Model-Driven Telemetry

* About Telemetry, on page |

* Licensing Requirements for Telemetry, on page 3

* Installing and Upgrading Telemetry, on page 3

* Guidelines and Limitations, on page 4

* Configuring Telemetry Using the CLI, on page 9

* Configuring Telemetry Using the NX-API, on page 23
» Additional References, on page 36

About Telemetry

Collecting data for analyzing and troubleshooting has always been an important aspect in monitoring the
health of a network.

Cisco NX-OS provides several mechanisms such as SNMP, CLI, and Syslog to collect data from a network.
These mechanisms have limitations that restrict automation and scale. One limitation is the use of the pull
model, where the initial request for data from network elements originates from the client. The pull model
does not scale when there is more than one network management station (NMS) in the network. With this
model, the server sends data only when clients request it. To initiate such requests, continual manual intervention
is required. This continual manual intervention makes the pull model inefficient.

A push model continuously streams data out of the network and notifies the client. Telemetry enables the
push model, which provides near-real-time access to monitoring data.

Telemetry Components and Process

Telemetry consists of four key elements:

+ Data Collection — Telemetry data is collected from the Data Management Engine (DME) database in
branches of the object model specified using distinguished name (DN) paths. The data can be retrieved
periodically (frequency-based) or only when a change occurs in any object on a specified path
(event-based). You can use the NX-API to collect frequency-based data.

+ Data Encoding — The telemetry encoder encapsulates the collected data into the desired format for
transporting.

NX-OS encodes telemetry data in the Google Protocol Buffers (GPB) and JSON format.

Model-Driven Telemetry .

Model-Driven Telemetry |

. Telemetry Components and Process

+ Data Transport — NX-OS transports telemetry data using HTTP for JSON encoding and the Google
remote procedure call (gRPC) protocol for GPB encoding. The gRPC receiver supports message sizes
greater than 4MB. (Telemetry data using HTTPS is also supported if a certificate is configured.)

Starting with Cisco Nexus 9.2(1), UDP and secure UDP (DTLS) are supported as telemetry transport
protocols. You can add destinations that receive UDP. The encoding for UDP and secure UDP can be
GPB or JSON.

Use the following command to configure the UDP transport to stream data using a datagram socket either
in JSON or GPB:

destination-group num
ip address xxx.xxx.xxx.xxx port xxxx protocol UDP encoding {JSON | GPB }

Where numis a number between 1 and 4095.

Example for IPv4 destination:

destination-group 100
ip address 171.70.55.69 port 50001 protocol UDP encoding GPB

The UDP telemetry will be sent with the following header:

typedef enum tm encode_ {
TM_ ENCODE_DUMMY,
TM_ENCODE_GPB,
TM_ENCODE_JSON,
TM_ENCODE_XML,
TM_ENCODE_MAX,

} tm_encode_ type t;

typedef struct tm pak hdr_ {
uint8 t version; /* 1 */
uint8_t encoding;
uintlé_t msg size;
uint8_t secure;
uint8_ t padding;
} _attribute ((packed, aligned (1))) tm pak hdr t;

Use the first 6 bytes in the payload to successfully process telemetry data using UDP, using one of the
following methods:

* Read the information in the header to determine which decoder to use to decode the data, JSON or
GPB, if the receiver is meant to receive different types of data from multiple end points, or

* Remove the header if you are expecting one decoder (JSON or GPB) but not the other

A\

Note Depending on the receiving operation system and the network load, using the
UDP protocol may result in packet drops.

* Telemetry Receiver — A telemetry receiver is a remote management system or application that stores
the telemetry data.

The GPB encoder stores data in a generic key-value format. The encoder requires metadata in the form of a

compiled .proto file to translate the data into GPB format.

. Model-Driven Telemetry

| Model-Driven Telemetry

High Availability of the Telemetry Process .

In order to correctly receive and decode the data stream, the receiver requires the .proto file that describes
the encoding and the transport services. The encoding decodes the binary stream into a key value string pair.

A telemetry .proto file that describes the GPB encoding and gRPC transport is available on Cisco's GitLab:
https://github.com/CiscoDevNet/nx-telemetry-proto

High Availability of the Telemetry Process

High availability of the telemetry process is supported with the following behaviors:

» System Reload — During a system reload, any telemetry configuration and streaming services are
restored.

* Process Restart — If the telemetry process freezes or restarts for any reason, configuration and streaming
services are restored when telemetry is restarted.

Licensing Requirements for Telemetry

Product License Requirement

Cisco NX-OS | Telemetry requires no license. Any feature not included in a license package is bundled
with the Cisco NX-OS image and is provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OSLicensing Guide.

Installing and Upgrading Telemetry

Installing the Application

The telemetry application is packaged as a feature RPM and included with the NX-OS release. The RPM is
installed by default as part of the image bootup. After installation, you can start the application using the
feature telemetry command. The RPM file is located in the /rpms directory and is named as follows:

As in the following example:

Installing Incremental Updates and Fixes

Copy the RPM to the device bootflash and use the following commands from the bash prompt:

feature bash
run bash sudo su

Then copy the RPM to the device bootflash. Use the following commands from the bash prompt:
yum upgrade telemetry new version.rpm

The application is upgraded and the change appears when the application is started again.

Downgrading to a Previous Version

To downgrade the telemetry application to a previous version, use the following command from the bash
prompt:

Model-Driven Telemetry .

https://github.com/CiscoDevNet/nx-telemetry-proto

Model-Driven Telemetry |
. Guidelines and Limitations

yum downgrade telemetry

Verifying the Active Version

To verify the active version, run the following command from the switch exec prompt:

show install active

\}

Note The show install active command will only show the active installed RPM after an upgrade has occurred.
The default RPM that comes bundled with the NX-OS will not be displayed.

Guidelines and Limitations

Telemetry has the following configuration guidelines and limitations:

* Telemetry is supported in Cisco NX-OS releases that support the data management engine (DME) Native
Model.

* Support is in place for DME data collection, NX-API data sources, Google protocol buffer (GPB) encoding
over Google Remote Procedure Call (gRPC) transport, and JSON encoding over HTTP.

* The smallest sending interval (cadence) supported is five seconds for a depth of 0. The minimum cadence
values for depth values greater than 0 depends on the size of the data being streamed out. Configuring
cadences below the minimum value may result in undesirable system behavior.

* Up to five remote management receivers (destinations) are supported. Configuring more than five remote
receivers may result in undesirable system behavior.

* In the event that a telemetry receiver goes down, other receivers will see data flow interrupted. The failed
receiver must be restarted. Then start a new connection with the switch by unconfiguring then reconfiguring
the failer receiver's IP address under the destination group.

* Telemetry can consume up to 20% of the CPU resource.

* To configure SSL certificate based authentication and the encryption of streamed data, you can provide
a self signed SSL certificate with certificate sdl cert path hostname ""CN" command.

* QoS Explicit Congestion Notification (ECN) statistics are supported only on Cisco Nexus 9364C,
9336C-FX, and 93240YC-FX switches.

Configuration Commands After Downgrading to an Older Release

After a downgrade to an older release, some configuration commands or command options might fail because
the older release may not support them. As a best practice when downgrading to an older release, unconfigure
and reconfigure the telemetry feature after the new image comes up to avoid the failure of unsupported
commands or command options.

The following example shows this procedure:

* Copy the telemetry configuration to a file:

switch# show running-config | section telemetry
feature telemetry

. Model-Driven Telemetry

| Model-Driven Telemetry

Guidelines and Limitations .

telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096
sensor-group 100
path sys/bgp/inst/dom-default depth 0
subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000
switch# show running-config | section telemetry > telemetry running config
switch# show file bootflash:telemetry running config
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096
sensor-group 100
path sys/bgp/inst/dom-default depth 0
subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000
switch#

» Execute the downgrade operation. When the image comes up and the switch is ready, copy the telemetry
configurations back to the switch:

switch# copy telemetry running config running-config echo-commands
“switch# config terminal’

“switch(config)# feature telemetry’

"switch(config) # telemetry’

"switch(config-telemetry)# destination-group 100°
“switch(conf-tm-dest)# ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
“switch (conf-tm-dest) # sensor-group 100°

‘switch (conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0°
“switch (conf-tm-sensor)# subscription 600°

“switch (conf-tm-sub)# dst-grp 100°

"switch (conf-tm-sub)# snsr-grp 100 sample-interval 7000°

‘switch (conf-tm-sub) # end’

Copy complete, now saving to disk (please wait)...

Copy complete.

switch#

gRPC Error Behavior

The switch client will disable the connection to the gRPC receiver if the gRPC receiver sends 20 errors. You
will then need to unconfigure then reconfigure the receiver's IP address under the destination group to enable
the gRPC receiver. Errors include:

» The gRPC client sends the wrong certificate for secure connections,

» The gRPC receiver takes too long to handle client messages and incurs a timeout. Avoid timeouts by
processing messages using a separate message processing thread.

Telemetry Compression for gRPC Transport

Telemetry compression support is available for gRPC transport. You can use the use-compression gzip
command to enable compression. (Disable compression with the no use-compression gzip command.)

The following example enables compression:

Model-Driven Telemetry .

. Guidelines and Limitations

switch (config)# telemetry

switch(config-telemetry)# destination-profile
switch (config-tm-dest-profile)# use-compression gzip

The following example shows compression is enabled:

switch (conf-tm-dest)# show telemetry transport 0 stats

Session Id:
Connection Stats
Connection Count
Last Connected:
Disconnect Count
Last Disconnected:
Transmission Stats
Compression:
Source Interface:
Transmit Count:
Last TX time:
Min Tx Time:
Max Tx Time:
Avg Tx Time:
Cur Tx Time:

0
Never
0

Never

gzip

loopbackl (1.1.3.4)
0

None

0

0
0
0

ms
ms

switch2 (config-if)# show telemetry transport 0 stats

Session Id: O
Connection Stats
Connection Count 0
Last Connected: Never
Disconnect Count 0

Last Disconnected: Never

Transmission Stats
Compression: disabled

Source Interface: loopbackl(l1.1.3.4)

Transmit Count: O
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms
switch2 (config-if) #

The following is an example of use-compression as a POST payload:

"telemetryDestProfile": ({

"attributes":
"adminSt":

}I

"children":

{

"telemetryDestOptCompression":
"attributes": {

. Model-Driven Telemetry

"enabled"

"gzip"

{

Model-Driven Telemetry |

| Model-Driven Telemetry

Guidelines and Limitations .

Support for gRPC Chunking

Starting with Release 9.2(1), support for gRPC chunking has been added. For streaming to occur successfully,
you must enable chunking if gRPC has to send an amount of data greater than 12MB to the receiver.

gRPC chunking has to be done by the gRPC user. Fragmentation has to be done on the gRPC client side and
reassembly has to be done on the gRPC server side. Telemetry is still bound to memory and data can be
dropped if the memory size is more than the allowed limit of 12MB for telemetry. In order to support chunking,
use the telemetry . proto file that is available at Cisco's GibLab, which has been updated for gRPC chunking,
as described in Telemetry Components and Process, on page 1.

The chunking size is between 64 and 4096 bytes.
Following shows a configuration example through the NX-API CLI:

feature telemetry
|
telemetry
destination-group 1
ip address 171.68.197.40 port 50051 protocol gRPC encoding GPB
use-chunking size 4096
destination-group 2
ip address 10.155.0.15 port 50001 protocol gRPC encoding GPB
use-chunking size 64
sensor-group 1
path sys/intf depth unbounded
sensor-group 2
path sys/intf depth unbounded
subscription 1
dst-grp 1
snsr-grp 1 sample-interval 10000
subscription 2
dst-grp 2
snsr-grp 2 sample-interval 15000

Following shows a configuration example through the NX-API REST:

{
"telemetryDestGrpOptChunking™: {

"attributes": {
"chunkSize": "2048",
"dn": "sys/tm/dest-1/chunking"

The following error message will appear on systems that do not support gRPC chunking, such as the Cisco
MDS series switches:

MDS-9706-86 (conf-tm-dest) # use-chunking size 200
ERROR: Operation failed: [chunking support not available]

NX-API Sensor Path Limitations

NX-API can collect and stream switch information not yet in the DME using show commands. However,
using the NX-API instead of streaming data from the DME has inherent scale limitations as outlined:

* The switch backend dynamically processes NX-API calls such as sShow commands,

* NX-API spawns several processes that can consume up to a maximum of 20% of the CPU.

Model-Driven Telemetry .

Model-Driven Telemetry |

. Guidelines and Limitations

* NX-API data translates from the CLI to XML to JSON.

The following is a suggested user flow to help limit excessive NX-API sensor path bandwidth consumption:

1. Check whether the show command has NX-API support. You can confirm whether NX-API supports the
command from the VSH with the pipe option: show <command> | json Of show <command> | json
pretty.

Note

Avoid commands that take the switch more than 30 seconds to return JSON output.

2. Refine the show command to include any filters or options.

* Avoid enumerating the same command for individual outputs; i.e., show vlan id 100, show vlan id
101, etc.. Instead, use the CLI range options; i.e., show vlan id 100-110,204, whenever possible to
improve performance.

If only the summary/counter is needed, then avoid dumping a whole show command output to limit
the bandwidth and data storage required for data collection.

3. Configure telemetry with sensor groups that use NX-API as their data sources. Add the show commands
as sensor paths

4. Configure telemetry with a cadence of 5 times the processing time of the respective show command to
limit CPI usage.

5. Receive and process the streamed NX-API output as part of the existing DME collection.

Telemetry VRF Support

Telemetry VRF support allows you to specify a transport VRF. This means that the telemetry data stream can
egress via front-panel ports and avoid possible competition between SSH/NGINX control sessions.

You can use the use-vrf vrf-name command to specify the transport VRF.

The following example specifies the transport VRF:

switch(config)# telemetry
switch (config-telemetry)# destination-profile
switch (config-tm-dest-profile)# use-vrf test vrf

The following is an example of use-vrf as a POST payload:

"telemetryDestProfile": ({
"attributes": {
"adminSt": "enabled"
}I
"children": [
{
"telemetryDestOptVrf": ({
"attributes": {
"name": "default"
}
}

. Model-Driven Telemetry

| Model-Driven Telemetry

Configuring Telemetry Using the CLI .

Configuring Telemetry Using the CLI

Configuring Telemetry Using the NX-0S CLI

The following steps enables streaming telemetry, and configures the source and destination of the data stream.
These steps also include optional steps to enable and configure SSL/TLS certificates and GPB encoding.

Before you begin

Your switch must be running Cisco NX-OS Release 9.2(1) or a later release.

SUMMARY STEPS
1. (Optional) openssl argument
2. configure terminal
3. feature telemetry
4. feature nxapi
5. nxapi use-vrf management
6. telemetry
7. (Optional) certificate certificate path host_ URL
8. (Optional) Specify a transport VRF and/or enable telemetry compression for gRPC transport.
9. sensor-group sgrp_id
10. (Optional) data-source data-source-type
11. path sensor_path depth 0 [filter-condition filter]
12. destination-group dgrp_id
13. (Optional) ip address ip_address port port protocol procedural-protocol encoding
encoding-protocol
14. ip_version address ip_address port portnum
15. subscription sub_id
16. snsr-grp sgrp_id sample-interval interval
17. dst-grp dgrp_id
DETAILED STEPS
Command or Action Purpose
Step 1 (Optional) openssl argument Create an SSL/TLS certificate on the server that will
Example: receive the data, where private. key file is the private

Generate an SSL/TLS certificate using a specific argument,
such as the following:

key and the public.crt is the public key.

Model-Driven Telemetry .

. Configuring Telemetry Using the NX-0S CLI

Model-Driven Telemetry |

Command or Action

Purpose

* To generate a private RSA key: openssl genrsa
-cipher -out filenamekey cipher-hit-length

For example:

switch# openssl genrsa -des3 server.key 2048

To write the RSA key: openssl rsa -in filename key
-out filename.key

For example:

switch# openssl rsa -in server.key -out
server.key

To create a certificate that contains the public/private
key: openssl req

-encoding-standard -new -new filenamekey
-out filename.csr -subj '/CN=localhost’

For example:

switch# openssl req -sha256 -new -key
server.key -out server.csr
-subj '/CN=localhost'

To create a public key: openssl x509 -req
-encoding-standard -days timeframe -in
filename.csr -signkey filenamekey -out
filename.csr

For example:

switch# openssl x509 -req -sha256 -days 365
-in server.csr -signkey server.key
-out server.crt

Step 2 configure terminal Enter the global configuration mode.
Example:
switch# configure terminal
switch (config) #
Step 3 feature telemetry Enable the streaming telemetry feature.
Step 4 feature nxapi Enable nxapi.
Step 5 nxapi use-vrf management Enable the VRF management to be used for nxapi
communication.
Step 6 telemetry Enter configuration mode for streaming telemetry.
Example:

switch (config) # telemetry
switch (config-telemetry) #

. Model-Driven Telemetry

| Model-Driven Telemetry

Configuring Telemetry Using the NX-0S CLI .

Command or Action Purpose
Step 7 (Optional) certificate certificate_path host_URL Use an existing SSL/TLS certificate.
Example:
switch (config-telemetry)# certificate
/bootflash/server.key localhost
Step 8 (Optional) Specify a transport VRF and/or enable telemetry * Enter the destination-profile command to specify
compression for gRPC transport. the default destination profile.
Example: * Enter any of the following commands:
switch (config-telemetry)# destination-profile * use-vrf vrfto specify the destination vrf.
switch (conf-tm-dest-profile)# use-vrf default . ~ -
switch (conf-tm-dest-profile)# use-compression gzip use compressmn gzp to spec1fy the destination
switch (conf-tm-dest-profile)# use-retry size 10 compression method.
switch (conf-tm-dest-profile)# source-interface . E .
loopbackl * use-retry size sizeto specify the send retry
details, with a retry buffer size between 10 and
1500 megabytes.

« source-interface interface-nameto stream data
from the configured interface to a destination
with the source IP address.

Note After configuring the use-vrf command, you
need to configure a new destination IP address
within the new VRF. However, you may re-use
the same destination IP address by
un-configuring and re-configuring the
destination. This ensures that the telemetry data
streams to the same destination IP address in
the new VRF.

Step 9 sensor-group sgrp_id Create a sensor group with ID srgp_id and enter sensor
roup configuration mode.
Example: group g
switch (config-telemetry)# sensor-group 100 Currently only numeric ID values are supported. The
switch (conf-tm-sensor) # sensor group defines nodes that will be monitored for
telemetry reporting.
Step 10 (Optional) data-source data-source-type Select a data source. Select from either DME or NX-API
as the data source.
Example:
switch (config-telemetry)# data-source NX-API Note DME is the default data source.
Step 11 path sensor_path depth 0 [filter-condition filter]| Add a sensor path to the sensor group.

Example:

* The following command is applicable for DME, not
for NX-API:

switch (conf-tm-sensor)# path
sys/bd/bd-[v1an-100] depth 0

filter-condition eq(l2BD.operSt, "down")

* The depth setting specifies the retrieval level for the
sensor path. Depth settings of 0 - 32, unbounded are
supported.

Model-Driven Telemetry .

. Configuring Telemetry Using the NX-0S CLI

Model-Driven Telemetry |

Command or Action

Purpose

Use the syntax below for state-based filtering to
trigger only when operSt changes from up to
down, with no notifications of when the MO changes.

switch (conf-tm-sensor)# path
sys/bd/bd-[v1lan-100] depth 0
filter-condition

and (updated (12BD.operSt) ,eq(12BD.operSt, "down"))

* The following command is applicable for NX-API,
not for DME:

switch (conf-tm-sensor)# path "show interface"
depth 0

Note depth 0 is the default depth.

NX-API-based sensor paths can only use
depth 0.

If a path is subscribed for the event
collection, the depth only supports 0 and
unbounded. Other values would be treated
as 0.

* The optional filter-condition parameter can be
specified to create a specific filter for event-based
subscriptions.

For state-based filtering, the filter will return both
when a state has changed and when an event has
occurred during the specified state. That is, a filter
condition for the DN sys/bd/bd-[vlan] of
eq(l2Bd.opersSt, ""down'") will trigger when the
operSt changes, and when the DN's property changes
while the operSt remains down, such as a no
shutdown command is issued while the vlan is
operationally down.

Note query-condition parameter — For DME,
based on the DN, the query-condition
parameter can be specified to fetch MOTL
and ephemeral data with the following
syntax: query-condition
"rsp-foreign-subtree=applied-config";
query-condition
"rsp-foreign-subtree=ephemeral".

Step 12 destination-group dgrp_id Create a destination group and enter destination group
configuration mode.
Example:
switch (conf-tm-sensor)# destination-group 100 Currently dgrp_ld only supports numeric ID values.
switch (conf-tm-dest) #
Step 13 (Optional) ip address ip_address port port protocol | Specify an IPv4 IP address and port to receive encoded
procedural-protocol encoding encoding-protocol telemetry data.
Example: Note gRPC is the default transport protocol.
switch (conf-tm-sensor)# ip address 171.70.55.69 (}PBisthedeﬁnﬂtencodhu;
port 50001 protocol gRPC encoding GPB
switch (conf-tm-sensor)# ip address 171.70.55.69
port 50007 protocol HTTP encoding JSON
switch (conf-tm-sensor)# ip address 171.70.55.69
port 50009 protocol UDP encoding JSON
Step 14 ip_version address ip_address port portnum Create a destination profile for the outgoing data.

Example:

. Model-Driven Telemetry

| Model-Driven Telemetry

Configuration Examples for Telemetry Using the CLI .

Command or Action

Purpose

switch (conf-tm-dest)# ip address 1.2.3.4 port
50003

When the destination group is linked to a subscription,
telemetry data is sent to the IP address and port specified
by this profile.

Step 15 subscription sub_id Create a subscription node with ID and enter the
subscription configuration mode.
Example:
switch (conf-tm-dest)# subscription 100 Currently sub_id only supports numeric ID values.
switch (conf-tn-sub) # Note When subscribing to to a DN, check whether
the DN is supported by DME using REST to
ensure that events will stream.
Step 16 snsr-grp sgrp_id sample-interval interval Link the sensor group with ID sgrp_id to this subscription
and set the data sampling interval in milliseconds.
Example:
switch (conf-tm-sub)# snsr-grp 100 sample-interval Al interval value of O creates an event-based subscription,
15000 in which telemetry data is sent only upon changes under
the specified MO. An interval value greater than O creates
a frequency-based subscription, in which telemetry data
is sent periodically at the specified interval. For example,
an interval value of 15000 results in the sending of
telemetry data every 15 seconds.
Step 17 dst-grp dgrp_id Link the destination group with ID dgrp_id to this

Example:
switch (conf-tm-sub)# dst-grp 100

subscription.

Configuration Examples for Telemetry Using the CLI

This example creates a subscription that streams data for the sys/bgp root MO every 5 seconds to the

destination IP 1.2.3.4 port 50003.

switch (config) # telemetry

switch (config-telemetry) # sensor-group 100
switch (conf-tm-sensor) # path sys/bgp depth 0

100

switch (conf-tm-dest)# ip address 1.2.3.4 port 50003

switch (conf-tm-dest)# subscription 100

switch (conf-tm-sub) # snsr-grp 100 sample-interval 5000

(
(
(
switch (conf-tm-sensor)# destination-group
(
(
(
(

switch (conf-tm-sub)# dst-grp 100

This example creates a subscription that streams data for sys/intf every 5 seconds to destination IP 1.2.3.4
port 50003, and encrypts the stream using GPB encoding verified using the test . pem.

switch (config) # telemetry

switch (config-telemetry)# certificate /bootflash/test.pem foo.test.google.fr
switch (conf-tm-telemetry)# destination-group 100

switch (config-dest)# sensor-group 100

switch (conf-tm-sensor)# path sys/bgp depth 0

(
(
(
switch (conf-tm-dest)# ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
(
(
(

switch (conf-tm-sensor)# subscription 100

Model-Driven Telemetry .

Model-Driven Telemetry |
. Configuration Examples for Telemetry Using the CLI

switch (conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch (conf-tm-sub)# dst-grp 100

This example creates a subscription that streams data for sys/cdp every 15 seconds to destination IP 1.2.3.4
port 50004.

switch(config) # telemetry

switch (config-telemetry)# sensor-group 100

switch (conf-tm-sensor)# path sys/cdp depth 0

switch (conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch (conf-tm-dest) # subscription 100

switch (conf-tm-sub)# snsr-grp 100 sample-interval 15000
switch (conf-tm-sub) # dst-grp 100

This example creates a cadence-based collection of show command data every 750 seconds.

switch (config) # telemetry

switch (config-telemetry)# destination-group 1

switch (conf-tm-dest)# ip address 172.27.247.72 port 60001 protocol gRPC encoding GPB
switch (conf-tm-dest)# sensor-group 1

switch (conf-tm-sensor# data-source NX-API

switch (conf-tm-sensor) # path "show system resources" depth 0

switch (conf-tm-sensor)# path "show version" depth 0

switch (conf-tm-sensor) # path "show environment power" depth 0
switch (conf-tm-sensor) # path "show environment fan" depth 0

switch (conf-tm-sensor)# path "show environment temperature" depth 0
switch (conf-tm-sensor) # path "show process cpu" depth 0

switch (conf-tm-sensor)# path "show nve peers" depth 0

switch (conf-tm-sensor)# path "show nve vni" depth 0

switch (conf-tm-sensor)# path "show nve vni 4002 counters" depth 0
switch (conf-tm-sensor)# path "show int nve 1 counters" depth 0
switch (conf-tm-sensor)# path "show policy-map vlan" depth 0

switch (conf-tm-sensor)# path "show ip access-list test" depth 0
switch (conf-tm-sensor)# path "show system internal access-list resource utilization" depth
0

switch (conf-tm-sensor) # subscription 1

switch (conf-tm-sub)# dst-grp 1

switch (conf-tm-dest)# snsr-grp 1 sample-interval 750000

)
)
)
)

This example creates an event-based subscription for sys/ fm. Data is streamed to the destination only if
there is a change under the sys/fm MO.

switch (config) # telemetry

switch (config-telemetry)# sensor-group 100

switch (conf-tm-sensor)# path sys/fm depth 0

switch (conf-tm-sensor)# destination-group 100
switch (conf-tm-dest)# ip address 1.2.3.4 port 50005
switch (conf-tm-dest) # subscription 100

switch (conf-tm-sub) # snsr-grp 100 sample-interval 0
switch (conf-tm-sub) # dst-grp 100

During operation, you can change a sensor group from frequency-based to event-based, and change event-based
to frequency-based by changing the sample-interval. This example changes the sensor-group from the previous
example to frequency-based. After the following commands, the telemetry application will begin streaming
the sys/fm data to the destination every 7 seconds.

. Model-Driven Telemetry

| Model-Driven Telemetry
Configuration Examples for Telemetry Using the CLI .

switch (config) # telemetry
switch (config-telemetry)# subscription 100
switch (conf-tm-sub) # snsr-grp 100 sample-interval 7000

Multiple sensor groups and destinations can be linked to a single subscription. The subscription in this example
streams the data for Ethernet port 1/1 to four different destinations every 10 seconds.

switch (config) # telemetry

switch (config-telemetry)# sensor-group 100

switch (conf-tm-sensor)# path sys/intf/phys-[ethl/1] depth 0
switch (conf-tm-sensor)# destination-group 100

switch (conf-tm-dest)# ip address 1.2.3.4 port 50004

switch (conf-tm-dest)# ip address 1.2.3.4 port 50005

switch (conf-tm-sensor)# destination-group 200

switch (conf-tm-dest)# ip address 5.6.7.8 port 50001 protocol HTTP encoding JSON
switch (conf-tm-dest)# ip address 1.4.8.2 port 60003

switch (conf-tm-dest) # subscription 100

switch (conf-tm-sub) # snsr-grp 100 sample-interval 10000
switch (conf-tm-sub)# dst-grp 100

switch (conf-tm-sub) # dst-grp 200

A sensor group can contain multiple paths, a destination group can contain multiple destination profiles, and
a subscription can be linked to multiple sensor groups and destination groups, as shown in this example.

switch (config) # telemetry

switch (config-telemetry)# sensor-group 100

switch (conf-tm-sensor)# path sys/intf/phys-[ethl/1] depth 0
switch (conf-tm-sensor)# path sys/epId-1 depth 0

switch (conf-tm-sensor) # path sys/bgp/inst/dom-default depth 0

switch (config-telemetry) # sensor-group 200
switch (conf-tm-sensor) # path sys/cdp depth 0
switch (conf-tm-sensor)# path sys/ipv4 depth 0

switch (config-telemetry) # sensor-group 300
switch (conf-tm-sensor) # path sys/fm depth 0
switch (conf-tm-sensor)# path sys/bgp depth 0

switch (conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch (conf-tm-dest)# ip address 4.3.2.5 port 50005

switch (conf-tm-dest)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001

switch (conf-tm-dest)# destination-group 300
switch (conf-tm-dest)# ip address 1.2.3.4 port 60003

switch (conf-tm-dest) # subscription 600

()
switch (conf-tm-sub) # snsr-grp 100 sample-interval 7000
switch (conf-tm-sub)# snsr-grp 200 sample-interval 20000
switch (conf-tm-sub) # dst-grp 100
switch (conf-tm-sub) # dst-grp 200

switch (conf-tm-dest)# subscription 900

switch (conf-tm-sub) # snsr-grp 200 sample-interval 7000
switch (conf-tm-sub)# snsr-grp 300 sample-interval 0
switch (conf-tm-sub) # dst-grp 100

Model-Driven Telemetry .

Model-Driven Telemetry |
. Displaying Telemetry Configuration and Statistics

switch (conf-tm-sub) # dst-grp 300

You can verify the telemetry configuration using the show running-config telemetry command, as shown
in this example.

switch(config) # telemetry

switch (config-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch (conf-tm-dest)# ip address 1.2.3.4 port 50004
switch (conf-tm-dest) # end

switch# show run telemetry

!Command: show running-config telemetry
!Time: Thu Oct 13 21:10:12 2016

version 7.0(3)I5(1)
feature telemetry

telemetry

destination-group 100

ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB

You can specify transport VRF and telemetry data compression for gRPC using the use-vrf and
use-compression gzip commands, as shown in this example.

switch(config)# telemetry

switch (config-telemetry)# destination-profile

switch (conf-tm-dest-profile)# use-vrf default

switch (conf-tm-dest-profile)# use-compression gzip
switch (conf-tm-dest-profile)# sensor-group 1

switch (conf-tm-sensor)# path sys/bgp depth unbounded
switch (conf-tm-sensor)# destination-group 1
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch (conf-tm-dest)# subscription 1

switch (conf-tm-sub)# dst-grp 1

switch (conf-tm-sub)# snsr-grp 1 sample-interval 10000

Displaying Telemetry Configuration and Statistics

Use the following NX-OS CLI show commands to display telemetry configuration, statistics, errors, and
session information.

show telemetry control database

This command displays the internal databases that reflect the configuration of telemetry.

switch# show telemetry control database ?

<CR>

> Redirect it to a file

>> Redirect it to a file in append mode
destination-groups Show destination-groups

destinations Show destinations

sensor-groups Show sensor-groups

sensor-paths Show sensor-paths

subscriptions Show subscriptions

| Pipe command output to filter

. Model-Driven Telemetry

| Model-Driven Telemetry

switch# show

Displaying Telemetry Configuration and Statistics .

telemetry control database

Subscription Database size = 1

DME NX-API

Database size = 1

Sensor Group ID Sensor Group type Sampling interval (ms) Linked subscriptions
100 Timer 10000 (Running) 1
Sensor Path Database size =1

Subscribed Query Filter Linked Groups Sec Groups Retrieve level Sensor Path

Database size = 2

Transport Count

192.168.20.111 12345
192.168.20.123 50001 GPB

show telemetry control stats

This command displays the statistic regarding the internal databases regarding configuration of telemetry.

switch# show telemetry control stats
show telemetry control stats entered

Chunk allocation failures

Sensor path Database chunk creation failures
Sensor Group Database chunk creation failures
Destination Database chunk creation failures
Destination Group Database chunk creation failures
Subscription Database chunk creation failures
Sensor path Database creation failures

Sensor Group Database creation failures
Destination Database creation failures
Destination Group Database creation failures
Subscription Database creation failures
Sensor path Database insert failures

Sensor Group Database insert failures

O O O OO OO0 oOooo oo

Model-Driven Telemetry .

Model-Driven Telemetry |
. Displaying Telemetry Configuration and Statistics

Destination Database insert failures

Destination Group Database insert failures
Subscription insert to Subscription Database failures
Sensor path Database delete failures

Sensor Group Database delete failures

Destination Database delete failures

Destination Group Database delete failures

Delete Subscription from Subscription Database failures
Sensor path delete in use

Sensor Group delete in use

Destination delete in use

Destination Group delete in use

Delete destination(in use) failure count

Failed to get encode callback

Sensor path Sensor Group list creation failures
Sensor path prop list creation failures

Sensor path sec Sensor path list creation failures
Sensor path sec Sensor Group list creation failures
Sensor Group Sensor path list creation failures
Sensor Group Sensor subs list creation failures
Destination Group subs list creation failures
Destination Group Destinations list creation failures
Destination Destination Groups list creation failures
Subscription Sensor Group list creation failures
Subscription Destination Groups list creation failures
Sensor Group Sensor path list delete failures

Sensor Group Subscriptions list delete failures
Destination Group Subscriptions list delete failures
Destination Group Destinations list delete failures
Subscription Sensor Groups list delete failures
Subscription Destination Groups list delete failures
Destination Destination Groups list delete failures
Failed to delete Destination from Destination Group
Failed to delete Destination Group from Subscription
Failed to delete Sensor Group from Subscription
Failed to delete Sensor path from Sensor Group

Failed to get encode callback

Failed to get transport callback

O O O O O OO OO OO0 O0O0O00O00O00O00O00O00OO0OO0OO0OOOOOOOOOOOO O OO

switch# Destination Database size = 1
Dst IP Addr Dst Port Encoding Transport Count
192.168.20.123 50001 GPB gRPC 1

show telemetry data collector brief

This command displays the brief statistic regarding the data collection.

switch# show telemetry data collector brief

show telemetry data collector details

This command displays details statistic regarding the data collection which includes breakdown of all sensor
paths.

. Model-Driven Telemetry

| Model-Driven Telemetry

switch# show telemetry data collector details

Displaying Telemetry Configuration and Statistics .

show telemetry event collector errors

This command displays the errors statistic regarding the event collection.

switch# show telemetry event collector errors

APIC-Cookie Generation Failures
Authentication Failures
Authentication Refresh Failures

Authentication Refresh Timer Start Failures

Connection Timer Start Failures
Connection Attempts

Dme Event Subscription Init Failures
Event Data Enqueue Failures

Event Subscription Failures

Event Subscription Refresh Failures
Pending Subscription List Create Failures

Subscription
Subscription
Subscription
Subscription
Subscription

Hash Table Create Failures
Hash Table Destroy Failures
Hash Table Insert Failures
Hash Table Remove Failures
Refresh Timer Start Failures

Websocket Connect Failures

show telemetry event collector stats

O OO O OO O0OOOOO0OWoOoOoo oo

This command displays the statistic regarding the event collection which includes breakdown of all sensor

paths.

switch# show telemetry event collector stats

Collection Count Latest Collection Time

show telemetry control pipeline stats

This command displays the statistic for the telemetry pipeline.

switch# show telemetry pipeline stats
Main Statistics:

Timers:

Errors:

Start Fail = 0

Data Collector:

Model-Driven Telemetry .

Model-Driven Telemetry |
Displaying Telemetry Configuration and Statistics

Errors:
Node Create Fail = 0

Event Collector:

Errors:
Node Create Fail = 0 Node Add Fail = 0
Invalid Data = 0

Queue Statistics:
Request Queue:
High Priority Queue:

Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0
Errors:
Enqueue Error = 0 Dequeue Error = 0

Low Priority Queue:

Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0
Errors:
Enqueue Error = 0 Dequeue Error = 0
Data Queue:
High Priority Queue:
Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0
Errors:
Enqueue Error = 0 Dequeue Error = 0
Low Priority Queue:
Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0
Errors:
Enqueue Error = 0 Dequeue Error = 0

show telemetry transport

This command displays all configured transport sessions.

switch# show telemetry transport
Session Id IP Address Port Encoding Transport Status

0 192.168.20.123 50001 GPB gRPC Connected

show telemetry transport <session-id>

This command displays detailed session information for a specific transport session.

switch# show telemetry transport 0

Session Id: 0

. Model-Driven Telemetry

| Model-Driven Telemetry
Displaying Telemetry Log and Trace Information .

IP Address:Port 192.168.20.123:50001
Encoding: GPB

Transport: gRPC

Status: Disconnected

Last Connected: Fri Sep 02 11:45:57.505 UTC
Tx Error Count: 224

Last Tx Error: Fri Sep 02 12:23:49.555 UTC

switch# show telemetry transport 1

Session Id: 1

IP Address:Port 10.30.218.56:51235
Encoding: JSON

Transport: HTTP

Status: Disconnected

Last Connected: Never

Last Disconnected: Never

Tx Error Count: 3

Last Tx Error: Wed Apr 19 15:56:51.617 PDT

show telemetry transport <session-id> stats

This command displays details of a specific transport session.

switch# show telemetry transport 0 stats

Session Id: 0

IP Address:Port 192.168.20.123:50001
Encoding: GPB

Transport: GRPC

Status: Connected

Last Connected: Mon May 01 11:29:46.912 PST
Last Disconnected: Never

Tx Error Count: 0

Last Tx Error: None

show telemetry transport <session-id> errors

This command displays detailed error statistics for a specific transport session.

switch# show telemetry transport 0 errors

Session Id: 0
Connection Stats
Connection Count 1
Last Connected: Mon May 01 11:29:46.912 PST
Disconnect Count 0
Last Disconnected: Never
Transmission Stats
Transmit Count: 1225
Last TX time: Tue May 02 11:40:03.531 PST
Min Tx Time: 7 ms
Max Tx Time: 1760 ms
Avg Tx Time: 500 ms

Displaying Telemetry Log and Trace Information

Use the following NX-OS CLI commands to display the log and trace information.

Model-Driven Telemetry .

Model-Driven Telemetry |
. Displaying Telemetry Log and Trace Information

show tech-support telemetry

This NX-OS CLI command collects the telemetry log contents from the tech-support log. In this example,
the command output is redirected into a file in bootflash.

switch# show tech-support telemetry > bootflash:tmst.log

show system internal telemetry trace

The show system internal telemetry trace [tm-events | tm-errors [tm-logs | all] command displays system
internal telemetry trace information.

switch# show system internal telemetry trace all

Telemetry All Traces:

Telemetry Error Traces:

[07/26/17 15:22:29.156 UTC 1 28577] [3960399872] [tm cfg api.c:367] Not able to destroy dest
profile list for config node rc:-1610612714 reason:Invalid argument

[07/26/17 15:22:44.972 UTC 2 28577] [3960399872] [tm stream.c:248] No subscriptions for
destination group 1

[07/26/17 15:22:49.463 UTC 3 28577] [3960399872] [tm stream.c:576] TM STREAM: Subscriptoin
1 does not have any sensor groups

3 entries printed

Telemetry Event Traces:

[07/26/17 15:19:40.610 UTC 1 28577] [3960399872] [tm _debug.c:41] Telemetry xostrace buffers
initialized successfully!

[07/26/17 15:19:40.610 UTC 2 28577] [3960399872] [tm.c:744] Telemetry statistics created

successfully!

[07/26/17 15:19:40.610 UTC 3 28577] [3960399872] [tm init n9%k.c:97] Platform intf:

grpc_traces:compression, channel

switch#

switch# show system internal telemetry trace tm-logs

Telemetry Log Traces:

0 entries printed

switch#

switch# show system internal telemetry trace tm-events

Telemetry Event Traces:

[07/26/17 15:19:40.610 UTC 1 28577] [3960399872] [tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!

[07/26/17 15:19:40.610 UTC 2 28577] [3960399872] [tm.c:744] Telemetry statistics created
successfully!

[07/26/17 15:19:40.610 UTC 3 28577] [3960399872] [tm init n9%k.c:97] Platform intf:

grpc_traces:compression, channel

[07/26/17 15:19:40.610 UTC 4 28577] [3960399872] [tm init n9k.c:207] Adding telemetry to
cgroup

[07/26/17 15:19:40.670 UTC 5 28577] [3960399872] [tm init n9k.c:215] Added telemetry to
cgroup successfully!

switch# show system internal telemetry trace tm-errors
Telemetry Error Traces:

0 entries printed

switch#

. Model-Driven Telemetry

| Model-Driven Telemetry
Configuring Telemetry Using the NX-API .

Configuring Telemetry Using the NX-API

Configuring Telemetry Using the NX-API

In the object model of the switch DME, the configuration of the telemetry feature is defined in a hierarchical
structure of objects as shown in Telemetry Model in the DME, on page 35. Following are the main objects
to be configured:

» fmEntity — Contains the NX-API and Telemetry feature states.
» fmNxapi — Contains the NX-API state.

» fmTelemetry — Contains the Telemetry feature state.

« telemetryEntity — Contains the telemetry feature configuration.

« telemetrySensorGroup — Contains the definitions of one or more sensor paths or nodes to be
monitored for telemetry. The telemetry entity can contain one or more sensor groups.

* telemetryRtSensorGroupRel — Associates the sensor group with a telemetry subscription.
« telemetrySensorPath — A path to be monitored. The sensor group can contain multiple objects
of this type.

* telemetryDestGroup — Contains the definitions of one or more destinations to receive telemetry
data. The telemetry entity can contain one or more destination groups.

« telemetryRtDestGroupRel — Associates the destination group with a telemetry subscription.

« telemetryDest — A destination address. The destination group can contain multiple objects
of this type.

« telemetrySubscription — Specifies how and when the telemetry data from one or more sensor
groups is sent to one or more destination groups.

« telemetryRsDestGroupRel — Associates the telemetry subscription with a destination group.

« telemetryRsSensorGroupRel — Associates the telemetry subscription with a sensor group.

« telemetryCertificate — Associates the telemetry subscription with a certificate and hostname.

To configure the telemetry feature using the NX-API, you must construct a JSON representation of the
telemetry object structure and push it to the DME with an HTTP or HTTPS POST operation.

Note For detailed instructions on using the NX-API, see the Cisco Nexus 3000 and 9000 Series NX-API REST SDK
User Guide and API Reference.

Before you begin

Your switch must be configured to run the NX-API from the CLI:

Model-Driven Telemetry .

Model-Driven Telemetry |

. Configuring Telemetry Using the NX-API

switch(config) # feature nxapi

nxapi use-vrf vrf name
nxapi http port port number

SUMMARY STEPS
1. Enable the telemetry feature.
2. Create the root level of the JSON payload to describe the telemetry configuration.
3. Create a sensor group to contain the defined sensor paths.
4. (Optional) Add an SSL/TLS certificate and a host.
5. Define a telemetry destination group.
6. Define a telemetry destination profile.
7. Define one or more telemetry destinations, consisting of an IP address and port number to which telemetry
data will be sent.
8. Enable gRPC chunking and set the chunking size, between 64 and 4096 bytes.
9. Create a telemetry subscription to configure the telemetry behavior.
10. Add the sensor group object as a child object to the telemetrySubscription element under the root
element (telemetryEntity).
11. Create a relation object as a child object of the subscription to associate the subscription to the telemetry
sensor group and to specify the data sampling behavior.
12. Define one or more sensor paths or nodes to be monitored for telemetry.
13. Add sensor paths as child objects to the sensor group object (telemetrySensorGroup).
14. Add destinations as child objects to the destination group object (telemetryDestGroup).
15. Add the destination group object as a child object to the root element (telemetryEntity).
16. Create a relation object as a child object of the telemetry sensor group to associate the sensor group to
the subscription.
17. Create a relation object as a child object of the telemetry destination group to associate the destination
group to the subscription.
18. Create a relation object as a child object of the subscription to associate the subscription to the telemetry
destination group.
19. Send the resulting JSON structure as an HTTP/HTTPS POST payload to the NX-API endpoint for
telemetry configuration.
DETAILED STEPS
Command or Action Purpose
Step 1 Enable the telemetry feature. The root element is fmTelemetry and the base path for
this element is sys/fn. Configure the adminSt attribute
Example:
as enabled.
{
"fmEntity" : {
"children"™ : [{
"fmTelemetry" : {
"attributes" : {
"adminSt" : "enabled"

}

. Model-Driven Telemetry

| Model-Driven Telemetry

Configuring Telemetry Using the NX-API .

Command or Action

Purpose

]
}
}

Step 2 Create the root level of the JSON payload to describe the | The root element is telemetryEntity and the base path for
telemetry configuration. this element is sys/tmn. Configure the dn attribute as
Example: sys/tm.
{
"telemetryEntity": {
"attributes": {
"dn": "sys/tm"
} 4
}
}
Step 3 Create a sensor group to contain the defined sensor paths. | A telemetry sensor group is defined in an object of class
telemetrySensorGroup. Configure the following attributes
Example: .
of the object:
"telemetrySensorGroup": { * id — An identifier for the sensor group. Currently
"attfiZUteSIé { only numeric ID values are supported.
" i " : " " ,
“rn": "sensor-10" * rn — The relative name of the sensor group object
jdatasre’: TICARTY in the format: sensor-id
}, "children": [{ n : -
)] « dataSrc — Selects the data source from DEFAULT,
DME, or NX-API.
Children of the sensor group object will include sensor
paths and one or more relation objects
(telemetryRtSensorGroupRel) to associate the sensor
group with a telemetry subscription.
Step 4 (Optional) Add an SSL/TLS certificate and a host. The telemetryCertificate defines the location of the
SSL/TLS certificate with the telemetry
Example: e o
subscription/destination.
{
"telemetryCertificate": {
"attributes": {
"filename": "root.pem"
"hostname": "c.com"
}
}
}
Step 5 Define a telemetry destination group. A telemetry destination group is defined in

Example:

{
"telemetryDestGroup": {
"attributes": {
"id": "20"
}

telemetryEntity. Configure the id attribute.

Model-Driven Telemetry .

. Configuring Telemetry Using the NX-API

Model-Driven Telemetry |

Command or Action Purpose
Step 6 Define a telemetry destination profile. A telemetry destination profile is defined in
telemetryDestProfile.
Example:
* Configure the adminSt attribute as enabled.
{

"telemetryDestProfile: { * Under telemetryDestOptSourcelnterface, configure
"attributes": { the name attribute with an interface name to stream
| "adminSt": "enabled" data from the configured interface to a destination
,,(’:hildren,, - with the source IP address.

{
"telemetryDestOptSourceInterface": ({
"attributes": {
"name": "loO"
}
}
}
]
}
}

Step 7 Define one or more telemetry destinations, consisting of | A telemetry destination is defined in an object of class
an IP address and port number to which telemetry data | telemetryDest. Configure the following attributes of the
will be sent. object:

Example: » addr — The IP address of the destination.
: * port — The port number of the destination.
"telemetryDest": {
wattributes": | * rn — The relative name of the destination object in
"addr": "1.2.3.4", the format: path-[path].
ench: "GPB", .
"port": "50001", » enc — The encoding type of the telemetry data to be
"proto": "gRPC", sent. NX-OS supports:
"rn": "addr-[1.2.3.4]-port-50001"
} * Google protocol buffers (GPB) for gRPC.
}
} * JSON for C.
* GPB or JSON for UDP and secure UDP (DTLS).
* proto — The transport protocol type of the telemetry
data to be sent. NX-OS supports:
* gRPC
* HTTP
* VUDP and secure UDP (DTLS)
Step 8 Enable gRPC chunking and set the chunking size, between | See Support for gRPC Chunking, on page 7 for more

64 and 4096 bytes.

Example:

. Model-Driven Telemetry

information.

| Model-Driven Telemetry

Configuring Telemetry Using the NX-API .

Command or Action

Purpose

"telemetryDestGrpOptChunking": {
"attributes": {
"chunkSize": "2048",
"dn": "sys/tm/dest-1/chunking"

Step 9 Create a telemetry subscription to configure the telemetry | A telemetry subscription is defined in an object of class
behavior. telemetrySubscription. Configure the following attributes
of the object:

Example:

* id — An identifier for the subscription. Currently

"telemetrySubscription": { only numeric ID values are supported.

"attributes": {
"id": 30", * rn — The relative name of the subscription object in
“rn": "subs-30" the format: subs-id.

}, "children": [{

}H . - . I .

} Children of the subscription object will include relation
objects for sensor groups (telemetryRsSensorGroupRel)
and destination groups (telemetryRsDestGroupRel).

Step 10 Add the sensor group object as a child object to the

telemetrySubscription element under the root element

(telemetryEntity).

Example:

{

"telemetrySubscription": {
"attributes": {
llidll: ll3oll
}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"
}
}
}
]
}
}
Step 11 Create a relation object as a child object of the subscription | The relation object is of class

to associate the subscription to the telemetry sensor group
and to specify the data sampling behavior.

Example:

"telemetryRsSensorGroupRel": {

"attributes": {
"rType": "mo",

"rn":
"rssensorGroupRel-[sys/tm/sensor-10]",
"sampleIntvl": "5000",

"tCl": "telemetrySensorGroup",

telemetryRsSensorGroupRel and is a child object of
telemetrySubscription. Configure the following attributes
of the relation object:

* rn — The relative name of the relation object in the
format: rssensorGroupRel-[sys/tm/sensor-group-id].

» samplelntvl — The data sampling period in
milliseconds. An interval value of 0 creates an
event-based subscription, in which telemetry data is
sent only upon changes under the specified MO. An

Model-Driven Telemetry .

. Configuring Telemetry Using the NX-API

Model-Driven Telemetry |

Command or Action

Purpose

"tDn": "sys/tm/sensor-10",
"tType" . "moll

interval value greater than O creates a frequency-based
subscription, in which telemetry data is sent
periodically at the specified interval. For example, an
interval value of 15000 results in the sending of
telemetry data every 15 seconds.

* tCl — The class of the target (sensor group) object,
which is telemetrySensorGroup.

* tDn — The distinguished name of the target (sensor
group) object, which is sys/tm/sensor-group-id.

* rType — The relation type, which is mo for managed
object.

* tType — The target type, which is mo for managed
object.

Step 12 Define one or more sensor paths or nodes to be monitored

for telemetry.

Example:

Single sensor path

"telemetrySensorPath": {
"attributes": {

"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "O"

Example:
Single sensor path for NX-API

"telemetrySensorPath": ({
"attributes": {

"path": "show interface",
"path": "show bgp",
"rn": "path-[sys/cdpl",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0Q"

. Model-Driven Telemetry

A sensor path is defined in an object of class
telemetrySensorPath. Configure the following attributes
of the object:

* path — The path to be monitored.

* rn — The relative name of the path object in the
format: path-[path]

* depth — The retrieval level for the sensor path. A
depth setting of O retrieves only the root MO
properties.

« filterCondition — (Optional) Creates a specific filter
for event-based subscriptions. The DME provides the
filter expressions. For more information regarding
filtering, see the Cisco APIC REST API Usage
Guidelines on composing queries:
https://www.cisco.com/c/en/us/td/docs/switches/
datacenter/aci/apic/sw/2-x/rest_cfg/2 1 x/b Cisco
APIC REST API Configuration Guide/b Cisco
APIC REST API Configuration Guide chapter
01.html#d25e1534a1635

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635

| Model-Driven Telemetry

Configuring Telemetry Using the NX-API .

Command or Action

Purpose

}

Example:

Multiple sensor paths

"telemetrySensorPath": ({
"attributes": {

"path": "sys/cdp",

"rn":
"excludeFilter":
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "O"

nn
’

"telemetrySensorPath": ({
"attributes": {

"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/dhcp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "O"

Example:

Single sensor path filtering for BGP disable events:

"telemetrySensorPath": ({
"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdpl",
"excludeFiltexr": "",
"filterCondition":

"eq (fmBgp.operSt.\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "Q"

"path-[sys/cdpl",

Step 13

Add sensor paths as child objects to the sensor group object

(telemetrySensorGroup).

Model-Driven Telemetry .

. Configuring Telemetry Using the NX-API

Model-Driven Telemetry |

Command or Action Purpose
Step 14 Add destinations as child objects to the destination group
object (telemetryDestGroup).
Step 15 Add the destination group object as a child object to the
root element (telemetryEntity).
Step 16 Create a relation object as a child object of the telemetry | The relation object is of class
sensor group to associate the sensor group to the telemetryRtSensorGroupRel and is a child object of
subscription. telemetrySensorGroup. Configure the following attributes
of the relation object:
Example:
* rn — The relative name of the relation object in the
"telemetryRtSensorGroupRel™: { format: rtsensorGroupRel-[sys/tm/subscription-id].
"attributes": {
"rn": "rtsensorGroupRel-[sys/tm/subs-30]", * tCl — The target class of the subscription object,
o which is telemetrySubscription.
"tCl": "telemetrySubscription",
"tDn": Msys/tm/subs-30" » tDN — The target distinguished name of the
) ' subscription object, which is sys/tm/subscription-id.
Step 17 Create a relation object as a child object of the telemetry | The relation object is of class telemetryRtDestGroupRel
destination group to associate the destination group to the | and is a child object of telemetryDestGroup. Configure
subscription. the following attributes of the relation object:
Example: * rn — The relative name of the relation object in the
format: rtdestGroupRel-[sys/tm/subscription-id].
"telemetryRtDestGroupRel": {
"attributes": { * tCl — The target class of the subscription object,
"rn": "rtdestGroupRel-[sys/tm/subs-30]", which is telemetrySubscription.
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30" » tDn — The target distinguished name of the
} ! subscription object, which is sys/tm/subscription-id.
Step 18 Create a relation object as a child object of the subscription | The relation object is of class telemetryRsDestGroupRel

to associate the subscription to the telemetry destination
group.
Example:

"telemetryRsDestGroupRel": {

"attributes": {
"rType": "mo",
"rn": "rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"

and is a child object of telemetrySubscription. Configure
the following attributes of the relation object:

* rn — The relative name of the relation object in the
format:
rsdestGroupRel-[sys/tm/destination-group-id].

* tCl — The class of the target (destination group)
object, which is telemetryDestGroup.

* tDn — The distinguished name of the target
(destination group) object, which is
sys/tm/destination-group-id.

* r'Type — The relation type, which is mo for managed
object.

* tType — The target type, which is mo for managed
object.

. Model-Driven Telemetry

| Model-Driven Telemetry
Configuring Telemetry Using the NX-API .

Command or Action Purpose
Step 19 Send the resulting JSON structure as an HTTP/HTTPS | The base path for the telemetry entity is sys/tm and the
POST payload to the NX-API endpoint for telemetry NX-API endpoint is:
conﬁguranon. {{URL}}/api/node/mo/sys/tm.json
Example

The following is an example of all the previous steps collected into one POST payload (note that
some attributes may not match):

{
"telemetryEntity": {

"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}
"children": [{
"telemetrySensorPath": {
"attributes": {

"excludeFilter":
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0O"

nn
’

"telemetryDestGroup": {
"attributes": {
"id": "20"
}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",

"port": "50051",
"enc": "GPB",
"proto": "gRPC"
}
}
}
1
}
}I
{
"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "5000",

Model-Driven Telemetry .

Model-Driven Telemetry |
. Configuration Example for Telemetry Using the NX-API

"tDn": "sys/tm/sensor-10"

}
b
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

Configuration Example for Telemetry Using the NX-API

Streaming Paths to a Destination

This example creates a subscription that streams paths sys/cdp and sys/ipv4 to a destination 1.2.3.4 port
50001 every five seconds.

POST https://192.168.20.123/api/node/mo/sys/tm.Jjson

Payload:
{
"telemetryEntity": {
"attributes": {
"dn": "sys/tm"
}7
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "1i0",
"rn": "sensor-10"
}, "children": [{
"telemetryRtSensorGroupRel": {
"attributes": {

"rn": "rtsensorGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"
}
}
oo A
"telemetrySensorPath": ({
"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdpl",
"excludeFiltexr": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0O"
}
}
oo A
"telemetrySensorPath": ({

. Model-Driven Telemetry

| Model-Driven Telemetry

Configuration Example for Telemetry Using the NX-API .

"attributes": {
"path": "sys/ipv4",
"rn": "path-[sys/ipv4]",
"excludeFilter": "",
"filterCondition":
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

wn
’

H
}

e A
"telemetryDestGroup": {

"attributes": {
"id": "20",
"rn": "dest-20"
}I
"children": [{
"telemetryRtDestGroupRel": {
"attributes": {
"rn": "rtdestGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
b A
"telemetryDest": {
"attributes": {

"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",
"proto": "gRPC",
"rn": "addr-[1.2.3.4]-port-50001"

H
}
oo A

"telemetrySubscription": {
"attributes": {
"id": "30",
"rn": "subs-30"
}I
"children": [{
"telemetryRsDestGroupRel": {
"attributes": {
"rType": "mo
"rn": "rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",

"

"
’

"

"tType": "mo
}
}
e A
"telemetryRsSensorGroupRel": {
"attributes": {
"rType": "mo",

"rn": "rssensorGroupRel-[sys/tm/sensor-10]1",

"sampleIntvl": "5000",

"tCl": "telemetrySensorGroup",
"tDn": "sys/tm/sensor-10",
"tType": "mo"

"

Model-Driven Telemetry .

Model-Driven Telemetry |
Configuration Example for Telemetry Using the NX-API

Filter Conditions on BGP Notifications

The following example payload enables notifications that trigger when the BFP feature is disabled as per the
filterCondition attribute in the telemetrySensorPath MO. The data is streamed t010.30.217.80 port
50055.

POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{
"telemetryEntity": {
"children": [{

"telemetrySensorGroup": {
"attributes": {
"id": "10"

}

"children": [{

"telemetrySensorPath": ({
"attributes": {

"excludeFiltexr": "",
"filterCondition": "eq(fmBgp.operSt, \"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

"telemetryDestGroup": {
"attributes": {
"id": "20"
}
"children": [{
"telemetryDest": ({
"attributes": {

"addr": "10.30.217.80",
"port": "50055",
"enc": "GPB",
"proto": "gRPC"
}
}
}
]
}
}7
{
"telemetrySubscription": {
"attributes": {
"id": "30"

}

"children": [{

. Model-Driven Telemetry

| Model-Driven Telemetry
Telemetry Model in the DME .

"telemetryRsSensorGroupRel": {

"attributes": {
"sampleIntvl": "0",
"tDn": "sys/tm/sensor-10"

"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

Using Postman Collection for Telemetry Configuration

An example Postman collection is an easy way to start configuring the telemetry feature, and can run all
telemetry CLI equivalents in a single payload. Modify the file in the preceding link using your preferred text
editor to update the payload to your needs, then open the collection in Postman and run the collection.

Telemetry Model in the DME

The telemetry application is modeled in the DME with the following structure:

model
| ----package [name:telemetry]
| @name:telemetry
| ----objects
|----mo [name:Entity]
| @name:Entity
| @label:Telemetry System
| -—property
| @name:adminSt
@type:AdminState

----mo [name:SensorGroup]
| @name:SensorGroup
| @label:Sensor Group
| -——property
| @name:id [key]
| @type:string:Basic
| @name:dataSrc
| @type:DataSource
|
|

—-—--mo [name:SensorPath]
| @name:SensorPath
| @label:Sensor Path
| -—property
| @name:path [key]
| @type:string:Basic
| @name:filterCondition
| @type:string:Basic
| @name:excludeFilter

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| @type:string:Basic

Model-Driven Telemetry .

https://github.com/CiscoDevNet/nx-telemetry-proto/tree/master/postman_collections

Model-Driven Telemetry |
. Additional References

| @name:depth
@type:RetrieveDepth

----mo [name:DestGroup]
| @name:DestGroup
| @label:Destination Group
| --property
| @name:id
| @type:string:Basic
|
|-—---mo [name:Dest]
| @name:Dest
| @label:Destination
| --property
| @name:addr [key]
| @type:address:Ip
| @name:port [key]
| @type:scalar:Uintlé
| @name:proto
| @type:Protocol
| @name:enc
| @type:Encoding

----mo [name:Subscription]
| @name:Subscription
| @label:Subscription
| --property
| @name:id
| Qtype:scalar:Uint64
| -—---reldef
| | @name:SensorGroupRel
| | @to:SensorGroup
| | @cardinality:ntom
| | @label:Link to sensorGroup entry
| | --property
| @name:sampleIntvl
| @type:scalar:Uint64
|
| -—---reldef
| @name:DestGroupRel
| @to:DestGroup
| @cardinality:ntom
| @label:Link to destGroup entry

DNs Available to Telemetry

For a list of DNs available to the telemetry feature, see Streaming Telemetry Sources.

Additional References

Related Documents

Related Topic Document Title

Example configurations of telemetry deployment for | Telemetry Deployment for VXLAN EVPN Solution
VXLAN EVPN.

. Model-Driven Telemetry

b-cisco-nexus-3500-series-nx-os-programmability-guide-92x_appendix1.pdf#nameddest=unique_15
https://pubhub.devnetcloud.com/media/nx-os/docs/telemetryvxlan/Telemetry-Deployment-VXLAN-EVPN.pdf

	Model-Driven Telemetry
	About Telemetry
	Telemetry Components and Process
	High Availability of the Telemetry Process

	Licensing Requirements for Telemetry
	Installing and Upgrading Telemetry
	Guidelines and Limitations
	Configuring Telemetry Using the CLI
	Configuring Telemetry Using the NX-OS CLI
	Configuration Examples for Telemetry Using the CLI
	Displaying Telemetry Configuration and Statistics
	Displaying Telemetry Log and Trace Information

	Configuring Telemetry Using the NX-API
	Configuring Telemetry Using the NX-API
	Configuration Example for Telemetry Using the NX-API
	Telemetry Model in the DME

	Additional References
	Related Documents

