
Using the REST API

• About the REST API, on page 1
• Composing REST API Requests, on page 4
• Composing REST API Queries, on page 14
• REST API Examples, on page 23
• Accessing the REST API, on page 31
• REST API Tools, on page 40

About the REST API
The Application Policy Infrastructure Controller (APIC) REST API is a programmatic interface that uses
REST architecture. The API accepts and returns HTTP (not enabled by default) or HTTPS messages that
contain JavaScript Object Notation (JSON) or Extensible Markup Language (XML) documents. You can use
any programming language to generate the messages and the JSON or XML documents that contain the API
methods or Managed Object (MO) descriptions.

The REST API is the interface into the management information tree (MIT) and allows manipulation of the
object model state. The same REST interface is used by the APIC CLI, GUI, and SDK, so that whenever
information is displayed, it is read through the REST API, and when configuration changes are made, they
are written through the RESTAPI. The RESTAPI also provides an interface through which other information
can be retrieved, including statistics, faults, and audit events. It even provides a means of subscribing to
push-based event notification, so that when a change occurs in the MIT, an event can be sent through a web
socket.

Standard REST methods are supported on the API, which includes POST, GET, and DELETE operations
through HTTP. The POST and DELETE methods are idempotent, meaning that there is no additional effect
if they are called more than once with the same input parameters. The GET method is nullipotent, meaning
that it can be called zero or more times without making any changes (or that it is a read-only operation).

Payloads to and from the REST interface can be encapsulated through either XML or JSON encoding. In the
case of XML, the encoding operation is simple: the element tag is the name of the package and class, and any
properties of that object are specified as attributes of that element. Containment is defined by creating child
elements.

For JSON, encoding requires definition of certain entities to reflect the tree-based hierarchy; however, the
definition is repeated at all levels of the tree, so it is fairly simple to implement after it is initially understood.

• All objects are described as JSON dictionaries, in which the key is the name of the package and class.
The value is another nested dictionary with two keys: attribute and children.

Using the REST API
1

• The attribute key contains a further nested dictionary describing key-value pairs that define attributes on
the object.

• The children key contains a list that defines all the child objects. The children in this list are dictionaries
containing any nested objects, which are defined as described here.

Authentication

REST API username- and password-based authentication uses a special subset of request Universal Resource
Identifiers (URIs), including aaaLogin, aaaLogout, and aaaRefresh as the DN targets of a POST operation.
Their payloads contain a simple XML or JSON payload containing the MO representation of an aaaUser
object with the attribute name and pwd defining the username and password: for example, <aaaUser
name='admin' pwd='password'/>. The response to the POST operation will contain an authentication token
as both a Set-Cookie header and an attribute to the aaaLogin object in the response named token, for which
the XPath is /imdata/aaaLogin/@token if the encoding is XML. Subsequent operations on the REST API
can use this token value as a cookie named APIC-cookie to authenticate future requests.

Subscription

The REST API supports the subscription to one or more MOs during your active API session. When any MO
is created, changed, or deleted because of a user- or system-initiated action, an event is generated. If the event
changes the data on any of the active subscribed queries, the APIC will send out a notification to the API
client that created the subscription.

Management Information Model
All the physical and logical components that comprise the Application Centric Infrastructure fabric are
represented in a hierarchical management information model (MIM), also referred to as the MIT. Each node
in the tree represents an MO or group of objects that contains its administrative state and its operational state.

To view the MIM, see Cisco APIC Management Information Model Reference Guide.

The hierarchical structure starts at the top (Root) and contains parent and child nodes. Each node in this tree
is an MO and each object in the ACI fabric has a unique distinguished name (DN) that describes the object
and its place in the tree. MOs are abstractions of the fabric resources. An MO can represent a physical object,
such as a switch or adapter, or a logical object, such as a policy or fault.

Configuration policies make up the majority of the policies in the system and describe the configurations of
different ACI fabric components. Policies determine how the system behaves under specific circumstances.
Certain MOs are not created by users but are automatically created by the fabric (for example, power supply
objects and fan objects). By invoking the API, you are reading and writing objects to the MIM.

The information model is centrally stored as a logical model by the APIC, while each switch node contains
a complete copy as a concrete model. When a user creates a policy in the APIC that represents a configuration,
the APIC updates the logical model. The APIC then performs the intermediate step of creating a fully elaborated
policy from the user policy and then pushes the policy into all the switch nodes where the concrete model is
updated. The models are managed by multiple data management engine (DME) processes that run in the
fabric. When a user or process initiates an administrative change to a fabric component (for example, when
you apply a profile to a switch), the DME first applies that change to the information model and then applies
the change to the actual managed endpoint. This approach is called a model-driven framework.

The following branch diagram of a leaf switch port starts at the top Root of the ACI fabric MIT and shows a
hierarchy that comprises a chassis with two line module slots, with a line module in slot 2.

Using the REST API
2

Using the REST API
Management Information Model

|——root———————————–– (root)
|——sys———————————––– (sys)

|——ch————————————————(sys/ch)
|——lcslot-1——————————(sys/ch/lcslot-1)
|——lcslot-2——————————(sys/ch/lcslot-2)

|——lc————————————————(sys/ch/lcslot-2/lc)
|——leafport-1————————(sys/ch/lcslot-2/lc/leafport-1)

Object Naming
You can identify a specific object by its distinguished name (DN) or by its relative name (RN).

You cannot rename an existing object. To simplify references to an object or group of objects, you can assign
an alias or a tag.

Note

Distinguished Name

The DN enables you to unambiguously identify a specific target object. The DN consists of a series of RNs:

dn = {rn}/{rn}/{rn}/{rn}...

In this example, the DN provides a fully qualified path for fabport-1 from the top of the object tree to the
object. The DN specifies the exact managed object on which the API call is operating.

< dn =”sys/ch/lcslot-1/lc/fabport-1” />

Relative Name

The RN identifies an object from its siblings within the context of its parent object. The DN contains a sequence
of RNs.

For example, this DN:

<dn = "sys/ch/lcslot-1/lc/fabport-1"/>

contains these RNs:

DescriptionClassRelative Name

Top level of this systemtop:Systemsys

Hardware chassis containereqpt:Chch

Line module slot 1eqpt:LCSlotlcslot-1

Line (I/O) moduleeqpt:LClc

Fabric-facing external I/O port 1eqpt:FabPfabport-1

Using the REST API
3

Using the REST API
Object Naming

Guidelines and Limitations for Using the REST API
The following guidelines and limitations apply when using the Cisco Application Policy Infrastructure
Controller (APIC) REST API:

• On scale setups, if you send generic class queries to the Cisco APIC that result in a large set of managed
objects, the queries intermittently fail due to a timeout with error code 503 and the following error
message:
Unable to deliver the message, destination is not available
Unable to process the query, result dataset is too big

For REST API queries on a class that has more than 100,000 objects across the fabric, the Cisco APIC
generates the indicated errors due to one of the following reasons:

• Cisco APIC does not respond with more than 100,000 objects to avoid an out-of-memory issue.
The APIC returns the "too big" error.

• Cisco APIC allows a maximum of 90 seconds to respond to any query that possibly timed out due
to having too many activities. In this case, the Cisco APIC responds with "destination not available"
because the destination could not finish the request in 90 seconds.

To mitigate this limitation:

• On a timeout response, such as "destinations not available," have the client retry from 3 to 5 times.

• If the response is the "too big" error, the client can use filtering to reduce the size of the result set.

• If the system page indicates that there are too many critical faults, we recommend that you take care
of the faults.

Composing REST API Requests

Read and Write Operations and Filters

Read Operations

After the object payloads are properly encoded as XML or JSON, they can be used in create, read, update, or
delete operations on the REST API. The following diagram shows the syntax for a read operation from the
REST API.

Using the REST API
4

Using the REST API
Guidelines and Limitations for Using the REST API

Figure 1: REST syntax

Because the REST API is HTTP-based, defining the URI to access a certain resource type is important. The
first two sections of the request URI simply define the protocol and access details of the APIC. Next in the
request URI is the literal string /api, indicating that the API will be invoked. Generally, read operations are
for an object or class, as discussed earlier, so the next part of the URI specifies whether the operation will be
for an MO or class. The next component defines either the fully qualified domain name (DN) being queried
for object-based queries, or the package and class name for class-based queries. The final mandatory part of
the request URI is the encoding format: either .xml or .json. This is the only method by which the payload
format is defined. (The APIC ignores Content-Type and other headers.)

Write Operations

Both create and update operations in the REST API are implemented using the POST method, so that if an
object does not already exist, it will be created, and if it does already exist, it will be updated to reflect any
changes between its existing state and desired state.

Both create and update operations can contain complex object hierarchies, so that a complete tree can be
defined in a single command so long as all objects are within the same context root and are under the 1MB
limit for data payloads for the REST API. This limit is in place to guarantee performance and protect the
system under high loads.

The context root helps define a method by which the APIC distributes information to multiple controllers and
helps ensure consistency. For the most part, the configuration should be transparent to the user, though very
large configurations may need to be broken into smaller pieces if they result in a distributed transaction.

Using the REST API
5

Using the REST API
Read and Write Operations and Filters

Figure 2: REST Payload

Create and update operations use the same syntax as read operations, except that they are always targeted at
an object level, because you cannot make changes to every object of a specific class (nor would you want to).
The create or update operation should target a specific managed object, so the literal string /mo indicates that
the DN of the managed object will be provided, followed next by the actual DN. Filter strings can be applied
to POST operations; if you want to retrieve the results of your POST operation in the response, for example,
you can pass the rsp-subtree=modified query string to indicate that you want the response to include any
objects that have been modified by your POST operation.

The payload of the POST operation will contain the XML or JSON encoded data representing the MO that
defines the Cisco API command body.

Filters

For a Cisco APICRESTAPI query of event records, the Cisco APIC system limits the response to a maximum
of 500,000 event records. If the response is more than 500,000 events, it returns an error. Use filters to refine
your queries. For more information, see Composing Query Filter Expressions in the Cisco APIC REST API
Configuration Guide.

Note

The RESTAPI supports a wide range of flexible filters, useful for narrowing the scope of your search to allow
information to be located more quickly. The filters themselves are appended as query URI options, starting
with a question mark (?) and concatenated with an ampersand (&). Multiple conditions can be joined together
to form complex filters.

The following query filters are available:

Table 1: Query Filters

DescriptionCobra Query PropertySyntaxFilter Type

Define the scope of a
query

AbstractQuery.queryTarget{self | children | subtree}query-target

Using the REST API
6

Using the REST API
Read and Write Operations and Filters

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/4-x/rest-api-config/Cisco-APIC-REST-API-Configuration-Guide-42x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/4-x/rest-api-config/Cisco-APIC-REST-API-Configuration-Guide-42x.html

DescriptionCobra Query PropertySyntaxFilter Type

Respond-only elements
including the specified
class

AbstractQuery.classFilterclass nametarget-subtree-class

Respond-only elements
matching conditions

AbstractQuery.propFilterfilter expressionsquery-target-filter

Specifies child object
level included in the
response

AbstractQuery.subtree{no | children | full}rsp-subtree

Respond only specified
classes

AbstractQuery.subtreeClassFilterclass namersp-subtree-class

Respond only classes
matching conditions

AbstractQuery.subtreePropFilterfilter expressionsrsp-subtree-filter

Request additional objectsAbstractQuery.subtreeInclude{faults | health :stats :…}rsp-subtree-include

Sort the response based on
the property values

Not Implementedclassname.property | {asc
| desc}

order-by

Using Classes in REST API Commands
The Application Policy Infrastructure Controller (APIC) classes are crucial from an operational perspective
to understand how system events and faults relate to objects within the object model. Each event and/or fault
in the system is a unique object that can be accessed for configuration, health, fault, and/or statistics.

All the physical and logical components that make up the Cisco Application Centric Infrastructure (ACI)
fabric are represented in a hierarchical management information tree (MIT). Each node in the tree represents
a managed object (MO) or group of objects that contains its administrative state and its operational state.

To access the complete list of classes, point to the APIC and reference the doc/html directory at the end
of the URL:
https://apic-ip-address/doc/html/

Using Managed Objects in REST API Commands
Before performing an API operation on a managed object (MO) or its properties, you should view the object's
class definition in theCisco APIC Management Information Model Reference, which is a web-based document.
The Management Information Model (MIM) serves as a schema that defines rules such as the following:

• The classes of parent objects to which an MO can be attached

• The classes of child objects that can be attached to an MO

• The number of child objects of a class type that can be attached to an MO

• Whether a user can create, modify, or delete an MO, and the privilege level required to do so

• The properties (attributes) of an object class

Using the REST API
7

Using the REST API
Using Classes in REST API Commands

• The data type and range of a property

When you send an API command, the APIC checks the command for conformance with the MIM schema. If
an API command violates the MIM schema, the APIC rejects the command and returns an error message. For
example, you can create an MO only if it is allowed in the path you have specified in the command URI and
only if you have the required privilege level for that object class. You can configure an MO's properties only
with valid data, and you cannot create properties.

When composing an API command to create an MO, you need only include enough information in the
command's URI and data structure to uniquely define the newMO. If you omit the configuration of a property
when creating the MO, the property is populated with a default value if the MIM specifies one, or it is left
blank.

When modifying a property of an MO, you need only specify the property to be modified and its new value.
Other properties will be left unchanged.

Guidelines and Restrictions

• When you modify an MO that affects APIC or switch management communication policy, you might
experience a brief disruption of any operations in progress on any APIC or switch web interface in the
fabric. Configuration changes that can result in disruption include the following:

• Changing management port settings, such as port number

• Enabling or disabling HTTPS

• Changing the state of redirection to HTTPS

• Public key infrastructure (PKI) changes, such as key ring

• When you read an existing MO, any password property of the MO is read as blank for security reasons.
If you then write the MO back to APIC, the password property is written as blank.

If you need to store an MO with its password information, use a configuration
export policy. To store a specific MO, specify the MO as the target distinguished
name in the policy.

Tip

Creating the API Command
You can invoke an API command or query by sending an HTTP or HTTPS message to the APIC with a URI
of this form for an operation on a managed object (MO):

{http | https}://host[:port]/api/mo/dn.{json | xml}[?options]

Use this form for an operation on an object class:

{http | https}://host[:port]/api/class/className.{json | xml}[?options]

Using the REST API
8

Using the REST API
Creating the API Command

While the preceding examples use /api/mo and /api/class in the URI string, the APIC UI and Visore also
use the /api/node/mo and /api/node/class syntax in the URI string. Both formats are valid and are used
interchangeably in this document.

Note

This example shows a URI for an API operation that involves an MO of class fv:Tenant:

https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

URI Components

The components of the URI are as follows:

• http:// or https://—Specifies HTTP or HTTPS. By default, only HTTPS is enabled. HTTP or
HTTP-to-HTTPS redirection, if desired, must be explicitly enabled and configured, as described in
Configuring HTTP and HTTPS Using the GUI, on page 32. HTTP and HTTPS can coexist.

• host—Specifies the hostname or IP address of the APIC.

• :port—Specifies the port number for communicating with the APIC. If your system uses standard port
numbers for HTTP (80) or HTTPS (443), you can omit this component.

• /api/—Specifies that the message is directed to the API.

• mo | class—Specifies whether the target of the operation is an MO or an object class.

• dn—Specifies the distinguished name (DN) of the targeted MO.

• className—Specifies the name of the targeted class. This name is a concatenation of the package name
of the object queried and the name of the class queried in the context of the corresponding package.

For example, the class aaa:User results in a className of aaaUser in the URI.

• json | xml—Specifies whether the encoding format of the command or response HTML body is JSON
or XML.

• ?options—(Optional) Specifies one or more filters, selectors, or modifiers to a query. Multiple option
statements are joined by an ampersand (&).

The URI for an API Operation on an MO

In an API operation to create, read, update, or delete a specificMO, the resource path consists of /mo/ followed
by the DN of theMO as described in theCisco APIC Management Information Model Reference. For example,
the DN of a tenant object, as described in the reference definition of class fv:Tenant, is uni/tn-[name]. This
URI specifies an operation on an fv:Tenant object named ExampleCorp:

https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

Alternatively, in a POST operation, you can POST to /api/mo and provide the DN in the body of the message,
as in this example:

POST https://apic-ip-address/api/mo.xml

Using the REST API
9

Using the REST API
Creating the API Command

<fvTenant dn="uni/tn-ExampleCorp"/>

You can also provide only the name in the message body and POST to /api/mo and the remaining RN
components, as in this example:

POST https://apic-ip-address/api/mo/uni.xml

<fvTenant name="ExampleCorp"/>

The URI for an API Operation on a Node MO

In an API operation to access an MO on a specific node device in the fabric, the resource path consists of
/mo/topology/pod-number/node-number/sys/ followed by the node component. For example, to access a
board sensor in chassis slot b of node-1 in pod-1, use this URI:

GET https://apic-ip-address/api/mo/topology/pod-1/node-1/sys/ch/bslot/board/sensor-3.json

The URI for an API Operation on a Class

In an API operation to get information about a class, the resource path consists of /class/ followed by the
name of the class as described in the Cisco APIC Management Information Model Reference. In the URI, the
colon in the class name is removed. For example, this URI specifies a query on the class aaa:User:

GET https://apic-ip-address/api/class/aaaUser.json

Composing the API Command Body
The HTML body of a POST operation must contain a JSON or XML data structure that provides the essential
information necessary to execute the command. No data structure is sent with a GET or DELETE operation.

Guidelines for Composing the API Command Body

• The data structure does not need to represent the entire set of attributes and elements of the target MO
or method, but it must provide at least the minimum set of properties or parameters necessary to identify
the MO and to execute the command, not including properties or parameters that are incorporated into
the URI.

• The data structure is a single tree in which all child nodes are unique with a unique DN. Duplicate nodes
are not allowed. You cannot make two changes to a node by including the same node twice. In this case,
you must merge your changes into a single node.

• In the data structure, the colon after the package name is omitted from class names and method names.
For example, in the data structure for an MO of class zzz:Object, label the class element as zzzObject.

• Although the JSON specification allows unordered elements, the APIC RESTAPI requires that the JSON
'attributes' element precede the 'children' array or other elements.

• If an XML data structure contains no children or subtrees, the object element can be self-closing.

• The API is case sensitive.

Using the REST API
10

Using the REST API
Composing the API Command Body

• When sending an API command, with 'api' in the URL, the maximum size of the HTML body for the
API POST command is 1 MB.

• When uploading a device package file, with 'ppi' in the URL, the maximum size of the HTML body for
the POST command is 10 MB.

Composing the API Command Body to Call a Method
To compose a command to call a method, create a JSON or XML data structure containing the parameters of
the method using the method description in the Cisco APIC Management Information Model Reference.

The API reference for a typical method lists its input parameters, if any, and its return values, if any. The
method is called with a structure containing the essential input parameters, and a successful response returns
a complete structure containing the return values.

The description for a hypothetical method config:Method might appear in the API reference as follows:

Method config:Method(
inParameter1,
inParameter2,
inParameter3,
outParameter1,
outParameter2

)

The parameters beginning with "in" represent the input parameters. The parameters beginning with "out"
represent values returned by the method. Parameters with no "in" or "out" prefix are input parameters.

A JSON structure to call the method resembles the following structure:

{
"configMethod":
{
"attributes":
{
"inParameter1":"value1",
"inParameter2":"value2",
"inParameter3":"value3"

}
}

}

An XML structure to call the method resembles the following structure:

<configMethod
inParameter1="value1"
inParameter2="value2"
inParameter3="value3"

/>

The parameters of some methods include a substructure, such as filter settings or configuration settings for
an MO. For specific information, see the method description in the Cisco APIC Management Information
Model Reference.

Note

Using the REST API
11

Using the REST API
Composing the API Command Body to Call a Method

Composing the API Command Body for an API Operation on an MO
To compose a command to create, modify, or delete anMO, create a JSON or XML data structure that describes
the essential properties and children of the object's class by using the class description in the Cisco APIC
Management Information Model Reference. You can omit any attributes or children that are not essential to
execute the command.

A JSON structure for an MO of hypothetical class zzz:Object resembles this structure:

{
"zzzObject" : {
"attributes" : {
"property1" : "value1",
"property2" : "value2",
"property3" : "value3"

},
"children" :
[{

"zzzChild1" : {
"attributes" : {
"childProperty1" : "childValue1",
"childProperty2" : "childValue1"

},
"children" : []

}
}

]
}

}

An XML structure for an MO of hypothetical class zzz:Object resembles this structure:

<zzzObject
property1 = "value1",
property2 = "value2",
property3 = "value3">
<zzzChild1
childProperty1 = "childValue1",
childProperty2 = "childValue1">

</zzzChild1>
</zzzObject>

A successful operation returns a complete data structure for the MO.

Using Tags and Alias
To simplify API operations, you can assign tags or an alias to an object. In an API operation, you can refer
to the object or group of objects by the alias or tag name instead of by the distinguished name (DN). Tags and
aliases differ in their usage as follows:

• Tag—A tag allows you to group multiple objects by a descriptive name. You can assign the same tag
name to multiple objects and you can assign one or more tag names to an object.

• Alias—An alias can be a simpler and more descriptive name than the DN when referring to a single
object. You can assign a particular alias name to only one object. The system will prevent you from
assigning the same alias name to a second object.

Using the REST API
12

Using the REST API
Composing the API Command Body for an API Operation on an MO

Not every object supports a tag. To determine whether an object is taggable, inspect the class of the object in
the Cisco APIC Management Information Model Reference. If the contained hierarchy of the object class
includes a tag instance (such as tag:AInst or a class that derives from tag:AInst), an object of that class can
be tagged.

Note

Adding Tags

You can add one or more tags by using the following syntax in the URI of an API POST operation:

/api /tag /mo/ dn . { json | xml } ? add = [, name, ...] [, name, ...]

In this syntax, name is the name of a tag and dn is the distinguished name of the object to which the tag is
assigned.

This example shows how to assign the tags tenants and orgs to the tenant named ExampleCorp:

POST https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml?add=tenants,orgs

Removing Tags

You can remove one or more tags by using the following syntax in the URI of an API POST operation:

/api /tag /mo / dn . { json | xml } ? remove = name [, name, ...]

This example shows how to remove the tag orgs from the tenant named ExampleCorp:

POST https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml?remove=orgs

You can delete all instances of a tag by using the following syntax in the URI of an API DELETE operation:

/api/ /tag / name . { json | xml }

This example shows how to remove the tag orgs from all objects:

DELETE https://apic-ip-address/api/tag/orgs.xml

Adding an Alias

You can add an alias by using the following syntax in the URI of an API POST operation:

/api /alias /mo/ dn . { json | xml } ? set = name

In this syntax, name is the name of the alias and dn is the distinguished name of the object to which the
alias is assigned.

This example shows how to assign the alias tenant8 to the tenant named ExampleCorp:

POST https://apic-ip-address/api/alias/mo/uni/tn-ExampleCorp.xml?set=tenant8

Using the REST API
13

Using the REST API
Using Tags and Alias

Removing an Alias

You can remove an alias by using the following syntax in the URI of an API POST operation:

/api /alias /mo / dn . { json | xml } ? clear = yes

This example shows how to remove any alias from the tenant named ExampleCorp:

POST https://apic-ip-address/api/alias/mo/uni/tn-ExampleCorp.xml?clear=yes

Additional Examples

In the examples in this section, the responses have been edited to remove attributes unrelated to tags.Note

This example shows how to find all tags assigned to the tenant named ExampleCorp:

GET https://apic-ip-address/api/tag/mo/uni/tn-ExampleCorp.xml

RESPONSE:
<imdata>

<tagInst
dn="uni/tn-ExampleCorp/tag-tenants"
name="tenants"

/>
<tagInst

dn="uni/tn-ExampleCorp/tag-orgs"
name="orgs"

/>
</imdata>

This example shows how to find all objects with the tag 'tenants':

GET https://apic-ip-address/api/tag/tenants.xml

RESPONSE:
<imdata>

<fvTenant
dn="uni/tn-ExampleCorp"
name="ExampleCorp"

/>
</imdata>

Composing REST API Queries

Composing Query Filter Expressions
You can filter the response to an API query by applying an expression of logical operators and values.

A basic equality or inequality test is expressed as follows:

Using the REST API
14

Using the REST API
Composing REST API Queries

query-target-filter=[eq|ne](attribute,value)

You can create a more complex test by combining operators and conditions using parentheses and commas:

query-target-filter=[and|or]([eq|ne](attribute,value),[eq|ne](attribute,value),...)

A scoping filter can contain a maximum of 20 '(attribute,value)' filter expressions. If the limit is exceeded,
the API returns an error.

Note

Available Logical Operators

This table lists the available logical operators for query filter expressions.

DescriptionOperator

Equal toeq

Not equal tone

Less thanlt

Greater thangt

Less than or equal tole

Greater than or equal toge

Betweenbw

Logical inversenot

Logical ANDand

Logical ORor

Logical exclusive ORxor

Boolean TRUEtrue

Boolean FALSEfalse

TRUE if at least one bit is setanybit

TRUE if all bits are setallbits

Wildcardwcard

Property holderpholder

Passive holderpassive

Using the REST API
15

Using the REST API
Composing Query Filter Expressions

Examples

This example returns all managed objects of class aaaUser whose last name is equal to "Washington":

GET https://apic-ip-address/api/class/aaaUser.json?
query-target-filter=eq(aaaUser.lastName,"Washington")

This example returns endpoint groups whose fabEncap property is "vxlan-12780288":

GET https://apic-ip-address/api/class/fvAEPg.xml?
query-target-filter=eq(fvAEPg.fabEncap,"vxlan-12780288")

This example shows all tenant objects with a current health score of less than 50:

GET https://apic-ip-address/api/class/fvTenant.json?
rsp-subtree-include=health,required

&
rsp-subtree-filter=lt(healthInst.cur,"50")

This example returns all endpoint groups and their faults under the tenant ExampleCorp:

GET https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml?
query-target=subtree

&
target-subtree-class=fvAEPg

&
rsp-subtree-include=faults

This example returns aaa:Domain objects whose names are not "infra" or "common":

GET https://apic-ip-address/api/class/aaaDomain.json?
query-target-filter=

and(ne(aaaDomain.name,"infra"),
ne(aaaDomain.name,"common"))

Applying Query Scoping Filters
You can limit the scope of the response to an API query by applying scoping filters. You can limit the scope
to the first level of an object or to one or more of its subtrees or children based on the class, properties,
categories, or qualification by a logical filter expression.

query-target={self | children | subtree}

This statement restricts the scope of the query. This list describes the available scopes:

• self —(Default) Considers only the MO itself, not the children or subtrees.

• children —Considers only the children of the MO, not the MO itself.

• subtree —Considers the MO itself and its subtrees.

Using the REST API
16

Using the REST API
Applying Query Scoping Filters

target-subtree-class=mo-class1[,mo-class2]...

This statement specifies which object classes are to be considered when the query-target option is used
with a scope other than self . You can specify multiple desired object types as a comma-separated list with
no spaces.

To request subtree information, combine query-target=subtree with the target-subtree-class statement
to indicate the specific subtree as follows:

query-target=subtree&target-subtree-class=className

This example requests information about the running firmware. The information is contained in the
firmware:CtrlrRunning subtree (child) object of the APIC firmware status container
firmware:CtrlrFwStatusCont:
GET https://apic-ip-address/api/class/firmwareCtrlrFwStatusCont.json?

query-target=subtree&target-subtree-class=firmwareCtrlrRunning

query-target-filter=filter-expression

This statement specifies a logical filter to be applied to the response. This statement can be used by itself or
applied after the query-target statement.

rsp-subtree={no | children | full}

For objects returned, this option specifies whether child objects are included in the response. This list describes
the available choices:

• no —(Default) Response includes no children.

• children —Response includes only the children.

• full —Response includes the entire structure including the children.

rsp-subtree-class=mo-class

When child objects are to be returned, this statement specifies that only child objects of the specified object
class are included in the response.

rsp-subtree-filter=filter-expression

When child objects are to be returned, this statement specifies a logical filter to be applied to the child objects.

When an rsp-subtree-filter query statement includes a class.property operand, the specified class name
is used only to identify the property and its type. The returned results are not filtered by class, and may include
any child object that contains a property of the same name but belonging to a different class if that object's
property matches the query condition. To filter by class, you must use additional query filters.

Note

Using the REST API
17

Using the REST API
Applying Query Scoping Filters

rsp-subtree-include=category1[,category2...][option]

When child objects are to be returned, this statement specifies additional contained objects or options to be
included in the response. You can specify one or more of the following categories in a comma-separated list
with no spaces:

• audit-logs —Response includes subtrees with the history of user modifications to managed objects.

• event-logs —Response includes subtrees with event history information.

• faults —Response includes subtrees with currently active faults.

• fault-records —Response includes subtrees with fault history information.

• health —Response includes subtrees with current health information.

• health-records —Response includes subtrees with health history information.

• relations —Response includes relations-related subtree information.

• stats —Response includes statistics-related subtree information.

• tasks —Response includes task-related subtree information.

With any of the preceding categories, you can also specify one of the following options to further refine the
query results:

• count —Response includes a count of matching subtrees but not the subtrees themselves.

• no-scoped —Response includes only the requested subtree information. Other top-level information of
the target MO is not included in the response.

• required —Response includes only the managed objects that have subtrees matching the specified
category.

For example, to include fault-related subtrees, specify faults in the list. To return only fault-related subtrees
and no other top-level MO information, specify faults,no-scoped in the list as shown in this example:

query-target=subtree&rsp-subtree-include=faults,no-scoped

Some types of child objects are not created until the parent object has been pushed to a fabric node (leaf).
Until such a parent object has been pushed to a fabric node, a query on the parent object using the
rsp-subtree-include filter might return no results. For example, a class query for fvAEPg that includes the
query option rsp-subtree-include=stats will return stats only for endpoint groups that have been applied
to a tenant and pushed to a fabric node.

Note

rsp-prop-include={all | naming-only | config-only}

This statement specifies what type of properties should be included in the response when the rsp-subtree
option is used with an argument other than no .

• all —Response includes all properties of the returned managed objects.

• naming-only —Response includes only the naming properties of the returned managed objects.

Using the REST API
18

Using the REST API
Applying Query Scoping Filters

• config-only —Response includes only the configurable properties of the returned managed objects.

If the managed object is not configurable or cannot be exported (backed up), the
managed object is not returned.

Note

Related Topics
Composing Query Filter Expressions, on page 14
Example: Using the JSON API to Get Running Firmware, on page 27

Filtering API Query Results
You can filter the results of an API query by appending one or more condition statements to the query URI
as a parameter in this format:

https://URI?condition[&condition[&...]]

Multiple condition statements are joined by an ampersand (&).

The condition statement must not contain spaces.Note

Options are available to filter by object attributes and object subtrees.

Filter Conditional Operators

The query filtering feature supports the following condition operators:

DescriptionOperator

Equal toeq

Not equal tone

Less thanlt

Greater thangt

Less than or equal tole

Greater than or equal toge

Betweenbw

Logical inversenot

Logical ANDand

Logical ORor

Using the REST API
19

Using the REST API
Filtering API Query Results

DescriptionOperator

Logical exclusive ORxor

Boolean TRUEtrue

Boolean FALSEfalse

TRUE if at least one bit is setanybit

TRUE if all bits are setallbits

Wildcardwcard

Property holderpholder

Passive holderpassive

Sorting and Paginating Query Results
When sending an API query that returns a large quantity of data, you can have the return data sorted and
paginated to make it easier to find the information you need.

Sorting the Results

By adding the order-by operator to the query URI, you can sort the query response by one or more properties
of a class, and you can specify the direction of the order using the following syntax.

order-by = classname . property [| { asc | desc }] [, classname . property [| { asc | desc }]] [,...]

Use the optional pipe delimiter ('|') to specify either ascending order (asc) or descending order (desc). If no
order is specified, the default is ascending order.

You can perform a multi-level sort by more than one property (for example, last name and first name), but
all properties must be of the same MO or they must be inherited from the same abstract class.

This example shows you how to sort users by last name, then by first name:

GET
https://apic-ip-address/api/class/aaaUser.json?order-by=aaaUser.lastName|asc,aaaUser.firstName|asc

Paginating the Results

By adding the page-size operator to the query URI, you can divide the query results into groups (pages) of
objects using the following syntax. The operand specifies the number of objects in each group.

page-size = number-of-objects-per-page

By adding the page operator in the query URI, you can specify a single group to be returned using the following
syntax. The pages start from number 0.

page = page-number

Using the REST API
20

Using the REST API
Sorting and Paginating Query Results

This example shows you how to specify 15 fault instances per page in descending order, returning only the
first page:

GET
https://apic-ip-address/api/class/faultInfo.json?order-by=faultInst.severity|desc&page=0&page-size=15

Every query, whether paged or not, generates a new set of results. When you perform a query that returns
only a single page, the query response includes a count of the total results, but the unsent pages are not stored
and cannot be retrieved by a subsequent query. A subsequent query generates a new set of results and returns
the page requested in that query.

Note

Subscribing to Query Results
When you perform an API query, you have the option to create a subscription to any future changes in the
results of that query that occur during your active API session. When any MO is created, changed, or deleted
because of a user- or system-initiated action, an event is generated. If that event changes the results of an
active subscribed query, the APIC generates a push notification to the API client that created the subscription.

Opening a WebSocket

The API subscription feature uses the WebSocket protocol (RFC 6455) to implement a two-way connection
with the API client through which the API can send unsolicited notification messages to the client. To establish
this notification channel, you must first open aWebSocket connection with the API. Only a singleWebSocket
connection is needed to support multiple query subscriptions with multiple APIC instances. The WebSocket
connection is dependent on your API session connection, and closes when your API session ends.

When MO events go through the event manager (eventmgr), clients receive notification of WebSocket
subscription for any MO. Although most of the APIC MOs do go through eventmgr, stats objects do not go
through it, because updates are very frequent and not scalable. Therefore, if you subscribe to stats objects,
you will receive no notification. Instead you can periodically query or export stats MOs.

Note

The WebSocket connection is typically opened by a JavaScript method in an HTML5-compliant browser, as
in the following example:

var Socket = new WebSocket(https://apic-ip-address/socket%TOKEN%);

In the URI, the %TOKEN% is the current API session token (cookie). This example shows the URI with
a token:

https://apic-ip-address/socketGkZl5NLRZJl5+jqChouaZ9CYjgE58W/pMccR+LeXmdO0obG9NB
Iwo1VBo7+YC1oiJL9mS6I9qh62BkX+Xddhe0JYrTmSG4JcKZ4t3bcP2Mxy3VBmgoJjwZ76ZOuf9V9AD6X
l83lyoR4bLBzqbSSU1R2NIgUotCGWjZt5JX6CJF0=

After the WebSocket connection is established, it is not necessary to resend the API session token when the
API session is refreshed.

Using the REST API
21

Using the REST API
Subscribing to Query Results

Creating a Subscription

To create a subscription to a query, perform the query with the option ?subscription=yes. This example
creates a subscription to a query of the fv:Tenant class in the JSON format:

GET https://apic-ip-address/api/class/fvTenant.json?subscription=yes

The query response contains a subscription identifier, subscriptionId , that you can use to refresh the
subscription and to identify future notifications from this subscription.

{
"subscriptionId" : "72057611234574337",
"imdata" : [{

"fvTenant" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "",
"dn" : "uni/tn-common",
"lcOwn" : "local",
"monPolDn" : "",
"name" : "common",
"replTs" : "never",
"status" : ""

}
}

}
]

}

Receiving Notifications

An event notification from the subscription delivers a data structure that contains the subscription ID and the
MO description. In this JSON example, a new user has been created with the name "sysadmin5":

{
"subscriptionId" : ["72057598349672454", "72057598349672456"],
"imdata" : [{

"aaaUser" : {
"attributes" : {
"accountStatus" : "active",
"childAction" : "",
"clearPwdHistory" : "no",
"descr" : "",
"dn" : "uni/userext/user-sysadmin5",
"email" : "",
"encPwd" : "TUxISkhH$VHyidGgBX0r7N/srt/YcMYTEn5248ommFhNFzZghvAU=",
"expiration" : "never",
"expires" : "no",
"firstName" : "",
"intId" : "none",
"lastName" : "",
"lcOwn" : "local",
"name" : "sysadmin5",
"phone" : "",
"pwd" : "",
"pwdLifeTime" : "no-password-expire",
"pwdSet" : "yes",
"replTs" : "2013-05-30T11:28:33.835",
"rn" : "",

Using the REST API
22

Using the REST API
Subscribing to Query Results

"status" : "created"
}

}
}

]
}

Because multiple active subscriptions can exist for a query, a notification can contain multiple subscription
IDs as in the example shown.

Notifications are supported in either JSON or XML format.Note

Refreshing the Subscription

To continue to receive event notifications, you must periodically refresh each subscription during your API
session. To refresh a subscription, send an HTTP GET message to the API method subscriptionRefresh
with the parameter id equal to the subscriptionId as in this example:

GET https://apic-ip-address/api/subscriptionRefresh.json?id=72057611234574337

The API returns an empty response to the refresh message unless the subscription has expired.

The timeout period for a subscription is one minute. To prevent lost notifications, you must send a subscription
refresh message at least once every 60 seconds.

Note

REST API Examples

Information About the API Examples
In the examples, the JSON and XML structures have been expanded with line feeds, spaces, and indentations
for readability.

Example: Using the JSON API to Add a Leaf Port Selector Profile
This example shows how to add a leaf port selector profile.

As shown in the Cisco APIC Management Information Model Reference, this hierarchy of classes forms a
leaf port selector profile:

• fabric:LePortP — A leaf port profile is represented by a managed object (MO) of this class, which has
a distinguished name (DN) format of uni/fabric/leportp-[name], in which leportp-[name] is the
relative name (RN). The leaf port profile object is a template that can contain a leaf port selector as a
child object.

Using the REST API
23

Using the REST API
REST API Examples

• fabric:LFPortS—A leaf port selector is represented by an MO of this class, which has a RN format
of lefabports-[name]-typ-[type]. The leaf port selector object can contain one or more ports or
ranges of ports as child objects.

• fabric:PortBlk — A leaf port or a range of leaf ports is represented by an MO of this class,
which has a RN format of portblk-[name].

The API command that creates the new leaf port selector profile MO can also create and configure the child
MOs.

This example creates a leaf port selector profile with the name "MyLPSelectorProf." The example profile
contains a selector named "MySelectorName" that selects leaf port 1 on leaf switch 1 and leaf ports 3 through
5 on leaf switch 1. To create and configure the new profile, send this HTTP POST message:

POST http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

{
"fabricLePortP" : {
"attributes" : {
"descr" : "Selects leaf ports 1/1 and 1/3-5"

},
"children" : [{

"fabricLFPortS" : {
"attributes" : {
"name" : "MySelectorName",
"type" : "range"

},
"children" : [{

"fabricPortBlk" : {
"attributes" : {
"fromCard" : "1",
"toCard" : "1",
"fromPort" : "1",
"toPort" : "1",
"name" : "block2"

}
}

}, {
"fabricPortBlk" : {
"attributes" : {
"fromCard" : "1",
"toCard" : "1",
"fromPort" : "3",
"toPort" : "5",
"name" : "block3"

}
}

}
]

}
}

]
}

}

A successful operation returns this response body:

{
"imdata" : [{

Using the REST API
24

Using the REST API
Example: Using the JSON API to Add a Leaf Port Selector Profile

"fabricLePortP" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"descr" : "Select leaf ports 1/1 and 1/3-5",
"dn" : "uni/fabric/leportp-MyLPSelectorProf",
"lcOwn" : "local",
"name" : "MyLPSelectorProf",
"replTs" : "never",
"rn" : "",
"status" : "created"

},
"children" : [{

"fabricLFPortS" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"dn" : "",
"lcOwn" : "local",
"name" : "MySelectorName",
"replTs" : "never",
"rn" : "lefabports-MySelectorName-typ-range",
"status" : "created",
"type" : "range"

},
"children" : [{

"fabricPortBlk" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"dn" : "",
"fromCard" : "1",
"fromPort" : "3",
"lcOwn" : "local",
"name" : "block3",
"replTs" : "never",
"rn" : "portblk-block3",
"status" : "created",
"toCard" : "1",
"toPort" : "5"

}
}

}, {
"fabricPortBlk" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "deleteNonPresent",
"dn" : "",
"fromCard" : "1",
"fromPort" : "1",
"lcOwn" : "local",
"name" : "block2",
"replTs" : "never",
"rn" : "portblk-block2",
"status" : "created",
"toCard" : "1",
"toPort" : "1"

}
}

}
]

}
}

]

Using the REST API
25

Using the REST API
Example: Using the JSON API to Add a Leaf Port Selector Profile

}
}

]
}

To delete the new profile, send anHTTP POSTmessagewith a fabricLePortP attribute of "status":"deleted",
as in this example:

POST http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

{
"fabricLePortP" : {
"attributes" : {
"status" : "deleted"

}
}

}

Alternatively, you can send this HTTP DELETE message:

DELETE http://apic-ip-address/api/mo/uni/fabric/leportp-MyLPSelectorProf.json

Example: Using the JSON API to Get Information About a Node
This example shows how to query the APIC to access a node in the system.

To direct an API operation to a specific node device in the fabric, the resource path consists of
/mo/topology/pod-number/node-number/sys/ followed by the node component. For example, this URI
accesses board sensor 3 in chassis slot B of node 1:

GET http://apic-ip-address/api/mo/topology/pod-1/node-1/sys/ch/bslot/board/sensor-3.json

A successful operation returns a response body similar to this example:

{
"imdata" :
[{

"eqptSensor" : {
"attributes" : {
"instanceId" : "0:0",
"childAction" : "",
"dn" : "topology/pod-1/node-1/sys/ch/bslot/board/sensor-3",
"id" : "3",
"majorThresh" : "0",
"mfgTm" : "not-applicable",
"minorThresh" : "0",
"model" : "",
"monPolDn" : "",
"rev" : "0",
"ser" : "",
"status" : "",
"type" : "dimm",
"vendor" : "Cisco Systems, Inc."

}
}

}

Using the REST API
26

Using the REST API
Example: Using the JSON API to Get Information About a Node

]
}

Example: Using the JSON API to Get Running Firmware
This example shows how to query the APIC to determine which firmware images are running.

The detailed information on running firmware is contained in an object of class firmware:CtrlrRunning, which
is a child class (subtree) of the APIC firmware status container class firmware:CtrlrFwStatusCont. Because
there can be multiple running firmware instances (one per APIC instance), you can query the container class
and filter the response for the subtree of running firmware objects.

This example shows the API query message:

GET http://apic-ip-address/api/class/firmware:CtrlrFwStatusCont.json?
query-target=subtree
&
target-subtree-class=firmwareCtrlrRunning

A successful operation returns a response body similar to this example:

{
"imdata" : [{

"firmwareCtrlrRunning" : {
"attributes" : {
"instanceId" : "0:0",
"applId" : "3",
"childAction" : "",
"dn" : "Ctrlrfwstatuscont/ctrlrrunning-3",
"lcOwn" : "local",
"replTs" : "never",
"rn" : "",
"status" : "",
"ts" : "2012-12-31T16:00:00.000",
"type" : "ifc",
"version" : "1.1"

}
}

}, {
"firmwareCtrlrRunning" : {
"attributes" : {
"instanceId" : "0:0",
"applId" : "1",
"childAction" : "",
"dn" : "ctrlrfwstatuscont/ctrlrrunning-1",
"lcOwn" : "local",
"replTs" : "never",
"rn" : "",
"status" : "",
"ts" : "2012-12-31T16:00:00.000",
"type" : "ifc",
"version" : "1.1"

}
}

}, {
"firmwareCtrlrRunning" : {
"attributes" : {
"instanceId" : "0:0",
"applId" : "2",

Using the REST API
27

Using the REST API
Example: Using the JSON API to Get Running Firmware

"childAction" : "",
"dn" : "ctrlrfwstatuscont/ctrlrrunning-2",
"lcOwn" : "local",
"replTs" : "never",
"rn" : "",
"status" : "",
"ts" : "2012-12-31T16:00:00.000",
"type" : "ifc",
"version" : "1.1"

}
}

}
]

}

This response describes three running instances of APIC firmware version 1.1.

Example: Using the JSON API to Get Top Level System Elements
This example shows how to query the APIC to determine what system devices are present.

General information about the system elements (APICs, spines, and leafs) is contained in an object of class
top:System.

This example shows the API query message:

GET http://apic-ip-address/api/class/topSystem.json

A successful operation returns a response body similar to this example:

{
"imdata" :
[{

"topSystem" : {
"attributes" : {
"instanceId" : "0:0",
"address" : "10.0.0.32",
"childAction" : "",
"currentTime" : "2013-06-14T04:13:05.584",
"currentTimeZone" : "",
"dn" : "topology/pod-1/node-17/sys",
"fabricId" : "0",
"id" : "17",
"inbMgmtAddr" : "0.0.0.0",
"lcOwn" : "local",
"mode" : "unspecified",
"name" : "leaf0",
"nodeId" : "0",
"oobMgmtAddr" : "0.0.0.0",
"podId" : "1",
"replTs" : "never",
"role" : "leaf",
"serial" : "FOX-270308",
"status" : "",
"systemUpTime" : "00:00:02:03"

}
}

}, {
"topSystem" : {

Using the REST API
28

Using the REST API
Example: Using the JSON API to Get Top Level System Elements

"attributes" : {
"instanceId" : "0:0",
"address" : "10.0.0.1",
"childAction" : "",
"currentTime" : "2013-06-14T04:13:29.301",
"currentTimeZone" : "PDT",
"dn" : "topology/pod-1/node-1/sys",
"fabricId" : "0",
"id" : "1",
"inbMgmtAddr" : "0.0.0.0",
"lcOwn" : "local",
"mode" : "unspecified",
"name" : "apic0",
"nodeId" : "0",
"oobMgmtAddr" : "0.0.0.0",
"podId" : "0",
"replTs" : "never",
"role" : "apic",
"serial" : "",
"status" : "",
"systemUpTime" : "00:00:02:26"

}
}

}
]

}

This response indicates that the system consists of one APIC (node-1) and one leaf (node-17).

Example: Using the XML API and OwnerTag to Add Audit Log Information to
Actions

This example shows how to use the ownerTag or ownerKey property to add custom audit log information
when an object is created or modified.

All configurable objects contain the properties ownerTag and ownerKey , which are user-configurable
string properties. When any configurable object is created or modified by a user action, an audit log record
object (aaa:ModLR) is automatically created to contain information about the change to be reported in the
audit log. The audit log record object includes a list (the changeSet property) of the configured object's
properties that were changed by the action. In the command to create or modify the configurable object, you
can add your own specific tracking information, such as a job ticket number or the name of the person making
the change, to the ownerTag or ownerKey property of the configurable object. This tracking information
will then be included in the audit log record along with the details of the change.

The ownerTag information will appear in the log only when the ownerTag contents have been changed.
To include the same information in a subsequent configuration change, you can clear the ownerTag contents
before making the next configuration change. This condition applies also to the ownerKey property.

Note

In the following example, a domain reference is added to a tenant configuration. As part of the command, the
operator's name is entered as the ownerKey and a job number is entered as the ownerTag .

POST https://apic-ip-address/api/mo/uni/tn-ExampleCorp.xml

<fvTenant name=“ExampleCorp" ownerKey=“georgewa" ownerTag=“chg:00033">

Using the REST API
29

Using the REST API
Example: Using the XML API and OwnerTag to Add Audit Log Information to Actions

<aaaDomainRef name=“ExampleDomain" ownerKey=“georgewa" ownerTag="chg:00033"/>
</fvTenant>

In this case, two aaa:ModLR records are generated — one for the fv:Tenant object and one for the
aaa:DomainRef object. Unless the ownerKey or ownerTag properties are unchanged from a previous
configuration, their new values will appear in the changeSet list of the aaa:ModLR records, and this
information will appear in the audit log record that reports this configuration change.

Example: XML Get Endpoints (Devices) with IP and MAC Addresses
The fvCEp class can be used to derive a list of endpoints (devices) attached to the fabric and the associated
IP and MAC address and the encapsulation for each object.

Procedure

Use an XML query, such as the following example, to get a list of endpoints with the IP and MAC address
for each one:

Example:
GET https://apic-ip-address/api/node/class/fvCEp.xml

Example: Monitoring Using the REST API
In the examples in this topic, the JSON and XML structures have been expanded with line feeds, spaces, and
indentations for readability.

XML Example: Get the Current List of Faults in the Fabric

You can use the faultInst class to derive all faults associated with the fabric, tenant, or individual managed
objects within the APIC. Send a query with XML such as this example:
GET https://apic-ip-address/api/node/class/faultInst.xml?
query-target-filter=and(eq(faultInst.cause,"config-failure"))

XML Example: Get the Current List of Faults in the Fabric That Were Caused by a Failed Configuration

You can also use the fault Inst class with filters to limit the response to faults that were caused by a failed
configuration, with XML such as this example:
GET https://apic-ip-address/api/node/class/faultInst.xml?
query-target-filter=and(e(stultification,"config-failure"))

XML Example: Get the Properties for a Specific Managed Object, DN

You can use aMO query to obtain the properties of the tenant name, with XML such as the following example:
GET https://apic-ip-address/api/node/mo/uni/tn-common.xml?query-target=self

Using the REST API
30

Using the REST API
Example: XML Get Endpoints (Devices) with IP and MAC Addresses

Accessing the REST API

Accessing the REST API

Procedure

By using a script or a browser-based REST client, you can send an API POST or GET message of the form:
https:// apic-ip-address /api/ api-message-url

Use the out-of-band management IP address that you configured during the initial setup.

• Only https is enabled by default. By default, http and http-to-https redirection are disabled.

• You must send an authentication message to initiate an API session. Use the administrator
login name and password that you configured during the initial setup.

Note

Invoking the API
You can invoke an API function by sending an HTTP/1.1 or HTTPS POST, GET, or DELETE message to
the Application Policy Infrastructure Controller (APIC). The HTML body of the POST message contains a
Javascript Object Notation (JSON) or XML data structure that describes anMO or an API method. The HTML
body of the response message contains a JSON or XML structure that contains requested data, confirmation
of a requested action, or error information.

The root element of the response structure is imdata. This element is merely a container for the response; it
is not a class in the management information model (MIM).

Note

Configuring the HTTP Request Method and Content Type
API commands and queries must use the supported HTTP or HTTPS request methods and header fields, as
described in the following sections.

For security, only HTTPS is enabled as the default mode for API communications. HTTP and
HTTP-to-HTTPS redirection can be enabled if desired, but are less secure. For simplicity, this document refers
to HTTP in descriptions of protocol components and interactions.

Note

Request Methods

The API supports HTTP POST, GET, and DELETE request methods as follows:

Using the REST API
31

Using the REST API
Accessing the REST API

• An API command to create or update anMO, or to execute a method, is sent as an HTTP POSTmessage.

• An API query to read the properties and status of an MO, or to discover objects, is sent as an HTTP GET
message.

• An API command to delete an MO is sent as either an HTTP POST or DELETE message. In most cases,
you can delete an MO by setting its status to deleted in a POST operation.

Other HTTP methods, such as PUT, are not supported.

Although the DELETE method is supported, the HTTP header might show only these:
Access-Control-Allow-Methods: POST, GET, OPTIONS

Note

Content Type

The API supports either JSON or XML data structures in the HTML body of an API request or response. You
must specify the content type by terminating the URI pathname with a suffix of either .json or .xml to indicate
the format to be used. The HTTP Content-Type and Accept headers are ignored by the API.

Configuring HTTP and HTTPS Using the GUI
This procedure configures the supported communication protocol for access to the GUI and the REST API.

By default, only HTTPS is enabled. HTTP or HTTP-to-HTTPS redirection, if desired, must be explicitly
enabled and configured. HTTP and HTTPS can coexist.

Procedure

Step 1 On the menu bar, click FABRIC > Fabric Policies.
Step 2 In the Navigation pane, expand Pod Policies > Policies > Communication.
Step 3 Under Communication, click the default policy.
Step 4 In the Work pane, in the HTTP or HTTPS areas, enable or disable the protocol by selecting the desired state

from the Admin State drop-down list.
Step 5 In the HTTP area, enable or disable HTTP-to-HTTPS redirection by selecting the desired state from the

Redirect drop-down list.
Step 6 Click Submit.

Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI
CAUTION: PERFORM THIS TASK ONLY DURING A MAINTENANCE WINDOW AS THERE IS A
POTENTIAL FORDOWNTIME. The downtime affects access to the Cisco Application Policy Infrastructure
Controller (APIC) cluster and switches from external users or systems and not the Cisco APIC to switch
connectivity. The NGINX process on the switches will also be impacted, but that will be only for external
connectivity and not for the fabric data plane. Access to the Cisco APIC, configuration, management,

Using the REST API
32

Using the REST API
Configuring HTTP and HTTPS Using the GUI

troubleshooting, and such will be impacted. The NGINX web server running on the Cisco APIC and switches
will be restarted during this operation.

Before you begin

Determine from which authority you will obtain the trusted certification so that you can create the appropriate
Certificate Authority.

Procedure

Step 1 On the menu bar, choose Admin > AAA.
Step 2 In the Navigation pane, choose Public Key Management > Certificate Authorities.
Step 3 In the Work pane, choose Actions > Create Certificate Authority.
Step 4 In the Create Certificate Authority dialog box, in the Name field, enter a name for the certificate authority.
Step 5 In the Certificate Chain field, copy the intermediate and root certificates for the certificate authority that will

sign the Certificate Signing Request (CSR) for the Cisco APIC.

The certificate should be in Base64 encoded X.509 (CER) format. The intermediate certificate is placed before
the root CA certificate. It should look similar to the following example:
-----BEGIN CERTIFICATE-----
<Intermediate Certificate>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<Root CA Certificate>
-----END CERTIFICATE-----

Step 6 Click Submit.
Step 7 In the Navigation pane, choose Public Key Management > Key Rings.
Step 8 In the Work pane, choose Actions > Create Key Ring.

The key ring enables you to manage a private key (imported from external device or internally generated on
APIC), a CSR generated by the private key, and the certificate signed via the CSR.

Step 9 In the Create Key Ring dialog box, in the Name field, enter a name.
Step 10 In the Certificate field, do not add any content if you will generate a CSR using the Cisco APIC through the

key ring. Alternately, add the signed certificate content if you already have one that was signed by the CA
from the previous steps by generating a private key and CSR outside of the Cisco APIC,

Step 11 In the Modulus field, click the radio button for the desired key strength.
Step 12 In the Certificate Authority field, from the drop-down list, choose the certificate authority that you created

earlier, then click Submit.
Step 13 In the Private Key field, do not add any content if you will generate a CSR using the Cisco APIC through

the key ring. Alternately, add the private key used to generate the CSR for the signed certificate that you
entered in step 10.

Do not delete the key ring. Deleting the key ring will automatically delete the associated private
key used with CSRs.

Note

If you have not entered the signed certificate and the private key, in the Work pane, in the Key Rings area,
the Admin State for the key ring created displays Started, waiting for you to generate a CSR. Proceed to
step 14.

Using the REST API
33

Using the REST API
Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI

If you entered both the signed certificate and the private key, in the Key Rings area, the Admin State for the
key ring created displays Completed. Proceed to step 23.

Step 14 In the Navigation pane, choose Public Key Management > Key Rings > key_ring_name.
Step 15 In the Work pane, choose Actions > Create Certificate Request.
Step 16 In the Subject field, enter the common name (CN) of the CSR.

You can enter the fully qualified domain name (FQDN) of the Cisco APICs using a wildcard, but in a modern
certificate, we generally recommend that you enter an identifiable name of the certificate and enter the FQDN
of all Cisco APICs in theAlternate Subject Name field (also known as the SAN – Subject Alternative Name)
because many modern browsers expect the FQDN in the SAN field.

Step 17 In the Alternate Subject Name field, enter the FQDN of all Cisco APICs, such as
"DNS:apic1.example.com,DNS:apic2.example.com,DNS:apic3.example.com" or "DNS:*example.com".

Alternatively, if you want SAN to match an IP address, enter the Cisco APICs' IP addresses with the following
format:
IP:192.168.2.1

You can use DNS names, IPv4 addresses, or a mixture of both in this field. IPv6 addresses are not supported.

Step 18 Fill in the remaining fields as appropriate.

Check the online help information available in the Create Certificate Request dialog box for a
description of the available parameters.

Note

Step 19 Click Submit.

Inside the same key ring, theAssociated Certificate Request area is now displayedwith the Subject,Alternate
Subject Name and other fields you entered in the previous steps along with the new field Request, which
contains the content of the CSR that is tied to this key ring. Copy the content from the Request field to submit
the content to the same certificate authority that is tied to this key ring for signing.

Step 20 In the Navigation pane, choose Public Key Management > Key Rings > key_ring_name.
Step 21 In the Work pane, in the Certificate field, paste the signed certificate that you received from the certificate

authority.
Step 22 Click Submit.

If the CSRwas not signed by the Certificate Authority indicated in the key ring, or if the certificate
has MS-DOS line endings, an error message is displayed and the certificate is not accepted.
Remove the MS-DOS line endings.

Note

The key is verified, and in the Work pane, the Admin State changes to Completed and is now ready for use
in the HTTP policy.

Step 23 On the menu bar, choose Fabric > Fabric Policies.
Step 24 In the Navigation pane, choose Pod Policies > Policies > Management Access > default.
Step 25 In the Work pane, in the Admin Key Ring drop-down list, choose the desired key ring.
Step 26 (Optional) For Certificate based authentication, in the Client Certificate TP drop-down list, choose the

previously created Local User policy and click Enabled for Client Certificate Authentication state.
Step 27 Click Submit.

Using the REST API
34

Using the REST API
Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI

All web servers restart. The certificate is activated, and the non-default key ring is associated with HTTPS
access.

What to do next

You must remain aware of the expiration date of the certificate and take action before it expires. To preserve
the same key pair for the renewed certificate, you must preserve the CSR as it contains the public key that
pairs with the private key in the key ring. Before the certificate expires, the same CSR must be resubmitted.
Do not delete or create a new key ring as deleting the key ring will delete the private key stored internally on
the Cisco APIC.

Authenticating and Maintaining an API Session
Before you can access the API, you must first log in with the name and password of a configured user.

When a login message is accepted, the API returns a data structure that includes a session timeout period in
seconds and a token that represents the session. The token is also returned as a cookie in the HTTP response
header. To maintain your session, you must send login refresh messages to the API if no other messages are
sent for a period longer than the session timeout period. The token changes each time that the session is
refreshed.

The default session timeout period is 300 seconds or 5 minutes.Note

These API methods enable you to manage session authentication:

• aaaLogin —Sent as a POST message, this method logs in a user and opens a session. The message body
contains an aaa:User object with the name and password attributes, and the response contains a session
token and cookie. If multiple AAA login domains are configured, you must prepend the user's name with
apic: domain \\ .

• aaaRefresh —Sent as a GET message with no message body or as a POST message with the aaaLogin
message body, this method resets the session timer. The response contains a new session token and
cookie.

• aaaLogout—Sent as a POSTmessage, this method logs out the user and closes the session. Themessage
body contains an aaa:User object with the name attribute. The response contains an empty data structure.

• aaaListDomains —Sent as a GET message, this method returns a list of valid AAA login domains. You
can send this message without logging in.

You can call the authentication methods using this syntax, specifying either JSON or XML data structures:

{ http | https } :// host [:port] /api/ methodName . { json | xml }

This example shows a user login message that uses a JSON data structure:

POST https://apic-ip-address/api/aaaLogin.json

{
"aaaUser" : {
"attributes" : {

Using the REST API
35

Using the REST API
Authenticating and Maintaining an API Session

"name" : "georgewa",
"pwd" : "paSSword1"

}
}

}

This example shows part of the response upon a successful login, including the token and the refresh timeout
period:

RESPONSE:
{
"imdata" : [{

"aaaLogin" : {
"attributes" : {
"token" :

"GkZl5NLRZJl5+jqChouaZ9CYjgE58W/pMccR+LeXmdO0obG9NB
Iwo1VBo7+YC1oiJL9mS6I9qh62BkX+Xddhe0JYrTmSG4JcKZ4t3
bcP2Mxy3VBmgoJjwZ76ZOuf9V9AD6Xl83lyoR4bLBzqbSSU1R2N
IgUotCGWjZt5JX6CJF0=",

"refreshTimeoutSeconds" : "300",
"lastName" : "Washington",
"firstName" : "George"

},
"children" : [{

...
[TRUNCATED]

...
}

In the preceding example, the refreshTimeoutSeconds attribute indicates that the session timeout period is
300 seconds.

This example shows how to request a list of valid login domains:

GET https://apic-ip-address/api/aaaListDomains.json

RESPONSE:
{
"imdata": [{
"name": "ExampleRadius"

},
{
"name": "local",
"guiBanner": "San Jose Fabric"

}]
}

In the preceding example, the response data shows two possible login domains, 'ExampleRadius' and 'local.'
The following example shows a user login message for the ExampleRadius login domain:

POST https://apic-ip-address/api/aaaLogin.json

{
"aaaUser" : {
"attributes" : {
"name" : "apic:ExampleRadius\\georgewa",
"pwd" : "paSSword1"

}
}

Using the REST API
36

Using the REST API
Authenticating and Maintaining an API Session

}

Requiring a Challenge Token for an API Session
For stronger API session security, you can require your session to use a challenge token. When you request
this feature during login, the API returns a token string that you must include in every subsequent message
to the API. Unlike the normal session token, the challenge token is not stored as a cookie to be automatically
provided by your browser. Your API commands and queries must provide the challenge token using one of
the following methods:

• The challenge token is sent as a 'challenge' parameter in the URI of your API message.

• The challenge token is part of the HTTP or HTTPS header using 'APIC-challenge'.

To initiate a session that requires a challenge token, include the URI parameter statement
?gui-token-request=yes in your login message, as shown in this example:

POST https://192.0.20.123/api/aaaLogin.json?gui-token-request=yes

The response message body contains an attribute of the form "urlToken":"token", where token is a long
string of characters representing the challenge token. All subsequent messages to the API during this session
must include the challenge token, as shown in this example where it is sent as a 'challenge' URI parameter:

GET https://192.0.20.123/api/class/aaaUser.json?challenge=fa47e44df54562c24fef6601dc...

This example shows how the challenge token is sent as an 'APIC-challenge' field in the HTTP header:

GET //api/class/aaaUser.json
HTTP/1.1
Host: 192.0.20.123
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml,application/json
APIC-challenge: fa47e44df54562c24fef6601dcff72259299a077336aecfc5b012b036797ab0f
.
.
.

Logging In
You can log in to the APIC REST API by sending a valid username and password in a data structure to the
aaaLogin APImethod, as described in Authenticating andMaintaining an API Session, on page 35. Following
a successful login, you must periodically refresh the session.

The following examples show how to log in as an administrator, refresh the session during configuration, and
log out using XML and JSON.

At this time, the aaaLogout method returns a response but does not end a session. Your session ends after
a refresh timeout when you stop sending aaaRefresh messages.

Note

Using the REST API
37

Using the REST API
Requiring a Challenge Token for an API Session

Changing Your Own User Credentials
When logged in to APIC, you can change your own user credentials, including your password, SSH key, and
X.509 certificate. The following API methods are provided for changing the user credentials of the logged-in
user:

• changeSelfPassword

• changeSelfSshKey

• changeSelfX509Cert

Using these methods, you can change the credentials only for the account under which you are logged in.Note

The message body of each method contains the properties of the object to be modified. The properties are
shown in the Cisco APIC Management Information Model Reference.

Changing Your Password

To change your password, send the changeSelfPassword API method, which modifies the
aaa:changePassword object. The following object properties are required in the message body:

• userName—Your login ID.

• oldPassword—Your current password.

• newPassword—Your new password.

This example, when sent by User1, changes the password for User1.

POST http://192.0.20.123/api/changeSelfPassword.json

{
"aaaChangePassword" : {
"attributes" : {
"userName" : "User1",
"oldPassword" : "p@$sw0rd",
"newPassword" : "dr0ws$@p"

}
}

}

A successful operation returns an empty imdata element, as in this example:

{
"totalCount" : "0",
"imdata" : []

}

Changing Your SSH Key

To change your SSH key, send thechangeSelfSshKeyAPImethod, whichmodifies the aaa:changeSshKey
object. The following object properties are required in the message body:

Using the REST API
38

Using the REST API
Changing Your Own User Credentials

• userName—Your login ID.

• name— The symbolic name of the key. APIC supports up to 32 SSH keys for a single user.

• data—Your new SSH key.

This example, when sent by User1, changes the SSH key for User1.

POST http://192.0.20.123/api/changeSelfSshKey.json

{
"aaaChangeSshKey" : {
"attributes" : {
"userName" : "User1",
"name" : "A",
"data" : "ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAuKxY5E4we6uCR2z== key@example.com"

}
}

}

A successful operation returns an empty imdata element.

Changing Your X.509 Certificate

To change your X.509 certificate, send the changeSelfX509Cert API method, which modifies the
aaa:changeX509Cert object. The following object properties are required in the message body:

• userName—Your login ID.

• name— The symbolic name of the certificate. APIC supports up to 32 X.509 certificates for a single
user.

• data— The entire data body of your new X.509 certificate.

This example, when sent by User1, changes the X.509 certificate for User1.

POST http://192.0.20.123/api/changeSelfX509Cert.json

{
"aaaChangeX509Cert" : {
"attributes" : {
"userName" : "User1",
"name" : "A",
"data" : "-----BEGIN CERTIFICATE-----\nMIIE2TCCA8GgAwIBAgIKamlnsw

[EXAMPLE TRUNCATED]

1BCIolblPFft6QKoSJFjB6thJksaE5/k3Npf\n-----END CERTIFICATE-----"
}

}
}

A successful operation returns an empty imdata element.

Deleting an SSH Key or X.509 Certificate

To delete a key or certificate, send the key or certificate change method with the name of the key or certificate
to be deleted and with the data attribute blank.

Using the REST API
39

Using the REST API
Changing Your Own User Credentials

This example, when sent by User1, deletes the SSH key for User1.

POST http://192.0.20.123/api/changeSelfSshKey.json

{
"aaaChangeSshKey" : {
"attributes" : {
"userName" : "User1",
"name" : "A",
"data" : ""

}
}

}

A successful operation returns an empty imdata element.

REST API Tools

Management Information Model Reference
The Management Information Model (MIM) contains all of the managed objects in the system and their
properties. For details, see the Cisco APIC Management Information Model Reference Guide.

See the following figure for an example of how an administrator can use the MIM to research an object in the
MIT.

Using the REST API
40

Using the REST API
REST API Tools

Figure 3: MIM Reference

Using the REST API
41

Using the REST API
Management Information Model Reference

Viewing an API Interchange in the GUI
When you perform a task in the APIC graphical user interface (GUI), the GUI creates and sends internal API
messages to the operating system to execute the task. By using the API Inspector, which is a built-in tool of
the APIC, you can view and copy these API messages. A network administrator can replicate these messages
in order to automate key operations, or you can use the messages as examples to develop external applications
that will use the API. .

Procedure

Step 1 Log in to the APIC GUI.
Step 2 In the upper right corner of the APIC window, click the "welcome, <name>" message to view the drop-down

list.
Step 3 In the drop-down list, choose the Show API Inspector.

The API Inspector opens in a new browser window.

Step 4 In the Filters toolbar of the API Inspector window, choose the types of API log messages to display.

The displayedmessages are color-coded according to the selectedmessage types. This table shows the available
message types:

DescriptionName

Displays trace messages.trace

Displays debug messages. This type includes most API commands and responses.debug

Displays informational messages.info

Displays warning messages.warn

Displays error messages.error

Displays fatal messages.fatal

Checking this checkbox causes all other checkboxes to become checked. Unchecking any
other checkbox causes this checkbox to be unchecked.

all

Step 5 In the Search toolbar, you can search the displayed messages for an exact string or by a regular expression.

This table shows the search controls:

DescriptionName

In this text box, enter a string for a direct search or enter a regular expression for a regex
search. As you type, the first matched field in the log list is highlighted.

Search

Click this button to clear the contents of the Search text box.Reset

Check this checkbox to use the contents of the Search text box as a regular expression for
a search.

Regex

Check this checkbox to make the search case sensitive.Match case

Check this checkbox to disable the search and clear the highlighting of search matches in
the log list.

Disable

Using the REST API
42

Using the REST API
Viewing an API Interchange in the GUI

DescriptionName

Click this button to cause the log list to scroll to the next matched entry. This button appears
only when a search is active.

Next

Click this button to cause the log list to scroll to the previous matched entry. This button
appears only when a search is active.

Previous

Check this checkbox to hide nonmatched lines. This checkbox appears only when a search
is active.

Filter

Check this checkbox to highlight all matched fields. This checkbox appears only when a
search is active.

Highlight all

Step 6 In the Options toolbar, you can arrange the displayed messages.

This table shows the available options:

DescriptionName

Check this checkbox to enable logging.Log

Check this checkbox to enable wrapping of lines to avoid horizontal scrolling of the log
list

Wrap

Check this checkbox to display log entries in reverse chronological order.Newest at the
top

Check this checkbox to scroll immediately to the latest log entry.Scroll to latest

Click this button to clear the log list.Clear

Click this button to close the API Inspector.Close

Example

This example shows two debug messages in the API Inspector window:

13:13:36 DEBUG - method: GET url: http://192.0.20.123/api/class/infraInfra.json
response: {"imdata":[{"infraInfra":{"attributes":{"instanceId":"0:0","childAction":"",
"dn":"uni/infra","lcOwn":"local","name":"","replTs":"never","status":""}}}]}

13:13:40 DEBUG - method: GET url: http://192.0.20.123/api/class/l3extDomP.json?
query-target=subtree&subscription=yes
response: {"subscriptionId":"72057598349672459","imdata":[]}

Testing the API Using Browser Add-Ons

Using a Browser

To test an API request, you can assemble an HTTP message, send it, and inspect the response using a browser
add-on utility. RESTful API clients, which are available as add-ons for most popular browsers, provide a
user-friendly interface for interacting with the API. Clients include the following:

Using the REST API
43

Using the REST API
Testing the API Using Browser Add-Ons

• For Firefox/Mozilla—Poster, RESTClient

• For Chrome—Advanced REST client, Postman

Browser add-ons pass the session token as a cookie so that there is no need to include the token in the payload
data structure.

Testing the API with cURL
You can send API messages from a console or a command-line script using cURL, which is a tool for
transferring files using URL syntax.

To send a POST message, create a file that contains the JSON or XML command body, and then enter the
cURL command in this format:

curl -X POST --data "@<filename>" <URI>

You must specify the name of your descriptor file and the URI of the API operation.

Make sure to include the "@" symbol before the descriptor filename.Note

This example creates a new tenant named ExampleCorp using the JSON data structure in the file
"newtenant.json":

curl -X POST --data "@newtenant.json" https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

To send a GET message, enter the cURL command in this format:

curl -X GET <URI>

This example reads information about a tenant in JSON format:

curl -X GET https://apic-ip-address/api/mo/uni/tn-ExampleCorp.json

When testing with cURL, you must log in to the API, store the authentication token, and include the token in
subsequent API operations.

Note

Related Topics
Example: Using the JSON API to Add a User with cURL

Using the REST API
44

Using the REST API
Testing the API with cURL

Cisco APIC Python SDK
The Python API provides a Python programming interface to the underlying REST API, allowing you to
develop your own applications to control the APIC and the network fabric, enabling greater flexibility in
infrastructure automation, management, monitoring and programmability.

The Python API supports Python version 2.7.

For more information, see Cisco APIC Python SDK Documentation, Installing the Cisco APIC Python SDK
and http://www.python-requests.org.

Using the Managed Object Browser (Visore)
The Managed Object Browser, or Visore, is a utility built into the APIC that provides a graphical view of the
managed objects (MOs) using a browser. The Visore utility uses the APIC RESTAPI query methods to browse
MOs active in the Application Centric Infrastructure fabric, allowing you to see the query that was used to
obtain the information. The Visore utility cannot be used to perform configuration operations.

Only the Firefox, Chrome, and Safari browsers are supported for Visore access.Note

Visore Browser Page

Filter Area

The filter form is case sensitive. This area supports all simple APIC REST API query operations.

DescriptionName

Object class name or fully distinguished name of a managed object.Class or DN field

The property of the managed object on which you want to filter the
results. If you leave the Property field empty, the search returns all
instances of the specific class.

Property field

Using the REST API
45

Using the REST API
Cisco APIC Python SDK

http://www.python-requests.org

DescriptionName

Operator for the values of the property on which you want to filter the
results. The following are valid operators:

• == (equal to)

• != (not equal to)

• < (less than)

• > (greater than)

• ≤ (less than or equal to)

• ≥ (greater than or equal to)

• between

• wildcard

• anybit

• allbits

Op drop-down list

The first value for the property on which you want to filter.Val1 field

The second value on which you want to filter.Val2 field

Display XML of Last Query Link

The Display XML of last query link displays the full APIC REST API translation of the most recent query
run in Visore.

Results Area

You can bookmark any query results page in your browser to view the results again because the query is
encoded in the URL.

Many of the managed objects are only used internally and are not generally applicable to APIC REST API
program development.

Note

DescriptionName

Separates individual managed object instances and displays the class
name of the object below it.

Pink background

Indicates the property names of the managed object.Blue or green background

Indicates the value of a property name.Yellow or beige background

Absolute address of each managed object in the object model.dn property

When clicked, displays all managed objects with that dn.dn link

Using the REST API
46

Using the REST API
Visore Browser Page

DescriptionName

When clicked, displays all managed objects of that class.Class name link

When clicked, takes you to the parent object of the managed object.Left arrow

When clicked, takes you to the child objects of the managed object.Right arrow

Links you to the XML API documentation for the managed object.Question mark

Accessing Visore

Procedure

Step 1 Open a supported browser and enter the URL of the APIC followed by /visore.html.

Example:

https://apic-ip-address/visore.html

Step 2 When prompted, log in using the same credentials you would use to log in to the APIC CLI or GUI user
interfaces.

You can use a read-only account.

Running a Query in Visore

Procedure

Step 1 Enter a class or DN name of the MO in the Class or DN text box.
Step 2 (Optional) You can filter the query by entering a property of the MO in the Property text box, an operator

in the Op text box, and one or two values in the Val1 and Val2 text boxes.
Step 3 Click Run Query.

Visore sends a query to the APIC and the requested MO is displayed in a tabular format.

Step 4 (Optional) Click the Display URI of last query link to display the API call that executed the query.
Step 5 (Optional) Click the Display last response link to display the API response data structure from the query.
Step 6 (Optional) In the dn field of the MO description table, click the < and > icons to retrieve the parent and child

classes of the displayed MO.

Clicking > sends a query to the APIC for the children of the MO. Clicking < sends a query for the parent of
the MO.

Using the REST API
47

Using the REST API
Accessing Visore

Step 7 (Optional) In the dn field of the MO description table, click the additional icons to display statistics, faults,
or health information for the MO.

Using the REST API
48

Using the REST API
Running a Query in Visore

	Using the REST API
	About the REST API
	Management Information Model
	Object Naming
	Guidelines and Limitations for Using the REST API

	Composing REST API Requests
	Read and Write Operations and Filters
	Using Classes in REST API Commands
	Using Managed Objects in REST API Commands
	Creating the API Command
	Composing the API Command Body
	Composing the API Command Body to Call a Method
	Composing the API Command Body for an API Operation on an MO
	Using Tags and Alias

	Composing REST API Queries
	Composing Query Filter Expressions
	Applying Query Scoping Filters
	Filtering API Query Results
	Filter Conditional Operators
	Sorting and Paginating Query Results
	Subscribing to Query Results

	REST API Examples
	Information About the API Examples
	Example: Using the JSON API to Add a Leaf Port Selector Profile
	Example: Using the JSON API to Get Information About a Node
	Example: Using the JSON API to Get Running Firmware
	Example: Using the JSON API to Get Top Level System Elements
	Example: Using the XML API and OwnerTag to Add Audit Log Information to Actions
	Example: XML Get Endpoints (Devices) with IP and MAC Addresses
	Example: Monitoring Using the REST API

	Accessing the REST API
	Accessing the REST API
	Invoking the API
	Configuring the HTTP Request Method and Content Type
	Configuring HTTP and HTTPS Using the GUI
	Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI
	Authenticating and Maintaining an API Session
	Requiring a Challenge Token for an API Session
	Logging In
	Changing Your Own User Credentials

	REST API Tools
	Management Information Model Reference
	Viewing an API Interchange in the GUI
	Testing the API Using Browser Add-Ons
	Testing the API with cURL
	Cisco APIC Python SDK
	Using the Managed Object Browser (Visore)
	Visore Browser Page
	Accessing Visore
	Running a Query in Visore

