Configuring IPv4 for Gigabit Ethernet Interfaces

Cisco MDS 9000 Family switches support IP version 4 (IPv4) on Gigabit Ethernet interfaces. This chapter describes how to configure IPv4 addresses and other IPv4 features.

This chapter includes the following topics:

- Information About IPv4, page 7-1
- Licensing Requirements for IPv4 for Gigabit Ethernet Interfaces, page 7-3
- Guidelines and Limitations, page 7-4
- Default Settings, page 7-4
- Configuring IPv4, page 7-4
- Verifying IPv4 Configuration, page 7-9
- Configuration Examples for IPV4, page 7-11
- Additional References, page 7-12

Information About IPv4

Cisco MDS 9000 Family supports IP version 4 (IPv4) on Gigabit Ethernet interfaces. Both FCIP and iSCSI rely on TCP/IP for network connectivity. On each IPS module or MPS-14/2 module, connectivity is provided in the form of Gigabit Ethernet interfaces that are appropriately configured.

A new port mode, called IPS, is defined for Gigabit Ethernet ports on each IPS module or MPS-14/2 module. IP storage ports are implicitly set to IPS mode, so it can only be used to perform iSCSI and FCIP storage functions. IP storage ports do not bridge Ethernet frames or route other IP packets.

Each IPS port represents a single virtual Fibre Channel host in the Fibre Channel SAN. All the iSCSI hosts connected to this IPS port are merged and multiplexed through the single Fibre Channel host.

Note

The Gigabit Ethernet interfaces on the MPS-14/2 module do not support EtherChannel.

Both FCIP and iSCSI rely on TCP/IP for network connectivity. On each IPS module or MPS-14/2 module, connectivity is provided in the form of Gigabit Ethernet interfaces that are appropriately configured. This section covers the steps required to configure IP for subsequent use by FCIP and iSCSI.

Note

For information about configuring FCIP, see Chapter 2, “Configuring FCIP.” For information about configuring iSCSI, see Chapter 4, “Configuring iSCSI.”

Text Part Number:
Information About IPv4

A new port mode, called IPS, is defined for Gigabit Ethernet ports on each IPS module or MPS-14/2 module. IP storage ports are implicitly set to IPS mode, so it can only be used to perform iSCSI and FCIP storage functions. IP storage ports do not bridge Ethernet frames or route other IP packets.

Each IPS port represents a single virtual Fibre Channel host in the Fibre Channel SAN. All the iSCSI hosts connected to this IPS port are merged and multiplexed through the single Fibre Channel host.

In large scale iSCSI deployments where the Fibre Channel storage subsystems do not require explicit LUN access control for every host device, use of proxy-initiator mode simplifies the configuration.

Note

The Gigabit Ethernet interfaces on the MPS-14/2 module do not support EtherChannel.

Note

To configure IPv6 on a Gigabit Ethernet interface, see the “Configuring IPv6 Addressing and Enabling IPv6 Routing” section on page 8-14.

Tip

Gigabit Ethernet ports on any IPS module or MPS-14/2 module should not be configured in the same Ethernet broadcast domain as the management Ethernet port. They should be configured in a different broadcast domain, either by using separate standalone hubs or switches or by using separate VLANs.

This section includes the following topics:

- Interface Descriptions, page 7-2
- Beacon Mode, page 7-2
- About VLANs for Gigabit Ethernet, page 7-2
- Interface Subnet Requirements, page 7-3

Interface Descriptions

See the Interfaces Configuration Guide, Cisco DCNM for SAN Cisco MDS 9000 Family NX-OS Interfaces Configuration Guide for details on configuring the switch port description for any interface.

Beacon Mode

See the Interfaces Configuration Guide, Cisco DCNM for SAN Cisco MDS 9000 Family NX-OS Interfaces Configuration Guide for details on configuring the beacon mode for any interface.

About VLANs for Gigabit Ethernet

Virtual LANs (VLANs) create multiple virtual Layer 2 networks over a physical LAN network. VLANs provide traffic isolation, security, and broadcast control.

Gigabit Ethernet ports automatically recognize Ethernet frames with IEEE 802.1Q VLAN encapsulation. If you need to have traffic from multiple VLANs terminated on one Gigabit Ethernet port, configure subinterfaces—one for each VLAN.
Chapter 7  Configuring IPv4 for Gigabit Ethernet Interfaces

Send documentation comments to dcnm-san-docfeedback@cisco.com

Note

If the IPS module or MPS-14/2 module is connected to a Cisco Ethernet switch, and you need to have traffic from multiple VLANs coming to one IPS port, verify the following requirements on the Ethernet switch:

- The Ethernet switch port connected to the IPS module or MPS-14/2 module is configured as a trunking port.
- The encapsulation is set to 802.1Q and not ISL, which is the default.

Use the VLAN ID as a subscription to the Gigabit Ethernet interface name to create the subinterface name:

slot-number / port-number.VLAN-ID

Interface Subnet Requirements

Gigabit Ethernet interfaces (major), subinterfaces (VLAN ID), and management interfaces (mgmt 0) can be configured in the same or different subnet depending on the configuration (see Table 7-1).

<table>
<thead>
<tr>
<th>Table 7-1  Subnet Requirements for Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface 1</td>
</tr>
<tr>
<td>Gigabit Ethernet 1/1</td>
</tr>
<tr>
<td>Gigabit Ethernet 1/1.100</td>
</tr>
<tr>
<td>Gigabit Ethernet 1/1.100</td>
</tr>
<tr>
<td>Gigabit Ethernet 1/1</td>
</tr>
<tr>
<td>mgmt0</td>
</tr>
</tbody>
</table>

Note

The configuration requirements in Table 7-1 also apply to Ethernet PortChannels.

Licensing Requirements for IPv4 for Gigabit Ethernet Interfaces

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>License</th>
<th>License Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise package (ENTERPRISE_PKG)</td>
<td>It comprises IPsec and IKE for IPv4.</td>
</tr>
</tbody>
</table>
Guidelines and Limitations

Follow these guidelines when configuring IPv4-ACLs for Gigabit Ethernet interfaces:

- Only use Transmission Control Protocol (TCP) or Internet Control Message Protocol (ICMP).

**Note**

Other protocols such as User Datagram Protocol (UDP) and HTTP are not supported in Gigabit Ethernet interfaces. Applying an ACL that contains rules for these protocols to a Gigabit Ethernet interface is allowed but those rules have no effect.

- Apply IPv4-ACLs to the interface before you enable an interface. This ensures that the filters are in place before traffic starts flowing.

- Be aware of the following conditions:
  - If you use the log-deny option, a maximum of 50 messages are logged per second.
  - The established option is ignored when you apply IPv4-ACLs containing this option to Gigabit Ethernet interfaces.
  - If an IPv4-ACL rule applies to a pre-existing TCP connection, that rule is ignored. For example if there is an existing TCP connection between A and B and an IPv4-ACL which specifies dropping all packets whose source is A and destination is B is subsequently applied, it will have no effect.

**Tip**

If IPv4-ACLs are already configured in a Gigabit Ethernet interface, you cannot add this interface to an Ethernet PortChannel group.

Default Settings

Table 7-2 lists the default settings for IPv4 parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 MTU frame size</td>
<td>1500 bytes for all Ethernet ports</td>
</tr>
<tr>
<td>Autonegotiation</td>
<td>Enabled</td>
</tr>
<tr>
<td>Promiscuous mode</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Configuring IPv4

This section includes the following topics:

- Configuring Gigabit Ethernet Interface, page 7-5
- Configuring Autonegotiation, page 7-5
- Configuring the MTU Frame Size, page 7-6
- Configuring Promiscuous Mode, page 7-7
Configuring Gigabit Ethernet Interface

Detailed Steps

To configure the Gigabit Ethernet interface, follow these steps:

---

**Step 1**
Expand **Switches > Interfaces > Ethernet > IPS**.
You see the Gigabit Ethernet Configuration in the Information pane.

**Step 2**
Click the **IP Addresses** tab.

**Step 3**
Click **Create Row**.
You see the Create Gigabit Ethernet Interface dialog box.

**Step 4**
Select the switch on which you want to create the Gigabit Ethernet interface.

**Step 5**
Enter the interface. For example, 2/2 for slot 2, port 2.

**Step 6**
Enter the IPv4 address (10.1.1.100) and subnet mask (255.255.255.0).

**Step 7**
Click **Create** to save these changes or click **Close** to discard any unsaved changes.

---

Configuring Autonegotiation

By default, autonegotiation is enabled all Gigabit Ethernet interface. You can enable or disable autonegotiation for a specified Gigabit Ethernet interface. When autonegotiation is enabled, the port automatically detects the speed or pause method, and duplex of incoming signals based on the link partner. You can also detect link up conditions using the autonegotiation feature.

Detailed Steps

To configure autonegotiation, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
switch# config terminal
switch(config)# | Enters configuration mode. |
| **Step 2**
switch(config)# interface gigabitethernet 2/2
switch(config-if)# | Enters the interface configuration mode on the Gigabit Ethernet interface (slot 2, port 2). |
| **Step 3**
switch(config-if)# switchport auto-negotiate | Enables autonegotiation for this Gigabit Ethernet interface (default). |
| | Disables autonegotiation for this Gigabit Ethernet interface. |
To configure autonegotiation, follow these steps:

**Step 1**
Expand **Switches > Interfaces > Ethernet > IPS**.
You see the Gigabit Ethernet Configuration in the Information pane.

**Step 2**
In the General tab, you can enable or disable the Auto Negotiate option for a specific switch.

**Step 3**
Click **Apply Changes**.

---

## Configuring the MTU Frame Size

You can configure the interfaces on a switch to transfer large (or jumbo) frames on a port. The default IP maximum transmission unit (MTU) frame size is 1500 bytes for all Ethernet ports. By configuring jumbo frames on a port, the MTU size can be increased up to 9000 bytes.

**Note**

The minimum MTU size is 576 bytes.

**Tip**

MTU changes are disruptive, all FCIP links and iSCSI sessions flap when the software detects a change in the MTU size.

You do not need to explicitly issue the `shutdown` and `no shutdown` commands.

### Detailed Steps

To configure the MTU frame size, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
  `switch# config terminal`
  `switch(config)#`                      | Enters configuration mode.                        |
| **Step 2**
  `switch(config)# interface gigabitethernet 2/2`
  `switch(config-if)#`                     | Enters the interface configuration mode on the Gigabit Ethernet interface (slot 2, port 2). |
| **Step 3**
  `switch(config-if)# switchport mtu 3000` | Changes the MTU size to 3000 bytes. The default is 1500 bytes. |

To configure the MTU frame size, follow these steps:

**Step 1**
Expand **Switches > Interfaces > Ethernet > IPS**.
You see the Gigabit Ethernet Configuration in the Information pane.

**Step 2**
In the General tab, in the Mtu column, you can enter a new value to configure the MTU Frame Size for a specific switch. For example 3000 bytes. The default is 1500 bytes.

**Step 3**
Click **Apply Changes**.
Configuring Promiscuous Mode

You can enable or disable promiscuous mode on a specific Gigabit Ethernet interface. By enabling the promiscuous mode, the Gigabit Ethernet interface receives all the packets and the software then filters and discards the packets that are not destined for that Gigabit Ethernet interface.

**Detailed Steps**

To configure the promiscuous mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 \[switch\# config terminal\]
| switch(config)#                                                      | Enters configuration mode.                                              |
| Step 2 \[switch(config)# interface gigabitethernet 2/2\]
| switch(config-if)#                                                   | Enters the interface configuration mode on the Gigabit Ethernet interface (slot 2, port 2). |
| Step 3 \[switch(config-if)# switchport promiscuous-mode on\]          | Enables promiscuous mode for this Gigabit Ethernet interface. The default is off. |
| switch(config-if)# switchport promiscuous-mode off                   | Disables (default) promiscuous mode for this Gigabit Ethernet interface. |
| switch(config-if)# no switchport promiscuous-mode                    | Disables (default) the promiscuous mode for this Gigabit Ethernet interface. |

To configure the promiscuous mode, follow these steps:

**Step 1**

Expand **Switches > Interfaces > Ethernet > IPS**.

You see the Gigabit Ethernet Configuration in the Information pane.

**Step 2**

In the General tab, you can enable or disable the Promiscuous Mode option for a specific switch.

**Step 3**

Click **Apply Changes**.

---

**Configuring the VLAN Subinterface**

**Detailed Steps**

To configure a VLAN subinterface (VLAN ID), follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 \[switch# config terminal\]
| switch(config)#                                                      | Enters configuration mode.                                              |
| Step 2 \[switch(config)# interface gigabitethernet 2/2.100\]          | Specifies the subinterface on which 802.1Q is used (slot 2, port 2, VLAN ID 100). |
| switch(config-if)#                                                    | Note: The subinterface number, 100 in this example, is the VLAN ID. The VLAN ID ranges from 1 to 4093. |

Note: The subinterface number, 100 in this example, is the VLAN ID. The VLAN ID ranges from 1 to 4093.
## Configuring IPv4

### Configuring IPv4 for Gigabit Ethernet Interfaces

#### Configuring IPv4 through Device Manager:

To configure a VLAN subinterface (VLAN ID) using Device Manager, follow these steps:

1. Select **Interface > Ethernet and iSCSI**.
2. Click the **Sub Interfaces** tab.
3. Select the Gigabit Ethernet subinterface on which 802.1Q should be used.
4. Click the **Edit IP Address** button.
5. Enter the IPv4 address and subnet mask for the Gigabit Ethernet interface.
6. Click **Create** to save the changes or you may click **Close**.

#### Additional Steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-if)# ip address 10.1.1.101 255.255.255.0</td>
<td>Enters the IPv4 address (10.1.1.101) and subnet mask (255.255.255.0) for the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td>switch(config-if)# no shutdown</td>
<td>Enables the interface.</td>
</tr>
</tbody>
</table>

#### Configuring Static IPv4 Routing

**Detailed Steps**

To configure static IPv4 routing (see Figure 7-1) through the Gigabit Ethernet interface, follow these steps:

1. Enters configuration mode.
2. Enters the IP subnet (10.100.1.0 255.255.255.0) of the IP host and configures the next hop 10.1.1.1, which is the IPv4 address of the router connected to the Gigabit Ethernet interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# config terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>switch(config)# ip route</td>
<td>Enters the IP subnet (10.100.1.0 255.255.255.0) of the IP host and configures the next hop 10.1.1.1, which is the IPv4 address of the router connected to the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td>10.100.1.0 255.255.255.0 10.1.1.1</td>
<td></td>
</tr>
</tbody>
</table>

#### Applying IPv4-ACLs on Gigabit Ethernet Interfaces

**Detailed Steps**

To apply an IPv4-ACL on a Gigabit Ethernet interface, follow these steps:

1. Enters configuration mode.
2. Configures a Gigabit Ethernet interface (3/1).

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)# interface gigabitethernet 3/1</td>
<td>Configures a Gigabit Ethernet interface (3/1).</td>
</tr>
</tbody>
</table>
Chapter 7 Configuring IPv4 for Gigabit Ethernet Interfaces

### Verifying IPV4 Configuration

To display IPv4 configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping 10.100.1.25</td>
<td>Verifies gigabit ethernet connectivity.</td>
</tr>
<tr>
<td>show ips ip route interface gig 8/1</td>
<td>Displays the IP route table.</td>
</tr>
<tr>
<td>show ips arp interface gigabitethernet 7/1</td>
<td>Displays ARP caches.</td>
</tr>
<tr>
<td>clear ips arp address 10.2.2.2 interface gigabitethernet 8/7</td>
<td>Clears one ARP cache entry.</td>
</tr>
<tr>
<td>clear ips arp interface gigabitethernet 8/7</td>
<td>Clears all ARP cache entries.</td>
</tr>
<tr>
<td>show ips stats ip interface gigabitethernet 4/1</td>
<td>Displays IPv4 statistics.</td>
</tr>
</tbody>
</table>

### Clearing ARP Cache

**Detailed Steps**

The ARP cache can be cleared in two ways: clearing just one entry or clearing all entries in the ARP cache.

Use the `clear ips arp` command to clear the ARP cache. See Example 7-1 and Example 7-2.

**Examples**

**Example 7-1  Clearing One ARP Cache Entry**

```
switch# clear ips arp address 10.2.2.2 interface gigabitethernet 8/7
arp clear successful
```

**Example 7-2  Clearing All ARP Cache Entries**

```
switch# clear ips arp interface gigabitethernet 8/7
arp clear successful
```
Verifying IPV4 Configuration

Send documentation comments to dcnm-san-docfeedback@cisco.com

This section includes the following topics:

- Verifying Gigabit Ethernet Connectivity, page 7-10
- Displaying the IPv4 Route Table, page 7-10
- Displaying ARP Cache, page 7-11
- Displaying IPv4 Statistics, page 7-11

Verifying Gigabit Ethernet Connectivity

Once the Gigabit Ethernet interfaces are connected with valid IP addresses, verify the interface connectivity on each switch. Ping the IP host using the IP address of the host to verify that the static IP route is configured correctly.

Note

If the connection fails, verify the following, and ping the IP host again:
- The IP address for the destination (IP host) is correctly configured.
- The host is active (powered on).
- The IP route is configured correctly.
- The IP host has a route to get to the Gigabit Ethernet interface subnet.
- The Gigabit Ethernet interface is in the up state.

Use the ping command to verify the Gigabit Ethernet connectivity (see Example 7-3). The ping command sends echo request packets out to a remote device at an IP address that you specify (see the “Using the ping and ping ipv6 Commands”).

Use the show interface gigabitethernet command to verify if the Gigabit Ethernet interface is up.

Example 7-3  Verifying Gigabit Ethernet Connectivity

switch# ping 10.100.1.25
PING 10.100.1.25 (10.100.1.25): 56 data bytes
64 bytes from 10.100.1.25: icmp_seq=0 ttl=255 time=0.1 ms
64 bytes from 10.100.1.25: icmp_seq=1 ttl=255 time=0.1 ms
64 bytes from 10.100.1.25: icmp_seq=2 ttl=255 time=0.1 ms
--- 10.100.1.25 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.1/0.1 ms

Displaying the IPv4 Route Table

The ip route interface command takes the Gigabit Ethernet interface as a parameter and returns the route table for the interface. See Example 7-4.

Example 7-4  Displays the IP Route Table

switch# show ips ip route interface gig 8/1
Codes: C - connected, S - static
No default gateway
C 10.1.3.0/24 is directly connected, GigabitEthernet8/1

Connected (C) identifies the subnet in which the interface is configured (directly connected to the interface). Static (S) identifies the static routes that go through the router.
Displaying ARP Cache

You can display the ARP cache on Gigabit Ethernet interfaces.

Note
Use the physical interface, not the subinterface, for all ARP cache commands.

Use the `show ips arp interface gigabitethernet` command to display the ARP cache on the Gigabit Ethernet interfaces. This command takes the Ethernet interface as a parameter and returns the ARP cache for that interface. See Example 7-5.

Example 7-5  Displays ARP Caches

```
switch# show ips arp interface gigabitethernet 7/1
Protocol       Address   Age (min)   Hardware Addr  Type      Interface
Internet       20.1.1.5        3     0005.3000.9db6  ARPA  GigabitEthernet7/1
Internet       20.1.1.10       7     0004.76eb.2ff5  ARPA  GigabitEthernet7/1
Internet       20.1.1.11       16     0003.47ad.21c4  ARPA  GigabitEthernet7/1
Internet       20.1.1.12       6     0003.4723.c4a6  ARPA  GigabitEthernet7/1
Internet       20.1.1.13       13     0004.76f0.ef81  ARPA  GigabitEthernet7/1
Internet       20.1.1.14       0     0004.76e0.2f68  ARPA  GigabitEthernet7/1
Internet       20.1.1.15       6     0003.47b2.494b  ARPA  GigabitEthernet7/1
Internet       20.1.1.17       2     0003.479a.b7a3  ARPA  GigabitEthernet7/1
...
```

Displaying IPv4 Statistics

Use the `show ips stats ip interface gigabitethernet` to display and verify IPv4 statistics. This command takes the main Ethernet interface as a parameter and returns the IPv4 statistics for that interface. See Example 7-6.

Note
Use the physical interface, not the subinterface, to display IPv4 statistics.

Example 7-6  Displays IPv4 Statistics

```
switch# show ips stats ip interface gigabitethernet 4/1
Internet Protocol Statistics for port GigabitEthernet4/1
  168 total received, 168 good, 0 error
  0 reassembly required, 0 reassembled ok, 0 dropped after timeout
  371 packets sent, 0 outgoing dropped, 0 dropped no route
  0 fragments created, 0 cannot fragment
```

Configuration Examples for IPV4

Figure 7-1 shows an example of a basic Gigabit Ethernet IP version 4 (IPv4) configuration.
The port on the Ethernet switch to which the MDS Gigabit Ethernet interface is connected should be configured as a host port (also known as access port) instead of a switch port. Spanning tree configuration for that port (on the Ethernet switch) should be disabled. This helps avoid the delay in the management port coming up due to delay from Ethernet spanning tree processing that the Ethernet switch would run if enabled. For Cisco Ethernet switches, use either the switchport host command in Cisco IOS or the set port host command in the Catalyst OS.

To configure the Gigabit Ethernet interface for the example in Figure 7-1, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1  | switch# config terminal  
          switch(config)# | Enters configuration mode. |
| Step 2  | switch(config)# interface gigabitethernet 2/2  
          switch(config-if)# | Enters the interface configuration mode on the Gigabit Ethernet interface (slot 2, port 2). |
| Step 3  | switch(config-if)# ip address 10.1.1.100  
          255.255.255.0 | Enters the IPv4 address (10.1.1.100) and subnet mask (255.255.255.0) for the Gigabit Ethernet interface. |
| Step 4  | switch(config-if)# no shutdown | Enables the interface. |

Additional References

For additional information related to implementing FCIPs, see the following section:

- Related Document, page 7-13
- Standards, page 7-13
- RFCs, page 7-13
Send documentation comments to dcnm-san-docfeedback@cisco.com

- MIBs, page 7-13

## Related Document

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco MDS 9000 Family Command Reference</td>
<td>Cisco MDS 9000 Family Command Reference, Release 5.0(1a)</td>
</tr>
</tbody>
</table>

## Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>–</td>
</tr>
</tbody>
</table>

## RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified.</td>
<td>–</td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-IETF-VRRP-MIB</td>
<td>To locate and download MIBs, go to the following URL: <a href="http://www.cisco.com/dc-os/mibs">http://www.cisco.com/dc-os/mibs</a></td>
</tr>
</tbody>
</table>
Additional References

Send documentation comments to dcnm-san-docfeedback@cisco.com