Cisco Fabric Manager Inter-VSAN Routing Configuration Guide

Cisco Fabric Manager Release 5.0(1a)
February 2010
CONTENTS

New and Changed Information vii

Preface ix
 Audience ix
 Organization ix
 Document Conventions ix
 Related Documentation x
 Release Notes x
 Regulatory Compliance and Safety Information x
 Compatibility Information xi
 Hardware Installation xi
 Software Installation and Upgrade xi
 Cisco NX-OS xi
 Cisco Fabric Manager xii
 Command-Line Interface xii
 Intelligent Storage Networking Services Configuration Guides xii
 Troubleshooting and Reference xii
 Obtaining Documentation and Submitting a Service Request xiii

CHAPTER 1 Basic Inter-VSAN Routing Configuration 1-1
 About Inter-VSAN Routing 1-1
 IVR Features 1-2
 IVR Terminology 1-3
 IVR Configuration Limits 1-4
 Fibre Channel Header Modifications 1-4
 IVR Network Address Translation 1-4
 IVR VSAN Topology 1-5
 IVR Interoperability 1-5
 Basic IVR Configuration Task List 1-5
 Basic IVR Configuration 1-6
 Configuring IVR and IVR Zones Using the IVR Zone Wizard 1-6
 Enabling IVR 1-8
 Distributing the IVR Configuration Using CFS 1-8
 Database Implementation 1-9
 Locking the Fabric 1-9
Contents

Committing the Changes 1-9
Discarding the Changes 1-9
Clearing a Locked Session 1-9
About IVR NAT and IVR Auto Topology Mode 1-10
IVR NAT Requirements and Guidelines 1-10
Transit VSAN Guidelines 1-11
Border Switch Guidelines 1-12
Enabling IVR NAT and IVR Auto Topology Mode 1-12
IVR Virtual Domains 1-13
Clearing an IVR fcdomain Database 1-13
IVR Zones and IVR Zone Sets 1-14
About IVR Zones 1-14
IVR Zone Limits and Image Downgrading Considerations 1-14
Automatic IVR Zone Creation 1-15
Configuring IVR Zones and IVR Zone Sets 1-16
About Activating Zone Sets and Using the force Option 1-19
Activating or Deactivating IVR Zone Sets 1-20
Recovering an IVR Full Zone Database 1-21
Recovering an IVR Topology 1-22
IVR Logging 1-22
Configuring IVR Logging Severity Levels 1-22
Database Merge Guidelines 1-23
Resolving Database Merge Failures 1-25
Default Settings 1-26

Advanced Inter-VSAN Routing Configuration 2-1
Advanced IVR Configuration Task List 2-1
Advanced IVR Configuration 2-2
IVR Service Groups 2-2
Service Group Guidelines 2-2
Default Service Group 2-3
Service Group Activation 2-3
Configuring IVR Service Groups 2-3
Autonomous Fabric IDs 2-4
Autonomous Fabric ID Guidelines 2-4
Configuring Default AFIDs 2-5
Configuring Individual AFIDs 2-5
IVR Without IVR NAT or IVR Auto Topology Mode 2-6
IVR Without IVR NAT or IVR Auto Topology Guidelines 2-6
Send documentation comments to fm-docfeedback@cisco.com

Domain ID Guidelines 2-6
Transit VSAN Guidelines 2-7
Border Switch Guidelines 2-7
Configuring IVR Without NAT 2-7
Manually Configuring and Activating an IVR Topology 2-8
Manual Configuration Guidelines 2-8
Manually Configuring an IVR Topology 2-9
Activating a Manually Configured IVR Topology 2-10
Working with Existing IVR Topologies 2-10
Clearing a Manually Configured IVR Topology Database 2-10
Migrating from IVR Auto Topology Mode to IVR Manual Topology Mode 2-11
Persistent FC IDs for IVR 2-11
FC ID Features and Benefits 2-12
FC ID Guidelines 2-12
Configuring Persistent FC IDs for IVR 2-12
Advanced IVR Zones and IVR Zone Sets 2-13
IVR Zone Configuration Guidelines 2-14
Configuring LUNs in IVR Zoning 2-14
Configuring QoS for IVR Zones 2-14
Renaming IVR Zones and IVR Zone Sets 2-15
Configuring IVR Using Read-Only Zoning 2-15
Enabling Advanced Fabric Services on IVR Flows 2-15
Configuration Guidelines and Restrictions 2-15
New and Changed Information

As of Cisco Fabric Manager Release 4.2(1), software configuration information is available in new feature-specific configuration guides for the following information:

- System management
- Interfaces
- Fabric
- Quality of service
- Security
- IP services
- High availability and redundancy

The information in these new guides previously existed in the Cisco MDS 9000 Family CLI Configuration Guide and in the Cisco MDS 9000 Family Fabric Manager Configuration Guide. Those configuration guides remain available on Cisco.com and should be used for all software releases prior to Cisco Fabric Manager Release 5.0(1a). Each guide addresses the features introduced in or available in a particular release. Select and view the configuration guide that pertains to the software installed in your switch.

For a complete list of document titles, see the list of Related Documentation in the “Preface.”

To find additional information about Cisco Fabric Manager Release 5.0(1a), see the Cisco MDS 9000 Family Release Notes available at the following Cisco Systems website:

About This Guide

The information in the new Cisco Fabric Manager Inter-VSAN Routing Configuration Guide previously existed in the Fabric Configuration section in the Cisco MDS 9000 Family Fabric Manager Configuration Guide, Release 4.2(1).
Table 1 lists the New and Changed features for this guide, starting with Cisco Fabric Manager Release 5.0(1a).

Table 1
New and Changed Features for Cisco Fabric Manager Release 5.0(1a)

<table>
<thead>
<tr>
<th>Feature</th>
<th>New or Changed Topics</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOA support</td>
<td>Updated “Enabling Advanced Fabric Services on IVR Flows” section.</td>
<td>5.0(1a)</td>
<td>Chapter 2, “Advanced Inter-VSAN Routing Configuration”</td>
</tr>
<tr>
<td>AAM support</td>
<td>Added information on AAM support and their guidelines.</td>
<td>5.01(1a)</td>
<td>Chapter 2, “Advanced Inter-VSAN Routing Configuration”</td>
</tr>
</tbody>
</table>
Preface

This preface describes the audience, organization, and conventions of the Cisco Fabric Manager Inter-VSAN Routing Configuration Guide. The preface also provides information on how to obtain related documentation.

Audience

This guide is for experienced network administrators who are responsible for planning, installing, configuring, and maintaining Cisco Inter-VSAN Routing.

Organization

This document is organized as follows:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Basic Inter-VSAN Routing Configuration</td>
<td>Presents concepts and instructions for basic IVR configurations.</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Advanced Inter-VSAN Routing Configuration</td>
<td>Presents concepts and instructions for advanced IVR configurations.</td>
</tr>
</tbody>
</table>

Document Conventions

Command descriptions use these conventions:

<table>
<thead>
<tr>
<th>boldface font</th>
<th>Commands and keywords are in boldface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>italic font</td>
<td>Arguments for which you supply values are in italics.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
</tbody>
</table>
Screen examples use these conventions:

<table>
<thead>
<tr>
<th>Font Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen font</td>
<td>Terminal sessions and information the switch displays are in screen font.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Arguments for which you supply values are in italic screen font.</td>
</tr>
<tr>
<td><code>< ></code></td>
<td>Nonprinting characters, such as passwords, are in angle brackets.</td>
</tr>
<tr>
<td><code>[]</code></td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td><code>!</code>, <code>#</code></td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.</td>
</tr>
<tr>
<td>Caution</td>
<td>Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.</td>
</tr>
</tbody>
</table>

Related Documentation

The documentation set for the Cisco MDS 9000 Family includes the following documents. To find a document online, use the Cisco Fabric Manager and MDS NX-OS Documentation Locator at:

Release Notes

- Cisco MDS 9000 Family Release Notes for Cisco MDS NX-OS Releases
- Cisco MDS 9000 Family Release Notes for MDS SAN-OS Releases
- Cisco MDS 9000 Family Release Notes for Storage Services Interface Images
- Cisco MDS 9000 Family Release Notes for Cisco MDS 9000 EPLD Images
- Release Notes for Cisco MDS 9000 Family Fabric Manager

Regulatory Compliance and Safety Information

- Regulatory Compliance and Safety Information for the Cisco MDS 9000 Family
Send documentation comments to fm-docfeedback@cisco.com

Compatibility Information

- Cisco Data Center Interoperability Support Matrix
- Cisco MDS 9000 NX-OS Hardware and Software Compatibility Information and Feature Lists
- Cisco MDS NX-OS Release Compatibility Matrix for Storage Service Interface Images
- Cisco MDS 9000 Family Switch-to-Switch Interoperability Configuration Guide
- Cisco MDS NX-OS Release Compatibility Matrix for IBM SAN Volume Controller Software for Cisco MDS 9000
- Cisco MDS SAN-OS Release Compatibility Matrix for VERITAS Storage Foundation for Networks Software

Hardware Installation

- Cisco MDS 9500 Series Hardware Installation Guide
- Cisco MDS 9200 Series Hardware Installation Guide
- Cisco MDS 9100 Series Hardware Installation Guide
- Cisco MDS 9124 and Cisco MDS 9134 Multilayer Fabric Switch Quick Start Guide

Software Installation and Upgrade

- Cisco MDS 9000 NX-OS Release 4.1(x) and SAN-OS 3(x) Software Upgrade and Downgrade Guide
- Cisco MDS 9000 Family Storage Services Interface Image Install and Upgrade Guide
- Cisco MDS 9000 Family Storage Services Module Software Installation and Upgrade Guide

Cisco NX-OS

- Cisco MDS 9000 Family NX-OS Licensing Guide
- Cisco MDS 9000 Family NX-OS Fundamentals Configuration Guide
- Cisco MDS 9000 Family NX-OS System Management Configuration Guide
- Cisco MDS 9000 Family NX-OS Interfaces Configuration Guide
- Cisco MDS 9000 Family NX-OS Fabric Configuration Guide
- Cisco MDS 9000 Family NX-OS Quality of Service Configuration Guide
- Cisco MDS 9000 Family NX-OS Security Configuration Guide
- Cisco MDS 9000 Family NX-OS IP Services Configuration Guide
- Cisco MDS 9000 Family NX-OS Intelligent Storage Services Configuration Guide
- Cisco MDS 9000 Family NX-OS High Availability and Redundancy Configuration Guide
- Cisco MDS 9000 Family NX-OS Inter-VSAN Routing Configuration Guide
Preface

Send documentation comments to fm-docfeedback@cisco.com

Cisco Fabric Manager

- Cisco Fabric Manager Fundamentals Configuration Guide
- Cisco Fabric Manager System Management Configuration Guide
- Cisco Fabric Manager Interfaces Configuration Guide
- Cisco Fabric Manager Fabric Configuration Guide
- Cisco Fabric Manager Quality of Service Configuration Guide
- Cisco Fabric Manager Security Configuration Guide
- Cisco Fabric Manager IP Services Configuration Guide
- Cisco Fabric Manager Intelligent Storage Services Configuration Guide
- Cisco Fabric Manager High Availability and Redundancy Configuration Guide
- Cisco Fabric Manager Inter-VSAN Routing Configuration Guide
- Cisco Fabric Manager Online Help
- Cisco Fabric Manager Web Services Online Help

Command-Line Interface

- Cisco MDS 9000 Family Command Reference

Intelligent Storage Networking Services Configuration Guides

- Cisco MDS 9000 I/O Acceleration Configuration Guide
- Cisco MDS 9000 Family SANTap Deployment Guide
- Cisco MDS 9000 Family Data Mobility Manager Configuration Guide
- Cisco MDS 9000 Family Storage Media Encryption Configuration Guide
- Cisco MDS 9000 Family Secure Erase Configuration Guide
- Cisco MDS 9000 Family Cookbook for Cisco MDS SAN-OS

Troubleshooting and Reference

- Cisco NX-OS System Messages Reference
- Cisco MDS 9000 Family NX-OS Troubleshooting Guide
- Cisco MDS 9000 Family NX-OS MIB Quick Reference
- Cisco MDS 9000 Family NX-OS SMI-S Programming Reference
- Cisco MDS 9000 Family Fabric Manager Server Database Schema
Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Basic Inter-VSAN Routing Configuration

This chapter describes the Inter-VSAN Routing (IVR) feature and provides basic instructions on sharing resources across VSANs using IVR management interfaces. After setting up a basic IVR configuration, see Chapter 2, “Advanced Inter-VSAN Routing Configuration,” if you need to set up an advanced IVR configuration.

This chapter includes the following sections on IVR basic configuration:

- About Inter-VSAN Routing, page 1-1
- Basic IVR Configuration, page 1-6
- IVR Virtual Domains, page 1-13
- IVR Zones and IVR Zone Sets, page 1-14
- IVR Logging, page 1-22
- Database Merge Guidelines, page 1-23
- Default Settings, page 1-26

About Inter-VSAN Routing

Virtual SANs (VSANs) improve storage area network (SAN) scalability, availability, and security by allowing multiple Fibre Channel SANs to share a common physical infrastructure of switches and ISLs. These benefits are derived from the separation of Fibre Channel services in each VSAN and the isolation of traffic between VSANs. Data traffic isolation between the VSANs also inherently prevents sharing of resources attached to a VSAN, such as robotic tape libraries. Using IVR, you can access resources across VSANs without compromising other VSAN benefits.

This section includes the following topics:

- IVR Features, page 1-2
- IVR Terminology, page 1-3
- IVR Configuration Limits, page 1-4
- Fibre Channel Header Modifications, page 1-4
- IVR Network Address Translation, page 1-4
- IVR VSAN Topology, page 1-5
- IVR Interoperability, page 1-5
IVR Features

IVR supports the following features:

- Accesses resources across VSANs without compromising other VSAN benefits.
- Transports data traffic between specific initiators and targets on different VSANs without merging VSANs into a single logical fabric.
- Establishes proper interconnected routes that traverse one or more VSANs across multiple switches. IVR is not limited to VSANs present on a common switch.
- Shares valuable resources (such as tape libraries) across VSANs without compromise. Fibre Channel traffic does not flow between VSANs, nor can initiators access resources across VSANs other than the designated VSAN.
- Provides efficient business continuity or disaster recovery solutions when used in conjunction with FCIP (see Figure 1-1).
- Is in compliance with Fibre Channel standards.
- Incorporates third-party switches, however, IVR-enabled VSANs may need to be configured in one of the interop modes.

Note

IVR is not supported on the Cisco MDS 9124 Fabric Switch, the Cisco MDS 9134 Fabric Switch, the Cisco Fabric Switch for HP c-Class BladeSystem, and the Cisco Fabric Switch for IBM BladeCenter. Originator Exchange ID (OX ID) load balancing of IVR traffic from IVR-enabled switches is not supported on Generation 1 switching modules. OX ID-based load balancing of IVR traffic from a non-IVR MDS switch could work in some environments. Generation 2 switching modules support OX ID-based load balancing of IVR traffic from IVR-enabled switches.

Figure 1-1 Traffic Continuity Using IVR and FCIP
IVR Terminology

The following IVR-related terms are used in the IVR documentation:

- **Native VSAN**—The VSAN to which an end device logs on is the native VSAN for that end device.
- **Current VSAN**—The VSAN currently being configured for IVR.
- **Inter-VSAN Routing zone (IVR zone)**—A set of end devices that are allowed to communicate across VSANs within their interconnected SAN fabric. This definition is based on their port world-wide names (pWWNs) and their native VSAN associations. Prior to Cisco SAN-OS Release 3.0(3), you could configure up to 2000 IVR zones and 10,000 IVR zone members on the switches in the network. As of Cisco SAN-OS Release 3.0(3), you can configure up to 8000 IVR zones and 20,000 IVR zone members on the switches in the network.
- **Inter-VSAN routing zone sets (IVR zone sets)**—One or more IVR zones make up an IVR zone set. You can configure up to 32 IVR zone sets on any switch in the Cisco MDS 9000 Family. Only one IVR zone set can be active at any time.
- **IVR path**—An IVR path is a set of switches and Inter-Switch Links (ISLs) through which a frame from an end device in one VSAN can reach another end device in some other VSAN. Multiple paths can exist between two such end devices.
- **IVR-enabled switch**—A switch on which the IVR feature is enabled.
- **Edge VSAN**—A VSAN that initiates (source edge-VSAN) or terminates (destination edge-VSAN) an IVR path. Edge VSANs may be adjacent to each other or they may be connected by one or more transit VSANs. VSANs 1, 2, and 3 (see Figure 1-1), are edge VSANs.

 Note
 An edge VSAN for one IVR path can be a transit VSAN for another IVR path.

- **Transit VSAN**—A VSAN that exists along an IVR path from the source edge VSAN of that path to the destination edge VSAN of that path. VSAN 4 is a transit VSAN (see Figure 1-1).

 Note
 When the source and destination edge VSANs are adjacent to each other, then a transit VSAN is not required between them.

- **Border switch**—An IVR-enabled switch that is a member of two or more VSANs. Border switches, such as the IVR-enabled switch between VSAN 1 and VSAN 4 (see Figure 1-1), span two or more different color-coded VSANs.
- **Edge switch**—A switch to which a member of an IVR zone has logged in to. Edge switches are unaware of the IVR configurations in the border switches. Edge switches do not need to be IVR-enabled.
- **Autonomous Fabric Identifier (AFID)**—Allows you to configure more than one VSAN in the network with the same VSAN ID and avoid downtime when configuring IVR between fabrics that contain VSANs with the same ID.
- **Service group**—Allows you to reduce the amount of IVR traffic to non-IVR-enabled VSANs by configuring one or more service groups that restrict the traffic to the IVR-enabled VSANs.
Chapter 1 Basic Inter-VSAN Routing Configuration

Send documentation comments to fm-docfeedback@cisco.com

IVR Configuration Limits

Table 1-1 summarizes the configuration limits for IVR.

<table>
<thead>
<tr>
<th>IVR Feature</th>
<th>Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR VSANs</td>
<td>128</td>
</tr>
<tr>
<td>IVR zone members</td>
<td>As of Cisco SAN-OS Release 3.0(3), 20,000 IVR zone members per physical fabric</td>
</tr>
<tr>
<td></td>
<td>Prior to Cisco SAN-OS Release 3.0(3), 10,000 IVR zone members per physical fabric</td>
</tr>
<tr>
<td>IVR zones</td>
<td>As of Cisco SAN-OS Release 3.0(3), 8000 IVR zones per physical fabric</td>
</tr>
<tr>
<td></td>
<td>Prior to Cisco SAN-OS Release 3.0(3), 2000 IVR zones per physical fabric</td>
</tr>
<tr>
<td>IVR zone sets</td>
<td>32 IVR zone sets per physical fabric</td>
</tr>
<tr>
<td>IVR service groups</td>
<td>16 service groups per physical fabric</td>
</tr>
<tr>
<td>IVR switches</td>
<td>25 (IVR auto topology mode)</td>
</tr>
</tbody>
</table>

Note We recommend IVR manual topology mode if you have more than 25 IVR switches. See “Manually Configuring an IVR Topology” on page 2-9.

Fibre Channel Header Modifications

IVR virtualizes the remote end devices in the native VSAN using a virtual domain. When IVR is configured to link end devices in two disparate VSANs, the IVR border switches are responsible for modifying the Fibre Channel headers for all communication between the end devices. The sections of the Fibre Channel frame headers that are modified include:

- VSAN number
- Source FCID
- Destination FCID

When a frame travels from the initiator to the target, the Fibre Channel frame header is modified such that the initiator VSAN number is changed to the target VSAN number. If IVR Network Address Translation (NAT) is enabled, then the source and destination FCIDs are also translated at the edge border switch. If IVR NAT is not enabled, then you must configure unique domain IDs for all switches involved in the IVR path.

IVR Network Address Translation

IVR Network Address Translation (NAT) can be enabled to allow non-unique domain IDs; however, without NAT, IVR requires unique domain IDs for all switches in the fabric. IVR NAT simplifies the deployment of IVR in an existing fabric where non-unique domain IDs might be present.
To use IVR NAT, it must be enabled on all IVR-enabled switches in the fabric. By default, IVR NAT and IVR configuration distributions are disabled on all switches in the Cisco MDS 9000 Family.

See “About IVR NAT and IVR Auto Topology Mode” on page 1-10 for information on IVR requirements and guidelines as well as configuration information.

IVR VSAN Topology

IVR uses a configured IVR VSAN topology to determine how to route traffic between the initiator and the target across the fabric.

IVR auto topology mode automatically builds the IVR VSAN topology and maintains the topology database when fabric reconfigurations occur. IVR auto topology mode also distributes the IVR VSAN topology to IVR-enabled switches using CFS.

Using IVR auto topology mode, you no longer need to manually update the IVR VSAN topology when reconfigurations occur in your fabric. If an IVR manual topology database exists, IVR auto topology mode initially uses that topology information. The automatic update reduces disruption in the network by gradually migrating from the user-specified topology database to the automatically-learned topology database. User-configured topology entries that are not part of the network are aged out in about three minutes. New entries that are not part of the user-configured database are added as they are discovered in the network.

When IVR auto topology mode is enabled, it starts with the previously active IVR manual topology if it exists, and then the discovery process begins. New, alternate, or better paths may be discovered. If the traffic is switched to an alternate or better path, there may be temporary traffic disruptions that are normally associated with switching paths.

Note

IVR topology in IVR auto topology mode requires Cisco MDS SAN-OS Release 2.1(1a) or later and CFS must be enabled for IVR on all switches in the fabric.

IVR Interoperability

When using the IVR feature, all border switches in a fabric must be Cisco MDS switches. However, other switches in the fabric may be non-MDS switches. For example, end devices that are members of the active IVR zone set may be connected to non-MDS switches. Non-MDS switches may also be present in the transit VSAN(s) or in the edge VSANs if one of the interop modes is enabled.

For additional information on switch interoperability, refer to the Cisco Data Center Interoperability Support Matrix.

Basic IVR Configuration Task List

To configure IVR, follow these steps:
Basic IVR Configuration

Send documentation comments to fm-docfeedback@cisco.com

Chapter 1 Basic Inter-VSAN Routing Configuration

Basic IVR Configuration

This section describes how to configure IVR and contains the following sections:

- Configuring IVR and IVR Zones Using the IVR Zone Wizard, page 1-6
- Enabling IVR, page 1-8
- Distributing the IVR Configuration Using CFS, page 1-8
- About IVR NAT and IVR Auto Topology Mode, page 1-10
- IVR NAT Requirements and Guidelines, page 1-10
- Enabling IVR NAT and IVR Auto Topology Mode, page 1-12

Configuring IVR and IVR Zones Using the IVR Zone Wizard

The IVR Zone Wizard simplifies the process of configuring IVR zones in a fabric. The IVR Zone Wizard checks the following conditions and identifies any related issues:

- Checks all switches in the fabric to identify the Cisco SAN-OS or NX-OS release that is running on the switch. If Cisco MDS SAN-OS Release 2.1(1a) or later is running on the switch, you can decide to migrate to IVR NAT with IVR auto topology mode.

- Checks all switches in the fabric to identify the Cisco SAN-OS or NX-OS release that is running on the switch. If Cisco MDS SAN-OS Release 2.1(1a) or later is running on a switch, you can decide to upgrade the switch or disable IVR NAT or IVR auto topology mode if they are enabled.

To configure IVR and IVR zones using the Fabric Manager IVR Zone Wizard, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enable IVR on all border switches.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Enable IVR distribution.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Enable IVR NAT.</td>
<td>See “About IVR NAT and IVR Auto Topology Mode” on page 1-10.</td>
</tr>
<tr>
<td>4</td>
<td>Enable IVR auto topology mode.</td>
<td>See “About IVR NAT and IVR Auto Topology Mode” on page 1-10.</td>
</tr>
<tr>
<td>5</td>
<td>Configure IVR virtual domains.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Configure and activate zone sets.</td>
<td>See “Configuring IVR Zones and IVR Zone Sets” on page 1-16.</td>
</tr>
<tr>
<td>7</td>
<td>Commit the IVR configuration.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Verify the IVR configuration.</td>
<td></td>
</tr>
</tbody>
</table>

Step 1 Click the **IVR Zone Wizard** icon in the Zone toolbar (see Figure 1-2).
Figure 1-2 IVR Zone Wizard Icon

To migrate to IVR NAT mode click **Yes**, otherwise, click **No**. You see the IVR Zone Wizard dialog box.

Step 2
Select the VSANs that will participate in IVR in the fabric. Click **Next**.

Figure 1-3 shows the Select End Devices dialog box.

Figure 1-3 Select End Devices Dialog Box

Step 3
Select the end devices that you want to connect using IVR.

Note
If you are not using IVR NAT, Fabric Manager may display an error message if all the switches participating in IVR do not have unique domain IDs. You must reconfigure those switches before configuring IVR. See **Step 6**.

Step 4
If you enable IVR NAT, verify switches that Fabric Manager will enable with IVR NAT, CFS for IVR, and IVR auto topology mode.

Step 5
Enter the VSAN ID of the VSAN you want to use as the transit VSAN between the VSANs selected for the IVR zone. Click **Next**.

Step 6 (Optional) Configure a unique AFID for switches in the fabric that have non-unique VSAN IDs in the Select AFID dialog box.

Step 7
If you did not enable IVR NAT, verify the transit VSAN or configure the transit VSAN if Fabric Manager cannot find an appropriate transit VSAN.
Basic IVR Configuration

Send documentation comments to fm-docfeedback@cisco.com

Basic IVR Configuration

Chapter 1 Basic Inter-VSAN Routing Configuration

Step 8 Set the IVR zone and IVR zone set.
Step 9 Verify all steps that Fabric Manager will take to configure IVR in the fabric.
Step 10 Click Finish if you want to enable IVR NAT and IVR auto topology mode and to create the associated IVR zones and IVR zone set.

You see the Save Configuration dialog box. You can save the configuration of the master switch to be copied to other IVR-enabled switches.

Step 11 Click Continue Activation, or click Cancel.
Step 12 Click Finish.

Note IVR NAT and IVR auto topology mode can be configured independently if you configure these features outside the IVR Zone Wizard. See “Basic IVR Configuration” on page 1-6.

Enabling IVR

The IVR feature must be enabled in all border switches in the fabric that participate in the IVR. By default, this feature is disabled in all Cisco MDS 9000 Family switches. You can manually enable IVR on all required switches in the fabric or configure fabric-wide distribution of the IVR configuration. See “Distributing the IVR Configuration Using CFS” on page 1-8.

Note The configuration and verification commands for the IVR feature are only available when IVR is enabled on a switch. When you disable this configuration, all related configurations are automatically discarded.

Distributing the IVR Configuration Using CFS

The IVR feature uses the Cisco Fabric Services (CFS) infrastructure to enable efficient configuration management and to provide a single point of configuration for the entire fabric in the VSAN. For information on CFS, refer to the Cisco MDS 9000 Family NX-OS System Management Configuration Guide.

The following configurations are distributed:

- IVR zones
- IVR zone sets
- IVR VSAN topology
- IVR active topology and zone set (activating these features in one switch propagates the configuration to all other distribution-enabled switches in the fabric)
- AFID database

Note IVR configuration distribution is disabled by default. For the feature to function correctly, you must enable it on all IVR-enabled switches in the network.

This section includes the following topics:
Database Implementation

The IVR feature uses three databases to accept and implement configurations.
- Configured database—The database is manually configured by the user.
- Active database—The database is currently enforced by the fabric.
- Pending database—If you modify the configuration, you need to commit or discard the configured database changes to the pending database. The fabric remains locked during this period. Changes to the pending database are not reflected in the active database until you commit the changes to CFS.

Locking the Fabric

The first action that modifies the database creates the pending database and locks the feature in the VSAN. Once you lock the fabric, the following situations apply:
- No other user can make any configuration changes to this feature.
- A copy of the configuration database becomes the pending database along with the first active change.

Committing the Changes

If you commit the changes made to the active database, the configuration is committed to all the switches in the fabric. On a successful commit, the configuration change is applied throughout the fabric and the lock is released.

Discarding the Changes

If you discard (abort) the changes made to the pending database, the configuration database remains unaffected and the lock is released.

Clearing a Locked Session

If you have performed an IVR task and have forgotten to release the lock by either committing or discarding the changes, an administrator can release the lock from any switch in the fabric. If the administrator performs this task, your changes to the pending database are discarded and the fabric lock is released.

Tip

The pending database is only available in the volatile directory and is subject to being discarded if the switch is restarted.
Chapter 1 Basic Inter-VSAN Routing Configuration

Send documentation comments to fm-docfeedback@cisco.com

Basic IVR Configuration

About IVR NAT and IVR Auto Topology Mode

Before configuring an IVR SAN fabric to use IVR NAT and IVR auto topology mode, consider the following:

- Configure IVR only in the relevant switches.
- Enable CFS for IVR on all switches in the fabric. You must first click the CFS tab in order for the other tabs on the dialog boxes to become available.
- Verify that all switches in the fabric are running Cisco MDS SAN-OS Release 2.1(1a) or later.
- Acquire a mandatory Enterprise License Package or SAN-EXTENSION license package if you have Cisco MDS SAN-OS Release 2.1(1a) or later and one active IPS card for this feature. For information on licensing, refer to the Cisco MDS 9000 Family NX-OS Licensing Guide.

Note
The IVR over FCIP feature is bundled with the Cisco MDS 9216i Switch and does not require the SAN extension over IP package for the fixed IP ports on the supervisor module.

Tip
If you change any FSPF link cost, ensure that the FSPF path distance (that is, the sum of the link costs on the path) of any IVR path is less than 30,000.

Note
IVR-enabled VSANs can be configured when the interop mode is enabled (any interop mode) or disabled (no interop mode).

IVR NAT Requirements and Guidelines

The requirements and guidelines for using IVR NAT are listed below:

- All IVR-enabled switches must run Cisco MDS SAN-OS Release 2.1(1a) or later.
- IVR NAT port login (PLOGI) requests that are received from hosts are delayed a few seconds to perform the rewrite on the FC ID address. If the host’s PLOGI timeout value is set to a value less than five seconds, it may result in the PLOGI being unnecessarily aborted and the host being unable to access the target. We recommend that you configure the host bus adapter for a timeout of at least ten seconds (most HBAs default to a value of 10 or 20 seconds).
- IVR NAT requires Cisco MDS SAN-OS Release 2.1(1a) or later on all IVR switches in the fabric. If you have isolated switches with an earlier release that are configured in an IVR topology, you must remove any isolated fabrics from being monitored by the Fabric Manager server and then re-open the fabric to use IVR NAT. See the Cisco Fabric Manager Fundamentals Guide for information on selecting a fabric to manage continuously.
- Load balancing of IVR NAT traffic across equal cost paths from an IVR-enabled switch is not supported. However, load balancing of IVR NAT traffic over PortChannel links is supported. The load-balancing algorithm for IVR NAT traffic over PortChannel with Generation 1 modules is SRC/DST only. Generation 2 modules support SRC/DST/OXID-based load balancing of IVR NAT traffic across a PortChannel.
- You cannot configure IVR NAT and preferred Fibre Channel routes on Generation 1 module interfaces.
IVR NAT allows you to set up IVR in a fabric without needing unique domain IDs on every switch in the IVR path. IVR NAT virtualizes the switches in other VSANs by using local VSAN for the destination IDs in the Fibre Channel headers. In some Extended Link Service message types, the destination IDs are included in the packet data. In these cases, IVR NAT replaces the actual destination ID with the virtualized destination ID. IVR NAT supports destination ID replacement in the Extended Link Service messages described in Table 1-2.

Table 1-2 Extended Link Service Messages Supported by IVR NAT

<table>
<thead>
<tr>
<th>Extended Link Service Messages</th>
<th>Link Service Command (LS_COMMAND)</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abort Exchange</td>
<td>0x06 00 00 00</td>
<td>ABTX</td>
</tr>
<tr>
<td>Discover Address</td>
<td>0x52 00 00 00</td>
<td>ADISC</td>
</tr>
<tr>
<td>Discover Address Accept</td>
<td>0x02 00 00 00</td>
<td>ADISC ACC</td>
</tr>
<tr>
<td>Fibre Channel Address Resolution Protocol Reply</td>
<td>0x55 00 00 00</td>
<td>FARP-REPLY</td>
</tr>
<tr>
<td>Fibre Channel Address Resolution Protocol Request</td>
<td>0x54 00 00 00</td>
<td>FARP-REQ</td>
</tr>
<tr>
<td>Logout</td>
<td>0x05 00 00 00</td>
<td>LOGO</td>
</tr>
<tr>
<td>Port Login</td>
<td>0x30 00 00 00</td>
<td>PLOGI</td>
</tr>
<tr>
<td>Read Exchange Concise</td>
<td>0x13 00 00 00</td>
<td>REC</td>
</tr>
<tr>
<td>Read Exchange Concise Accept</td>
<td>0x02 00 00 00</td>
<td>REC ACC</td>
</tr>
<tr>
<td>Read Exchange Status Block</td>
<td>0x08 00 00 00</td>
<td>RES</td>
</tr>
<tr>
<td>Read Exchange Status Block Accept</td>
<td>0x02 00 00 00</td>
<td>RES ACC</td>
</tr>
<tr>
<td>Read Link Error Status Block</td>
<td>0x0F 00 00 00</td>
<td>RLS</td>
</tr>
<tr>
<td>Read Sequence Status Block</td>
<td>0x09 00 00 00</td>
<td>RSS</td>
</tr>
<tr>
<td>Reinstate Recovery Qualifier</td>
<td>0x12 00 00 00</td>
<td>RRQ</td>
</tr>
<tr>
<td>Request Sequence Initiative</td>
<td>0x0A 00 00 00</td>
<td>RSI</td>
</tr>
<tr>
<td>Scan Remote Loop</td>
<td>0x7B 00 00 00</td>
<td>RSL</td>
</tr>
<tr>
<td>Third Party Process Logout</td>
<td>0x24 00 00 00</td>
<td>TPRLO</td>
</tr>
<tr>
<td>Third Party Process Logout Accept</td>
<td>0x02 00 00 00</td>
<td>TPRLO ACC</td>
</tr>
</tbody>
</table>

- If you have a message that is not recognized by IVR NAT and contains the destination ID in the packet data, you cannot use IVR with NAT in your topology. You can still use IVR with unique domain IDs.

Transit VSAN Guidelines

Consider the following guidelines for transit VSANs:

- In addition to defining the IVR zone membership, you can choose to specify a set of transit VSANs to provide connectivity between two edge VSANs:
 - If two edge VSANs in an IVR zone overlap, then a transit VSAN is not required (though, not prohibited) to provide connectivity.
Basic IVR Configuration

If two edge VSANs in an IVR zone do not overlap, you may need one or more transit VSANs to provide connectivity. Two edge VSANs in an IVR zone will not overlap if IVR is not enabled on a switch that is a member of both the source and destination edge VSANs.

- Traffic between the edge VSANs only traverses through the shortest IVR path.
- Transit VSAN information is common to all IVR zone sets. Sometimes, a transit VSAN can also act as an edge VSAN in another IVR zone.

Border Switch Guidelines

Before configuring border switches, consider the following guidelines:

- Border switches require Cisco MDS SAN-OS Release 2.1(1a) or later.
- A border switch must be a member of two or more VSANs.
- A border switch that facilitates IVR communications must be IVR-enabled.
- IVR can (optionally) be enabled on additional border switches to provide redundant paths between active IVR zone members.
- The VSAN topology configuration updates automatically when a border switch is added or removed.

Enabling IVR NAT and IVR Auto Topology Mode

This section includes instructions on how to enable IVR NAT and how to enable IVR auto topology mode.

Note: IVR configuration distribution must be enabled before configuring IVR auto topology mode (see “Distributing the IVR Configuration Using CFS” on page 1-8). Once IVR auto topology mode is enabled, you cannot disable IVR configuration distribution.

To enable IVR NAT and IVR auto topology mode using Fabric Manager, follow these steps:

Step 1 Expand All VSANs and then select IVR in the Logical Domains pane.

You see the inter-VSAN routing configuration in the Information pane (see Figure 1-4).

Figure 1-4 IVR Routing Configuration Control Tab

Step 2 Select enable from the Admin column drop-down menu for the primary switch.

Step 3 Click the Apply Changes icon to distribute this change to all switches in the fabric.
Chapter 1 Basic Inter-VSAN Routing Configuration

Send documentation comments to fm-docfeedback@cisco.com

Step 4 Click the Action tab.
Step 5 Check the Enable IVR NAT check box to enable IVR in NAT mode.
Step 6 Check the Auto Discover Topology check box to enable IVR auto topology mode.
Step 7 Click the Apply Changes icon to enable IVR on the switches.

IVR Virtual Domains

In a remote VSAN, the IVR application does not automatically add the virtual domain to the assigned domains list. Some switches (for example, the Cisco SN5428 switch) do not query the remote name server until the remote domain appears in the assigned domains list in the fabric. In such cases, add the IVR virtual domains in a specific VSAN to the assigned domains list in that VSAN. When adding IVR domains, all IVR virtual domains that are currently present in the fabric (and any virtual domain that is created in the future) will appear in the assigned domains list for that VSAN.

Tip
Be sure to add IVR virtual domains if Cisco SN5428 or MDS 9020 switches exist in the VSAN.

When you enable the IVR virtual domains, links may fail to come up due to overlapping virtual domain identifiers. If this occurs, temporarily withdraw the overlapping virtual domain from that VSAN.

Note
Withdrawing an overlapping virtual domain from an IVR VSAN disrupts IVR traffic to and from that domain.

Tip
Only add IVR domains in the edge VSANs and not in transit VSANs.

Clearing an IVR fcdomain Database

To manually configure an IVR virtual domain using Fabric Manager, follow these steps:

Step 1 Expand All VSANs and then select IVR in the Logical Domains pane.
You see the IVR configuration in the Information pane.

Figure 1-5 Domains Tab

Step 2 Click the Domains tab to display the existing IVR topology.
Step 3 Click the Create Row icon to create rows in the IVR topology (see Figure 1-5).
IVR Zones and IVR Zone Sets

This section describes configuring IVR zones and IVR zone sets and includes the following topics:

- About IVR Zones, page 1-14
- IVR Zone Limits and Image Downgrading Considerations, page 1-14
- Automatic IVR Zone Creation, page 1-15
- Configuring IVR Zones and IVR Zone Sets, page 1-16
- About Activating Zone Sets and Using the force Option, page 1-19
- Activating or Deactivating IVR Zone Sets, page 1-20
- Recovering an IVR Full Zone Database, page 1-21
- Recovering an IVR Topology, page 1-22

About IVR Zones

As part of the IVR configuration, you need to configure one or more IVR zones to enable cross-VSAN communication. To achieve this result, you must specify each IVR zone as a set of (pWWN, VSAN) entries. Like zones, several IVR zone sets can be configured to belong to an IVR zone. You can define several IVR zone sets and activate only one of the defined IVR zone sets.

Note

The same IVR zone set must be activated on all of the IVR-enabled switches.

Table 1-3 identifies the key differences between IVR zones and zones.

<table>
<thead>
<tr>
<th>IVR Zones</th>
<th>Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR zone membership is specified using the VSAN and pWWN combination.</td>
<td>Zone membership is specified using pWWN, fabric WWN, sWWN, or the AFID.</td>
</tr>
<tr>
<td>Default zone policy is always deny (not configurable).</td>
<td>Default zone policy is deny (configurable).</td>
</tr>
</tbody>
</table>

IVR Zone Limits and Image Downgrading Considerations

Table 1-4 identifies the IVR zone limits per physical fabric.
Chapter 1 Basic Inter-VSAN Routing Configuration

Send documentation comments to fm-docfeedback@cisco.com

Table 1-4 IVR Zone Limits

<table>
<thead>
<tr>
<th>Cisco Release</th>
<th>IVR Zone Limit</th>
<th>IVR Zone Member Limit</th>
<th>IVR Zone Set Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN-OS Release 3.0(3 or later</td>
<td>8000</td>
<td>20,000</td>
<td>32</td>
</tr>
<tr>
<td>SAN-OS Release 3.0(2b) or earlier</td>
<td>2000</td>
<td>10,000</td>
<td>32</td>
</tr>
</tbody>
</table>

Note
A zone member is counted twice if it exists in two zones. See “Database Merge Guidelines” on page 1-23.

Caution
If you want to downgrade to a release prior to Cisco SAN-OS Release 3.0(3), the number of IVR zones cannot exceed 2000 and the number of IVR zone members cannot exceed 10,000.

Automatic IVR Zone Creation

Figure 1-6 depicts an IVR zone consisting of four members. To allow pwn1 to communicate with pwn2, they must be in the same zone in VSAN 1, as well as in VSAN 2. If they are not in the same zone, then the hard-zoning ACL entries will prohibit pwn1 from communicating with pwn2.

A zone corresponding to each active IVR zone is automatically created in each edge VSAN specified in the active IVR zone. All pWNNs in the IVR zone are members of these zones in each VSAN.

Figure 1-6 Creating Zones Upon IVR Zone Activation

Active zone in VSAN 1:
- pwn1
- pwn2
- pwn3
- pwn4

Active IVZ
- VSAN1, pwn1
- VSAN2, pwn2
- VSAN2, pwn3
- VSAN3, pwn4

IVR zone name: OLTP_Backup

Active zone in VSAN 2:
- pwn1
- pwn2
- pwn3
- pwn4

Active zone in VSAN 3:
- pwn1
- pwn2
- pwn3
- pwn4

Zone name: IVRZ_OLTP_Backup
The zones are created automatically by the IVR process when an IVR zone set is activated. They are not stored in a full zone set database and are lost when the switch reboots or when a new zone set is activated. The IVR feature monitors these events and adds the zones corresponding to the active IVR zone set configuration when a new zone set is activated. Like zone sets, IVR zone sets are also activated nondisruptively.

Note

If pwn1 and pwn2 are in an IVR zone in the current as well as the new IVR zone set, then activation of the new IVR zone set does not cause any traffic disruption between them.

IVR zone and IVR zone set names are restricted to 64 alphanumeric characters.

Caution

Prior to Cisco SAN-OS Release 3.0(3), you can only configure a total of 2000 IVR zones and 32 IVR zone sets on the switches in the network. As of Cisco SAN-OS Release 3.0(3), you can only configure a total of 8000 IVR zones and 32 IVR zone sets on the switches in the network. See “Database Merge Guidelines” on page 1-23.

Configuring IVR Zones and IVR Zone Sets

To create IVR zones and IVR zone sets using Fabric Manager, follow these steps:

Step 1 Choose Zone > IVR > Edit Local Full Zone Database.

You see the Edit IVR Local Full Zone Database dialog box for the selected VSAN (see Figure 1-7).

![Edit IVR Local Full Zone Database Dialog Box](image-url)
If you want to view zone membership information, right-click in the Members column, and then click Show Details for the current row or all rows from the pop-up menu.

Step 2
Click Zones in the left pane and click the Insert icon to create a zone.
You see the Create IVR Zone dialog box (see Figure 1-8).

![Create IVR Zone Dialog Box](image)

Figure 1-8 Create IVR Zone Dialog Box

Step 3
Enter an IVR zone name.

Step 4
Check one of the following check boxes:
- a. **Read Only**—The zone permits read and denies write.
- b. **Permit QoS traffic with Priority**—You set the priority from the drop-down menu.

Step 5
Click OK to create the IVR zone.

Step 6
To add members to this zone, select the members you want to add from the Fabric pane (see Figure 1-9) and click Add to Zone.

![Edit IVR Local Full Zone Database Dialog Box](image)

Figure 1-9 Edit IVR Local Full Zone Database Dialog Box

Step 7
Alternatively, click the zone where you want to add members and click the Insert icon.
You see the Add Member to Zone dialog box (see Figure 1-10).
Step 8 If you added a zone set, select the new zone set and then click **Activate**.

You see the Save Configuration dialog box (see Figure 1-11).

Step 9 Check the **Save Running to Startup Configuration** check box to save all changes to the startup configuration.

Step 10 Click **Continue Activation** to activate the zone set.

Note

Sometimes zone names beginning with prefix IVRZ and a zone set with name *nozoneset* appear in a logical view. The zones with prefix IVRZ are IVR zones that get appended to regular active zones. The prefix IVRZ is appended to active IVR zones by the system. Similarly, the zone set with name *nozoneset* is an IVR active zone set created by the system if no active zone set is available for that VSAN and if the ivrZonesetActivateForce flag is enabled on the switch.

In the server.properties file, you can set the property `zone.ignoreIVRZones` to **true** or **false** to either hide or view IVR zones as part of regular active zones. For information on the server.properties file, refer to the *Cisco Fabric Manager Fundamentals Configuration Guide*.
About Activating Zone Sets and Using the force Option

Once the zone sets have been created and populated, you must activate the zone set. When you activate an IVR zone set, IVR automatically adds an IVR zone to the regular active zone set of each edge VSAN. If a VSAN does not have an active zone set, IVR can only activate an IVR zone set using the force option, which causes IVR to create an active zone set called “nozoneset” and adds the IVR zone to that active zone set.

If you deactivate the regular active zone set in a VSAN, the IVR zone set is also deactivated. This occurs because the IVR zone in the regular active zone set, and all IVR traffic to and from the switch, is stopped. To reactivate the IVR zone set, you must reactivate the regular zone set.

If IVR and iSLB are enabled in the same fabric, at least one switch in the fabric must have both features enabled. Any zoning-related configuration or activation operation (for normal zones, IVR zones, or iSLB zones) must be performed on this switch. Otherwise, traffic might be disrupted in the fabric.

You can also use the force activate option to activate IVR zone sets. Table 1-5 lists the various scenarios with and without the force activate option.

<table>
<thead>
<tr>
<th>Case</th>
<th>Default Zone Policy</th>
<th>Active Zone Set before IVR Zone Activation</th>
<th>Force Activate Option Used?</th>
<th>IVR Zone Set Activation Status</th>
<th>Active IVR Zone Created?</th>
<th>Possible Traffic Disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deny</td>
<td>No active zone set</td>
<td>No</td>
<td>Failure</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Success</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3†</td>
<td>Deny</td>
<td>Active zone set present</td>
<td>No/Yes</td>
<td>Success</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Permit</td>
<td>No active zone set or Active zone set present</td>
<td>No</td>
<td>Failure</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Success</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. We recommend that you use the Case 3 scenario.

Caution

Using the force activate option of IVR zone set activation may cause traffic disruption, even for devices that are not involved in IVR. For example, if your configuration does not have any active zone sets and the default zone policy is permit, then an IVR zone set activation will fail. However, IVR zone set
IVR Zones and IVR Zone Sets

activation will be successful if the force activate option is used. Because zones are created in the edge VSANs corresponding to each IVR zone, traffic may be disrupted in edge VSANs where the default zone policy is permit.

Activating or Deactivating IVR Zone Sets

Note
To replace the active IVR zone set with a new IVR zone set without disrupting traffic, activate the new IVR zone set without deactivating the current active IVR zone set.

To activate or deactivate an existing IVR zone set using Fabric Manager, follow these steps:

Step 1 Click Zone and then select Edit Local Full Zone Database (see Figure 1-12).

You see the Edit Local Full Zone Database dialog box (see Figure 1-13).

Step 2 Select a Zoneset folder and then click Activate to activate the zone set (see Figure 1-13) or click Deactivate to deactivate an activated zone set.

You see the Save Configuration dialog box (see Figure 1-14).
Chapter 1 Basic Inter-VSAN Routing Configuration

Send documentation comments to fm-docfeedback@cisco.com

Figure 1-14 Save Configuration Options for a New Zone Set

Step 3 (Optional) Check one of the Save Running to Configuration check boxes to save these changes to the startup configuration (see Figure 1-14).

Step 4 Click Continue Activation to activate the zone set (see Figure 1-14) or Yes if you are deactivating the zone set.

Note The active zone set in Edit Zone is shown in bold if any change has been made to the full zone set resulting in a difference between the active zone set and full zone set. Activating the zone set, unbolds it.

Recovering an IVR Full Zone Database

You can recover an IVR zone database by copying the IVR full zone database from another switch. To recover an IVR zone database using Fabric Manager, follow these steps:

Step 1 Choose Zone > IVR > Edit Local Full Zone Database.
You see the Edit IVR Local Full Zone Database dialog box.

Step 2 Choose Edit > Copy Full Zone Database.
You see the Copy Full Zone Database dialog box (see Figure 1-15).

Figure 1-15 Copy Full Zone Database Dialog Box

Step 3 Choose either Active or Full, depending on which type of IVR database you want to copy.

Step 4 Select the source switch from which to copy the information from the drop-down list.

Step 5 Select the destination switch from the drop-down list.
IVR Logging

You can configure Telnet or SSH logging for the IVR feature. For example, if you configure the IVR logging level at level 4 (warning), then messages with a severity level of 4 or above are displayed. Use the instructions in this section to configure the logging levels:

- Configuring IVR Logging Severity Levels, page 1-22

Configuring IVR Logging Severity Levels

To configure the severity level for logging messages from the IVR feature using Fabric Manager, follow these steps:
Chapter 1 Basic Inter-VSAN Routing Configuration

Send documentation comments to fm-docfeedback@cisco.com

Step 1 Expand Switches > Events and then select Syslog from the Physical Attributes pane.

Step 2 Click the Severity Levels tab.

Step 3 Click the Facility column header to sort the table by facility name.

Step 4 Select the severity level at which the IVR logs system messages from the Severity drop-down menu (see Figure 1-17).

Figure 1-17 Syslog Severity Drop-Down Menu

Tip Setting the severity to warning means that all IVR messages at the warning level or above will be logged to Fabric Manager.

Step 5 Click the Apply Changes icon to save these changes locally.

Database Merge Guidelines

A database merge refers to the combination of the configuration database and static (unlearned) entries in the active database. For information on CFS merge support, refer to the Cisco MDS 9000 Family NX-OS System Management Configuration Guide or Cisco Fabric Manager System Management Configuration Guide.

Consider the following when merging two IVR fabrics:

- The IVR configurations are merged even if two fabrics contain different configurations.
- If dissimilar zones exist in two merged fabrics, the zone from each fabric is cloned in the distributed zone set with appropriate names (see Figure 1-18).
You can configure different IVR configurations in different Cisco MDS switches.

To avoid traffic disruption, after the database merge is complete, the configuration is a combination of the configurations that were present on the two switches involved in the merge.

- The configurations are merged even if both fabrics have different configurations.
- A combination of zones and zone sets are used to get the merged zones and zone sets. If a dissimilar zone exists in two fabrics, the dissimilar zones are cloned into the zone set with appropriate names so both zones are present.
- The merged topology contains a combination of the topology entries for both fabrics.
- The merge will fail if the merged database contains more topology entries than the allowed maximum.
- The total number of VSANs across the two fabrics cannot exceed 128.

Note

VSANs with the same VSAN ID but different AFIDs are counted as two separate VSANs.

- The total number of IVR-enabled switches across the two fabrics cannot exceed 128.
- The total number of zone members across the two fabrics cannot exceed 10,000. As of Cisco SAN-OS Release 3.0(3), the total number of zone members across the two fabrics cannot exceed 20,000. A zone member is counted twice if it exists in two zones.

Note

If one or more of the fabric switches are running Cisco SAN-OS Release 3.0(3) or later, and the number of zone members exceeds 10,000, you must either reduce the number of zone members in the fabric or upgrade all switches in both fabrics to Cisco SAN-OS Release 3.0(3) or later.
The total number of zones across the two fabrics cannot exceed 2000. As of Cisco SAN-OS Release 3.0(3), the total number of zones across the two fabrics cannot exceed 8000.

If only some of the switches in the fabrics are running Cisco SAN-OS Release 3.0(3) or later, and if the number of zones exceeds 2000, you must either reduce the number of zones in the fabric or upgrade all switches in both fabrics to Cisco SAN-OS Release 3.0(3) or later.

The total number or zone sets across the two fabrics cannot exceed 32.

Table 1-6 describes the results of a CFS merge of two IVR-enabled fabrics under different conditions.

<table>
<thead>
<tr>
<th>IVR Fabric 1</th>
<th>IVR Fabric 2</th>
<th>After Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT enabled</td>
<td>NAT disabled</td>
<td>Merge succeeds and NAT is enabled</td>
</tr>
<tr>
<td>Auto mode enabled</td>
<td>Auto mode disabled</td>
<td>Merge succeeds and IVR auto topology mode is enabled</td>
</tr>
<tr>
<td>Conflicting AFID database</td>
<td></td>
<td>Merge fails</td>
</tr>
<tr>
<td>Conflicting IVR zone set database</td>
<td></td>
<td>Merge succeeds with new zones created to resolve conflicts</td>
</tr>
<tr>
<td>Combined configuration exceeds limits (such as maximum number of zones or VSANs)</td>
<td></td>
<td>Merge fails</td>
</tr>
<tr>
<td>Service group 1</td>
<td>Service group 2</td>
<td>Merge succeeds with service groups combined</td>
</tr>
<tr>
<td>User-configured VSAN topology configuration with conflicts</td>
<td></td>
<td>Merge fails</td>
</tr>
<tr>
<td>User-configured VSAN topology configuration without conflicts</td>
<td></td>
<td>Merge succeeds</td>
</tr>
</tbody>
</table>

If you do not follow these conditions, the merge will fail. The next distribution will forcefully synchronize the databases and the activation states in the fabric.

Resolving Database Merge Failures

If a merge failure occurs, you can use the following CLI commands to display the error conditions:

- `show ivr merge status`
- `show cfs merge status name ivr`
- `show logging last lines` (and look for MERGE failures)

To resolve merge failures, review the failure information indicated in the `show` command outputs, then find the scenario in this list that relates to the failure and follow the troubleshooting instructions:

- If the failure is due to exceeding the maximum configuration limits in a fabric where the switches are running more than one Cisco SAN-OS or NX-OS release, then either upgrade the switches running the earlier release or reduce the number of IVR zones and IVR zone members on the switches running the more recent release to the earlier release limit (see “IVR Configuration Limits” on page 1-4).
Chapter 1 Basic Inter-VSAN Routing Configuration

Default Settings

If the failure is due to exceeding maximum limits in a fabric where all switches are running the same Cisco SAN-OS or NX-OS release, identify the switch that has the correct configuration and perform a CFS commit to distribute the IVR configuration. See “Distributing the IVR Configuration Using CFS” on page 1-8 and “Autonomous Fabric IDs” on page 2-4.

For other failures, resolve the error causing the merge failure on the switch that has the correct configuration and perform a CFS commit to distribute the IVR configuration. See “Distributing the IVR Configuration Using CFS” on page 1-8 and “Autonomous Fabric IDs” on page 2-4.

Note
After a successful CFS commit, the merge will be successful.

Table 1-7 lists the default settings for IVR parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>QoS for IVR zones</td>
<td>Low</td>
</tr>
<tr>
<td>Configuration distribution</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Advanced Inter-VSAN Routing Configuration

This chapter provides advanced configuration information and instructions. Before setting up advanced IVR configurations, see Chapter 1, “Basic Inter-VSAN Routing Configuration,” includes basic configuration instructions and descriptions of IVR features, limits, and terminology.

This chapter includes the following sections:

- Advanced IVR Configuration Task List, page 2-1
- Advanced IVR Configuration, page 2-2
- IVR Without IVR NAT or IVR Auto Topology Mode, page 2-6
- Manually Configuring and Activating an IVR Topology, page 2-8
- Working with Existing IVR Topologies, page 2-10
- Persistent FC IDs for IVR, page 2-11
- Advanced IVR Zones and IVR Zone Sets, page 2-13
- Enabling Advanced Fabric Services on IVR Flows, page 2-15

Advanced IVR Configuration Task List

To configure an advanced IVR topology in a SAN fabric, follow these steps:

<table>
<thead>
<tr>
<th>Configuration Task</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Determine whether or not to use IVR NAT.</td>
<td>See “IVR Network Address Translation” on page 1-4 and “IVR NAT Requirements and Guidelines” on page 1-10.</td>
</tr>
<tr>
<td>Step 2 If you do not plan to use IVR NAT, verify that unique domain IDs are configured in all switches and VSANs participating in IVR.</td>
<td>See “Domain ID Guidelines” on page 2-6.</td>
</tr>
<tr>
<td>Step 3 Enable IVR in the border switches.</td>
<td>See “Configuring IVR and IVR Zones Using the IVR Zone Wizard” on page 1-6</td>
</tr>
<tr>
<td>Step 4 Configure the service group as required.</td>
<td>See “IVR Service Groups” on page 2-2.</td>
</tr>
<tr>
<td>Step 5 Configure the IVR distribution as required.</td>
<td></td>
</tr>
</tbody>
</table>
Advanced IVR Configuration

This section includes instructions on advanced IVR configurations. It includes the following topics:

- **IVR Service Groups**, page 2-2
- **Autonomous Fabric IDs**, page 2-4
- **Configuring IVR Without NAT**, page 2-7

IVR Service Groups

In a complex network topology, you might only have a few IVR-enabled VSANs. To reduce the amount of traffic to non-IVR-enabled VSANs, you can configure service groups that restrict the traffic to the IVR-enabled VSANs. A maximum of 16 IVR service groups are allowed in a network. When a new IVR-enabled switch is added to the network, you must update the service groups to include the new VSANs.

This section includes the following information on service groups:

- **Service Group Guidelines**, page 2-2
- **Default Service Group**, page 2-3
- **Service Group Activation**, page 2-3
- **Configuring IVR Service Groups**, page 2-3

Service Group Guidelines

When configuring IVR service groups, consider these guidelines:

- If you use service groups with IVR auto topology mode, you should enable IVR and configure your service groups first, then distribute them with CFS before setting the IVR auto topology mode.
- The CFS distribution is restricted within the service group only when the IVR VSAN topology is in IVR auto topology mode. See “IVR VSAN Topology” on page 1-5.
- You can configure as many as 16 service groups in a network.
- When a new IVR-enabled switch is added to the network, you must update the service group to include the new VSANs.
- The same VSAN and AFID combination cannot be a member of more than one service group, otherwise, a CFS merge will fail.
- The total number of AFID and VSAN combinations in all the service groups combined cannot exceed 128. The maximum number of AFID and VSAN combinations in a single service group is 128.
The IVR service group configuration is distributed in all IVR-enabled switches. IVR data traffic between two end devices belonging to a service group stays within that service group. For example, two members (for example, pWWN 1 and pWWN 2) cannot communicate if they belong to the same IVR zone and they belong to different service groups.

During a CFS merge, service groups with the same name would be merged, as long as there are no conflicts with other service groups.

If the total number of service groups exceeds 16 during a CFS merge, the CFS merge fails.

CFS distributes service group configuration information to all reachable SANs. If you do not enable CFS distribution, you must ensure that the service group configuration is the same on all IVR-enabled switches in all VSANs.

IVR end devices belonging to an IVR service group are not exported to any AFID or VSAN outside of its service group.

When at least one service group is defined and an IVR zone member does not belong to the service group, that IVR zone member is not able to communicate with any other device.

The default service group ID is zero (0).

Default Service Group

All AFID and VSAN combinations that are part of an IVR VSAN topology but are not part of any user-defined service group are members of the default service group. The identifier of the default service group is 0.

By default, IVR communication is permitted between members of the default service group. You can change the default policy to deny. To change the default policy, see “Configuring IVR Service Groups” on page 2-3. The default policy is not part of ASCII configuration.

Service Group Activation

A configured service group must be activated. Like zone set activation or VSAN topology activation, the activation of a configured service group replaces the currently active service group, if any, with the configured one. There is only one configured service group database and one active service group database. Each of these databases can have up to 16 service groups.

Configuring IVR Service Groups

To configure an IVR service group using Fabric Manager, follow these steps:

Step 1
Expand All VSANs and then select IVR in the Logical Domains pane.

You see the IVR configuration in the Information pane (see Figure 2-1).
Chapter 2 Advanced Inter-VSAN Routing Configuration

Figure 2-1 IVR Routing Configuration Control Tab

Step 2 Click the **Service Group** tab to display the existing service groups.

Step 3 Click the **Create Row** icon to make a new service group.

Step 4 Check the switch check box for each switch involved in IVR.

Step 5 Complete the Name field for the service group and fill in the Fabric ID field for this entry.

Step 6 Enter a comma-separated list of VSAN IDs in the VSAN List text box.

Step 7 Click **Create** to create this entry or click **Cancel** to discard all changes.

Step 8 Repeat Step 1 through Step 7 for all switches and AFIDs associated with your IVR topology.

Autonomous Fabric IDs

The autonomous fabric ID (AFID) distinguishes segmented VSANS (for example, two VSANs that are logically and physically separate but have the same VSAN number). Cisco Fabric Manager Release 4.2(1) supports AFIDs 1 through 64. AFIDs are used in conjunction with IVR auto topology mode to allow segmented VSANs in the IVR VSAN topology database.

This section includes the following information about AFIDs:

- Autonomous Fabric ID Guidelines, page 2-4
- Configuring Default AFIDs, page 2-5
- Configuring Individual AFIDs, page 2-5

Autonomous Fabric ID Guidelines

You can configure AFIDs individually for VSANs, or you can set the default AFIDs for all VSANs on a switch. If you configure an individual AFID for a subset of the VSANs on a switch that has a default AFID, that subset uses the configured AFID while all other VSANs on that switch use the default AFID.

You can only use an AFID configuration when the VSAN topology is in IVR auto topology mode. In IVR manual topology mode, the AFIDs are specified in the VSAN topology configuration itself and a separate AFID configuration is not needed.

Note

Two VSANs with the same VSAN number but different AFIDs are counted as two VSANs out of the total 128 VSANs allowed in the fabric.
When devices attached to multiple switches belong to one VSAN, they cannot communicate with each other by configuring the regular zone set because the AFIDs are different. You can consider that the different AFIDs are different fabrics; therefore, the three switches represent three separate fabrics.

Configuring Default AFIDs

To configure default AFIDs using Fabric Manager, follow these steps:

1. Expand All VSANs and then select IVR in the Logical Domains pane. You see the IVR configuration in the Information pane.
2. Click the Default Fabric ID tab to display the existing default AFIDs.
3. Click the Create Row icon to create a default AFID.
4. Check the check boxes next to each switch involved in IVR that you want to use this default AFID.
5. Provide a name for each SwitchWWN and set the default Fabric ID.
6. Click Create to create this entry.
7. Repeat Step 1 through Step 6 for all default AFIDs that you want to configure in your IVR topology.

Configuring Individual AFIDs

To configure individual AFIDs using Fabric Manager, follow these steps:

1. Expand All VSANs and then select IVR in the Logical Domains pane. You see the IVR configuration in the Information pane.
2. Click the Fabric ID tab to display the existing AFIDs (see Figure 2-2).
3. Click the Create Row icon to create an AFID.
4. Check the check box next to each switch involved in IVR that you want to use this default AFID.
Chapter 2 Advanced Inter-VSAN Routing Configuration

IVR Without IVR NAT or IVR Auto Topology Mode

This section includes the following sections on IVR without IVR NAT or IVR auto topology mode:

- IVR Without IVR NAT or IVR Auto Topology Guidelines, page 2-6
- Configuring IVR Without NAT, page 2-7
- Manually Configuring an IVR Topology, page 2-9

IVR Without IVR NAT or IVR Auto Topology Guidelines

Before configuring an IVR SAN fabric without IVR in NAT mode or IVR auto topology mode, consider the following general guidelines:

- Acquire a mandatory Enterprise License Package or SAN-EXTENSION license package and one active IPS card for this feature.
- If you change an FSPF link cost, ensure that the FSPF path distance (the sum of the link costs on the path) of any IVR path is less than 30,000.
- IVR-enabled VSANs can be configured when an interop mode is enabled or disabled.

This section also includes the following:

- Domain ID Guidelines, page 2-6
- Transit VSAN Guidelines, page 2-7
- Border Switch Guidelines, page 2-7

Domain ID Guidelines

Before configuring domain IDs, consider the following guidelines:

- Configure unique domain IDs across all VSANs and switches participating in IVR operations if you are not using IVR NAT. The following switches participate in IVR operations:
 - All edge switches in the edge VSANs (source and destination)
 - All switches in transit VSANs
- Minimize the number of switches that require a domain ID assignment. This ensures minimum traffic disruption.
- Minimize the coordination between interconnected VSANs when configuring the SAN for the first time as well as when you add each new switch.

You can configure domain IDs using one of two options:
Configure the allowed-domains list so that the domains in different VSANs are non-overlapping on all participating switches and VSANs.

Configure static, non-overlapping domains for each participating switch and VSAN.

Note

In a configuration involving IVR without NAT, if one VSAN in the IVR topology is configured with static domain IDs, then the other VSANs (edge or transit) in the topology must be configured with static domain IDs.

Transit VSAN Guidelines

Before configuring transit VSANs, consider the following guidelines:

- Besides defining the IVR zone membership, you can choose to specify a set of transit VSANs to provide connectivity between two edge VSANs:
 - If two edge VSANs in an IVR zone overlap, then a transit VSAN is not required (though, not prohibited) to provide connectivity.
 - If two edge VSANs in an IVR zone do not overlap, you may need one or more transit VSANs to provide connectivity. Two edge VSANs in an IVR zone will not overlap if IVR is not enabled on a switch that is a member of both the source and destination edge VSANs.
- Traffic between the edge VSANs only traverses through the shortest IVR path.
- Transit VSAN information is common to all IVR zone sets. Sometimes, a transit VSAN can also act as an edge VSAN in another IVR zone.

Border Switch Guidelines

Before configuring border switches, consider the following guidelines:

- Configure IVR only in the relevant border switches.
- Border switches require Cisco MDS SAN-OS Release 1.3(1) or later.
- A border switch must be a member of two or more VSANs.
- A border switch that facilitates IVR communications must be IVR enabled.
- IVR can also be enabled on additional border switches to provide redundant paths between active IVR zone members.
- The VSAN topology configuration must be updated before a border switch is added or removed.

Configuring IVR Without NAT

To enable IVR without NAT using Fabric Manager, follow these steps:

Step 1

Expand All VSANs and then select IVR in the Logical Domains pane.

You see the IVR configuration in the Information pane.
Manually Configuring and Activating an IVR Topology

You must create the IVR topology on every IVR-enabled switch in the fabric if you have not enabled IVR auto topology mode. To use IVR manual topology mode, follow the instructions in this section.

This section includes the following:
- Manual Configuration Guidelines, page 2-8
- Manually Configuring an IVR Topology, page 2-9
- Activating a Manually Configured IVR Topology, page 2-10

Manual Configuration Guidelines

Consider the following guidelines when using IVR manual topology mode:
- You can configure a maximum of 128 IVR-enabled switches and 128 distinct VSANs in an IVR topology (see “Database Merge Guidelines” on page 1-23).
- You will need to specify the IVR topology using the following information:
 - The switch WWNs of the IVR-enabled switches.
 - A minimum of two VSANs to which the IVR-enabled switch belongs.
 - The AFID, which distinguishes two VSANs that are logically and physically separate, but have the same VSAN number. You can specify up to 64 AFIDs. See Figure 2-4.
Manually Configuring an IVR Topology

You can configure IVR using the IVR tables in the Information pane in Fabric Manager. Use these tables only if you are familiar with all IVR concepts. We recommend you configure IVR using the IVR Wizard. See “Configuring IVR and IVR Zones Using the IVR Zone Wizard” on page 1-6.

Note

Most tabs in the Information pane for features using CFS are dimmed until you click the CFS tab. The CFS tab shows which switches have CFS enabled and shows the master switch for this feature. Once the CFS tab is clicked, the other tabs in the Information pane are activated.

To manually configure an IVR topology using Fabric Manager, follow these steps:

Step 1 Expand All VSANs and then select IVR in the Logical Domains pane. You see the IVR configuration in the Information pane.

Step 2 Click the Local Topology tab to display the existing IVR topology.

Step 3 Click the Create Row icon to create rows in the IVR topology (see Figure 2-5).

Step 4 Select the switch, switch WWN, and a comma-separated list of VSAN IDs for this topology.

Step 5 Click Create to create this new row.

If two VSANs in an IVR topology have the same VSAN ID and different AFIDs, they count as two VSANs for the 128-VSAN limit for IVR.

The use of a single AFID does not allow for segmented VSANs in an inter-VSAN routing topology.
Tip
Transit VSANs are deduced based on your configuration. The IVR feature does not have an explicit transit-VSAN configuration.

Activating a Manually Configured IVR Topology

After manually configuring the IVR topology, you must activate it.

Caution
Active IVR topologies cannot be deactivated. You can only switch to IVR auto topology mode.

To activate a manually configured IVR topology using Fabric Manager, follow these steps:

Step 1
Expand All VSANs and then select IVR in the Logical Domains pane.
You see the IVR configuration in the Information pane.

Working with Existing IVR Topologies

This section includes advanced IVR configurations for existing IVR topologies:

- Clearing a Manually Configured IVR Topology Database, page 2-10
- Migrating from IVR Auto Topology Mode to IVR Manual Topology Mode, page 2-11

Clearing a Manually Configured IVR Topology Database

To clear a manually created IVR topology database using Fabric Manager, follow these steps:
Step 1: Expand All VSANs and then select IVR in the Logical Domains pane.

Step 2: Click the Control tab if it is not already displayed.

Step 3: Highlight the rows you want to delete from the IVR topology.

Step 4: Click the Delete Row icon to delete these rows from the IVR topology.

Step 5: Click the Apply Changes icon to delete the IVR topology.

Migrating from IVR Auto Topology Mode to IVR Manual Topology Mode

If you want to migrate from IVR auto topology mode to IVR manual topology mode, copy the active IVR VSAN topology database to the user-configured IVR VSAN topology database before switching modes.

To migrate from IVR auto topology mode to IVR manual topology mode using Fabric Manager, follow these steps:

Step 1: Expand All VSANs and then select IVR in the Logical Domains pane.

You see the IVR configuration in the Information pane.

Step 2: Click the Action tab.

Step 3: Highlight the switch on which you want to disable IVR auto topology mode.

Step 4: Uncheck the Auto Discover Topology check box (see Figure 2-7).

Step 5: Click the Apply Changes icon.

Persistent FC IDs for IVR

This section includes the following information:

- FC ID Features and Benefits, page 2-12
- FC ID Guidelines, page 2-12
- Configuring Persistent FC IDs for IVR, page 2-12
Persistent FC IDs for IVR

Send documentation comments to fm-docfeedback@cisco.com

Chapter 2 Advanced Inter-VSAN Routing Configuration

FC ID Features and Benefits

FC ID persistence improves IVR management by providing the following features:

- Allows you to control and assign a specific virtual domain to use in a native VSAN.
- Allows you to control and assign a specific virtual FC ID for a device.

The benefits of persistent FC IDs for IVR are as follows:

- Host devices always see the same FC ID for targets.
- FC IDs help you plan your SAN layout better by assigning virtual domains for IVR to use.
- FC IDs can make SAN monitoring and management easier. When you see the same domain or FC ID consistently assigned, you can readily determine the native VSAN or device to which it refers.

FC ID Guidelines

Before configuring persistent FC IDs, consider the following:

- You can configure two types of database entries for persistent IVR FC IDs:
 - Virtual domain entries—Contain the virtual domain that should be used to represent a native VSAN in a specific VSAN (current VSAN). Virtual domain entries contain the following information:
 - Native AFID
 - Native VSAN
 - Current AFID
 - Current VSAN
 - Virtual domain to be used for the native AFID and VSAN in current AFID and VSAN
 - Virtual FC ID entries—Contain the virtual FC ID that should be used to represent a device in a specific VSAN (current VSAN). Virtual FC ID entries contain the following information:
 - Port WWN
 - Current AFID
 - Current VSAN
 - Virtual FC ID to be used to represent a device for the given pWWN in the current AFID and VSAN
- If you use persistent FC IDs for IVR, we recommend that you use them for all the devices in the IVR zone set. We do not recommend using persistent FC IDs for some of the IVR devices while using automatic allocation for other devices.
- IVR NAT must be enabled to use IVR persistent FC IDs.
- In an IVR NAT configuration, if one VSAN in the IVR topology is configured with static domain IDs, then the IVR domains that can be exported to that VSAN must also be assigned static domains.

Configuring Persistent FC IDs for IVR

To configure persistent FC IDs for IVR using Fabric Manager, follow these steps:
Send documentation comments to fm-docfeedback@cisco.com

Step 1
Expand All VSANs and then select IVR in the Logical Domains pane.
You see the IVR configuration in the Information pane.

Figure 2-8 FCID Tab

Step 2
Click the FCID tab.

Step 3
Click the Create Row icon to create an FC ID (see Figure 2-8).

Step 4
Select the switch for which you are configuring the virtual FC ID to be used to represent a device in a specific VSAN (current VSAN).

Step 5
Enter the current fabric in the Current Fabric ID field for the fcdomain database.

Step 6
Enter the current VSAN in the Current VSAN ID field for the fcdomain database.

Step 7
Enter the pWWN.

Step 8
Click the drop-down menu to select the FC ID to map to the pWWN you selected.

Step 9
Click Create to create this new row.

Advanced IVR Zones and IVR Zone Sets

This section describes advanced configuration information for IVR zones and IVR zone sets. For basic information on configuring IVR zones and zone sets, see “IVR Zones and IVR Zone Sets” on page 1-14.

As part of the IVR configuration, you need to configure one or more IVR zone to enable cross-VSAN communication. To achieve this, you must specify each IVR zone as a set of (pWWN, VSAN) entries. Different IVR zone sets can contain the same IVR zone, because IVR zones can be members of one or more IVR zone sets.

Note
The same IVR zone set must be activated on all of the IVR-enabled switches.
Caution

Prior to Cisco SAN-OS Release 3.0(3) you can only configure a total of 10,000 zone members on all switches in a network. As of Cisco SAN-OS Release 3.0(3) you can only configure a total of 20,000 zone members on all switches in a network. A zone member is counted twice if it exists in two zones. See “Database Merge Guidelines” on page 1-23.

This section includes the following topics:

- IVR Zone Configuration Guidelines, page 2-14
- Configuring LUNs in IVR Zoning, page 2-14
- Configuring QoS for IVR Zones, page 2-14
- Renaming IVR Zones and IVR Zone Sets, page 2-15
- Configuring IVR Using Read-Only Zoning, page 2-15

IVR Zone Configuration Guidelines

When interop mode is enabled, consider the following IVR configuration guidelines:

- When a member’s native VSAN is in interop mode (for example, when the interop mode is 2, 3, or 4), then ReadOnly, the QoS attribute, and LUN zoning are not permitted.
- When a member’s VSAN is already in interop mode and an attempt is made to configure ReadOnly, the QoS attribute, or LUN zoning, a warning message is displayed to indicate that the configuration is not permitted.
- When you configure ReadOnly, the QoS attribute, or LUN zoning first, and then change the member’s VSAN interop mode, a warning message is displayed to indicate the configuration is not permitted. You are then prompted to change the configuration.

Configuring LUNs in IVR Zoning

LUN zoning can be used between members of active IVR zones. You can configure the service by creating and activating LUN zones between the desired IVR zone members in all relevant edge VSANs using the zoning interface or you can use LUN zoning directly supported by IVR. For more details on the advantages of LUN zoning, refer to the Cisco MDS 9000 Family NX-OS Fabric Configuration Guide or the Cisco Fabric Manager Fabric Configuration Guide.

Note

You can configure LUN zoning in an IVR zone set setup.

Configuring QoS for IVR Zones

To configure QoS for an IVR zone using Fabric Manager, follow these steps:

Note

The default QoS attribute setting is low.

Step 1

Choose Zone > Edit Local Full Zone Database.
You see the Edit IVR Local Full Zone Database dialog box for the VSAN you selected.

Step 2 Select **Zones** or a zone set.

Step 3 Check the **QoS** check box and set the QoS priority.

Step 4 Click **Activate** to make the changes.

Renaming IVR Zones and IVR Zone Sets

To rename an IVR zone or IVR zone set, using Fabric Manager, follow these steps:

Step 1 Choose **Zone > Edit Local Full Zone Database**.

You see the Edit IVR Local Full Zone Database dialog box for the VSAN you selected.

Step 2 Click a zone or zone set in the left pane.

Step 3 Choose **Edit > Rename**.

An edit box appears around the zone or zone set name.

Step 4 Enter a new name.

Step 5 Click **Activate** or **Commit Changes**.

Configuring IVR Using Read-Only Zoning

Read-only zoning (with or without LUNs) can be used between members of active IVR zones. To configure this service, you must create and activate read-only zones between the desired IVR zone members in all relevant edge VSANs using the zoning interface.

Note Read-only zoning cannot be configured in an IVR zone set setup.

Enabling Advanced Fabric Services on IVR Flows

Advanced fabric services (such as SME and IOA) use fabric-wide FC-Redirect infrastructure to redirect the traffic flows. These services can now be enabled on IVR flows using an internal feature, Abstract ACL Manager (AAM).

The steps to enable this functionality is listed in the following sub-sections:

- Configuration Guidelines and Restrictions, page 2-15

Configuration Guidelines and Restrictions

The following prerequisites must be considered before enabling AAM for IVR:

- CFS distribution must be enabled for IVR.
Enabling Advanced Fabric Services on IVR Flows

- AAM is supported only in IVR-NAT mode.
- The switches where the fabric services (such as SME and IOA) are enabled must be running the AAM supported NX-OS release 5.0(1) or later.
- FC-Redirect can be running in version 1 or version 2 mode.
- AAM support for IVR must be enabled before enabling IVR support for FCR.
- Generation 1 modules are not supported when IVR support is enabled for FCR. Specifically, ISLs should not be configured on Generation 1 modules, and the devices that support IVR for FCR should not be connected to Generation 1 modules.
- LUN zoning is not supported when AAM is enabled for IVR.
- IVR merge is supported only when both the fabrics have AAM enabled or both the fabrics have AAM disabled. The IVR merge will fail if one of the fabric has AAM enabled and the other fabric has AAM disabled.
- You must delete all the advanced fabric service (SME and IOA) configurations for IVR devices and then disable IVR support for FCR before disabling AAM support for IVR.
- Before downgrading to an earlier release to MDS NX-OS Release 5.0(1), you must delete all the advanced fabric service (SME and IOA) configurations for IVR devices, disable IVR support for FCR, and then disable AAM support for IVR.
INDEX

A
advanced
 IVR configuration 2-1
 IVR zone zones and zone sets 2-13
AFIDs
 configuring default 2-5
 configuring individual 2-5
description 1-3, 2-4, 2-8
guidelines 2-4
autonomous fabric ID
 See AFIDs
autonomous fabric identifiers. See AFIDs
auto topology mode
 configuration guidelines 1-10
 enabling 1-12

B
basic
 IVR configuration 1-1
basic configuration
 task list 1-5
border switches
 description 1-3
 IVR configuration guidelines 2-7

C
configuration limits 1-4
current VSANs
 description 1-3

D
domain IDs
 IVR configuration guidelines 2-6
 non-unique and IVR NAT 1-11
 unique 2-6

domain IDs
 IVR configuration guidelines 2-6
 non-unique and IVR NAT 1-11
 unique 2-6

e
edge switches
 description 1-3
edge VSANs
 description 1-3

F
Fabric Manager 1-6
FC ID
 configuring 2-12
 features and benefits 2-12
 guidelines 2-12
Fibre Channel header modifications 1-4

I
Inter-VSAN Routing zones. See IVR zones
Inter-VSAN Routing zone sets. See IVR zone sets
IVR
 activating topologies 2-10
 AF IDs 2-8
 basic configuration 1-1
 basic configuration task list 1-5
 border switch 1-3
border switch, guidelines 2-7
border switch configuration guidelines 2-7
border switches 1-3
configuration 2-9
configuration limits 1-4
configuration task lists 1-5, 2-1
configuring
advanced 2-2
basic 1-6
configuring logging levels 1-22
configuring without auto topology 2-6
configuring without IVR NAT 2-6
guidelines 2-6
current VSANs 1-3
database merge guidelines 1-23
databases 1-9
default settings 1-26
default zone policy 1-14
domain ID configuration guidelines 2-6
domain ID guidelines 2-6
edge switch 1-3
edge switches 1-3
edge VSANs 1-3
enabling 1-8
enabling distribution with CFS 1-8
features 1-2
Fibre Channel header modifications 1-4
interoperability 1-5
logging 1-22
native VSANs 1-3
paths 1-3
persistent FC IDs 2-11
read-only zoning 2-15
service groups 2-2 to ??
terminology 1-3
transit VSAN configuration guidelines 2-7
transit VSANs 1-3
virtual domains 1-13
VSAN topologies 1-5
zone communication 1-14
zone configuration guidelines 2-14
zones 1-3, 1-14 to ??
zone sets 1-3
Zone Wizard 1-6
IVR databases
active 1-9
configured 1-9
merge guidelines 1-23
pending 1-9
IVR logging
configuring levels 1-22
IVR manual configuration guidelines 2-8
IVR NAT
border switch, guidelines 1-12
configuration guidelines 1-10
description 1-11
enabling auto-discovery 1-12
load balancing 1-10
modifying 1-12
requirements 1-10
transit VSANs, guidelines 1-11
IVR persistent FC IDs
configuring 2-12
persistent 2-11
IVR service groups
activation 2-3
characteristics 2-2
configuring 2-3
default 2-3
description 1-3
IVR configuration guidelines 2-2
IVR topologies
activating a manually configured topology 2-10
clearing manual entries 2-10
configuring manually 2-9
enabling automatic discovery 1-12
migrating from IVR auto topology mode to IVR manual topology mode 2-11
recovery 1-22
IVR virtual domains
 clearing 1-13
description 1-13
IVR without NAT
 configuring 2-7
IVR zones
 activating with force option 1-19
 advanced
 description 2-13
 automatic creation 1-15
 configuring 1-16 to 1-19
 configuring LUNs 2-14
 configuring QoS attributes 2-14
 configuring with IVR Zone Wizard 1-6
description 1-3, 1-14
differences with zones (table) 1-14
maximum number of members 1-4
maximum number of zones 1-4
recovery of the full database 1-21
renaming 2-15
IVR zone sets
 activating 1-20
 advanced configuration
 description 2-13
 configuring 1-16 to 1-21
 deactivating 1-20
description 1-3, 1-14
maximum number 1-4
renaming 2-15
IVR Zone Wizard 1-6

P
persistent FC IDs
 configuring 2-12
description 2-11
T
transit VSANs
 configuration guidelines 1-11
description 1-3, 2-10
IVR configuration guidelines 2-7
V
VSANs
transit 2-10
Z
zones
 configuration guidelines 2-14
differences with IVR zones 1-14
IVR communication 1-14
read-only for IVR 2-15
N
NAT. See IVR NAT
native VSANs
 description 1-3
Send documentation comments to fm-docfeedback@cisco.com