
Bash

This chapter contains the following topics:

• About Bash, on page 1
• Guidelines and Limitations, on page 1
• Accessing Bash, on page 2
• Escalate Privileges to Root, on page 3
• Examples of Bash Commands, on page 4
• Managing Feature RPMs, on page 6
• Managing Patch RPMs, on page 8
• Persistently Daemonizing an SDK- or ISO-Built Third-Party Process, on page 15
• Persistently Starting Your Application from the Native Bash Shell, on page 16
• Synchronize Files from Active Bootflash to Standby Bootflash, on page 17
• An Example Application in the Native Bash Shell, on page 18

About Bash
In addition to the NX-OS CLI, Cisco Nexus 3400-S platform switches support access to the Bourne-Again
Shell (Bash). Bash interprets commands that you enter or commands that are read from a shell script. Using
Bash enables access to the underlying Linux system on the device and to manage the system.

Guidelines and Limitations
The Bash shell has the following guidelines and limitations:

• The binaries that are located in the /isan folder are meant to be run in an environment which is set up
differently from the environment of the shell that is entered from the run bash command. It is advisable
not to use these binaries from the Bash shell as the behavior within this environment is not predictable.

• When importing Cisco Python modules, do not use Python from the Bash shell. Instead use the more
recent Python in NX-OS VSH.

• Some processes and show commands can cause a large amount of output. If you are running scripts, and
need to terminate long-running output, use Ctrl+C (not Ctrl+Z) to terminate the command output. If you
use Ctrl+Z, a SIGCONT (signal continuation) message can be generated, which can cause the script to
halt. Scripts that are halted through SIGCONT messages require user intervention to resume operation.

Bash
1

Accessing Bash
In Cisco NX-OS, Bash is accessible from user accounts that are associated with the Cisco NX-OS dev-ops
role or the Cisco NX-OS network-admin role.

The following example shows the authority of the dev-ops role and the network-admin role:
switch# show role name dev-ops

Role: dev-ops
Description: Predefined system role for devops access. This role
cannot be modified.
Vlan policy: permit (default)
Interface policy: permit (default)
Vrf policy: permit (default)

Rule Perm Type Scope Entity

4 permit command conf t ; username *
3 permit command bcm module *
2 permit command run bash *
1 permit command python *

switch# show role name network-admin

Role: network-admin
Description: Predefined network admin role has access to all commands
on the switch

Rule Perm Type Scope Entity

1 permit read-write

switch#

Bash is enabled by running the feature bash-shell command.

The run bash command loads Bash and begins at the home directory for the user.

The following examples show how to enable the Bash shell feature and how to run Bash.
switch# configure terminal
switch(config)# feature bash-shell

switch# run?
run Execute/run program
run-script Run shell scripts

switch# run bash?
bash Linux-bash

switch# run bash
bash-4.2$ whoami
admin
bash-4.2$ pwd
/bootflash/home/admin
bash-4.2$

Bash
2

Bash
Accessing Bash

You can also execute Bash commands with run bash command.

For instance, you can run whoami using run bash command:
run bash whoami

You can also run Bash by configuring the user shelltype:
username foo shelltype bash

This command puts you directly into the Bash shell upon login. This does not require feature bash-shell to
be enabled.

Note

Escalate Privileges to Root
The privileges of an Admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an Admin user can escalate privileges to root.

• Bash must be enabled before escalating privileges.

• Escalation to root is password protected.

• SSH to the switch using root username through a non-management interface will default to Linux Bash
shell-type access for the root user. Type vsh to return to NX-OS shell access.

NX-OS network administrator users must escalate to root to pass configuration commands to the NX-OS
VSH if:

• The NX-OS user has a shell-type Bash and logs into the switch with a shell-type Bash.

• The NX-OS user that logged into the switch in Bash continues to use Bash on the switch.

Run sudo su 'vsh -c "<configuration commands>"' or sudo bash -c 'vsh -c "<configuration commands>"'.

The following example demonstrates the network-administrator user MyUser with a default shell type Bash
using sudo to pass configuration commands to the NX-OS.
ssh -l MyUser 1.2.3.4
-bash-4.2$ sudo vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show
interface eth1/2 brief"

--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --

The following example demonstrates the network-administrator user MyUser with default shell type Bash
entering the NX-OS and then running Bash on the NX-OS.
ssh -l MyUser 1.2.3.4
-bash-4.2$ vsh -h
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac

Bash
3

Bash
Escalate Privileges to Root

Copyright (C) 2002-2019, Cisco and/or its affiliates.
All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their own
licenses, such as open source. This software is provided "as is," and unless
otherwise stated, there is no warranty, express or implied, including but not
limited to warranties of merchantability and fitness for a particular purpose.
Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.
A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/old-licenses/library.txt.

switch# run bash
bash-4.2$ vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show interface
eth1/2 brief"

--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --

Do not use sudo su - or the system hangs.Note

The following example shows how to escalate privileges to root and how to verify the escalation:
switch# run bash
bash-4.2$ sudo su root
bash-4.2# whoami
root
bash-4.2# exit
exit

Examples of Bash Commands
This section contains examples of Bash commands and output.

Displaying System Statistics
The following example displays system statistics:
switch# run bash
bash-4.2$ cat /proc/meminfo
MemTotal: 32827712 kB
MemFree: 27429772 kB
MemAvailable: 28004236 kB
Buffers: 54296 kB
Cached: 2863648 kB
SwapCached: 0 kB

Bash
4

Bash
Examples of Bash Commands

Active: 1993452 kB
Inactive: 2616472 kB
Active(anon): 1812124 kB
Inactive(anon): 2192904 kB
Active(file): 181328 kB
Inactive(file): 423568 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 24 kB
Writeback: 0 kB
AnonPages: 1691732 kB
Mapped: 578756 kB
Shmem: 2313336 kB
Slab: 248788 kB
SReclaimable: 53660 kB
SUnreclaim: 195128 kB
KernelStack: 11520 kB
PageTables: 58812 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 16413856 kB
Committed_AS: 23471740 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 579308 kB
VmallocChunk: 34358945788 kB
HardwareCorrupted: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 26588 kB
DirectMap2M: 1998848 kB
DirectMap1G: 33554432 kB
bash-4.3#

Running Bash from CLI
The following example runs ps from Bash using run bash command:
switch# run bash ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 528 poll_s ? 00:00:03 init
1 S 0 2 0 0 80 0 - 0 kthrea ? 00:00:00 kthreadd
1 S 0 3 2 0 80 0 - 0 run_ks ? 00:00:56 ksoftirqd/0
1 S 0 6 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/0
1 S 0 7 2 0 -40 - - 0 watchd ? 00:00:00 watchdog/0
1 S 0 8 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/1
1 S 0 9 2 0 80 0 - 0 worker ? 00:00:00 kworker/1:0
1 S 0 10 2 0 80 0 - 0 run_ks ? 00:00:00 ksoftirqd/1

Bash
5

Bash
Running Bash from CLI

Managing Feature RPMs

RPM Installation Prerequisites
Use these procedures to verify that the system is ready before installing or adding an RPM.

Procedure

PurposeCommand or Action

Before running Bash, this step verifies that the
system is ready before installing or adding an
RPM.

switch# show logging logfile | grep -i "System
ready"

Step 1

Proceed if you see output similar to the
following:

2019 Apr 18 17:24:22 switch
%ASCII-CFG-2-CONF_CONTROL:System
ready

Loads Bash.switch# run bash sudo su

Example:

Step 2

switch# run bash sudo su

bash-4.2#

Installing Feature RPMs from Bash

Procedure

PurposeCommand or Action

Displays a list of the NX-OS feature RPMs
installed on the switch.

sudo yum installed | grep platformStep 1

Displays a list of the available RPMs.yum list availableStep 2

Installs an available RPM.sudo yum -y install rpmStep 3

Example

The following is an example of installing the bfd RPM:
bash-4.2$ yum list installed | grep n9000
base-files.n9000 3.0.14-r74.2 installed
bfd.lib32_n9000 1.0.0-r0 installed
core.lib32_n9000 1.0.0-r0 installed
eigrp.lib32_n9000 1.0.0-r0 installed
eth.lib32_n9000 1.0.0-r0 installed

Bash
6

Bash
Managing Feature RPMs

isis.lib32_n9000 1.0.0-r0 installed
lacp.lib32_n9000 1.0.0-r0 installed
linecard.lib32_n9000 1.0.0-r0 installed
lldp.lib32_n9000 1.0.0-r0 installed
ntp.lib32_n9000 1.0.0-r0 installed
nxos-ssh.lib32_n9000 1.0.0-r0 installed
ospf.lib32_n9000 1.0.0-r0 installed
perf-cisco.n9000_gdb 3.12-r0 installed
platform.lib32_n9000 1.0.0-r0 installed
shadow-securetty.n9000_gdb 4.1.4.3-r1 installed
snmp.lib32_n9000 1.0.0-r0 installed
svi.lib32_n9000 1.0.0-r0 installed
sysvinit-inittab.n9000_gdb 2.88dsf-r14 installed
tacacs.lib32_n9000 1.0.0-r0 installed
task-nxos-base.n9000_gdb 1.0-r0 installed
tor.lib32_n9000 1.0.0-r0 installed
vtp.lib32_n9000 1.0.0-r0 installed
bash-4.2$ yum list available
bgp.lib32_n9000 1.0.0-r0
bash-4.2$ sudo yum -y install bfd

Upon switch reload during boot up, use the rpm command instead of yum for persistent RPMs.
Otherwise, RPMs initially installed using yum bash or install cli shows reponame or filename
instead of installed.

Note

Upgrading Feature RPMs

Before you begin

There must be a higher version of the RPM in the Yum repository.

Procedure

PurposeCommand or Action

Upgrades an installed RPM.sudo yum -y upgrade rpmStep 1

Example

The following is an example of upgrading the bfd RPM:
bash-4.2$ sudo yum -y upgrade bfd

Bash
7

Bash
Upgrading Feature RPMs

Downgrading a Feature RPM

Procedure

PurposeCommand or Action

Downgrades the RPM if any of the Yum
repositories has a lower version of the RPM.

sudo yum -y downgrade rpmStep 1

Example

The following example shows how to downgrade the bfd RPM:
bash-4.2$ sudo yum -y downgrade bfd

Erasing a Feature RPM

The SNMP RPM and the NTP RPM are protected and cannot be erased.

You can upgrade or downgrade these RPMs. It requires a system reload for the upgrade or downgrade to take
effect.

For the list of protected RPMs, see /etc/yum/protected.d/protected_pkgs.conf.

Note

Procedure

PurposeCommand or Action

Erases the RPM.sudo yum -y erase rpmStep 1

Example

The following example shows how to erase the bfd RPM:
bash-4.2$ sudo yum -y erase bfd

Managing Patch RPMs

RPM Installation Prerequisites
Use these procedures to verify that the system is ready before installing or adding an RPM.

Bash
8

Bash
Downgrading a Feature RPM

Procedure

PurposeCommand or Action

Before running Bash, this step verifies that the
system is ready before installing or adding an
RPM.

switch# show logging logfile | grep -i "System
ready"

Step 1

Proceed if you see output similar to the
following:

2019 Apr 18 17:24:22 switch
%ASCII-CFG-2-CONF_CONTROL:System
ready

Loads Bash.switch# run bash sudo su

Example:

Step 2

switch# run bash sudo su

bash-4.2#

Adding Patch RPMs from Bash

Procedure

PurposeCommand or Action

Displays a list of the patch RPMs present on
the switch.

yum list --patch-onlyStep 1

Adds the patch to the repository, where
URL_of_patch is a well-defined format, such

sudo yum install --add URL_of_patchStep 2

as bootflash:/patch, not in standard
Linux format, such as /bootflash/patch.

Displays a list of the patches that are added to
the repository but are in an inactive state.

yum list --patch-only availableStep 3

Example

The following is an example of installing the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
RPM:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
bash-4.2#
bash-4.2# sudo yum install --add bootflash:/nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000.rpm
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages

Bash
9

Bash
Adding Patch RPMs from Bash

groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##############] 70%Install operation 135 completed successfully at Tue Mar 26 17:45:34
2019.

[####################] 100%
bash-4.2#

Once the patch RPM is installed, verify that it was installed properly. The following command lists
the patches that are added to the repository and are in the inactive state:
bash-4.2# yum list --patch-only available
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0 patching
bash-4.2#

You can also add patches to a repository from a tar file, where the RPMs are bundled in the tar file.
The following example shows how to add two RPMs that are part of the
nxos.CSCab00002_CSCab00003-n9k_ALL-1.0.0.lib32_n9000 tar file to the patch repository:
bash-4.2# sudo yum install --add
bootflash:/nxos.CSCab00002_CSCab00003-n9k_ALL-1.0.0.lib32_n9000.tar
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##############] 70%Install operation 146 completed successfully at Tue Mar 26 21:17:39
2019.

[####################] 100%
bash-4.2#
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
patching/primary | 942 B 00:00 ...
patching 2/2
thirdparty | 951 B 00:00 ...
nxos.CSCab00003-n9k_ALL.lib32_n9000 1.0.0 patching
nxos.CSCab00002-n9k_ALL.lib32_n9000 1.0.0 patching
bash-4.2#

Bash
10

Bash
Adding Patch RPMs from Bash

Activating a Patch RPM

Before you begin

Verify that you have added the necessary patch RPM to the repository using the instructions in Adding Patch
RPMs from Bash, on page 9.

Procedure

PurposeCommand or Action

Activates the patch RPM, where patch_RPM is
a patch that is located in the repository. Do not
provide a location for the patch in this step.

sudo yum install patch_RPM --nocommitStep 1

Adding the --nocommit flag to the
commandmeans that the patch RPM
is activated in this step, but not
committed. See Committing a Patch
RPM, on page 12 for instructions
on committing the patch RPM after
you have activated it.

Note

Example

The following example shows how to activate the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
patch RPM:
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 --nocommit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Installing:
nxos.CSCab00001-n9k_ALL lib32_n9000 1.0.0 patching 28 k

Transaction Summary
===
Install 1 Package

Total download size: 28 k
Installed size: 82 k
Is this ok [y/N]: y

Bash
11

Bash
Activating a Patch RPM

Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 1/1

[##################] 90%error: reading
/var/sysmgr/tmp/patches/CSCab00001-n9k_ALL/isan/bin/sysinfo manifest, non-printable characters
found

Installed:
nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0

Complete!
Install operation 140 completed successfully at Tue Mar 27 18:07:40 2018.

[####################] 100%
bash-4.2#

Enter the following command to verify that the patch RPM was activated successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0 installed
bash-4.2#

Committing a Patch RPM

Procedure

PurposeCommand or Action

Commits the patch RPM. The patch RPMmust
be committed to keep it active after reloads.

sudo yum install patch_RPM --commitStep 1

Example

The following example shows how to commit the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
patch RPM:
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 --commit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Install operation 142 completed successfully at Tue Mar 27 18:13:16 2018.

[####################] 100%
bash-4.2#

Bash
12

Bash
Committing a Patch RPM

Enter the following command to verify that the patch RPM was committed successfully:
bash-4.2# yum list --patch-only committed
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0 installed
bash-4.2#

Deactivating a Patch RPM

Procedure

PurposeCommand or Action

Deactivates the patch RPM.sudo yum erase patch_RPM --nocommitStep 1

Adding the --nocommit flag to the
commandmeans that the patch RPM
is only deactivated in this step.

Note

Commits the patch RPM. You will get an error
message if you try to remove the patch RPM
without first committing it.

sudo yum install patch_RPM --commitStep 2

Example

The following example shows how to deactivate the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
patch RPM:
bash-4.2# sudo yum erase nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 --nocommit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
Setting up Remove Process
Resolving Dependencies
--> Running transaction check
---> Package nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0 will be erased
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size
===
Removing:
nxos.CSCab00001-n9k_ALL lib32_n9000 1.0.0 @patching 82 k

Transaction Summary
===
Remove 1 Package

Installed size: 82 k
Is this ok [y/N]: y
Downloading Packages:

Bash
13

Bash
Deactivating a Patch RPM

Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
[######] 30%error: reading
/var/sysmgr/tmp/patches/CSCab00001-n9k_ALL/isan/bin/sysinfo manifest, non-printable characters
found
Erasing : nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 1/1

[##################] 90%
Removed:
nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0

Complete!
Install operation 143 completed successfully at Tue Mar 27 21:03:47 2018.

[####################] 100%
bash-4.2#

You must commit the patch RPM after deactivating it. If you do not commit the patch RPM after
deactivating it, you will get an error message if you try to remove the patch RPM using the instructions
in Removing a Patch RPM, on page 14.
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000 --commit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Install operation 144 completed successfully at Tue Mar 27 21:09:28 2018.

[####################] 100%
bash-4.2#

Enter the following command to verify that the patch RPM has been committed successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0 patching
bash-4.2#

Removing a Patch RPM

Procedure

PurposeCommand or Action

Removes an inactive patch RPM.sudo yum install --remove patch_RPMStep 1

Bash
14

Bash
Removing a Patch RPM

Example

The following example shows how to remove the nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
patch RPM:
bash-4.2# sudo yum install --remove nxos.CSCab00001-n9k_ALL-1.0.0.lib32_n9000
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##########] 50%Install operation 145 completed successfully at Tue Mar 27 21:11:05
2018.

[####################] 100%
bash-4.2#

If you see the following error message after attempting to remove the patch RPM:

Install operation 11 "failed because patch was not committed". at Wed Mar 28 22:14:05 2018

Then you did not commit the patch RPM before attempting to remove it. See Deactivating a Patch
RPM, on page 13 for instructions on committing the patch RPM before attempting to remove it.

Note

Enter the following command to verify that the inactive patch RPM was removed successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,

: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
patching/primary | 197 B 00:00 ...
thirdparty | 951 B 00:00 ...
bash-4.2#

Persistently Daemonizing an SDK- or ISO-Built Third-Party
Process

Your application should have a startup Bash script that gets installed in /etc/init.d/application_name.
This startup Bash script should have the following general format. For more information about this format,
see http://linux.die.net/man/8/chkconfig.
#!/bin/bash
#
<application_name> Short description of your application
#
chkconfig: 2345 15 85
description: Short description of your application
#
BEGIN INIT INFO
Provides: <application_name>

Bash
15

Bash
Persistently Daemonizing an SDK- or ISO-Built Third-Party Process

http://linux.die.net/man/8/chkconfig

Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Short description of your application
END INIT INFO
See how we were called.
case "$1" in
start)
Put your startup commands here
Set RETVAL to 0 for success, non-0 for failure
;;
stop)
Put your stop commands here
Set RETVAL to 0 for success, non-0 for failure
;;
status)
Put your status commands here
Set RETVAL to 0 for success, non-0 for failure
;;
restart|force-reload|reload)
Put your restart commands here
Set RETVAL to 0 for success, non-0 for failure
;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac

exit $RETVAL

Persistently Starting Your Application from the Native Bash
Shell

Procedure

Step 1 Install your application startup Bash script that you created into /etc/init.d/application_name

Step 2 Start your application with /etc/init.d/application_name start

Step 3 Enter chkconfig --add application_name

Step 4 Enter chkconfig --level 3 application_name on

Run level 3 is the standard multi-user run level, and the level at which the switch normally runs.

Step 5 Verify that your application is scheduled to run on level 3 by running chkconfig --list application_name and
confirm that level 3 is set to on

Step 6 Verify that your application is listed in /etc/rc3.d. You should see something like this, where there is an
'S' followed by a number, followed by your application name (tcollector in this example), and a link to
your Bash startup script in ../init.d/application_name

bash-4.2# ls -l /etc/rc3.d/tcollector

lrwxrwxrwx 1 root root 20 Sep 25 22:56 /etc/rc3.d/S15tcollector -> ../init.d/tcollector

bash-4.2#

Bash
16

Bash
Persistently Starting Your Application from the Native Bash Shell

Synchronize Files from Active Bootflash to Standby Bootflash
Cisco Nexus 3400-S platform switches are generally configured with two supervisor modules to provide high
availability (one active supervisor module and one standby supervisor module). Each supervisor module has
its own bootflash file system for file storage, and the Active and Standby bootflash file systems are generally
independent of each other. If there is a need for specific content on the active bootflash, that same content is
probably also needed on the standby bootflash in case there is a switchover at some point.

Certain files and directories on the active supervisor module, or active bootflash (/bootflash), can be
automatically synchronized to the standby supervisor module, or standby bootflash
(/bootflash_sup-remote), if the standby supervisor module is up and available. You can select the
files and directories to be synchronized by loading Bash on your switch, then adding the files and directories
that you want to have synchronized from the active bootflash to the standby bootflash into the editable file
/bootflash/bootflash_sync_list.

For example:
switch# run bash
bash-4.2# echo "/bootflash/home/admin" | sudo tee --append /bootflash/bootflash_sync_list
bash-4.2# echo "/bootflash/nxos.5.bin" | sudo tee --append /bootflash/bootflash_sync_list
bash-4.2# cat /bootflash/bootflash_sync_list
/bootflash/home/admin
/bootflash/nxos.5.bin

When changes are made to the files or directories on the active bootflash, these changes are automatically
synchronized to standby bootflash, if the standby bootflash is up and available. If the standby bootflash is
rebooted, either as a regular boot, switchover or manual standby reload, a catch-up synchronization of changes
to the active bootflash is pushed out to the standby bootflash, once the standby supervisor comes online.

Following are the characteristics and restrictions for the editable /bootflash/bootflash_sync_list
file:

• The /bootflash/bootflash_sync_list file is automatically created on the first run and is
empty at that initial creation state.

• Entries in the /bootflash/bootflash_sync_list file follow these guidelines:

• One entry per line

• Entries are given as Linux paths (for example, /bootflash/img.bin)

• Entries must be within the /bootflash file system

• The /bootflash/bootflash_sync_list file itself is automatically synchronized to the standby
bootflash. You can also manually copy the /bootflash/bootflash_sync_list file to or from
the supervisor module using the copy virtual shell (VSH) command.

• You can edit the /bootflash/bootflash_sync_list file directly on the supervisor module
with the following command:
run bash vi /bootflash/bootflash_sync_list

All output from the synchronization event is redirected to the log file /var/tmp/bootflash_sync.log.
You can view or tail this log file using either of the following commands:

Bash
17

Bash
Synchronize Files from Active Bootflash to Standby Bootflash

run bash less /var/tmp/bootflash_sync.log

run bash tail -f /var/tmp/bootflash_sync.log

The synchronization script will not delete files from the standby bootflash directories unless it explicitly
receives a delete event for the corresponding file on the active bootflash directories. Sometimes, the standby
bootflash might have more used space than the active bootflash, which results in the standby bootflash running
out of space when the active bootflash is synchronizing to it. To make the standby bootflash an exact mirror
of the active bootflash (to delete any extra files on the standby bootflash), enter the following command:
run bash sudo rsync -a --delete /bootflash/ /bootflash_sup-remote/

The synchronization script should continue to run in the background without crashing or exiting. However,
if it does stop running for some reason, you can manually restart it using the following command:
run bash sudo /isan/etc/rc.d/rc.isan-start/S98bootflash_sync.sh start

An Example Application in the Native Bash Shell
The following example demonstrates an application in the Native Bash Shell:
bash-4.2# cat /etc/init.d/hello.sh
#!/bin/bash

PIDFILE=/tmp/hello.pid
OUTPUTFILE=/tmp/hello

echo $$ > $PIDFILE
rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
bash-4.2#
bash-4.2#
bash-4.2# cat /etc/init.d/hello
#!/bin/bash
#
hello Trivial "hello world" example Third Party App
#
chkconfig: 2345 15 85
description: Trivial example Third Party App
#
BEGIN INIT INFO
Provides: hello
Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Trivial example Third Party App
END INIT INFO

PIDFILE=/tmp/hello.pid

See how we were called.
case "$1" in
start)

/etc/init.d/hello.sh &

Bash
18

Bash
An Example Application in the Native Bash Shell

RETVAL=$?
;;
stop)

kill -9 `cat $PIDFILE`
RETVAL=$?

;;
status)

ps -p `cat $PIDFILE`
RETVAL=$?

;;
restart|force-reload|reload)

kill -9 `cat $PIDFILE`
/etc/init.d/hello.sh &
RETVAL=$?

;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac

exit $RETVAL
bash-4.2#
bash-4.2# chkconfig --add hello
bash-4.2# chkconfig --level 3 hello on
bash-4.2# chkconfig --list hello
hello 0:off 1:off 2:on 3:on 4:on 5:on 6:off
bash-4.2# ls -al /etc/rc3.d/*hello*
lrwxrwxrwx 1 root root 15 Sep 27 18:00 /etc/rc3.d/S15hello -> ../init.d/hello
bash-4.2#
bash-4.2# reboot

After reload
bash-4.2# ps -ef | grep hello
root 8790 1 0 18:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh
root 8973 8775 0 18:04 ttyS0 00:00:00 grep hello
bash-4.2#
bash-4.2# ls -al /tmp/hello*
-rw-rw-rw- 1 root root 205 Sep 27 18:04 /tmp/hello
-rw-rw-rw- 1 root root 5 Sep 27 18:03 /tmp/hello.pid
bash-4.2# cat /tmp/hello.pid
8790
bash-4.2# cat /tmp/hello
Sun Sep 27 18:03:49 UTC 2015
Hello World
Sun Sep 27 18:03:59 UTC 2015
Hello World
Sun Sep 27 18:04:09 UTC 2015
Hello World
Sun Sep 27 18:04:19 UTC 2015
Hello World
Sun Sep 27 18:04:29 UTC 2015
Hello World
Sun Sep 27 18:04:39 UTC 2015
Hello World
bash-4.2#

Bash
19

Bash
An Example Application in the Native Bash Shell

Bash
20

Bash
An Example Application in the Native Bash Shell

	Bash
	About Bash
	Guidelines and Limitations
	Accessing Bash
	Escalate Privileges to Root
	Examples of Bash Commands
	Displaying System Statistics
	Running Bash from CLI

	Managing Feature RPMs
	RPM Installation Prerequisites
	Installing Feature RPMs from Bash
	Upgrading Feature RPMs
	Downgrading a Feature RPM
	Erasing a Feature RPM

	Managing Patch RPMs
	RPM Installation Prerequisites
	Adding Patch RPMs from Bash
	Activating a Patch RPM
	Committing a Patch RPM
	Deactivating a Patch RPM
	Removing a Patch RPM

	Persistently Daemonizing an SDK- or ISO-Built Third-Party Process
	Persistently Starting Your Application from the Native Bash Shell
	Synchronize Files from Active Bootflash to Standby Bootflash
	An Example Application in the Native Bash Shell

