Cisco APIC and NetFlow

New and Changed Information 2
About NetFlow 2
NetFlow Support and Limitations 4
Configuring NetFlow Using the GUI 6
Configuring NetFlow Using the NX-OS-Style CLI 11
Configuring NetFlow Using the REST API 19
Addendum 21
New and Changed Information

The following table provides an overview of the significant changes up to the current release. The table does not provide an exhaustive list of all changes or of the new features up to this release.

Table 1: New Features and Changed Behavior

<table>
<thead>
<tr>
<th>Cisco APIC Release Version</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.0(1)</td>
<td>Remote Leaf Switches</td>
<td>NetFlow is now supported on Remote Leaf switches.</td>
</tr>
<tr>
<td>Release 2.3(1)</td>
<td>FX-platform Switches</td>
<td>NetFlow is now supported on the FX-platform switches.</td>
</tr>
<tr>
<td>Release 2.2(1)</td>
<td>Cisco APIC and NetFlow.</td>
<td>This guide is first released.</td>
</tr>
</tbody>
</table>

About NetFlow

The NetFlow technology provides the metering base for a key set of applications, including network traffic accounting, usage-based network billing, network planning, as well as denial of services monitoring, network monitoring, outbound marketing, and data mining for both service providers and enterprise customers. Cisco provides a set of NetFlow applications to collect NetFlow export data, perform data volume reduction, perform post-processing, and provide end-user applications with easy access to NetFlow data. If you have enabled NetFlow monitoring of the traffic flowing through your datacenters, this feature enables you to perform the same level of monitoring of the traffic flowing through the Cisco Application Centric Infrastructure (Cisco ACI) fabric.

Instead of hardware directly exporting the records to a collector, the records are processed in the supervisor engine and are exported to standard NetFlow collectors in the required format.

For information about configuring NetFlow with virtual machine networking, see the *Cisco ACI Virtualization Guide.*

NetFlow Monitor Policies

NetFlow policies can be deployed on a per-interface basis. Depending on the traffic-type or address family to be monitored (IPv4, IPv6, or Layer 2), you can enable different NetFlow monitor policies. A monitor policy (netflowMonitorPol) acts as a container to hold relationships to the record policy and exporter policy. A monitor policy identifies packet flows for ingress IP packets and provides statistics based on these packet flows. NetFlow does not require any change to either the packets themselves or to any networking device.

This policy can be configured under Fabric for deployment on physical interfaces or for a Tenant to be applied to bridge domains and L3Outs.

NetFlow can be deployed on the entire fabric or on a portion of the fabric to monitor packet statistics of different interface types.

NetFlow Record Policies

A record policy (netflowRecordPol) lets you define a flow and what statistics to collect for each flow. This is achieved by defining the keys that NetFlow uses to identify packets in the flow as well as other fields of interest that NetFlow gathers for the flow. You can define a flow record with any combination of keys and fields of interest. A flow record also defines the types of counters gathered per flow, and you can configure 32-bit or 64-bit packet or byte counters.
A record policy has the following properties:

- **RecordPol.match**—A flow can be defined using the `match` property, which can be a combination of the following values:
 - `src-ipv4, dst-ipv4, src-port, dst-port, proto, vlan, tos`
 - `src-ipv6, dst-ipv6, src-port, dst-port, proto, vlan, tos`
 - `ethertype, src-mac, dst-mac, vlan`
 - `src-ip, dst-ip, src-port, dst-port, proto, vlan, tos`

 Note The `src-ip` and `dst-ip` parameters qualify both IPv4 and IPv6.

- **RecordPol.collect**—The `collect` property can be used to specify what information to collect for a given flow.

NetFlow Exporter Policies

An exporter policy (`netflowExporterPol`) specifies where the data collected for a flow must be sent. A NetFlow collector is an external entity that supports the standard NetFlow protocol and accepts packets marked with valid NetFlow headers.

An exporter policy has the following properties:

- **Destination IP Address**—This mandatory property specifies the IPv4 or IPv6 address of the NetFlow exporter that accepts the NetFlow flow packets. This must be in the host format (that is, `/32` or `/128`).

- **Destination Port**—This mandatory property specifies the port on which the exporter application is listening on, which enables the exporter to accept incoming connections.

- **Source IP Address**—This optional property is used similar to a tag to distinguish flows from different sections or nodes in the fabric.

 The address must have room for at least 12 host bits. That is, the mask must be less than or equal to 20 for IPv4 or less than or equal to 116 for IPv6. The last 12 host bits are used by the switch to insert its node ID to distinguish the source of the packet.

- **Version**—This property is used to specify the NetFlow version for the exporter to understand the packet. The only supported value is `v9`.

A NetFlow exporter can send data to a NetFlow collector directly connected to the fabric via an EPG or a remote collector reachable via an L3Oout. Select the EPG Type accordingly and complete the Associated Tenant/EPG as required:

About NetFlow Node Policies

A node policy (`netflowNodePol`) deploys NetFlow timers that specify the rate at which flow records are sent to the external exporter. The timers are as follows:

- **Collection interval**—The time interval after which the leaf switch sends a NetFlow packet to the collector. The default value is 1 minute.

- **Template interval**—The time interval after which the leaf switch sends a record template to the collector. This template specifies the format of the records being sent to the collector. The default value 5 minutes.
NetFlow Support and Limitations

NetFlow is supported on EX, FX, and FX2 and newer switches. For a full list of switch models supported on a specific release, see Cisco NX-OS Release Notes for Cisco Nexus 9000 Series ACI-Mode Switches for that release.

NetFlow on remote leaf switches is supported starting with Cisco APIC Release 4.0(1).

The following list provides information about the available support for NetFlow and the limitations of that support:

- Cisco ACI supports only ingress and not egress NetFlow. Packets entering from a spine switch cannot be captured reliably with NetFlow on a bridge domain.
- NetFlow on spine switches is not supported, and tenant level information cannot be derived locally from the packet on the spine.
- The hardware does not support any active/inactive timers. The flow table records get aggregated as the table gets flushed, and the records get exported every minute.
- At every export interval, software cache gets flushed and the records that are exported in the next interval will have a reset packet/byte count and other statistics, even if the flow was long-lived.
- The filter TCAM has no labels for bridge domain or interfaces. If a NetFlow monitor is added to 2 bridge domains, the NetFlow monitor uses 2 rules for IPv4, or 8 rules for IPv6. As such, the scale is very limited with the 1K filter TCAM.
- ARP/ND are handled as IP packets and their target protocol addresses are put in the IP fields with some special protocol numbers from 249 to 255 as protocol ranges. NetFlow collectors might not understand this handling.
- The ICMP checksum is part of the Layer 4 src port in the flow record, so for ICMP records, many flow entries will be created if this is not masked, as is similar for other non-TCP/UDP packets.

NetFlow on EX-Platform Switches

In addition to the generic support information, the following limitations apply to EX-platform switches:

- NetFlow can be supported on a bridge domain; however, NetFlow cannot distinguish between bridged and routed packets. If you configure NetFlow on an interface VLAN (SVI) to capture only routed packets, NetFlow cannot limit collection to this type in EX switches.
- EX switches cannot provide an encapsulation VLAN in the flow record.
- EX switches do not have a MAC packet classify feature, so the configuration engine flow record will contain only non-IP flows (ARP is already treated as IP).
- EX switches do not support regularly-deployed and understood NetFlow sampling, such as packet-based sampling (M out of N).
- Having a type of service or source interface as part of the flow hash is not supported. Source interface information is collected in the record, but no type of service information is collected in EX switches.
- EX switches support only two exporters (active and standby).
- EX switches have fixed Flow collection parameters.
- EX switches support only two flow records of each type. The exception is that four configuration engine flow records are supported.
- EX switches assign the following protocol numbers to identify the ARP and ND packets:
All other ARP and ND packets are set to 255.

NetFlow Supported Interfaces

The following interfaces are supported for NetFlow:

- Physical Ethernet (Layer 2 and Layer 3)
- Port channel (PC)
- Virtual port channel (vPC)
- Fabric Extenders (FEX), FEX PC, and FEX VPC
- Layer 3 sub-interface
- SVI
- Bridge domains

Unlike other interface policies, NetFlow policies are not applied by default on interfaces. NetFlow must be explicitly enabled on a given interface.

For each interface, the address family (or filter) must be specified while enabling NetFlow monitoring. The address family can be one of the following types:

- IPv4
- IPv6
- CE (classical ethernet/Layer 2)

The address family causes the hardware to monitor packets only based on the address family that is provided. Different monitoring policies can be enabled per address family on the same interface.

NetFlow and Cisco Tetration Analytics Priority

As far the Cisco Application Centric Infrastructure (Cisco ACI) hardware is concerned, NetFlow and Cisco Tetration Analytics use the same ASIC building blocks to collect data. You cannot enable both features at the same time. NetFlow or Tetration Analytics must be explicitly enabled before configuring and deploying the related policies. The default is Tetration Analytics.

If the Cisco APIC pushes both Cisco Tetration Analytics and NetFlow configurations to a particular node, the chosen priority flag alerts the switch as to which feature should be given priority. The other feature’s configuration is ignored.
Configuring NetFlow Using the GUI

Configuring a Fabric NetFlow Monitor Policy Using the GUI

The following procedure configures a fabric NetFlow monitor policy using the Cisco APIC GUI.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>From the menu bar, choose Fabric > Access Policies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>In earlier releases, the NetFlow Monitor policy configuration may be located under Interface Policies > Policies > Analytics > NetFlow Monitors instead.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Right-click NetFlow Monitors and select Create NetFlow Monitor</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Create NetFlow Monitor dialog box, fill in the fields as required.</td>
</tr>
<tr>
<td></td>
<td>You can create new or add existing Flow Records and Exporters.</td>
</tr>
<tr>
<td></td>
<td>Creating Associated Flow Record is described in Configuring a Fabric NetFlow Record Policy Using the GUI, on page 6.</td>
</tr>
<tr>
<td></td>
<td>Creating Associated Flow Exporters is described in Configuring a Fabric NetFlow Exporter Policy Using the GUI, on page 7.</td>
</tr>
<tr>
<td></td>
<td>You can associate a maximum of two flow exporters with the monitor policy.</td>
</tr>
</tbody>
</table>

Configuring a Fabric NetFlow Record Policy Using the GUI

The following procedure configures a fabric NetFlow record policy using the Cisco APIC GUI.

Procedure

Step 1	From the menu bar, choose Fabric > Access Policies.
Note	In earlier releases, the NetFlow Record policy configuration may be located under Interface Policies > Policies > Analytics > NetFlow Records instead.
Step 3	Right-click NetFlow Records and choose Create NetFlow Record.
Step 4	In the Create NetFlow Record dialog box, fill in the fields as required, except as specified below:
	a) For the Collect Parameters drop-down list, you can choose multiple parameters.
	b) For the Match Parameters drop-down list, you can choose multiple parameters.
	If you choose multiple parameters, your choices must be one of the following combinations or a subset of one of the combinations:
• Source IPv4, Destination IPv4, Source Port, Destination Port, IP Protocol, VLAN, IP TOS
• Source IPv6, Destination IPv6, Source Port, Destination Port, IP Protocol, VLAN, IP TOS
• Ethertype, Source MAC, Destination MAC, VLAN

Configuring a Fabric NetFlow Exporter Policy Using the GUI

The following procedure configures a fabric NetFlow exporter policy using the Cisco APIC GUI.

Procedure

Step 1 From the menu bar, choose Fabric > Access Policies.
Step 2 In the Navigation pane, choose Policies > Interface > NetFlow > NetFlow Exporters.

Note In earlier releases, the NetFlow Monitor policy configuration may be located under Interface Policies > Policies > Analytics > NetFlow Exporters instead.

Step 3 Right-click NetFlow Exporters and choose Create External Collector Reachability
Step 4 In the Create External Collector Reachability dialog box, fill in the fields as required, except as specified below:
 a) For the NetFlow Exporter Version Format buttons, Version 9 is the only valid choice. Even if you click one of the other buttons, the version defaults to 9.
 b) For the EPG Type check boxes, you can leave the boxes unchecked, or you can put a check in one box. You cannot put a check in multiple boxes.

Configuring a Tenant NetFlow Monitor Policy Using the GUI

The following procedure configures a tenant NetFlow monitor policy using the Cisco APIC GUI.

Procedure

Step 1 From the menu bar, choose Tenants > All Tenants.
Step 2 In the Work pane, double-click the tenant's name.
Step 3 In the Navigation pane, choose Tenant <tenant-name> > Policies > NetFlow > NetFlow Monitors.

Note In earlier releases, the NetFlow Monitor policy configuration may be located under Tenant <tenant-name> > Application Profiles > <application-profile-name> instead.

Step 5 In the Create NetFlow Monitor dialog box, fill in the fields as required.

You can create new or add existing Flow Records and Exporters.
Creating **Associated Flow Record** is described in Configuring a Tenant NetFlow Record Policy Using the GUI, on page 8.

Creating **Associated Flow Exporters** is described in Configuring a Tenant NetFlow Exporter Policy Using the GUI, on page 8.

You can associate a maximum of two flow exporters with the monitor policy.

Configuring a Tenant NetFlow Record Policy Using the GUI

The following procedure configures a tenant NetFlow record policy using the Cisco APIC GUI.

Procedure

Step 1 From the menu bar, choose **Tenants > All Tenants**.

Step 2 In the Work pane, double-click the tenant's name.

Step 3 In the Navigation pane, choose **Tenant <tenant-name> > Policies > NetFlow > NetFlow Records**.

Note In earlier releases, the NetFlow Exporter policy configuration may be located under **Tenant <tenant-name> > Analytics > NetFlow Records** instead.

Step 4 Right-click **NetFlow Records** and choose **Create Flow Record**.

Step 5 In the **Create NetFlow Record** dialog box, fill in the fields as required, except as specified below:

a) For the **Collect Parameters** drop-down list, you can choose multiple parameters.

b) For the **Match Parameters** drop-down list, you can choose multiple parameters.

If you choose multiple parameters, your choices must be one of the following combinations or a subset of one of the combinations:

- Source IPv4, Destination IPv4, Source Port, Destination Port, IP Protocol, VLAN, IP TOS
- Source IPv6, Destination IPv6, Source Port, Destination Port, IP Protocol, VLAN, IP TOS
- Ethertype, Source MAC, Destination MAC, VLAN

Configuring a Tenant NetFlow Exporter Policy Using the GUI

The following procedure configures a tenant NetFlow exporter policy using the Cisco APIC GUI.

Procedure

Step 1 From the menu bar, choose **Tenants > All Tenants**.

Step 2 In the Work pane, double-click the tenant's name.

Step 3 In the Navigation pane, choose **Tenant <tenant-name> > Policies > NetFlow > NetFlow Exporters**.
Note: In earlier releases, the NetFlow Exporter policy configuration may be located under Tenant <tenant-name> > Analytics > NetFlow Exporters instead.

Step 4 Right-click NetFlow Exporters and choose Create External Collector Reachability.
Step 5 In the Create External Collector Reachability dialog box, fill in the fields as required, except as specified below:
 a) For the NetFlow Exporter Version Format buttons, Version 9 is the only supported choice.
 b) For the EPG Type check boxes, you can leave the boxes unchecked, or you can put a check in one box. You cannot put a check in multiple boxes.

Deploying NetFlow Monitor Policy Through a Selector Using Cisco APIC GUI

The following procedure deploys a NetFlow monitor policy through a selector using the Cisco APIC GUI.

Procedure

Step 1 On the menu bar, choose Fabric > Access Policies.
Step 2 In the Navigation pane, choose Interfaces > Leaf Interfaces > Policy Groups.
 In earlier releases, the configuration may be located under Interface Policies > Policy Groups > Leaf Policy Groups instead.
Step 3 You can deploy the NetFlow monitor policy when you create a new leaf policy group, or you can deploy the NetFlow monitor policy on an existing leaf policy group.
 To deploy the NetFlow monitor policy when you create a new leaf policy group, use the following steps:
 a) Right-click the type of interface group you want to create and choose Create Leaf Access Port Policy Group.
 b) In the dialog box, fill in the fields as required
 On the NetFlow Monitor Policies table, click + to add a policy, and choose the IP filter type and monitor policy.
 To deploy the NetFlow monitor policy on an existing leaf policy group, use the following steps:
 a) In the Navigation pane, choose one of the existing leaf access port policy groups, PC interface policy groups, or VPC interface policy groups.
 b) In the Work pane, on the NetFlow Monitor Policies table, click + to add a policy, and choose the IP filter type and monitor policy.
 c) Click Submit.

Deploying NetFlow Monitor Policy Through an L3Out Using Cisco APIC GUI

The following procedure deploys a NetFlow monitor policy through an L3Out using the Cisco APIC GUI.

Procedure

Step 1 From the menu bar, choose Tenants > All Tenants.
Deploying NetFlow Monitor Policy Through a Bridge Domain Using Cisco APIC GUI

The following procedure deploys a NetFlow monitor policy through a bridge domain using Cisco APIC GUI.

Procedure

Step 1 On the menu bar, choose Tenants > All Tenants.
Step 2 In the Work pane, double-click the tenant's name.
Step 3 In the Navigation pane, choose Tenant tenant_name > Networking > Bridge Domains.
Step 4 You can deploy the NetFlow monitor policy when you create a new bridge domain, or you can deploy the NetFlow monitor policy on an existing bridge domain.

To deploy the NetFlow monitor policy when you create a new bridge domain, use the following steps:

a) In the Work pane, choose Actions > Create Bridge Domain.
b) In the Create Bridge Domain dialog box, fill in the fields as required, except as specified below:

2. Click Finish.

To deploy the NetFlow monitor policy on an existing bridge domain, use the following steps:

a) In the Navigation pane, choose one of the existing bridge domains.
b) In the Work pane, choose Policy > Advanced Troubleshooting.
d) Click Submit.

Configuring NetFlow or Tetration Analytics Priority Using Cisco APIC GUI

You can specify whether to use the NetFlow or Cisco Tetration Analytics feature by using the Cisco APIC GUI.

Procedure

Step 1 On the menu bar, choose Fabric > Fabric Policies.
Step 2 In the Navigation pane, choose Fabric Node Controls.
Step 3 In the Work pane, choose Actions > Create Fabric Node Control

Step 4 In the Create Fabric Node Control dialog box, fill in the fields as required, except as specified below:
 a) For the Feature Selection buttons, click one of the following buttons:
 • Analytics Priority—Specifies Cisco Tetration Analytics. This is the default value.
 • NetFlow Priority—Specifies NetFlow.

Step 5 Click Submit.
Step 6 Associate the fabric node control policy to the appropriate fabric policy group and profile.

Configuring NetFlow Using the NX-OS-Style CLI

Configuring NetFlow Node Policy Using the NX-OS-Style CLI

The following example procedure uses the NX-OS-style CLI to configure a NetFlow node policy:

Procedure

Step 1 Enter the configuration mode.
 Example:
 apic1# config
Step 2 Configure the node policy.
 Example:
 apic1(config)# flow node-policy nodePol
 apic1(config-flow-node-pol)# flow timeout collection 100
 apic1(config-flow-node-pol)# flow timeout template 123
 apic1(config-flow-node-pol)# exit

Configuring NetFlow Infra Selectors Using the NX-OS-Style CLI

You can use the NX-OS-style CLI to configure NetFlow infra selectors. The infra selectors are used for attaching a Netflow monitor to a PHY, port channel, virtual port channel, fabric extender (FEX), or port channel fabric extender (FEXPC) interface.

The following example CLI commands show how to configure NetFlow infra selectors using the NX-OS-style CLI:

Procedure

Step 1 Enter the configuration mode.
 Example:
 apic1# config
Step 2 Create a NetFlow exporter policy.

Example:
In the following commands, the destination endpoint group is the endpoint group that the exporter sits behind. This endpoint group can also be an external Layer 3 endpoint group.

```bash
apic1(config)# flow exporter infraExporter1 destination address 1.2.3.4 transpo udp 1234
apic1(config-flow-exporter)# destination epg tenant tn2 application ap2 epg epg2
apic1(config-flow-exporter)# vrf member tenant tn2 vrf vrf2
apic1(config-flow-exporter)# source address 1.1.1.1
apic1(config-flow-exporter)# exit
```

Step 3 Create a second NetFlow exporter policy.

Example:
In the following commands, the destination endpoint group is the endpoint group that the exporter sits behind, which in this case is an external Layer 3 endpoint group.

```bash
apic1(config)# flow exporter infraExporter2
apic1(config-flow-exporter)# transport udp 9990
apic1(config-flow-exporter)# destination address 2001:db5:a0c:1f0::2
apic1(config-flow-exporter)# destination external-l3 epg tenant tn2 vrf v2 epg accounting-inst
apic1(config-flow-exporter)# vrf member tenant tn2 vrf vrf2
apic1(config-flow-exporter)# source address 2001:db8:a0b:12f0::1
apic1(config-flow-exporter)# exit
```

Step 4 Create a NetFlow record policy.

Example:

```bash
apic1(config)# flow record infraRecord1
apic1(config-flow-record)# match dst-ip
apic1(config-flow-record)# match dst-ipv4
apic1(config-flow-record)# match dst-ipv6
apic1(config-flow-record)# match dst-mac
apic1(config-flow-record)# match dst-port
apic1(config-flow-record)# match ethertype
apic1(config-flow-record)# match proto
apic1(config-flow-record)# match src-ip
apic1(config-flow-record)# match src-ipv4
apic1(config-flow-record)# match src-ipv6
apic1(config-flow-record)# match src-mac
apic1(config-flow-record)# match src-port
apic1(config-flow-record)# match tos
apic1(config-flow-record)# match vlan
apic1(config-flow-record)# collect count-bytes
apic1(config-flow-record)# collect count-pkts
apic1(config-flow-record)# collect pkt-disp
apic1(config-flow-record)# collect sampler-id
apic1(config-flow-record)# collect src-intf
apic1(config-flow-record)# collect tcp-flags
apic1(config-flow-record)# collect ts-first
apic1(config-flow-record)# collect ts-recent
apic1(config-flow-record)# exit
```

Step 5 Create a NetFlow monitor policy.

Example:

```bash
apic1(config)# flow monitor infraMonitor1
apic1(config-flow-monitor)# record infraRecord1
```
You can attach a maximum of two exporters.

Step 6 Create an interface policy group (AccPortGrp).

Example:

```plaintext
api1(config)# template policy-group pg1
api1(config-pol-grp-if)# ip flow monitor infraMonitor1
api1(config-pol-grp-if)# ipv6 flow monitor infraMonitor2
api1(config-pol-grp-if)# exit
```

You can have one monitor policy per address family (IPv4 and IPv6).

Step 7 Create a node profile and infra selectors.

Example:

```plaintext
api1(config)# leaf-profile lp1
api1(config-leaf-profile)# leaf-group lg1
api1(config-leaf-group)# leaf 101
api1(config-leaf-profile)# exit
api1(config)# leaf-interface-profile lip1
api1(config-leaf-if-profile)# exit
api1(config)# leaf-interface-profile lip1
api1(config-leaf-if-profile)# leaf-interface-group lig1
api1(config-leaf-if-profile)# interface ethernet 1/5
api1(config-leaf-if-profile)# exit
api1(config-leaf-profile)# exit
```

Step 8 Create a port channel policy group (AccBndlGrp).

Example:

```plaintext
api1(config)# template port-channel po6
api1(config-if)# ip flow monitor infraMonitor1
api1(config-if)# ipv6 flow monitor infraMonitor1
api1(config-if)# exit
api1(config-leaf-profile)# leaf-profile lp2
api1(config-leaf-group)# leaf-group lg2
api1(config-leaf-profile)# leaf 101
api1(config-leaf-profile)# exit
api1(config)# leaf-interface-profile lip2
api1(config-leaf-if-profile)# exit
api1(config)# leaf-interface-profile lip2
api1(config-leaf-if-profile)# leaf-interface-group lig2
api1(config-leaf-if-profile)# interface ethernet 1/6
api1(config-leaf-if-profile)# channel-group po6
api1(config-leaf-if-profile)# exit
```

You can have one monitor policy per address family (IPv4 and IPv6). The interfaces can also be vPCs.

Configuring NetFlow Overrides Using the NX-OS-Style CLI

The following procedure configures NetFlow overrides using the NX-OS-Style CLI:
Procedure

Step 1 Enter the configuration mode.

Example:

```
apic1# config
```

Step 2 Create the override.

Example:

```
apic1(config)# leaf 101
apic1(config-leaf)# vrf context tenant tn2 vrf vrf2
apic1(config-leaf)# exit
apic1(config)# interface ethernet 1/15
apic1(config-if)# ip flow monitor infraMonitor1
apic1(config-if)# ipv6 flow monitor infraMonitor2
apic1(config-if)# exit
apic1(config)# exit
```

You can have one monitor policy per address family (IPv4 and IPv6). The interfaces can also be vPCs.

Configuring NetFlow Tenant Hierarchy Using the NX-OS-Style CLI

The following example procedure uses the NX-OS-style CLI to configure the NetFlow tenant hierarchy:

Procedure

Step 1 Enter the configuration mode.

Example:

```
apic1# config
```

Step 2 Create a tenant and bridge domain, and add them to a VRF.

Example:

```
apic1(config)# tenant tn2
apic1(config-tenant)# vrf context vrf2
apic1(config-tenant-vrf)# exit
apic1(config-tenant)# bridge-domain bd2
apic1(config-tenant-bridge-domain)# vrf member vrf2
apic1(config-tenant-bridge-domain)# exit
apic1(config-tenant)# bridge-domain bd3
apic1(config-tenant-bridge-domain)# vrf member vrf2
apic1(config-tenant-bridge-domain)# exit
```

Step 3 Create an application endpoint group behind which the exporter resides.

Example:

```
apic1(config-tenant)# application ap2
apic1(config-tenant-app)# epg epg2
apic1(config-tenant-app)# bridge-domain member bd2
```
Step 4 Create a second application endpoint group behind which the exporter resides.

Example:

```markdown
apic1(config-tenant-app)# application ap3
apic1(config-tenant-app)# epg epg3
apic1(config-tenant-app)# bridge-domain member bd3
apic1(config-tenant-app-bridge-domain)# exit
apic1(config-tenant-app)# exit
```

Step 5 Attach a NetFlow monitor policy on the bridge domains.

Example:

```markdown
apic1(config)# interface bridge-domain bd2
apic1(config-if)# ipv6 flow monitor tnMonitor1
apic1(config-if)# ip flow monitor tnMonitor1
apic1(config-if)# layer2-switched flow monitor tnMonitor1
apic1(config-if)# exit
apic1(config)# interface bridge-domain bd3
apic1(config-if)# ipv6 flow monitor tnMonitor1
apic1(config-if)# ip flow monitor tnMonitor1
apic1(config-if)# exit
```

You can have one monitor policy per address family (IPv4 and IPv6). The interfaces can also be vPCs.

Step 6 Create the Netflow exporter policy.

Example:

In the following commands, the destination endpoint group is the endpoint group that the exporter sits behind. This endpoint group can also be an external Layer 3 endpoint group.

```markdown
apic1(config)# flow exporter tnExporter1
apic1(config-flow-exporter)# transport udp 1234
apic1(config-flow-exporter)# destination address 2.2.2.2
apic1(config-flow-exporter)# destination epg tenant tn2 application ap2 epg epg2
apic1(config-flow-exporter)# vrf member tenant tn2 vrf vrf2
apic1(config-flow-exporter)# version v9
apic1(config-flow-exporter)# source address 1.1.1.1
apic1(config-flow-exporter)# exit
```

Step 7 Create a second Netflow exporter policy.

Example:

In the following commands, the destination endpoint group is the endpoint group that the exporter sits behind, which in this case is an external Layer 3 endpoint group.

```markdown
apic1(config)# flow exporter tnExporter2
apic1(config-flow-exporter)# transport udp 9990
apic1(config-flow-exporter)# destination address 2001:db5:a0c:1f0::2
apic1(config-flow-exporter)# destination external-l3 epg tenant tn2 vrf v2 epg accounting-inst
apic1(config-flow-exporter)# vrf member tenant tn2 vrf vrf2
apic1(config-flow-exporter)# version v5
apic1(config-flow-exporter)# source address 2001:db8:a0b:12f0::1
apic1(config-flow-exporter)# exit
```

Step 8 Create a NetFlow record policy.

Example:
Step 9 Create a NetFlow monitor policy.

Example:
```
apic1(config)# flow monitor tnMonitor1
apic1(config-flow-monitor)# record tnRecord1
apic1(config-flow-monitor)# exporter tnExporter1
apic1(config-flow-monitor)# exporter tnExporter2
apic1(config-flow-monitor)# exit
```

You can attach a maximum of two exporters.

Step 10 Add VLANs to the VLAN domain and configure a VRF for a leaf node.

Example:
```
apic1(config)# vlan-domain dom1
apic1(config-vlan)# vlan 5-100
apic1(config-vlan)# exit
apic1(config)# leaf 101
apic1(config-leaf)# vrf context tenant tn2 vrf vrf2
apic1(config-leaf-vrf)# exit
```

Step 11 Deploy an endpoint group on an interface to deploy the bridge domain.

Example:
```
apic1(config-leaf)# interface ethernet 1/10
apic1(config-leaf-if)# vlan-domain member dom1
apic1(config-leaf-if)# switchport trunk allowed vlan 10 tenant tn2 application ap2 epg epg2
apic1(config-leaf-if)# exit
```

Step 12 Deploy another endpoint group on an interface.

Example:
```
apic1(config-leaf)# interface ethernet 1/11
apic1(config-leaf-if)# vlan-domain member dom1
apic1(config-leaf-if)# switchport trunk allowed vlan 11 tenant tn2 application ap3 epg epg3
apic1(config-leaf-if)# exit
```
Step 13
Attach the monitor policy to the sub-interface.

Example:

```bash
apic1(config-leaf)# interface ethernet 1/20
apic1(config-leaf-if)# vlan-domain member dom1
apic1(config-leaf-if)# no switchport
apic1(config-leaf-if)# exit
apic1(config-leaf)# interface ethernet 1/20.20
apic1(config-leaf-if)# vrf member tenant tn2 vrf vrf2
apic1(config-leaf-if)# ipv6 address 20::1/64 preferred
apic1(config-leaf-if)# ipv6 flow monitor tnMonitor1
apic1(config-leaf-if)# ip flow monitor tnMonitor2
apic1(config-leaf-if)# exit
```

Step 14
Attach the monitor policy to a switched virtual interface (SVI).

Example:

```bash
apic1(config-leaf)# interface vlan 30
apic1(config-leaf-if)# vrf member tenant tn2 vrf vrf2
apic1(config-leaf-if)# ipv6 address 64::1/64 preferred
apic1(config-leaf-if)# ip flow monitor tnMonitor1
apic1(config-leaf-if)# ip6 flow monitor tnMonitor1
apic1(config-leaf-if)# exit
```

Step 15
Associate the SVI to a Layer 2 interface.

Example:

```bash
apic1(config-leaf)# interface ethernet 1/30
apic1(config-leaf-if)# vlan-domain member dom1
apic1(config-leaf-if)# switchport trunk allowed vlan 30 tenant tn2 external-svi
apic1(config-leaf-if)# exit
apic1(config)# exit
```

Configuring NetFlow and Tetration Analytics Feature Priority Through Node Control Policy Using NX-OS-Style CLI

The following example procedure uses the NX-OS-style CLI to configure the NetFlow and Tetration Analytics feature priority through a node control policy:

Procedure

Step 1
Enter the configuration mode.

Example:

```bash
apic1# config
```

Step 2
Create a node control policy.

Example:

```bash
apic1(config)# node-control policy poll
```

Step 3
Set NetFlow as the priority feature.
Example:
apic1(config-node)# feature netflow

Step 4 Exit the node control policy configuration.
Example:
apic1(config-node)# end

Step 5 Deploy the policy to node 101 and node 102.
Example:
ifav-isim15-ifc1(config)# fabric-internal
ifav-isim15-ifc1(config-fabric-internal)# template leaf-policy-group lpg1
ifav-isim15-ifc1(config-leaf-policy-group)# inherit node-control-policy pol1
ifav-isim15-ifc1(config-leaf-policy-group)# exit
ifav-isim15-ifc1(config-fabric-internal)# leaf-profile leafProfile1
ifav-isim15-ifc1(config-leaf-profile)# leaf-group leafgrp1
ifav-isim15-ifc1(config-leaf-group)# leaf 101
ifav-isim15-ifc1(config-leaf-group)# leaf 102
ifav-isim15-ifc1(config-leaf-group)# leaf-policy-group lpg1
ifav-isim15-ifc1(config-leaf-group)# end

Verifying the NetFlow Configuration Using the NX-OS-Style CLI

The following procedure verifies the NetFlow configuration using the Cisco Application Policy Infrastructure Controller (Cisco APIC) NX-OS-Style CLI and the NX-OS CLI of a leaf switch:

Procedure

Step 1 In the Cisco APIC NX-OS-Style CLI, show the NetFlow monitor information for the infra tenant or the specified tenant, as appropriate:

 show flow monitor {infra policy_name detail | tenant tenant_name}

Example:
apic1# show flow monitor infra default detail

Step 2 Using the CLI one of the leaf switches, run the following commands:

Example:
leaf# show flow exporter
leaf# show flow record
leaf# show flow monitor
leaf# show flow timers
leaf# show flow interface
leaf# show flow vlan
Configuring NetFlow Using the REST API

Configuring NetFlow InfraSelectors Using REST API

You can use the REST API to configure NetFlow infra selectors. The infra selectors are used for attaching a NetFlow monitor to a PHY, port channel, virtual port channel, fabric extender (FEX), or port channel fabric extender (FEXPC) interface.

The following example XML shows how to configure NetFlow infra selectors using the REST API:

```xml
<infraInfra>
    <!--Create Monitor Policy /-->
    <netflowMonitorPol name='monitor_policy1' descr='This is a monitor policy.'>
        <netflowRsMonitorToRecord tnNetflowRecordPolName='record_policy1' />
        <!-- A Max of 2 exporters allowed per Monitor Policy /-->
        <netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy1' />
        <netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy2' />
    </netflowMonitorPol>

    <!--Create Record Policy /-->
    <netflowRecordPol name='record_policy1' descr='This is a record policy.' match='src-ipv4,src-port'/>

    <!--Create Exporter Policy /-->
    <netflowExporterPol name='exporter_policy1' dstAddr='10.10.1.1' srcAddr='10.10.1.10' ver='v9' descr='This is an exporter policy.'>
        <!--Exporter can be behind app EPG or external L3 EPG (InstP) /-->
        <netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg1'/>
        <!--This Ctx needs to be the same Ctx that EPG1’s BD is part of /-->
        <netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1'/>
    </netflowExporterPol>

    <!--Node-level Policy for collection Interval /-->
    <netflowNodePol name='node_policy1' collectIntvl='500'/>

    <!-- Node Selectors - usual config /-->  
    <infraNodeP name="infraNodeP-17")>
        <infraLeafS name="infraLeafS-17" type="range">
            <!-- NOTE: The nodes can also be fex nodes /-->
            <infraNodeBlk name="infraNodeBlk-17" from="101" to="101"/>
            <infraRsAccNodePGrp tDn='uni/infra/funcprof/accnodepgrp-nodePGrp1'/>
        </infraLeafS>
        <infraRsAccPortP tDn='uni/infra/accportprof-infraAccPortP'/>
    </infraNodeP>

    <!-- Port Selectors - usual config /-->
    <infraAccPortP name="infraAccPortP">
        <infraHPortS name="infraHPortS-1" type="range">
            <!-- NOTE: The interfaces can also be Port-channels, fex interfaces or fex PCs /-->
            <infraPortBlk name="infraPortBlk-1" fromCard="1" toCard="1" fromPort="8" toPort="8"/>
            <infraRsAccBaseGrp tDn='uni/infra/funcprof/accportgrp-infraAccPortGrp'/>
        </infraHPortS>
    </infraAccPortP>

    <!-- Policy Groups - usual config /-->
    <infraFuncP>
        <!-- Node Policy Group - to setup Netflow Node Policy /-->
        <infraAccNodePGrp name='nodePGrp1'/>
        <infraRsNetflowNodePol tnNetflowNodePolName='node_policy1'/>
    </infraAccNodePGrp>

    <!-- Access Port Policy Group - to setup Netflow Monitor Policy /-->
    <infraAccPortGrp name='infraAccPortGrp'/>
Configuring NetFlow Tenant Hierarchy Using REST API

You can use the REST API to configure the NetFlow tenant hierarchy. The tenant hierarchy is used for attaching a NetFlow monitor to a bridge domain, Layer 3 sub-interface, or Layer 3 switched virtual interface (SVI).

The following example XML shows how to configure the NetFlow tenant hierarchy using the REST API:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<polUni>
 <fvTenant name="t1">
 <!--Create Monitor Policy /-->
 <netflowMonitorPol name='monitor_policy1' descr='This is a monitor policy.'>
 <!-- A Max of 2 exporters allowed per Monitor Policy /-->
 <netflowRsMonitorToRecord tnNetflowRecordPolName='record_policy1' />
 <netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy1' />
 <netflowRsMonitorToExporter tnNetflowExporterPolName='exporter_policy2' />
 </netflowMonitorPol>
 <!--Create Record Policy /-->
 <netflowRecordPol name='record_policy1' descr='This is a record policy.'/>
 <!--Create Exporter Policy /-->
 <netflowExporterPol name='exporter_policy1' dstAddr='10.0.0.1' srcAddr='10.0.0.4'>
 <!--Exporter can be behind app EPG or external L3 EPG (InstP) /-->
 <netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg2'/>
 <netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1'/>
 </netflowExporterPol>
 <!--Create 2nd Exporter Policy /-->
 <netflowExporterPol name='exporter_policy2' dstAddr='11.0.0.1' srcAddr='11.0.0.4'>
 <netflowRsExporterToEPg tDn='uni/tn-t1/ap-app1/epg-epg2'/>
 <netflowRsExporterToCtx tDn='uni/tn-t1/ctx-ctx1'/>
 </netflowExporterPol>
 <fvCtx name="ctx1"/>
 <fvBD name="bd1" unkMacUcastAct="proxy">
 <fvRsCtx tnFvCtxName="ctx1"/>
 <!--One Monitor Policy per address family (ipv4, ipv6, ce) /-->
 <fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy1' fltType='ipv4'/>
 <fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy2' fltType='ipv6'/>
 <fvRsBDToNetflowMonitorPol tnNetflowMonitorPolName='monitor_policy2' fltType='ce'/>
 </fvBD>
 </fvTenant>
</polUni>
```
Configuring NetFlow or Tetration Analytics Priority Using REST API

You can specify whether to use the NetFlow or Cisco Tetration Analytics feature by setting the FeatureSel attribute of the <fabricNodeControl> element. The FeatureSel attribute can have one of the following values:

- `analytics`—Specifies Cisco Tetration Analytics. This is the default value.
- `netflow`—Specifies NetFlow.

The following example REST API post specifies for the switch "test1" to use the NetFlow feature:

```
http://192.168.10.1/api/node/mo/uni/fabric.xml
<fabricNodeControl name="test1" FeatureSel="netflow"/>
```

Addendum

About NetFlow Flow Tables

The N9K-92160YC-X switch and EX switches have a flow table that can install flows based on certain match criteria that is present in a filter ternary content-addressable memory (TCAM), or install flows through a policy table. The flow table can then export the flows to collectors at a periodic interval directly from the hardware. Periodically, the entire table is flushed and the contents are formed into a packet. A set of configured IP and MAC headers are slapped onto the packet, which is injected back into the parser for
normal forwarding and lookups to occur based on the header. Since the records are not in the legacy NetFlow format, nor do they have any NetFlow headers, the NetFlow feature programs special IPs and punts this packet up to the supervisor engine through Application Control Engine (ACE) redirect rules. The NetFlow process on the supervisor then processes the packet and exports to the configured collectors in the correct format.

The flow table can hold 64K records with concise headers and per slice. With full headers, the size reduces to 32K in size. The flow table can be configured to flush records with an interval between 10 milliseconds to 1 second.

**About NetFlow Match Criteria**

The filter ternary content-addressable memory (TCAM) in the FT block matches which flows must be installed in the flow table. This TCAM supports IPv4 and IPv6, as well as Layer 2 keys. For IPv4, the TCAM can hold 1k match criteria. IPv6 requires 4 entries and can only hold 256 match criteria.

Following keys are supported in the TCAM:

**IP:**
- Src TEP / VIF
- Dst TEP
- IP Flags
- TCP Flags
- Src IP
- Dst IP
- Tenant = VNI for infra transit or BD.
- Protocol
- Src L4 Port
- Dst L4 Port

**CE:**
- Src TEP
- Dst TEP
- Tenant
- Mac SA
- Mac DA
- Ethertype

Once a packet matches the criteria that is programmed in the TCAM and the TCAM action says to collect the flow with a certain mask, the packet is installed in the flow table.

**About NetFlow Flow Masks**

The EX switches provide 4 masks for each type of flow: IPv4, IPv6, and CE. This mask defines what constitutes the same flow from a set of packets, and one flow occupies one entry in the flow table. For example, you can configure a 5-tuple (SIP, DIP, Protocol,
Sport, and Dport) and a bridge domain as a flow so that any packet that differs in these fields from any other packet is part of a different flow. If Sport is masked out, then all packets that match all the rest of the fields, but differ in this field, still constitute the same flow and statistics are collected in one entry in the table.

The following example packets illustrate how flow a mask works:

Pkt 1: BD1, 10.1.1.12 > 10.1.1.13, TCP, Sport 10000, Dport 80 Bytes = 100
Pkt 2: BD1, 10.1.1.12 > 10.1.1.13, TCP, Sport 20000, Dport 80 Bytes = 200

If the mask for these packets is set to mask off the Layer 4 Sport, the mask will create one entry in the flow table as follows:

Flow 1: BD1, 10.1.1.12 > 10.1.1.13, TCP, Sport = 0, Dport 80, Bytes = 300
<table>
<thead>
<tr>
<th>Region</th>
<th>Company Name</th>
<th>Address/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas Headquarters</td>
<td>Cisco Systems, Inc.</td>
<td>San Jose, CA 95134-1706 USA</td>
</tr>
<tr>
<td>Asia Pacific Headquarters</td>
<td>Cisco Systems(USA)Pte.Ltd.</td>
<td>Singapore</td>
</tr>
<tr>
<td>Europe Headquarters</td>
<td>Cisco SystemsInternationalBV</td>
<td>Amsterdam,TheNetherlands</td>
</tr>
</tbody>
</table>

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at [www.cisco.com/go/offices](http://www.cisco.com/go/offices).