CHAPTER 6

Configuring Class Based Weighted Fair Queueing

This chapter describes how to configure Class Based Weighted Fair Queueing policies on the Cisco Nexus 1000V to prioritize network traffic.

Information About Class Based Weighted Fair Queueing

With this feature the following goals have been addressed:

- Queueing can ensure that any traffic class does not starve other traffic types.
- Respect the bandwidth guarantees for each traffic class.
- Optimize the utilization of the uplink bandwidth.

Class-based weighted fair queueing (CBWFQ) extends the standard weighted fair queueing (WFQ) functionality to provide support for user-defined traffic classes. For CBWFQ, you define traffic classes based on match criteria including protocols, and cos values. Packets satisfying the match criteria for a class constitute the traffic for that class. A queue is reserved for each class, and traffic belonging to a class is directed to the queue for that class.

Once a class has been defined according to its match criteria, you can assign its characteristics. To characterize a class, you assign it bandwidth, and maximum queue limit. The bandwidth assigned to a class is the guaranteed bandwidth delivered to the class during congestion.

To characterize a class, you also specify the queue limit for that class, which is the maximum number of packets allowed to accumulate in the queue for the class. Packets belonging to a class are subject to the bandwidth and queue limits that characterize the class.

After a queue has reached its configured queue limit, enqueuing of additional packets to the class causes tail drop.

The traffic that does not match any of the configured classes is given best-effort treatment. Once a packet is classified, all of the standard mechanisms that can also be used to differentiate service among the classes apply.

For CBWFQ, the weight specified for the class becomes the weight of each packet that meets the match criteria of the class. Packets that arrive at the egress interface are classified according to the match criteria filters you define, then each one is assigned the appropriate weight. The weight for a packet belonging to a specific class is derived from the bandwidth you assigned to the class when you configured it; in this sense the weight for a class is user-configurable.
Chapter 6 Configuring Class Based Weighted Fair Queueing

Licensing Requirements for Class Based Weighted Fair Queueing

There are no licensing requirements for this feature.

Prerequisites for Class Based Weighted Fair Queueing

Class Based Weighted Fair Queueing has the following prerequisites:

- You are already logged in to the CLI in EXEC mode.

Guidelines and Limitations

Use the following guidelines and limitations when configuring Class Based Weighted Fair Queueing (CBWFQ).

- A queueing policy can only be applied on an uplink interface in the egress (outbound) direction.
- Queueing is only supported on ESX/ESXi 4.1.0 hosts.
- For port-channel interfaces, queueing bandwidth applies on the member ports. The overall performance will depend on how the vethernets are pinned to member ports and the traffic pattern on the individual ports.
- Cisco Nexus 1000V supports one queuing policy per module. The policy can be applied on one port or port-channel in a module. Different modules have different queuing policies.
Default Settings

Class Based Weighted Fair Queueing is disabled by default.

Configuring Class Based Weighted Fair Queueing Policies

This section describes how to create QoS queueing class policies for the Cisco Nexus 1000V:
Creating the policy consists of the following steps:
1. Create a class map
2. Create a policy map
3. Apply the policy map on an interface

Configuring Class Based Weighted Fair Queueing

This feature allows the user to differentiate traffic classes and provide appropriate bandwidth guarantees.
You can use this procedure to configure class-based weighted fair queueing as follows:
• Create a queueing class map with protocol or CoS matching criteria.
• Create a queueing policy map and assign the class map to it.

BEFORE YOU BEGIN

Before beginning this procedure, you must know or do the following:
• You are logged in to the CLI in EXEC mode.
• You know whether you want the queueing class map to match protocol or CoS.
• You know whether you want to designate a minimum guaranteed bandwidth for the traffic class.
• You know whether you want to designate a maximum queue size for the traffic class.

SUMMARY STEPS

1. configure terminal
2. class-map type queuing {match-all | match-any} map-name
3. match {cos id | protocol name}
4. exit
5. policy-map type queuing name
6. class type queuing name
7. bandwidth percent percentage
8. (Optional) show policy-map [[[type qos [pmap-name-qos]] | {type queuing [pmap-name-que]}]]
9. port-profile type ethernet name
10. service-policy type queuing output name
11. show policy-map interface
12. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Example: | n1000v# config t
n1000v(config)# |
| **Purpose** | Places you into global configuration mode. |
| **Step 2** | class-map type queuing (match-any | match-all) map-name |
| Example: | n1000v(config)# class-map type queuing
match-all class_fin1
n1000v(config-cmap-que) |
| **Purpose** | Creates a CBWFQ class map and enters class map queueing mode for configuring the new class map. |
| **match-any**: Use this option to apply this class map to a packet if it matches any of the matching criteria. |
| **match-all**: Use this option to apply this class map to a packet if it matches all of the matching criteria. |
| **map-name**: up to 40 alphanumeric characters in length and can include the hyphen and underscore characters. |
| **Step 3** | match (cos id) | (protocol name) |
| Example: | n1000v(config-cmap-que)# match protocol
vmw_vmotion
n1000v(config-cmap-que)# |
| **Purpose** | Defines whether you want packets for this class map to match protocol, class of service, or both. |
| **CoS is specified as a number from 0 to 7.** |
| This matches traffic based on the class of service (CoS) in the IEEE 802.1Q header, defined in IEEE 802.1p. CoS is encoded in the high order 3 bits of the VLAN ID Tag field and is referred to as user_priority. |
| **The following are pre-defined protocol matches:** |
| - n1k_control |
| - n1k_mgmt |
| - n1k_packet |
| - vmw_ft |
| - vmw_iscsi |
| - vmw_mgmt |
| - vmw_nfs |
| - vmw_vmotion |
| **Step 4** | exit |
| Example: | n1000v(config-cmap-que)# exit
n1000v(config)# |
| **Purpose** | Exits class-map queueing configuration mode and returns you to global configuration mode. |
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td><code>policy-map type queuing name</code></td>
<td>Creates a CBWFQ policy map and enters policy map queueing mode for configuring the new policy map.</td>
</tr>
</tbody>
</table>
| Example: | n1000v(config)# policy-map type queuing Policy-vmotion
n1000v(config-pmap-que)# | |
| Step 6 | `class type queuing name` | Assigns a CBWFQ class to this policy map and enters policy map class queueing configuration mode. |
| Example: | n1000v(config-pmap-que)# class type queuing class_fin1
n1000v(config-pmap-c-que)# | |
| Step 7 | `bandwidth percent percentage` | Designates the minimum guaranteed bandwidth for this traffic class as a percentage of total available bandwidth. |
| Example: | n1000v(config-pmap-c-que)# bandwidth percent 50
n1000v(config-pmap-c-que)# | |
| Step 8 | `(Optional) show policy-map [{{type qos} [pmap-name-qos]} | {type queuing [pmap-name-que]}]}` | Displays the configuration for verification. |
| Example: | n1000v(config-pmap-c-que)# show policy-map type queuing Policy-vmotion
 Type queuing policy-maps
 =========================
 policy-map type queuing Policy-vmotion
 class type queuing Match-vmotion
 bandwidth percent 50
n1000v(config-pmap-c-que)# | |
| Step 9 | `exit` | Exits policy-map type queueing configuration mode and returns you to policy-map configuration mode. |
| Example: | n1000v(config-pmap-c-que)# exit
n1000v(config-pmap-que)# | |
| Step 10 | `exit` | Exits policy-map configuration mode and returns you to global configuration mode. |
| Example: | n1000v(config-pmap-que)# exit
n1000v(config)# | |
| Step 11 | `port-profile type ethernet name` | Creates a port-profile and enters port-profile configuration mode. |
| Example: | n1000v(config)# port-profile type ethernet myppt
n1000v(config-port-prof)# | |
Verifying the Class Based Weighted Fair Queueing Configuration

To verify the QoS queueing policy configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show policy map type queuing name</td>
<td>Displays the queueing policy map configuration. See Example 6-1 Display Policy Map Type Queuing, page 6-6</td>
</tr>
<tr>
<td>show class-map type queuing name</td>
<td>Displays the queueing class map configuration. See Example 6-2 Display Class Map, page 6-7</td>
</tr>
<tr>
<td>show policy-map interface</td>
<td>Displays the policy map interface configuration. See Example 6-3 Display Policy Map on Interface, page 6-7</td>
</tr>
<tr>
<td>show running-config ipqos</td>
<td>Displays the QoS running configuration.</td>
</tr>
</tbody>
</table>

Example 6-1 Display Policy Map Type Queuing

n1000v# show policy-map type queuing Policy-vmotion

 Type queuing policy-maps
 =========================

 policy-map type queuing Policy-vmotion
 class type queuing Match-vmotion
 bandwidth percent 50
Example 6-2 Display Class Map

n1000v# show class-map type queuing Match-vmotion

Type queuing class-maps
========================

class-map type queuing match-any Match-vmotion
 match protocol vmw_vmotion

Example 6-3 Display Policy Map on Interface

n1000v# show policy-map interface ethernet 3/3

Global statistics status : disabled
Ethernet3/3

Service-policy (queuing) output: Policy-vmotion
policy statistics status: enabled

Class-map (queuing): Match-vmotion (match-any)
 Match: protocol vmw_vmotion
 bandwidth percent 50

Example 6-4 Display Class Map

n1000v# show class-map type queuing Match-Cos

Type queuing class-maps
========================

class-map type queuing match-all Match-Cos
 match cos 5

Example 6-5 Display Service Policy on Interface

n1000v# show policy-map interface ethernet 3/3

Global statistics status : disabled
Ethernet3/3

Service-policy (queuing) output: Policy-Cos
policy statistics status: enabled

Class-map (queuing): Match-Cos (match-all)
 Match: cos 5
 bandwidth percent 50

Example 6-6 Display Service Policy on Interface

n1000v# show policy-map interface port-channel 1
Chapter 6 Configuring Class Based Weighted Fair Queueing

Configuration Examples for Class-Based Weighted Fair Queueing

Example 6-7 Allocating 50% of Bandwidth for vMotion Traffic

conf t
Enter configuration commands, one per line. End with CNTL/Z.
class-map type queuing match-any Match-vmotion
match protocol vmw_vmotion
exit
policy-map type queuing Policy-vmotion
class type queuing Match-vmotion
bandwidth percent 50
exit
interface ethernet 3/3
service-policy type queuing output Policy-vmotion

Example 6-8 Allocating 50% of Bandwidth for Traffic with CoS Value of 5

conf t
Enter configuration commands, one per line. End with CNTL/Z.
class-map type queuing match-all Match-Cos
match cos 5
exit
policy-map type queuing Policy-Cos
class type queuing Match-Cos
bandwidth percent 50
exit
interface ethernet 3/3
service-policy type queuing output Policy-Cos

Example 6-9 Policy-Map with Multiple Traffic Classes

conf t
Enter configuration commands, one per line. End with CNTL/Z.
class-map type queuing match-any class-vmotion
match protocol vmw_vmotion
exit
class-map type queuing match-any class-cos-2
match cos 2
exit
policy-map type queuing policy-priority-vmotion
class type queuing class-vmotion
bandwidth percent 60
class type queuing class-cos-2
bandwidth percent 40
exit
exit
int po1
service-policy type queuing output policy-priority-vmotion

sh policy-map type queuing policy-priority-vmotion

 Type queuing policy-maps
 ================

 policy-map type queuing policy-priority-vmotion
 class type queuing class-vmotion
 bandwidth percent 60
 class type queuing class-cos-2
 bandwidth percent 40

conf t
Enter configuration commands, one per line. End with CNTL/Z.
int po1
service-policy type queuing output policy-priority-vmotion
end

sh policy-map interface po1

Global statistics status : disabled

port-channel1

 Service-policy (queuing) output: policy-priority-vmotion
 policy statistics status: enabled

 Class-map (queuing): class-vmotion (match-any)
 Match: protocol vmw_vmotion
 bandwidth percent 60

 Class-map (queuing): class-cos-2 (match-any)
 Match: cos 2
 bandwidth percent 40

Feature History for Class Based Weighted Fair Queueing

This section provides the Class Based Weighted Fair Queueing release history.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Based Weighted Fair Queueing</td>
<td>4.2(1)SV1(4)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>