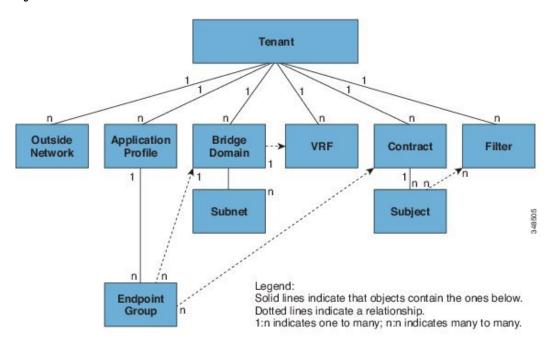


Basic User Tenant Configuration


This chapter contains the following sections:

- Tenants, on page 1
- Routing Within the Tenant, on page 2
- Creating Tenants, VRFs, and Bridge Domains, on page 13
- Deploying EPGs, on page 14
- Microsegmented EPGs, on page 25
- Deploying Application Profiles and Contracts, on page 35
- Optimize Contract Performance, on page 50
- Contract and Subject Exceptions, on page 53
- Intra-EPG Contracts, on page 57
- EPG Contract Inheritance, on page 60
- Contract Preferred Groups, on page 76
- Contracts with Permit and Deny Rules, on page 81

Tenants

A tenant (fvTenant) is a logical container for application policies that enable an administrator to exercise domain-based access control. A tenant represents a unit of isolation from a policy perspective, but it does not represent a private network. Tenants can represent a customer in a service provider setting, an organization or domain in an enterprise setting, or just a convenient grouping of policies. The following figure provides an overview of the tenant portion of the management information tree (MIT).

Figure 1: Tenants

Tenants can be isolated from one another or can share resources. The primary elements that the tenant contains are filters, contracts, outside networks, bridge domains, Virtual Routing and Forwarding (VRF) instances, and application profiles that contain endpoint groups (EPGs). Entities in the tenant inherit its policies. VRFs are also known as contexts; each VRF can be associated with multiple bridge domains.

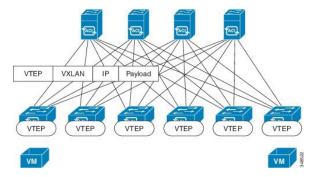
Note

In the APIC GUI under the tenant navigation path, a VRF (context) is called a private network.

Tenants are logical containers for application policies. The fabric can contain multiple tenants. You must configure a tenant before you can deploy any Layer 4 to Layer 7 services. The ACI fabric supports IPv4, IPv6, and dual-stack configurations for tenant networking.

Routing Within the Tenant

The Application Centric Infrastructure (ACI) fabric provides tenant default gateway functionality and routes between the fabric virtual extensible local area (VXLAN) networks. For each tenant, the fabric provides a virtual default gateway or Switched Virtual Interface (SVI) whenever a subnet is created on the APIC. This spans any switch that has a connected endpoint for that tenant subnet. Each ingress interface supports the default gateway interface and all of the ingress interfaces across the fabric share the same router IP address and MAC address for a given tenant subnet.


Layer 3 VNIDs Facilitate Transporting Inter-subnet Tenant Traffic

The ACI fabric provides tenant default gateway functionality that routes between the ACI fabric VXLAN networks. For each tenant, the fabric provides a virtual default gateway that spans all of the leaf switches

assigned to the tenant. It does this at the ingress interface of the first leaf switch connected to the endpoint. Each ingress interface supports the default gateway interface. All of the ingress interfaces across the fabric share the same router IP address and MAC address for a given tenant subnet.

The ACI fabric decouples the tenant endpoint address, its identifier, from the location of the endpoint that is defined by its locator or VXLAN tunnel endpoint (VTEP) address. Forwarding within the fabric is between VTEPs. The following figure shows decoupled identity and location in ACI.

Figure 2: ACI Decouples Identity and Location

VXLAN uses VTEP devices to map tenant end devices to VXLAN segments and to perform VXLAN encapsulation and de-encapsulation. Each VTEP function has two interfaces:

- A switch interface on the local LAN segment to support local endpoint communication through bridging
- An IP interface to the transport IP network

The IP interface has a unique IP address that identifies the VTEP device on the transport IP network known as the infrastructure VLAN. The VTEP device uses this IP address to encapsulate Ethernet frames and transmit the encapsulated packets to the transport network through the IP interface. A VTEP device also discovers the remote VTEPs for its VXLAN segments and learns remote MAC Address-to-VTEP mappings through its IP interface.

The VTEP in ACI maps the internal tenant MAC or IP address to a location using a distributed mapping database. After the VTEP completes a lookup, the VTEP sends the original data packet encapsulated in VXLAN with the destination address of the VTEP on the destination leaf switch. The destination leaf switch de-encapsulates the packet and sends it to the receiving host. With this model, ACI uses a full mesh, single hop, loop-free topology without the need to use the spanning-tree protocol to prevent loops.

The VXLAN segments are independent of the underlying network topology; conversely, the underlying IP network between VTEPs is independent of the VXLAN overlay. It routes the encapsulated packets based on the outer IP address header, which has the initiating VTEP as the source IP address and the terminating VTEP as the destination IP address.

The following figure shows how routing within the tenant is done.

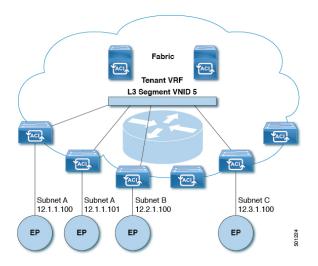
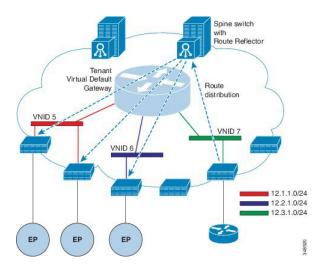


Figure 3: Layer 3 VNIDs Transport ACI Inter-subnet Tenant Traffic

For each tenant VRF in the fabric, ACI assigns a single L3 VNID. ACI transports traffic across the fabric according to the L3 VNID. At the egress leaf switch, ACI routes the packet from the L3 VNID to the VNID of the egress subnet.

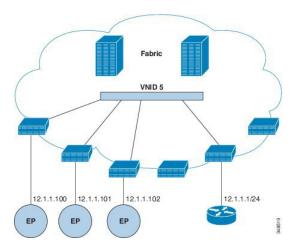

Traffic arriving at the fabric ingress that is sent to the ACI fabric default gateway is routed into the Layer 3 VNID. This provides very efficient forwarding in the fabric for traffic routed within the tenant. For example, with this model, traffic between 2 VMs belonging to the same tenant, on the same physical host, but on different subnets, only needs to travel to the ingress switch interface before being routed (using the minimal path cost) to the correct destination.

To distribute external routes within the fabric, ACI route reflectors use multiprotocol BGP (MP-BGP). The fabric administrator provides the autonomous system (AS) number and specifies the spine switches that become route reflectors.

Router Peering and Route Distribution

As shown in the figure below, when the routing peer model is used, the leaf switch interface is statically configured to peer with the external router's routing protocol.

Figure 4: Router Peering



The routes that are learned through peering are sent to the spine switches. The spine switches act as route reflectors and distribute the external routes to all of the leaf switches that have interfaces that belong to the same tenant. These routes are longest prefix match (LPM) summarized addresses and are placed in the leaf switch's forwarding table with the VTEP IP address of the remote leaf switch where the external router is connected. WAN routes have no forwarding proxy. If the WAN routes do not fit in the leaf switch's forwarding table, the traffic is dropped. Because the external router is not the default gateway, packets from the tenant endpoints (EPs) are sent to the default gateway in the ACI fabric.

Bridged Interface to an External Router

As shown in the figure below, when the leaf switch interface is configured as a bridged interface, the default gateway for the tenant VNID is the external router.

Figure 5: Bridged External Router

The ACI fabric is unaware of the presence of the external router and the APIC statically assigns the leaf switch interface to its EPG.

Configuring Route Reflectors

The ACI fabric route reflectors use multiprotocol BGP (MP-BGP) to distribute external routes within the fabric. To enable route reflectors in the ACI fabric, the fabric administrator must select the spine switches that will be the route reflectors, and provide the autonomous system (AS) number. Once route reflectors are enabled in the ACI fabric, administrators can configure connectivity to external networks as described in the following sections.

To connect external routers to the ACI fabric, the fabric infrastructure administrator configures spine nodes as Border Gateway Protocol (BGP) route reflectors. For redundancy purposes, more than one spine is configured as a router reflector node (one primary and one secondary reflector).

When a tenant needs to attach a WAN router to the ACI fabric, the infrastructure administrator configures the leaf node (as described below) to which the WAN router is being connected as WAN top of rack (ToR) and pairs this WAN ToR with one of the route reflector nodes as a BGP peer. When route reflectors are configured on the WAN ToR, they are able to advertise the tenant routes into the fabric.

Each leaf node can store up to 4000 routes. If a WAN router has to advertise more than 4000 routes, it should peer with multiple leaf nodes. The infrastructure administrator configures each of the paired leaf nodes with the routes (or route prefixes) that it can advertise.

The infrastructure administrator must configure an external WAN router connected to the fabric as follows:

- 1. Configure up to two spine nodes as route reflectors. For redundancy, configure primary and secondary route reflectors.
- 2. On WAN ToRs, configure the primary and secondary route reflector nodes.
- **3.** On WAN ToRs, configure the routes that the ToR is responsible for advertising. This is optional and needs to be done only when the tenant router is known to advertise more than 4000 routes.

Configuring External Connectivity for Tenants

Before you can distribute the static route to the other leaf switches on the Application Centric Infrastructure (ACI) fabric, a multiprotocol BGP (MP-BGP) process must first be operating, and the spine switches must be configured as BGP route reflectors.

To integrate the ACI fabric into an external routed network, you can configure Open Shortest Path First (OSPF) for management tenant Layer 3 connectivity.

Configuring an MP-BGP Route Reflector Using the GUI

Procedure

- **Step 1** On the menu bar, choose **System > System Settings**.
- Step 2 In the Navigation pane, right-click BGP Route Reflector, and click Create Route Reflector Node Policy EP.
- Step 3 In the Create Route Reflector Node Policy EP dialog box, from the Spine Node drop-down list, choose the appropriate spine node. Click Submit.

Note Repeat the above steps to add additional spine nodes as required.

The spine switch is marked as the route reflector node.

Step 4 In the BGP Route Reflector properties area, in the Autonomous System Number field, choose the appropriate number. Click Submit.

Note

The autonomous system number must match the leaf connected router configuration if Border Gateway Protocol (BGP) is configured on the router. If you are using routes learned using static or Open Shortest Path First (OSPF), the autonomous system number value can be any valid value.

- Step 5 On the menu bar, choose Fabric > Fabric Policies > POD Policies.
- Step 6 In the Navigation pane, expand and right-click Policy Groups, and click Create POD Policy Group.
- **Step 7** In the Create POD Policy Group dialog box, in the Name field, enter the name of a pod policy group.
- Step 8 In the BGP Route Reflector Policy drop-down list, choose the appropriate policy (default). Click Submit. The BGP route reflector policy is associated with the route reflector pod policy group, and the BGP process is enabled on the leaf switches.
- Step 9 In the Navigation pane, choose Pod Policies > Profiles > default. In the Work pane, from the Fabric Policy Group drop-down list, choose the pod policy that was created earlier. Click Submit.

 The pod policy group is now applied to the fabric policy group.

Configuring an MP-BGP Route Reflector for the ACI Fabric

To distribute routes within the ACI fabric, an MP-BGP process must first be operating, and the spine switches must be configured as BGP route reflectors.

The following is an example of an MP-BGP route reflector configuration:

Note

In this example, the BGP fabric ASN is 100. Spine switches 104 and 105 are chosen as MP-BGP route-reflectors.

```
apicl(config) # bgp-fabric
apicl(config-bgp-fabric) # asn 100
apicl(config-bgp-fabric) # route-reflector spine 104,105
```

Configuring an MP-BGP Route Reflector Using the REST API

Procedure

Step 1 Mark the spine switches as route reflectors.

Step 2 Set up the pod selector using the following post.

Example:

```
For the FuncP setup—
```

Example:

For the PodP setup—

Verifying the MP-BGP Route Reflector Configuration

Procedure

- **Step 1** Verify the configuration by performing the following actions:
 - a) Use secure shell (SSH) to log in as an administrator to each leaf switch as required.
 - b) Enter the **show processes** | **grep bgp** command to verify the state is S.

If the state is NR (not running), the configuration was not successful.

- **Step 2** Verify that the autonomous system number is configured in the spine switches by performing the following actions:
 - a) Use the SSH to log in as an administrator to each spine switch as required.
 - b) Execute the following commands from the shell window

Example:

cd /mit/sys/bgp/inst

Example:

grep asn summary

The configured autonomous system number must be displayed. If the autonomous system number value displays as 0, the configuration was not successful.

Creating an OSPF External Routed Network for Management Tenant Using the GUI

• You must verify that the router ID and the logical interface profile IP address are different and do not overlap.

- The following steps are for creating an OSPF external routed network for a management tenant. To create an OSPF external routed network for a tenant, you must choose a tenant and create a VRF for the tenant.
- For more details, see Cisco APIC and Transit Routing.

Procedure

- **Step 1** On the menu bar, choose **TENANTS** > **mgmt**.
- Step 2 In the Navigation pane, expand Networking > External Routed Networks.
- Step 3 Right-click External Routed Networks, and click Create Routed Outside.
- **Step 4** In the Create Routed Outside dialog box, perform the following actions:
 - a) In the **Name** field, enter a name (RtdOut).
 - b) Check the **OSPF** check box.
 - c) In the **OSPF Area ID** field, enter an area ID.
 - d) In the **OSPF Area Control** field, check the appropriate check box.
 - e) In the **OSPF** Area Type field, choose the appropriate area type.
 - f) In the **OSPF** Area Cost field, choose the appropriate value.
 - g) In the VRF field, from the drop-down list, choose the VRF (inb).

Note This step associates the routed outside with the in-band VRF.

- h) From the External Routed Domain drop-down list, choose the appropriate domain.
- i) Click the + icon for Nodes and Interfaces Protocol Profiles area.
- **Step 5** In the **Create Node Profile** dialog box, perform the following actions:
 - a) In the **Name** field, enter a name for the node profile. (borderLeaf).
 - b) In the **Nodes** field, click the + icon to display the **Select Node** dialog box.
 - c) In the **Node ID** field, from the drop-down list, choose the first node. (leaf1).
 - d) In the **Router ID** field, enter a unique router ID.
 - e) Uncheck the Use Router ID as Loopback Address field.
 - Note By default, the router ID is used as a loopback address. If you want them to be different, uncheck the Use Router ID as Loopback Address check box.
 - f) Expand Loopback Addresses, and enter the IP address in the IP field. Click Update, and click OK. Enter the desired IPv4 or IPv6 IP address.
 - g) In the **Nodes** field, expand the + icon to display the **Select Node** dialog box.

Note You are adding a second node ID.

- h) In the **Node ID** field, from the drop-down list, choose the next node. (leaf2).
- i) In the **Router ID** field, enter a unique router ID.
- j) Uncheck the Use Router ID as Loopback Address field.
 - **Note** By default, the router ID is used as a loopback address. If you want them to be different, uncheck the **Use Router ID as Loopback Address** check box.

Expand Loopback Addresses, and enter the IP address in the IP field. Click Update, and click OK.
 Click OK.

Enter the desired IPv4 or IPv6 IP address.

- Step 6 In the Create Node Profile dialog box, in the OSPF Interface Profiles area, click the + icon.
- **Step 7** In the Create Interface Profile dialog box, perform the following tasks:
 - a) In the **Name** field, enter the name of the profile (portProf).
 - b) In the **Interfaces** area, click the **Routed Interfaces** tab, and click the + icon.
 - c) In the **Select Routed Interfaces** dialog box, in the **Path** field, from the drop-down list, choose the first port (leaf1, port 1/40).
 - d) In the **IP Address** field, enter an IP address and mask. Click **OK**.
 - e) In the **Interfaces** area, click the **Routed Interfaces** tab, and click the + icon.
 - f) In the **Select Routed Interfaces** dialog box, in the **Path** field, from the drop-down list, choose the second port (leaf2, port 1/40).
 - g) In the IP Address field, enter an IP address and mask. Click OK.

Note This IP address should be different from the IP address you entered for leaf1 earlier.

h) In the Create Interface Profile dialog box, click OK.

The interfaces are configured along with the OSPF interface.

- **Step 8** In the Create Node Profile dialog box, click OK.
- Step 9 In the Create Routed Outside dialog box, click Next.
 - The **Step 2 External EPG Networks** area is displayed.
- **Step 10** In the External EPG Networks area, click the + icon.
- **Step 11** In the Create External Network dialog box, perform the following actions:
 - a) In the **Name** field, enter a name for the external network (extMgmt).
 - b) Expand **Subnet** and in the **Create Subnet** dialog box, in the **IP address** field, enter an IP address and mask for the subnet.
 - c) In the **Scope** field, check the desired check boxes. Click **OK**.
 - d) In the Create External Network dialog box, click OK.
 - e) In the Create Routed Outside dialog box, click Finish.

Note In the Work pane, in the External Routed Networks area, the external routed network icon (RtdOut) is now displayed.

Creating an OSPF External Routed Network for a Tenant Using the NX-OS CLI

Configuring external routed network connectivity involves the following steps:

- 1. Create a VRF under Tenant.
- 2. Configure L3 networking configuration for the VRF on the border leaf switches, which are connected to the external routed network. This configuration includes interfaces, routing protocols (BGP, OSPF, EIGRP), protocol parameters, route-maps.

3. Configure policies by creating external-L3 EPGs under tenant and deploy these EPGs on the border leaf switches. External routed subnets on a VRF which share the same policy within the ACI fabric form one "External L3 EPG" or one "prefix EPG".

Configuration is realized in two modes:

- Tenant mode: VRF creation and external-L3 EPG configuration
- Leaf mode: L3 networking configuration and external-L3 EPG deployment

The following steps are for creating an OSPF external routed network for a tenant. To create an OSPF external routed network for a tenant, you must choose a tenant and then create a VRF for the tenant.

Note

The examples in this section show how to provide external routed connectivity to the "web" epg in the "OnlineStore" application for tenant "exampleCorp".

Procedure

Step 1 Configure the VLAN domain.

Example:

```
apic1(config) # vlan-domain dom_exampleCorp
apic1(config-vlan) # vlan 5-1000
apic1(config-vlan) # exit
```

Step 2 Configure the tenant VRF and enable policy enforcement on the VRF.

Example:

```
apic1(config) # tenant exampleCorp
apic1(config-tenant) # vrf context
  exampleCorp_v1
apic1(config-tenant-vrf) # contract enforce
apic1(config-tenant-vrf) # exit
```

Step 3 Configure the tenant BD and mark the gateway IP as "public". The entry "scope public" makes this gateway address available for advertisement through the routing protocol for external-L3 network.

Example:

```
apicl(config-tenant) # bridge-domain exampleCorp_b1
apicl(config-tenant-bd) # vrf member exampleCorp_v1
apicl(config-tenant-bd) # exit
apicl(config-tenant) # interface bridge-domain exampleCorp_b1
apicl(config-tenant-interface) # ip address 172.1.1.1/24 scope public apicl(config-tenant-interface) # exit
```

Step 4 Configure the VRF on a leaf.

```
apic1(config) # leaf 101
apic1(config-leaf) # vrf context tenant exampleCorp vrf exampleCorp v1
```

Step 5 Configure the OSPF area and add the route map.

Example:

```
apicl(config-leaf) # router ospf default
apicl(config-leaf-ospf) # vrf member tenant exampleCorp vrf exampleCorp_vl
apicl(config-leaf-ospf-vrf) # area 0.0.0.1 route-map map100 out
apicl(config-leaf-ospf-vrf) # exit
apicl(config-leaf-ospf) # exit
```

Step 6 Assign the VRF to the interface (sub-interface in this example) and enable the OSPF area.

Example:

Note

For the sub-interface configuration, the main interface (ethernet 1/11 in this example) must be converted to an L3 port through "no switchport" and assigned a vlan-domain (dom_exampleCorp in this example) that contains the encapsulation VLAN used by the sub-interface. In the sub-interface ethernet 1/11.500, 500 is the encapsulation VLAN.

```
apicl(config-leaf) # interface ethernet 1/11
apicl(config-leaf-if) # no switchport
apicl(config-leaf-if) # vlan-domain member dom_exampleCorp
apicl(config-leaf-if) # exit
apicl(config-leaf) # interface ethernet 1/11.500
apicl(config-leaf-if) # vrf member tenant exampleCorp vrf exampleCorp_vlapicl(config-leaf-if) # ip address 157.10.1.1/24
apicl(config-leaf-if) # ip router ospf default area 0.0.0.1
```

Step 7 Configure the external-L3 EPG policy. This includes the subnet to match for identifying the external subnet and consuming the contract to connect with the epg "web".

Example:

```
apicl(config) # tenant t100
apicl(config-tenant) # external-13 epg 13epg100
apicl(config-tenant-13ext-epg) # vrf member v100
apicl(config-tenant-13ext-epg) # match ip 145.10.1.0/24
apicl(config-tenant-13ext-epg) # contract consumer web
apicl(config-tenant-13ext-epg) # exit
apicl(config-tenant) #exit
```

Step 8 Deploy the external-L3 EPG on the leaf switch.

```
apic1(config)# leaf 101
apic1(config-leaf)# vrf context tenant t100 vrf v100
apic1(config-leaf-vrf)# external-13 epg 13epg100
```

Creating Tenants, VRFs, and Bridge Domains

Tenants Overview

- A tenant contains policies that enable qualified users domain-based access control. Qualified users can access privileges such as tenant administration and networking administration.
- A user requires read/write privileges for accessing and configuring policies in a domain. A tenant user can have specific privileges into one or more domains.
- In a multitenancy environment, a tenant provides group user access privileges so that resources are isolated from one another (such as for endpoint groups and networking). These privileges also enable different users to manage different tenants.

Tenant Creation

A tenant contains primary elements such as filters, contracts, bridge domains, and application profiles that you can create after you first create a tenant.

VRF and Bridge Domains

You can create and specify a VRF and a bridge domain for the tenant. The defined bridge domain element subnets reference a corresponding Layer 3 context.

For details about enabling IPv6 Neighbor Discovery see IPv6 and Neighbor Discovery in Cisco APIC Layer 3 Networking Guide.

Creating a Tenant, VRF, and Bridge Domain Using the Advanced GUI

If you have a public subnet when you configure the routed outside, you must associate the bridge domain with the outside configuration.

Procedure

- Step 1 On the menu bar, click TENANT > Add Tenant.
- **Step 2** In the Create Tenant dialog box, perform the following tasks:
 - a) In the **Name** field, enter a name.
 - b) Click the **Security Domains** + icon to open the **Create Security Domain** dialog box.
 - c) In the Name field, enter a name for the security domain. Click Submit.
 - d) In the **Create Tenant** dialog box, check the check box for the security domain that you created, and click **Submit**.
- Step 3 In the Navigation pane, expand Tenant-name > Networking, and in the Work pane, drag the VRF icon to the canvas to open the Create VRF dialog box, and perform the following tasks:
 - a) In the Name field, enter a name.

- b) Click **Submit** to complete the VRF configuration.
- Step 4 In the Networking pane, drag the BD icon to the canvas while connecting it to the VRF icon. In the Create Bridge Domain dialog box that displays, perform the following tasks:
 - a) In the **Name** field, enter a name.
 - b) Click the L3 Configurations tab.
 - c) Expand Subnets to open the Create Subnet dialog box, enter the subnet mask in the Gateway IP field and click OK.
 - d) Click **Submit** to complete bridge domain configuration.
- Step 5 In the Networks pane, drag the L3 icon down to the canvas while connecting it to the VRF icon. In the Create Routed Outside dialog box that displays, perform the following tasks:
 - a) In the **Name** field, enter a name.
 - b) Expand Nodes And Interfaces Protocol Profiles to open the Create Node Profile dialog box.
 - c) In the Name field, enter a name.
 - d) Expand **Nodes** to open the **Select Node** dialog box.
 - e) In the **Node ID** field, choose a node from the drop-down list.
 - f) In the **Router ID** field, enter the router ID.
 - g) Expand Static Routes to open the Create Static Route dialog box.
 - h) In the **Prefix** field, enter the IPv4 or IPv6 address.
 - i) Expand Next Hop Addresses and in the Next Hop IP field, enter the IPv4 or IPv6 address.
 - i) In the **Preference** field, enter a number, then click **UPDATE** and then **OK**.
 - k) In the **Select Node** dialog box, click **OK**.
 - 1) In the Create Node Profile dialog box, click OK.
 - m) Check the **BGP**, **OSPF**, or **EIGRP** check boxes if desired, and click **NEXT**. Click **OK** to complete the Layer 3 configuration.

To confirm L3 configuration, in the Navigation pane, expand Networking > VRFs.

Deploying EPGs

Statically Deploying an EPG on a Specific Port

This topic provides a typical example of how to statically deploy an EPG on a specific port when using Cisco APIC.

Deploying an EPG on a Specific Node or Port Using the GUI

Before you begin

The tenant where you deploy the EPG is already created.

You can create an EPG on a specific node or a specific port on a node.

Procedure

- **Step 1** Log in to the Cisco APIC.
- Step 2 Choose Tenants > tenant.
- **Step 3** In the left navigation pane, expand *tenant*, **Application Profiles**, and the *application profile*.
- Step 4 Right-click Application EPGs and choose Create Application EPG.
- **Step 5** In the Create Application EPG STEP 1 > Identity dialog box, complete the following steps:
 - a) In the Name field, enter a name for the EPG.
 - b) From the **Bridge Domain** drop-down list, choose a bridge domain.
 - c) Check the Statically Link with Leaves/Paths check box.
 This check box allows you to specify on which port you want to deploy the EPG.
 - d) Click Next.
 - e)
 - f) From the **Path** drop-down list, choose the static path to the destination EPG.
- Step 6 In the Create Application EPG STEP 2 > Leaves/Paths dialog box, from the Physical Domain drop-down list, choose a physical domain.
- **Step 7** Complete one of the following sets of steps:

Option	Description
If you want to deploy the EPG on	Then
A node	1. Expand the Leaves area.
	2. From the Node drop-down list, choose a node.
	3. In the Encap field, enter the appropriate VLAN.
	4. (Optional) From the Deployment Immediacy drop-down list, accept the default On Demand or choose Immediate .
	5. (Optional) From the Mode drop-down list, accept the default Trunk or choose another mode.
A port on the node	1. Expand the Paths area.
	2. From the Path drop-down list, choose the appropriate node and port.
	3. (Optional) In the Deployment Immediacy field drop-down list, accept the default On Demand or choose Immediate .
	4. (Optional) From the Mode drop-down list, accept the default Trunk or choose another mode.
	5. In the Port Encap field, enter the secondary VLAN to be deployed.
	6. (Optional) In the Primary Encap field, enter the primary VLAN to be deployed.

Step 8 Click Update and click Finish.

- **Step 9** In the left navigation pane, expand the EPG that you created.
- **Step 10** Complete one of the following actions:
 - If you created the EPG on a node, click **Static Leafs**, and in the work pane view details of the static binding paths.
 - If you created the EPG on a port of the node, click **Static Ports**, and in the work pane view details of the static binding paths.

Deploying an EPG on a Specific Port with APIC Using the NX-OS Style CLI

Procedure

Step 1 Configure a VLAN domain:

Example:

```
apic1(config) # vlan-domain dom1
apic1(config-vlan) # vlan 10-100
```

Step 2 Create a tenant:

Example:

```
apic1# configure
apic1(config)# tenant t1
```

Step 3 Create a private network/VRF:

Example:

```
apic1(config-tenant)# vrf context ctx1
apic1(config-tenant-vrf)# exit
```

Step 4 Create a bridge domain:

Example:

```
apicl(config-tenant) # bridge-domain bd1
apicl(config-tenant-bd) # vrf member ctx1
apicl(config-tenant-bd) # exit
```

Step 5 Create an application profile and an application EPG:

Example:

```
apicl(config-tenant)# application AP1
apicl(config-tenant-app)# epg EPG1
apicl(config-tenant-app-epg)# bridge-domain member bd1
apicl(config-tenant-app-epg)# exit
apicl(config-tenant-app)# exit
apicl(config-tenant)# exit
```

Step 6 Associate the EPG with a specific port:

Example:

```
apicl(config) # leaf 1017
apicl(config-leaf) # interface ethernet 1/13
apicl(config-leaf-if) # vlan-domain member dom1
apicl(config-leaf-if) # switchport trunk allowed vlan 20 tenant t1 application AP1 epg EPG1
```

Note

The vlan-domain and vlan-domain member commands mentioned in the above example are a pre-requisite for deploying an EPG on a port.

Deploying an EPG on a Specific Port with APIC Using the REST API

Before you begin

The tenant where you deploy the EPG is created.

Procedure

Deploy an EPG on a specific port.

Example:

Creating Domains, Attach Entity Profiles, and VLANs to Deploy an EPG on a Specific Port

This topic provides a typical example of how to create physical domains, Attach Entity Profiles (AEP), and VLANs that are mandatory to deploy an EPG on a specific port.

Note

All endpoint groups (EPGs) require a domain. Interface policy groups must also be associated with Attach Entity Profile (AEP), and the AEP must be associated with a domain, if the AEP and EPG have to be in same domain. Based on the association of EPGs to domains and of interface policy groups to domains, the ports and VLANs that the EPG uses are validated. The following domain types associate with EPGs:

- Application EPGs
- Layer 3 external outside network instance EPGs
- Layer 2 external outside network instance EPGs
- Management EPGs for out-of-band and in-band access

The APIC checks if an EPG is associated with one or more of these types of domains. If the EPG is not associated, the system accepts the configuration but raises a fault. The deployed configuration may not function properly if the domain association is not valid. For example, if the VLAN encapsulation is not valid for use with the EPG, the deployed configuration may not function properly.

Creating Domains, and VLANS to Deploy an EPG on a Specific Port Using the GUI

Before you begin

- The tenant where you deploy the EPG is already created.
- An EPG is statically deployed on a specific port.

Procedure

- **Step 1** On the menu bar, click **Fabric** > **External Access Policies**.
- Step 2 In the Navigation pane, click Quick Start.
- Step 3 In the Work pane, click Configure an Interface, PC, and VPC.
- Step 4 In the Configure an Interface, PC, and VPC dialog box, click the + icon to select switches and perform the following actions:
 - a) From the **Switches** drop-down list, check the check box for the desired switch.
 - b) In the **Switch Profile Name** field, a switch name is automatically populated.

Note Optionally, you can enter a modified name.

- c) Click the + icon to configure the switch interfaces.
- d) In the **Interface Type** field, click the **Individual** radio button.
- e) In the **Interfaces** field, enter the range of desired interfaces.
- f) In the Interface Selector Name field, an interface name is automatically populated.

Note Optionally, you can enter a modified name.

- g) In the **Interface Policy Group** field, choose the **Create One** radio button.
- h) From the **Link Level Policy** drop-down list, choose the appropriate link level policy.

Note Create additional policies as desired, otherwise the default policy settings are available.

- i) From the **Attached Device Type** field, choose the appropriate device type.
- i) In the **Domain** field, click the **Create One** radio button.
- k) In the **Domain Name** field, enter a domain name.
- 1) In the VLAN field, click the Create One radio button.
- m) In the VLAN Range field, enter the desired VLAN range. Click Save, and click Save again.
- n) Click Submit.

Step 5 On the menu bar, click **Tenants**. In the **Navigation** pane, expand the appropriate **Tenant_name** > **Application Profiles** > **Application EPGs** > **EPG name** and perform the following actions:

- a) Right-click Domains (VMs and Bare-Metals), and click Add Physical Domain Association.
- b) In the **Add Physical Domain Association** dialog box, from the **Physical Domain Profile** drop-down list, choose the appropriate domain.
- c) Click Submit.

The AEP is associated with a specific port on a node and with a domain. The physical domain is associated with the VLAN pool and the Tenant is associated with this physical domain.

The switch profile and the interface profile are created. The policy group is created in the port block under the interface profile. The AEP is automatically created, and it is associated with the port block and with the domain. The domain is associated with the VLAN pool and the Tenant is associated with the domain.

Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using the NX-OS Style CLI

Before you begin

- The tenant where you deploy the EPG is already created.
- An EPG is statically deployed on a specific port.

Procedure

Step 1 Create a VLAN domain and assign VLAN ranges:

Example:

```
apic1(config) # vlan-domain domP
apic1(config-vlan) # vlan 10
apic1(config-vlan) # vlan 25
apic1(config-vlan) # vlan 50-60
apic1(config-vlan) # exit
```

Step 2 Create an interface policy group and assign a VLAN domain to the policy group:

```
apic1(config)# template policy-group PortGroup
apic1(config-pol-grp-if)# vlan-domain member domP
```

Step 3 Create a leaf interface profile, assign an interface policy group to the profile, and assign the interface IDs on which the profile will be applied:

Example:

```
apic1(config) # leaf-interface-profile InterfaceProfile1
apic1(config-leaf-if-profile) # leaf-interface-group range
apic1(config-leaf-if-group) # policy-group PortGroup
apic1(config-leaf-if-group) # interface ethernet 1/11-13
apic1(config-leaf-if-profile) # exit
```

Step 4 Create a leaf profile, assign the leaf interface profile to the leaf profile, and assign the leaf IDs on which the profile will be applied:

Example:

```
apicl(config) # leaf-profile SwitchProfile-1019
apicl(config-leaf-profile) # leaf-interface-profile InterfaceProfile1
apicl(config-leaf-profile) # leaf-group range
apicl(config-leaf-group) # leaf 1019
apicl(config-leaf-group) #
```

Creating AEP, Domains, and VLANs to Deploy an EPG on a Specific Port Using the REST API

Before you begin

- The tenant where you deploy the EPG is already created.
- An EPG is statically deployed on a specific port.

Procedure

Step 1 Create the interface profile, switch profile and the Attach Entity Profile (AEP).

```
<infraInfra>
      <infraNodeP name="<switch profile name>" dn="uni/infra/nprof-<switch profile name>"
           <infraLeafS name="SwitchSeletor" descr="" type="range">
                <infraNodeBlk name="nodeBlk1" descr="" to ="1019" from ="1019"/>
           </infraleafS>
          <infraRsAccPortP tDn="uni/infra/accportprof-<interface profile name>"/>
      </infraNodeP>
      <infraAccPortP name="<interface profile name>"
dn="uni/infra/accportprof-<interface profile name>" >
           <infraHPortS name="portSelector" type="range">
                <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-<port group name>"
fexId="101"/>
               <infraPortBlk name="block2" toPort="13" toCard="1" fromPort="11"</pre>
fromCard="1"/>
        </infraHPortS>
     </infraAccPortP>
```

Step 2 Create a domain.

Example:

Step 3 Create a VLAN range.

Example:

Step 4 Associate the EPG with the domain.

Example:

Deploying an Application EPG through an AEP or Interface Policy Group to Multiple Ports

Through the APIC Advanced GUI and REST API, you can associate attached entity profiles directly with application EPGs. By doing so, you deploy the associated application EPGs to all those ports associated with the attached entity profile in a single configuration.

Through the APIC REST API or the NX-OS style CLI, you can deploy an application EPG to multiple ports through an Interface Policy Group.

Deploying an EPG through an AEP to Multiple Interfaces Using the APIC GUI

You can quickly associate an application with an attached entity profile to quickly deploy that EPG over all the ports associated with that attached entity profile.

Before you begin

- The target application EPG is created.
- The VLAN pools has been created containing the range of VLANs you wish to use for EPG Deployment on the AEP.
- The physical domain has been created and linked to the VLAN Pool and AEP.
- The target attached entity profile is created and is associated with the ports on which you want to deploy the application EPG.

Procedure

- **Step 1** Navigate to the target attached entity profile.
 - a) Open the page for the attached entity profile to use. In the GUI, click Fabric > External Access Policies > Policies > Global > Attachable Access Entity Profiles.
 - b) Click the target attached entity profile to open its Attachable Access Entity Profile window.
- Step 2 Click the Show Usage button to view the leaf switches and interfaces associated with this attached entity profile.

the application EPGs associated with this attached entity profile are deployed to all the ports on all the switches associated with this attached entity profile.

Use the **Application EPGs** table to associate the target application EPG with this attached entity profile. Click + to add an application EPG entry. Each entry contains the following fields:

Field	Action
Application EPGs	Use the drop down to choose the associated Tenant, Application Profile, and target application EPG.
Encap	Enter the name of the VLAN over which the target application EPG will communicate.
Primary Encap	If the application EPG requires a primary VLAN, enter the name of the primary VLAN.
Mode	Use the drop down to specify the mode in which data is transmitted:
	• Trunk Choose if traffic from the host is tagged with a VLAN ID.
	• Access Choose if traffic from the host is tagged with an 802.1p tag.
	• Access Untagged Choose if the traffic from the host is untagged.

Step 4 Click Submit.

the application EPGs associated with this attached entity profile are deployed to all the ports on all the switches associated with this attached entity profile.

Deploying an EPG through an Interface Policy Group to Multiple Interfaces Using the NX-OS Style CLI

In the NX-OS CLI, an attached entity profile is not explicitly defined to associate with an EPG for rapid deployment; instead the interface policy group is defined, assigned a domain, applied to all the ports associated with a VLAN and configured to include the application EPG to be deployed over that VLAN.

Before you begin

- The target application EPG is created.
- The VLAN pools has been created containing the range of VLANs you wish to use for EPG Deployment on the AEP.
- The physical domain has been created and linked to the VLAN Pool and AEP.
- The target attached entity profile is created and is associated with the ports on which you want to deploy the application EPG.

Procedure

Step 1 Associate the target EPG with the interface policy group.

The sample command sequence specifies an interface policy group **pg3** associated with VLAN domain, **domain1**, and with VLAN **1261**. The application EPG, **epg47** is deployed to all interfaces associated with this policy group.

Example:

Step 2 Check the target ports to ensure deployment of the policies of the interface policy group associated with application EPG.

The output of the sample **show** command sequence indicates that policy group **pg3** is deployed on Ethernet port 1/20 on leaf switch 1017.

```
apic1# show run leaf 1017 int eth 1/20
# Command: show running-config leaf 1017 int eth 1/20
# Time: Mon Jun 27 22:12:10 2016
leaf 1017
   interface ethernet 1/20
     policy-group pg3
     exit
   exit
ifav28-ifc1#
```

Deploying an EPG through an AEP to Multiple Interfaces Using the REST API

The interface selectors in the AEP enable you to configure multiple paths for an AEPg. The following can be selected:

- 1. A node or a group of nodes
- 2. An interface or a group of interfaces

The interfaces consume an interface policy group (and so an infra:AttEntityP).

3. The infra:AttEntityP is associated to the AEPg, thus specifying the VLANs to use.

An infra: AttEntityP can be associated with multiple AEPgs with different VLANs.

When you associate the infra: AttEntityP with the AEPg, as in 3, this deploys the AEPg on the nodes selected in 1, on the interfaces in 2, with the VLAN provided by 3.

In this example, the AEPg uni/tn-Coke/ap-AP/epg-EPG1 is deployed on interfaces 1/10, 1/11, and 1/12 of nodes 101 and 102, with vlan-102.

Before you begin

- Create the target application EPG (AEPg).
- Create the VLAN pool containing the range of VLANs you wish to use for EPG deployment with the Attached Entity Profile (AEP).
- Create the physical domain and link it to the VLAN pool and AEP.

Procedure

To deploy an AEPg on selected nodes and interfaces, send a post with XML such as the following:

```
<infraInfra dn="uni/infra">
   <infraNodeP name="NodeProfile">
       <infraLeafS name="NodeSelector" type="range">
          <infraNodeBlk name="NodeBlok" from ="101" to ="102"/>
          <infraRsAccPortP tDn="uni/infra/accportprof-InterfaceProfile"/>
        </infraLeafS>
   </<infraNodeP>
   <infraAccPortP name="InterfaceProfile">
      <infraHPortS name="InterfaceSelector" type="range">
          <infraPortBlk name=" InterfaceBlock" fromCard="1" toCard="1" fromPort="10"</pre>
toPort="12"/>
          <infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-PortGrp" />
      </infraHPortS>
   </infraAccPortP>
   <infraFuncP>
      <infraAccPortGrp name="PortGrp">
           <infraRsAttEntP tDn="uni/infra/attentp-AttEntityProfile"/>
       </infraAccPortGrp>
   </infraFuncP>
   <infraAttEntityP name="AttEntityProfile" >
```

Microsegmented EPGs

Using Microsegmentation with Network-based Attributes on Bare Metal

You can use Cisco APIC to configure Microsegmentation with Cisco ACI to create a new, attribute-based EPG using a network-based attribute, a MAC address or one or more IP addresses. You can configure Microsegmentation with Cisco ACI using network-based attributes to isolate VMs or physical endpoints within a single base EPG or VMs or physical endpoints in different EPGs.

Using an IP-based Attribute

You can use an IP-based filter to isolate a single IP address, a subnet, or multiple of noncontiguous IP addresses in a single microsegment. You might want to isolate physical endpoints based on IP addresses as a quick and simply way to create a security zone, similar to using a firewall.

Using a MAC-based Attribute

You can use a MAC-based filter to isolate a single MAC address or multiple MAC addresses. You might want to do this if you have a server sending bad traffic int he network. By creating a microsegment with a MAC-based filter, you can isolate the server.

Configuring Network-based Microsegmented EPGs in a Bare-Metal environment Using the GUI

You can use Cisco APIC to configure microsegmentation to put physical endpoint devices that belong to different base EPGs or the same EPG into a new attribute-based EPG.

Procedure

- **Step 1** Log into the Cisco APIC.
- **Step 2** Choose **TENANTS** and then choose the tenant within which you want to create a microsegment.
- Step 3 In the tenant navigation pane, expand the tenant folder, the **Application Profiles** folder, the **profile** folder, and the **Application EPGs** folder.
- **Step 4** Take one of the following actions:
 - If you want to put physical endpoint devices from the same base EPG into a new, attribute-based EPG, click the base EPG containing the physical endpoint devices.
 - If you want to put physical endpoint devices from different base EPGs into a new, attribute-based EPG, click one of the base EPG containing the physical endpoint devices.

The properties for the base EPG appear in the work pane.

Step 5 In the work pane, click the **OPERATIONAL** tab at the top right of the screen.

- Step 6 Below the **OPERATIONAL** tab, ensure that the **Client End-Points** tab is active. The work pane displays all the physical endpoints that belong to the base EPG.
- **Step 7** Note the IP address or MAC address for the endpoint device or endpoint devices that you want to put into a new microsegment.
- **Step 8** If you want to put endpoint devices from different base EPGs into a new attribute-based EPG, repeat Step 4 through Step 7 for each of the base EPGs.
- Step 9 In the tenant navigation pane, right-click the uSeg EPGs folder, and then choose Create uSeg EPG.
- **Step 10** Complete the following series of steps to begin creation of an attribute-based EPG for one of the groups of endpoint devices:
 - a) In the Create uSeg EPG dialog box, in the Name field, enter a name.
 We recommend that you choose a name that indicates that the new attribute-based EPG is a microsegment.
 - b) In the intra-EPG isolation field, select enforced or unenforced.
 If you select enforced, ACI prevents all communication between the endpoint devices within this uSeg EPG.
 - c) In the **Bridge Domain** area, choose a bridge domain from the drop-down list.
 - d) In the **uSeg Attributes** area, choose **IP Address Filter** or **MAC Address Filter** from the + drop-down list on the right side of the dialog box.

Step 11 Complete one of the following series of steps to configure the filter.

If you want to use	Then	
An IP-based attribute	1. In the Create IP Attribute dialog box, in the Name field, enter a name.	
	We recommend that you choose a name that reflects the filter's function.	
	2. In the IP Address field, enter an IP address or a subnet with the appropriate subnet mask.	
	3. Click OK.	
	4. (Optional) Create a second IP Address filter by repeating Step 10 c through Step 11 c.	
	You might want to do this to include discontinuous IP addresses in the microsegment.	
	5. In the Create uSeg EPG dialog box, click SUBMIT.	
A MAC-based attribute	1. In the Create MAC Attribute dialog box, in the Name field, enter a name.	
	We recommend that you choose a name that reflects the filter's function.	
	2. In the MAC Address field, enter a MAC address.	
	3. Click OK.	
	4. In the Create uSeg EPG dialog box, click SUBMIT.	

- **Step 12** Complete the following steps to associate the uSeg EPG with a physical domain.
 - a) In the navigation pane, ensure that the uSeg EPG folder is open and then open the container for the microsegment that you just created.
 - b) Click the folder **Domains (VMs and Bare-Metals)**.

- c) On the right side of the work pane, click **ACTIONS** and then choose **Add Physical Domain Association** from the drop-down list.
- d) In the **Add Physical Domain Association** dialog box, choose a profile from the **Physical Domain Profile** drop-down list.
- e) In the **Deploy Immediacy** area, accept the default **On Demand**.
- f) In the Resolution Immediacy area, accept the default On Demand.
- g) Click SUBMIT.
- **Step 13** Associate the uSeg EPG with the appropriate leaf switch.
 - a) In the navigation pane, ensure the uSeg EPG folder is open then click Static Leafs.
 - b) In the Static Leafs window, click Actions > Statically Link with Node
 - c) In the Statically Link With Node dialog, select the leaf node and mode.
 - d) Click Submit.
- **Step 14** Repeat Step 9 through Step 13 for any other network attribute-based EPGs that you want to create.

What to do next

Verify that the attribute-based EPG was created correctly.

If you configured an IP-based or MAC-based attribute, make sure that traffic is running on the end pont devices that you put into the new microsegments.

Configuring a Network-Based Microsegmented EPG in a Bare-Metal Environment Using the NX-OS Style CLI

This section describes how to configure microsegmentation with Cisco ACI using network-based attributes (IP address or MAC address) within a base EPG in a bare-metal environment.

Procedure

	Command or Action	Purpose
Step 1	In the CLI, enter configuration mode:	
	Example:	
	<pre>apic1# configure apic1(config)#</pre>	
Step 2	Create the microsegment:	
	Example:	
	This example uses a filter based on an IP address.	
	<pre>apicl(config)# tenant cli-ten1 apicl(config-tenant)# application cli-al apicl(config-tenant-app)# epg cli-uepg1 type micro-segmented apicl(config-tenant-app-uepg)# bridge-domain member cli-bd1 apicl(config-tenant-app-uepg)# attribute cli-upg-att match ip <x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.< td=""><td></td></x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.<></pre>	

	Command or Action	Purpose
	A.B.C.D IP Address A.B.C.D/LEN IP Address and mask	
	Example:	
	This example uses a filter based on a MAC address.	
	<pre>apic1(config)# tenant cli-ten1 apic1(config-tenant)# application cli-a1 apic1(config-tenant-app)# epg cli-uepg1 type micro-segmented apic1(config-tenant-app-uepg)# bridge-domain member cli-bd1 apic1(config-tenant-app-uepg)# attribute cli-upg-att match mac <ff-ff-ff-ff-ff-ff> #Schemes to express the mac E.E.E MAC address (Option 1) EE-EE-EE-EE-EE-EE MAC address (Option 2) EE:EE:EE:EE:EE:EE MAC address (Option 3) EEEEE.EEEEE.EEEE MAC address (Option 4)</ff-ff-ff-ff-ff-ff></pre>	
	Example:	
	This example uses a filter based on a MAC address and enforces intra-EPG isolation between all members of this uSeg EPG:	
	<pre>apicl(config) # tenant cli-ten1 apicl(config-tenant) # application cli-a1 apicl(config-tenant-app) # epg cli-uepg1 type micro-segmented apicl(config-tenant-app-uepg) # isolation enforced apicl(config-tenant-app-uepg) # bridge-domain member cli-bd1 apicl(config-tenant-app-uepg) # attribute cli-upg-att match mac <ff-ff-ff-ff-ff-ff> #Schemes to express the mac E.E.E MAC address (Option 1) EE-EE-EE-EE-EE-EE MAC address (Option 2) EE:EE:EE:EE:EE:EE MAC address (Option 3) EEEE.EEEE.EEEE MAC address (Option 4)</ff-ff-ff-ff-ff-ff></pre>	
Step 3	Deploy the EPG.	
	Example:	
	This example deploys the EPG and bids to the leaf.	
	<pre>apic1(config) # leaf 101 apic1(config-leaf) # deploy-epg tenant cli-ten1 application cli-a1 epg cli-uepg1 type micro-segmented</pre>	
Step 4	Verify the microsegment creation:	
	Example:	

Command or Action	Purpose
apic1(config-tenant-app-uepg)# show	
running-config	
# Command: show running-config tenant	
cli-ten1 application cli-appl epg	
cli-uepg1 type micro-segmented	
# Time: Thu Oct 8 11:54:32 2015	
tenant cli-ten1	
application cli-app1	
epg cli-esx1bu type micro-segmented	
bridge-domain cli-bd1	
attribute cli-uepg-att match mac	
00:11:22:33:44:55	
exit	
exit	
exit	

Configuring a Network-Based Microsegmented EPG in a Bare-Metal Environment Using the REST API

This section describes how to configure network attribute microsegmentation with Cisco ACI in a bare-metal environment using the REST API.

Procedure

- **Step 1** Log in to the Cisco APIC.
- **Step 2** Post the policy to https://apic-ip-address/api/node/mo/.xml.

Example:

A: The following example configures a microsegment named 41-subnet using an IP-based attribute.

Example:

This example is for base EPG for Example A: .

```
</fvTenant> </polUni>
```

Example:

B: The following example configures a microsegment named useg-epg using a MAC-based attribute.

IP Address-Based Microsegmented EPG as a Shared Resource

You can configure an IP address-based microsegemented EPG as a resource that can be accessed from both within and without the VRF on which it is located. The method of doing so is to configure an existing IP address-based microsegmented EPG with a subnet (assigned a unicast IP address) and enable that subnet for being advertised and shared by devices located on VRFs other than the one on which this EPG is native. Then you define an IP attribute with an option enabled that associates the EPG with the IP address of the shared subnet.

Configuring an IP-based Microsegmented EPG as a Shared Resource Using the GUI

You can configure a microsegmented EPG with an IP-Address with 32 bit mask as a shared service, accessible by clients outside of the VRF and the current fabric.

Before you begin

The following GUI description of configuring assumes the preconfiguration of an IP address-based microsegmented EPG configured whose subnet mask is /32.

Note

- For directions on configuring an IP address based EPG in a physical environment, see Using Microsegmentation with Network-based Attributes on Bare Metal, on page 25
- For directions on configuring an IP address based EPG in a virtual environment, see *Configuring Microsegmentation with Cisco ACI* in the *Cisco ACI Virtualization Guide*.

Procedure

- **Step 1** Navigate to the target IP-address-based EPG.
 - a) In the APIC GUI, click **Tenant > tenant_name > uSeg EPGs > uSeg_epg_name** to display the EPG's **Properties** dialog.
- **Step 2** For the target EPG, configure an IP attribute to match the EPG subnet address.
 - a) In the Properties dialog, locate the uSeg Attributes table, and click +. When prompted, choose IP Address Filter to display the Create IP Attribute dialog.
 - b) Enter a name in the Name field
 - c) Check the box for Use FV Subnet.Enabling this option, indicates that the IP attribute value matches the IP address of a shared subnet.
 - d) Click Submit.
- **Step 3** Create a shared subnet for the target EPG.
 - a) With the folder for the target IP address-based uSeg EPG still open in the APIC navigation pane, right-click the **Subnets** folder and select **Create EPG Subnets**.
 - b) In the **Default Gateway** field, enter the IP address/mask of the IP address-based microsegmented EPG.
 - Note
- In all cases the subnet mask must be /32.
- In the context of an IP address-based EPG, you are not actually entering the default address for a gateway, rather you are entering the IP address for the shared EPG subnet.
- c) Select Treat as a virtual IP address.
- d) Under Scope select Advertised Externally and Shared between VRFs.
- e) Click Submit.

Configuring an IP-based Microsegmented EPG as a Shared Resource Using the NX-OS CLI

Before you begin

The following GUI description of configuring assumes the preconfiguration of an IP address-based microsegmented EPG configured whose subnet mask is /32.

Procedure

	Command or Action	Purpose
Step 1	Enable the IP address microsegmented EPG for shared service by associating the EPG with the IP address of its subnet. Example: apic-1(config) # tenant t0 apic-1(config-tenant-app) # epg cli-epg type micro-segmented apic-1(config-tenant-app-uepg) # bridge-domain member b0	In this example, microsegmented EPG, cli-epg, is configured with the <code>ip-use-epg-subnet</code> option (useFvSubnet), thus associating the EPG with the IP address of its subnet. APIC then advertises that subnet address, thus making the EPG accessible as a service to devices on VRFs other than the one on which the EPG is native.

	Command or Action	Purpose
	<pre>apic-1(config-tenant-app-uepg) # attribute ip match ip-use-epg-subnet</pre>	
	<pre>apic-1(config-tenant-app-uepg) # show run # Command: show running-config tenant t0 application a0 epg cli-epg type micro-segmented # Time: Thu Sep 22 00:17:07 2016 tenant t0 application a0 epg cli-epg type micro-segmented bridge-domain member b0 attribute ip match ip-use-epg-subnet exit exit Exit</pre>	
Step 2	Deploy the EPG to a leaf.	In this example, microsegmented EPG, cli-epg, is deployed to leaf 102.
		<pre>apic-1(config)# leaf 102 apic-1(config-leaf)# deploy-epg tenant t0 application a0 epg cli-epg type micro-segmented</pre>
		<pre>apic-1(config-leaf)# show run # Command: show running-config leaf 102 # Time: Thu Sep 22 00:18:46 2016 leaf 102 deploy-epg tenant t0 application a0 epg cli-epg type micro-segmented</pre>

Configuring an IP-based Microsegmented EPG as a Shared Resource Using the REST API

You can configure a microsegmented EPG with an IP-Address with 32 bit mask as a shared service, accessible by clients outside of the VRF and the current fabric.

Procedure

To configure an IP address-attribute microsegmented EPG $_{ text{epg3}}$ with a shared subnet, with an IP address and 32-bit mask, send a post with XML such as the following example. In the IP attributes, the attribute usefvSubnet is set to "yes."

Unconfiguring an IP-based Microsegmented EPG as a Shared Resource Using the GUI

When you unconfigure an IP address-Based microsegmented EPG as a shared service, you must remove the shared subnet and also disable the option to use that subnet as a shared resource.

Before you begin

Before you unconfigure an IP address-based microsegmented EPG as a shared service, you should know the following:

- Know which subnet is configured as a shared service address for the IP address-based microsegmented EPG
- Know which IP attribute is configured with the Use FV Subnet option enabled.

Procedure

Step 1 Remove subnet from the IP addressed-based microsegmented EPG.

- a) In the APIC GUI, click Tenant > tenant_name > Application Profiles > epg_name > uSeg EPGs > uSeg EPGs > uSeg epg_name.
- b) With the folder for the target IP address-based uSeg EPG still open in the APIC navigation pane, click the **Subnets** folder.
- c) In the **Subnets** window, select the subnet that is advertised and shared with other VRFs and click **Actions** > **Delete**, then
- d) Click **Yes** to confirm the deletion.

Step 2 Disable the Use FV Subnet option.

- a) With the folder for the target IP address-based uSeg EPG still open in the APIC navigation pane, click the name of the micro-segmented EPG to display the to display the EPG's **Properties** dialog.
- b) In the **Properties** dialog, locate the **uSeg Attributes** table, and locate the IP attribute item with the **Use FV Subnet** option enabled.
- c) Double-click that item to display the **Edit IP Attribute** dialog.
- d) In the Edit IP Attribute dialog, deselect the Use FV Subnet option.
- e) Assign another IP address attribute in the IP Address field.

Note This address must be a unicast address with a 32 bit mask (for example: 124.124.124.124.123/32).

f) Click Submit.

Unconfiguring an IP-based Microsegmented EPG as a Shared Resource Using the NX-OS Style CLI

To unconfigure an IP address-based microsegmented EPG as a shared service, disable the ip-use-epg-subnet option for that EPG.

Before you begin

Procedure

	Command or Action	Purpose
Step 1	Disable the ip-use-epg-subnet option.	The example code disables the
	Example:	ip-use-epg-subnet option for the microsegmented EPG cli-epg.
	<pre>apic-1(config) # tenant t0 apic-1(config-tenant-app) # epg cli-epg type micro-segmented apic-1(config-tenant-app-uepg) # no</pre>	microsegmented Li G en-epg.
	<pre>attribute ip match ip-use-epg-subnet apic-1(config-tenant-app-uepg)# exit apic-1(config-tenant-app)# exit</pre>	

Unconfiguring an IP-based Microsegmented EPG as a Shared Resource Using the REST API

You can disable an IP address-based microsegmented EPG by setting the **usefvSubnet** property to "no."

Procedure

In the API structure for the microsegmented EPG currently configured as a shared service, change the value of the usefvSubnet property from "yes" to "no."

In the example, the IP address-based microsegmented EPG, epg3, is disabled as a shared service.

```
<fvAEPg descr="" dn="uni/tn-t0/ap-a0/epg-epg3" fwdCtrl="" isAttrBasedEPg="yes"
matchT="AtleastOne" name="epg3" pcEnfPref="unenforced" prefGrMemb="exclude"prio="unspecified">
  <fvRsCons prio="unspecified" tnVzBrCPName="ip-epg"/>
  <frvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular"
tDn="topology/pod-2/node-106"/>
  <frvSubnet ctrl="" descr="" ip="56.4.0.2/32" name="" preferred="no" scope="public, shared"
 virtual="no"/>
  instrImedcy="immediate" primaryEncap="unknown" resImedcy="immediate" tDn="uni/phys-vpc"/>
  <fre><fvRsCustQosPol tnQosCustomPolName=""/>
  <fvRsBd tnFvBDName="b2"/>
   <fvCrtrn descr="" match="any" name="default" ownerKey="" ownerTag="" prec="0">
     <fvIpAttr descr="" ip="1.1.1.3" name="ipv4" ownerKey="" ownerTag="" usefvSubnet="no"/>
  </fvCrtrn>
  <frvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="ip-epg"/>
  <frvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="shared-svc"/>
```

</fvAEPg>

Deploying Application Profiles and Contracts

Security Policy Enforcement

As traffic enters the leaf switch from the front panel interfaces, the packets are marked with the EPG of the source EPG. The leaf switch then performs a forwarding lookup on the packet destination IP address within the tenant space. A hit can result in any of the following scenarios:

- 1. A unicast (/32) hit provides the EPG of the destination endpoint and either the local interface or the remote leaf switch VTEP IP address where the destination endpoint is present.
- 2. A unicast hit of a subnet prefix (not /32) provides the EPG of the destination subnet prefix and either the local interface or the remote leaf switch VTEP IP address where the destination subnet prefix is present.
- **3.** A multicast hit provides the local interfaces of local receivers and the outer destination IP address to use in the VXLAN encapsulation across the fabric and the EPG of the multicast group.

Note

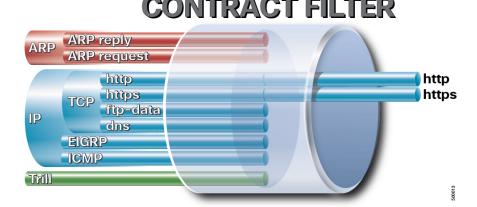
Multicast and external router subnets always result in a hit on the ingress leaf switch. Security policy enforcement occurs as soon as the destination EPG is known by the ingress leaf switch.

A miss result in the forwarding table causes the packet to be sent to the forwarding proxy in the spine switch. The forwarding proxy then performs a forwarding table lookup. If it is a miss, the packet is dropped. If it is a hit, the packet is sent to the egress leaf switch that contains the destination endpoint. Because the egress leaf switch knows the EPG of the destination, it performs the security policy enforcement. The egress leaf switch must also know the EPG of the packet source. The fabric header enables this process because it carries the EPG from the ingress leaf switch to the egress leaf switch. The spine switch preserves the original EPG in the packet when it performs the forwarding proxy function.

On the egress leaf switch, the source IP address, source VTEP, and source EPG information are stored in the local forwarding table through learning. Because most flows are bidirectional, a return packet populates the forwarding table on both sides of the flow, which enables the traffic to be ingress filtered in both directions.

Contracts Contain Security Policy Specifications

In the ACI security model, contracts contain the policies that govern the communication between EPGs. The contract specifies what can be communicated and the EPGs specify the source and destination of the communications. Contracts link EPGs, as shown below.


Endpoints in EPG 1 can communicate with endpoints in EPG 2 and vice versa if the contract allows it. This policy construct is very flexible. There can be many contracts between EPG 1 and EPG 2, there can be more than two EPGs that use a contract, and contracts can be reused across multiple sets of EPGs, and more.

There is also directionality in the relationship between EPGs and contracts. EPGs can either provide or consume a contract. An EPG that provides a contract is typically a set of endpoints that provide a service to a set of client devices. The protocols used by that service are defined in the contract. An EPG that consumes a contract is typically a set of endpoints that are clients of that service. When the client endpoint (consumer) tries to connect to a server endpoint (provider), the contract checks to see if that connection is allowed. Unless otherwise specified, that contract would not allow a server to initiate a connection to a client. However, another contract between the EPGs could easily allow a connection in that direction.

This providing/consuming relationship is typically shown graphically with arrows between the EPGs and the contract. Note the direction of the arrows shown below.

The contract is constructed in a hierarchical manner. It consists of one or more subjects, each subject contains one or more filters, and each filter can define one or more protocols.

Figure 6: Contract Filters

The following figure shows how contracts govern EPG communications.

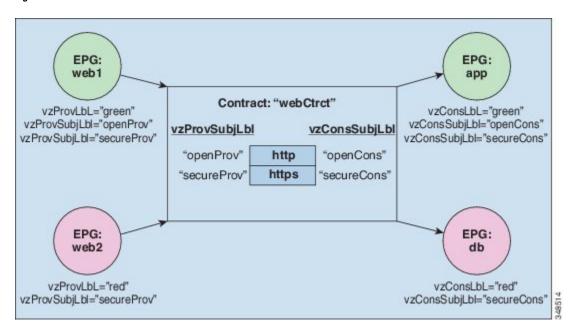


Figure 7: Contracts Determine EPG to EPG Communications

For example, you may define a filter called HTTP that specifies TCP port 80 and port 8080 and another filter called HTTPS that specifies TCP port 443. You might then create a contract called webCtrct that has two sets of subjects. openProv and openCons are the subjects that contain the HTTP filter. secureProv and secureCons are the subjects that contain the HTTPS filter. This webCtrct contract can be used to allow both secure and non-secure web traffic between EPGs that provide the web service and EPGs that contain endpoints that want to consume that service.

These same constructs also apply for policies that govern virtual machine hypervisors. When an EPG is placed in a virtual machine manager (VMM) domain, the APIC downloads all of the policies that are associated with the EPG to the leaf switches with interfaces connecting to the VMM domain. For a full explanation of VMM domains, see the *Virtual Machine Manager Domains* chapter of *Application Centric Infrastructure Fundamentals*. When this policy is created, the APIC pushes it (pre-populates it) to a VMM domain that specifies which switches allow connectivity for the endpoints in the EPGs. The VMM domain defines the set of switches and ports that allow endpoints in an EPG to connect to. When an endpoint comes on-line, it is associated with the appropriate EPGs. When it sends a packet, the source EPG and destination EPG are derived from the packet and the policy defined by the corresponding contract is checked to see if the packet is allowed. If yes, the packet is forwarded. If no, the packet is dropped.

Contracts consist of 1 or more subjects. Each subject contains 1 or more filters. Each filter contains 1 or more entries. Each entry is equivalent to a line in an Access Control List (ACL) that is applied on the Leaf switch to which the endpoint within the endpoint group is attached.

In detail, contracts are comprised of the following items:

- Name—All contracts that are consumed by a tenant must have different names (including contracts created under the common tenant or the tenant itself).
- Subjects—A group of filters for a specific application or service.
- Filters—Used to classify traffic based upon layer 2 to layer 4 attributes (such as Ethernet type, protocol type, TCP flags and ports).
- Actions—Action to be taken on the filtered traffic. The following actions are supported:

- Permit the traffic (regular contracts, only)
- Mark the traffic (DSCP/CoS) (regular contracts, only)
- Redirect the traffic (regular contracts, only, through a service graph)
- Copy the traffic (regular contracts, only, through a service graph or SPAN)
- Block the traffic (taboo contracts)

With Cisco APIC Release 3.2(x) and switches with names that end in EX or FX, you can alternatively use a subject Deny action or Contract or Subject Exception in a standard contract to block traffic with specified patterns.

- Log the traffic (taboo contracts and regular contracts)
- Aliases—(Optional) A changeable name for an object. Although the name of an object, once created, cannot be changed, the Alias is a property that can be changed.

Thus, the contract allows more complex actions than just allow or deny. The contract can specify that traffic that matches a given subject can be re-directed to a service, can be copied, or can have its QoS level modified. With pre-population of the access policy in the concrete model, endpoints can move, new ones can come on-line, and communication can occur even if the APIC is off-line or otherwise inaccessible. The APIC is removed from being a single point of failure for the network. Upon packet ingress to the ACI fabric, security policies are enforced by the concrete model running in the switch.

Three-Tier Application Deployment

A filter specifies the data protocols to be allowed or denied by a contract that contains the filter. A contract can contain multiple subjects. A subject can be used to realize uni- or bidirectional filters. A unidirectional filter is a filter that is used in one direction, either from consumer-to-provider (IN) or from provider-to-consumer (OUT) filter. A bidirectional filter is the same filter that is used in both directions. It is not reflexive.

Contracts are policies that enable inter-End Point Group (inter-EPG) communication. These policies are the rules that specify communication between application tiers. If no contract is attached to the EPG, inter-EPG communication is disabled by default. No contract is required for intra-EPG communication because intra-EPG communication is always allowed.

Application profiles enable you to model application requirements that the APIC then automatically renders in the network and data center infrastructure. The application profiles enable administrators to approach the resource pool in terms of applications rather than infrastructure building blocks. The application profile is a container that holds EPGs that are logically related to one another. EPGs can communicate with other EPGs in the same application profile and with EPGs in other application profiles.

To deploy an application policy, you must create the required application profiles, filters, and contracts. Typically, the APIC fabric hosts a three-tier application within a tenant network. In this example, the application is implemented by using three servers (a web server, an application server, and a database server). See the following figure for an example of a three-tier application.

The web server has the HTTP filter, the application server has the Remote Method Invocation (RMI) filter, and the database server has the Structured Query Language (SQL) filter. The application server consumes the SQL contract to communicate with the database server. The web server consumes the RMI contract to communicate with the application server. The traffic enters from the web server and communicates with the application server. The application server then communicates with the database server, and the traffic can also communicate externally.

interface servers web EPG app EPG db EPG internet outside EP EP EP EP EP EP consumes EP EP EP public network contract contract provides provides provides filter filter filter bd1 bridge domain ctx1 layer 3 context

Figure 8: Three-Tier Application Diagram

Parameters to Create a Filter for http

The parameters to create a filter for http in this example is as follows:

Parameter Name	Filter for http
Name	http
Number of Entries	2
Entry Name	Dport-80
	Dport-443
Ethertype	IP
Protocol	tcp
	tcp
Destination Port	http
	https

Parameters to Create Filters for rmi and sql

The parameters to create filters for rmi and sql in this example are as follows:

Parameter Name	Filter for rmi	Filter for sql	
Name	rmi	sql	
Number of Entries	1	1	
Entry Name	Dport-1099	Dport-1521	
Ethertype	IP	IP	
Protocol	tcp	tcp	
Destination Port	1099	1521	

Example Application Profile Database

The application profile database in this example is as follows:

EPG	Provided Contracts	Consumed Contracts
web	web	rmi
app	rmi	sql
db	sql	

Creating an Application Profile Using the GUI

Procedure

- Step 1 On the menu bar, choose TENANTS. In the Navigation pane, expand the tenant, right-click Application Profiles, and click Create Application Profile.
- Step 2 In the Create Application Profile dialog box, in the Name field, add the application profile name (OnlineStore).

Creating EPGs Using the GUI

The port the EPG uses must belong to one of the VM Managers (VMM) or physical domains associated with the EPG.

- **Step 1** On the menu bar, choose **Tenants** and the tenant where you want to create an EPG.
- Step 2 In the navigation pane, expand the folder for the tenant, the **Application Profiles** folder, and the folder for the application profile.
- **Step 3** Right-click the **Application EPG** folder, and in the **Create Application EPG** dialog box, perform the following actions:
 - a) In the Name field, add the EPG name (db).
 - b) In the **Bridge Domain** field, choose the bridge domain from the drop-down list (bd1).
 - c) Check the Associate to VM Domain Profiles check box. Click Next.
 - d) In the **Step 2 for Specify the VM Domains** area, expand **Associate VM Domain Profiles** and from the drop-down list, choose the desired VMM domain.
 - e) (Optional) In the **Delimiter** field, enter one of the following symbols: $|, \sim, !, @, ^{,} +$, or =.
 - If you do not enter a symbol, the system will use the default | delimiter in the VMware portgroup name.
 - f) If you have Cisco AVS, from the Encap Mode drop-down list, choose an encapsulation mode. You can choose one of the following encap modes:

- VXLAN—This overrides the domain's VLAN configuration, and the EPG will use VXLAN encapsulation. However, a fault will be triggered for the EPG if a multicast pool is not configured on the domain.
- VLAN—This overrides the domain's VXLAN configuration, and the EPG will use VLAN encapsulation. However, a fault will be triggered for the EPG if a VLAN pool is not configured on the domain.
- **Auto**—This causes the EPG to use the same encapsulation mode as the VMM domain. This is the default configuration.
- g) Click Update and then click FINISH.
- **Step 4** In the **Create Application Profile** dialog box, create two more EPGs. The three EPGs should be db, app, and web in the same bridge domain and data center.

Configuring Contracts Using the APIC GUI

Creating a Filter Using the GUI

Create three separate filters. In this example they are HTTP, RMI, SQL. This task shows how to create the HTTP filter. The task is identical for creating the other filters.

Before you begin

Verify that the tenant, network, and bridge domain have been created.

Procedure

Step 1 On the menu bar, choose Tenants. In the Navigation pane, expand the *tenant-name* > Contracts, right-click Filters, and click Create Filter.

Note In the **Navigation** pane, you expand the tenant where you want to add filters.

- **Step 2** In the Create Filter dialog box, perform the following actions:
 - a) In the **Name** field, enter the filter name (http).
 - b) Expand Entries, and in the Name field, enter the name (Dport-80).
 - c) From the **EtherType** drop-down list, choose the EtherType (IP).
 - d) From the **IP Protocol** drop-down list, choose the protocol (tcp).
 - e) From the **Destination Port/Range** drop-down lists, choose **http** in the **From** and **To** fields. (http)
 - f) Click Update, and click Submit.
 The newly added filter appears in the Navigation pane and in the Work pane.
- Step 3 Expand Entries in the Name field. Follow the same process to add another entry with HTTPS as the Destination port, and click Update.

This new filter rule is added.

Follow the same process in the earlier steps to create two more filters (rmi and sql) and use the parameters provided in Parameters to Create Filters for rmi and sql, on page 39.

Creating a Contract Using the GUI

Procedure

- Step 1 On the menu bar, choose **Tenants** and the tenant name on which you want to operate. In the **Navigation** pane, expand the *tenant-name* > **Contracts**.
- Step 2 Right-click Standard > Create Contract.
- **Step 3** In the Create Contract dialog box, perform the following tasks:
 - a) In the Name field, enter the contract name (web).
 - b) Click the + sign next to **Subjects** to add a new subject.
 - c) In the Create Contract Subject dialog box, enter a subject name in the Name field. (web)
 - d) **Note** This step associates the filters created that were earlier with the contract subject.

In the **Filter Chain** area, click the + sign next to **Filters**.

- e) In the dialog box, from the drop-down menu, choose the filter name (http), and click Update.
- **Step 4** In the Create Contract Subject dialog box, click **OK**.
- Step 5 Create two more contracts for rmi and for sql following the same steps in this procedure. For the rmi contract, choose the rmi subject and for sql, choose the sql subject.

Consuming and Providing Contracts Using the GUI

You can associate contracts that were created earlier to create policy relationships between the EPGs.

When you name the provided and consumed contracts, verify that you give the same name for both provided and consumed contracts.

Procedure

Step 1 Note The db, app, and web EPGs are displayed as icons.

Click and drag across the APIC GUI window from the db EPG to the app EPG.

The **Add Consumed Contract** dialog box is displayed.

- **Step 2** In the Name field, from the drop-down list, choose sql contract. Click OK.
 - This step enables the db EPG to provide the sql contract and the app EPG to consume the sql contract.
- **Step 3** Click and drag across the APIC GUI screen from the app ePG to the web EPG.

The **Add Consumed Contract** dialog box is displayed.

Step 4 In the Name field, from the drop-down list, choose **rmi** contract. Click **OK**.

This step enables the app EPG to provide the rmi contract and the web EPG to consume the rmi contract.

Step 5 Click the web EPG icon, and click the + sign in the **Provided Contracts** area.

The **Add Provided Contract** dialog box is displayed.

- Step 6 In the Name field, from the drop-down list, choose web contract. Click OK. Click Submit. You have created a three-tier application profile called OnlineStore.
- Step 7 To verify, in the Navigation pane, navigate to and click OnlineStore under Application Profiles. In the Work pane, you can see the three EPGs app, db, and web are displayed.
- Step 8 In the Work pane, choose Operational > Contracts.

 You can see the EPGs and contracts displayed in the order that they are consumed and provided.

Configuring Contracts Using the NX-OS Style CLI

Configuring Contracts

Contracts are configured under a tenant with the following tasks:

- Define filters as access lists
- Define the contract and subjects
- Link the contract to an EPG

The tasks need not follow this order. For example, you can link a contract name to an EPG before you have defined the contract.

Note

Filters (ACLs) in APIC use **match** instead of **permit** | **deny** as in the traditional NX-OS ACL. The purpose of a filter entry is only to match a given traffic flow. The traffic will be permitted or denied when the ACL is applied on a contract or on a taboo contract.

	Command or Action	Purpose
Step 1	configure	Enters configuration mode.
	Example:	
	apic1# configure	
Step 2	tenant tenant-name	Creates a tenant if it does not exist and enters
	Example:	the tenant configuration mode.
	tenant exampleCorp	
Step 3	access-list acl-name	Creates an access list (filter) that can be used
	Example:	in a contract.
	<pre>apic1(config-tenant)# access-list http_acl</pre>	
Step 4	(Optional) match {arp icmp ip}	Creates a rule to match traffic of the selected
	Example:	protocol.
	apic1(config-tenant-acl)# match arp	

Step 5 (Optional) ma [dest from[-to	tch {tcp udp} [src from[-to]]	G 1 TGD TDD M
[dest]/om[-io		Creates a rule to match TCP or UDP traffic.
Example:		
apic1(config	-tenant-acl)# match tcp dest	
apic1(config	-tenant-acl)# match tcp dest	
Step 6 (Optional) ma	tch raw options	Creates a rule to match a raw vzEntry.
Example:		
apic1(config	g-tenant-acl)#	
Step 7 exit		Returns to the tenant configuration mode.
Example:		
apic1(config	g-tenant-acl)# exit	
Step 8 contract cont	ract-name	Creates a contract and enters the contract
Example:		configuration mode.
apic1(config	g-tenant) # contract web80	
Step 9 subject subject	ct-name	Creates a contract subject and enters the
Example:		subject configuration mode.
apic1(confice web80	g-tenant-contract)# subject	
	o] access-group acl-name [in	Adds (removes) an access list from the
out both]		contract, specifying the direction of the traffic to be matched.
Example:	g-tenant-contract-subj)#	
-	http_acl both	
Step 11 (Optional) [no {provider co	oj label name label-name onsumer}	Adds (removes) a provider or consumer label to the subject.
Example:		
apic1(config	g-tenant-contract-subj)#	
	o] label match {provider ny one all none]	Specifies the match type for the provider or consumer label:
Example:		• any—Match if any label is found in the
apic1(config	g-tenant-contract-subj)#	contract relation.
		• one—Match if exactly one label is found in the contract relation.
		all—Match if all labels are found in the contract relation.

	Command or Action	Purpose	
		none—Match if no labels are found in the contract relation.	
Step 13	exit	Returns to the contract configuration mode.	
	Example:		
	apic1(config-tenant-contract-subj)# exit		
Step 14	exit	Returns to the tenant configuration mode.	
	Example:		
	apic1(config-tenant-contract)# exit		
Step 15	application app-name	Enters application configuration mode.	
	Example:		
	<pre>apic1(config-tenant)# application OnlineStore</pre>		
	epg epg-name	Enters configuration mode for the EPG to be	
	Example:	linked to the contract.	
Step 17	bridge-domain member bd-name	Specifies the bridge domain for this EPG.	
	Example:		
	<pre>apic1(config-tenant-app-epg) # bridge-domain member exampleCorp_bd1</pre>		
Step 18	contract provider provider-contract-name	Specifies the provider contract for this EPG.	
	Example:	Communication with this EPG can be initiated	
	<pre>apic1(config-tenant-app-epg)# contract provider web80</pre>	from other EPGs as long as the communication complies with this provider contract.	
Step 19	contract consumer consumer-contract-name	Specifies the consumer contract for this EPG.	
	Example:	The endpoints in this EPG may initiate	
	apic1(config-tenant-app-epg)# contract consumer rmi99	communication with any endpoint in an EPG that is providing this contract.	

Examples

This example shows how to create and apply contracts to an EPG.

```
apic1# configure
apic1(config)# tenant exampleCorp

# CREATE FILTERS
apic1(config-tenant)# access-list http_acl
apic1(config-tenant-acl)# match tcp dest 80
apic1(config-tenant-acl)# match tcp dest 443
```

```
apic1(config-tenant-acl)# exit
    # CREATE CONTRACT WITH FILTERS
apic1(config-tenant)# contract web80
apic1(config-tenant-contract) # subject web80
apic1(config-tenant-contract-subj)# access-group http acl both
apic1(config-tenant-contract-subj)# exit
apic1(config-tenant-contract)# exit
    # ASSOCIATE CONTRACTS TO EPG
apic1(config-tenant)# application OnlineStore
apic1(config-tenant-app)# epg exampleCorp webepg1
apic1(config-tenant-app-epg) # bridge-domain member exampleCorp_bd1
apic1(config-tenant-app-epg) # contract consumer rmi99
apic1(config-tenant-app-epg) # contract provider web80
apic1(config-tenant-app-epg)# exit
apic1(config-tenant-app)#exit
apic1(config-tenant)#exit
    # ASSOCIATE PORT AND VLAN TO EPG
apic1(config) #leaf 101
apic1(config-leaf)# interface ethernet 1/4
apic1(config-leaf-if) # switchport trunk allowed vlan 102 tenant exampleCorp application
OnlineStore epg exampleCorp webepg1
```

This example shows a simpler method for defining a contract by declaring the filters inline in the contract itself.

```
apic1# configure
apic1(config)# tenant exampleCorp
apic1(config-tenant)# contract web80
apic1(config-tenant-contract)# match tcp 80
apic1(config-tenant-contract)# match tcp 443
```

Exporting a Contract to Another Tenant

You can export a contract from one tenant and import it to another. In the tenant that imports the contract, the contract can be applied only as a consumer contract. The contract can be renamed during the export.

	Command or Action	Purpose
Step 1	configure	Enters configuration mode.
	Example:	
	apic1# configure	
Step 2	tenant tenant-name	Enters the tenant configuration mode for the
	Example:	exporting tenant.
	apic1(config)# tenant RedCorp	
Step 3	contract contract-name	Enters the contract configuration mode for the
	Example:	contract to be exported.

	Command or Action	Purpose
	apic1(config-tenant)# contract web80	
Step 4	<pre>scope {application exportable tenant vrf} Example: apicl (config-tenant-contract) # scope exportable</pre>	Configures how the contract can be shared. The scope can be: • application—Can be shared among the EPGs of the same application. • exportable—Can be shared across tenants. • tenant—Can be shared among the EPGs of the same tenant. • vrf—Can be shared among the EPGs of the same VRF.
Step 5	<pre>export to tenant other-tenant-name as new-contract-name Example: apicl(config-tenant-contract)# export to tenant BlueCorp as webContract1</pre>	Exports the contract to the other tenant. You can use the same contract name or you can rename it.
Step 6	<pre>exit Example: apicl(config-tenant-contract)# exit</pre>	Returns to the tenant configuration mode.
Step 7	<pre>exit Example: apic1(config-tenant)# exit</pre>	Returns to the global configuration mode.
Step 8	tenant tenant-name Example: tenant BlueCorp	Enters the tenant configuration mode for the importing tenant.
Step 9	<pre>application app-name Example: apic1(config-tenant) # application BlueStore</pre>	Enters application configuration mode.
Step 10	<pre>epg epg-name Example: apicl(config-tenant-app)# epg BlueWeb</pre>	Enters configuration mode for the EPG to be linked to the contract.
Step 11	contract consumer consumer-contract-name imported Example:	Specifies the imported consumer contract for this EPG. The endpoints in this EPG may initiate communication with any endpoint in an EPG that is providing this contract.

Command or Action	Purpose
<pre>apic1(config-tenant-app-epg)# contract</pre>	
consumer webContract1 imported	

Examples

This example shows how to export a contract from the tenant RedCorp to the tenant BlueCorp, where it will be a consumer contract.

```
apic# configure
apicl(config)# tenant RedCorp
apicl(config-tenant)# contract web80
apicl(config-tenant-contract)# scope exportable
apicl(config-tenant-contract)# export to tenant BlueCorp as webContract1
apicl(config-tenant-contract)# exit
apicl(config-tenant)# exit
apicl(config-tenant)# application BlueStore
apicl(config-tenant)# application)# epg BlueWeb
apicl(config-tenant-application-epg)# contract consumer webContract1 imported
```

Configuring Contracts Using the REST API

Configuring a Contract Using the REST API

Procedure

Configure a contract using an XML POST request similar to the following example:

Example:

Configuring a Taboo Contract Using the REST API

Before you begin

The following objects must be created:

- The tenant that will be associated with this **Taboo Contract**
- An application profile for the tenant
- At least one EPG for the tenant

Procedure

To create a taboo contract with the REST API, use XML such as in the following example:

Example:

```
<vzTaboo ownerTag="" ownerKey="" name="VRF64_Taboo_Contract"
dn="uni/tn-Tenant64/taboo-VRF64_Taboo_Contract" descr=""><vzTSubj
name="EPG_subject" descr=""><vzRsDenyRule tnVzFilterName="default"
directives="log"/>
</vzTSubj>
</vzTaboo>
```

Verifying Contracts, Taboo Contracts, and Filters Using the REST API

This topic provides the REST API XML to verify contracts, taboo contracts, and filters.

Procedure

Step 1 Verify a contract for an EPG or an external network with XML such as the following example for a provider:

Example:

QUERY https://apic-ip-address/api/node/class/fvRsProv.xml

Step 2 Verify a contract on an EPG with XML such as the following example for a consumer:

Example:

QUERY https://apic-ip-address/api/node/class/fvRsCons.xml

Step 3 Verify exported contracts using XML such as the following example:

Example:

QUERY https://apic-ip-address/api/node/class/vzCPif.xml

Step 4 Verify contracts for a VRF with XML such as the following example:

Example:

QUERY https://apic-ip-address/api/node/class/vzBrCP.xml

Step 5 Verify taboo contracts with XML such as the following example:

Example:

QUERY https://apic-ip-address/api/node/class/vzTaboo.xml

For taboo contracts for an EPG, use the same query as for contracts for EPGs.

Step 6 Verify filters using XML such as the following example:

Example

QUERY https://apic-ip-address/api/node/class/vzFilter.xml

Optimize Contract Performance

Optimize Contract Performance

Starting with Cisco APIC, Release 3.2, you can configure bidirectional contracts that support more efficient hardware TCAM storage of contract data. With optimization enabled, contract statistics for both directions are aggregated.

TCAM Optimization is supported on the Cisco Nexus 9000 Series top of rack (TOR) switches with names ending with EX and FX, and later (for example, N9K-C93180LC-EX or N9K-C93180YC-FX).

To configure efficient TCAM contract data storage, you enable the following options:

- Mark the contracts to be applied in both directions between the provider and consumer
- For filters with IP TCP or UDP protocols, enable the reverse port option
- When configuring the contract subjects, enable the **no stats** directive.

Limitations

With the no_stats option enabled, per rule statistics are lost. However combined rule statistics for both directions are there in the hardware statistics.

After upgrading to Cisco APIC 3.2(1), to add the no stats option to a pre-upgrade contract subject (with filters or filter entries), you must delete the subject and reconfigure it with the no stats option. Otherwise, compression does not occur.

For each contract with a bi-directional subject filter, Cisco NX-OS creates 2 rules, one rule with an spcTag and dPcTag that is marked direction=bi-dir, which is programmed in hardware, and another rule marked with direction=uni-dir-ignore which is not programmed.

Rules with the following settings are not compressed:

- Rules with priority other than fully_qual
- Opposite rules (bi-dir and uni-dir-ignore marked) with non-identical properties, such as action including directives, prio, qos or markDscp
- Rule with Implicit or implarp filters
- \bullet Rules with the actions <code>Deny</code>, <code>Redir</code>, <code>Copy</code>, or <code>Deny-log</code>

The following MO query output shows the two rules for a contract, that is considered for compression:

```
# actrl.Rule
scopeId
                   : 2588677
                  : 16388
sPcTag
                  : 49156
dPcTag
             : 67
fltId
action
actrlCfgFailedBmp :
actrlCfgFailedTs : 00:00:00:00.000
actrlCfgState : 0
childAction :
action
                  : no_stats,permit
descr
               : bi-dir
direction
                  : sys/actrl/scope-2588677/rule-2588677-s-16388-d-49156-f-67
: 4112
dn
id
                  : implicit
lcOwn
                  : unspecified
markDscp
                  : 2018-04-27T09:01:33.152-07:00
monPolDn
                  : uni/tn-common/monepg-default
name
nameAlias
                  : enabled
operSt
operStQual
                  : fully_qual
qosGrp
                  : unspecified
                  : rule-2588677-s-16388-d-49156-f-67
rn
status
type
                   : tenant
# actrl.Rule
                  : 2588677
: 49156
: 16388
scopeId
sPcTag
dPcTag
fltId
                  : 64
action
                  : no_stats,permit
actrlCfgFailedBmp :
actrlCfgFailedTs : 00:00:00:00.000
actrlCfgState : 0
childAction :
descr
                  : uni-dir-ignore
direction
                  : sys/actrl/scope-2588677/rule-2588677-s-49156-d-16388-f-64
: 4126
: implicit
dn
id
lcOwn
                  : unspecified
markDscp
                  : 2018-04-27T09:01:33.152-07:00
modTs
monPolDn
                  : uni/tn-common/monepg-default
name
nameAlias
operSt
                   : enabled
operStQual
                  : fully qual
                  : unspecified
                  : rule-2588677-s-49156-d-16388-f-64
rn
status
type
                   : tenant
```

Table 1: Compression Matrix

Reverse Filter Port Enabled	TCP or UDP Source Port	TCP or UCP Destination Port	Compressed
Yes	Port A	Port B	Yes
Yes	Unspecified	Port B	Yes
Yes	Port A	Unspecified	Yes
Yes	Unspecified	Unspecified	Yes
No	Port A	Port B	No
No	Unspecified	Port B	No
No	Port A	Unspecified	No
No	Unspecified	Unspecified	Yes

Configure a Contract with Optimized TCAM Usage Using the GUI

This procedure describes how to configure a contract that optimizes TCAM storage of contract data on hardware.

Before you begin

- Create the tenant, VRF, and EPGs that will provide and consume the contract.
- Create one or more filters that define the traffic to be permitted or denied by this contract.

Procedure

- Step 1 On the menu bar, choose **Tenants** and the tenant name on which you want to operate. In the **Navigation** pane, expand the *tenant-name* and **Contracts**.
- **Step 2** Right-click **Standard** > **Create Contract**.
- **Step 3** In the Create Contract dialog box, perform the following tasks:
 - a) In the **Name** field, enter the contract name.
 - b) Click the + icon next to **Subjects** to add a new subject.
 - c) In the Create Contract Subject dialog box, enter a subject name in the Name field.

Note This step associates filters with the contract subject.

- d) To enable the TCAM-contract usage optimization feature, ensure that **Apply Both Directions** and **Reverse Filter Ports** are enabled.
- e) Click the + icon to expand **Filters**.
- f) In the dialog box, from the drop-down menu, choose a default filter, a previously configured filter, or Create Filter.
- g) In the Directives field, choose no stats

- h) In the **Action** field, choose **Permit** or **Deny**.
 - **Note** Currently, the **Deny** action is not supported. Optimization only occurs for the **Permit** action.
- i) (Optional) In the **Priority** field, choose the priority level.
- j) Click Update.
- Step 4 In the Create Contract Subject dialog box, click OK.
- Step 5 In the Create Contract dialog box, click Submit.

Configure a Contract with Optimized TCAM Usage Using the REST API

Before you begin

Create the tenant, VRF, and EPGs that will provide and consume the contract.

Procedure

To configure a filter and contract that optimizes TCAM storage of contract data on hardware, send a post with XML similar to the following example:

Example:

```
<vzFilter dn="uni/tn-Tenant64/flt-webFilter" name="webFilter>
    <vzEntry applyToFrag="no" dFromPort="https" dToPort="https"</pre>
        dn="uni/tn-Tenant64/flt-webFilter/e-https" etherT="ip" name="https" prot="tcp"
stateful="no"/>
    </vzFilter>
<vzBrCP dn="uni/tn-Tenant64/brc-OptimizedContract" name="OptimizedContract"</pre>
provMatchT="AtleastOne" revFltPorts="yes">
   <vzSubj consMatchT="AtleastOne" dn="uni/tn-Tenant64/brc-OptimizedContract/subj-WebSubj"
 lcOwn="local" name="WebSubj"
         provMatchT="AtleastOne" revFltPorts="yes">
         <vzRsSubjFiltAtt action="permit" directives="no stats" forceResolve="yes"</pre>
lcOwn="local" tCl="vzFilter"
         tDn="uni/tn-Tenant64/flt-webFilter" tRn="flt-webFilter" tType="name"
tnVzFilterName="webFilter"/>
    </vzSubi>
</vzBrCP>
```

Contract and Subject Exceptions

Configuring Contract or Subject Exceptions for Contracts

In Cisco APIC Release 3.2(1), contracts between EPGs are enhanced to enable denying a subset of contract providers or consumers from participating in the contract. Inter-EPG contracts and Intra-EPG contracts are supported with this feature.

You can enable a provider EPG to communicate with all consumer EPGs except those that match criteria configured in a subject or contract exception. For example, if you want to enable an EPG to provide services to all EPGs for a tenant, except a subset, you can enable those EPGs to be excluded. To configure this, you create an exception in the contract or one of the subjects in the contract. The subset is then denied access to providing or consuming the contract.

Labels, counters, and permit and deny logs are supported with contracts and subject exceptions.

To apply an exception to all subjects in a contract, add the exception to the contract. To apply an exception only to a single subject in the contract, add the exception to the subject.

When adding filters to subjects, you can set the action of the filter (to permit or deny objects that match the filter criteria). Also for **Deny** filters, you can set the priority of the filter. **Permit** filters always have the default priority. Marking the subject-to-filter relation to deny automatically applies to each pair of EPGs where there is a match for the subject. Contracts and subjects can include multiple subject-to-filter relationships that can be independently set to permit or deny the objects that match the filters.

Exception Types

Contract and subject exceptions can be based on the following types and include regular expressions, such as the * wildcard:

Exception criteria exclude these objects as defined in the Consumer Regex and Provider Regex fields	Example	Description
Tenant	<pre><vzexception consregex="common" field="Tenant" name="excep03" provregex="t1"></vzexception></pre>	This example, excludes EPGs using the common tenant from consuming contracts provided by the t1 tenant.
VRF	<pre><vzexception consregex="ctx1" field="Ctx" name="excep05" provregex="ctx1"></vzexception></pre>	This example excludes members of ctx1 from consuming the services provided by the same VRF.
EPG	<pre><vzexception consregex="EPgPa*" field="EPg" name="excep03" provregex="EPg03"></vzexception></pre>	The example assumes that multiple EPGs exist, with names starting with EPGPa, and they should all be denied as consumers for the contract provided by EPg03
Dn	<pre><vzexception consregex="uni/tn-t36/ap-customer/epg-epg193" field="Dn" name="excep04" provregex="uni/tn-t36/ap-customer/epg-epg200"></vzexception></pre>	This example excludes epg193 from consuming the contract provided by epg200.
Tag	<pre><vzexception consregex="red" field="Tag" name="excep01" provregex="green"></vzexception></pre>	The example excludes objects marked with the red tag from consuming and those marked with the green tag from participating in the contract.

Configure a Contract or Subject Exception Using the GUI

In this task, you configure a contract that will allow most of the EPGs to communicate, but deny access to a subset of them.

Before you begin

Configure the tenant, VRF, application profile, and EPGs that provide and consume the contract.

Procedure

- **Step 1** Click **Tenants** > **All Tenants** on the menu bar.
- **Step 2** Double-click the tenant in which you are creating the contract.
- **Step 3** On the navigation bar, expand **Contracts**, right-click **Filter**, and choose **Create Filter**.

A filter is essentially an Access Control List (ACL) that defines the traffic that is permitted or denied access through the contract. You can create multiple filters that define objects that can be permitted or denied.

- **Step 4** Enter the filter name and add the criteria that define the traffic to permit or deny, then click **Submit**.
- Step 5 Right-click Standard, and choose Create Contract.
- **Step 6** Enter the contract name, set the scope, and click the + icon to add a subject.
- **Step 7** Repeat to add another subject.
- Step 8 Click Submit
- **Step 9** To add an exception to all subjects in the contract, perform the following steps:
 - a) Click the contract, then click Contract Exception.
 - b) Add subjects and set them to be permitted or denied.
 - c) Click the + icon to add a contract exception.
 - d) Enter the exception name and type.
 - e) Add regular expressions in the **Consumer Regex** and **Provider Regex** fields to define the EPGs to be excluded from all subjects in the contract.
- **Step 10** To add an exception to one subject in the contract, perform the following steps:
 - a) Click the subject, then click **Subject Exception**.
 - b) Click the + icon to add a contract exception.
 - c) Enter the exception name and type.
 - d) Add regular expressions in the **Consumer Regex** and **Provider Regex** to define the EPGs to be excluded from all subjects in the contract.

Configure a Contract or Subject Exception Using the NX-OS Style CLI

In this task, you configure a contract that will allow most of the EPGs to communicate, but deny access to a subset of them. Multiple exceptions can be added to a contract or a subject.

Before you begin

Configure the tenant, VRF, application profile, and EPGs to provide and consume the contract.

Procedure

Step 1 Configure filters for HTTP and HTTPS, using commands as in the following example:

Example:

```
apicl(config) # tenant t2
apicl(config-tenant) # access-list ac1
apicl(config-tenant-acl) # match ip
apicl(config-tenant-acl) # match tcp dest 80
apicl(config-tenant-acl) # exit
apicl(config-tenant) # access-list ac2
apicl(config-tenant-acl) # match ip
apicl(config-tenant-acl) # match tcp dest 443
```

Step 2 Configure a contract that excludes EPg01 from consuming it and EPg03 from providing it.

Example:

```
apicl(config-tenant)# contract webCtrct
apicl(config-tenant-contract)# subject https-subject
apicl(config-tenant-contract-subj)# exception name EPG consumer-regexp EPg01 field EPg
provider-regexp EPg03
apicl(config-tenant-contract-subj)# access-group ac1 in blacklist
apicl(config-tenant-contract-subj)# access-group ac2 in whitelist
```

Configure a Contract or Subject Exception Using the REST API

In this task, you configure a contract that will allow most of the EPGs to communicate, but deny access to a subset of them. Multiple exceptions can be added to a contract or a subject.

Before you begin

Configure the tenant, VRF, application profile, and EPGs to provide and consume the contract.

Procedure

Step 1 Create a filter by sending a post with XML, such as the following example:

Example:

Step 2 Create a contract that excludes EPg01 from consuming the subject and EPg03 from providing it, by sending a post with XML, such as the following example:

The vzException MO can be contained by the vzBrCP or vzSubj MOs.

Example:

Intra-EPG Contracts

Intra-EPG Contracts

You can configure contracts to control communication between EPGs. Beginning in Cisco APIC Release 3.0(1), you can also configure contracts within an EPG.

Without intra-EPG contracts, communication between endpoints in an EPG is all-or-nothing. Communication is unrestricted by default, or you can configure intra-EPG isolation to bar any communication between endpoints.

However, with intra-EPG contracts, you can control communication between endpoints in the same EPG, allowing some traffic and barring the rest. For example, you may want to allow web traffic but block the rest. Or you can allow all ICMP traffic and TCP port 22 traffic while blocking all other traffic.

Support

Intra-EPG contracts can be configured for application EPGs and microsegment EPGs (uSegs) on VMware VDS, Open vSwitch (OVS), and baremetal servers.

Note

OVS is available in the Kubernetes integration with Cisco ACI, Feature available in Kubernetes integration into the Cisco Application Centric Infrastructure (ACI). In Kubernetes, you can create EPGs and assign namespaces to them. You can then apply intra-EPG policies to the EPGs in Cisco APIC as you would for VMware VDS or baremetals.

Intra-EPG contracts require that the leaf switch support proxy Address Resolution Protocol (ARP). They are supported on Cisco Nexus 9000 Series switches with EX or FX at the end of their model name or later models.

Configuring an Intra-EPG Contract Using the GUI

After you configure a contract, you can add the contract to an EPG as an intra-EPG contract. The procedure is the same for VMware VDS, OVS, and baremetal servers.

Before you begin

- You must have an EPG configured.
- You must have a contract with filters configured.

Procedure

- **Step 1** Log in to the APIC GUI.
- Step 2 Go to TENANTS > tenant.
- **Step 3** Complete one of the following sets of steps, depending on the type of EPG:

If you want to apply an intra-EPG contract to	Then	
An application EPG	Then	
	1. In the left navigation pane, expand Application Profiles > application profile > Application EPGs > epg.	
	2. Right-click the Contracts folder and then choose Add Intra-EPG Contract.	
	3. In the Add Intra-EPG Contract dialog box, from the Contract drop-down list, choose a contract.	
	4. Click SUBMIT.	
A uSeg EPG	1. In the left navigation pane, expand Application Profiles > application profile > uSeg EPGs > epg.	
	2. Right-click the Contracts folder and then choose Add Intra-EPG Contract.	
	3. In the Add Intra-EPG Contract dialog box, from the Contract drop-down list, choose a contract.	
	4. Click SUBMIT.	

Configuring an Intra-EPG Contract Using the NX-OS Style CLI

After you configure a contract, you can configure the contract as an intra-EPG contract. The procedure is the same for VMware VDS, OVS, and baremetal servers.

Before you begin

- You must have an EPG configured.
- You must have a contract with filters configured.

Procedure

Step 1 In the NX-OS CLI, start in Configuration mode.

Example:

apic #
apic # configure

Step 2 Choose the tenant.

Example:

```
apic (config) # tenant t001
```

Step 3 Choose the application profile.

Example:

```
apic (config-tenant) application ap3
```

Step 4 Choose the EPG.

Example:

```
apic (config-tenant-app) epg ep3
```

Step 5 Configure an intra-EPG contract for the EPG.

Example:

```
apic (config-tenant-app-epg) contract intra-epg ct1
```

Configuring an Intra-EPG Contract Using the REST API

After you configure a contract, you can configure the contract as an intra-EPG contract. The procedure is the same for VMware VDS, OVS, and baremetal servers.

Before you begin

- You must have an EPG configured.
- You must have a contract with filters configured.

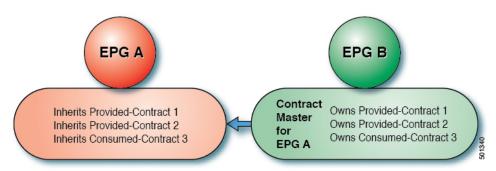
Procedure

Configure an intra-EPG contract using an XML POST request similar to the following example:

Example:

```
<frvTenant name="t001">
  <fvAp name="ap3">
        <fvAEPg name="ep3">
            <fvRsIntraEpg tnVzBrCPName="ct1"/>
            </fvAEPg>
        </fvAp>
</frvTenant>
```

EPG Contract Inheritance


About Contract Inheritance

To streamline associating contracts to new EPGs, you can now enable an EPG to inherit all the (provided and consumed) contracts associated directly to another EPG in the same tenant. Contract inheritance can be configured for application, microsegmented, L2Out, and L3Out EPGs.

With Release 3.x, you can also configure contract inheritance for Inter-EPG contracts, both provided and consumed. Inter-EPG contracts are supported on Cisco Nexus 9000 Series switches with EX or FX at the end of their model name or later models.

You can enable an EPG to inherit all the contracts associated directly to another EPG, using the APIC GUI, NX-OS style CLI, and the REST API.

Figure 9: Contract Inheritance

In the diagram above, EPG A is configured to inherit Provided-Contract 1 and 2 and Consumed-Contract 3 from EPG B (contract master for EPG A).

Use the following guidelines when configuring contract inheritance:

- Contract inheritance can be configured for application, microsegmented (uSeg), external L2Out EPGs, and external L3Out EPGs. The relationships must be between EPGs of the same type.
- Both provided and consumed contracts are inherited from the contract master when the relationship is established.
- Contract masters and the EPGs inheriting contracts must be within the same tenant.
- Changes to the masters' contracts are propagated to all the inheritors. If a new contract is added to the master, it is also added to the inheritors.
- An EPG can inherit contracts from multiple contract masters.
- Contract inheritance is only supported to a single level (cannot be chained) and a contract master cannot inherit contracts.
- Contract subject label and EPG label inheritance is supported. When EPG A inherits a contract from EPG B, if different subject labels are configured under EPG A and EPG B, APIC only uses the subject label configured under EPG B and not a collection of labels from both EPGs.

- Whether an EPG is directly associated to a contract or inherits a contract, it consumes entries in TCAM.
 So contract scale guidelines still apply. For more information, see the Verified Scalability Guide for your release.
- vzAny security contracts and taboo contracts are not supported.

For information about configuring Contract Inheritance and viewing inherited and standalone contracts, see *Cisco APIC Basic Configuration Guide*.

Configuring EPG Contract Inheritance Using the GUI

Configuring Application EPG Contract Inheritance Using the GUI

To configure contract inheritance for an application EPG, in the APIC Basic or Advanced mode GUI, use the following steps.

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Optional. Configure the bridge domain to be used by the EPG that will inherit contracts.

Configure at least one application EPG, to serve as the EPG Contract Master.

Configure the contracts to be shared, and associate them to the contract master.

Procedure

- **Step 1** Navigate to **Tenants** > **tenant-name** > **Application Profiles**, and expand **AP-name**
- **Step 2** Right-click **Application EPGs** and select **Create Application EPG**.
- Step 3 Type the name of the EPG that will inherit contracts from the EPG Contract Master.
- **Step 4** On the **Bridge Domain** field, select the common/default bridge domain or a previously created bridge domain, or create a bridge domain for this EPG.
- Step 5 On the EPG Contract Master field, click the + symbol, select the previously configured Application Profile and EPG, and click Update.
- Step 6 Click Finish.
- **Step 7** To view information about the EPG, including the contract master, navigate to **Tenants** > **tenant-name** > **Application Profiles** > **AP-name** > **Application EPGs** > **EPG-name**. To view the **EPG Contract Master**, click **General**.
- **Step 8** To view information about the inherited contracts, expand *EPG-name* and click Contracts.

Configuring uSeg EPG Contract Inheritance Using the GUI

To configure contract inheritance for a uSeg EPG, in the APIC Basic or Advanced mode GUI, use the following steps.

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Optional. Configure the bridge domain to be used by the EPG that will inherit contracts.

Configure the uSeg EPG, to serve as the **EPG Contract Master**.

Configure the contracts to be shared, and associate them to the contract master.

Procedure

- **Step 1** Navigate to **Tenants** > *tenant-name* > **Application Profiles**, expand *AP-name*.
- Step 2 Right-click uSeg EPGs and select Create uSeg EPG.
- **Step 3** Type the name of the EPG that will inherit contracts from the contract master.
- **Step 4** On the **Bridge Domain** field, select the common/default bridge domain or a previously created bridge domain, or create a bridge domain for this EPG.
- Step 5 Click *uSeg-EPG-name*. In the EPG Contract Master field, click the + symbol, select the Application Profile and EPG (to serve as contract master), and click **Update**.
- Step 6 Click Finish.
- Step 7 To view information about the contracts, navigate to Tenants > tenant-name > Application Profiles > AP-name > uSeg EPGs > , expand the EPG-name and click Contracts..

Configuring L2Out EPG Contract Inheritance Using the GUI

To configure contract inheritance for an external L2Out EPG, in the APIC Advanced mode GUI, use the following steps.

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure an external bridged network (L2Out) and the External Network Instance Profile (L2extInstP) that will serve as the **L2Out Contract Master**.

Configure the contracts to be shared, and associate them to the contract master.

- Step 1 To configure contract inheritance for an external L2Out EPG, navigate to **Tenants** > *tenant-name* > **Networking** > **External Bridged Networks**, and perform the following steps:
- **Step 2** Expand the *L2Out-name*.
- Step 3 Right-click Networks and select Create External Network.
- **Step 4** Type the name of the external network and optionally add other attributes.
- Step 5 Click Submit.
- Step 6 Expand Networks.
- **Step 7** Click the *network-name*.

- Step 8 In the External Network Instance Profile panel, click the + symbol on the L2Out Contract Masters field.
- **Step 9** Select the L2Out and the L2Out Contract Master for this external L2Out EPG.
- Step 10 Click Update.
- Step 11 To view the contracts inherited by this external L2Out EPG, click on the External Network Instance Profile name and click Contracts > Inherited Contracts.

Configuring External L3Out EPG Contract Inheritance Using the Advanced GUI

To configure contract inheritance for an external L3Out EPG, in the APIC Advanced mode GUI, use the following steps.

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure an external routed network (L3Out) and the external network instance profile (L3extInstP) that will serve as the **L3Out Contract Master**.

Configure the contracts to be shared, and associate them to the contract master.

Procedure

Step 1	To configure contract inheritance for an external L3Out EPG, navigate to Tenants > <i>tenant-name</i> >
	Networking > External Routed Networks , and perform the following steps:
Step 2	Expand the <i>L3Out-name</i> leading to the external L3Out EPG.
Step 3	Right-click Networks and select Create External Network.
Step 4	Type the name of the external network and optionally add subnets and other attributes.
Step 5	Click Submit.
Step 6	Expand Networks.
Step 7	Click the <i>network-name</i> .
Step 8	In the External Network Instance Profile panel, click the + symbol on the L3Out Contract Masters field.
Step 9	Select the L3Out and Interface Profile to serve as L3Out contract master for this external L3Out EPG.
Step 10	Click Update.
Step 11	To view the contracts inherited by this external L3Out EPG, click on the External Network Instance Profile name and click Contracts > Inherited Contracts

Configuring Contract Inheritance Using the NX-OS Style CLI

Configuring Application or uSeg EPG Contract Inheritance Using the NX-OS Style CLI

To configure contract inheritance for application or uSeg EPGs, use the following commands:

Before you begin

Configure the tenant, application profile, and bridge-domain to be used by the EPGs.

Configure the contracts to be shared by the EPGs at the VRF level.

	Command or Action	Purpose
Step 1	configure	Enters configuration mode.
	Example:	
	apic1# configure	
Step 2	tenant tenant-name	Creates or specifies the tenant to be configured;
	Example:	and enters into tenant configuration mode.
	apic1# (config) tenant Tn1	
Step 3	application application-name	Creates or specifies an application and enters
	Example:	into application mode.
	apic1(config-tenant)# application AP1	
Step 4	epg epg-name [type micro-segmented]	Creates or specifies the application or uSeg
	Example:	EPG to be configured and enters into EPG configuration mode. For uSeg EPGs add the
	apic1(config-tenant-app)# epg AEPg403	type.
		In this example, this is the application EPG contract master.
Step 5	bridge-domain member bd-name	Associates the EPG with the bridge domain.
	Example:	
	<pre>apic1(config-tenant-app-epg) # bridge-domain member T1BD1</pre>	
Step 6	contract consumer contract-name	Adds a contract to be consumed by this EPG.
	Example:	
	<pre>apic1(config-tenant-app-epg) # contract consumer cctr5</pre>	
Step 7	contract provider [label label]	Adds a contract to be provided by this EPG,
	Example:	including an optional list of subject or EPG
	<pre>apic1(config-tenant-app-epg)# contract provider T1ctrl_cif</pre>	labels (must be previously configured).
Step 8	exit	Exits the configuration mode
	Example:	
	apic1(config-tenant-app-epg)# exit	

	Command or Action	Purpose
Step 9	<pre>epg epg-name [type micro-segmented] Example: apic1(config-tenant-app)# epg AEPg404</pre>	Creates or specifies the application or uSeg EPG to be configured and enters into EPG configuration mode. For uSeg EPGs add the type.
		In this example, this is the EPG inheriting contracts.
Step 10	bridge-domain member bd-name	Associates the EPG with the bridge domain.
	<pre>Example: apic1(config-tenant-app-epg)# bridge-domain member T1BD1</pre>	
Step 11	inherit-from-epg application application-nameepg EPG-contract-master-name]	Configures this EPG to inherit contracts from the EPG contract master.
	Example:	
	<pre>apic1(config-tenant-app-epg)# inherit-from-epg application AP1 epg AEPg403</pre>	
Step 12	exit	Exits the configuration mode
	Example:	
	apic1(config-tenant-app-epg)# exit	
Step 13	epg epg-name [type micro-segmented] Example:	Creates or specifies the application or uSeg EPG to be configured and enters into EPG configuration mode.
	<pre>apic1(config-tenant-app)# epg uSeg1_403_10 type micro-segmented</pre>	In this example, this is the uSeg EPG contract master.
Step 14	bridge-domain member bd-name	Associates the EPG with the bridge domain.
	Example:	
	<pre>apic1(config-tenant-app-epg)# bridge-domain member T1BD1</pre>	
Step 15	contract provider [label label]	Adds a contract to be provided by this EPG,
	Example:	including an optional list of subject or EPG labels (must be previously configured).
	<pre>apic1(config-tenant-app-epg)# contract provider T1ctrl_uSeg_13out</pre>	
Step 16	attribute-logical-expression logical-expression	Adds a logical expression to the uSeg EPG as matching criteria.
	Example:	
	<pre>apic1(config-tenant-app-epg) # attribute-logical-expression 'ip equals 192.168.103.10 force'</pre>	5
		·

	Command or Action	Purpose		
Step 17	exit	Exits the configuration mode		
	Example:			
	apic1(config-tenant-app-epg)# exit			
Step 18	epg epg-name [type micro-segmented]	Creates or specifies the application or uSeg		
	Example:	EPG to be configured and enters into EPG configuration mode.		
	apic1(config-tenant-app)# epg uSeg1 403 30 type micro-segmented	In this example, this is the uSeg EPG that		
	useg1_403_30 type micro-segmented	inherits contracts from the EPG contract master.		
Step 19	bridge-domain member bd-name	Associates the EPG with the bridge domain.		
	Example:			
	<pre>apic1(config-tenant-app-epg) # bridge-domain member T1BD1</pre>			
Step 20	attribute-logical-expression	Adds a logical expression to the uSeg EPG as		
	logical-expression	criteria.		
	Example:			
	<pre>apic1(config-tenant-app-epg) # attribute-logical-expression 'ip equals 192.168.103.30 force'</pre>			
Step 21	inherit-from-epg application	Configures this EPG to inherit contracts from		
	application-name epg EPG-contract-master-name	the EPG contract master.		
	Example:			
	<pre>apic1(config-tenant-app-epg)# inherit-from-epg application AP1 epg uSeg1_403_10</pre>			
Step 22	exit	Exits the configuration mode		
	Example:			
	apic1(config-tenant-app-epg)# exit			
Step 23	exit	Exits the configuration mode		
	Example:			
	apic1(config-tenant-app)# exit			
Step 24	exit	Exits the configuration mode		
	Example:			
	apic1(config-tenant)# exit			
Step 25	<u>'</u>	Exits the configuration mode		
Step 25	apic1(config-tenant)# exit	Exits the configuration mode		

Example

```
ifav90-ifc1# show running-config tenant Tn1 application AP1
# Command: show running-config tenant Tn1 application AP1
# Time: Fri Apr 28 17:28:32 2017
 tenant Tn1
   application AP1
      epg AEPg403
       bridge-domain member T1BD1
       contract consumer cctr5 imported
       contract provider T1ctr1 cif
       exit
      epg AEPg404
       bridge-domain member T1BD1
       inherit-from-epg application AP1 epg AEPg403
      epg uSeg1 403 10 type micro-segmented
       bridge-domain member T1BD1
       contract provider T1Ctr1 uSeg 13out
        attribute-logical-expression 'ip equals 192.168.103.10 force'
      epg uSeg1 403 30 type micro-segmented
       bridge-domain member T1BD1
       attribute-logical-expression 'ip equals 192.168.103.30 force'
       inherit-from-epg application AP1 epg uSeg1\_403\_10
       exit
      exit
    exit.
```

Configuring L2Out EPG Contract Inheritance Using the NX-OS Style CLI

To configure contract inheritance for an external L2Out EPG, use the following commands:

Before you begin

Configure the tenant, VRF, and bridge-domain to be used by the EPGs.

Configure the Layer 2 outside network (L2Out) that the EPGs will use.

Configure the contracts to be shared by the EPGs, at the VRF level.

	Command or Action	Purpose
Step 1	configure	Enters configuration mode.
	Example:	
	apic1# configure	
Step 2	tenant tenant-name	Creates or specifies the tenant to be configured;
	Example:	and enters into tenant configuration mode.
	apic1(config)# tenant Tn1	

	Command or Action	Purpose
Step 3	<pre>external-l2 epg external-l2-epg-name Example: apic1(config-tenant) # external-l2 epg l2out1:l2Ext1</pre>	Configures or specifies an external L2Out EPG. In this example, this is the L2out contract master.
Step 4	<pre>bridge-domain member bd-name Example: apic1(config-tenant-12ext-epg) # bridge-domain member T1BD1</pre>	Associates the L2Out EPG with a bridge domain.
Step 5	<pre>contract provider contract-name [label label] Example: apic1(config-tenant-12ext-epg) # contract provider Tlctr_tcp</pre>	
Step 6	<pre>exit Example: apic1(config-tenant-l2ext-epg)# exit</pre>	Exits the configuration mode
Step 7	<pre>external-l2 epg external-l2-epg-name Example: apic1(config-tenant) # external-l2 epg L2out12:l2Ext12</pre>	Configures an external L2Out EPG. In this example, this is the EPG that inherits contracts from the L2out contract master.
Step 8	<pre>bridge-domain member bd-name Example: apic1(config-tenant-l2ext-epg) # bridge-domain member T1BD1</pre>	Associates the L2out EPG with the bridge domain.
Step 9	<pre>inherit-from-epg L2Out-contract-master-name Example: apic1(config-tenant-l2ext-epg)# inherit-from-epg epg l2out1:l2Ext1</pre>	Configures this EPG to inherit contracts from the L2Out contract master.
Step 10	<pre>exit Example: apic1(config-tenant-l2ext-epg)# exit</pre>	Exits the configuration mode

Example

The steps above are taken from the following example:

```
apic1# show running-config tenant Tn1 external-12
# Command: show running-config tenant Tn1 external-12
# Time: Thu May 11 13:10:14 2017
```

```
tenant Tn1
  external-12 epg 12out1:12Ext1
   bridge-domain member T1BD1
   contract provider T1ctr tcp
   exit
 external-12 epg 12out10:12Ext10
   bridge-domain member T1BD10
   contract provider T1ctr tcp
  external-12 epg 12out11:12Ext11
   bridge-domain member T1BD11
   contract provider T1ctr udp
  external-12 epg 12out12:12Ext12
   bridge-domain member T1BD12
   inherit-from-epg epg 12out1:12Ext1
   inherit-from-epg epg 12out10:12Ext10
    inherit-from-epg epg 12out11:12Ext11
   inherit-from-epg epg 12out2:12Ext2
   inherit-from-epg epg 12out3:12Ext3
   inherit-from-epg epg 12out4:12Ext4
   inherit-from-epg epg 12out5:12Ext5
    inherit-from-epg epg 12out6:12Ext6
   inherit-from-epg epg 12out7:12Ext7
   inherit-from-epg epg 12out8:12Ext8
   inherit-from-epg epg 12out9:12Ext9
   exit
  external-12 epg 12out2:12Ext2
   bridge-domain member T1BD2
   contract provider Tlctr_tcp
   exit
  external-12 epg 12out3:12Ext3
   bridge-domain member T1BD3
   contract provider Tlctr tcp
  external-12 epg 12out4:12Ext4
   bridge-domain member T1BD4
   contract provider Tlctr_tcp
   exit
  external-12 epg 12out5:12Ext5
   bridge-domain member T1BD5
   contract provider Tlctr tcp
   exit
  external-12 epg 12out6:12Ext6
   bridge-domain member T1BD6
   contract provider T1ctr tcp
   exit.
  external-12 epg 12out7:12Ext7
   bridge-domain member T1BD7
   contract provider Tlctr tcp
    exit
  external-12 epg 12out8:12Ext8
   bridge-domain member T1BD8
   contract provider Tlctr_tcp
   exit
  external-12 epg 12out9:12Ext9
   bridge-domain member T1BD9
   contract provider T1ctr tcp
  exit
```

Configuring External L3Out EPG Contract Inheritance Using the NX-OS Style CLI

To configure contract inheritance for an external L3Out EPG, use the following commands:

Before you begin

Configure the tenant, VRF, and bridge-domain to be used by the EPGs.

Configure the Layer 3 outside network (L3Out) that the EPGs will use.

Configure the contracts to be shared by the EPGs, at the VRF level.

	Command or Action	Purpose
Step 1	configure	Enters configuration mode.
	Example:	
	apic1# configure	
Step 2	tenant tenant-name	Creates or specifies the tenant to be configured
	Example:	and enters into tenant configuration mode.
	apic1(config)# tenant Tn1	
Step 3	external-13 epg external-13-epg-name l3out l3out-name	Configures an external L3Out EPG. In this example, this is the L3out contract master.
	Example:	
	<pre>apic1(config-tenant-app)# external-13 epg 13Ext108 13out T1L3out1</pre>	
Step 4	vrf member vrf-name	Associates the L3out with the VRF.
	Example:	
	apic1(tenant-13out)# vrf member T1ctx1	
Step 5	match ip ip-address-and-mask	Adds a subnet that identifies hosts as part of
	Example:	the EPG and adds the optional shared scope for the subnet.
	<pre>apic1(config-tenant-13ext-epg)# match ip 192.168.110.0/24 shared</pre>	for the subject.
Step 6	contract provider contract-name [label label]	Adds a contract to be provided by this EPG.
	Example:	
	<pre>apic1(config-tenant-13ext-epg)# contract provider T1ctrl-L3out</pre>	
Step 7	exit	Exits the configuration mode
	Example:	
	apic1(config-tenant-13ext-epg)# exit	

	Command or Action	Purpose
Step 8	external-13 epg external-13-epg-name l3out 13out-name	Configures an external L3Out EPG. In this example, this is the EPG that inherits contracts
	Example:	from the L3out contract master.
	<pre>apic1(config-tenant-app)# external-13 epg 13Ext110 13out T1L3out1</pre>	
Step 9	vrf member vrf-name	Associates the L3out with the VRF.
	Example:	
	apic1(tenant-13out)# vrf member T1ctx1	
Step 10	match ip ip-address-and-mask	Adds a subnet that identifies hosts as part of
	Example:	the EPG and adds the optional shared scope for the subnet
	apic1(config-tenant-13ext-epg)# match ip 192.168.112.0/24 shared	for the subhet.
Step 11	inherit-from-epg	Configures this EPG to inherit contracts from
	L3Out-contract-master-name	the L3Out contract master.
	Example:	
	<pre>apic1(config-tenant-13ext-epg) # inherit-from-epg 13Ext108</pre>	
Step 12	exit	Exits the configuration mode
	Example:	
	apic1(config-tenant-13ext-epg)# exit	

Example

```
ifav90-ifc1# show running-config tenant Tn1 external-13 epg l3Ext110
# Command: show running-config tenant Tn1 external-13 epg l3Ext110
# Time: Fri Apr 28 17:36:15 2017
tenant Tn1
    external-13 epg l3Ext108 l3out T1L3out1
    vrf member T1ctx1
    match ip 192.168.110.0/24 shared
    contract provider T1ctrl-L3out
    exit
    external-13 epg l3Ext110 l3out T1L3out1
    vrf member T1ctx1
    match ip 192.168.112.0/24 shared
    inherit-from-epg epg l3Ext108
    exit
    exit
```

Configuring EPG Contract Inheritance Using the REST API

Configuring Application EPG Contract Inheritance Using the REST API

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure the application EPG, to serve as the EPG Contract Master.

Configure the contracts to be shared, and associate them to the contract master.

Procedure

To configure contract inheritance using the REST API, send a post with XML such as the following XML and JSON examples, with a URL directed to the EPG that will inherit the contracts:

Example:

XML Example

JSON Example

```
https://192.168.200.10/api/node/mo/uni/tn-coke/ap-AP/epg-EPg_B.json
fvAEPg":{"attributes":{
    "dn":"uni/tn-coke/ap-AP/epg-EPg_B","name":"EPg_C",
    "rn":"epg-EPg_C",
    "status":"created"},
    "children":[{
        "fvRsBd":{"attributes":{
            "tnFvBDName":"default",
            "status":"created,modified"},
        "children":[]}},{
        "fvRsSecInherited":{"attributes":{
            "tDn":"uni/tn-coke/ap-AP/epg-EPg_B",
            "status":"created"},
        "children":[]}}]}
```

Configuring uSeg EPG Contract Inheritance Using the REST API

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure the application EPG, to serve as the **EPG Contract Master**.

Configure the contracts to be shared, and associate them to the contract master.

Procedure

To configure uSeg contract inheritance using the REST API, send a post with XML such as the following example:

Example:

```
<polUni>
    <fre><fvTenant name="Tn1" >
        <fvAEPq descr="" dn="uni/tn-Tn1/ap-AP1/epq-uSeq1 301 120" fwdCtrl=""</pre>
isAttrBasedEPg="yes" matchT="AtleastOne" name="uSeg1 301 120" pcEnfPref="unenforced"
prefGrMemb="exclude" prio="unspecified">
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1 301 100" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1 301 110" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1 301 50" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_60" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1 301 30" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_10" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1 301 40" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301 70" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_90" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1_301_20" />
                                                                 301 80" />
            <fvRsSecInherited tDn="uni/tn-Tn1/ap-AP1/epg-uSeg1</pre>
            <fvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular"
tDn="topology/pod-1/node-108" />
            <frvRsNodeAtt descr="" encap="unknown" instrImedcy="immediate" mode="regular"
tDn="topology/pod-1/node-109" />
            <fvRsDomAtt classPref="encap" delimiter="" encap="vlan-301" encapMode="auto"</pre>
instrImedcy="immediate" netflowPref="disabled" primaryEncap="unknown" resImedcy="immediate"
tDn="uni/phys-PhysDom1" />
            <fre><fvRsCustQosPol tnQosCustomPolName="" />
            <fvRsBd tnFvBDName="T1BD21" />
          <fru><fru>Crtrn descr="" match="any" name="default" nameAlias="" ownerKey="" ownerTag=""
prec="0">
                <fvIpAttr descr="" ip="192.14.1.120" name="0" nameAlias="" ownerKey=""
ownerTag="" usefvSubnet="no" />
            </fvCrtrn>
        </fvAEPq>
    </fvTenant>
</polUni>
```

What to do next

Configuring L2Out EPG Contract Inheritance Using the REST API

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure the L2Out EPG, to serve as the **L2Out Contract Master**.

Configure the contracts to be shared, and associate them to the contract master.

Procedure

To configure L2Out EPG contract inheritance using the REST API, send a post with XML such as the following example:

Example:

```
<polUni>
  <fre><fvTenant name="Tn1" >
     <12extOut name="12out1">
        <12extRsEBd encap="vlan-51" tnFvBDName="T1BD1" />
        <12extRsL2DomAtt tDn="uni/12dom-12Dom1" />
        <12extLNodeP name="default" >
           <l2extLIfP name="default" >
              <12extRsPathL2OutAtt tDn="topology/pod-1/protpaths-108-109/pathep-[VPC83]"
/>
           </l2extLIfP>
        </l2extLNodeP>
        <12extInstP matchT="AtleastOne" name="12Ext1">
           <frvSubnet ctrl="nd" ip="192.13.1.10/24" preferred="no" scope="public, shared"
virtual="no" />
           <fvRsProv tnVzBrCPName="T1ctr tcp" />
        </l2extInstP>
     </l2extOut>
     <12extOut name="12out2">
        <12extRsEBd encap="vlan-53" tnFvBDName="T1BD3" />
        <12extRsL2DomAtt tDn="uni/12dom-12Dom1" />
        <12extLNodeP name="default" >
           <l2extLIfP name="default" >
              <12extRsPathL2OutAtt tDn="topology/pod-1/protpaths-108-109/pathep-[VPC84]"</pre>
           </l2extLIfP>
        </l2extLNodeP>
        <12extInstP matchT="AtleastOne" name="12Ext3" prefGrMemb="exclude">
           <frvSubnet ctrl="nd" ip="192.13.2.10/24" preferred="no" scope="public, shared"
virtual="no" />
           <fre><fre>KsSecInherited tDn="uni/tn-Tn1/l2out-l2out1/instP-l2Ext1" />
        </l2extInstP>
     </l2extOut>
  </fvTenant>
</polUni>
```

Configuring L3Out EPG Contract Inheritance Using the REST API

Before you begin

Configure the tenant and application profile to be used by the EPGs.

Configure the L3Out EPG, to serve as the L3Out Contract Master.

Configure the contracts to be shared, and associate them to the contract master.

Procedure

To configure L3Out EPG contract inheritance using the REST API, send a post with XML such as the following example:

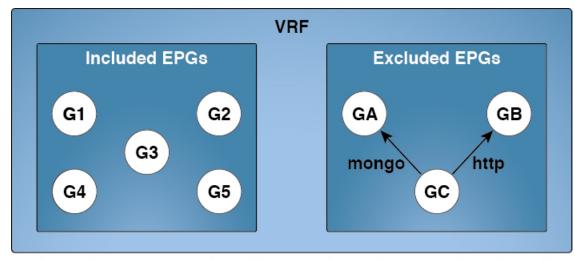
Example:

```
<polUni>
  <fvTenant name="Tn6" >
  <!- L3out creation -->
     <ospfIfPol deadIntvl="40" helloIntvl="10" name="ospf1" pfxSuppress="inherit" prio="1"</pre>
 rexmitIntvl="5" xmitDelay="1" />
     <l3extOut enforceRtctrl="export" name="T6L3out821">
        <ospfExtP areaCost="1" areaCtrl="redistribute, summary" areaId="0.0.0.1"</pre>
areaType="regular" />
        <l3extRsL3DomAtt tDn="uni/l3dom-L3Dom1" />
        <13extRsEctx tnFvCtxName="T6ctx21" />
        <13extLNodeP name="13out vpc82 prof" >
           <13extRsNodeL3OutAtt rtrId="1.1.1.8" rtrIdLoopBack="yes"</pre>
tDn="topology/pod-1/node-108">
              <l3extInfraNodeP fabricExtCtrlPeering="no" />
           </l3extRsNodeL3OutAtt>
           <l3extRsNodeL3OutAtt rtrId="1.1.1.9" rtrIdLoopBack="yes"</pre>
tDn="topology/pod-1/node-109">
              <l3extInfraNodeP fabricExtCtrlPeering="no" />
           </l3extRsNodeL3OutAtt>
           <13extLIfP name="ospf1" >
              <ospfIfP authKeyId="1" authType="none" >
                 <ospfRsIfPol tnOspfIfPolName="ospf1" />
              </ospfIfP>
              <13extRsPathL3OutAtt encap="vlan-551" ifInstT="ext-svi" mode="regular"</pre>
mtu="1500" tDn="topology/pod-1/protpaths-108-109/pathep-[VPC82]" >
                 <13extMember addr="192.16.51.1/24" llAddr="0.0.0.0" side="B" />
                 <l3extMember addr="192.16.51.2/24" llAddr="0.0.0.0" side="A" />
              </l3extRsPathL3OutAtt>
              <l3extRsNdIfPol tnNdIfPolName="" />
           </l3extLIfP>
        </l></l></l></l></l><
        <13extInstP matchT="AtleastOne" name="T613Ext821">
              <fvRsProv tnVzBrCPName="T6ctr UDP TCP2" />
              <fvRsCons tnVzBrCPName="T6ctr UDP TCP1" />
           <13extSubnet ip="192.16.51.0/24"
scope="import-security, shared-rtctrl, shared-security" />
              <13extSubnet ip="192.16.61.0/24"
scope="import-security, shared-rtctrl, shared-security" />
              <vzConsSubjLbl name="tcp" tag="green" />
           <vzProvSubjLbl name="tcp" tag="green" />
        </l3extInstP>
        <13extInstP matchT="AtleastOne" name="T613Ext823">
           <fvRsSecInherited tDn="uni/tn-Tn6/out-T6L3out821/instP-T6l3Ext821" />
              <13extSubnet ip="192.16.63.0/24"
scope="import-security, shared-rtctrl, shared-security" />
        </13extInstP>
     </l3extOut>
  </fvTenant>
```

</polUni>

Contract Preferred Groups

About Contract Preferred Groups


There are two types of policy enforcements available for EPGs in a VRF with a contract preferred group configured:

- Included EPGs: EPGs can freely communicate with each other without contracts, if they have membership in a contract preferred group. This is based on the source-any-destination-any-permit default rule.
- Excluded EPGs: EPGs that are not members of preferred groups require contracts to communicate with each other. Otherwise, the default source-any-destination-any-deny rule applies.

The contract preferred group feature enables greater control of communication between EPGs in a VRF. If most of the EPGs in the VRF should have open communication, but a few should only have limited communication with the other EPGs, you can configure a combination of a contract preferred group and contracts with filters to control inter-EPG communication precisely.

EPGs that are excluded from the preferred group can only communicate with other EPGs if there is a contract in place to override the source-any-destination-any-deny default rule.

Figure 10: Contract Preferred Group Overview

Source	Destination	Filter	Action
any	any	implicit	permit
GA	any	implicit	deny
any	GA	implicit	deny
GB	any	implicit	deny
any	GB	implicit	deny
GC	any	implicit	deny
any	GC	implicit	deny

Source	Destination	Filter	Action
GC	GA	mongo	permit
GA	GC	mongo	permit
GC	GB	http	permit
GB	GC	http	permit

1188

Limitations

The following limitations apply to contract preferred groups:

• In topologies where an L3Out and application EPG are configured in a Contract Preferred Group, and the EPG is deployed only on a VPC, you may find that only one leaf switch in the VPC has the prefix entry for the L3Out. In this situation, the other leaf switch in the VPC does not have the entry, and therefore drops the traffic.

To workaround this issue, you can do one of the following:

- Disable and reenable the contract group in the VRF
- Delete and recreate the prefix entries for the L3Out EPG
- Also, where the provider or consumer EPG in a service graph contract is included in a contract group, the shadow EPG can not be excluded from the contract group. The shadow EPG will be permitted in the contract group, but it does not trigger contract group policy deployment on the node where the shadow EPG is deployed. To download the contract group policy to the node, you deploy a dummy EPG within the contract group.

Guidelines for Contract Preferred Groups

When configuring contract preferred groups, refer to the following guidelines:

- Contract Preferred Group-included EPGs are not supported with a 0/0 prefix in external EPG (InstP). If, for the external EPG (InstP) to Tenant EPG, a 0/0 prefix is required with the use of Contract Preferred Group, then 0/0 can be split to 0/1 and 128/1.
- When configuring policy enforcement between external EPGs (transit routing case), you must configure the second external EPG (InstP) with the default prefix 0/0 for export route control, aggregate export, and external security. In addition, the preferred group must be excluded, and you must use an any any contract (or desired contract) between the transit InstPs.
- Contract Preferred Group-EPGs are not supported with the GOLF feature. Communication between an application EPG and the L3Out EPG for GOLF must be governed by explicit contracts.

Configuring Contract Preferred Groups Using the GUI

Before you begin

Create the tenants and VRF, and EPGs that will consume the contract preferred group.

Procedure

- **Step 1** On the menu bar, click **Tenants** > *tenant-name*.
- Step 2 In the Navigation pane, expand the tenant and Networking.
- Step 3 Expand the VRF for which you are configuring the contract preferred group, and click EPG Collection for VRF.
- Step 4 In the Preferred Group Member field, click Enabled.
- Step 5 Click Submit.
- **Step 6** In the **Navigation** pane, expand **Application Profiles** and create or expand an application profile for the tenant VRF.
- **Step 7** Expand **Application EPGs** and click the EPG that will consume the contract preferred group.
- Step 8 In the Preferred Group Member field, click Include.
- Step 9 Click Submit.

What to do next

Enable membership in the preferred group for other EPGs that should have unlimited communication with this EPG. You can also configure appropriate contracts to control communication between the EPGs in the preferred group and other EPGs that may not be members.

Configuring Contract Preferred Groups Using the NX-OS Style CLI

You can use the APIC NX-OS style CLI to configure a contract preferred group. In this example, a contract preferred group is configured for a VRF. One of the EPGs using the VRF is included in the preferred group.

Before you begin

Create the tenants, VRFs, and EPGs that will consume the contract preferred group.

	Command or Action	Purpose	
Step 1	configure	Enters configuration mode	
	Example:		
	<pre>apic1# configure apic1(config)#</pre>		
Step 2	tenanttenant-name	Creates a tenant or enters into tenant	
	Example:	configuration mode	
	apic1(config)# tenant tenant64		
Step 3	vrf context vrf-name	Creates a VRF or enters into VRF	
	Example:	configuration mode.	
	apic1(config-tenant)# vrf context vrf64		
Step 4	whitelist-blacklist-mix	Enables a contract preferred group for the VRF	
	Example:	and then returns to tenant configuration mode.	
	<pre>apic1(config-tenant-vrf)# whitelist-blacklist-mix apic1(config-tenant-vrf)# exit</pre>		
Step 5	bridge-domain bd-name	Creates a bridge-domain for the VRF or enters	
	Example:	into BD configuration mode.	
	<pre>apic1(config-tenant)# bridge-domain bd64</pre>		
Step 6	vrf member vrf-name	Associates the VRF with the bridge-domain	
	Example:	and returns to teanant configuration mode.	
	<pre>apic1(config-tenant-bd)# vrf member vrf64</pre>		
	apic1(config-tenant-bd)# exit		
Step 7	application app-name	Creates an application or enters into application	
	Example:	configuration mode.	
	<pre>apic1(config-tenant)# application app-ldap</pre>		
Step 8	epg epg-name	Creates an EPG or enters into EPG tenant-app	
	Example:	EPG configuration mode.	

	Command or Action	Purpose
	apic1(config-tenant-app)# epg epg-ldap	
Step 9	bridge-domain member bd-name	Associates the EPG with the bridge-domain .
	Example:	
	<pre>apic1(config-tenant-app-epg) # bridge-domain member bd64</pre>	
Step 10	vrf-blacklist-mode	Configures this EPG to be included in the
	Example:	contract preferred group.
	<pre>apic1(config-tenant-app-epg) # vrf-blacklist-mode</pre>	

Example

The following example creates a contract preferred group for vrf64 and includes epg-ldap in it.

```
apic1# configure
apic1(config)# tenant tenant64
apic1(config-tenant)# vrf context vrf64
apic1(config-tenant-vrf)# whitelist-blacklist-mix
apic1(config-tenant-vrf)# exit

apic1(config-tenant)# bridge-domain bd64
apic1(config-tenant-bd)# vrf member vrf64
apic1(config-tenant-bd)# exit

apic1(config-tenant)# application app-ldap
apic1(config-tenant-app)# epg epg-ldap
apic1(config-tenant-app-epg)# bridge-domain member bd64
apic1(config-tenant-app-epg)# vrf-blacklist-mode
```

Configuring Contract Preferred Groups Using the REST API

The following example creates a contract preferred group in vrf64, and creates three EPGs in the VRF:

- epg-ldap—Included in the preferred group
- mail—Included in the preferred group
- radius—Excluded from the preferred group

Before you begin

Create the tenants, VRFs, and the EPGs in the VRF.

Procedure

Create a contract preferred group by sending a post, with XML such as the example:

Example:

```
<polUni>
  <frvTenant name="tenant64">
    <fvCtx name="vrf64"> <vzAny prefGrMemb="enabled"/> </fvCtx>
    <fvBD name="bd64"> <fvRsCtx tnFvCtxName="vrf64"/> </fvBD>
    <fvAp name="app-lldp">
      <fra><fvAEPg name="epg-ldap" prefGrMemb="include">
        <fvRsBd tnFvBDName="bd64"/>
        <frvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/3]" encap="vlan-113"
instrImedcy="immediate"/>
      </fvAEPq>
      <frvAEPg name="mail" prefGrMemb="include">
        <fvRsBd tnFvBDName="bd64"/>
        <fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/4]" encap="vlan-114"
instrImedcy="immediate"/>
      </fvAEPa>
      <fra>fvAEPg name="radius" prefGrMemb="exclude">
        <fvRsBd tnFvBDName="bd64"/>
        <frvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[eth1/5]" encap="vlan-115"
instrImedcy="immediate"/>
      </fvAEPq>
    </fvAp>
  </fvTenant>
</polUni>
```

What to do next

Create a contract governing the communication of the radius EPG with other EPGs.

Contracts with Permit and Deny Rules

About Contracts with Permit and Deny Rules

Starting with the Cisco Application Policy Infrastructure Controller (Cisco APIC) release 3.2, You can configure contracts with both permit and deny actions, instead of just permit. You can configure the deny action with different priorities: default, highest, medium and lowest.

Rule conflicts are resolved as follows:

- The implicit deny has the lowest priority of all rules.
- Contracts between vzAny have higher priority than the implicit deny.
- Contracts between specific EPG pairs win over contracts with vzAny, because EPG-to-EPG contract rules have higher priority than vzAny-to-vzAny rules.
- Deny rules with the default priority for a contract between a specific EPG pair have the same level of priority as the permit rules for that EPG pair. When traffic matches both a permit and a deny rule with the same priority, the deny rule wins.
- Deny rules with the default priority for a contract between vzAny has the same level of priority as the permit rules for the vzAny pair. When traffic matches both a permit and a deny rule with the same priority, the deny rule wins.
- Deny rules with the highest priority are handled at the same level as EPG-to-EPG contracts.

- Deny rules with medium priority are handled at the same level as vzAny-to-EPG contracts.
- Deny rules with the lowest priority are handled at the same level as vzAny-to-vzAny contracts.
- If the deny priority is lowered in a contract between EPGs, a permit rule match between EPGs would win over deny.