidelines 200
  licensing 200
  prerequisites 200
  sampling data source 207
  sampling rate 202
  show commands 208
  show interface brief 224
  show logging onboard 157
  show logging onboard boot-uptime 157
  show logging onboard counter-stats 157
  show logging onboard credit-loss 157
  show logging onboard device-version 157
  show logging onboard endtime 157
  show logging onboard environmental-history 157
  show logging onboard error-stats 157
  show logging onboard exception-log 157
  show logging onboard interrupt-stats 157
  show logging onboard module 157
  show logging onboard obfl-history 157
  show logging onboard obfl-logs 157
  show logging onboard stack-trace 157
show logging onboard start time 157
show logging onboard status 157
show maintenance on-load reset-reasons 224
show maintenance profile 224
show maintenance profile maintenance-mode 214, 224
show maintenance profile normal-mode 215, 224
show maintenance timeout 224
show running-config mmode 224
show snapshots 217, 224
show snapshots compare 217, 225
show snapshots dump 225
show snapshots sections 225
show startup-config mmode 222, 223, 225
shutdown 212
sleep instance 212
smart call home 65, 66, 67, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
adding show commands, alert groups 80
alert groups 67
associating alert groups 79
contact information, configuring 75
default settings 74
description 65
destination profile, creating 77
destination profile, modifying 78
destination profiles 66
duplicate message throttling, disabling 83, 84
e-mail details, configuring 81
guidelines and limitations 73
message format options 66
periodic inventory notifications 82
prerequisites 73
registering 74
testing the configuration 85
verifying 86
smart call home messages 66, 68
configuring levels 68
format options 66
snapshot create 216
snapshot delete 217
SNMP 103, 104, 105, 106, 107, 109, 110, 111, 114, 120, 121
access groups 107
configuring local engineID 120
configuring users 109
default settings 107
disabling 121
filtering requests 110
functional overview 103
group-based access 107
guidelines and limitations 107
inband access 114
licensing 107
message encryption 110
notification receivers 111
security model 105
trap notifications 104
SNMP (continued)
user synchronization with CLI 106
user-based security 105
SNMP 105
version 3 security features 104
SNMP (Simple Network Management Protocol) 104
versions 104
SNMP notification receivers 112
configuring with VRFs 112
SNMP notifications 113
filtering based on a VRF 113
SNMPv3 104, 110
assigning multiple roles 110
security features 104
software 161
downgrading 161
loss of SPAN configurations 161
source IDs 69
call home event format 69
source ports, characteristics 160
SPAN 160
source ports, configuring 164
SPAN 164
SPAN 159, 160, 161, 162, 164, 165, 166, 167, 168, 169
activating sessions 167
characteristics, source ports 160
configuration examples 169
configuration loss when downgrading software 161
creating, deleting sessions 162
description, configuring 166
destination ports, characteristics 161
destinations 160
displaying information 168
egress sources 159
Ethernet destination port, configuring 162
guidelines and limitations 161
ingress sources 159
rate limit, configuring 164
source port channels, configuring 165
source ports, configuring 164
sources for monitoring 159
VLANs, configuring 165
VSANs, configuring 165
SPAN sources 159
egress 159
ingress 159
standards 102
scheduler 102
switch profile buffer, displaying 23, 31
switch profiles 10, 23, 24, 28, 29, 30, 31
buffer, displaying 23, 31
configuration sync after reboot 24
dead, local and peer sync 28, 30
guidelines and limitations 10
running config, displaying 28
verify and commit, displaying 29
Switched Port Analyzer 159
syslog 148
   EEM 148
system interface shutdown 212
system mode maintenance dont-generate-profile 220
system mode maintenance on-reload reset-reason 221
system mode maintenance shutdown 220
system mode maintenance timeout 220
system policies, overriding 147
   EEM 147
user role interface policies, changing 238
   RBAC 238
user role VLAN policies, changing 239
   RBAC 239
user roles 231
   RBAC 231
user roles and rules, creating 236
   RBAC 236
users 231
   description 231

T
testing the configuration 85
   smart call home 85
timetable, defining 97
   scheduler 97
trap notifications 104

U
user account restrictions 232
   RBAC 232
user accounts 233, 234, 240
   guidelines and limitations 234
   passwords 233
   verifying 240
user policies, defining 140
   EEM 140
verifying 57, 86, 240
   NTP configuration 57
   RBAC 240
   smart call home 86
   user accounts 240
virtualization 42
   ntp 42
VRFs 112, 113
   configuring SNMP notification receivers with 112
   filtering SNMP notifications 113
VSH script 146
   defining EEM policies 146
VSH script policies 138, 146
   EEM 138
   registering and activating 146