
NX-API

This chapter contains the following sections:

• About NX-API, on page 1
• Using NX-API, on page 4

About NX-API
NX-API is an enhancement to the Cisco MDS 9000 Series CLI system. NX-API improves the accessibility
of the CLIs that are run on the CiscoMDS 9000 devices by making them available outside the switch by using
HTTP or HTTPS. CLIs are encoded into the HTTP or HTTPS POST body. NX-API supports certain show
commands, and configuration commands that are noninteractive.

A noninteractive command is a command that does not prompt the user to enter an input from the keyboard
to proceed further.

Note

NX-API supports XML, JSON, and JSON-RPC formats for commands and their outputs.

You can use any REST-based tool to interact with a CiscoMDS device. You can also use your own web-based
mobile tool that supports sending and receiving HTTP or HTTPS requests and responses to interact with the
device.

NX-API Workflow
The NX-API backend uses the NGINX HTTP server. The NGINX server looks out for requests on the HTTP
port. Note that HTTPS support is not enabled by default. It has to be enabled by NX-API CLIs.

NX-API
1

Figure 1: NX-API Workflow

NX-API Performance
NX-API performance depends on the following factors:

• HTTP and HTTPS—NX-API performance on an HTTP server is better compared to that on an HTTPS
server. This is because an HTTPS server has an overhead of encrypting and decrypting data to provide
more security.

• Device (memory and process limitation)—NX-API performance is better in devices with more memory.

• Command output size—NX-API performance is better when the command outputs are smaller.

• Parsed and unparsed output of show commands—NX-API performance is better with unparsed outputs.

Message Format
• NX-API output presents information in a user-friendly format.

• NX-API does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API output of supported commands can be viewed in XML, JSON, and JSON-RPC formats.

Security
By default, NX-API uses HTTP basic authentication. All command requests must contain the username and
password of the device in the HTTP header. NX-API can also leverage HTTPS to secure and encrypt data.
An HTTPS connection provides more security over an HTTP connection.

In Cisco NX-OS Release 8.1(x), and 8.2(x), when NX-API is enabled over HTTPS, a 2K SHA-1 self-signed
certificate is created. This certificate is valid for two years. When an expired certificate is used, the browser

NX-API
2

NX-API
NX-API Performance

displays a warning about security vulnerabilities. To avoid such vulnerabilities, we recommend the use of a
CA-signed certificate. In Cisco NX-OS Release 8.3(x), the self-signed certificate expires after 24 hours. We
recommend that you use a CA-signed certificate for this release too.

NX-API is integrated into the authentication system of the supported Cisco MDS switches. Users must have
appropriate accounts (network-admin, network-operator, and so on) to access a switch through NX-API.

NX-API performs authentication through a programmable authentication module (PAM) on a switch. Use
cookies to reduce the number of PAM authentications, which in turn reduces the load on the PAM.

NX-API provides a session-based cookie, nxapi_auth when users first authenticate successfully. An nxapi_auth
cookie expires in 600 seconds (10 minutes). This value is fixed and cannot be configured. The session cookie
is used to avoid reauthentication during communication. If the session-based cookie is not included with
subsequent requests, another session-based cookie is required; this is obtained through a full authentication
process. Avoiding unnecessary use of the authentication process helps to reduce the workload of the device.

Supported Switches
NX-API is supported on the following Cisco MDS 9000 Series Switches:

• Cisco MDS 9700 Series Switches

• Cisco MDS 9250i Multiservice Fabric Switch

• Cisco MDS 9396T Multilayer Fabric Switch

• Cisco MDS 9396S Multilayer Fabric Switch

• Cisco MDS 9148T Multilayer Fabric Switch

• Cisco MDS 9148S Multilayer Fabric Switch

Limitations
• The XML output of the commands listed below will not be supported if the interface type (Fibre Channel
or Ethernet) is not explicitly specified. The XML output of these commands is supported only if a Fibre
Channel or Ethernet interface is specified in the command. For example, show interface ifid bbcredit.

• show interface

• show interface bbcredit

• show interface brief

• show interface capabilities

• show interface counters

• show interface debounce

• show interface description

• show interface detail-counters

• The XML outputs of FCIP interface related commands are not supported.

NX-API
3

NX-API
Supported Switches

For more information on platforms supported in Cisco MDS NX-OS Release 8.x, see the Cisco MDS 9000
Series Compatibility Matrix, Release 8.x.

Note

Using NX-API
The commands, command type, and output type for the Cisco MDS 9000 devices should be entered using
NX-API by encoding the parameters into the body of an HTTP or HTTPs POST. The response to a request
is returned in XML, JSON, or JSON-RPC output format.

NX-API Developer Sandbox
TheNX-API Developer Sandbox is a Cisco-developedweb-based user interface used tomakeNX-API requests
and receive responses. Requests are in the form of show commands, and noninteractive configuration
commands.

By default, NX-API is disabled. Enable NX-API with the feature nxapi command in global configuration
mode on the corresponding Cisco MDS 9000 switch. Then, enable the NX-API Developer Sandbox using the
nxapi sandbox command.

The following are the default ports for NX-API:

• HTTP: 8080

• HTTPS

• 443—for Cisco MDS NX-OS Release 8.2(1) and earlier

HTTP is enabled by default when the feature nxapi command is entered. HTTPS is not enabled by default
and can be enabled using the command shown in the following example.

The following example shows how to enable NX-API, NX-API Developer Sandbox, and how to enable HTTPS
with the relevant port for Cisco MDS NX-OS Release 8.2(1) and earlier:
switch# configure terminal
switch(config)# feature nxapi
switch(config)# nxapi sandbox
switch(config)# nxapi https port 443

The following sample outputs of the show nxapi command displays the status of NX-API, NX-API Developer
Sandbox, and the HTTP and HTTPS ports:

Cisco MDS NX-OS Release 8.2(1) and earlier
switch# show nxapi
NX-API: Enabled Sandbox: Enabled
HTTP Port: 8080 HTTPS Port: 443

Cisco MDS NX-OS Release 8.3(1) and later

To launch the NX-API Developer Sandbox, follow these steps:

NX-API
4

NX-API
Using NX-API

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/compatibility/matrix/8_x/mds_compmat_8_x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/mds9000/compatibility/matrix/8_x/mds_compmat_8_x.html

When using the NX-API Developer Sandbox, we recommend that you use Firefox Release 24.0 or later. The
browser must be installed with the latest Adobe Flash player for theCopy and Python buttons in the NX-API
Developer Sandbox to function.

Note

1. Open a browser and enter http://switch_ip_address:port-number (HTTP) or
https://switch_ip_address:port-number (HTTPS) in the address bar. The following authentication window
is displayed:
Figure 2: NX-API Developer Sandbox Authentication

2. Log in using your switch credentials.

The NX-API Developer Sandbox window is displayed.

Figure 3: NX-API Developer Sandbox

To generate an output of a command using the NX-API Developer Sandbox, follow these steps:

1. Click the Message format type (json-rpc, xml, json) in which the command output is to be displayed.
(By default, json-rpc is selected.)

NX-API
5

NX-API
NX-API Developer Sandbox

2. Click the Command type you have entered. The options differ based on theMessage format type selected.
(By default, cli is selected.)

• The bash Command type is not supported in Cisco MDS NX-OS Releases 7.x and 8.x.

• If you select the xmlMessage format, cli_show and cli_show_ascii Command types have the option to
enable the chunk mode. Check the Enable chunk mode check box to chunk large show command
outputs. To view the next chunk of the output, copy the session ID (SID) mentioned in between <sid>
and </sid> tags in the RESPONSE area and paste it in the SID box below the Enable chunk mode
check box.

Note

3. Enter the command in the space provided (1, in figure below).

4. The command that you entered is displayed in the selected Message format in the REQUEST area (7, in
figure below).

• To copy the data populated in the REQUEST area, click Copy.

• To generate a Python code for the command entered, click Python.

The xmlMessage format does not support the Python button.Note

5. Click POST to generate the output of the command.

The output of the command is displayed in the RESPONSE area (10, in figure below).

• To copy the data populated in the RESPONSE area, click Copy.

To clear the command and the corresponding output, and reset the page, click Reset.

NX-API
6

NX-API
NX-API Developer Sandbox

Figure 4: NX-API Developer Sandbox with Example Request and Output Response

Command type6Command entry1

REQUEST7POST2

Copy8Reset3

Python9Output Schema4

RESPONSE10Message format5

Example: Displaying NX-API Status

The following example displays the NX-API status:

XML Format
show nxapi

Request:
<?xml version="1.0"?>
<ins_api>
<version>1.2</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>show nxapi</input>
<output_format>xml</output_format>

</ins_api>

NX-API
7

NX-API
NX-API Developer Sandbox

Response:
<ins_api>
<type>cli_show</type>
<version>1.2</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<nxapi_status>Enabled</nxapi_status>
<sandbox_status>Enabled</sandbox_status>
<http_port>8080</http_port>
</body>
<input>show nxapi</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

JSON Format
show nxapi

Request:
{
"ins_api": {
"version": "1.2",
"type": "cli_show",
"chunk": "0",
"sid": "1",
"input": "show nxapi",
"output_format": "json"

}
}

Response:
{
"ins_api": {
"type": "cli_show",
"version": "1.2",
"sid": "eoc",
"outputs": {
"output": {
"input": "show nxapi",
"msg": "Success",
"code": "200",
"body": {
"nxapi_status": "Enabled",
"sandbox_status": "Enabled",
"http_port": "8080"

}
}

}
}

}

JSON-RPC Format
show nxapi

NX-API
8

NX-API
NX-API Developer Sandbox

Request:
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show nxapi",
"version": 1.2

},
"id": 1

}
]

Response:
{
"jsonrpc": "2.0",
"result": {
"body": {
"nxapi_status": "Enabled",
"sandbox_status": "Enabled",
"http_port": "8080"

}
},
"id": 1

}

Example: Configuring VSAN to VLAN Mapping

The following example shows how to configure VSAN to VLAN mapping in global configuration mode
(cli_conf):
vlan 3
fcoe vsan 3
vsan database
vsan 3
vsan 3 interface vfc1/8

Request:
<?xml version="1.0"?>
<ins_api>
<version>1.2</version>
<type>cli_conf</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>vlan 3 ;fcoe vsan 3 ;vsan database ;vsan 3 ;vsan 3 interface vfc1/8</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_conf</type>
<version>1.2</version>
<sid>eoc</sid>
<outputs>
<output>
<body/>
<input>vlan 3</input>
<code>200</code>

NX-API
9

NX-API
NX-API Developer Sandbox

<msg>Success</msg>
</output>
<output>
<body/>
<input>fcoe vsan 3</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>vsan database</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>vsan 3</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>vsan 3 interface vfc1/8</input>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

Example: Configuring Zones and Zonesets

The following example shows how to configure a zone in global configuration mode (cli_conf):
zone name zone2 vsan 1
member pwwn 10:00:00:23:45:67:89:ab
member pwwn 10:00:00:23:45:67:89:cd

Request:
<?xml version="1.0"?>
<ins_api>
<version>1.2</version>
<type>cli_conf</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>zone name zone2 vsan 1 ;member pwwn 10:00:00:23:45:67:89:ab ;member pwwn

10:00:00:23:45:67:89:cd</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_conf</type>
<version>1.2</version>
<sid>eoc</sid>
<outputs>
<output>
<body/>
<input>zone name zone2 vsan 1</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>

NX-API
10

NX-API
NX-API Developer Sandbox

<body/>
<input>member pwwn 10:00:00:23:45:67:89:ab</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>member pwwn 10:00:00:23:45:67:89:cd</input>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

The following example shows how to configure a zoneset in global configuration mode (cli_conf):
zoneset name Zoneset1 vsan 1
member zone2
zoneset activate name Zoneset1 vsan 1

Request:
<?xml version="1.0"?>
<ins_api>
<version>1.2</version>
<type>cli_conf</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>zoneset name Zoneset1 vsan 1 ;member zone2 ;zoneset activate name Zoneset1 vsan

1</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_conf</type>
<version>1.2</version>
<sid>eoc</sid>
<outputs>
<output>
<body/>
<input>zoneset name Zoneset1 vsan 1</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body/>
<input>member zone2</input>
<code>200</code>
<msg>Success</msg>

</output>
<output>
<body>Zoneset activation initiated. check zone status

</body>
<input>zoneset activate name Zoneset1 vsan 1</input>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

To check if a particular show command is NX-API-aware, enter the command along with | xml on the switch:

command | xml

NX-API
11

NX-API
NX-API Developer Sandbox

If the command is NX-API-aware, the resulting output is in XML format:
switch# show device-alias merge status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos::ddas">
<nf:data>
<show>
<device-alias>
<merge>
<status>
<__readonly__>
<result>None</result>
<reason>None</reason>
</__readonly__>
</status>
</merge>
</device-alias>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch#

Even if a show command is not NX-API-aware, you can still view the output in ASCII format on the NX-API
Developer Sandbox by selecting the cli_show_ascii command type on the interface.

Note

NX-API Request Elements
NX-API request elements (7, in Figure 4: NX-API Developer Sandbox with Example Request and Output
Response) are sent to a device in XML, JSON, or JSON-RPC formats. The HTTP header of the request must
identify the content type of the request.

A lock will be released by the system if the session that holds the lock is terminated for any reason. The session
that acquired the lock can only perform necessary configurations.

Note

Table 1: NX-API Request Elements

DescriptionNX-API Request Element

Specifies the NX-API version.version

NX-API
12

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Specifies the command type to be executed.

The following command types are supported:

• cli—CLI configuration commands.

CLI show commands that expect structured output. If the command
does not support XML output, an error message is returned.

• cli_ascii—CLI configuration commands.

CLI show commands that expect ASCII output. This aligns with
existing scripts that parse ASCII output. Users can use existing
scripts with minimal changes.

• cli_show—CLI show commands that expect structured output. If
the command does not support XML output, an error message is
returned.

• cli_show_ascii—CLI show commands that expect ASCII output.
This aligns with existing scripts that parse ASCII output. Users
can use existing scripts with minimal changes.

• cli_conf—CLI configuration commands.

Note • Each command is executable only with the current user's
authority.

• A maximum of 10 consecutive show commands are
supported. If the number of show commands exceeds
10, the 11th and subsequent commands are ignored.

• No interactive commands are supported.

type

Some show commands, for example, show zone, can return a large
amount of output. For an NX-API client to start processing the output
before the entire command completes, NX-API supports output chunking
for show commands.

Note • Only show commands support chunking.When a series
of show commands are entered, only the first command
is chunked and returned.

The output message format is XML,which is the default.
Special characters, such as < or >, are converted to form
a valid XML message (< is converted to < > is
converted to >).

You can use XML SAX to parse the chunked output.

• When chunking is enabled, themessage format is limited
to XML. JSON output format is not supported when
chunking is enabled.

chunk

NX-API
13

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

The session ID element is valid only when the response message is
chunked. To retrieve the next chunk of the message, you must specify
a sid to match the sid of the previous response message.

sid

Input can be one command or multiple commands. However, commands
that belong to different message types should not bemixed. For example,
show commands belong to the cli_show message format and are not
supported in cli_conf message format.

Multiple commands are separated with a semicolon (;). (The
; must be surrounded with single blank characters.)

Note

The following are examples of multiple commands:

• cli_show

show version ; show interface brief ; show vlan

• cli_conf

interface Eth4/1 ; no shut ; switchport

input

The available output message formats are:

• xml—Specifies output in XML format.

• json—Specifies output in JSON format.

• json-rpc—Specifies output in JSON-RPC format.

The Cisco MDS 9000 device CLI supports XML output,
which means that the JSON output is converted from XML.
The conversion is processed on the switch.

To manage computational overhead, the JSON output is
determined by the amount of output. If the output exceeds 1
MB, the output is returned in XML format. When the output
is chunked, only XML output is supported.

The content-type header in the HTTP or HTTPS headers
indicate the type of response format (XML, JSON, or
JSON-RPC).

Note

output_format

NX-API Response Elements
The NX-API elements (10, in Figure 4: NX-API Developer Sandbox with Example Request and Output
Response) that respond to a CLI command are listed in the following table:

NX-API
14

NX-API
NX-API Response Elements

Figure 5: NX-API Response Elements

Table 2: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

When multiple commands are either of cli_show or cli_show_ascii
command type, each command output is enclosed by a single output tag.

When the command type is cli_conf, there is a single output tag for all the
commands because cli_conf commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf command type, this element contains the outputs of all the
commands.

output

Tag that encloses a single command specified in the request. This element
helps associate a request input element with the appropriate response output
element.

input

Body of the command response.body

Error code returned from command execution.

NX-API uses standard HTTP error codes as described by the HTTP Status
Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

Table of NX-API Response Codes

The following are the possible NX-API errors, error codes, and messages pertaining to an NX-API response.

Table 3: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Chunking allowed only to one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

NX-API
15

NX-API
Table of NX-API Response Codes

http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

Request message is invalid.400IN_MSG_ERR

No input command.400NO_INPUT_CMD_ERR

Permission denied.401PERM_DENY_ERR

Configuration mode does not allow show
command .

405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Backend processing error.500BACKEND_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error.500LIBXML_NS_ERR

System internal LIBXML parse error.500LIBXML_PARSE_ERR

System internal LIBXML path context error.500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

JSON not supported due to large amount of
output.

501JSON_NOT_SUPPORTED_ERR

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Pipe operation not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML is not allowed in input.501PIPE_XML_NOT_ALLOWED_IN_INPUT

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Undefined.600ERR_UNDEFINED

NX-API Management Commands
You can enable and manage NX-API on your Cisco MDS switch with the commands listed in the following
table.

NX-API
16

NX-API
NX-API Management Commands

Table 4: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port-number

Disables HTTP or HTTPS.no nxapi {http | https}

Displays port information.show nxapi

Specifies the upload of the following:

• HTTPS certificate when certpath is specified.

• HTTPS key when keypath is specified.

nxapi certificate certpath key keypath

NX-API
17

NX-API
NX-API Management Commands

NX-API
18

NX-API
NX-API Management Commands

	NX-API
	About NX-API
	NX-API Workflow
	NX-API Performance
	Message Format
	Security
	Supported Switches
	Limitations

	Using NX-API
	NX-API Developer Sandbox
	NX-API Request Elements
	NX-API Response Elements
	Table of NX-API Response Codes

	NX-API Management Commands

