
NX-API

• About NX-API, on page 1
• Using NX-API, on page 2
• XML and JSON Supported Commands, on page 10

About NX-API
On Cisco Nexus devices, command-line interfaces (CLIs) are run only on the device. NX-API improves the
accessibility of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You can
use this extension to the existing Cisco Nexus CLI system on the Cisco Nexus 3500 Series devices. NX-API
supports show commands, configurations, and Linux Bash.

NX-API supports JSON-RPC, JSON, and XML formats.

Feature NX-API
• Feature NX-API is required to be enabled for access the device through sandbox.

• | json on the device internally uses python script to generate output.

• NX-API can be enabled either on http/https via ipv4:
BLR-VXLAN-NPT-CR-179# show nxapi
nxapi enabled
HTTP Listen on port 80
HTTPS Listen on port 443
BLR-VXLAN-NPT-CR-179#

• NX-API is internally spawning third-party NGINX process, which handler receive/send/processing of
http requests/response:
nxapi certificate {httpscrt |httpskey}
nxapi certificate enable

• NX-API Certificates can be enabled for https

• Default port for nginx to operate is 80/443 for http/https respectively. It can also be changed using the
following CLI command:
nxapi {http|https} port port-number

NX-API
1

Transport
NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all of its children processes, are
under Linux cgroup protection where the CPU and memory usage is capped. If the Nginx memory usage
exceeds the cgroup limitations, the Nginx process is restarted and restored.

The Nginx process continues to run even after NX-API is disabled using the no feature NXAPI command.
This is required for other management-related processes.

Note

Message Format

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON or JSON-RPC.

Note

Security
NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

Using NX-API
The commands, command type, and output type for the Cisco Nexus 3500 Series devices are entered using
NX-API by encoding the CLIs into the body of a HTTP/HTTPs POST. The response to the request is returned
in XML, JSON, or JSON-RPC output format.

You must enable NX-API with the feature manager CLI command on the device. By default, NX-API is
disabled.

The following example shows how to configure and launch the NX-API Sandbox:

• Enable the management interface.

NX-API
2

NX-API
Transport

switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 198.51.100.1/24
switch(config)# vrf context managment
switch(config)# ip route 203.0.113.1/0 1.2.3.1

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}
}

Response:
{

"ins_api": {

NX-API
3

NX-API
Using NX-API

"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

Using the Management Interface for NX-API calls

It is recommended to use the management interface for NX-API calls.

When using non-management interface and a custom port for NX-API an entry should be made in the CoPP
policy to prevent NX-API traffic from hitting the default copp entry which could unfavorably treat API traffic.

It is recommended to use the management interface for NX-API traffic. If that is not possible and a custom
port is used, the "copp-http" class should be updated to include the custom NX-API port.

Note

The following example port 9443 is being used for NX-API traffic.

This port is added to the copp-system-acl-http ACL to allow it to be matched under the

copp-http class resulting on 100 pps policing. (This may need to be increased in certain

environments.)

!
ip access-list copp-system-acl-http
10 permit tcp any any eq www
20 permit tcp any any eq 443
30 permit tcp any any eq 9443 <---------

!
class-map type control-plane match-any copp-http
match access-group name copp-system-acl-http

!
!
policy-map type control-plane copp-system-policy
class copp-http
police pps 100

!

NX-API Management Commands
You can enable and manage NX-API with the CLI commands listed in the following table.

Table 1: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

NX-API
4

NX-API
NX-API Management Commands

DescriptionNX-API Management Command

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port

Disables HTTP/HTTPS.no nxapi {http | https}

Displays port information.show nxapi

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

Example of HTTPS certificate:
nxapi certificate httpscrt certfile bootflash:cert.crt

Example of HTTPS key:
nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Enables a certificate.nxapi certificate enable

Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

In some situations, you might get an error message saying that the certificate is invalid:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
Nginx certificate invalid.
switch(config)#

This might occur if the key file is encrypted. In that case, the key file must be decrypted before you can install
it. You might have to go into Guest Shell to decrypt the key file, as shown in the following example:
switch(config)# guestshell
[b3456@guestshell ~]$
[b3456@guestshell bootflash]$ /bin/openssl rsa -in certfilename.net.pem -out clearkey.pem

Enter pass phrase for certfilename.net.pem:
writing RSA key
[b3456@guestshell bootflash]$
[b3456@guestshell bootflash]$ exit
switch(config)#

NX-API
5

NX-API
NX-API Management Commands

See Guest Shell for more information on Guest Shell.

If this was the reason for the issue, you should now be able to successfully install the certificate:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Working With Interactive Commands Using NX-API
To disable confirmation prompts on interactive commands and avoid timing out with an error code 500,
prepend interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands,
where each ; is surrounded with single blank characters.

Following are several examples of interactive commands where terminal dont-ask is used to avoid timing
out with an error code 500:
terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-API Request Elements
NX-API request elements are sent to the device in XML format or JSON format. The HTTP header of the
request must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Table 2: NX-API Request Elements

DescriptionNX-API Request Element

Specifies the NX-API version.version

NX-API
6

NX-API
Working With Interactive Commands Using NX-API

b-cisco-nexus-3500-series-nx-os-programmability-guide-92x_chapter3.pdf#nameddest=unique_16

DescriptionNX-API Request Element

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the current
user's authority.

• The pipe operation is supported in the output when
the message type is ASCII. If the output is in XML
format, the pipe operation is not supported.

• A maximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

NX-API
7

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Do not chunk output.0

Chunk output.1

Only show commands support chunking.When a series
of show commands are entered, only the first command
is chunked and returned.

The output message format is XML. (XML is the
default.) Special characters, such as < or >, are converted
to form a valid XML message (< is converted into <
> is converted into >).

You can use XML SAX to parse the chunked output.

Note

When chunking is enabled, themessage format is limited
to XML. JSON output format is not supported when
chunking is enabled.

Note

chunk

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

sid

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated with
" ; ". (The ; must be surrounded with single blank
characters.)

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

show version ; show interface brief ; show
vlan

cli_show

interface Eth4/1 ; no shut ; switchportcli_conf

cd /bootflash;mkdir new_dirbash

input

NX-API
8

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

The available output message formats are the following:

Specifies output in XML format.xml

Specifies output in JSON format.json

The CiscoNexus 3500 Series CLI supports XMLoutput,
which means that the JSON output is converted from
XML. The conversion is processed on the switch.

To manage the computational overhead, the JSON
output is determined by the amount of output. If the
output exceeds 1 MB, the output is returned in XML
format. When the output is chunked, only XML output
is supported.

The content-type header in the HTTP/HTTPS headers
indicate the type of response format (XML or JSON).

Note

output_format

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

Table 3: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Body of the command response.body

NX-API
9

NX-API
NX-API Response Elements

DescriptionNX-API Response Element

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

About JSON (JavaScript Object Notation)
JSON is a light-weight text-based open standard designed for human-readable data and is an alternative to
XML. JSON was originally designed from JavaScript, but it is language-independent data format. The
JSON/CLI Execution is currently supported in Nexus 3500.

The NX-API/JSON functionality is now available on the Cisco Nexus 3500 Series platform.Note

The two primary Data Structures that are supported in some way by nearly all modern programming languages
are as follows:

• Ordered List :: Array

• Unordered List (Name/Value pair) :: Objects

JSON/JSON-RPC/XML output for a show command can also be accessed via sandbox.

CLI Execution
Show_Command | json

Example Code
BLR-VXLAN-NPT-CR-179# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SPARSHA-SAVBU-F10", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco WS-C2960
S-48TS-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "BLR-VXLAN-NPT-CR-178(FOC1745R01W)", "intf_id": "Ethernet1/1", "ttl": "166
", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
BLR-VXLAN-NPT-CR-179#

XML and JSON Supported Commands
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

• XML
• JSON
• JSON Pretty, which makes the standard block of JSON-formatted output easier to read

NX-API
10

NX-API
About JSON (JavaScript Object Notation)

Converting the standard NX-OS output to JSON, JSON Pretty, or XML format occurs on the NX-OS CLI by
"piping" the output to a JSON or XML interpreter. For example, you can issue the show ip access command
with the logical pipe (|) and specify JSON, JSON Pretty, or XML, and the NX-OS command output will be
properly structured and encoded in that format. This feature enables programmatic parsing of the data and
supports streaming data from the switch through software streaming telemetry. Most commands in Cisco
NX-OS support JSON, JSON Pretty, and XML output.

Selected examples of this feature follow.

Examples of XML and JSON Output
This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",
"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"
}
switch(config)#

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>
<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>
<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>
<used_host6_in_host>1</used_host6_in_host>

NX-API
11

NX-API
Examples of XML and JSON Output

<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display LLDP timers configured on the switch in JSON format:

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier
": "4", "notification_interval": "5"}
switch(config)#

This example shows how to display LLDP timers configured on the switch in XML format:

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

NX-API
12

NX-API
Examples of XML and JSON Output

	NX-API
	About NX-API
	Feature NX-API
	Transport
	Message Format
	Security

	Using NX-API
	NX-API Management Commands
	Working With Interactive Commands Using NX-API
	NX-API Request Elements
	NX-API Response Elements
	About JSON (JavaScript Object Notation)
	CLI Execution

	XML and JSON Supported Commands
	Examples of XML and JSON Output

