Preface

This preface includes the following sections:

- Audience, on page v
- Document Conventions, on page v
- Related Documentation for Cisco Nexus 9000 Series Switches, on page vii
- Documentation Feedback, on page vii
- Obtaining Documentation and Submitting a Service Request, on page vii

Audience

This guide is intended primarily for data center administrators with responsibilities and expertise in one or more of the following:

- Virtual machine installation and administration
- Server administration
- Switch and network administration

Document Conventions

Command descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Bold text indicates the commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>Italic</td>
<td>Italic text indicates arguments for which the user supplies the values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>([x {y</td>
<td>z}]</td>
</tr>
<tr>
<td>variable</td>
<td>Indicates a variable for which you supply values, in context where italics cannot be used.</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
</tbody>
</table>

Examples use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen font</td>
<td>Terminal sessions and information the switch displays are in screen font.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Arguments for which you supply values are in italic screen font.</td>
</tr>
<tr>
<td>< ></td>
<td>Nonprinting characters, such as passwords, are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

This document uses the following conventions:

- **Note**
 Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the manual.

- **Caution**
 Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

- **Warning**
 IMPORTANT SAFETY INSTRUCTIONS
 This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.

 SAVE THESE INSTRUCTIONS
Related Documentation for Cisco Nexus 9000 Series Switches

The entire Cisco Nexus 9000 Series switch documentation set is available at the following URL:

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to nexusopenflow-docfeedback@cisco.com. We appreciate your feedback.

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see What’s New in Cisco Product Documentation at:

Subscribe to What’s New in Cisco Product Documentation, which lists all new and revised Cisco technical documentation as an RSS feed and delivers content directly to your desktop using a reader application. The RSS feeds are a free service.
Overview of the Cisco OpenFlow Agent

About OpenFlow

OpenFlow is an open standardized interface that allows a software-defined networking (SDN) controller to manage the forwarding plane of a network.

Cisco OpenFlow Agent provides better control over networks making them more open, programmable, and application-aware and supports the following specifications defined by the Open Networking Foundation (ONF) standards organization:

- OpenFlow Switch Specification Version 1.0.1 (Wire Protocol 0x01) (referred to as OpenFlow 1.0)
- OpenFlow Switch Specification Version 1.3.0 (Wire Protocol 0x04), referred to as OpenFlow 1.3

These specifications are based on the concept of an Ethernet switch, with an internal flow table and standardized interface to allow traffic flows on a device to be added or removed. OpenFlow 1.3 defines the communication channel between Cisco OpenFlow Agent and controllers.

A controller can be Cisco Open SDN Controller, or any controller compliant with OpenFlow 1.3.

In an OpenFlow network, Cisco OpenFlow Agent exists on the device and controllers exist on a server that is external to the device. Flow management and any network management are either part of a controller or accomplished through a controller. Flow management includes the addition, modification, or removal of flows, and the handling of OpenFlow error messages.

The following figure gives an overview of the OpenFlow network.

Figure 1: OpenFlow Overview
Cisco OpenFlow Agent Operation

Cisco OpenFlow Agent creates OpenFlow–based TCP/IP connections to controllers for a Cisco OpenFlow Agent logical switch. Cisco OpenFlow Agent creates databases for a configured logical switch, OpenFlow-enabled interfaces, and flows. The logical switch database contains all the information needed to connect to a controller. The interface database contains the list of OpenFlow-enabled interfaces associated with a logical switch, and the flow database contains the list of flows on a logical switch as well as for interface that is programmed into forwarded traffic.

OpenFlow Controller Operation

OpenFlow controller (referred to as controller) controls the switch and inserts flows with a subset of OpenFlow 1.3 and 1.0 match and action criteria through Cisco OpenFlow Agent logical switch. Cisco OpenFlow Agent rejects all OpenFlow messages with any other action.

OpenFlow Multiple Sub-Switch Operation

For more granular and distributed flow control, you can define multiple virtual sub-switches, each with its own controller, its own unique VLAN range, and its own flow control configuration. The controller of a sub-switch has configuration access only to the flows of that sub-switch. VLANs associated with a sub-switch cannot also be associated to another sub-switch, and VLAN ranges cannot overlap between sub-switches.

When you define one or more sub-switches, a lower priority master switch is implicitly created. A flow is evaluated for a match first on the sub-switches and lastly on the master switch if no previous match was found. There are no default flows (miss-action) for the sub-switches.

Information About Cisco OpenFlow Agent

Prerequisites for Cisco OpenFlow Agent

Cisco OpenFlow Agent requires the following conditions:

- A Cisco device that supports Cisco OpenFlow Agent.

Supported Platforms for Cisco OpenFlow Agent, on page 51 provides a table of OpenFlow support on Cisco Nexus 9000 and Nexus 3000 devices.

- Cisco NX-OS software that supports Cisco OpenFlow Agent.

The Cisco OpenFlow Agent was introduced in Cisco NX-OS Release 7.0(3)I5(1), replacing the Cisco Plug-in for OpenFlow used in previous releases. The Cisco Plug-in for OpenFlow, which runs as an application in a virtual services container, is no longer supported as of this release. When upgrading from a release earlier than Cisco NX-OS Release 7.0(3)I5(1) to Cisco NX-OS Release 7.0(3)I5(1) or a later release, you must deactivate and uninstall the Cisco Plug-in for OpenFlow application from the virtual services container using the procedure described in Uninstalling Cisco Plug-in for OpenFlow, on page 53.

- A Cisco Nexus 3000 device must run in Cisco Nexus 9000 software mode. On the Nexus 3000 device, the Nexus 9000 mode is activated using the CLI command `system switch-mode n9k`.
The OpenFlow feature is enabled on the Cisco device using the CLI command `feature openflow`.

A controller is installed on a connected server.

Table 1: Controller Support

<table>
<thead>
<tr>
<th>OpenFlow Version</th>
<th>Supported Controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenFlow 1.0</td>
<td>Cisco Open SDN Controller or POX controller.</td>
</tr>
<tr>
<td>OpenFlow 1.3</td>
<td>Cisco Open SDN Controller, Ixia, OpenDaylight, or Ryu</td>
</tr>
</tbody>
</table>

Restrictions for Cisco OpenFlow Agent

- Cisco OpenFlow Agent supports only a subset of OpenFlow 1.3 and OpenFlow 1.0 functions. For more information, see Feature Support, on page 4.
- You cannot configure more than one Cisco OpenFlow Agent logical switch. The logical switch ID has a value of 1. However, you can configure up to nine logical sub-switches in addition to the master switch.
- OpenFlow hybrid model (ships-in-the-night) is supported. VLANs configured for Cisco OpenFlow Agent logical switch ports should not overlap with regular device interfaces.
- You cannot configure a bridge domain, Virtual LANs and virtual routing and forwarding (VRF) interfaces on an Cisco OpenFlow Agent logical switch. You can configure only Layer 2 physical interfaces or port-channel interfaces.
- For Cisco Nexus 3000 Series platforms, the total number of VLANs across all ports cannot exceed 32000. For example, if you have configured 512 VLANs per port, you cannot configure more than 62 ports (32000/512). If you have configured 4000 VLANs per port, you cannot configure more than 8 ports (32000/4000).
- You cannot configure more than 512 VLANs in Per-VLAN Spanning Tree+ (PVST+) mode.
- The Cisco OpenFlow Agent supports IPv4 and IPv6 flow matching, but not both simultaneously. The choice is configured in the TCAM configuration commands. IPv4 and IPv6 dual stack is not supported.
- For IPv6 OpenFlow, you must explicitly carve the OpenFlow–IPv6 TCAM region.
- ISSU from the previously-supported Cisco Plug-in for OpenFlow to the Cisco OpenFlow Agent is not supported.
- MIBs and XMLs are not supported
- Reachability to controller via Switched Virtual Interface (SVI) is not supported.
- The minimum idle timeout for flows must be \((2 \times \text{statistics collection interval}) + 1 \) second.
- LACP port-channels are not supported for OpenFlow. Remove all OpenFlow related configurations before downgrading to an earlier release.
Feature Support

The following is a subset of OpenFlow 1.3 and OpenFlow 1.0 functions that are supported by Cisco OpenFlow Agent.

<table>
<thead>
<tr>
<th>Supported Feature</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The OpenFlow hybrid (ships-in-night) model is supported using the OpenFlow packet format</td>
<td>OpenFlow-hybrid models where traffic can flow between Cisco OpenFlow Agent ports and regular interfaces (integrated) are not supported. Both types of ports can transmit and receive packets. Note VLANs must be configured such that the VLANs on the Cisco OpenFlow Agent do not overlap with those on the regular device interfaces.</td>
</tr>
</tbody>
</table>
| Configuration of port-channel and physical interfaces as Cisco OpenFlow Agent logical switch ports | • Bridge domain, Virtual LANs and Virtual Routing and Forwarding (VRF) interfaces are not supported.
• Only L2 interfaces can be Cisco OpenFlow Agent Logical switch ports. |
| Configuration of VLANs for each port of the Cisco OpenFlow Agent logical switch | Total number of VLANs across all ports cannot exceed 512. Maximum VLAN range supported is 4000. You can configure 8 such ports on the Cisco OpenFlow Agent device.
Recommended VLAN range supported is 512. You can configure 62 such ports on the Cisco OpenFlow Agent device.
VLAN range greater than 512 is not supported in Per-VLAN Spanning Tree+ (PVST+) mode. |
| Pipelines for Cisco OpenFlow Agent Logical Switch | • Pipelines are mandatory for the logical switch.
• The logical switch supports the following pipelines:
 • Pipeline 201 supports the L3 ACL forwarding table.
 • Pipeline 202 supports an L3 ACL forwarding table and an L2 MAC forwarding table. Mandatory matches and actions in both tables must be specified in all configured flows.
 • Pipeline 205 supports MAC and MAC-IP route tables. |
<table>
<thead>
<tr>
<th>Supported Feature</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 ACL Forwarding Table (Match Criteria)</td>
<td>The following match criteria are supported:</td>
</tr>
<tr>
<td></td>
<td>• Ethertype</td>
</tr>
<tr>
<td></td>
<td>• Ethernet MAC destination (Double-wide TCAM required)</td>
</tr>
<tr>
<td></td>
<td>• Ethernet MAC source (Double-wide TCAM required)</td>
</tr>
<tr>
<td></td>
<td>• VLAN ID (for IPv4 packets only)</td>
</tr>
<tr>
<td></td>
<td>• VLAN priority (Supported for the Ethertype value 0x0800 (IP) only)</td>
</tr>
<tr>
<td></td>
<td>• IPv4 source address (Supported for the Ethertype value 0x0800 (IP) only)</td>
</tr>
<tr>
<td></td>
<td>• IPv4 destination address (Supported for the Ethertype value 0x0800 (IP) only)</td>
</tr>
<tr>
<td></td>
<td>• IPv6 source address (Supported for the Ethertype value 0x86DD (IP) only)</td>
</tr>
<tr>
<td></td>
<td>• IPv6 destination address (Supported for the Ethertype value 0x86DD (IP) only)</td>
</tr>
<tr>
<td></td>
<td>• IP DSCP (Supported for the Ethertype values 0x0800 or 0x86DD (IP) only)</td>
</tr>
<tr>
<td></td>
<td>• IP protocol (Supported for the Ethertype values 0x0800 or 0x86DD (IP) only)</td>
</tr>
<tr>
<td></td>
<td>• Layer 4 source port (Supported for the Ethertype values 0x0800 or 0x86DD (IP) only)</td>
</tr>
<tr>
<td></td>
<td>• Layer 4 destination port (Supported for the Ethertype values 0x0800 or 0x86DD (IP) only)</td>
</tr>
</tbody>
</table>
Supported Feature | Additional Notes
--- | ---
L3 ACL Forwarding Table (Action Criteria) | The following action criteria are supported:
- Output to multiple ports
- Output to a specified interface
- Output to controller (OpenFlow Packet-In message)
- Rewrite source MAC address (SMAC)
 - Supported for the Ethertype values 0x0800 or 0x86DD (IP) only
- Rewrite destination MAC address (DMAC)
 - Supported for the Ethertype values 0x0800 or 0x86DD (IP) only
- Rewrite VLAN ID
 - Supported for the Ethertype values 0x0800 or 0x86DD (IP) only
- Strip VLAN (Supported for the Ethertype values 0x0800 or 0x86DD (IP) only)
- Drop
Note | Rewrite DMAC and Rewrite SMAC actions must be specified together.
L2 MAC Forwarding Table | Match Criteria:
- Destination MAC address (mandatory)
- VLAN ID (mandatory)
Action Criteria:
- Output to multiple ports
- Drop
Default Forwarding Rule | All packets that cannot be matched to flows are dropped by default. You can configure sending unmatched packets to the controller.
OpenFlow 1.3 message types | The “modify state” and “queue config” message types are not supported. All other message types are supported.
Connection to up to eight controllers | Transport Layer Security (TLS) is supported for the connection to the controller.
Supported Feature

<table>
<thead>
<tr>
<th>Supported Feature</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple actions</td>
<td>If multiple actions are associated with a flow, they are processed in the order specified. The output action should be the last action in the action list. Any action after the output action is not supported, and can cause the flow to fail and return an error to the controller. Flows defined on the controller must follow the following guidelines:</td>
</tr>
<tr>
<td></td>
<td>• The flow can have only up to 16 output actions.</td>
</tr>
<tr>
<td></td>
<td>• The flow should have the output action at the end of all actions.</td>
</tr>
<tr>
<td></td>
<td>• The flow should not have multiple rewrite actions that override one another. For example, strip VLAN after set VLAN or multiple set VLANs.</td>
</tr>
<tr>
<td></td>
<td>• The flow should not have an output–to–controller action in combination with other output–to–port actions or with VLAN–rewrite actions.</td>
</tr>
<tr>
<td></td>
<td>• Flows with unsupported actions will be rejected.</td>
</tr>
<tr>
<td>Supported counters</td>
<td>Per Table—Active Entries, Packet Lookups, Packet Matches.</td>
</tr>
<tr>
<td></td>
<td>Per Flow—Received Packets.</td>
</tr>
<tr>
<td></td>
<td>Per Port—Received or Transmitted packets, bytes, drops and errors.</td>
</tr>
</tbody>
</table>
CHAPTER 2

Configuring the Cisco OpenFlow Agent

All tasks in this section require the fulfillment of the prerequisites listed in Prerequisites for Cisco OpenFlow Agent, on page 2.

- Enabling the Cisco OpenFlow Agent, on page 9
- Configuring Physical Device Parameters for Cisco Nexus 3000 and 9000 Series Switches, on page 11
- Cisco OpenFlow Agent for Cisco Nexus 3500 Platform Switches, on page 15
- Specifying a Route to a Controller, on page 21
- Configuring Interfaces for a Cisco OpenFlow Agent Logical Switch, on page 24
- Configuring a Cisco OpenFlow Agent Logical Switch, on page 26
- Configuring Logical Sub-Switches, on page 31
- Configuration Examples for Cisco OpenFlow Agent, on page 34
- Verifying Cisco OpenFlow Agent, on page 38
- Additional Information for Cisco OpenFlow Agent, on page 49
- Feature Information for Cisco OpenFlow Agent, on page 50

Enabling the Cisco OpenFlow Agent

Enabling the Cisco OpenFlow Agent on the Nexus 3000 Series Switch

To run the Cisco OpenFlow Agent, a Cisco Nexus 3000 series device must run in Cisco Nexus 9000 software mode. This procedure activates the Nexus 9000 mode and enables the Cisco OpenFlow Agent.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Enabling the Cisco OpenFlow Agent on the Nexus 9000 Series Switch

This procedure enables the Cisco OpenFlow Agent.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>feature openflow</td>
<td>Enables the Cisco OpenFlow Agent.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# feature openflow</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Adjust the number of flow entries.

Enabling the Cisco OpenFlow Agent on the Nexus 9000 Series Switch

This procedure enables the Cisco OpenFlow Agent.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>system switch-mode n9k</td>
<td>Activates the Nexus 9000 mode on the Nexus 3000 series device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# system switch-mode n9k</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>write erase</td>
<td>Erases the startup configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# write erase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>It is highly recommended to make a backup copy of the running configuration before entering the write erase command.</td>
</tr>
<tr>
<td>Step 6</td>
<td>reload</td>
<td>Reloads the operating system of the device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# reload</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>configure terminal</td>
<td>Enters global configuration mode (after reload).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>feature openflow</td>
<td>Enables the Cisco OpenFlow Agent.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# feature openflow</td>
<td></td>
</tr>
</tbody>
</table>
Adjusting the Number of Flow Entries

You can use this task to adjust the number of L3 flow entries.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Required: <code>hardware access-list tcam region racl size</code></td>
<td>Configures the size of TCAM region for router ACLs.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# <code>hardware access-list tcam region racl 0</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Required: <code>hardware access-list tcam region e-racl size</code></td>
<td>Configures the size of TCAM region for egress router ACLs.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# <code>hardware access-list tcam region e-racl 0</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Required: <code>hardware access-list tcam region l3qos size</code></td>
<td>Configures the size of TCAM region for QoS.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# <code>hardware access-list tcam region l3qos 0</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Required: <code>hardware access-list tcam region span size</code></td>
<td>Configures the size of TCAM region for SPAN.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# <code>hardware access-list tcam region span 0</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Required: <code>hardware access-list tcam region redirect size</code></td>
<td>Configures the size of TCAM region for redirects.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Device(config)# hardware access-list tcam region redirect 0

Step 7
Required: **hardware access-list tcam region vpc-convergence size**

Example:

Device(config)# hardware access-list tcam region vpc-convergence 0

Configures the size of TCAM region for virtual port channel (vPC) convergence.

Step 8

Required: Enter one of the following commands:

- **hardware access-list tcam region openflow size [double-wide]**
- **hardware access-list tcam region openflow-ipv6 size [double-wide]**

Example:

Device(config)# hardware access-list tcam region openflow 1024

Device(config)# hardware access-list tcam region openflow-ipv6 1024 double-wide

Configures the size of TCAM region for interface ACLs. For a TCAM region larger than 256, configure the size in multiples of 512.

To accommodate the additional match criteria of source and destination MAC addresses, the Cisco Nexus 3000 and 9000 Series switches support a new TCAM region, **double-wide**, which is a double-wide interface ACL. The maximum TCAM size is 3072 for single-wide and 1536 for double-wide.

For more information, see the following tables for matches and actions supported for Cisco Nexus 9000 Series switches.

The **openflow-ipv6** option forces the use of the IPv6 stack for OpenFlow.

Note

To activate the TCAM regions, a reload is needed.

You can view the supported pipeline values by entering the **show openflow hardware capabilities** command.

Table 2: Matches Supported in Cisco Nexus 9000 Series Switches

<table>
<thead>
<tr>
<th>Packet Match Fields</th>
<th>L3 Table 201</th>
<th>L3 Table 202</th>
<th>L2 Table 202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source MAC address</td>
<td>✓ (double wide)</td>
<td>✓ (double wide)</td>
<td></td>
</tr>
<tr>
<td>Destination MAC address</td>
<td>✓ (double wide)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ether type</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN ID</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN CoS</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source IPv4 Address</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination IPv4 Address</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source IPv4 UDP/TCP Port</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination IPv4 UDP/TCP Port</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv4 DSCP</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol IP</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Interface</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Action Supported in Cisco Nexus 9000 Series Switches

<table>
<thead>
<tr>
<th>Actions</th>
<th>L3 Table 201</th>
<th>L3 Table 201</th>
<th>L2 Table 202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Interfaces</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Punt to Controller</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Copy to Controller</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Push VLAN</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>POP VLAN</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Global Variables for Cisco OpenFlow Agent Logical Switch

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Sets the Spanning Tree Protocol (STP) mode to MST. This step is required if you need VLANs more than 512.</td>
</tr>
<tr>
<td>(Optional) spanning-tree mode mst</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# spanning-tree mode mst</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Adds a VLAN or VLAN range for interfaces on the device and enters the VLAN configuration mode. This step is needed only if VLAN tagging is required.</td>
</tr>
<tr>
<td>(Optional) vlan {vlan-id</td>
<td>vlan-range}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# vlan 1-512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total number of VLANs across all interfaces cannot exceed 32000.</td>
</tr>
<tr>
<td></td>
<td>• Maximum VLAN range supported is 4000 (in Multiple Spanning Tree [MST] mode).</td>
</tr>
</tbody>
</table>
Cisco OpenFlow Agent for Cisco Nexus 3500 Platform Switches

Guidelines and Limitations for Cisco Nexus 3500 Platform Switches

The following are guidelines and limitations for Cisco Nexus 3500 platform switches:

- Packets incoming with the following etherTypes are treated differently for Cisco Nexus 3500 platform switches as part of OpenFlow. Packets with these etherTypes cannot be matched and forwarded using OpenFlow rules with match on specific etherTypes, instead the MATCH_ANY rule works under certain conditions as mentioned in the following table. The difference in behavior for processing such packets is mostly due to a limitation with the ASIC.

 - 0x22e9
 - 0x8035
 - 0x8100
 - 0x8927
 - 0x8926
 - 0x8903
 - 0x88a8
 - 0xfee1
 - 0x8808
Table 4: Specific EtherTypes and Behaviors on Cisco Nexus 3500 Platform Switches

<table>
<thead>
<tr>
<th>SL#</th>
<th>EtherTypes</th>
<th>Purpose</th>
<th>Match Specific EtherType</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x22e9</td>
<td>CNTag</td>
<td>Does not match on specific EtherType and default rule to drop gets applied</td>
<td>Match ANY works</td>
</tr>
<tr>
<td>2</td>
<td>0x8035</td>
<td>RARP</td>
<td>Does not match on specific EtherType and default rule to drop gets applied</td>
<td>Match ANY works</td>
</tr>
<tr>
<td>3</td>
<td>0x8100</td>
<td>Dot1q</td>
<td>Does not match on specific EtherType and default rule to drop gets applied</td>
<td>Match ANY works. Special Case:- If VLAN_ID is ‘0’ Dot1q header (4 bytes) is removed and packet is forwarded Ingress_pkt [DA+SA+8100+0000+PAYLOAD] → switch_3500 → egress_pkt [DA+SA+PAYLOAD] The VLAN ID 0 is used to send priority-tagged frames. In general, ASIC pipeline this VLAN ID tag to be ignored and the Ethernet frame to be processed according to the priority configured in the 802.1P bits of the 802.1Q Ethernet frame header.</td>
</tr>
<tr>
<td>4</td>
<td>0x8808</td>
<td>PauseFrames (FlowControl)</td>
<td>Matches specific Ethertype. Limitation is, stats will not get updated.</td>
<td>Match ANY works Limitation - Stats will not get updated</td>
</tr>
<tr>
<td>5</td>
<td>0x8927</td>
<td>CopperLan</td>
<td>Does not match on specific EtherType and default rule to drop gets applied</td>
<td>Match ANY works with the following caveat. 0x8927 header (8 bytes) is removed and the packet is forwarded matching Match-ANY rule. Ingress_pkt [DA+SA+8927+6bytes+PAYLOAD] → switch_3500 → egress_pkt [DA+SA+PAYLOAD]</td>
</tr>
</tbody>
</table>
Enabling the Cisco OpenFlow Agent on Cisco Nexus 3500 Platform Switches

This procedure enables the Cisco OpenFlow Agent.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables the Cisco OpenFlow Agent.</td>
</tr>
<tr>
<td>feature openflow</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# feature openflow</code></td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Adjust the number of flow entries.

Enabling Hardware Support for OpenFlow on the Cisco Nexus 3500

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enter one of the following commands:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>hardware profile forwarding-mode openflow-hybrid</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>hardware profile forwarding-mode openflow-only</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>switch(config)# hardware profile forwarding-mode openflow-hybrid</code></td>
<td>The <code>hardware profile forwarding-mode openflow-hybrid</code> command sets the OpenFlow hybrid forwarding mode.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In OpenFlow hybrid model, normal ports and OpenFlow enabled ports can co-exists. When using the OpenFlow hybrid model, VLANs configured for OpenFlow logical switch ports must not overlap with normal device interfaces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>switch(config)# hardware profile forwarding-mode openflow-only</code></td>
<td>The <code>hardware profile forwarding-mode openflow-only</code> command set the OpenFlow only forwarding mode.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In this mode, all available ports are considered a part of OpenFlow-based forwarding.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>exit</code></td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>switch(config)# exit</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device# copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>reload</code></td>
<td>Reloads the operating system of a device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>switch# reload</code></td>
<td></td>
</tr>
</tbody>
</table>
Enabling Re-Direct Control Plane Packets for OpenFlow Ports

Configures the protocol data unit.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>hardware profile openflow forward-pdu</code></td>
<td>Configures the protocol data unit.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# hardware profile openflow forward-pdu</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) <code>no hardware profile openflow forward-pdu</code></td>
<td>Removes the protocol data unit configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# no hardware profile openflow forward-pdu</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Global Variable for Cisco OpenFlow Agent Logical Switch for Cisco Nexus 3500

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>(Optional) <code>spanning-tree mode mst</code></td>
<td>Sets the Spanning Tree Protocol (STP) mode to MST. This step is required if you need VLANs more than 512.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config)# spanning-tree mode mst</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) `vlan {vlan-id</td>
<td>vlan-range}`</td>
</tr>
</tbody>
</table>
| Example: | `Device(config)# vlan 1-512` | - Total number of VLANs across all interfaces cannot exceed 32000.
- Maximum VLAN range supported is 4000 (in Multiple Spanning Tree [MST] mode). |
Purpose

Command or Action	Purpose
• Recommended VLAN range is 512.

Step 4	exit
Example:
Device(config)# exit

ends global configuration mode and enters privileged EXEC mode.

Step 5	copy running-config startup-config
Example:
Device# copy running-config startup-config

saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

What to do next

Configure control plane policing for packets sent to a controller.

Configuration Examples for the Cisco Nexus 3500 Platform Switches

Example Enabling Cisco OpenFlow Agent in the Cisco Nexus 3500 Platform Switches

Device# configure terminal
Device(config)# feature openflow
Device(config)# show feature | inc openflow
openflow 1 enabled

Enter either of the following commands at the prompt to configure OpenFlow TCAM:

Device(config)# hardware profile forwarding-mode openflow-hybrid
Device(config)# hardware profile forwarding-mode openflow-only
Device(config)# exit
Device# copy running-config startup-config
Device# reload

Example: Cisco OpenFlow Agent Logical Switch Configuration (Default VRF) for Cisco Nexus 3500 Platform Switches

Device# configure terminal
Device(config)# openflow
Device(config-ofa)# switch 1 pipeline 203
! Specifies the pipeline that enables the IP Forwarding Table.
Device(config-ofa-switch)# logging flow-mod
Device(config-ofa-switch)# max-backoff 5
Device(config-ofa-switch)# probe-interval 5
Device(config-ofa-switch)# rate-limit packet-in 300 burst 50
Device(config-ofa-switch)# controller ipv4 10.0.1.6 security none
! Adding an interface to the Cisco OpenFlow Agent logical switch.
Device(config-ofa-switch)# of-port interface ethernet1/1
Device(config-ofa-switch)# of-port interface ethernet1/2
! Adding a port channel to the Cisco OpenFlow Agent switch.
Device(config-ofa-switch)# of-port interface port-channel 2
Device(config-ofa-switch)# end
Device# copy running-config startup-config

Example: Configuring a Cisco OpenFlow Agent Logical Switch (Management VRF) for Cisco Nexus 3500 Platform Switches

Device# configure terminal
Device(config)# openflow
Device(config-ofa)# switch 1 pipeline 203
! Specifying a controller that is part of a VRF.
Device(config-ofa-switch)# controller ipv4 10.0.1.6 vrf management security none
! Adding an interface to the Cisco OpenFlow Agent logical switch.

Device(config-ofa-switch)# of-port interface ethernet1/1
Device(config-ofa-switch)# of-port interface ethernet1/2
Device(config-ofa-switch)# of-port interface port-channel 2
Device(config-ofa-switch)# end
Device# copy running-config startup-config

Example: Creating a Sub-Switch for Cisco Nexus 3500 Platform Switches

Device# configure terminal
Device(config)# openflow
Device(config-ofa)# switch 1 pipeline 203
Device(config-ofa-switch)# controller ipv4 5.30.199.200 port 6645 vrf management security none
Device(config-ofa-switch)# of-port interface port-channel1000
Device(config-ofa-switch)# of-port interface Ethernet1/1
Device(config-ofa-switch)# of-port interface Ethernet1/37
Device(config-ofa-switch)# of-port interface Ethernet1/39
Device(config-ofa-switch)# logging flow-mod
Device(config-ofa-switch)# sub-switch 2 vlan 100
Device(config-ofa-switch-subswitch)# controller ipv4 5.30.19.239 port 6653 vrf management security none

Specifying a Route to a Controller

The following tasks are used to specify a route from the device to a controller. This can be done using a physical interface (Front Panel) or a management interface.

- Physical Interface. Refer to Specifying a Route to a Controller Using a Physical Interface, on page 22.
- Management Interface. Refer to Specifying a Route to a Controller Using a Management Interface, on page 23.

The IP address of the controller is configured in the Configuring a Cisco OpenFlow Agent Logical Switch, on page 26 section.
Specifying a Route to a Controller Using a Physical Interface

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface type number</td>
<td>Enters the physical interface. The interface used here should not be a Cisco OpenFlow Agent port.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface Ethernet1/1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no switchport</td>
<td>Configures a specified interface as a Layer 3 interface and deletes any interface configuration specific to Layer 2.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# no switchport</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip address ip-address mask</td>
<td>Configures an IP address for a specified interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# ip address 10.0.1.4 255.255.255.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits interface configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip route 0.0.0.0 0.0.0.0 next-hop</td>
<td>Configures a default route for packet addresses not listed in the routing table. Packets are directed toward a controller.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ip route 0.0.0.0 0.0.0.0 0.0.0.0 10.0.1.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ping controller-ip-address</td>
<td>Ping your controller to verify a working route.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ping 192.0.20.123</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>Saves the changes persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Specifying a Route to a Controller Using a Management Interface

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>interface management-interface-name number</code></td>
<td>Enters the management interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# interface mgmt0</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>ip address ip-address mask</code></td>
<td>Configures an IP address for the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# ip address 10.0.1.4 255.255.255.0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits interface configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>vrf context management</code></td>
<td>Configures the management Virtual routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# vrf context management</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>ip route 0.0.0.0 0.0.0.0 next-hop</code></td>
<td>Configures a default route for packet addresses not listed in the routing table. Packets are directed toward a controller.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# ip route 0.0.0.0 0.0.0.0 10.0.1.6</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>
What to do next
Configure interfaces for the Cisco OpenFlow Agent logical switch.

Configuring Interfaces for a Cisco OpenFlow Agent Logical Switch

You must configure physical or port-channel interfaces before the interfaces are added as ports of a Cisco OpenFlow Agent logical switch. These interfaces are added as ports of the Cisco OpenFlow Agent logical switch in the Configuring a Cisco OpenFlow Agent Logical Switch, on page 26 section.

Configuring a Physical Interface in Layer 2 mode
Perform the task below to add a physical interface to a Cisco OpenFlow Agent logical switch in Layer 2 mode.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| | Example:
Device# configure terminal | |
| 2 | interface type number | Specifies the interface for the logical switch and enters interface configuration mode. |
| | Example:
Device(config)# interface Ethernet1/23 | |
| 3 | (Optional) channel-group group-number | Adds the interface to a port-channel. |
| | Example:
Device(config-if)# channel-group 2 | |
| 4 | Required: switchport | Specifies an interface as a Layer 2 port. |
| | Example:
Device(config-if)# switchport | |
| 5 | Required: switchport mode trunk | Specifies an interface as a trunk port. |
| | Example:
Device(config-if)# switchport mode trunk | |
| | • A trunk port can carry traffic of one or more VLANs on the same physical link. (VLANs are based on the trunk-allowed VLANs list.) By default, a trunk interface carries traffic for all VLANs. | |
| 6 | Required: switchport mode trunk allowed vlan [vlan-list] | Sets the list of allowed VLANs that transmit traffic from this interface in tagged format when in trunking mode. |
Configuring the Cisco OpenFlow Agent

Configuring a Port-Channel Interface

Perform the task below to create a port-channel interface for a Cisco OpenFlow Agent logical switch.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface port-channel number</td>
<td>Specifies the interface for the logical switch and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface port-channel 2</td>
<td></td>
</tr>
<tr>
<td>Step 3 switchport mode trunk</td>
<td>Specifies the interface as an Ethernet trunk port. A trunk port can carry traffic in one or more VLANs on the same physical link (VLANs are based on the trunk-allowed VLANs list). By default, a trunk interface can carry traffic for all VLANs.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# switchport mode trunk</td>
<td></td>
</tr>
</tbody>
</table>

Note If the port-channel is specified as a trunk interface, ensure that member interfaces are also configured as trunk interfaces.

Cisco OpenFlow Agent for Nexus 3000 and 9000 Series Switches

25
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 Required: <code>switchport mode trunk allowed vlan [vlan-list]</code></td>
<td>Sets the list of allowed VLANs that transmit traffic from this interface in tagged format when in trunking mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if)# switchport trunk allowed vlan 1-3</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Ends interface configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example: <code>Device# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

What to do next
Activate Cisco OpenFlow Agent.

Configuring a Cisco OpenFlow Agent Logical Switch

This task configures a Cisco OpenFlow Agent logical switch and the IP address of a controller.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>openflow</code></td>
<td>Enters OpenFlow configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config)# openflow</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 Required: <code>switch switch-id pipeline pipeline-id</code></td>
<td>Creates an OpenFlow switch with a pipeline.</td>
</tr>
<tr>
<td>Example: <code>Device(config-ofa)# switch 1 pipeline 201</code></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>For the Cisco Nexus 3500 platform switches, the value of <code>pipeline-id</code> is 203.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Enter one of the following commands:</td>
</tr>
<tr>
<td></td>
<td>• of-port interface interface-name</td>
</tr>
<tr>
<td></td>
<td>• of-port interface port-channel-name</td>
</tr>
</tbody>
</table>

Example:

For a physical interface:

Device(config-ofa-switch)# of-port interface ethernet1/1

For a port-channel interface:

Device(config-ofa-switch)# of-port interface port-channel2

• The mode openflow configuration is added to an interface when an interface is configured as a port of Cisco OpenFlow Agent. To add or remove an interface as a port of Cisco OpenFlow Agent, ensure that the Cisco OpenFlow Agent is activated and running to ensure the proper automatic addition and removal of the mode openflow configuration. To remove an interface as a port of Cisco OpenFlow Agent, use the no form of this command.

• An interface configured for a port channel should not be configured as a Cisco OpenFlow Agent logical switch port.

• Repeat this step to configure additional interfaces.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>controller ipv4 ip-address [port tcp-port] [vrf vrf-name] security {none</td>
<td>tls}</td>
</tr>
</tbody>
</table>

Example:

Controller in default VRF:

Device(config-ofa-switch)# controller ipv4 10.1.1.2 security none

• If unspecified, the default VRF is used.

• Controllers use TCP port 6653 by default.

• You can configure up to eight controllers. Repeat this step if you need to configure additional controllers.

• If TLS is not disabled in this step, configure TLS trustpoints using the tls command.

• You can use the clear openflow switch 1 controller all command to clear controller connections. This command can reset a connection after Transport Layer Security (TLS) certificates and
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keys are updated. This is not required for TCP connections. A connection to a controller is initiated for the logical switch.</td>
</tr>
</tbody>
</table>
| Step 6 | (Optional) **tls trust-point**
local
local-trust-point
remote
remote-trust-point

Example:

```
Device(config-ofa-switch)# tls trust-point local mylocal remote myremote
```

Specifies the local and remote TLS trustpoints to be used for the controller connection.
- For information on configuring trustpoints, refer to the "Configuring PKI" chapter of the *Cisco Nexus 7000 Series NX-OS Security Configuration Guide*. |
| Step 7 | (Optional) **logging flow-mod**

Example:

```
Device(config-ofa-switch)# logging flow-mod
```

Enables logging of flow changes, including addition, deletion, and modification of flows.
- Logging of flow changes is disabled by default.
- Flow changes are logged in syslog and can be viewed using the `show logging` command.
- Logging of flow changes is a CPU intensive activity and should not be enabled for networks greater than 1000 flows. |
| Step 8 | (Optional) **probe-interval**

Example:

```
Device(config-ofa-switch)# probe-interval 5
```

Configures the interval, in seconds, at which the controller is probed with echo requests.
- The default value is 5.
- The range is from 5 to 65535. |
| Step 9 | (Optional) **rate-limit packet_in**
controller-packet-rate
burst
maximum-packets-to-controller

Example:

```
Device(config-ofa-switch)# rate-limit packet_in 300 burst 50
```

Configures the maximum packet rate of the connection to the controller and the maximum packets permitted in a burst of packets sent to the controller in a second.
- The default value is zero, meaning that an indefinite packet rate and packet burst are permitted.
- This rate limit is for Cisco OpenFlow Agent. It is not related to the rate limit of the device (data plane) configured by COPP. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 10 | (Optional) `max-backoff` **backoff-timer** | Configures the time, in seconds, for which the device must wait before attempting to initiate a connection with the controller.
- The default value is eight.
- The range is from 1 to 65535. |
| 11 | (Optional) `datapath-id id` | *id* is a 64bit hex value. A valid *id* is in the range [0x1-0xffffffffffffffff]. This identifier allows the controller to uniquely identify the device. |
| 12 | (Optional) `protocol-version [1.0 | 1.3 | negotiate]` | This command forces a specific version of the controller connection. If you force version 1.3 and the controller supports only 1.0, no session is established (or vice versa). The default behavior is to negotiate a compatible version between the controller and device.
Supported values are:
- **1.0**—Configures device to connect to 1.0 controllers only
- **1.3**—Configures device to connect to 1.3 controllers only
- **negotiate**—(Default) Negotiates the protocol version with the controller. The device uses version 1.3 for negotiation. |
| 13 | (Optional) `shutdown` | This disables the OpenFlow switch without having to remove all the other configuration. |
| 14 | Required: `default-miss value` | The `default-miss` command sets the behavior when a packet does not match a flow in the flow table. The controller flows may override default-miss flows.
Note Not every action is supported on every platform.
- **continue-drop**: a miss in a flow table will cascade to perform a match in the next table (if applicable). A miss in the terminal table in the pipeline will result in the packet being dropped.
- **continue-normal**: a miss in a flow table will cascade to perform a match in the next table |
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(if applicable). A miss in the terminal table in the pipeline will result in the packet being sent to the switch's normal hardware processing. continue-controller: a miss in a flow table will cascade to perform a match in the next table (if applicable). A miss in the terminal table in the pipeline will result in the packet being sent to the controller. drop: a miss in the first flow table of the pipeline will not cascade to any other table. Instead the packet will be dropped. normal: a miss in the first flow table of the pipeline will not cascade to any other table. Instead the packet will be sent to the switch's normal hardware forwarding. controller: a miss in the first flow table of the pipeline will not cascade to any other table. Instead the packet will be sent to the controller.</td>
<td></td>
</tr>
</tbody>
</table>

Step 15

(Optional) **statistics collection-interval seconds**

Example:

Device(config-ofa-switch) # statistics collection 10

A setting of zero disables statistics collection. If collection is enabled, the interval must be a minimum of seven seconds. The interval setting can be used to reduce the CPU load from periodic statistics polling. For example, if you have 1000 flows and choose a statistics collection interval of 10 seconds, 1000flows/10s = 100 flows per second poll rate.

Note Each flow table has a prescribed maximum flows-per-second poll rate supported by hardware as displayed in the `show openflow hardware capabilities` command. If you choose a statistics collection interval that is too small, the maximum rate supported by the hardware is used, effectively throttling the statistics collection.

Step 16

end

Example:

Device(config-ofa-switch) # end

Exits logical switch configuration mode and enters privileged EXEC mode.
Configuring Logical Sub-Switches

This task configures a logical sub-switch for OpenFlow control by a controller other than the master controller.

Before you begin
Configure an OpenFlow logical switch.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>openflow</code></td>
<td>Enters OpenFlow configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config)# openflow</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>required: switch switch-id pipeline pipeline-id</code></td>
<td>Selects the existing OpenFlow switch under which the sub-switch will be created. This is the master switch, which has the ID of 1.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config-ofa)# switch 1 pipeline 201</code></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>For the Cisco Nexus 3500 platform switches, the value of <code>pipeline-id</code> is 203.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>required: sub-switch sub-switch-id vlan vlan-range</code></td>
<td>Creates an OpenFlow logical sub-switch for the specified VLAN or VLAN range.</td>
</tr>
</tbody>
</table>
| **Example:** | `Device(config-ofa-switch)# sub-switch 2 vlan 301-305` | |}

- The `sub-switch-id` is a unique ID for this sub-switch. It is an integer between 2 and 10. The master switch has the ID of 1.
- VLANs associated with this sub-switch cannot also be associated to another sub-switch, and VLAN ranges cannot overlap between sub-switches.
Purpose

To return to the configuration of this sub-switch later, you must repeat the exact command, including the sub-switch ID and the VLAN range.

Step 5

**controller ipv4 ip-address [port tcp-port] [vrf vrf-name] security{none | tls}

Example:

Controller in default VRF:

```
Device(config-ofa-switch-subswitch)#
controller ipv4 10.1.1.2 security none
```

This command specifies the IPv4 address, port number, and VRF of a controller that can manage the logical switch, port number used by the controller to connect to the logical switch and the VRF of the controller.

- If unspecified, the default VRF is used.
- Controllers use TCP port 6653 by default, but the port is configurable to a different port number using the CLI.
- You can configure up to eight controllers. Repeat this step if you need to configure additional controllers.
- If TLS is not disabled in this step, configure TLS trustpoints using the `tls` command.
- You can use the `clear openflow switch 1 controller all` command to clear controller connections. This command can reset a connection after Transport Layer Security (TLS) certificates and keys are updated. This is not required for TCP connections.

A connection to a controller is initiated for the logical switch.

Step 6

**Required: protocol-version version-info

Example:

```
Device(config-ofa-switch-subswitch)#
protocol-version 1.3
```

This command forces a specific version of the controller connection. If you force version 1.3 and the controller supports only 1.0, no session is established (or vice versa). The default behavior is to negotiate a compatible version between the controller and device.

Supported values are:

- **1.0**—Configures device to connect to 1.0 controllers only
- **1.3**—Configures device to connect to 1.3 controllers only
- **negotiate**—(Default) Negotiates the protocol version with the controller. Device uses 1.3 for negotiation.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>(Optional) tls trust-point local</td>
<td>Specifies the local and remote TLS trustpoints to be used for the controller connection.</td>
</tr>
<tr>
<td></td>
<td>local-trust-point remote remote-trust-point</td>
<td>• For information on configuring trustpoints, refer to the "Configuring PKI" chapter of the Cisco Nexus 7000 Series NX-OS Security Configuration Guide.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device(config-of-a-switch-subswitch)# tls trust-point local mylocal remote myremote</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) probe-interval</td>
<td>Configures the interval, in seconds, at which the controller is probed with echo requests.</td>
</tr>
<tr>
<td></td>
<td>probe-interval</td>
<td>• The default value is 5.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device(config-of-a-switch-subswitch)# probe-interval 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The range is from 5 to 65535.</td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) rate-limit packet_in</td>
<td>Configures the maximum packet rate of the connection to the controller and the maximum packets permitted in a burst of packets sent to the controller in a second.</td>
</tr>
<tr>
<td></td>
<td>controller-packet-rate burst maximum-packets-to-controller</td>
<td>• The default value is zero, meaning that an indefinite packet rate and packet burst are permitted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device(config-of-a-switch-subswitch)# rate-limit packet_in 300 burst 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• This rate limit is for Cisco OpenFlow Agent. It is not related to the rate limit of the device (data plane) configured by COPP.</td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) max-backoff backoff-timer</td>
<td>Configures the time, in seconds, for which the device must wait before attempting to retry the connection with the controller.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device(config-of-a-switch-subswitch)# max-backoff 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The default value is eight.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The range is from 1 to 65535 seconds.</td>
</tr>
<tr>
<td>Step 11</td>
<td>(Optional) datapath-id id</td>
<td>Identifier of the sub-switch, which allows the controller to uniquely identify the device. This command overwrites the default value, which is based on the MAC address of the switch and the ID of the sub-switch. A valid id is a 64-bit hex value in the range [0x1-0xffffffffffffffff].</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device(config-of-a-switch-subswitch)# datapath-id 0x111</td>
</tr>
</tbody>
</table>
Configuration Examples for Cisco OpenFlow Agent

Example: Enabling Cisco OpenFlow Agent in the Nexus 3000 series device

Device> enable
Device# configure terminal
Device(config)# system switch-mode n9k
Device# exit
Device# write erase
Device# reload
This command will reboot the system. (y/n)? [n] y
.
[log in after reboot]
Device# configure terminal
Device(config)# feature openflow
Device(config)# show feature | inc openflow
openflow 1 enabled

Example: Enabling Cisco OpenFlow Agent in the Nexus 9000 series device

Device# configure terminal
Device(config)# feature openflow
Device(config)# show feature | inc openflow
openflow 1 enabled

Example: Adjusting the Number of Flow Entries

Device# configure terminal
Device(config)# hardware access-list tcam region racl 0
Device(config)# hardware access-list tcam region e-racl 0
Device(config)# hardware access-list tcam region l3qos 0
Device(config)# hardware access-list tcam region span 0
Device(config)# hardware access-list tcam region redirect 0
Device(config)# hardware access-list tcam region vpc-convergence 0
Device(config)# hardware access-list tcam region openflow 1024
Device(config)# exit
Device# copy running-config startup-config
Device# reload

Example: Configuring Global Variables for a Cisco OpenFlow Agent Logical Switch

Device# configure terminal
Device(config)# mac-learn disable
Device(config)# spanning-tree mode mst
Device(config)# vlan 2
Device(config-vlan)# end
Example: Configuring Control Plane Policing for Packets Sent to a Controller

Device# configure terminal
Device# setup

----- Basic System Configuration Dialog -----

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

*Note: setup is mainly used for configuring the system initially, when no configuration is present. So setup always assumes system defaults and not the current system configuration values.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

Create another login account (yes/no) [n]:

Configure read-only SNMP community string (yes/no) [n]:

Configure read-write SNMP community string (yes/no) [n]:

Enter the switch name: QI32

Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]: n

Configure the default gateway? (yes/no) [y]: n

Enable the telnet service? (yes/no) [n]: y

Enable the ssh service? (yes/no) [y]: n

Configure the ntp server? (yes/no) [n]:

Configure default interface layer (L3/L2) [L2]:

Configure default switchport interface state (shut/noshut) [noshut]:

Configure CoPP System Policy Profile (default / l2 / l3) [default]:

The following configuration will be applied:

```
switchname QI32
telnet server enable
no ssh server enable
system default switchport
no system default switchport shutdown
policy-map type control-plane copp-system-policy ( default )
```

Would you like to edit the configuration? (yes/no) [n]:

Use this configuration and save it? (yes/no) [y]:

[##] 100%

Copy complete, now saving to disk (please wait)...
Device(config-pmap)# class copp-s-dpss
Device(config-pmap-c)# police pps 1000
Device(config-pmap-c)# end
Device# show run copp

Example: Specifying a Route to a Controller Using a Physical Interface

Device# configure terminal
Device(config)# interface ethernet1/1
Device(config-if)# no switchport
Device(config-if)# ip address 10.0.1.4 255.255.255.255
Device(config-if)# exit
Device(config)# ip route 0.0.0.0 0.0.0.0 10.0.1.6
Device(config)# exit

Device# copy running-config startup-config

Example: Specifying a Route to a Controller Using a Management Interface

Device# configure terminal
Device(config)# interface mgmt0
Device(config-if)# no switchport
Device(config-if)# ip address 10.0.1.4 255.255.255.255
Device(config-if)# exit
Device(config)# vrf context management
Device(config)# ip route 0.0.0.0 0.0.0.0 10.0.1.6
Device(config)# exit

Device# copy running-config startup-config

Example: Configuring an Interface for a Cisco OpenFlow Agent Logical Switch in L2 mode

Device# configure terminal

Device(config)# interface ethernet1/1
Device(config-if)# switchport mode trunk
Device(config-if)# no shutdown
Device(config-if)# exit

Device(config)# interface ethernet1/2

! Adding the interface to a port channel.
Device(config-if)# channel-group 2
Device(config-if)# switchport mode trunk
Device(config-if)# no shutdown
Device(config-if)# end
Device# copy running-config startup-config

Example: Configuring a Port-Channel Interface

Device# configure terminal
Device(config)# interface port-channel 2
Device(config-if)# switchport mode trunk
Device(config-if)# end
Device# copy running-config startup-config
Example: Cisco OpenFlow Agent Logical Switch Configuration (Default VRF)

```
Device# configure terminal
Device(config)# openflow
Device(config-ofa)# switch 1 pipeline 201
! Specifies the pipeline that enables the IP Forwarding Table.
Device(config-ofa-switch)# logging flow-mod
Device(config-ofa-switch)# max-backoff 5
Device(config-ofa-switch)# probe-interval 5
Device(config-ofa-switch)# rate-limit packet-in 300 burst 50
Device(config-ofa-switch)# controller ipv4 10.0.1.6 security none
! Adding an interface to the Cisco OpenFlow Agent logical switch.
Device(config-ofa-switch)# of-port interface ethernet1/1
Device(config-ofa-switch)# of-port interface ethernet1/2
! Adding a port channel to the Cisco OpenFlow Agent switch.
Device(config-ofa-switch)# of-port interface port-channel 2
Device(config-ofa-switch)# end
Device# copy running-config startup-config
```

Example: Configuring a Cisco OpenFlow Agent Logical Switch (Management VRF)

```
Device# configure terminal
Device(config)# openflow
Device(config-ofa)# switch 1 pipeline 201
! Specifying a controller that is part of a VRF.
Device(config-ofa-switch)# controller ipv4 10.0.1.6 vrf management security none
! Adding an interface to the Cisco OpenFlow Agent logical switch.
Device(config-ofa-switch)# of-port interface ethernet1/1
Device(config-ofa-switch)# of-port interface ethernet1/2
! Adding a port channel to the Cisco OpenFlow Agent switch.
Device(config-ofa-switch)# of-port interface port-channel 2
Device(config-ofa-switch)# end
Device# copy running-config startup-config
```

Example: Creating a Sub-Switch

```
Device# configure terminal
Device(config)# openflow
Device(config-ofa)# switch 1 pipeline 201
Device(config-ofa-switch)# controller ipv4 5.30.199.200 port 6645 vrf management security none
Device(config-ofa-switch)# of-port interface port-channel1000
Device(config-ofa-switch)# of-port interface Ethernet1/1
Device(config-ofa-switch)# of-port interface Ethernet1/37
Device(config-ofa-switch)# of-port interface Ethernet1/39
Device(config-ofa-switch)# logging flow-mod
Device(config-ofa-switch)# sub-switch 2 vlan 100
Device(config-ofa-switch-subswitch)# controller ipv4 5.30.19.239 port 6653 vrf management security none
```
Verifying Cisco OpenFlow Agent

Procedure

Step 1
`show openflow switch switch-id`

Displays information related to Cisco OpenFlow Agent logical switch.

Example:

```
Device# show openflow switch 1
Logical Switch Context
   Id: 1
   Switch type: Forwarding
   Pipeline id: 201
   VLAN restrictions: none
   Data plane: secure
   Table-Miss default: controller
   Configured protocol version: Negotiate
   Config state: no-shutdown
   Working state: enabled
   Rate limit (packet per second): 300
   Burst limit: 50
   Max backoff (sec): 8
   Probe interval (sec): 5
   TLS local trustpoint name: not configured
   TLS remote trustpoint name: not configured
   Logging flow changes: Enabled
   Stats collect interval (sec): 7
   Stats collect Max flows: 3001
   Minimum flow idle timeout (sec): 14
   OFA Description:
      Manufacturer: Cisco Systems, Inc.
      Hardware: N9K-C9372PX 2.1
      Software: 7.0(3)I5(0.51) | of_agent 0.1
      Serial Num: SAL1944RZQN
      DP Description: switch:sw1
   OF Features:
      DPID: 0x0000000000009000
      Number of tables: 1
      Number of buffers: 256
      Capabilities: FLOW_STATS TABLE_STATS PORT_STATS
   Controllers:
   Interfaces:
      Ethernet1/1
      Ethernet1/2
```

Step 2
`show openflow switch switch-id controllers [stats]`

Displays information related to the connection status between a Cisco OpenFlow Agent logical switch and connected controllers.

Example:

```
Device# show openflow switch 1 controllers
```
Logical Switch Id: 1
Total Controllers: 1
 Controller: 1
 address: tcp:5.30.19.236:6653
 Protocol: tcp
 VRF: management
 Connected: Yes
 Role: Master
 Negotiated Protocol Version: OpenFlow 1.3
 Last Alive Ping: 09/27/2016 00:04:53
 last_error:Connection timed out
 state:ACTIVE
 sec_since_connect:103334
 sec_since_disconnect:103345

The above sample output is displayed when the controller is connected (state:ACTIVE).

Device# show openflow switch 1 controllers stats

Logical Switch Id: 1
Total Controllers: 1
 Controller: 1
 address : tcp:5.30.19.236:6653%management
 connection attempts : 19
 successful connection attempts : 2
 flow adds : 2
 flow mods : 0
 flow deletes : 0
 flow removals : 0
 flow errors : 0
 flow unencodable errors : 0
 total errors : 0
 echo requests : rx: 0, tx: 7
 echo reply : rx: 6, tx: 0
 flow stats : rx: 33763, tx: 33763
 barrier : rx: 2, tx: 2
 packet-in/packet-out : rx: 0, tx: 23033
 Topology Monitor : rx: 0, tx: 0
 Topology State : rx: 0

Step 3 show running-config interface ethernet interface-id

In the interface configuration, verify mode openflow.

Example:
Device# show running-config interface Ethernet1/2

!Command: show running-config interface Ethernet1/2
!Time: Thu Sep 29 00:08:18 2016
version 7.0(3)I5(1)
interface Ethernet1/7
no lldp transmit
spanning-tree bpdufilter enable
mode openflow

Step 4 show openflow switch switch-id ports

Displays the mapping between physical device interfaces and ports of a Cisco OpenFlow Agent logical switch.
Example:
Device# show openflow switch 1 ports

Logical Switch Id: 1
Port Interface Name Config-State Link-State Features
2 Ethernet1/2 PORT_UP LINK_UP 10MB-FD
3 Ethernet1/3 PORT_UP LINK_DOWN 100MB-HD AUTO_NEG
4 Ethernet1/4 PORT_UP LINK_UP 10MB-FD

Step 5
show openflow switch switch-id flows [configured | controller | default | fixed | pending | pending-del] [brief | summary]

Displays flows defined for the device by controllers.

Example:
Device# show openflow switch 1 flows

Logical Switch Id: 1
Total flows: 2

Flow: 1
Match: any
Actions: CONTROLLER:0
Priority: 0
Table: 0
Cookie: 0x0
Duration: 104160.376s
Number of packets: 0
Number of bytes: 0

Flow: 2
Match: in_port=2,dl_vlan=100
Actions: drop
Priority: 100
Table: 0
Cookie: 0x0
Duration: 103753.162s
Number of packets: 0
Number of bytes: 0

The following example show flows installed by the OpenFlow agent:
Device# show openflow switch 1 flows configured

Logical Switch Id: 1
Total flows: 1

Flow: 1
Match: any
Actions: CONTROLLER:0
Priority: 0
Table: 0
Cookie: 0x0
Duration: 104180.584s
Number of packets: 0
Number of bytes: 0

The following example show flows installed from the controller:
Device# show openflow switch 1 flows controller
Logical Switch Id: 1
Total flows: 1
Flow: 1
Match: in_port=2, dl_vlan=100
Actions: drop
Priority: 100
Table: 0
Cookie: 0x0
Duration: 103753.162s
Number of packets: 0
Number of bytes: 0

The following example displays the flow summary:

```
switch# show openflow switch 1 flows summary
Logical Switch Id: 1
Switch flow count: 2
```

The following example displays the brief version:

```
switch# show openflow switch 1 flows brief
Logical Switch Id: 1
Total flows: 3
Flow: 1 Match: any Actions: drop
Priority: 0, Table: 0, Cookie: 0x0, Duration: 127.349s, Packets: 7653260179, Bytes: 489808651630
Flow: 2 Match: dl_type=0x88cc Actions: CONTROLLER:65535
Priority: 50000, Table: 0, Cookie: 0x0, Duration: 127.431s, Packets: 14, Bytes: 1472
Flow: 3 Match: in_port=34, dl_type=0x800 Actions: output:20
Priority: 500, Table: 0, Cookie: 0x0, Duration: 127.432s, Packets: 63, Bytes: 4032
```

Step 6
show openflow switch switch-id flow stats
Displays send and receive statistics for each port defined for a Cisco OpenFlow Agent logical switch.
Example:

```
Device# show openflow switch 1 flow stats
Logical Switch Id: 1
Total ports: 2
Port 1: rx pkts=96932, bytes=10911299, drop=0, errs=0,
      tx pkts=209683, bytes=19045035, drop=0, errs=0,
Port 2: rx pkts=350485253, bytes=23834112937, drop=0, errs=0,
      tx pkts=191127, bytes=16001929, drop=0, errs=0,
Total tables: 1
Table 0: NXOS PLCMGR IPV6 - PIPE 201
Wildcards = 0x300033
Max entries = 3001
Active entries = 2
Number of lookups = 0
Number of matches = 0
```

Flow statistics are available for pipeline 201 and table 0. For pipeline 202, flow statistics are not available for table 1.

Step 7
show logging last number-of-lines
Displays logging information of flow changes, including addition, deletion or modification of flows.

Example:

Device# show logging last 10

15 cmd_attr 352256118
43 pff_id 87032089
15 cmd_attr 352256200
36 pkts 0x9d3b bytes 0x0
2016 Oct 5 09:52:27 switch of_agent: <{of_agent}>|-|00353|plif_xos_util|DBG|cstat classified.pkts = 40251
2016 Oct 5 09:52:27 switch of_agent: <{of_agent}>|-|00354|plif_xos_util|DBG|cstat classified.bytes = 0
2016 Oct 5 09:52:27 switch of_agent: <{of_agent}>|-|00355|plif_xos_util|DBG|cstat drop.pkts = 0
2016 Oct 5 09:52:27 switch of_agent: <{of_agent}>|-|00356|plif_xos_util|DBG|cstat drop.bytes = 0
2016 Oct 5 09:52:27 switch of_agent: <{of_agent}>|-|00357|plif_xos|DBG|PXOS lookup switc
2016 Oct 5 09:52:28 switch of_agent: <{of_agent}>|-|1841673|poll_loop|DBG|wakeup due to 999-ms timeout at ../feature/sdn/openflow/cmn/ovs/cof_ovs_ofproto_plif.c:815 (0% CPU usage)

Step 8

show running-config openflow

Displays configurations made for Cisco OpenFlow Agent.

Example:

Device# show running-config openflow

!Command: show running-config openflow
!Time: Tue Sep 27 00:19:00 2016

version 7.0(3)I5(1)
feature openflow

openflow
switch 1 pipeline 201
 rate-limit packet_in 300 burst 50
 probe-interval 5
 statistics collection-interval 7
 datapath-id 0x9000
 controller ipv4 5.30.19.236 port 6653 vrf management security none
 of-port interface Ethernet1/1
 of-port interface Ethernet1/2
 default-miss controller
 logging flow-mod

Step 9

show running-config openflow

Displays configurations made for Cisco OpenFlow Agent for Cisco Nexus 3500 platform switches.
Example:

Device# show running-config openflow

!Command: show running-config openflow
!Time: Tue Sep 27 00:19:00 2016

version 7.0(3)I7(8)
feature openflow

openflow
 switch 1 pipeline 203
 rate-limit packet_in 300 burst 50
 probe-interval 10
 max-backoff 5
 statistics collection-interval 7
 datapath-id 0x1
 controller ipv4 5.30.19.236 port 6653 vrf management security none
 of-port interface Ethernet1/17
 of-port interface Ethernet1/18
 of-port interface Ethernet1/19
 of-port interface Ethernet1/33
 of-port interface Ethernet1/48
 default-miss controller
 logging flow-mod

Step 10 show openflow hardware capabilities

Displays hardware capabilities for OpenFlow.

Example:

Device# show openflow hardware capabilities

Max Interfaces: 1000
Aggregated Statistics: NO

Pipeline ID: 201
 Pipeline Max Flows: 3001
 Max Flow Batch Size: 300
 Statistics Max Polling Rate (flows/sec): 1024
 Pipeline Default Statistics Collect Interval: 7

Flow table ID: 0

Max Flow Batch Size: 300
Max Flows: 3001
Bind Subintfs: FALSE
Primary Table: TRUE
Table Programmable: TRUE
Miss Programmable: TRUE
Number of goto tables: 0
goto table id:
Stats collection time for full table (sec): 3

<table>
<thead>
<tr>
<th>Match Capabilities</th>
<th>Match Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet type</td>
<td>optional</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>optional</td>
</tr>
<tr>
<td>VLAN priority code point</td>
<td>optional</td>
</tr>
<tr>
<td>IP DSCP</td>
<td>optional</td>
</tr>
<tr>
<td>IP protocol</td>
<td>optional</td>
</tr>
<tr>
<td>ipv6 source address</td>
<td>lengthmask</td>
</tr>
<tr>
<td>ipv6 destination address</td>
<td>lengthmask</td>
</tr>
</tbody>
</table>
source port optional
destination port optional
in port (virtual or physical) optional
wildcard all matches optional

<table>
<thead>
<tr>
<th>Actions</th>
<th>Count</th>
<th>Limit</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>specified interface</td>
<td>64</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>controller</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>divert a copy of pkt to application</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>set eth source mac</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>set eth destination mac</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>set vlan id</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>pop vlan tag</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>drop packet</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miss actions</th>
<th>Count</th>
<th>Limit</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>use normal forwarding</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>controller</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>drop packet</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Max Interfaces: 1000
Aggregated Statistics: NO

Pipeline ID: 202
Pipeline Max Flows: 3001
Max Flow Batch Size: 300
Statistics Max Polling Rate (flows/sec): 1024
Pipeline Default Statistics Collect Interval: 7

Flow table ID: 0
Max Flow Batch Size: 300
Max Flows: 3001
Bind Subintfs: FALSE
Primary Table: TRUE
Table Programmable: TRUE
Miss Programmable: TRUE
Number of goto tables: 1
goto table id: 1
Stats collection time for full table (sec): 3

<table>
<thead>
<tr>
<th>Match Capabilities</th>
<th>Match Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>ethernet type</td>
<td>optional</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>optional</td>
</tr>
<tr>
<td>VLAN priority code point</td>
<td>optional</td>
</tr>
<tr>
<td>IP DSCP</td>
<td>optional</td>
</tr>
<tr>
<td>IP protocol</td>
<td>optional</td>
</tr>
<tr>
<td>ipv6 source address</td>
<td>lengthmask</td>
</tr>
<tr>
<td>ipv6 destination address</td>
<td>lengthmask</td>
</tr>
<tr>
<td>source port</td>
<td>optional</td>
</tr>
<tr>
<td>destination port</td>
<td>optional</td>
</tr>
<tr>
<td>in port (virtual or physical)</td>
<td>optional</td>
</tr>
<tr>
<td>wildcard all matches</td>
<td>optional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions</th>
<th>Count</th>
<th>Limit</th>
<th>Order</th>
</tr>
</thead>
</table>

Cisco OpenFlow Agent for Nexus 3000 and 9000 Series Switches
Specified Interface

<table>
<thead>
<tr>
<th>Action</th>
<th>Count</th>
<th>Limit</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>specified interface</td>
<td>64</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>controller</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>divert a copy of pkt to application</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>set eth source mac</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>set eth destination mac</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>set vlan id</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>pop vlan tag</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>drop packet</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Miss Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Count</th>
<th>Limit</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>use normal forwarding</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>controller</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>perform another lookup in the specified table</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>drop packet</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Flow Table ID: 1

Max Flow Batch Size: 300
Max Flows: 32001
Bind SubIntfs: FALSE
Primary Table: FALSE
Table Programmable: TRUE
Miss Programmable: TRUE
Number of goto tables: 0
goto table id:
Stats collection: Not Supported

Match Capabilities

<table>
<thead>
<tr>
<th>Match Types</th>
<th>Match Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet mac destination</td>
<td>ethernet mac destination</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>wildcard all matches</td>
<td>wildcard all matches</td>
</tr>
</tbody>
</table>

Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Count</th>
<th>Limit</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>specified interface</td>
<td>64</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>drop packet</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Miss Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Count</th>
<th>Limit</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>use normal forwarding</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>controller</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>drop packet</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Step 11

```sh
show openflow switch 2
```

Displays configuration of OpenFlow sub-switch.

Example:

```sh
Device# show openflow switch 2
```

Logical Switch Context
Id: 2
Switch type: Forwarding
Pipeline id: 201
VLAN restrictions: 100
Data plane: secure
Table-Miss default: drop
Configured protocol version: Negotiate
Config state: no-shutdown
Working state: enabled
Rate limit (packet per second): 0
Burst limit: 0
Max backoff (sec): 8
Probe interval (sec): 180
TLS local trustpoint name: not configured
TLS remote trustpoint name: not configured
Logging flow changes: Disabled
Stats collect interval (sec): 7
Stats collect Max flows: 3001
Minimum flow idle timeout (sec): 14
OFA Description:
 Manufacturer: Cisco Systems, Inc.
 Hardware: N9K-C9372PX 2.1
 Software: 7.0(3)I5(0.51)| of_agent 0.1
 Serial Num: SAL1944RZQN
 DP Description: switch:sw2
OFP Features:
 DPID: 0x000258ac786b5457
 Number of tables:1
 Number of buffers:256
 Capabilities: FLOW_STATS TABLE_STATS PORT_STATS
Controllers:
 5.30.19.239:6653, Protocol: TCP, VRF: management
Interfaces:
 port-channel1000
 Ethernet1/1
 Ethernet1/37
 Ethernet1/39

Step 12
show openflow switch 1

Displays configuration of OpenFlow sub-switch for Cisco Nexus 9500 platform switches.

Example:

Device# show openflow switch 1

Logical Switch Context
 Id: 1
 Switch type: Forwarding
 Pipeline id: 203
 VLAN restrictions: none
 Data plane: secure
 Table-Miss default: drop
 Configured protocol version: Negotiate
 Config state: no-shutdown
 Working state: enabled
 Rate limit (packet per second): 0
 Burst limit: 0
 Max backoff (sec): 5
 Probe interval (sec): 10
 TLS local trustpoint name: not configured
 TLS remote trustpoint name: not configured
 Logging flow changes: Enabled
 Stats collect interval (sec): 7
Stats collect Max flows: 4095
Minimum flow idle timeout (sec): 14

OFA Description:
- Manufacturer: Cisco Systems, Inc.
- Hardware: N9K-C3548P-10G V00
- Software: 7.0(3)I7(8) | of_agent 0.1
- Serial Num: FOC163R04W
- DP Description: OF-MTC:sw1

OF Features:
- DPID: Ox0001<>
- Number of tables:1
- Number of buffers:256
- Capabilities: FLOW_STATS TABLE_STATS PORT_STATS
- Actions: OUTPUT SET_VLAN_VID STRIP_VLAN

Controllers:
- <>:6653, Protocol: TCP, VRF: management

Interfaces:
- Ethernet1/17
- Ethernet1/18
- Ethernet1/19
- Ethernet1/33
- Ethernet1/48

Step 13 show openflow switch 2 controllers stats

Displays information related to the controller statistics for a logical sub-switch.

Example:

Device# show openflow switch 2 controllers stats

Logical Switch Id: 2
Total Controllers: 1
Controller: 1
 address : tcp:5.30.19.239:6653%management
 connection attempts : 5
 successful connection attempts : 0
 flow adds : 0
 flow mods : 0
 flow deletes : 0
 flow removals : 0
 flow errors : 0
 flow unencodable errors : 0
 total errors : 0
 echo requests : rx: 0, tx: 0
 echo reply : rx: 0, tx: 0
 flow stats : rx: 0, tx: 0
 barrier : rx: 0, tx: 0
 packet-in/packet-out : rx: 0, tx: 0
 Topology Monitor : rx: 0, tx: 0
 Topology State : rx: 0

Step 14 show run openflow

Displays configurations made for Cisco OpenFlow Agent when a sub-switch is configured.

Example:

Device# show run openflow

!Command: show running-config openflow
Step 15

show openflow hardware capabilities

Displays configurations made for Cisco OpenFlow Agent when a sub-switch is configured for Cisco Nexus 3500 platform switches.

Example:

Device# show openflow hardware capabilities

Max Interfaces: 1000
Aggregated Statistics: YES

Pipeline ID: 203
Pipeline Max Flows: 4095
Max Flow Batch Size: 100
Statistics Max Polling Rate (flows/sec): 1024
Pipeline Default Statistics Collect Interval: 7

Flow table ID: 0
Max Flow Batch Size: 0
Max Flows: 4095
Bind Subintfs: FALSE
Primary Table: TRUE
Table Programmable: TRUE
Miss Programmable: TRUE
Number of goto tables: 0
goto table id:
Stats collection time for full table (sec): 4

Match Capabilities

eternet mac destination
ethernet mac source
eternet type
VLAN ID
IP DSCP
IP protocol
IPv4 source address
IPv4 destination address
source port
destination port
in port (virtual or physical)

Match Types

optional

Actions

specified interface
controller

Count Limit Order

64 20
1 20
set vlan id 1 10
pop vlan tag 1 10
drop packet 1 10

Miss actions specified interface controller drop packet
Count Limit Order
64 1 1
20 20 20

Additional Information for Cisco OpenFlow Agent

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco command references</td>
<td>Cisco Nexus 3000 Series Switches Command References</td>
</tr>
<tr>
<td></td>
<td>Cisco Nexus 9000 Series Switches Command References</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenFlow 1.3</td>
<td>OpenFlow Switch Specification Version 1.3.0 (Wire Protocol 0x04).</td>
</tr>
<tr>
<td>OpenFlow 1.0</td>
<td>OpenFlow Switch Specification Version 1.0.1 (Wire Protocol 0x01).</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation and tools. Use these resources to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Cisco OpenFlow Agent

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 5: Feature Information for Cisco OpenFlow Agent

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco OpenFlow Agent</td>
<td>7.0(3)I5(1)</td>
<td>Cisco OpenFlow Agent is introduced, replacing the Cisco Plug-in for OpenFlow used in previous NX-OS releases.</td>
</tr>
</tbody>
</table>
Supported Platforms for Cisco OpenFlow Agent

Nexus 3000 Series

<table>
<thead>
<tr>
<th>Platform</th>
<th>OpenFlow Support (Pipeline Number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 30* Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 3132/3172* Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 3132QV Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 31108PCV Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 31108TCV Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 31128PQ-10GE Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 3232C Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 3264Q Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 3000 C3164PQ Chassis</td>
<td>No</td>
</tr>
<tr>
<td>Cisco Nexus 3548 switch</td>
<td>203</td>
</tr>
</tbody>
</table>

Nexus 9000 Series

<table>
<thead>
<tr>
<th>Platform</th>
<th>OpenFlow Support (Pipeline Number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 9332PQ Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 9372PX Switch</td>
<td>201/202</td>
</tr>
<tr>
<td>Cisco Nexus 9372TX Switch</td>
<td>201/202</td>
</tr>
</tbody>
</table>
OpenFlow pipeline 205 is supported on Cisco Nexus 95XX switches only when the switch contains the Application Spine Engine 2 (ASE2), Application Spine Engine 3 (ASE3), or Leaf Spine Engine (LSE). If any fabric board other than these is present, the OpenFlow feature cannot be enabled.
Uninstalling Cisco Plug-in for OpenFlow

The Cisco OpenFlow Agent was introduced in Cisco NX-OS Release 7.0(3)I5(1), replacing the Cisco Plug-in for OpenFlow used in previous releases. The Cisco Plug-in for OpenFlow, which runs as an application in a virtual services container, is no longer supported as of this release. When upgrading from a release earlier than Cisco NX-OS Release 7.0(3)I5(1) to Cisco NX-OS Release 7.0(3)I5(1) or a later release, you must deactivate and uninstall the Cisco Plug-in for OpenFlow application from the virtual services container using the procedure described in this section.

Cisco OpenFlow Agent support for the Cisco Nexus 3548 was introduced in Cisco NX-OS Release 7.0(3)I7(2) replacing the Cisco Plug-in for OpenFlow used from Cisco NX-OS Release 6.0(2)A8(1). When upgrading form a release earlier than Cisco NX-OS Release 7.0(3)I7(2) to Cisco NX-OS Release 7.0(3)I7(2) or a later release, you must deactivate and uninstall the Cisco Plug-in for OpenFlow application from the virtual services container using the procedure described in this section.

Converting a Previous OpenFlow Configuration

When you upgrade to a release that requires you to uninstall the Cisco Plug-in for OpenFlow, you can save your existing OpenFlow configuration and modify it for use with the Cisco OpenFlow Agent. Perform the following procedure before uninstalling the Cisco Plug-in for OpenFlow.

Procedure

Step 1
Capture the current OpenFlow configuration.

Enter the CLI command `show run | section openflow` to display the current OpenFlow configuration, as shown in this example.

Example:

```
Switch# show run | section openflow
```
hardware access-list tcam region openflow 512 double-wide
mode openflow
mode openflow
mode openflow
mode openflow
mode openflow
openflow <------------ Copy this section to your text editor.
switch 1
pipeline 201
controller ipv4 5.1.1.237 port 6653 vrf management security none
of-port interface Ethernet1/11-15

Step 2 Copy the configuration and paste it into your text editor.

Step 3 Make the changes described below.

- Add the **feature openflow** command to enable the Cisco OpenFlow Agent.
- Combine the **switch** and **pipeline** commands into one command.
- Expand any interface ranges.

Example:

```plaintext
feature openflow <------------------------- Add this comment to enable openflow agent
openflow
switch 1 pipeline 201 <--------------- Create switch command is in this format
controller ipv4 192.168.1.36 port 6653
of-port interface Ethernet1/11 <------ Change Ethernet1/11-15 to this format
of-port interface Ethernet1/12
of-port interface Ethernet1/13
of-port interface Ethernet1/14
of-port interface Ethernet1/15
```

Step 4 Make the changes described below.

When upgrading from a release earlier than Cisco NX-OS Release 7.0(3)I7(2) to Cisco NX-OS Release 7.0(3)I7(2) or a later release, obtain the Node-ID of the switch from the OpenFlow controller to which the switch is registered. Copy the Node-ID in your text editor. After upgrading, configure the Node-ID under OpenFlow.

Example:

```plaintext
openflow
switch 1 pipeline 201
controller ipv4 192.168.1.36 port 6653 vrf management security none
datapath-id 0x174a02fc67f00
```

Note 0x174a02fc67f00 is the Node-ID of the switch which had been registered with the OpenFlow controller before upgrading.

Step 5 Make the changes described below.

If the 'onep_apps_openflow_GLOBAL_VER.cli' file exists under bootflash:onep/apps-cli, it must be removed if you are upgrading from a release earlier than Cisco NX-OS Release 7.0(3)I7(2) to Cisco NX-OS Release 7.0(3)I7(2) or a later release.

Example:

```plaintext
switch# delete bootflash:onep/apps-cli/onep_apps_openflow_GLOBAL_VER.cli

What to do next
After uninstalling the Cisco Plug-in for OpenFlow, uninstalling the virtual service container (if necessary), and upgrading the switch, follow the instructions in this guide to enable the Cisco OpenFlow Agent. Then load the modified configuration into the switch.

Deactivating and Uninstalling an Application from a Virtual Services Container

(Optional) Perform this task to uninstall and deactivate an application from within a virtual services container.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>virtual-service virtual-services-name</td>
<td>Enters virtual services configuration mode to configure a specified application.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# virtual-service openflow_agent</td>
<td>Use the virtual-services-name defined during installation of the application.</td>
</tr>
<tr>
<td>4</td>
<td>no activate</td>
<td>Disables the application.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-virt-serv)# no activate</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>no virtual-service virtual-services-name</td>
<td>Unprovisions the application.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# no virtual-service openflow_agent</td>
<td>Use the virtual-services-name defined during installation of the application.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This command is optional for all devices running Cisco IOS-XE.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Exits virtual services configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-virt-serv)# end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Uninstalls the application.</td>
<td></td>
</tr>
<tr>
<td>virtual-service uninstall name</td>
<td>• Use the <code>virtual-services-name</code> defined during installation of the application.</td>
<td></td>
</tr>
<tr>
<td>virtual-services-name</td>
<td>• Run this command only after receiving a successful deactivation response from the device.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device# virtual-service uninstall name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openflow_agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device# copy running-config</td>
<td></td>
<td></td>
</tr>
<tr>
<td>startup-config</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>