# CONTENTS

**Preface**
- Preface v
  - Audience v
  - Document Conventions v
  - Related Documentation for Nexus 3000 Series NX-OS Software vi
  - Documentation Feedback vii
  - Obtaining Documentation and Submitting a Service Request vii

**CHAPTER 1**
New and Changed Information for this Release 1
- New and Changed Information 1

**CHAPTER 2**
Overview 3
- Quality of Service Overview 3

**CHAPTER 3**
Configuring QoS 5
- Information About Quality of Service 5
  - Modular QoS CLI 5
  - System Classes 6
  - Default System Classes 7
  - Information About Policy Types 7
  - MTU 9
  - Trust Boundaries 10
  - Ingress Classification Policies 10
  - Egress Queuing Policies 10
  - QoS for Traffic Directed to the CPU 11
  - QoS Configuration Guidelines and Limitations 11
  - Configuring System Classes 11
  - Configuring Class Maps 11
CHAPTER 4

Configuring Traffic Shaping 45

Information About Traffic Shaping 45
Guidelines and Limitations for Traffic Shaping 46
Configuring Traffic Shaping 46
Verifying Traffic Shaping 47
Sample Configuration for Traffic Shaping 47
Preface

This preface contains the following sections:

- Audience, page v
- Document Conventions, page v
- Related Documentation for Nexus 3000 Series NX-OS Software, page vi
- Documentation Feedback, page vii
- Obtaining Documentation and Submitting a Service Request, page vii

Audience

This publication is for network administrators who configure and maintain Cisco Nexus devices.

Document Conventions

Command descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>bold</strong></td>
<td>Bold text indicates the commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td><em>Italic</em></td>
<td>Italic text indicates arguments for which the user supplies the values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
</tbody>
</table>
### Related Documentation for Nexus 3000 Series NX-OS Software

The entire Cisco NX-OS 3000 Series documentation set is available at the following URL:

Release Notes
The release notes are available at the following URL:

Installation and Upgrade Guides
The installation and upgrade guides are available at the following URL:

License Information

For the NX-OS end user agreement and copyright information, see License and Copyright Information for Cisco NX-OS Software, available at the following URL: http://www.cisco.com/en/US/docs/switches/datacenter/sw/4_0/nx-os/license_agreement/nx-ossw_lisns.html.

Configuration Guides
The configuration guides are available at the following URL:

Technical References
The technical references are available at the following URL:

Error and System Messages
The error and system message reference guides are available at the following URL:

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments to nexus3k-docfeedback@cisco.com. We appreciate your feedback.

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:
Subscribe to the *What's New in Cisco Product Documentation* as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
New and Changed Information for this Release

The following table provides an overview of the significant changes to this guide for this current release. The table does not provide an exhaustive list of all changes made to the configuration guides or of the new features in this release.

- New and Changed Information, page 1

### New and Changed Information

The following table provides an overview of the significant changes to this guide for this current release. The table does not provide an exhaustive list of all changes made to the configuration guides or of the new features in this release.

**Table 1: New and Changed Quality of Service Features for Cisco NX-OS Release 5.0(3)U5(1d)**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Added or Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Shaping</td>
<td>This feature was introduced.</td>
<td>5.0(3)U5(1d)</td>
<td>Configuring Traffic Shaping</td>
</tr>
</tbody>
</table>
Overview

This chapter contains the following sections:

- Quality of Service Overview, page 3

Quality of Service Overview

This document describes the configurable Cisco NX-OS Quality of Service (QoS) features. You use the QoS features to provide the most desirable flow of traffic through a network. QoS allows you to classify the network traffic, prioritize the traffic flow, and provide congestion avoidance. The control of traffic is based on the fields in the packets that flow through the system. You use the Modular QoS CLI (MQC) to create the traffic classes and policies of the QoS features.

QoS features are applied using QoS policies and queuing policies, as follows:

- QoS policies include classification and marking features.
- Queuing policies use the queuing and scheduling features.
- Network QoS policies include configuring maximum transmission unit (MTU).
Quality of Service Overview
CHAPTER 3

Configuring QoS

This chapter contains the following sections:

- Information About Quality of Service, page 5
- QoS Configuration Guidelines and Limitations, page 11
- Configuring System Classes, page 11
- Configuring QoS on Interfaces, page 34
- Verifying the Qos Configuration, page 35
- Monitoring the QoS Packet Buffer, page 42

Information About Quality of Service

The configurable Cisco NX-OS quality of service (QoS) features allow you to classify the network traffic, prioritize the traffic flow, and provide congestion avoidance.

The default QoS configuration on the device provides best-effort service for Ethernet traffic. QoS can be configured to provide additional classes of service for Ethernet traffic. Cisco NX-OS QoS features are configured using Cisco Modular QoS CLI (MQC).

Note

In the event of congestion or collisions, Ethernet will drop packets. The higher level protocols detect the missing data and retransmit the dropped packets.

Modular QoS CLI

The Cisco Modular QoS CLI (MQC) provides a standard set of commands for configuring QoS.

You can use MQC to define additional traffic classes and to configure QoS policies for the whole system and for individual interfaces. Configuring a QoS policy with MQC consists of the following steps:

1. Define traffic classes.
2. Associate policies and actions with each traffic class.
3 Attach policies to logical or physical interfaces as well as at the global system level.

MQC provides two command types to define traffic classes and policies:

**class-map**
- Defines a class map that represents a class of traffic based on packet-matching criteria. Class maps are referenced in policy maps.
- The class map classifies incoming packets based on matching criteria, such as the IEEE 802.1p class of service (CoS) value. Unicast and multicast packets are classified.

**policy-map**
- Defines a policy map that represents a set of policies to be applied on a class-by-class basis to class maps.
- The policy map defines a set of actions to take on the associated traffic class, such as limiting the bandwidth or dropping packets.

You define the following class-map and policy-map object types when you create them:

**network-qos**
- Defines MQC objects that you can use for system level related actions.

**qos**
- Defines MQC objects that you can use for classification.

**queuing**
- Defines MQC objects that you can use for queuing and scheduling.

---

**Note**

The qos type is the default for the class-map and policy-map commands, but not for the service-policy which requires that you specify an explicit type.

You can attach policies to interfaces or EtherChannels as well as at the global system level by using the service-policy command.

You can view all or individual values for MQC objects by using the show class-map and show policy-map commands.

An MQC target is an entity (such as an Ethernet interface) that represents a flow of packets. A service policy associates a policy map with an MQC target and specifies whether to apply the policy on incoming or outgoing packets. This mapping enables the configuration of QoS policies such as marking, bandwidth allocation, buffer allocation, and so on.

**System Classes**

The system qos is a type of MQC target. You use a service policy to associate a policy map with the system qos target. A system qos policy applies to all interfaces on the switch unless a specific interface has an overriding service-policy configuration. The system qos policies are used to define system classes, the classes of traffic across the entire switch, and their attributes.
If service policies are configured at the interface level, the interface-level policy always takes precedence over system class configuration or defaults.

On the Cisco Nexus device, a system class is uniquely identified by a qos-group value. A total of eight system classes are supported. The device supports one default class which is always present on the switch. Up to seven additional system classes can be created by the administrator.

Default System Classes

The device provides the following system classes:

- Drop system class
  By default, the software classifies all unicast and multicast Ethernet traffic into the default drop system class. This class is identified by qos-group 0.
  This class is created automatically when the system starts up (the class is named class-default in the CLI). You cannot delete this class and you cannot change the match criteria associated with the default class.

Information About Policy Types

The device supports a number of policy types. You create class maps in the policy types.

There are three policy types:

- Network-qos
- Queuing
- QoS

The following QoS parameters can be specified for each type of class:

- Type network-qos—A network-qos policy is used to instantiate system classes and associate parameters with those classes that are of system-wide scope.
  - Classification—The traffic that matches this class are as follows:
  - QoS Group—A class map of type network-qos identifies a system class and is matched by its associated qos-group.

  * Policy—The actions that are performed on the matching traffic are as follows:

    - Note: A network-qos policy can only be attached to the system QoS target.

    * MTU—The MTU that needs to be enforced for the traffic that is mapped to a system class.

    Note: The Cisco Nexus device supports one MTU for all classes for all ports.
* Set CoS value—This configuration is used to mark 802.1p values for all traffic mapped to this system class.

* Congestion Control WRED—Weighted random early detection (WRED) anticipates and avoids congestion before congestion occurs. WRED drops packets, based on the average queue length that exceeds a specific threshold value, to indicate congestion. You can configure congestion avoidance with WRED in egress policy maps. By default, tail-drop is the congestion control mechanism. To enable WRED, use the `congestion-control random-detect` command in network-qos policy map mode.

* ECN—ECN is an extension to WRED that marks packets instead of dropping them when the average queue length exceeds a specific threshold value. When configured with the WRED explicit congestion notification (ECN) feature, routers and end hosts use this marking as a signal that the network is congested to slow down sending packets. To enable an ECN, use the `congestion-control random-detect ecn` command in the network-qos policy map mode.

**Note** Enabling WRED and ECN on a class on a network-qos policy implies that WRED and ECN is enabled for all ports in the system.

* Type queuing—A type queuing policy is used to define the scheduling characteristics of the queues associated with system classes.

The Cisco Nexus device supports type queuing in the egress direction.

**Note** Some configuration parameters when applied to an EtherChannel are not reflected on the configuration of the member ports.

* Classification—The traffic that matches this class are as follows:

  * QoS Group—A class map of type queuing identifies a system class and is matched by its associated QoS group.

* Policy—The actions that are performed on the matching traffic are as follows:

  **Note** These policies can be attached to the system qos target or to any interface. The output queuing policy is used to configure output queues on the device associated with system classes.

  * Bandwidth—Sets the guaranteed scheduling deficit weighted round robin (DWRR) percentage for the system class.

  * Priority—Sets a system class for strict-priority scheduling. Only one system class can be configured for priority in a given queuing policy.

* Type qos—A type QoS policy is used to classify traffic that is based on various Layer 2, Layer 3, and Layer 4 fields in the frame and to map it to system classes.
Some configuration parameters when applied to an EtherChannel are not reflected on the configuration of the member ports.

Classification—The traffic that matches this class are as follows:

- Access Control Lists—Classifies traffic based on the criteria in existing ACLs.
- Class of Service—Matches traffic based on the CoS field in the frame header.
- DSCP—Classifies traffic based on the Differentiated Services Code Point (DSCP) value in the DiffServ field of the IP header.
- IP Real Time Protocol—Classifies traffic on the port numbers used by real-time applications.
- Precedence—Classifies traffic based on the precedence value in the type of service (ToS) field of the IP header.

Policy—The actions that are performed on the matching traffic are as follows:

Note

This policy can be attached to the system or to any interface. It applies to input traffic only.

- QoS Group—Sets the QoS group that corresponds to the system class this traffic flow is mapped to.
  - Cisco Nexus device supports the following:
    - Eight QoS groups
    - Eight queues for unicast
    - Four queues for multicast

  By default, two QoS groups each are mapped to one multicast queue. The mapping is QoS group 0 and 1 are mapped to a multicast queue, QoS group 2 and 3 are mapped to the next and so forth.

MTU

The Cisco Nexus device supports one MTU for all classes for all ports.

When configuring MTU, follow these guidelines:

- For the Cisco Nexus device, the MTU is controlled by the value configured on the class default. The same MTU must be configured on all classes.
- Enter the `system jumbomtu` command to define the upper bound of any MTU in the system. The system jumbo MTU has a default value of 9216 bytes. The minimum MTU is 1500 bytes and the maximum MTU is 9216 bytes.
The system class MTU sets the MTU for all packets in the class. The system class MTU cannot be configured larger than the global jumbo MTU.

The default system class has a default MTU of 1500 bytes. You can configure this value.

You can specify the MTU value for either a single Layer 3 interface or a range of Layer 3 interfaces. When you change the Layer 3 interface MTU value to the jumbo MTU value (1500 bytes or greater), you must also change the network QoS MTU value to 1500 bytes or greater. The device generates a syslog message to inform you of this requirement.

Trust Boundaries

The trust boundary is enforced by the incoming interface as follows:

- By default, all Ethernet interfaces are trusted interfaces. The 802.1p CoS and DSCP are preserved unless the marking is configured. There is no default CoS to queue and DSCP to queue mapping. You can define and apply a policy to create these mappings. By default, without a user defined policy, all traffic is assigned to the default queue.

- Any packet that is not tagged with an 802.1p CoS value is classified into the default drop system class. If the untagged packet is sent over a trunk, it is tagged with the default untagged CoS value, which is zero.

- You can override the default untagged CoS value for an Ethernet interface or port channel.

- You can override the default untagged CoS value for an Ethernet interface or a port channel interface using the `untagged cos cos-value` command.

- You can override the default untagged CoS value for an Ethernet or a Layer 3 interface or a port channel interface using the `untagged cos cos-value` command.

After the system applies the untagged CoS value, QoS functions the same as for a packet that entered the system tagged with the CoS value.

Ingress Classification Policies

You use classification to partition traffic into classes. You classify the traffic based on the port characteristics (CoS field) or the packet header fields that include IP precedence, Differentiated Services Code Point (DSCP), and Layer 2 to Layer 4 parameters. The values used to classify traffic are called match criteria. When you define a traffic class, you can specify multiple match criteria or you can determine the traffic class by matching any or all criteria.

Traffic that fails to match any class is assigned to a default class of traffic called class-default.

Egress Queuing Policies

You can associate an egress policy map with an Ethernet interface to guarantee the bandwidth for the specified traffic class or to configure the egress queues.

The bandwidth allocation limit applies to all traffic on the interface.
Each Ethernet interface supports up to six queues, one for each system class. The queues have the following default configuration:

- In addition to these queues, control traffic that is destined for the CPU uses strict priority queues. These queues are not accessible for user configuration.
- Standard Ethernet traffic in the default drop system class is assigned a queue. This queue uses WRR scheduling with 100 percent of the bandwidth.

If you add a system class, a queue is assigned to the class. You must reconfigure the bandwidth allocation on all affected interfaces. Bandwidth is not dedicated automatically to user-defined system classes.

You can configure a strict priority queue. This queue is serviced before all other queues except the control traffic queue (which carries control rather than data traffic).

QoS for Traffic Directed to the CPU

The device automatically applies QoS policies to traffic that is directed to the CPU to ensure that the CPU is not flooded with packets. Control traffic, such as bridge protocol data units (BPDU) frames, is given higher priority to ensure delivery.

QoS Configuration Guidelines and Limitations

To maintain optimal switch performance, follow these guidelines when configuring system classes and policies:

- Switch resources (such as buffers, virtual output queues, and egress queues) are partitioned based on the default and user-defined system classes. Cisco NX-OS automatically adjusts the resource allocation to accommodate the configured system classes.
- WRED and ECN configuration are supported only on unicast flows. WRED and ECN configuration do not affect other flows such as multicast, broadcast, and unknown unicast.
- WRED and ECN configuration is not supported on a class mapped to qos-group 1.

When configuring EtherChannels, note the following guidelines:

- The service policy configured on an EtherChannel applies to all member interfaces.

Configuring System Classes

Configuring Class Maps

You can create or modify a class map with the `class-map` command. The class map is a named object that represents a class of traffic. In the class map, you specify a set of match criteria for classifying the packets. You can then reference class maps in policy maps.

The class map type default is type qos and its match criteria default is match-all.
Configuring Class Maps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** switch(config)# class-map [type {network-qos | qos | queuing}] class-map name | Creates or accesses a named object that represents the specified class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. The three class-map configuration modes are as follows:  
  • network-qos—Network-wide (global) mode. CLI prompt: switch(config-cmap-nq)#  
  • qos—Classification mode; this is the default mode. CLI prompt: switch(config-cmap-qos)#  
  • queuing—Queuing mode. CLI prompt: switch(config-cmap-que)#  
| **Step 3** switch(config)# class-map [type qos] [match-all | match-any] class-map name | (Optional) Specifies that packets must match any or all criteria that is defined for a class map.  
  • match-all—Classifies traffic if packets match all criteria that is defined for a specified class map (for example, if both the defined CoS and the ACL criteria match).  
  • match-any—Classifies traffic if packets match any criteria that is defined for a specified class map (for example, if either the CoS or the ACL criteria matches).  
| **Step 4** switch(config)# no class-map [type {network-qos | qos | queuing}] class-name | (Optional) Deletes the specified class map.  
**Note** You cannot delete the system-defined class map: class-default.  
Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |

Configuring ACL Classification

You can classify traffic by matching packets based on an existing access control list (ACL). Traffic is classified by the criteria defined in the ACL. The **permit** and **deny** ACL keywords are ignored in the matching; even if a match criteria in the access-list has a **deny** action, it is still used for matching for this class.
### Configuring QoS

**Configuring Class Maps**

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# class-map type qos class-name</td>
<td>Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-cmap-qos)# match access-group name acl-name</td>
<td>Configures a traffic class by matching packets based on the acl-name. The permit and deny ACL keywords are ignored in the matching. <strong>Note</strong> You can only define a single ACL in a class map. You cannot add any other match criteria to a class with a match access-group defined.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-cmap-qos)# no match access-group name acl-name</td>
<td>(Optional) Removes the match from the traffic class.</td>
</tr>
</tbody>
</table>

This example shows how to classify traffic by matching packets based on existing ACLs:

```
switch# configure terminal
switch(config)# class-map type qos class_acl
switch(config-cmap-qos)# match access-group name acl-01
```

Use the `show class-map` command to display the ACL class-map configuration:

```
switch# show class-map class_acl
```

### Configuring CoS Classification

You can classify traffic based on the class of service (CoS) in the IEEE 802.1Q header. This 3-bit field is defined in IEEE 802.1p to support QoS traffic classes. CoS is encoded in the high order 3 bits of the VLAN ID Tag field and is referred to as `user_priority`.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# class-map type qos class-name</td>
</tr>
</tbody>
</table>
Configuring Class Maps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> switch(config-cmap-qos)# match cos cos-value</td>
<td>Specifies the CoS value to match for classifying packets into this class. You can configure a CoS value in the range of 0 to 7.</td>
</tr>
<tr>
<td><strong>Step 4</strong> switch(config-cmap-qos)# no match cos cos-value</td>
<td>(Optional) Removes the match from the traffic class.</td>
</tr>
</tbody>
</table>

This example shows how to classify traffic by matching packets based on a defined CoS value:

```
switch# configure terminal
switch(config)# class-map type qos match-any class_cos
switch(config-cmap-qos)# match cos 4, 5-6
```

Use the `show class-map` command to display the CoS value class-map configuration:

```
switch# show class-map class_cos
```

### Configuring DSCP Classification

You can classify traffic based on the Differentiated Services Code Point (DSCP) value in the DiffServ field of the IP header (either IPv4 or IPv6).

**Table 2: Standard DSCP Values**

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>AF11 dscp (001010)—decimal value 10</td>
</tr>
<tr>
<td>af12</td>
<td>AF12 dscp (001100)—decimal value 12</td>
</tr>
<tr>
<td>af13</td>
<td>AF13 dscp (001110)—decimal value 14</td>
</tr>
<tr>
<td>af21</td>
<td>AF21 dscp (010010)—decimal value 18</td>
</tr>
<tr>
<td>af22</td>
<td>AF22 dscp (010100)—decimal value 20</td>
</tr>
<tr>
<td>af23</td>
<td>AF23 dscp (010110)—decimal value 22</td>
</tr>
<tr>
<td>af31</td>
<td>AF31 dscp (011010)—decimal value 26</td>
</tr>
<tr>
<td>af32</td>
<td>AF32 dscp (011100)—decimal value 28</td>
</tr>
<tr>
<td>af33</td>
<td>AF33 dscp (011110)—decimal value 30</td>
</tr>
<tr>
<td>af41</td>
<td>AF41 dscp (100010)—decimal value 34</td>
</tr>
<tr>
<td>af42</td>
<td>AF42 dscp (100100)—decimal value 36</td>
</tr>
<tr>
<td>af43</td>
<td>AF43 dscp (100110)—decimal value 38</td>
</tr>
<tr>
<td>Value</td>
<td>List of DSCP Values</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>cs1</td>
<td>CS1 (precedence 1) dscp (001000)—decimal value 8</td>
</tr>
<tr>
<td>cs2</td>
<td>CS2 (precedence 2) dscp (010000)—decimal value 16</td>
</tr>
<tr>
<td>cs3</td>
<td>CS3 (precedence 3) dscp (011000)—decimal value 24</td>
</tr>
<tr>
<td>cs4</td>
<td>CS4 (precedence 4) dscp (100000)—decimal value 32</td>
</tr>
<tr>
<td>cs5</td>
<td>CS5 (precedence 5) dscp (101000)—decimal value 40</td>
</tr>
<tr>
<td>cs6</td>
<td>CS6 (precedence 6) dscp (110000)—decimal value 48</td>
</tr>
<tr>
<td>cs7</td>
<td>CS7 (precedence 7) dscp (111000)—decimal value 56</td>
</tr>
<tr>
<td>default</td>
<td>Default dscp (000000)—decimal value 0</td>
</tr>
<tr>
<td>ef</td>
<td>EF dscp (101110)—decimal value 46</td>
</tr>
</tbody>
</table>

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# class-map type qos class-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-cmap-qos)# match dscp dscp-list</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-cmap-qos)# no match dscp dscp-list</td>
</tr>
</tbody>
</table>
This example shows how to classify traffic by matching packets based on the DSCP value in the DiffServ field of the IP header:

```
switch# configure terminal
switch(config)# class-map type qos match-any class_dscp
switch(config-cmap-qos)# match dscp af21, af32
```

Use the `show class-map` command to display the DSCP class-map configuration:

```
switch# show class-map class_dscp
```

### Configuring IP RTP Classification

The IP Real-time Transport Protocol (RTP) is a transport protocol for real-time applications that transmits data such as audio or video and is defined by RFC 3550. Although RTP does not use a common TCP or UDP port, you typically configure RTP to use ports 16384 to 32767. UDP communications use an even port and the next higher odd port is used for RTP Control Protocol (RTCP) communications.

You can classify based on UDP port ranges, which are likely to target applications using RTP.

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>switch(config)# class-map type qos class-name</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures the traffic class by matching packets based on a range of lower and upper UDP port numbers, which is likely to target applications using RTP. Values can range from 2000 to 65535.</td>
</tr>
<tr>
<td>switch(config-cmap-qos)# match ip rtp port-number</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Removes the match from the traffic class.</td>
</tr>
<tr>
<td>switch(config-cmap-qos)# no match ip rtp port-number</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to classify traffic by matching packets based on UDP port ranges that are typically used by RTP applications:

```
switch# configure terminal
switch(config)# class-map type qos match-any class_rtp
switch(config-cmap-qos)# match ip rtp 2000-2100, 4000-4100
```

Use the `show class-map` command to display the RTP class-map configuration:

```
switch# show class-map class_rtp
```

### Configuring Precedence Classification

You can classify traffic based on the precedence value in the type of service (ToS) byte field of the IP header (either IPv4 or IPv6). The following table shows the precedence values:
Table 3: Precedence Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>IP precedence value</td>
</tr>
<tr>
<td>critical</td>
<td>Critical precedence (5)</td>
</tr>
<tr>
<td>flash</td>
<td>Flash precedence (3)</td>
</tr>
<tr>
<td>flash-override</td>
<td>Flash override precedence (4)</td>
</tr>
<tr>
<td>immediate</td>
<td>Immediate precedence (2)</td>
</tr>
<tr>
<td>internet</td>
<td>Internetwork control precedence (6)</td>
</tr>
<tr>
<td>network</td>
<td>Network control precedence (7)</td>
</tr>
<tr>
<td>priority</td>
<td>Priority precedence (1)</td>
</tr>
<tr>
<td>routine</td>
<td>Routine precedence (0)</td>
</tr>
</tbody>
</table>

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# class-map type qos match-any class-name</td>
<td>Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3 switch(config-cmap-qos)#match precedence precedence-values</td>
<td>Configures the traffic class by matching packets based on precedence values. For a list of precedence values, see the Precedence Values table.</td>
</tr>
<tr>
<td>Step 4 switch((config-cmap-qos)# no match precedence precedence-values</td>
<td>(Optional) Removes the match from the traffic class. For a list of precedence values, see the Precedence Values table.</td>
</tr>
</tbody>
</table>

This example shows how to classify traffic by matching packets based on the precedence value in the ToS byte field of the IP header:

```
switch# configure terminal
switch(config)# class-map type qos match-any class_precedence
switch(config-cmap-qos)# match precedence 1-2, critical
```

Use the `show class-map` command to display the IP precedence value class-map configuration:

```
switch# show class-map class_precedence
```
Creating Policy Maps

The policy-map command is used to create a named object that represents a set of policies that are to be applied to a set of traffic classes.

The device provides one default system class: a drop class for best-effort service (class-default). You can define up to four additional system classes for Ethernet traffic.

The following predefined policy maps are used as default service policies:

- network-qos: default-nq-policy
- Input qos: default-in-policy
- Output queuing: default-out-policy

You need to create a policy map to specify the policies for any user-defined class. In the policy map, you can configure the QoS parameters for each class. You can use the same policy map to modify the configuration of the default classes.

The device distributes all the policy-map configuration values to the attached network adapters.

Before You Begin

Before creating the policy map, define a class map for each new system class.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# policy-map [type {network-qos</td>
</tr>
<tr>
<td></td>
<td>Creates a named object representing a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td></td>
<td>The three policy-map configuration modes are as follows:</td>
</tr>
<tr>
<td></td>
<td>• network-qos—Network-wide (global) mode. CLI prompt: switch(config-pmap-nq)#</td>
</tr>
<tr>
<td></td>
<td>• qos—Classification mode; this is the default mode. CLI prompt: switch(config-pmap-qos)#</td>
</tr>
<tr>
<td></td>
<td>• queuing—Queuing mode. CLI prompt: switch(config-pmap-que)#</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# no policy-map [type {network-qos</td>
</tr>
<tr>
<td></td>
<td>(Optional)</td>
</tr>
<tr>
<td></td>
<td>Deletes the specified policy map.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-pmap)# class [type {network-qos</td>
</tr>
</tbody>
</table>
| | Associates a class map with the policy map, and enters configuration mode for the specified system class. The three class-map configuration modes are as follows:
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-pmap-c-nq)#</td>
<td>network-qos—Network-wide (global) mode. CLI prompt: switch(config-pmap-c-nq)#</td>
</tr>
<tr>
<td>switch(config-pmap-c-qos)#</td>
<td>qos—Classification mode; this is the default mode. CLI prompt: switch(config-pmap-c-qos)#</td>
</tr>
<tr>
<td>switch(config-pmap-c-que)#</td>
<td>queuing—Queuing mode. CLI prompt: switch(config-pmap-c-que)#</td>
</tr>
</tbody>
</table>

Note: The associated class map must be the same type as the policy-map type.

**Step 5**

switch(config-pmap)# **no class**

[type {network-qos | qos | queuing}] **class-name**

(Optional) Deletes the class map association.

---

**Configuring Type QoS Policies**

Type qos policies are used for classifying the traffic of a specific system class identified by a unique qos-group value. A type qos policy can be attached to the system or to individual interfaces for ingress traffic only.

You can set a maximum of five QoS groups for ingress traffic.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch(config)# <strong>policy-map type qos</strong> <strong>policy-name</strong></td>
<td>Creates a named object that represents a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>switch(config-pmap-qos)# **[class</td>
<td>class-default] type qos** <strong>class-name</strong></td>
</tr>
</tbody>
</table>

Note: The associated class map must be the same type as the policy map type.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-pmap-c-qos)# <strong>set qos-group</strong> <strong>qos-group-value</strong></td>
<td>Configures one or more qos-group values to match on for classification of traffic into this class map. The list below identifies the ranges of the qos-group-value. There is no default value.</td>
</tr>
</tbody>
</table>

Note: The switch can only support a maximum of five QoS groups within this range.
### Command or Action

| Step 5 | switch(config-pmap-c-qos)# no set qos-group qos-group-value | (Optional) Removes the **qos-group** values from this class. |

This example shows how to define a type qos policy map:

```plaintext
switch# configure terminal
switch(config)# policy-map type qos policy-s1
```

```
switch(config-pmap-c-qos)# set qos-group 2
```

---

## Configuring Type Network QoS Policies

Type network qos policies can only be configured on the system qos attachment point. They are applied to the entire switch for a particular class.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# policy-map type network-qos policy-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-pmap-nq)# class type network-qos class-name</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-pmap-c-nq)# mtu mtu-value</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-pmap-c-nq)# no mtu</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>switch(config-pmap-c-nq)# congestion-control random-detect</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>switch(config-pmap-c-nq)# congestion-control random-detect ecn</td>
</tr>
</tbody>
</table>

*Note* The associated class map must be the same type as the policy map type.

### Note
- The `mtu-value` that you configure must be less than the value set by the `system jumbomtu` command.
- **Random-Detect ECN**
  - Marks packets instead of dropping them when the average queue length exceeds a specific threshold value. Routers...
### Configuring Type Queuing Policies

Type queuing policies are used for scheduling and buffering the traffic of a specific system class. A type queuing policy is identified by its QoS group and can be attached to the system or to individual interfaces for input or output traffic.

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# policy-map type queuing policy-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-pmap-que)# class type queuing class-name</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-pmap-c-que)# bandwidth percent percentage</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-pmap-c-que)# no bandwidth percent percentage</td>
</tr>
</tbody>
</table>

#### Example

```
switch# configure terminal
switch(config)# policy-map type network-qos policy-que1
switch(config-pmap-nq)# class type network-qos class-que1
switch(config-pmap-c-nq)# mtu 5000
switch(config-pmap-c-nq)# set cos 4
```

### Creating Policy Maps

- **Purpose:**
  - and end hosts use this marking as a signal that the network is congested to slow down sending packets.

- **Step 8**
  - switch(config-pmap-c-nq)# set cos cos-value
  - Specifies a 802.1Q CoS value which is used to mark packets on this interface. The value range is from 0 to 7.

- **Step 9**
  - switch(config-pmap-c-nq)# no set cos cos-value
  - (Optional)
  - Disables the marking operation in this class.

This example shows how to define a type network-qos policy map:

```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong></td>
<td>switch(config-pmap-c-que)# priority</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>switch(config-pmap-c-que)# no priority</td>
</tr>
</tbody>
</table>

Specifies that traffic in this class is mapped to a strict priority queue.

**Note** Only one class in each policy map can have strict priority set on it.

(Optional)

Removes the strict priority queuing from the traffic in this class.

This example shows how to define a type queuing policy map:

```
switch# configure terminal
switch(config)# policy-map type queuing policy-queue1
switch(config-pmap-que)# class type queuing class-queue1
switch(config-pmap-c-que)# bandwidth 20
```

### Configuring an ECN Threshold

You can configure an explicit congestion notification (ECN) threshold per class in a queuing policy and apply it to an interface.

Prior to release 5.0(3)U4(1), WRED and an ECN can only be enabled or disabled on QoS class in the network-qos policy (with static thresholds). Starting with release 5.0(3)U4(1), an enhanced ECN marking is supported as follows:

- WRED and ECN thresholds can be configured corresponding to a class from the queueing policy by using the following Steps 1 through 8.

  **Note** A WRED and ECN still need to be enabled by the network-qos policy class configuration mode.

- Support for enabling WRED and ECN on a global basis outside the MQC command line. You can configure WRED and an ECN at a global buffer level where you enable WRED and an ECN and specify a threshold at the system level by using the following Steps 1 through 9. If this threshold is exceeded, WRED and ECN are applied on all WRED/ECN enabled classes in the system.

- By default, when WRED and an ECN are enabled, the marking or drop happens based on the class or queue threshold. However, when the global based WRED and ECN is also enabled, by using the congestion-control random-detect global-buffer and wred-queue qos-group-map queue-only commands, the WRED and ECN marking behavior initiates when either of the class thresholds or global threshold is exceeded.

### Before You Begin

Ensure that you have enabled an ECN.
## Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# class-map type queuing class-map name</td>
<td>Creates or accesses a named object that represents the specified class of traffic in queuing mode. Class map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-cmap-que)# match qos-group qos-group-number</td>
<td>Associates a QoS group to the queuing class map.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-cmap-que)# exit</td>
<td>Exits class mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config)# policy-map type queuing policy-map name</td>
<td>Creates a named object that represents a set of policies that are to be applied to a set of traffic classes in queuing mode. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 6</td>
<td>switch(config-pmap-que)# class type queuing class-map name</td>
<td>Associates a queuing class map with the policy map, and enters configuration mode for the specified system class.</td>
</tr>
<tr>
<td>Step 7</td>
<td>switch(config-pmap-c-que)# random-detect minimum-threshold {min-threshold [bytes</td>
<td>kbytes</td>
</tr>
<tr>
<td>Step 8</td>
<td>switch(config-cmap-que)# exit</td>
<td>Exits policy mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>switch(config)# congestion-control random-detect global-buffer minimum-threshold {min-threshold [bytes</td>
<td>kbytes</td>
</tr>
<tr>
<td>Step 10</td>
<td>switch(config-pmap-nq)# wred-queue qos-group-map queue-only queue-group</td>
<td>(Optional) Enables ECN marking for the specified QoS group that based only on a class threshold and independent of the global buffer threshold configuration.</td>
</tr>
</tbody>
</table>
### Information About Marking

Marking is a method that you use to modify the QoS fields of the incoming and outgoing packets.

You can use marking commands in traffic classes that are referenced in a policy map. The marking features that you can configure are listed below:

- DSCP
- IP precedence
- CoS

### Configuring CoS Marking

The value of the CoS field is recorded in the high-order three bits of the VLAN ID Tag field in the IEEE 802.1Q header.

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config) # policy-map [type network-qos] policy-map-name</td>
<td>Creates or accesses the policy map named policy-map-name and enters policy-map mode.</td>
</tr>
</tbody>
</table>
### Purpose

The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.

### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-pmap-nq) # class [type network-qos] {class-map name</td>
<td>class-default}</td>
</tr>
</tbody>
</table>

### Step 3

```
switch(config-pmap-c-nq) # set cos cos-value
```

Specifies the CoS value to `cos-value`. The `cos-value` can range from 0 to 7.

### Note

This command is only supported for egress policies.

### Configuring DSCP Marking

You can set the DSCP value in the six most significant bits of the DiffServ field of the IP header to a specified value. You can enter numeric values from 0 to 60, in addition to the standard DSCP values shown in the table below:

**Note**

You can set DSCP or IP Precedence but you cannot set both values because they modify the same field in the IP packet.

### Table 4: Standard DSCP Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>AF11 dscp (001010)—decimal value 10</td>
</tr>
<tr>
<td>af12</td>
<td>AF12 dscp (001100)—decimal value 12</td>
</tr>
<tr>
<td>af13</td>
<td>AF13 dscp (001110)—decimal value 14</td>
</tr>
<tr>
<td>af21</td>
<td>AF21 dscp (010010)—decimal value 18</td>
</tr>
<tr>
<td>af22</td>
<td>AF22 dscp (010100)—decimal value 20</td>
</tr>
<tr>
<td>af23</td>
<td>AF23 dscp (010110)—decimal value 22</td>
</tr>
<tr>
<td>af31</td>
<td>AF31 dscp (011010)—decimal value 26</td>
</tr>
<tr>
<td>af32</td>
<td>AF40 dscp (011100)—decimal value 28</td>
</tr>
</tbody>
</table>
### List of DSCP Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af33</td>
<td>AF33 dscp (011110)—decimal value 30</td>
</tr>
<tr>
<td>af41</td>
<td>AF41 dscp (100010)—decimal value 34</td>
</tr>
<tr>
<td>af42</td>
<td>AF42 dscp (100100)—decimal value 36</td>
</tr>
<tr>
<td>af43</td>
<td>AF43 dscp (100110)—decimal value 38</td>
</tr>
<tr>
<td>cs1</td>
<td>CS1 (precedence 1) dscp (001000)—decimal value 8</td>
</tr>
<tr>
<td>cs2</td>
<td>CS2 (precedence 2) dscp (010000)—decimal value 16</td>
</tr>
<tr>
<td>cs3</td>
<td>CS3 (precedence 3) dscp (011000)—decimal value 24</td>
</tr>
<tr>
<td>cs4</td>
<td>CS4 (precedence 4) dscp (100000)—decimal value 32</td>
</tr>
<tr>
<td>cs5</td>
<td>CS5 (precedence 5) dscp (101000)—decimal value 40</td>
</tr>
<tr>
<td>cs6</td>
<td>CS6 (precedence 6) dscp (110000)—decimal value 48</td>
</tr>
<tr>
<td>cs7</td>
<td>CS7 (precedence 7) dscp (111000)—decimal value 56</td>
</tr>
<tr>
<td>default</td>
<td>Default dscp (000000)—decimal value 0</td>
</tr>
<tr>
<td>ef</td>
<td>EF dscp (101110)—decimal value 46</td>
</tr>
</tbody>
</table>

### Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>config t</td>
<td></td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map type qos</td>
<td>Creates or accesses the policy map named policy-map-name, and then enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>class [type qos]</td>
<td>Creates a reference to class-map-name, and enters policy-map class configuration mode. Use the class-default keyword to</td>
<td></td>
</tr>
</tbody>
</table>

[c]
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>select all traffic that is not currently matched by classes in the policy map.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>set dscp dscp-value</strong></td>
</tr>
</tbody>
</table>

This example shows how to display the policy-map configuration as shown below:

```
switch# show policy-map policy1
```

## Configuring IP Precedence Marking

You can set the value of the IP precedence field in bits 0 to 2 of the IPv4 type of service (ToS) field or the equivalent Traffic Class field for IPv6 of the IP header. The following table shows the precedence values:

---

**Note**

You can set IP Precedence or DSCP but you cannot set both values because they modify the same field in the IP packet.

---

### Table 5: Precedence Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>IP precedence value</td>
</tr>
<tr>
<td>critical</td>
<td>Critical precedence (5)</td>
</tr>
<tr>
<td>flash</td>
<td>Flash precedence (3)</td>
</tr>
<tr>
<td>flash-override</td>
<td>Flash override precedence (4)</td>
</tr>
<tr>
<td>immediate</td>
<td>Immediate precedence (2)</td>
</tr>
<tr>
<td>internet</td>
<td>Internetwork control precedence (6)</td>
</tr>
<tr>
<td>network</td>
<td>Network control precedence (7)</td>
</tr>
<tr>
<td>priority</td>
<td>Priority precedence (1)</td>
</tr>
<tr>
<td>routine</td>
<td>Routine precedence (0)</td>
</tr>
</tbody>
</table>

---
### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>policy-map [type qos] qos-policy-map-name</code></td>
<td>Creates or accesses the policy map named <code>policy-map-name</code>, and then enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>`class [type qos] {class-map-name</td>
<td>class-default}`</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>set precedence precedence-value</code></td>
<td>Sets the IP precedence value to <code>precedence-value</code>. You can enter one of the values shown in the Precedence Values table.</td>
</tr>
</tbody>
</table>

This example shows how to set the precedence marking to 5:

```
switch(config)# policy-map type qos my_policy
switch(config-pmap-qos)# class type qos my_class
switch(config-pmap-c-qos)# set precedence 5
```

---

### QoS Configurations for Layer 3 Routing

#### Required CoS Marking Configuration in a Layer 3 Topology

In Layer 3 topologies, you must configure each QoS group in the network-qos policy with a unique cos value.

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>switch# show policy-map system</code></td>
<td>Displays the already configured policy maps and CoS values. In Layer 3 topologies, each qos-group must have a unique CoS value. Use the <code>show policy-map system</code> command to view CoS values that have been used and that are unavailable for QoS groups.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>switch(config)# policy-map [type network-qos] policy-map name</code></td>
<td>Creates or accesses the policy map named <code>policy-map-name</code> and enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-pmap-nq) # class [type network-qos] {class-map name</td>
<td>class-default}</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-pmap-nq-c) # set cos cos-value</td>
<td></td>
</tr>
</tbody>
</table>

Creates a reference to class-map-name and enters policy-map class configuration mode.

Use the `class-default` keyword to select all traffic that is not currently matched by classes in the policy map.

Specifies the CoS value.

The value can range from 0 to 7.

**Note** You can use this command only in egress policies. In Layer 3 topologies, each qos-group must have a unique cos configuration.

This example shows how to set the CoS value to 4 in a Layer 3 topology:

```bash
switch# show policy-map system
Type network-qos policy-maps
================================================================================
policy-map type network-qos pn-01
  class type network-qos cn-01 match qos-group 1
    mtu 8500
    pause no-drop
    set cos 2
  class type network-qos cn-02 match qos-group 2
    mtu 9216
    set cos 4
  class type network-qos cn-03 match qos-group 3
    mtu 8000
    set cos 6
  class type network-qos cn-04 match qos-group 4
    mtu 8750
    set cos 7
  class type network-qos cn-ip-multicast match qos-group 5
    mtu 7500
    set cos 5
  class type network-qos class-default match qos-group 0
    mtu 1500
    multicast-optimize
    set cos 1
...
```

```
switch# configure terminal
switch(config)# policy-map type network-qos pn-01
switch(config-pmap-nq)# class type network-qos cn-05
switch(config-pmap-nq-c)# set cos 3
```

**Configuring Layer 3 Multicast Queuing**

You can map CoS values to an egress queue. You can have a maximum of 4 multicast queues for Layer 3 multicast traffic.

You can use this procedure to distribute traffic into different queues, where each queue is configured with different weighted round robin (WRR) parameters.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

**Step 1**

Enters configuration mode.

**Step 2**

Maps the assigned CoS values to an egress queue.

The egress queue range is from 1 to 4, where 4 can be configured as the expedite queue.

You can enter up to eight CoS values. Separate each value with a space. The range is from 0 to 7.

The defaults are as follows:

- Receive queue 0 and transmit queue 0: CoS 0 and 1.
- Receive queue 1 and transmit queue 1: CoS 2 and 3.
- Receive queue 2 and transmit queue 2: CoS 4 and 5.
- Receive queue 3 and transmit queue 3: CoS 6 and 7.

This example shows how to configure a Layer 3 interface:

```
switch# configure terminal
switch(config)# configure terminal
switch(config)# configure terminal
switch(config)# configure terminal
```

**Configuring a Service Policy for a Layer 3 Interface**

You can configure a service policy for a Layer 3 interface.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 1**

Enters global configuration mode.

**Step 2**

Enters configuration mode for the specified interface.

**Step 3**

Selects the Layer 3 interface.

**Step 4**

Specifies the policy map to use as the service policy for the Layer 3 interface. There are two policy-map configuration modes:

- qos—Classification mode; this is the default mode.
- queuing—Queuing mode.
The output keyword specifies that this policy map should be applied to traffic transmitted from an interface. You can only apply output to a queuing policy.

This example shows how to attach a queuing policy map to a Layer 3 interface:
```
switch# configure terminal
switch(config)# interface ethernet 1/5
switch(config-if)# no switchport
switch(config-if)# service-policy type queuing output my_output_q_policy
```

Changing the Bandwidth Allocated to Unicast and Multicast Traffic

You can change the bandwidth allocated to unicast and multicast traffic by assigning weighted round robin (WRR) weights as a percentage of the interface data rate to the egress queues.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface ethernet slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# wrr unicast-bandwidth percentage-value</td>
</tr>
</tbody>
</table>

This example shows how to attach a queuing policy map to a Layer 3 interface:
```
switch# configure terminal
switch(config)# interface ethernet 1/5
switch(config-if)# wrr unicast-bandwidth 75
switch(config-if)#
```

**Attaching the System Service Policy**

The service-policy command specifies the system class policy map as the service policy for the system.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# system qos</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enters system class configuration mode.</td>
</tr>
</tbody>
</table>

**Step 3**

```plaintext
switch(config-sys-qos)# service-policy type (network-qos [input | output] [qos input | queuing output]) policy-name
```

Specifies the policy map to use as the service policy for the system. There are three policy-map configuration modes:

- `network-qos`—Network-wide (system qos) mode.
- `qos`—Classification mode (system qos input or interface input only).
- `queuing`—Queuing mode (output at system qos and interface).

**Note**

There is no default policy-map configuration mode; you must specify the `type`. The `input` keyword specifies that this policy map should be applied to traffic received on an interface. The `output` keyword specifies that this policy map should be applied to traffic transmitted from an interface. You can only apply `input` to a qos policy; you can only apply `output` to a queuing policy.

---

### Restoring the Default System Service Policies

If you have created and attached new policies to the system QoS configuration, enter the `no` form of the command to reapply the default policies.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# system qos</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enters system class configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-sys-qos)# no service-policy type qos input policy-map name</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Resets the classification mode policy map. This policy-map configuration is for system QoS input or interface input only:</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-sys-qos)# no service-policy type network-qos policy-map name</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Resets the network-wide policy map.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-sys-qos)# no service-policy type queuing output policy-map name</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Resets the output queuing mode policy map.</td>
</tr>
</tbody>
</table>

```plaintext
switch# configure terminal
switch(config)# system qos
switch(config-sys-qos)# no service-policy type qos input my-in-policy
```
Enabling the Jumbo MTU

You can enable the jumbo Maximum Transmission Unit (MTU) for the whole switch by setting the MTU to its maximum size (9216 bytes) in the policy map for the default Ethernet system class (class-default).

Note
The Cisco Nexus device supports 1 MTU for all classes for all ports.

This example shows how to configure the default Ethernet system class to support the jumbo MTU:

```
switch(config)# policy-map type network-qos jumbo
switch(config-pmap-nq)# class type network-qos class-default
switch(config-pmap-c-nq)# mtu 9216
switch(config-pmap-c-nq)# exit
switch(config-pmap-nq)# exit
switch(config)# system qos
switch(config-sys-qos)# service-policy type network-qos jumbo
```

Note
The `system jumbomtu` command defines the maximum MTU size for the switch. However, jumbo MTU is supported only for system classes that have MTU configured.

Verifying the Jumbo MTU

On the Cisco Nexus device, traffic is classified into one of eight QoS groups. The MTU is configured at the QoS group level. By default, all Ethernet traffic is in QoS group 0. To verify the jumbo MTU for Ethernet traffic, use the `show queueing interface ethernet slot/chassis_number` command and find "HW MTU" in the command output to check the MTU for QoS group 0. The value should be 9216.

The `show interface` command always displays 1500 as the MTU. Because the Cisco Nexus device supports different MTUs for different QoS groups, it is not possible to represent the MTU as one value on a per interface level.

This example shows how to display jumbo MTU information for Ethernet 1/19:

```
switch# show queueing interface ethernet1/19
Ethernet1/19 queuing information:
 TX Queuing
  qos-group sched-type oper-bandwidth
  0  WRR  50
  1  WRR  50
 RX Queuing
  qos-group 0
  q-size: 243200, HW MTU: 9280 (9216 configured)
  drop-type: drop, xon: 0, xoff: 1520
 Statistics:
    Pkts received over the port : 2119963420
    Ucast pkts sent to the cross-bar : 2115648336
    Mcast pkts sent to the cross-bar : 4315084
    Ucast pkts received from the cross-bar : 2592447431
    Pkts sent to the port : 2672878113
    Pkts discarded on ingress : 0
    Per-priority-pause status : Rx (Inactive), Tx (Inactive)
```

```
switch(config-sys-qos)# no service-policy type network-qos my-nq-policy
switch(config-sys-qos)# no service-policy type queuing output my-out-policy
```
Configuring QoS on Interfaces

Configuring Untagged CoS

Any incoming packet not tagged with an 802.1p CoS value is assigned the default untagged CoS value of zero (which maps to the default Ethernet drop system class). You can override the default untagged CoS value for an Ethernet or EtherChannel interface.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {ethernet [chassis]/slot/port</td>
<td>port-channel channel-number}</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# no switchport</td>
<td>(Optional) Selects a Layer 3 interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# untagged cos cos-value</td>
<td>Configures the untagged CoS value. Values can be from 1 to 7.</td>
</tr>
</tbody>
</table>

This example shows how to set the CoS value to 4 for untagged frames received on an interface:

```bash
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# untagged cos 4
```

This example shows how to set the CoS value to 3 for untagged frames received on a Layer 3 interface:

```bash
switch# configure terminal
switch(config)# interface ethernet 1/5
switch(config-if)# no switchport
switch(config-if)# untagged cos 3
```
Configuring Interface Service Policy

An input qos policy is a service policy applied to incoming traffic on an Ethernet interface for classification. For type queuing, the output policy is applied to all outgoing traffic that matches the specified class.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface ethernet [chassis/slot/port</td>
<td>En ters configuration mode for the specified interface.</td>
</tr>
<tr>
<td>port-channel channel-number]</td>
<td><strong>Note</strong> The service policy on a port channel applies to all member interfaces.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-if)# service-policy [type {qos input</td>
<td>queuing output}] policy-name</td>
</tr>
<tr>
<td></td>
<td>• qos—Classification mode; this is the default mode.</td>
</tr>
<tr>
<td></td>
<td>• queuing—Queuing mode.</td>
</tr>
<tr>
<td><strong>Note</strong> The input keyword specifies that this policy map should be applied to traffic received on an interface. The output keyword specifies that this policy map should be applied to traffic transmitted from an interface. You can only apply input to a qos policy; you can only apply output to a queuing policy.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switch(config-if)# service-policy input policy-name</td>
<td>Applies the policy map to the interface.</td>
</tr>
<tr>
<td><strong>Note</strong> There is a restriction that system type qos policy cannot be the same as any the type qos policy applied to an interface or EtherChannel.</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to apply a policy to an Ethernet interface:

```
hex# configure terminal
hex(config)# interface ethernet 1/1
hex(config-if)# service-policy type qos input policy1
```

Verifying the Qos Configuration

To verify the QoS configurations, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show class-map</td>
<td>Displays the class maps defined on the device.</td>
</tr>
<tr>
<td>switch# show policy-map [name]</td>
<td>Displays the policy maps defined on the device. Optionally, you can display the named policy only.</td>
</tr>
</tbody>
</table>
### Command and Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show policy-map interface [interface number]</td>
<td>Displays the policy map settings for an interface or all interfaces.</td>
</tr>
<tr>
<td>switch# show policy-map system</td>
<td>Displays the policy map settings attached to the system qos.</td>
</tr>
<tr>
<td>switch# show policy-map type {network-qos</td>
<td>qos</td>
</tr>
<tr>
<td>switch# show interface untagged-cos [module number]</td>
<td>Displays the untagged CoS values for all interfaces.</td>
</tr>
<tr>
<td>switch# show wrr-queue cos-map [var]</td>
<td>Displays the mapped CoS values to egress queues.</td>
</tr>
<tr>
<td>switch# running-config ipqos</td>
<td>Displays information about the running configuration for QoS.</td>
</tr>
<tr>
<td>switch# startup-config ipqos</td>
<td>Displays information about the startup configuration for QoS.</td>
</tr>
<tr>
<td>switch# show queuing interface ethernet slot-no/port-no</td>
<td>Displays the queuing information on interfaces.</td>
</tr>
</tbody>
</table>

This example shows how to configure a network QoS policy:

```bash
switch(config)# class-map type network-qos cnq1
switch(config-cmap-nq)# match qos-group 1
switch(config-cmap-nq)# exit
switch(config)# class-map type network-qos cnq6
switch(config-cmap-nq)# match qos-group 6
switch(config-cmap-nq)#
switch(config)# policy-map type network-qos pnqos
switch(config-pmap-nq)# class type network-qos cnq1
switch(config-pmap-nq-c)# set cos 4
switch(config-pmap-nq-c)# exit
switch(config-pmap-nq-c)# exit
switch(config-pmap-nq-c)# class type network-qos cnq6
switch(config-pmap-nq-c)# set cos 5
switch(config-pmap-nq-c)# congestion-control random-detect ecn
switch(config-pmap-nq-c)# exit
switch(config-pmap-nq-c)# class type network-qos class-default
switch(config-pmap-nq-c)# mtu 9216
switch(config-pmap-nq-c)# exit
switch(config-pmap-nq-c)# exit
switch(config)# system qos
switch(config-sys-qos)# service-policy type network-qos pnqos
```

This example shows how to configure a queuing policy:

```bash
switch(config)# class-map type queuing cqu1
switch(config-cmap-que)# match qos-group 1
switch(config-cmap-que)# exit
switch(config)# class-map type queuing cqu6
switch(config-cmap-que)# match qos-group 6
switch(config-cmap-que)# exit
switch(config)# policy-map type queuing pqu
switch(config-pmap-que)# class type queuing class-default
```
This example shows how to configure a QoS policy:

```plaintext
switch(config)# class-map type qos cqos1
switch(config-cmap-qos)# match cos 1
switch(config-cmap-qos)# exit
switch(config)# class-map type qos cqos6
switch(config-cmap-qos)# match cos 6
switch(config-cmap-qos)# exit
switch(config)# policy-map type qos pqos
switch(config-pmap-qos)# class type qos cqos1
switch(config-pmap-qos)# set qos-group 1
switch(config-pmap-qos)# exit
switch(config-pmap-qos)# class type qos cqos6
switch(config-pmap-qos)# set qos-group 6
switch(config-pmap-qos)# exit
switch(config-pmap-qos)# exit
```

This example shows how to verify the untagged-cos configuration on interfaces:

```plaintext
switch(config-if)# show interface untagged-cos
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Untagged-CoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet1/1</td>
<td>4</td>
</tr>
<tr>
<td>Ethernet1/2</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/3</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/4</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/5</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/6</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/7</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/8</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/9</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/10</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/11</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/12</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/13</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/14</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/15</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/16</td>
<td>5</td>
</tr>
<tr>
<td>Ethernet1/17</td>
<td>5</td>
</tr>
</tbody>
</table>

This example shows how to display the QoS running configuration:

```plaintext
switch(config)# show running-config ipqos
```

```
!Command: show running-config ipqos
!Time: Mon Mar 15 08:24:12 2010
version 5.0(3)U1(1)
class-map type qos match-all cqos1
  match cos 1
class-map type qos match-all cqos6
  match cos 6
class-map type queuing cqu1
  match qos-group 1
class-map type queuing cqu6
  match qos-group 6
```
policy-map type qos pqos
class cqos1
  set qos-group 1
class cqos6
  set qos-group 6
policy-map type queuing pqu
class type queuing cqu1
  bandwidth percent 10
class type queuing cqu6
  bandwidth percent 20
class-map type network-qos cnq1
  match qos-group 1
class-map type network-qos cnq6
  match qos-group 6
policy-map type network-qos pnqos
  class type network-qos cnq1
    set cos 4
  class type network-qos cnq6
    set cos 5
    congestion-control random-detect ecn
class type network-qos class-default
  mtu 9216
system qos
  service-policy type qos input pqos
  service-policy type network-qos pnqos
  service-policy type queuing output pqu

interface Ethernet1/1
  untagged cos 4

interface Ethernet1/3
  untagged cos 5

switch(config)#
This example shows how to display the QoS groups that are mapped to the egress queue:
switch(config)# wrr-queue qos-group-map 3 1
switch(config)# show wrr-queue qos-group-map
MCAST Queue ID  Qos-Group Map
  0    0
  1    2 3
  2    4 5
  3    1 6 7
switch(config)#
This example shows how to display the class map configuration:
switch(config)# show class-map

Type qos class-maps
---------------------
  class-map type qos match-all cqos1
    match cos 1
  class-map type qos match-all cqos6
    match cos 6
  class-map type qos match-any class-default
    match any

Type queuing class-maps
-----------------------
  class-map type queuing cqu1
    match qos-group 1
  class-map type queuing cqu6
    match qos-group 6
class-map type queuing class-default
  match qos-group 0

Type network-qos class-maps
-------------------------------
class-map type network-qos cnq1
  match qos-group 1
class-map type network-qos cnq6
  match qos-group 6
class-map type network-qos class-default
  match qos-group 0

switch(config)#
This example shows how to display the policy map configuration:

switch(config)# show policy-map

Type qos policy-maps
---------------------
policy-map type qos pqos
  class type qos cqos1
    set qos-group 1
class type qos cqos6
  set qos-group 6
class type qos class-default
  set qos-group 0
policy-map type qos default-in-policy
  class type qos class-default
       set qos-group 0

Type queuing policy-maps
------------------------
policy-map type queuing pqu
  class type queuing cqu1
    bandwidth percent 10
class type queuing cqu6
    bandwidth percent 20
class type queuing class-default
    bandwidth percent 70
policy-map type queuing default-out-policy
  class type queuing class-default
    bandwidth percent 100

Type network-qos policy-maps
-----------------------------
policy-map type network-qos pnqos
  class type network-qos cnq1
    mtu 1500
    set cos 4
class type network-qos cnq6
    mtu 1500
    set cos 5
    congestion-control random-detect ecn
class type network-qos class-default
    mtu 9216
policy-map type network-qos default-nq-policy
  class type network-qos class-default
    mtu 1500

switch(config)#
This example shows how to display all active policy maps in the system:

```
switch(config)# show policy-map system

Type network-qos policy-maps
===============================================
policy-map type network-qos pnqos
  class type network-qos cnq1 match qos-group 1
    mtu 1500
    set cos 4
class type network-qos cnq6 match qos-group 6
    mtu 1500
    set cos 5
    congestion-control random-detect ecn
class type network-qos class-default match qos-group 0
    mtu 9216
Service-policy (qos) input: pqos
  policy statistics status: disabled
Class-map (qos): cqos1 (match-all)
  Match: cos 1
  set qos-group 1
Class-map (qos): cqos6 (match-all)
  Match: cos 6
  set qos-group 6
Class-map (qos): class-default (match-any)
  Match: any
  set qos-group 0

Service-policy (queuing) output: pqu
  policy statistics status: disabled
Class-map (queuing): cqu1 (match-any)
  Match: qos-group 1
  bandwidth percent 10
Class-map (queuing): cqu6 (match-any)
  Match: qos-group 6
  bandwidth percent 20
Class-map (queuing): class-default (match-any)
  Match: qos-group 0
  bandwidth percent 70
```

switch(config)#

This example shows how to display the service policy maps configured on the interfaces:

```
switch(config)# show policy-map interface ethernet 1/1

Global statistics status : disabled
Ethernet1/1

Service-policy (qos) input: pqos
  policy statistics status: disabled
Class-map (qos): cqos1 (match-all)
  Match: cos 1
  set qos-group 1
Class-map (qos): cqos6 (match-all)
  Match: cos 6
  set qos-group 6
```
Class-map (qos): class-default (match-any)
  Match: any
  set qos-group 0

Service-policy (queueing) output: pqu
  policy statistics status: disabled

Class-map (queueing): cqu1 (match-any)
  Match: qos-group 1
  bandwidth percent 10

Class-map (queueing): cqu6 (match-any)
  Match: qos-group 6
  bandwidth percent 20

Class-map (queueing): class-default (match-any)
  Match: qos-group 0
  bandwidth percent 70

switch(config)#

This example shows how to display the queuing information for a specific interface:

switch(config)# show queuing interface ethernet 1/1
Ethernet1/1 queuing information:
  TX Queuing
    qos-group sched-type oper-bandwidth
      0 WRR 70
      1 WRR 10
      6 WRR 20

  RX Queuing
    qos-group 0
    HW MTU: 1500 (1500 configured)
    drop-type: drop, xon: 0, xoff: 0
    Statistics:
      Ucast pkts sent over the port : 0
      Ucast bytes sent over the port : 0
      Mcast pkts sent over the port : 0
      Mcast bytes sent over the port : 0
      Ucast pkts dropped : 0
      Ucast bytes dropped : 0
      Mcast pkts dropped : 0
      Mcast bytes dropped : 0

    qos-group 1
    HW MTU: 1500 (1500 configured)
    drop-type: drop, xon: 0, xoff: 0
    Statistics:
      Ucast pkts sent over the port : 0
      Ucast bytes sent over the port : 0
      Mcast pkts sent over the port : 0
      Mcast bytes sent over the port : 0
      Ucast pkts dropped : 0
      Ucast bytes dropped : 0
      Mcast pkts dropped : 0
      Mcast bytes dropped : 0

    qos-group 6
    HW MTU: 1500 (1500 configured)
    drop-type: drop, xon: 0, xoff: 0
    Statistics:
      Ucast pkts sent over the port : 0
      Ucast bytes sent over the port : 0
      Mcast pkts sent over the port : 0
      Mcast bytes sent over the port : 0
      Ucast pkts dropped : 0
      Ucast bytes dropped : 0
      Mcast pkts dropped : 0
      Mcast bytes dropped : 0

switch(config)#
Monitoring the QoS Packet Buffer

The Cisco Nexus device has a 9-MB buffer memory that divides into dedicated per port and dynamic shared memory. Each front-panel port has eight unicast and four multicast queues in egress. In the scenario of burst or congestion, each egress port consumes buffers from the dynamic shared memory.

You can display the real-time status of the shared buffer per port. All counters are displayed in terms of the number of cells. Each cell is 208 bytes in size. You can also display the global level buffer consumption in terms of consumption and available number of cells.

This example shows how to display the real-time status:
```
switch(config)# show hardware internal buffer info pkt-stats
```

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Instant Usage</td>
</tr>
<tr>
<td>Remaining Instant Usage</td>
</tr>
<tr>
<td>Max Cell Usage</td>
</tr>
<tr>
<td>Switch Cell Count</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>

| Instant Buffer utilization per queue per port |
| Each line displays the number of cells utilized for a given port for each QoS queue |
| One cell represents approximately 208 bytes |

<table>
<thead>
<tr>
<th>Port</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UC-&gt;</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MC-&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[9]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UC-&gt;</td>
<td>3807</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MC-&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[13]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UC-&gt;</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MC-&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[19]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UC-&gt;</td>
<td>3802</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MC-&gt;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Usage information:

- Total Instant Usage---Current buffer usage in terms of the number of cells on a global basis.
- Remaining Instant Usage---The effective free number of cells available on a global basis.
- Max Cell Usage---The maximum buffer usage that is seen until the last clear.
- Switch Cell Count---Total global buffer space available in the platform in terms of the number of cells on a global basis.

UC and MC represent the 8 unicast (Q1-Q8) and 4 multicast (Q1-Q4) instant cell usage. The example above shows the multicast queue Q1 is consuming 3807 cells instantaneously on port 9.
This example shows how to clear the system buffer maximum cell usage counter:

```
switch# clear counters buffers
Max Cell Usage has been reset successfully
```

This example shows how to set a buffer utilization threshold on a per port basis. If the buffer occupancy exceeds this number, you can generate a syslog or check the status in the `show hardware internal buffer info pkt-stats port-log` command:

```
switch# hardware profile buffer info port-threshold front-port 1 threshold 10
Port threshold changed successfully
```

This example shows how to display the last time that the buffer utilization on this port exceeded the configured threshold value:

```
switch(config)# sh hardware internal buffer info pkt-stats port-log
02-27-2012 04:10:36.63345 Port 9 buffer threshold 3685 exceeded 810[3%]
02-27-2012 04:10:36.63764 Port 17 buffer threshold 3684 exceeded 2430[9%]
02-27-2012 04:10:36.65436 Port 63 buffer threshold 3681 exceeded 270[1%]
```
Configuring Traffic Shaping

This chapter contains the following sections:

- Information About Traffic Shaping, page 45
- Guidelines and Limitations for Traffic Shaping, page 46
- Configuring Traffic Shaping, page 46
- Verifying Traffic Shaping, page 47
- Sample Configuration for Traffic Shaping, page 47

Information About Traffic Shaping

Traffic shaping allows you to control the traffic going out an interface in order to match its flow to the speed of the remote target interface and to ensure that the traffic conforms to policies contracted for it. Thus, traffic adhering to a particular profile can be shaped to meet downstream requirements, thereby eliminating bottlenecks in topologies with data-rate mismatches.

Traffic shaping regulates and smooths out the packet flow by imposing a maximum traffic rate for each port's egress queue. Packets that exceed the threshold are placed in the queue and are transmitted later. This is similar to traffic policing; however, the packets are not dropped. Because packets are buffered, traffic shaping minimizes packet loss (based on the queue length), thereby providing a better traffic behavior for TCP traffic.

Using traffic shaping, you can control access to available bandwidth, ensure that traffic conforms to the policies established for it, and regulate the flow of traffic in order to avoid congestion that can occur when the sent traffic exceeds the access speed of its remote, target interface. For example, you can control access to bandwidth when policy dictates that the rate of a given interface should not, on average, exceed a certain rate even though the access rate exceeds the speed.

The traffic shaping rate can be configured in Kilobits per second (Kbps) or packets per second (PPS) and is applied to unicast queues. Queue length thresholds are configured using WRED configuration.

Traffic shaping can be configured at the system level or the interface level. System level queuing policies can be overridden by interface queuing policies.
Guidelines and Limitations for Traffic Shaping

- Traffic Shaping might increase the latency of packets due to queuing, since it falls back to store-and-forward mode when packets get queued.
- Traffic shaping is supported only for unicast traffic. There is no traffic shaping support for multicast and broadcast traffic.

Configuring Traffic Shaping

You can configure a maximum traffic rate to regulate traffic flow.

Before You Begin

Configure random-detect minimum and maximum thresholds for packets.
Configure congestion control random detection on the network QoS class map using the `congestion-control random detect` command under the network-qos class-map.

Both QoS and network QoS policies must be applied for queuing to work. This prerequisite exists for configuring any queuing policy.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# policy-map type queuing policy-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-pmap-que)# class type queuing class-name</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-pmap-que)# shape {pps</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-pmap-que)# exit</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

The following example shows how to configuring packet shaping using 200000 packets per second (pps):

```
switch# configuration terminal
```
Verifying Traffic Shaping

To display Traffic Shaping configuration information, enter one of the following show commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show queuing interface slot/port</td>
<td>Displays the queuing information configured on the specified interface.</td>
</tr>
<tr>
<td>show hardware internal buffer info pkt-stats</td>
<td>Shows the egress per-port per-queue occupancy in the running system.</td>
</tr>
<tr>
<td>show interface slot/port</td>
<td>Shows the aggregated output traffic rate on all egress queues of the specified interface.</td>
</tr>
</tbody>
</table>

Sample Configuration for Traffic Shaping

The following example shows a sample configuration for traffic shaping using 200000 packets per second:

```plaintext
class-map type qos match-all cq
  match access-group name test
  class-map type queuing cqu
  match qos-group 2
policy-map type qos pq
  class cq
  set qos-group 2
policy-map type queuing pqu
  class type queuing cqu
  random-detect minimum-threshold 100 packets maximum-threshold 350 packets
switch(config)# policy-map type queuing pqu
switch(config-pmap-que)# class type queuing cqu
switch(config-pmap-que)# shape pps 200000
switch(config-pmap-que)# exit
switch(config)# copy running-config startup-config
```
service-policy type qos input pq
A
- attaching 31
  - system service policy 31

B
- bandwidth 31
  - multicast traffic 31
  - unicast traffic 31

C
- changed information 1
  - description 1
- class maps 11
  - configuring 11
- classification policies 10
  - ingress 10
- configuring 20, 35
  - interface service policies 35
  - type network QoS policies 20
- configuring untagged CoS 34
- CoS marking 24, 28
  - configuring 24
    - layer 3 28
- CPU traffic 11
- QoS 11

D
- default system service policies 32
  - restoring 32
- DSCP classification 14
  - configuring 14

E
- ecn threshold, configuring 22
  - qos 22
- enabling 33
  - jumbo MTU 33

I
- information about 6, 7
  - policy types 7
  - system classes 6
- ingress 10
  - classification policies 10
- IP precedence marking 27
  - qos 27

J
- jumbo MTU 33
  - verifying 33

L
- layer 3 28
  - CoS marking 28

M
- marking 24
  - information about 24
- modular QoS CLI 5
- MQC 5
- multicast traffic 31
  - changing bandwidth 31
N
new information 1
  description 1

O
overview 5
  quality of service 5

P
packet buffer, monitoring 42
  qos 42
policy maps 18
  creating 18
policy types 7
  information about 7
precedence classification 16
  configuring 16

Q
qos 22, 27
  ecn threshold, configuring 22
  IP precedence marking 27
Qos 11
  CPU traffic 11
QoS 14, 16
  DSCP classification 14
    configuring 14
    precedence classification 16
    configuring 16
quality of service 5
  overview 5

Quality of Service, See QoS

R
restoring 32
  default system service policies 32

S
shaping 45
  traffic 45
shaping traffic 46
  guidelines and limitations 46
  procedure 46
system classes 6
  information about 6
system service policy 31
  attaching 31

T
traffic shaping 45, 46
  configuring 46
  guidelines and limitations 46
  information about 45
type QoS polices, configuring 19

U
unicast traffic 31
  changing bandwidth 31