

Technical Specifications

- Switch Specifications, on page 1
- Power Supply Requirement Specifications, on page 3
- Component Power Requirements and Heat Dissipation, on page 3

Switch Specifications

The following table lists the environmental specifications for the switch:

Table 1: Environmental Specifications

Description	Specification
Temperature, ambient operating	32 to $104^{\circ} \mathrm{F}\left(0\right.$ to $\left.40^{\circ} \mathrm{C}\right)$
Temperature, ambient nonoperating and storage	-40 to $158^{\circ} \mathrm{F}\left(-40\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Humidity (RH), ambient (noncondensing) operating	10 to 90%
Humidity (RH), ambient (noncondensing) nonoperating and storage	10 to 95%
Altitude, operating	-197 to $6500 \mathrm{ft}(-60$ to 2000 m$)$

The following table lists the physical specifications for the switch:
Table 2: Physical Specifications

Description	Specification
Dimensions (HxWxD)	$1.72 \times 17.3 \times 18 \mathrm{in}.(4.37 \times 43.94 \times 45.72 \mathrm{~cm})$ excluding PSU and fan module handles
Rack Space	Chassis requires $1 \mathrm{RU}(1.75 \mathrm{in}$. or 4.45 cm$)$
Weight	$21.8 \mathrm{lb}(9.9 \mathrm{~kg})$ unpopulated
Fan Dimensions (WxH)	$1.575 \times 1.575 \mathrm{in}.(4.0 \times 4.0 \mathrm{~cm})$

Description	Specification
Fan Slots Opening Dimensions (WxH)	$1.614 \times 1.602 \mathrm{in} .(4.09 \times 4.06 \mathrm{~cm})$
Power Supply	500-W - 500-W AC, port-side exhaust variant (up to 2 per switch) - $500-\mathrm{W} \mathrm{AC}$, port-side intake variant (up to 2 per switch) - AC input-100 to 240 V AC (10% range) - Frequency-50 to 60 Hz (nominal) - 80 PLUS Platinum certified 1200-W - 1200W AC/ HVAC/ HVDC Bidirectional airflow (2 per switch) - Part Number: DS-CAC-1200W - AC input: 90 V to 305 V - DC input: 192 V to 400 V - Frequency - 50 to 60 Hz (nominal) - 80 PLUS Platinum certified
Airflow	- Back to front (toward ports) using port-side exhaust fans - Front to back (into ports) using port-side intake fans - 50 CFM $\left(0.02 \mathrm{~m}^{3} / \mathrm{s}\right)$ through system fan assembly at $25^{\circ} \mathrm{C}$ - $100 \mathrm{CFM}\left(0.04 \mathrm{~m}^{3} / \mathrm{s}\right)$ maximum We recommend that you maintain a minimum air space of 2.5 in . $(6.4 \mathrm{~cm})$ between walls and chassis air vents and a minimum horizontal separation of 6 in. $(15.2 \mathrm{~cm})$ between two chassis to prevent overheating. To prevent the switch from overheating and shutting down, you must position the air intake for the switch in a cold aisle.

Power Supply Requirement Specifications

The following table provides a sample calculation of power for the switch AC power supply:

Table 3: Power Dissipation for AC Power Supply

Power Mode	PSU	Traffic Rate	Temperatre	Voltage	Optics Speed	Optics Number	Fan Trays	Power at 110 V/60 Hz (Watts)	Power at 220 V/50 Hz (Watts)
Typical	2	50\%	$25^{\circ} \mathrm{C}$	Nominal	32G-SW	24	4	211	205
						48	4	247	240
					64G-SW	24	4	235	228
						48	4	295	286
Max	2	100\%	$25^{\circ} \mathrm{C}$		32G-SW	24	4	213	207
					32G-SW	48	4	248	241
					64G-SW	24	4	236	229
					64G-SW	48	4	301	292
			$40^{\circ} \mathrm{C}$		32G-SW	48	4	286	278
					64G-SW	48	4	323	314

Table 4: Power Supply Fuse Information

PID	Fuse Type	Fuse Rating (Amp)	I2t (Amps ${ }^{\text {2 seconds) }}$	Fuse Melting Time
DS-CAC-500W-I	Time-lag	15	534	$4 \min @ 15 \mathrm{~A}$ 2
			6 min@30 A	

Component Power Requirements and Heat Dissipation

Consider heat dissipation when sizing the air-conditioning requirements for an installation. The power and heat associated with switch varies based on the following considerations:

- The environment (temperature) outside the chassis
- Internal chassis temperature
- Any hardware component failure in the chassis
- Average switching traffic levels

The following table lists the power requirements and heat dissipation for the components of the switch:

Table 5: Power Requirements (maximum) and Heat Dissipation for the Switch

Module Type/Product Number	Power Required (Watts)	Heat Dissipation (BTU/hr)	Input Current	
	110 VAC (Amps)	220 VAC (Amps)		
Cisco MDS 9148V-K9 64-Gbps 48-port Switch	314 (Max)	986	2.94	1.42

