

Configuring Control Plane Policing

This chapter contains the following sections:

- Information About CoPP, on page 1
- Control Plane Protection, on page 2
- CoPP Policy Templates, on page 4
- CoPP Class Maps, on page 8
- Packets Per Second Credit Limit, on page 8
- CoPP and the Management Interface, on page 9
- Guidelines and Limitations for CoPP, on page 9
- Upgrade Guidelines for CoPP, on page 11
- Configuring CoPP, on page 11
- CoPP Show Commands, on page 14
- Displaying the CoPP Configuration Status, on page 15
- Monitoring CoPP, on page 16
- Clearing the CoPP Statistics, on page 16
- CoPP Configuration Examples, on page 17
- Sample CoPP Configuration, on page 19
- Example: Changing or Reapplying the Default CoPP Policy Using the Setup Utility, on page 22

Information About CoPP

Control Plane Policing (CoPP) protects the control plane and separates it from the data plane, which ensures network stability, reachability, and packet delivery.

This feature allows a policy map to be applied to the control plane. This policy map looks like a normal QoS policy and is applied to all traffic destined to any of the IP addresses of the router or Layer 3 switch.. A common attack vector for network devices is the denial-of-service (DoS) attack, where excessive traffic is directed at the device interfaces.

The Cisco NX-OS device provides CoPP to prevent DoS attacks from impacting performance. Such attacks, which can be perpetrated either inadvertently or maliciously, typically involve high rates of traffic destined to the supervisor module or CPU itself.

The supervisor module divides the traffic that it manages into three functional components or planes:

Data plane

Handles all the data traffic. The basic functionality of a Cisco NX-OS device is to forward packets from one interface to another. The packets that are not meant for the switch itself are called the transit packets. These packets are handled by the data plane.

Control plane

Handles all routing protocol control traffic. These protocols, such as the Border Gateway Protocol (BGP) and the Open Shortest Path First (OSPF) Protocol, send control packets between devices. These packets are destined to router addresses and are called control plane packets.

Management plane

Runs the components meant for Cisco NX-OS device management purposes such as the command-line interface (CLI) and Simple Network Management Protocol (SNMP).

The supervisor module has both the management plane and control plane and is critical to the operation of the network. Any disruption or attacks to the supervisor module will result in serious network outages. For example, excessive traffic to the supervisor module could overload and slow down the performance of the entire Cisco NX-OS device. Another example is a DoS attack on the supervisor module that could generate IP traffic streams to the control plane at a very high rate, forcing the control plane to spend a large amount of time in handling these packets and preventing the control plane from processing genuine traffic.

Examples of DoS attacks are as follows:

- Internet Control Message Protocol (ICMP) echo requests
- · IP fragments
- TCP SYN flooding

These attacks can impact the device performance and have the following negative effects:

- Reduced service quality (such as poor voice, video, or critical applications traffic)
- High route processor or switch processor CPU utilization
- Route flaps due to loss of routing protocol updates or keepalives
- Unstable Layer 2 topology
- Slow or unresponsive interactive sessions with the CLI
- Processor resource exhaustion, such as the memory and buffers
- Indiscriminate drops of incoming packets

Caution

It is important to ensure that you protect the supervisor module from accidental or malicious attacks by configuring control plane protection.

Control Plane Protection

To protect the control plane, the Cisco NX-OS device segregates different packets destined for the control plane into different classes. Once these classes are identified, the Cisco NX-OS device polices the packets, which ensures that the supervisor module is not overwhelmed.

Control Plane Packet Types

Different types of packets can reach the control plane:

Receive packets

Packets that have the destination address of a router. The destination address can be a Layer 2 address (such as a router MAC address) or a Layer 3 address (such as the IP address of a router interface). These packets include router updates and keepalive messages. Multicast packets can also be in this category where packets are sent to multicast addresses that are used by a router.

Exception packets

Packets that need special handling by the supervisor module. For example, if a destination address is not present in the Forwarding Information Base (FIB) and results in a miss, the supervisor module sends an ICMP unreachable packet back to the sender. Another example is a packet with IP options set.

Redirected packets

Packets that are redirected to the supervisor module. Features such as Dynamic Host Configuration Protocol (DHCP) snooping or dynamic Address Resolution Protocol (ARP) inspection redirect some packets to the supervisor module.

Glean packets

If a Layer 2 MAC address for a destination IP address is not present in the FIB, the supervisor module receives the packet and sends an ARP request to the host.

All of these different packets could be maliciously used to attack the control plane and overwhelm the Cisco NX-OS device. CoPP classifies these packets to different classes and provides a mechanism to individually control the rate at which the supervisor module receives these packets.

Classification for CoPP

For effective protection, the Cisco NX-OS device classifies the packets that reach the supervisor modules to allow you to apply different rate controlling policies based on the type of the packet. For example, you might want to be less strict with a protocol packet such as Hello messages but more strict with a packet that is sent to the supervisor module because the IP option is set. ou configure packet classifications and rate controlling policies using class-maps and policy-maps.

The following parameters can be used to classify a packet:

- · Source IP address
- Destination IP address
- Source port
- Destination port
- · Layer 4 protocol

Rate Controlling Mechanisms

Once the packets are classified, the Cisco NX-OS device has different mechanisms to control the rate at which packets arrive at the supervisor module.

The policing rate is specified in terms of packets per second (PPS). Each classified flow can be policed individually by specifying a policing rate limit in PPS.

Copp Policy Templates

When you bring up your Cisco NX-OS device for the first time, the Cisco NX-OS software installs the default copp-system-policy to protect the supervisor module from DoS attacks. You can choose the CoPP policy template for your deployment scenario by specifying CoPP policy options from the initial setup utility:

- Default—Layer 2 and Layer 3 policy which provides a good balance of policing between switched and routed traffic bound to CPU.
- Layer 2—Layer 2 policy which gives more preference to the Layer 2 traffic (eg BPDU) bound to the CPU
- Layer 3—Layer 3 policy which gives more preference to the Layer 3 traffic (eg BGP, RIP, OSPF etc) bound to the CPU

If you do not select an option or choose not to execute the setup utility, the Cisco NX-OS software applies the Default policing. Cisco recommends starting with the default policy and later modifying the CoPP policies as required.

The default copp-system-policy policy has optimized values suitable for basic device operations. You must add specific class and access-control list (ACL) rules that meet your DoS protection requirements.

You can switch across default, Layer 2 and Layer 3 templates by entering the setup utility again using the setup command.

Default CoPP Policy

This policy is applied to the switch by default. It has the classes with police rates that should suit most network installations. You cannot modify this policy template, but you can modify the CoPP configuration on the device. After you run the setup utility and set up the default CoPP policy profile, all modifications that were made to the CoPP policy will be removed.

This policy has the following configuration:

```
policy-map type control-plane copp-system-policy
 class copp-s-default
   police pps 400
  class copp-s-ping
    police pps 100
  class copp-s-13destmiss
    police pps 100
  class copp-s-glean
    police pps 500
  class copp-s-13mtufail
    police pps 100
  class copp-s-ttl1
   police pps 100
  class copp-s-ip-options
    police pps 100
  class copp-s-ip-nat
    police pps 100
  class copp-s-ipmcmiss
   police pps 400
  class copp-s-ipmc-g-hit
   police pps 400
  class copp-s-ipmc-rpf-fail-g
```

```
police pps 400
class copp-s-ipmc-rpf-fail-sg
 police pps 400
class copp-s-dhcpreq
 police pps 300
class copp-s-dhcpresp
 police pps 300
class copp-s-igmp
 police pps 400
class copp-s-routingProto2
 police pps 1300
class copp-s-eigrp
 police pps 200
class copp-s-pimreg
 police pps 200
class copp-s-pimautorp
 police pps 200
class copp-s-routingProto1
 police pps 1000
class copp-s-arp
 police pps 200
class copp-s-ptp
 police pps 1000
class copp-s-bpdu
 police pps 12000
class copp-s-cdp
 police pps 400
class copp-s-lacp
 police pps 400
class copp-s-lldp
 police pps 200
class copp-icmp
 police pps 200
class copp-telnet
 police pps 500
class copp-ssh
 police pps 500
class copp-snmp
 police pps 500
class copp-ntp
 police pps 100
class copp-tacacsradius
 police pps 400
class copp-stftp
 police pps 400
class copp-ftp
 police pps 100
class copp-http
 police pps 100
```

Layer 2 CoPP Policy

You cannot modify this policy template, but you can modify the CoPP configuration on the device. After you run the setup utility and set up the Layer 2 CoPP policy profile, all modifications that were made to the CoPP policy will be removed.

This policy has the following configuration:

```
policy-map type control-plane copp-system-policy
  class copp-s-default
   police pps 400
  class copp-s-ping
  police pps 100
```

```
class copp-s-13destmiss
 police pps 100
class copp-s-glean
 police pps 500
class copp-s-13mtufail
 police pps 100
class copp-s-ttl1
 police pps 100
class copp-s-ip-options
 police pps 100
class copp-s-ip-nat
 police pps 100
class copp-s-ipmcmiss
 police pps 400
class copp-s-ipmc-g-hit
 police pps 400
class copp-s-ipmc-rpf-fail-g
 police pps 400
class copp-s-ipmc-rpf-fail-sg
 police pps 400
class copp-s-dhcpreq
 police pps 300
class copp-s-dhcpresp
 police pps 300
class copp-s-igmp
 police pps 400
class copp-s-routingProto2
 police pps 1200
class copp-s-eigrp
 police pps 200
class copp-s-pimreg
 police pps 200
class copp-s-pimautorp
 police pps 200
class copp-s-routingProto1
 police pps 900
class copp-s-arp
 police pps 200
class copp-s-ptp
 police pps 1000
class copp-s-bpdu
 police pps 12300
class copp-s-cdp
 police pps 400
class copp-s-lacp
 police pps 400
class copp-s-lldp
 police pps 200
class copp-icmp
 police pps 200
class copp-telnet
 police pps 500
class copp-ssh
 police pps 500
class copp-snmp
 police pps 500
class copp-ntp
 police pps 100
class copp-tacacsradius
 police pps 400
class copp-stftp
 police pps 400
class copp-ftp
```

police pps 100

```
class copp-http
police pps 100
```

Layer 3 CoPP Policy

You cannot modify this policy template, but you can modify the CoPP configuration on the device. After you run the setup utility and set up the Layer 3 CoPP policy profile, all modifications that were made to the CoPP policy will be removed.

This policy has the following configuration:

```
policy-map type control-plane copp-system-policy
  class copp-s-default
   police pps 400
  class copp-s-ping
   police pps 100
  class copp-s-13destmiss
    police pps 100
  class copp-s-glean
    police pps 500
  class copp-s-13mtufail
    police pps 100
  class copp-s-ttl1
    police pps 100
  class copp-s-ip-options
   police pps 100
  class copp-s-ip-nat
    police pps 100
  class copp-s-ipmcmiss
    police pps 400
  class copp-s-ipmc-g-hit
    police pps 400
  class copp-s-ipmc-rpf-fail-g
    police pps 400
  class copp-s-ipmc-rpf-fail-sg
   police pps 400
  class copp-s-dhcpreq
    police pps 300
  class copp-s-dhcpresp
    police pps 300
  class copp-s-igmp
    police pps 400
  class copp-s-routingProto2
   police pps 4000
  class copp-s-eigrp
    police pps 200
  class copp-s-pimreg
   police pps 200
  class copp-s-pimautorp
    police pps 200
  class copp-s-routingProto1
    police pps 4000
  class copp-s-arp
   police pps 200
  class copp-s-ptp
    police pps 1000
  class copp-s-bpdu
   police pps 6000
  class copp-s-cdp
    police pps 200
  class copp-s-lacp
    police pps 200
```

```
class copp-s-lldp
 police pps 200
class copp-icmp
 police pps 200
class copp-telnet
 police pps 500
class copp-ssh
 police pps 500
class copp-snmp
 police pps 500
class copp-ntp
  police pps 100
class copp-tacacsradius
 police pps 400
class copp-stftp
 police pps 400
class copp-ftp
 police pps 100
class copp-http
 police pps 100
```

CoPP Class Maps

Classes within a policy are of two types:

- Static—These classes are part of every policy template and cannot be removed from the policy or CoPP configuration. Static classes would typically contain the traffic which is deemed critical to device operation and is required in the policy.
- Dynamic—These classes can be created, added or removed from a policy. Using dynamic classes, you can create classes/policing for CPU bound traffic (unicast) specific to their requirements.

Note

Classes with names copp-s-x are static classes. ACLs can be associated with both static and dynamic classes.

A new CoPP class "copp-s-pim-datareg" is added to match Protocol-Independent Multicast (PIM) data register packets destined to the switch. This CoPP class help classify PIM data register packets to a separate queue, with a policer rate of 600 Packets-Per-Second (pps). The following are the three CoPP classes for the PIM protocol:

- copp-s-pimreg Matches PIM protocol packets which are multicast packets such as PIM hello, join-prune etc.
- copp-s-pimautorp Matches PIM RP election protocol packets.
- copp-s-pim-datareg Matches PIM data register packets.

Packets Per Second Credit Limit

The aggregate packets per second (PPS) for a given policy (sum of PPS of each class part of the policy) is capped by an upper PPS Credit Limit (PCL). If an increase in PPS of a given class causes a PCL exceed, the configuration is rejected. To increase the desired PPS, the additional PPS beyond PCL should be decreased from other class(es).

CoPP and the Management Interface

The Cisco NX-OS device supports only hardware-based CoPP which does not support the management interface (mgmt0). The out-of-band mgmt0 interface connects directly to the CPU and does not pass through the in-band traffic hardware where CoPP is implemented.

On the mgmt0 interface, ACLs can be configured to give or deny access to a particular type of traffic.

Guidelines and Limitations for CoPP

CoPP has the following configuration guidelines and limitations:

- Cisco recommends that you choose the default, L2, or L3 policy, depending upon your deployment scenario and later modify the CoPP policies based on observed behavior.
- If you observe +/- 2-5% irregularity in the traffic around 30-40s after the traffic has fully converged after fast-reload, use a higher COPP value for the ARP packets.
- Customizing CoPP is an ongoing process. CoPP must be configured according to the protocols and features used in your specific environment as well as the supervisor features that are required by the server environment. As these protocols and features change, CoPP must be modified.
- The default police packets per second (PPS) value is changed to 900 for copp-s-bfd command with write erase command and reload
- Cisco recommends that you continuously monitor CoPP. If drops occur, determine if CoPP dropped traffic unintentionally or in response to a malfunction or attack. In either event, analyze the situation and evaluate the need to use a different CoPP policy or modify the customized CoPP policy.
- The Cisco NX-OS software does not support egress CoPP or silent mode. CoPP is supported only on ingress (**service-policy output copp** cannot be applied to the control plane interface).
- The creation of new CoPP policies is not supported.
- When upgrading, check whether the default LLDP CoPP value is less than 500 pps. If it is less than 500 pps, manually change it to 500 pps by using the following commands:

```
switch(config)# policy-map type control-plane policy-map-name
switch(config-pmap)# class copp-s-lldp
switch(config-pmap-c)# police pps 500
```

- There are no hardware counters for glean, class-default class-map in cache mode.
- There are no counters for the MTU fail class-map.
- There are no hardware counters for NAT.
- There are no hardware counter for IPMCMISS.
- You cannot add match ACL statements to a static class-map.
- Cisco Nexus 3500 Series switches drop all the packets when the tunnel is not configured. The packets
 are also dropped when the tunnel is configured but the tunnel interface is not configured or the tunnel
 interface is in shut down state.

Point to Point tunnel (Source and Destination) – Cisco Nexus 3500 Series switches decapsulate all IP-in-IP packets destined to it when the command **feature tunnel** is configured and there is an operational tunnel interface configured with the tunnel source and the destination address that matches the incoming packets' outer source and destination addresses. If there is not a source and destination packet match or if the interface is in shutdown state, the packet is dropped.

Decapsulate Tunnel (Source only) - Cisco Nexus 3500 Series switches decapsulate all IP-in-IP packets destined to it when the command **feature tunnel** is configured and there is an operational tunnel interface configured with the tunnel source address that matches the incoming packets' outer destination addresses. If there is not a source packet match or if the interface is in shutdown state, the packet is dropped.

- If you use NXAPI over the front panel port, you must increase the CoPP policy (for http) to allow 3000 PPS traffic so that there is no packet drop and the CLIs with a larger output return within the expected time.
- When you execute the setup script you will be prompted with *Enter to basic configuration* (yes/no)?.
 - If you answer no, then the default CoPP policy template will not be applied to the system.
 - If you answer *yes*, then the default CoPP policy template of the running version will be applied to the system. This action will overwrite the non-default policer rates configured on system CoPP classes.

Note

If you press CTRL+C during the setup script execution of the script, default CoPP policy template will not be applied into the system and there will be no changes in the existing CoPP policy

- If you press CTRL+C after executing the setup script and entering into basic configuration, it skips all the remaining steps and you will be prompted to *Apply and save the config before exiting* (yes/no)?.
 - If you answer no, then the default CoPP policy template will not be applied to the system.
 - If you answer *yes*, then the default CoPP policy template of the running version is applied. This action will overwrite the non-default policer rates configured on system CoPP classes.
- The setup script will not alter any user defined CoPP classes.
- When a default CoPP policy template is applied as part of successful setup script execution, the control packets may be dropped for a brief period of time. During this window, control plane protocols may flap.
- The setup script may fail to configure the default CoPP policy template when PPS credits are exhausted. This may result in one or more system CoPP classes with zero PPS. This may happen, when there are user defined classes with high PPS values. To apply the default CoPP policy, you must reconfigure the PPS values of user defined CoPP classes and run the setup script once again.
- Hardware and software match packet counters for CDP (copp-s-cdp), LLDP (copp-s-lldp), LACP (copp-s-lacp), BPDU (copp-s-bpdu) classes are aggregated on Cisco Nexus 3548 platform switches.
 Likewise, hardware and software match packet counters for copp-s-dhcpreq and copp-s-dhcpresp classes are aggregated.
- When a change is applied to the COPP policy, the configuration is implemented in the hardware as a non-atomic operation. This process may cause disruption to the control traffic.

Upgrade Guidelines for CoPP

CoPP has the following upgrade guidelines:

- If you upgrade from a Cisco NX-OS release that does not support the CoPP feature to a release that supports the CoPP feature, CoPP is automatically enabled with the default policy when the switch boots up. You must run the setup script after the upgrade to enable a different policy (default, 13, ,12). Not configuring CoPP protection can leave your NX-OS device vulnerable to DoS attacks.
- If you upgrade from a Cisco NX-OS release that supports the CoPP feature to a Cisco NX-OS release that supports the CoPP feature with additional classes for new protocols, you must run the setup utility for the new CoPP classes to be available.
- We recommend that you run the setup script during a scheduled maintenance period and not during a time when there is traffic on the device, because the setup script modifies the policing rates corresponding to different flows coming into the CPU.
- When upgrading to Cisco NX-OS Release 6.0(2)A3(1), check whether the default LLDP CoPP value is less than 500 pps. If it is less than 500, manually change it to 500 by using the following commands:

```
switch(config) # policy-map type control-plane copp-system-policy
switch(config-pmap) # class copp-s-lldp
switch(config-pmap-c) # police pps 500
```

Configuring CoPP

Configuring a Control Plane Class Map

You must configure control plane class maps for control plane policies.

You can classify traffic by matching packets based on existing ACLs. The permit and deny ACL keywords are ignored in the matching.

Before you begin

Ensure that you have configured the IP ACLs if you want to use ACE hit counters in the class maps.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	class-map type control-plane match-any class-map-name Example:	Specifies a control plane class map and enters class map configuration mode. The default class matching is match-any. The name can be a

	Command or Action	Purpose
	<pre>switch(config)# class-map type control-plane ClassMapA switch(config-cmap)#</pre>	maximum of 64 characters long and is case sensitive.
		Note You cannot use class-default, match-all, or match-any as class map names.
Step 3	(Optional) match access-group name access-list-name	Specifies matching for an IP ACL. You can repeat this step to match more than one IP ACL.
	<pre>Example: switch(config-cmap)# match access-group name MyAccessList</pre>	Note The permit and deny ACL keywords are ignored in the CoPP matching.
Step 4	exit	Exits class map configuration mode.
	<pre>Example: switch(config-cmap)# exit switch(config)#</pre>	
Step 5	(Optional) show class-map type control-plane [class-map-name]	Displays the control plane class map configuration.
	Example:	
	<pre>switch(config)# show class-map type control-plane</pre>	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startul configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring a Control Plane Policy Map

You must configure a policy map for CoPP, which includes policing parameters. If you do not configure a policer for a class, the default PPS for that class is 0.

You can configure policies for IPv4 packets.

Before you begin

Ensure that you have configured a control plane class map.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	

	Command or Action	Purpose
Step 2	<pre>policy-map type control-plane policy-map-name Example: switch(config) # policy-map type control-plane copp-system-policy switch(config-pmap) #</pre>	Specifies a control plane policy map and enters the policy map configuration mode. The policy map name is case sensitive. Note The name of the policy-map cannot be changed. You can only use the copp-system-policy name for the policy-map. The system allows only a single type control-plane policy-map to be configured.
Step 3	<pre>class {class-map-name class} Example: switch(config-pmap) # class ClassMapA switch(config-pmap-c) #</pre>	Specifies a control plane class map name or the class default and enters control plane class configuration mode.
Step 4	<pre>police [pps] {pps-value} [bc] burst-size [bytes kbytes mbytes ms packets us] Example: switch (config-pmap-c) # police pps 100 bo 10</pre>	Specifies the rate limit in terms of packets per second (PPS) and the committed burst (BC). The PPS range is 0 - 20,000. The default PPS is 0. The BC range is from 0 to 512000000. The default BC size unit is bytes.
Step 5	<pre>exit Example: switch(config-pmap-c)# exit switch(config-pmap)#</pre>	Exits policy map class configuration mode.
Step 6	<pre>exit Example: switch(config-pmap)# exit switch(config)#</pre>	Exits policy map configuration mode.
Step 7	(Optional) show policy-map type control-plane [expand] [name class-map-name] Example: switch(config) # show policy-map type control-plane	Displays the control plane policy map configuration.
Step 8	(Optional) copy running-config startup-config Example: switch(config) # copy running-config startup-config	Copies the running configuration to the startup configuration.

Configuring the Control Plane Service Policy

Before you begin

Configure a control plane policy map.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	control-plane	Enters control plane configuration mode.
	Example:	
	<pre>switch(config) # control-plane switch(config-cp)#</pre>	
Step 3	exit	Exits control plane configuration mode.
	Example:	
	<pre>switch(config-cp)# exit switch(config)#</pre>	
Step 4	(Optional) show running-config copp [all]	Displays the CoPP configuration.
	Example:	
	switch(config)# show running-config copp	
Step 5	(Optional) copy running-config startup-config	Saves the change persistently through reboots
	Example:	and restarts by copying the running
	switch(config)# copy running-config startup-config	configuration to the startup configuration.

CoPP Show Commands

To display CoPP configuration information, enter one of the following show commands:

Command	Purpose
show ip access-lists [acl-name]	Displays all IPv4 ACLs configured in the system, including the CoPP ACLs.
show class-map type control-plane [class-map-name]	Displays the control plane class map configuration, including the ACLs that are bound to this class map.

Command	Purpose
show policy-map type control-plane [expand] [name policy-map-name]	Displays the control plane policy map with associated class maps and PPS values.
show running-config copp [all]	Displays the CoPP configuration in the running configuration.
show running-config aclmgr [all]	Displays the user-configured access control lists (ACLs) in the running configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the running configuration.
show startup-config copp [all]	Displays the CoPP configuration in the startup configuration.
show startup-config aclmgr [all]	Displays the user-configured access control lists (ACLs) in the startup configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the startup configuration.

Displaying the CoPP Configuration Status

Procedure

	Command or Action	Purpose
Step 1	switch# show copp status	Displays the configuration status for the CoPP feature.

Example

This example shows how to display the CoPP configuration status:

switch# show copp status

Monitoring CoPP

Procedure

	Command or Action	Purpose
Step 1		Displays packet-level statistics for all classes that are part of the applied CoPP policy.

Example

This example shows how to monitor CoPP:

```
switch# show policy-map interface control-plane
Control Plane

service-policy input: copp-system-policy

class-map copp-s-default (match-any)
  police pps 400 , bc 0 packets
   HW Matched Packets 0
   SW Matched Packets 0

class-map copp-s-ping (match-any)
  match access-group name copp-system-acl-ping
  police pps 100 , bc 0 packets
   HW Matched Packets 0
  SW Matched Packets 0
  SW Matched Packets 0
```

Clearing the CoPP Statistics

Procedure

	Command or Action	Purpose
Step 1	(Optional) switch# show policy-map interface control-plane	Displays the currently applied CoPP policy and per-class statistics.
Step 2	switch# clear copp statistics	Clears the CoPP statistics.

Example

This example shows how to clear the CoPP statistics for your installation:

```
switch# show policy-map interface control-plane
switch# clear copp statistics
```

Copp Configuration Examples

Creating an IP ACL

```
ip access-list copp-sample-acl
permit udp any any eq 3333
permit udp any any eq 4444
```

The following example shows how to modify the CoPP Policy to drop all IP-in-IP (Protocol 4) packets immediately if there is not an operational tunnel that matches the incoming packet. Create copp-s-ipinip before the default copp-s-selfip policy as displayed in the following example.

```
ip access-list copp-s-ipinip
10 permit 4 any any
class-map type control-plane match-any copp-s-ipinip
match access-group name copp-s-ipinip
policy-map type control-plane copp-system-policy
class copp-s-ipinip
police pps 0
class copp-s-selfIp
police pps 500
class copp-s-default
police pps 400
```

Creating a Sample CoPP Class with an Associated IP ACL

The following example shows how to create a new CoPP class and associated ACL:

```
class-map type control-plane copp-sample-class
match access-group name copp-sample-acl
```

The following example shows how to add a class to a CoPP policy:

```
policy-map type control-plane copp-system-policy
Class copp-sample-class
  Police pps 100
```

The following example shows how to modify the PPS for an existing class (copp-s-bpdu):

```
policy-map type control-plane copp-system-policy
Class copp-s-bpdu
Police pps <new pps value>
```

Associating an ACL with an Existing or New CoPP Class

The following example shows how to associate an ACL with an existing or new CoPP class:

```
class-map type control-plane copp-s-eigrp
match access-grp name copp-system-acl-eigrp6
```

Adding a Class to a CoPP Policy

The following example shows how to add a class to a CoPP policy, if the class has not already been added:

```
policy-map type control-plane copp-system-policy
class copp-s-eigrp
police pps 100
```

Creating an ARP ACL-Based Dynamic Class

ARP ACLs use ARP TCAM. The default size of this TCAM is 0. Before ARP ACLs can be used with CoPP, this TCAM needs to be carved for a non-zero size.

```
hardware profile tcam region arpacl 128 copy running-config startup-config reload
```

Creating an ARP ACL

```
arp access-list copp-arp-acl
permit ip 20.1.1.1 255.255.255.0 mac any
```

The procedure to associate an ARP ACLs with a class, and adding that class to the CoPP policy, is the same as the procedure for IP ACLs.

Creating a CoPP Class and Associating an ARP ACL

```
class-map type control-plane copp-sample-class
match access-group name copp-arp-acl
```

Removing a Class from a CoPP Policy

```
policy-map type control-plane copp-system-policy
no class-abc
```

Removing a Class from the System

```
no class-map type control-plane copp-abc
```

Displaying the control plane class map configuration

```
show class-map type control-plane copp-s-pim-datareg class-map type control-plane match-any copp-s-pim-datareg
```

The following example shows the interface control plane information of the copp-s-pim-datareg class:

switch# sh policy-map interface control-plane class copp-s-pim-datareg

```
Control Plane

service-policy input: copp-system-policy

class-map copp-s-pim-datareg (match-any)

police pps 600 , bc 0 packets

HW Matched Packets 55753

SW Matched Packets 33931

switch#
```

Using the insert-before option to see if a packet matches multiple classes and the priority needs to be assigned to one of them

```
policy-map type control-plan copp-system-policy
class copp-ping insert-before copp-icmp
```

Sample CoPP Configuration

The following example shows a sample CoPP configuration with ACLs, classes, policies, and individual class policing:

```
IP access list copp-system-acl-eigrp
       10 permit eigrp any 224.0.0.10/32
IP access list copp-system-acl-icmp
       10 permit icmp any any
IP access list copp-system-acl-igmp
       10 permit igmp any any
IP access list copp-system-acl-ntp
       10 permit udp any any eq ntp
       20 permit udp any eq ntp any
IP access list copp-system-acl-pimreg
       10 permit pim any any
IP access list copp-system-acl-ping
       10 permit icmp any any echo
        20 permit icmp any any echo-reply
IP access list copp-system-acl-routingproto1
       10 permit tcp any gt 1024 any eq bgp
        20 permit tcp any eq bgp any gt 1024
        30 permit udp any 224.0.0.0/24 eq rip
        40 permit tcp any gt 1024 any eq 639
        50 permit tcp any eq 639 any gt 1024
        70 permit ospf any any
        80 permit ospf any 224.0.0.5/32
       90 permit ospf any 224.0.0.6/32
IP access list copp-system-acl-routingproto2
       10 permit udp any 224.0.0.0/24 eq 1985
        20 permit 112 any 224.0.0.0/24
IP access list copp-system-acl-snmp
       10 permit udp any any eq snmp
       20 permit udp any any eq snmptrap
IP access list copp-system-acl-ssh
       10 permit tcp any any eq 22
        20 permit tcp any eq 22 any
IP access list copp-system-acl-stftp
        10 permit udp any any eq tftp
        20 permit udp any any eq 1758
        30 permit udp any eq tftp any
        40 permit udp any eq 1758 any
        50 permit tcp any any eq 115
        60 permit tcp any eq 115 any
IP access list copp-system-acl-tacacsradius
       10 permit tcp any any eq tacacs
        20 permit tcp any eq tacacs any
        30 permit udp any any eq 1812
        40 permit udp any any eq 1813
        50 permit udp any any eq 1645
        60 permit udp any any eq 1646
        70 permit udp any eq 1812 any
        80 permit udp any eq 1813 any
        90 permit udp any eq 1645 any
        100 permit udp any eq 1646 any
IP access list copp-system-acl-telnet
       10 permit tcp any any eq telnet
        20 permit tcp any any eq 107
        30 permit tcp any eq telnet any
        40 permit tcp any eq 107 any
IP access list copp-system-dhcp-relay
        10 permit udp any eq bootps any eq bootps
```

```
IP access list test
        statistics per-entry
        10 permit ip 1.2.3.4/32 5.6.7.8/32 [match=0]
        20 permit udp 11.22.33.44/32 any [match=0]
        30 deny udp 1.1.1.1/32 any [match=0]
class-map type control-plane match-any copp-icmp
 match access-group name copp-system-acl-icmp
class-map type control-plane match-any copp-ntp
 match access-group name copp-system-acl-ntp
class-map type control-plane match-any copp-s-arp
class-map type control-plane match-any copp-s-bfd
class-map type control-plane match-any copp-s-bpdu
class-map type control-plane match-any copp-s-dai
class-map type control-plane match-any copp-s-default
class-map type control-plane match-any copp-s-dhcpreq
 match access-group name copp-system-acl-dhcps6
class-map type control-plane match-any copp-s-dhcpresp
 match access-group name copp-system-acl-dhcpc6
  match access-group name copp-system-dhcp-relay
class-map type control-plane match-any copp-s-eigrp
 match access-group name copp-system-acl-eigrp
  match access-group name copp-system-acl-eigrp6
class-map type control-plane match-any copp-s-glean
class-map type control-plane match-any copp-s-igmp
 match access-group name copp-system-acl-igmp
class-map type control-plane match-any copp-s-ipmcmiss
class-map type control-plane match-any copp-s-12switched
class-map type control-plane match-any copp-s-13destmiss
class-map type control-plane match-any copp-s-13mtufail
class-map type control-plane match-any copp-s-13slowpath
class-map type control-plane match-any copp-s-pimautorp
class-map type control-plane match-any copp-s-pimreg
  match access-group name copp-system-acl-pimreg
class-map type control-plane match-any copp-s-ping
 match access-group name copp-system-acl-ping
class-map type control-plane match-any copp-s-ptp
class-map type control-plane match-any copp-s-routingProto1
  match access-group name copp-system-acl-routingproto1
 match access-group name copp-system-acl-v6routingproto1
class-map type control-plane match-any copp-s-routingProto2
 match access-group name copp-system-acl-routingproto2
class-map type control-plane match-any copp-s-selfIp
class-map type control-plane match-any copp-s-ttl1
class-map type control-plane match-any copp-s-v6routingProto2
 match access-group name copp-system-acl-v6routingProto2
class-map type control-plane match-any copp-snmp
 match access-group name copp-system-acl-snmp
class-map type control-plane match-any copp-ssh
 match access-group name copp-system-acl-ssh
class-map type control-plane match-any copp-stftp
 match access-group name copp-system-acl-stftp
class-map type control-plane match-any copp-tacacsradius
 match access-group name copp-system-acl-tacacsradius
class-map type control-plane match-any copp-telnet
  match access-group name copp-system-acl-telnet
policy-map type control-plane copp-system-policy
  class copp-s-selfIp
   police pps 500
  class copp-s-default
   police pps 400
  class copp-s-12switched
   police pps 200
  class copp-s-ping
```

```
police pps 100
 class copp-s-13destmiss
   police pps 100
 class copp-s-glean
   police pps 500
 class copp-s-13mtufail
   police pps 100
 class copp-s-ttl1
   police pps 100
 class copp-s-ipmcmiss
   police pps 400
 class copp-s-13slowpath
   police pps 100
 class copp-s-dhcpreq
   police pps 300
 class copp-s-dhcpresp
   police pps 300
 class copp-s-dai
   police pps 300
 class copp-s-igmp
   police pps 400
 class copp-s-routingProto2
   police pps 1300
 class copp-s-v6routingProto2
   police pps 1300
 class copp-s-eigrp
   police pps 200
 class copp-s-pimreg
   police pps 200
 class copp-s-pimautorp
   police pps 200
 class copp-s-routingProto1
   police pps 1000
 class copp-s-arp
   police pps 200
 class copp-s-ptp
   police pps 1000
 class copp-s-bfd
   police pps 350
 class copp-s-bpdu
   police pps 12000
 class copp-icmp
   police pps 200
 class copp-telnet
   police pps 500
 class copp-ssh
   police pps 500
 class copp-snmp
   police pps 500
 class copp-ntp
   police pps 100
 class copp-tacacsradius
   police pps 400
 class copp-stftp
   police pps 400
control-plane
 service-policy input copp-system-policy
```

Example: Changing or Reapplying the Default CoPP Policy Using the Setup Utility

The following example shows how to change or reapply the default CoPP policy using the setup utility:

```
switch# setup
         ---- Basic System Configuration Dialog ----
This setup utility will guide you through the basic configuration of
the system. Setup configures only enough connectivity for management
of the system.
*Note: setup is mainly used for configuring the system initially,
when no configuration is present. So setup always assumes system
defaults and not the current system configuration values.
Press Enter at anytime to skip a dialog. Use ctrl-c at anytime
to skip the remaining dialogs.
Would you like to enter the basic configuration dialog (yes/no): yes
  Create another login account (yes/no) [n]: n
  Configure read-only SNMP community string (yes/no) [n]: n
  Configure read-write SNMP community string (yes/no) [n]: n
  Enter the switch name : switch
  Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]: n
  Configure the default gateway for mgmt? (yes/no) [y]: n
  Enable the telnet service? (yes/no) [n]: y
  Enable the ssh service? (yes/no) [y]: n
  Configure the ntp server? (yes/no) [n]: n
  Configure CoPP System Policy Profile ( default / 12 / 13 ) [default]: 12
The following configuration will be applied:
  switchname switch
  telnet server enable
  no ssh server enable
  policy-map type control-plane copp-system-policy ( 12 )
Would you like to edit the configuration? (yes/no) [n]: n
Use this configuration and save it? (yes/no) [y]: y
[############# 100%
```