
Developing Device Specifications

• About Device Types, page 1

• About Device Specifications, page 2

• About Cluster and Device Configurations, page 8

• About Functional Configurations, page 11

• About Parameter Objects and Folders, page 19

• Managed Object Model, page 34

About Device Types
The Application Policy Infrastructure Controller (APIC) classifies network service devices into two types:

• GoTo—Represents any device that is Layer 3 (L3) attached. The packet is delivered to a GoTo device
because either the destination MAC or destination IP within the packet identifies the device. Typically,
Application Delivery Controllers (ADCs) or L3 firewalls represent a GoTo device.

• GoThrough—Represents any transparent device. The destination MAC or destination IP address is not
addressed to the device, but the packet is steered through the device due to VLAN stitching. Typically,
Layer 2 (L2) firewall or Intrusion Detection System (IDS) devices represent a GoThrough device. The
end stations that exchange packets are not aware of the presence of a GoThrough (transparent device)
within the path.

The APIC further classifies device instances registered with an APIC into two categories:

• Concrete device—Represented by vnsCDev, which identifies an instance of a service device. A concrete
device can be physical or virtual. A concrete device has its own management IP address to configure
and monitor through the APIC.

• Logical device—Represented by vnsLDevVip. vnsLDevVip identifies a cluster of one or more concrete
devices. A logical device is addressed and managed through a management IP address that is assigned
to the cluster. The service functions offered by the service device are always rendered on a logical device.
Typically, a logical device represents a cluster of devices deployed in active-activemode or active-standby
high availability mode. If you deploy a device in standalone mode, the logical device contains only one
concrete device. The management IP address for logical devices and concrete devices will be the same.
All service operations are always done on a logical device instance.

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
1

For information about registering a device with an APIC, see the Cisco APIC Layer 4 to Layer 7 Services
Deployment Guide.

A service device can be single-context or multi-context. A multi-context device supports multiple routing
domains, which means that the device supports overlapping IP addresses to be configured across different
routing contexts.

A single-context device must be registered to a specific tenant. A single-context device cannot be shared by
multiple tenants. A multi-context device can be registered under a common tenant and can be shared by
multiple tenants.

About Device Specifications
The configuration of the Application Policy Infrastructure Controller (APIC) is represented by an object model
that consists of a large number of managed objects (MOs). A device type is defined by a tree of managed
objects that have Meta Device (MDev) at the root. The device specification XML file extends the APIC's
managed object model by defining a new MDev object.

A device specification file must define aMeta Device (vnsMDev) object. The vnsMDev object contains metadata
that describes vendor-specific information, such as the vendor name, device package version, device version
supported, device script binding, and device model describing that functions and parameters that are required
to realize these functions on the device.

Each unique major version of a device package results in the creation of one instance of a vnsMDev object
instance with the APIC Policy Manager. The APIC can support many instances of the vnsMDev object. The
vnsMDev object is contained within an infra-policy (represented by infraInfra) under the APIC global policy.
The global policy is the universe of policies, which is represented as polUni. The following figure describes
the relations of vnsMDev to the APIC's managed object hierarchy.

Figure 1: Relations of vnsMDev to the APIC's Managed Object Hierarchy

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
2

Developing Device Specifications
About Device Specifications

The device model is contained by a vnsMDev object. The device specification file must have the following
structure:
<poliUni>

<infraInfra>
<vnsMDev>

<!-- device Sepcification-->
</vnsMdev>

</infraInfra>
</poliUni>

vnsMDev must have the following attributes:

• vendor—Identifies the device package vendor.

• model—Identifies the device models that are managed by the device specification.

• version—Identifies the device package version, which is also referred to in the document as the major
version. You can upload and use one or more versions of a device package on the APIC. The APIC
allows you to select a device package to be used for managing a device instance that is registered with
the APIC.

The device package version is incremented when major structural changes are made to the device model
and properties of existing device objects are modified or existing objects are deleted or when the device
package is updated to manage later revisions of the device. You must increment a minor version for any
bug fixes or minor enhancements that are made or additional that objects are augmented to the device
package.

• funcMask—Indicates whether a device package can support service functions deployed in GoTo or
GoThrough mode. A device package can support both the GoTo and the GoThrough mode of service
insertion. If both modes are supported, define funcMask as a comma-separated list in the following
format:
GoTo,GoThrough

A service function on a device can be deployed as GoTo or GoThrough only when a device package
supports such a configuration. Typically, funcMask for firewall device packages supports both the GoTo
mode and the GoThrough mode to allow firewalls to be deployed in routed or transparent bridge mode.

The following example shows the vnsMDev attributes:
<vnsMDev vendor="Insieme"
model="NetworkService"
version="1.0"
funcMask="GoTo,GoThrough">

The vnsMDev object instance is identified by the <vendor-model-version> string. The APIC creates a vnsMDev
instance for each unique <vendor-model-version> string.

The device model is divided into following parts:

• Generic Part—Defines generic information about the device. It consists of the following objects:

◦Device Credentials

◦Interface Labels

◦Device Profiles

• Cluster and Device Configuration Part—Defines any cluster or device specific configuration. It consists
of the following objects:

◦Cluster Configuration

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
3

Developing Device Specifications
About Device Specifications

◦Device Configuration

• Functional Part—Describes the service functions and its configuration. The configuration is divided
under the following objects:

◦Global Functional Device Configuration

◦Group Configuration

◦Function Configuration

Device Script
The device script information is defined through the vnsDevScript object. The device Script object associates
the python file defining Application Policy Infrastructure Controller (APIC) APIs. The APIC calls these
python APIs to instantiate any service functions defined by the device package.

The device script object contains following attributes:

DescriptionTypeAttribute

Identifies controller API version
compatibility. It is a string whose
value must match the APIC API
version . The currently accepted
values are "1.0" and "1.1". A
device package that supports route
peering with Cisco Application
Centric Infrastructure (ACI) fabric
must set the controller version to
"1.1". If route peering is not
supported, the device package can
set the controller version to "1.0"
to allow the package to work with
all APIC releases. A device
package with controller version set
to "1.1" will not work with the
"1.0" controller version. A device
package with the controller version
"1.0" will work with all APIC
releases with controller version
"1.0" and higher.

StringctrlrVersion

Identifies the minor version of the
device package. The device
package developers should use this
version string to track any revisions
that are made to the device script
or model without making structural
changes to existing objects in the
device model.

String (512 characters)minorversion

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
4

Developing Device Specifications
Device Script

DescriptionTypeAttribute

APIC passes this versionExpr
string to the script during a
deviceValidate() call. The device
package developer defines any
string (it can be regular expression)
to indicate device versions that this
device package can support.

String (512 characters)versionExpr

The minorversion string provides a non-disruptive upgrade of a device package. If only the device scripts
have changed, the device package developer must update only the minor version string. When only the
minorversion has changed and the device package version has not been incremented, the APIC restarts the
scripts associated with the package with the new set of files bundled in the device package. The Managed
Object Model is refreshed with the new objects defined in the device model specified in the device package.
This enables efficient upgrade of the script without triggering re-rendering of the graphs that use the device
package.

Devices Credentials
The devices credentials object allows vendors to specify the type of credentials that the Application Policy
Infrastructure Controller (APIC) passes to the device script for authentication while communicating with the
device. Currently, only the username and password-based authentication is supported. The device specification
file must define the following object:
<vnsMCred name=”username” key=”username”/>
<vnsMCredSecret name=”password” key=”password”/>

The device specification file must define only one instance of vnsMCred and vnsMCredSecret. During the
device registration, you provide a value for the username and password object. For more information, see the
Cisco APIC Layer 4 to Layer 7 Services Deployment Guide .

Interface Labels
Interfaces on the device must be labeled in an abstract way. A function associates with these interfaces to
represent a logical flow of packets through the service function. For example, a firewall device could label
the interfaces as trusted, untrusted, cluster, and management interfaces. Packets that are received from an
untrusted interface could be directed through the firewall function and emitted out of a trusted interface. As
another example, a device could label its interface as an external, internal, HA, and management interface. A
load balancing function could receive packet from an external interface and load balance to a pool through
an internal interface. A single physical interface (or vNIC in case of virtual service) can be assigned one or
more labels. The labels are assigned to the interfaces on a device at the time of registering logical and concrete
devices. You can assign multiple labels to a single interface for single arm deployment. The device models
must specify labels for its interfaces. The labels are defined using the vnsMIfLbl object type.

The following example defines the labels:
<vnsMIfLbl name="external" shortName="ext"/>
<vnsMIfLbl name="internal" shortName="int"/>
<vnsMIfLbl name="management" shortName="mgmt" />

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
5

Developing Device Specifications
Devices Credentials

The vnsMIfLbl object must contain the name attribute and shortName attribute. The short name must be four
characters or less. The device specification can define one or more types of the vnsMIfLbl object.

Vendor Device Profile
The vendor device profile (vnsDevProf) is a new object in the Layer 4 - Layer 7 management information
tree. This object allows a vendor to add device model information to the Application Policy Infrastructure
Controller (APIC). Vendors provide it as part of device package or provide it separately. vnsDevProf is
contained within vnsMDev. A vnsMDev can have one or more vnsDevProf. vnsDevProf contains information
pertaining to a specific device model, its interface and other properties. The APIC GUI uses vnsDevProf to
provide users the option to select a model while registering concrete devices with the APIC. vnsDevProf
provides an ease of use enhancement to the APICGUI experience . vnsDevProf simplifies the device registration
process and reduces user error when specifying physical interface name and other parameters during registering
with the APIC and forming a logical cluster.

The APIC also uses vnsDevProf to update a device package after it has been uploaded. vnsDevProf can be
augmented by a tenant administrator. Vendors define a new vnsDevProf and make it available independently
of the device package in order to support new profile information such as chassis, model or IO module. Or,
tenant administrators define their own device profile and use it for registering devices.

The vnsDevProf object has the following attributes:

DescriptionMandatoryAttribute

Uniquely identifies the object. Each
object name must have a unique
value within the containing object.
The name can contain only
alphanumeric characters, '_' or '-'.
The name cannot contain any other
characters. The APIC uses the
name to lookup a specific object
within a containing object.

The name size is limited to a
maximum of 512 characters.

The name attribute identifies a
specific devicemodel supported by
the device package. For example:

• ASA5585-S20K-X9

• ASA558-S60P60SK9

Yesname

Specifies whether the device type
is pyhsical or virtual.

The values are:

• PHYSICAL

• VIRTUAL

Yestype

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
6

Developing Device Specifications
Vendor Device Profile

DescriptionMandatoryAttribute

Specifies if the device is
context-aware (supports multiple
contexts on the same logical
cluster). For example, it has
support for multiple routing
domains and supports unique
configuration for each user on the
same logical device cluster. The
values for this attribute can be:

• single-context (default)

• multiple-contect

Yescontext

Provides a prefix that identifies the
logical interface created by link
aggregation (with or without the
LACP protocol). The GUI uses the
pcPrefix as a prefix when a user
selects a link bundle (Port-channel
or Etherchannel) as the device
interface while registering a device
with the APIC.

A device package developer
defines one pcPrefix for a given
vnsDevProf.

The following are pcPrefix
examples:

• pcPrefix='Port-Channel'

• pcPrefix='LA'

• pcPrefix='Etherchannel'

NopcPrefix

Vendor Device Interface Name
The vnsDevInt is a new object in the Layer 4 to Layer 7 management information tree. The vnsDevInt object
describes an interface name on a given chassis. The Application Policy Infrastructure Controller (APIC) GUI
uses the vnsDevInt information provided by the user during device registration. Users map a logical interface
name to one of the vnsDevInt found on the device. The APIC GUI provides a drop down list based on
vnsDevInt contained in the vnsDevProf. Users select one of the interfaces while associating a logical interface
with a physical interface.

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
7

Developing Device Specifications
Vendor Device Interface Name

Users are not limited to the interfaces defined under vnsDevProf. Users can select the ‘other’ option in the
APIC GUI and provide any arbitrary string as the interface name. vnsDevInt should have the list of all
supported interface names.

Note

The vnsDevInt object has the following attributes:

DescriptionMandatoryAttribute

Uniquely identifies the object. Each
object name must have a unique
value within the containing
vnsDevProf object . The name
cannot contain ' '. The name size is
limited to a maximum of 512
characters.

For example:

• eth1.1

• 1.1

• 1/1

• Gig0/1/1

• Tunnel0

• Ehternet0

• Eth0

Yesname

Specifies whether the device type
is whether the device is reserved
for management access.

The values are:

• yes

• no

NomgmtOnly

About Cluster and Device Configurations
The Application Policy Infrastructure Controller (APIC) allows devices to be deployed in standalone,
High-Available Active-Standby mode or as a Cluster in Active-Active mode. The cluster and device
configuration section allows vendors to specify any configuration that applies to the cluster or a specific node
within a cluster irrespective of the HA mode. Cluster and device specification is not mandatory.

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
8

Developing Device Specifications
About Cluster and Device Configurations

Cluster Configurations
The device specification file can define just one cluster configuration object referred to as vnsClusterCfg.
The cluster configuration contains the configuration for an entire cluster. The configuration that applies to a
cluster is represented by one or more objects of type vnsMParam that can be further grouped logically under
one or more vnsMFolder objects.

You can instantiate parameters and folders defined under the cluster configuration for a logical device registered
with an Application Policy Infrastructure Controller (APIC). The configuration defined under a cluster
configuration is passed to the device script only during a clusterModify() or clusterAudit() call. The
configuration defined under a cluster cannot be referenced by a service function. The cluster configuration is
not passed to the scripts during a serviceModify(), serviceAudit(), serviceHealth(), or serviceCounters()
API call.

vnsClusterCfg can contain one or more vnsMFeature objects. The vnsMFeature object allows logical grouping
of cluster configurations. Folders are grouped based on the dispFeature attribute defined under folder. The
Application Policy Infrastructure Controller (APIC) GUI uses the vnsMFeature object to order and group the
folders for user input.

A device package developer should define any cluster level configuration within a vnsClusterCfg object.
For example, a cluster configuration can include a Network Time Protocol (NTP) server configuration and
the syslog server IP address.

The following example shows a cluster configuration:
<vnsClusterCfg name="ClusterConfig">
<vnsMFolder key="SyslogConfig">
<vnsMParam key="ipaddress"
description="Syslog Server IP address"
dType="str"
validation="isIPAddress"/>

</vnsMFolder>

<vnsMFolder key="NTPConfig">
<vnsMParam key="ipaddress"
description="NTP Server IP address"
dType="str"
validation="isIPAddress"/>

</vnsMFolder>
</vnsClusterCfg>

Routing Capability
The device model can indicate which routing protocols can be configured through the device package. The
routing protocol configuration capability can be defined by using the vnsRoutingCfg object. This object is
contained within ClusterCfg.

The vnsRoutingCfg object has the following attributes:

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
9

Developing Device Specifications
Cluster Configurations

DescriptionMandatoryAttribute

Specifies a set of routing protocols
that are supported by the device
package. The value is a
comma-separated list of the
supported protocols.

The values are:

• ospf

• ospfv3

• bgp

• bgpv6

The list must not contain any
whitespace.

YessupportedProtocols

The absence of the vnsRoutingCfg object in the device package indicates that the device package does not
support any routing protocols. The route peering configuration is pushed to a device package only when
routing protocol support is explicitly indicated by the vnsRoutingCfg object.

The Application Policy Infrastructure Controller (APIC) raises a fault when you try to configure a protocol
that is not supported by the device.

The following example shows a routing protocol configuration:
<vnsClusterCfg name="ClusterConfig">
<vnsRoutingCfg supportedProtocols="ospf,ospfv3,bgp,bgpv6"/>

…
</vnsClusterCfg>

Device Configurations
The device specification file can contain one instance of vnsDevCfg that contains a device-specific configuration.
The vnsDevCfg is contained within a vnsClusterCfg. The device-specific configuration is represented by one
or more vnsMParam, which can be further grouped under one or more vnsMFolder.

The configuration that is defined under a device configuration is instantiated by the user during concrete
device registration within a logical device. The device configuration is passed to the device scripts only during
the deviceAudit(), deviceModify(), deviceHealth(), and deviceCounters() calls. The device configuration
cannot be referenced from a service function, during the clusterModify() call, or during the clusterAudit()
call.

A device configuration can contain a configuration such as the HA mode on the device, the peer IP address
for cluster, or the port-channel (LACP) configuration that must be pushed to a specific device within a cluster.

vnsDevCfg can contain one or more vnsMFeature objects. The vnsMFeature object allows logical grouping
of cluster configurations. Folders are grouped based on the dispFeature attribute defined under folder. The
Application Policy Infrastructure Controller (APIC) GUI uses the vnsMFeature object to order and group the
folders for user input.

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
10

Developing Device Specifications
Device Configurations

The following example shows a device configuration:
<vnsClusterCfg name="ClusterConfig">
<vnsDevCfg name="DevCfg">
<vnsMFolder key="HighAvailabilityCfg" cardinality="n">
<vnsMParam key="peerIP"
description="HA Pair peer IP address"
dType="str"
validation="isIPAddress"/>

</vnsMFolder>
</vnsDevCfg>

</vnsClusterCfg>

About Functional Configurations
A device package and a device can support many service functions. Typically, any function that transforms
and influences packet forwarding on the device can be represented as a service function. For example, SSL
offload, VPN, server load balancing, and web application filtering can be modeled as functions that are
supported by the device. One or more such functions can be modeled in the device specification file.

The functions are represented by a vnsMFunc object. The vnsMFunc object has a name attribute. Each function
that is defined within the device package must have a unique name. The name is used to look up a function
that is defined under an instance of an MDev.

The vnsMFunc object must contain the following object:

• vnsMConn

The parameters that are required to render a specific service function can be defined under the following
categories:

• Function

• Group

• Device global

The following example shows the structure of a function configuration:
<poliUni>

<infraInfra>
<vnsMDev>
<!-- Generic Part -->

<!-- Device Credentials -->
<vnsMCred name=”username” key=”username”/>
<vnsMCredSecret name=”password” key=”password”/>

<!-- Interface Labels -->
<vnsMIfLbl name="external" shortName="ext"/>

<!-- Device Profiles -->

<!-- Cluster Configuration -->
<vnsClusterCfg name="ClusterCfg">

<!-- Device Configuration -->
<vnsDevCfg name="DeviceConfig">

</vnsDevCfg>
</vnsClusterCfg>

<!-- Functional Configuration -->

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
11

Developing Device Specifications
About Functional Configurations

<!-- Global Functional Device Configuration -->
<vnsMDevCfg>
</vnsMDevCfg>

<!-- Group Configuration -->
<vnsGrpCfg>
</vnsGrpCfg>

<!—Function configuration: Could be one or more such configuration -->
<vnsMFunc>
</vnsMFunc>

</vnsMdev>
</infraInfra>

</poliUni>

Connector Objects
A function must have at least one connector object: vnsMConn. The connector object is used to link one or
more functions to form a service graph. If a function is a transit function, it must have at least two connectors.
If a function is a stub function, such as a collector, it can have just one connector. Typically, only IDS devices
that are in passive mode and are capturing packets that are copied to the device have just one connector defined
for the capture function. All other functions, such as a firewall, load balancers, and SSL offload, have two or
more connectors. Currently, the Application Policy Infrastructure Controller (APIC) supports a maximum of
two connectors per function, which means that you can define an input and output connector for any transit
function.

The connector has the following attributes:

DescriptionMandatoryAttribute

Specifies the name of the
connector. Every connector within
a function must have a unique
name.

Yesname

Specifies the connector
encapsulation type. This attribute
is the encapsulation that is used for
traffic on the connector and is
specified as a value of vlan or
vxlan. The value specifies whether
the packet is sent encapsulated
from the network to the device
VLAN or VXLAN encapsulated.
On a virtual device, the
encapsulation might be removed
by the virtual switch and the
VLAN or VXLAN encapsulation
header might not be seen by the
virtual service device. Currently,
the APIC supports only VLAN
encapsulation.

YesencType

Specifies the connector direction.
This direction can be specified as
either input or output.

Nodir

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
12

Developing Device Specifications
Connector Objects

DescriptionMandatoryAttribute

If a function supports multiple
instances of a given connector type,
the device model can specify this
explicitly by setting the cardinality
to n. By default, the cardinality is
1.

Nocardinality

Deprecated in controller version
1.1. The APIC still supports this
attribute in device packages for
backward compatibility.

Allows endpoint or network
attach/detach notifications to be
generated for the function. This
attribute is used to determine
whether the APIC calls the device
script when an endpoint or subnet
association changes for an endpoint
group (EPG) that is attached
directly or indirectly to this
connector. The notification can
take the following values:

• none

• subnet

• endpoint

If the notification attribute is not
specified, it defaults to none, which
means that the APICwill not attach
nor detach the network or endpoint
APIs.

This attribute is type enum. Device
packages can either allow subnet
or endpoint notification.

The check 'epNotifications'
attribute was added in controller
version 1.1 to allow both
notifications on a connector.

Nonotification

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
13

Developing Device Specifications
Connector Objects

DescriptionMandatoryAttribute

Allows endpoint or network
attach/detach notifications to be
generated for the function. This
attribute is used to determine
whether the APIC calls the device
script when an endpoint or subnet
association changes for an endpoint
group (EPG) that is attached
directly or indirectly to this
connector. The notification can
take the following values:

• none

• subnet

• endpoint

If the notification attribute is not
specified, it defaults to none, which
means that the APICwill not attach
nor detach the network or endpoint
APIs.

This attribute is of type bitmask.
The attribute allows a device
package to allow endpoint, subnet,
or both subnet and endpoint
notifications.

This attribute is supported only in
controller version 1.1 or later.

NoepNotifications

A connector must contain just one vnsRsInterface object. This object associates a connector to a specific
interface type that is identified by the labels that are defined by using vnsMIfLbl. The APIC uses this relation
to pass the specific interface information while rendering the service function. For more information, see
Fabric Connectivity.

Images
The device package must contain the images directory, and the directory must contain a single file named
vendor_name.gif. The image size must be 28 pixels x 28 pixels.

The following example shows a listing of a package zip file from the vendor named Insieme:
bash-4.1$ unzip -l insiemeDevicePackage.zip
Archive: insiemeDevicePackage.zip
Length Date Time Name

--------- ---------- ----- ----
309597 03-17-2014 17:39 DeviceModel.xml
1597 03-17-2014 17:39 DeviceScript.py

0 01-30-2014 15:36 common/

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
14

Developing Device Specifications
Images

fabric___connectivity.pdf#unique_36

1919 02-06-2014 11:35 common/deviceInterface.py
0 01-30-2014 15:36 feature/

21919 02-06-2014 11:35 feature/functionCommon.py
6485 10-31-2013 06:32 feature/function2.py
7747 10-31-2013 06:32 feature/function1.py

0 10-31-2013 06:32 feature/__init__.py
0 01-30-2014 15:36 lib/

1919 02-06-2014 11:35 lib/
0 01-30-2014 15:36 util/

21919 02-06-2014 11:35 util/logging.py
0 10-31-2013 06:32 parser/configParser.py
0 02-12-2014 10:07 images/

1380 02-12-2014 10:07 images/insieme.gif

Function Configurations
The vnsMFunc object identifies a specific function on a device that can be managed through the device package.
Each vnsMFunc defined in the device package must be assigned a unique name. A device package developer
can also define a dispLabel attribute for a vnsMFunc object. The dispLabel is a 512 character string. It allows
a device package developer to provide a more user friendly name for the function.When a dispLabel attribute
is defined for a vnsMFunc, the APIC GUI displays the dispLabel string instead of the name attribute. Device
package developers must provide a user friendly name for the functions exposed through the device package.

A device package developer defines parameters that are required to configure a service function under a
function object. Any parameter that is defined under vnsMFunc is scoped under a specific function. The
parameters that are defined under a function can be further grouped logically under one or more folders.

The parameter and folders defined under a function persist if the instance of the function persists. The APIC
deletes the parameters and folders that are defined under a function when the function instance is deleted.

The parameter and folders under a function cannot be shared or referenced by any other function within the
same graph or a different graph that is rendered on the same device. The parameter and folders defined under
the function must have a unique instance on the device for each function instance. The scope of the parameter
and folders the are being limited within a functions context is similar to a local variable in the C language.

The following example defines the parameters of a service function:
<vnsMFunc name="SLB">

<vnsMConn name="external"
dir="input"
encType="vlan"
epNotifications="endpoint">
<vnsRsInterface tDn="uni/infra/mDev-Insieme-SampleDevice-1.0/mIfLbl-external"/>

</vnsMConn>

<vnsMConn name="internal"
dir="output"
encType="vlan"
epNotifications="endpoint">
<vnsRsInterface tDn="uni/infra/mDev-Insieme-SampleDevice-1.0/mIfLbl-internal"/>

</vnsMConn>

<vnsMFolder key="VServer"
scopedBy="epg">
<vnsMParam key="vservername"
description="Name of VServer"
mandatory="true"
dType="str"
validation="isAlpha"/>

<vnsMParam key="port"
description="Port for Virtual server"
validation="isL4Port"/>

<vnsMParam key="persistencetype"
description="persistencetype"/>

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
15

Developing Device Specifications
Function Configurations

<vnsMParam key="servicename"
description="Service bound to this vServer"/>

<vnsMParam key="servicetype"
description="Service bound to this vServer"
dType="str"
validation="isProtocol"/>

<vnsMParam key="clttimeout"
description="Client timeout"/>

</vnsMFolder>
</vnsMFunc>

Group Configurations
Any parameter and folders that are defined under a group configuration can be shared across multiple functions
in a graph. A device package developer can define parameters and folders that can be shared across multiple
functions that are rendered on a single device within a single graph under a group configuration.

The parameters and folders within a group configuration are scoped under a graph instance. Any function
within a graph instance can share and reference the configuration.

Objects defined under a group configuration persists as long as the graph instance persists. The Application
Policy Infrastructure Controller (APIC) deletes the parameter and folder defined under a group configuration
when the graph instance is deleted. Any parameter that is defined under a group configuration must have a
unique instance per graph on a device; a parameter must not be shared or referenced by any other graph
instance that is rendered on the same device.

The group configuration is represented by the vnsGrpCfg object. Only one definition of vnsGrpCfg can be
under vnsMDev. All group parameters and folders that are scoped under a group must be contained within a
vnsGrpCfg object.

Parameters and folders that are defined under a group configuration are similar to static variables in the C
language. The variables persist beyond a function.

Global Function Configurations
Any parameter and folders defined under an vnsMDev configuration can be shared across multiple functions
across multiple graphs. A device package developer can define parameters and folders that can be shared
across multiple functions across multiple graphs that are rendered on a single device under vnsMDevCfg.

Objects defined under a vnsMDev configuration persist if there is at least one graph instance refers to the
parameter or the folder. The Application Policy Infrastructure Controller (APIC) deletes the parameter and
folder that is defined under a vnsMDev configuration when all functions across all graph instances are deleted
from a specific device.

On a multi-context device, the global configuration must have a unique instance per context. The parameters
and folders that are defined under vnsMDev must not be shared across multiple contexts.

The parameter and folders that are defined under a vnsMDev configuration are similar to global variables in
the C language.

Typically, network attributes, such as an IP address configured on an interface, routes, and subnets, have a
global scope. The encapsulation tags that are allocated by the APIC are globally scoped, which allows multiple
parallel functions to be deployed on the same network across multiple graphs.

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
16

Developing Device Specifications
Group Configurations

Relations
A service function can reference a particular parameter or a folder that is defined under a group or vnsMDevCfg,
which allows the function to use an instance of a parameter or a folder that is defined under a group or a device
scope. The relation to a folder is defined using the vnsMRel object. A vnsMRel object can exist only within a
vnsMFolder object. A folder can have one or more relations objects defined.

The vnsMRel object has the following attributes:

DescriptionMandatoryAttribute

Identifies the object. Each object
key must have a unique value
within the containing object. The
key can contain only alphanumeric
characters, '_', or '-'. A key cannot
contain any other characters. The
Application Policy Infrastructure
Controller (APIC) uses the key to
look up a specific object within a
containing object.

The key size is limited to a
maximum of 512 characters.

Yeskey

Holds the description of this
configuration item. The description
field is used by the APIC GUI to
provide help to the user. A device
package developer should provide
an accurate description and intent
of the relation.

The description field size is limited
to a maximum of 512 characters.

YesDescription

Indicates whether this relation is
mandatory. This property is a
Boolean value (yes or no). By
default, a relation is not mandatory
unless explicitly specified, meaning
that the user is not required to
specify a relations object. The
given relation is not necessary to
render a function on the device.

Nomandatory

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
17

Developing Device Specifications
Relations

DescriptionMandatoryAttribute

Specifies the number of
occurrences of this relation. By
default, only one instance of a
relation is permitted under the
contained object. If a user is
allowed to instantiate more than
one instance of the relation object,
the device specification file should
define the relation with
cardinality="n".

Nocardinality

This is a 512 character string. If
this attribute is specified in the
model, the APIC GUI will display
a string defined by dispLabel

instead of the key. A device
package developer provides a user
friendly name for the folder.

NodispLabel

The vnsMRel object contains a vnsRsTarget object that identifies the object to which a relation is referring.
The target is a fully qualified key of the object that is defined in the device specification file. The vnsMRel
object can contain only one instance of a vnsRsTarget object.

The following example defines a relations object:
<vnsMRel key="ServerConfig">

<vnsRsTarget tDn="uni/infra/mDev-Insieme-SampleDevice-1.0/mDevCfg/mFolder-Server"/>
</vnsMRel>

The above example indicates that the ServerConfig that is defined within a function has a relation to an
instance of a server folder that is defined under vnsMDevCfg. You can instantiate a relation by specifying the
target folder instance name qualified by a full path under a device configuration. When a service function is
rendered on a device, the APIC looks for a specific instance of the folder that is referred to by the relations.
If the APIC finds a matching instance, it includes the folder in the configuration dictionary that is passed in
the service API call. The APIC also passes an instance of relations as part of the function configuration
dictionary. For an example of a configuration dictionary that is passed in the API, see Developing Device
Scripts.

Parameter Scope and API Configuration Dictionary
Any parameter and folders that are defined under vnsMDevCfg, vnsGrpCfg, or vnsMFunc are passed to the
device script only during the serviceAudit(), serviceModify(), serviceHealth(), and serviceCounters() function
calls. The parameters and folders that are defined in a vnsMDevCfg object are passed in a service API call
only if there is a service function with a relations object that refers to that parameter and folder.

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
18

Developing Device Specifications
Parameter Scope and API Configuration Dictionary

developing_device_scripts.pdf#unique_37
developing_device_scripts.pdf#unique_37

About Parameter Objects and Folders
The cluster, device, and functional configuration is defined by one or more vnsMParam objects. These objects
can be grouped logically under one or more folders that are represented as the vnsMFolder object.

Parameter Objects
The configuration parameters are represented by the vnsMParam object type. A device package can have one
or more vnsMParam objects. A parameter object contains the following attributes:

DescriptionMandatoryAttribute

Specifies the key for the meta
parameter. This property uniquely
identifies the parameter. Each
parameter key must have a unique
value within the containing object.
The key can contain only
alphanumeric characters, "_", or
"-". The key cannot contain any
other characters. The Application
Policy Infrastructure Controller
(APIC) uses the key to look up a
specific object within a containing
object, which is typically the
vnsMFolder object.

The key size is limited to a
maximum of 512 characters.

Yeskey

Holds the description of this
configuration item. The description
field is used by the APIC GUI to
provide help to the user. The device
package developer should provide
an accurate description and intent
of the parameter.

The description field size is limited
to a maximum of 512 characters.

YesDescription

Indicates whether this parameter is
mandatory. This property is a
Boolean value (yes or no). By
default, a parameter is not
mandatory unless explicitly
specified.

Nomandatory

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
19

Developing Device Specifications
About Parameter Objects and Folders

DescriptionMandatoryAttribute

Specifies the data type for this
parameter. It can take following
values:

• int

• real

• str

If the dType is not specified, the
parameter defaults to int.

NodType

Specifies the validation expression
to be used by the APIC for
validating a value for this
parameter.

The validation string cannot exceed
255 characters.

The dType need not be str if
validation is specified. The
validation string refers to a
composite or a comparison object
name. For more information, see
Parameter Validation, on page 28.

Novalidation

Specifies the number of
occurrences of this parameter. By
default, only one instance of a
parameter is permitted under the
contained object. If a user is
allowed to instantiate more than
one instance of the parameter
object, the device specification file
should define the parameter with
cardinality="n".

For example, if you can instantiate
multiple static routes on a device
that has a parameter object called
route, set the cardinality of the
route parameter to
cardinality="n".

Nocardinality

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
20

Developing Device Specifications
Parameter Objects

DescriptionMandatoryAttribute

This is a 512 character string. If
this attribute is specified in the
model, the APIC GUI will display
a string defined by dispLabel

instead of the key. A device
package developer provides a user
friendly name for the folder.

For example, the configuration for
a server IP address can be labeled
as dispLabel = "Server IP

Address" while the key is
srvIpAddr. The GUI displays
"Server IP Address" as the name
for the parameter instead of
"srvIpAddr."

NodispLabel

The following example defines a parameter object:
<vnsMParam key="vservername"
description="Name of VServer"
mandatory="true"
dType="str"
validation="isAlpha"/>

<vnsMParam key="subnetipaddress"
description="Subnet IPAddress of the Device"
dType="str"
cardinality=”n”
validation="isIPAddress"/>

<vnsMParam dispLabel="Network Mask"
key="netmask"
dType="str"
mandatory="true"/>

<vnsMParam dispLabel="Default Gateway"
key="gateway"
dType="str"
mandatory="true"/>

Folders
The configuration parameters can be logically grouped under folders. A folder can contain one or more folders
and parameters. A folder is represented by the vnsMFolder object and has the following attributes:

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
21

Developing Device Specifications
Folders

DescriptionMandatoryAttribute

Specifies the key for the meta
folder. This property uniquely
identifies the folder. Each folder
key must have a unique value
within the containing object. The
key can contain only alphanumeric
characters, '_', or '-'. The key cannot
contain any other characters. The
Application Policy Infrastructure
Controller (APIC) uses the key to
look up a specific object within a
containing object.

The key size is limited to a
maximum of 512 characters.

The key for the top most folder
defined under vnsMDevCfg,
vnsGrpCfg or vnsMfunc must be
unique within the device package.

Yeskey

Holds the description of this
configuration item. The description
field is used by the APIC GUI to
provide help to the user. The device
package developer should provide
an accurate description and intent
of the folder.

The description field size is limited
to a maximum of 512 characters.

YesDescription

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
22

Developing Device Specifications
Folders

DescriptionMandatoryAttribute

Specifies the scope for this
configuration folder. This attribute
specifies where in theManagement
Information Tree (MIT) to look for
the value of this folder when
instantiating a function. The APIC
resolves the value by looking up
an instance that is defined under
different objects to which a graph
is associated. The scopedBy
attribute can contain the following
values:

• tenant—The folder can be
instantiated only under a
tenant.

• ap—The folder can be
instantiated only under an
application profile or tenant.

• bd—The folder can be
instantiated only under a bd
or tenant.

• epg—The folder can be
instantiated only under an
endpoint group (EPG), bridge
domain, application profile,
or tenant.

• none

A device package developer can
limit the resolution to a higher
level. By default, scopedBy is
defined as "none", which means
that the device package does not
impose any restriction on where a
particular folder can be
instantiated. The APIC user can
define an instance of the folder
under a tenant, application profile,
bridge domain, or EPG.

The current version
supports only scopedby

EPG.

Note

NoscopedBy

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
23

Developing Device Specifications
Folders

DescriptionMandatoryAttribute

Specifies the number of
occurrences of this folder. By
default, only one instance of a
folder is permitted under the
contained object. If the user is
allowed to instantiate more than
one instance of the folder object,
the device specification file should
define the folder with
cardinality="n".

Nocardinality

This is a 512 character string. If
this attribute is specified in the
model, the APIC GUI will display
a string defined by dispLabel

instead of the key. A device
package developer provides a user
friendly name for the folder.

For example, the configuration for
syslog can be grouped under a
folder with dispLabel = "Syslog

Server Configuration"while the
key is syslogSrvCfg. The GUI
displays "Syslog Server
Configuration" as the name for the
folder instead of "syslogSrvCfg."

NodispLabel

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
24

Developing Device Specifications
Folders

DescriptionMandatoryAttribute

NodispFeature

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
25

Developing Device Specifications
Folders

DescriptionMandatoryAttribute

This is a 512-character string. This
attribute allows the grouping of
multiple folders based on a feature.

A given feature, such as network,
might require multiple parameters.
These parameters can be further
grouped in one or more folders. A
set of folders can define a feature
configuration.

This attribute defines which feature
requires this folder. The APICGUI
matches the feature name specified
fro this attribute with the
vnsFeature to identify under
which feature this folder should be
displayed.

This attribute takes a
comma-separated list of feature
names. The folder can be included
for one or more features. For
example, the LBMonitor folder can
be included under the
"LoadBalancing" and
"ContentSwitching" features.

Match the feature names specified
for this attribute with the
vnsFeature name that is defined
under the function, vnsDevCfg, or
vnsClusterVfg.

The APIC GUI groups the folders
based on the vnsFeature name. If
the feature name specified in the
dispFeature attribute matches a
vnsMFeature, the GUI will show
this folder under that specific
feature. If the name does not match
any vnsMFeature, the GUI will
default to display this folder under
the "All" feature tab.

If the dispFeature attribute is not
defined, the GUI will display the
folder the "All" feature tab.

In the example that follows this
table, the GUI displays the
dispFeature="LoadBalancing,

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
26

Developing Device Specifications
Folders

DescriptionMandatoryAttribute

SSLOffload", folder under both
Load Balancing and SSL Offload.

For more examples, see Managed
Object Example for v1.1, on page
38.

The following example defines a folder object:
<vnsMFolder key="Server"
scopedBy="epg">
<vnsMParam key="servername"
description="Server Name"
dType="str"
validation="isAlpha"/>

<vnsMParam key="domain"
description="Domain name of the server"/>

<vnsMParam key="ipaddress"
description="Server IP address"
dType="str"
validation="isIPAddress"/>

</vnsMFolder>

Features
The vnsMFeature object is a new object in the Layer 4 to Layer 7 management information tree. The
vnsMFeature object allows logical grouping of folders based on a feature. This object along with dispFeature
allows one or more folders to be grouped for configuring a specific feature. The Application Policy
Infrastructure Controller (APIC) GUI uses this object to determine a set of features that can be configured on
a device cluster or a function supported by the cluster. The vnsMFeature object and has the following attributes:

DescriptionMandatoryAttribute

Uniquely identifies the object. Each
object name must have a unique
value within the containing object.
The name can contain only
alphanumeric characters, '_' or '-'.
The name cannot contain any other
characters. The APIC uses the
name to lookup a specific object
within a containing object.

The name size is limited to a
maximum of 512 characters.

Yesname

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
27

Developing Device Specifications
Features

DescriptionMandatoryAttribute

Specifies the order in which the
vnsMFeature object is arranged
within the parent object. Each
instance of the vnsMFeature object
in the parent object should have a
unique dispOrder.

This object is a string of numeric
characters. The APICGUI uses the
numeric value for ordering the
feature tabs on the screen. The
features are ordered in ascending
order.

YesdispOrder

Parameter Validation
The Application Policy Infrastructure Controller (APIC) can do parameter validation by using the
vnsComparison and vnsComposite objects. A device package developer can define and associate validation
to any string type parameter by using either basic or composite comparisons.

The basic comparisons (vnsComparison) object can perform the following operations:

• Equal—eq (the default)

• Not equal—ne

• Less than—lt

• Greater than—gt

• Greater than or equal to—ge

• Less than or equal to—le

• Match—match (requires a regular expression)

The comparison object vnsComparison is defined under the vnsMDev, vnsMFunc, vnsMFolder, vnsMParam, or
vnsComposite objects. The vnsComparison object has the following attributes:

DescriptionMandatoryAttribute

Holds the name of the comparison
assertion.

The name field allows
only alphanumeric
characters. Themaximum
length for this field is 16
characters; and you
cannot use special
characters.

Note

Yesname

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
28

Developing Device Specifications
Parameter Validation

DescriptionMandatoryAttribute

Defines the comparison operator:

• eq—Equal, which is the
default.

• ne—Not equal.

• lt—Less than.

• gt—Greater than.

• ge—Greater than or equal to.

• le—Less than or equal to.

• match—Match. The match
comparison requires a regular
expression.

Yescmp

In the following example, the parameter validates IP addresses using a regular expression match:
<vnsMParam key="vipaddress"
description="VIP IPAddress"
dType="str"
validation="isIPAddress"/>

<vnsComparison name="isIPAddress"
cmp="match"
value="([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.
([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])"/>

The composite comparison (vnsComposite) object provides the following types of comparisons to be performed:

• All match (the default)—Validation passes when the parameter value matches all of the comparison
objects that are defined by the composite object.

• Any match—Validation passes when a parameter value matches one of the comparison objects that is
defined within the composite object.

• Exactly one match—Validation passes when a parameter value matches one of the comparison objects.

The composite object can contain one or more vnsComparison objects. A composite object can be defined
under vnsMDev, vnsMFunc, vnsMFolder, or vnsMParam. A vnsComposite object has the following attributes:

DescriptionMandatoryAttribute

Holds the name of the composite.Yesname

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
29

Developing Device Specifications
Parameter Validation

DescriptionMandatoryAttribute

Defines the type of comparison to
be performed. It takes the
following values:

• and—All comparison strings
that are contained within the
composite must match for the
validation to return as a
success. The and type is the
default comparison.

• or—Any comparison string
that is contained within the
composite can match for the
validation to return as a
success.

• one—Only one comparison
string contained within the
composite can match for the
validation to return as a
success. This operator
enables the package
developer to define a mutual
exclusion.

Yescmp

In the following example, the element defines a match with any of the contained values:
<vnsComposite name="isProtocol" comp="or">

<vnsComparison name="ip" cmp="eq" value="IP" />
<vnsComparison name="tcp" cmp="eq" value="TCP" />
<vnsComparison name="udp" cmp="eq" value="UDP" />
<vnsComparison name="http" cmp="eq" value="HTTP" />

</vnsComposite>

<vnsComposite name="yesNo" comp="one">
<vnsComparison name="yes" cmp="eq" value="YES" />
<vnsComparison name="No" cmp="eq" value="NO" />

</vnsComposite>

Faults Codes
The device specification file can define fault codes with help strings that describe the nature of a fault and
possible corrective action.When a device script encounters an issue with rendering a function due to a parameter
or folder, the script can return a specific fault code with a path of the object that had an issue. The Application
Policy Infrastructure Controller (APIC) refers to the fault code that is defined in the device specification file
and picks the description and corrective action that is described while displaying the fault. Defining a fault
code provides a description of the reason for the fault and the corrective action that the user can take to resolve
the fault.

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
30

Developing Device Specifications
Faults Codes

The fault codes are defined under a vnsMDfcts object. A device specification can have one instance of
vnsMDfcts under vnsMDev. A vnsMDfcts object can contain one or more fault codes that are described by the
vnsMDfct object.

The vnsMDfct object contains the following attributes:

DescriptionMandatoryAttribute

Specifies a unit 16 value that
identifies a unique defect.

Yescode

Describes the defect. The
description field is used by the
APIC GUI to provide help to the
user. The device package developer
should provide an accurate
description.

The field size is limited to a
maximum of 512 characters.

YesDescription

Specifies the URL link to online
help that can help a user understand
and correct the issue.

The field size is limited to a
maximum of 512 characters.

NohtmlFile

Specifies the recommended action.
This field is used by the APICGUI
to provide the recommended action
for the user to take. The device
package developer should provide
an accurate recommended action
to resolve the defect.

The field size is limited to a
maximum of 512 characters.

YesrecAct

The following example defines a fault object:
<vnsMDfcts>

<vnsMDfct code="100"
recAct="Configure a Netmask for the vipaddress"
descr="VIP requires vipaddress and NetMask"/>

<vnsMDfct code="200"
recAct="Configure a relation to VIP Folder"
descr="A function should have a valid relations to a VIP folder that is
specifying the VIP Address and Netmask"/>

</vnsMDfcts>

Function Profile
The APIC requires a device package developer to define a function profile within a device model. A function
profile is a template for one or more functions suitable for a specific application. A function profile is the

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
31

Developing Device Specifications
Function Profile

equivalent of defining an abstract graph within a device package with meaningful defaults for a function that
defines the graph. The user can leverage the built-in function profile by referencing the built-in function profile
in the device package at the time of defining a service graph. Function profiles reduce the number of parameters
that a user has to provide to instantiate a service function for a specific application. A device package developer
must include as many function profiles as applicable.

The APIC GUI wizard for configuring service graphs requires function profiles. It expects the user to associate
a function profile to a function while defining a graph template. If a device package does not define a function
profiles, the user will not be able to use the APIC GUI service deployment wizard. Overall user experience
suffers as a result. Define at least one function profile for each function type defined in the device package.
Users can further clone and customize these function profiles.

Following is an example of defining function profile in a device package:
<vnsAbsFuncProfContr name = "FunctionProfiles">

<vnsAbsFuncProfGrp name = "Function Profiles for Service graph
for an Application 1 ">
<vnsAbsFuncProf name = "Function 1 Name">

<vnsRsProfToMFunc
tDn="uni/infra/mDev-<vendor-model-version>/mFunc-function1"/>

<vnsAbsDevCfg>
<vnsAbsFolder key="Folder_Key"
name="<Folder_Key>-Default" scopedBy="epg">
<vnsAbsParam name="Param Instance name”
"key="Param Name" value="Value"/>

…
</vnsAbsFolder>
…

</vnsAbsDevCfg>

<vnsAbsFuncCfg>

<vnsAbsFolder key=”Folder_Key"
name="<Folder_Key>-Default" scopedBy="epg">
<vnsAbsCfgRel key="relation_key"
name=”rel name” targetName="targetValue"/>

</vnsAbsFolder>
…

<vnsAbsFuncCfg>

</vnsAbsFuncProf>

<vnsAbsFuncProf name = "Function 2 Name">
<vnsRsProfToMFunc
tDn="uni/infra/mDev-<vendor-model-version>/mFunc-function2"/>

…
<vnsAbsFuncProf>

</vnsAbsFuncProfGrp>

<vnsAbsFuncProfGrp name = "Function Profiles for
Service graph for an Application 2">

…
</vnsAbsFuncProfGrp>

</vnsAbsFuncProfContr>

The function profile definition is contained within vnsAbsFuncProfContr. The profile for each unique
application is identified by vnsAbsFuncProfContr. The vnsAbsFuncProfGrp name should be intuitive to relate
to an application for which the template is being defined. For example, if the function profile is for a load
balancing function for a web application, the vnsAbsFuncProfGrp should be named "Web Application Virtual
Server".

A function profile identified by vnsAbsFuncProfContr can contain one or more functions as applicable. If
the graph requires the chaining of multiple functions on the same device, the profile could define defaults for

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
32

Developing Device Specifications
Function Profile

these functions within the vnsAbsFuncProfContr. Each function configuration within the profile is contained
within vnsAbsFuncProf.

Each vnsAbsFuncProf has one relation to a function defined by the device model. The relation identifies type
of function being instantiated by the function profile. The relation to the function is defined by object
vnsRsProfToMFunc contained within vnsAbsFuncProf. The vnsRsProfToMFunc has a tDn attribute identifying
a function with a fully qualified name of the function object. The example shows a sample tDn for identifying
a function within a device model.

The mechanism to configure parameters for these functions are identical to creating a service graph on the
APIC. The parameter, relations, and folders in a function profile can be an instance of the parameters, relations
and folders defined under vnsMDevCfg, vnsGrpCfg, and vnsFuncCfg.

The names of the folder in the function profile must be folder key appended with the following string:
-Default

For example, if the folder key has a value of "Network", then the folder instance will have a value of
"Network-Default".

Note

A function profile does not allow instantiating multiple instances of a folder with a cardinality value of "n".
Only one instance can be defined within the profile.

For information about creating a service graph through the northbound API, see the Cisco APIC Layer 4 to
Layer 7 Services Deployment Guide .

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
33

Developing Device Specifications
Function Profile

Managed Object Model
The following figure shows the object model for representing a device.

Figure 2: Managed Object Model

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
34

Developing Device Specifications
Managed Object Model

The following table describes the objects in the object model.

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
35

Developing Device Specifications
Managed Object Model

DescriptionComponent

Contains definitions of the metadata for a service device type. The metadata
contains vendor-specific data, including the vendor name, device model, and
device version. The service devices are categorized as GoTo and GoThrough
devices. A device is a GoTo device if the packet is addressed to the device's
MAC address or IP address. A device is considered as a GoThrough device if
a packet transits through the device by in-path insertion and the packet is not
addressed to the device's MAC address or IP address. A firewall in transparent
mode is an example of a GoThrough device. A device package and device
specification model could support devices in both GoTo and GoThrough mode.
By default, the device specification is assumed to represent devices in GoTo
mode. The device specification file can be changed to support both modes or
the GoThrough mode only by using the following attribute:
funcMask: "GoTo,GoThrough"

vnsMDev

Represents the credentials necessary to authenticate a user into the device. For
example, key is used for key-based authentication schemes. This model details
the meta-information for such key-based authentication of credentials.

vnsMCred

Represents a device script handler. This managed object contains
meta-information about the script handler's related attributes, including its name,
package name, and version.

vnsDevScript

Contains the cluster configuration folders and parameters. The cluster
configuration affects the functionality of the device cluster independent of graphs
rendered on the device cluster.

vnsClusterCfg

Contains device-specific configuration folders and parameters. The device
configuration affects the functionality of a specific device within a cluster
independent of the graphs rendered on the device cluster.

vnsDevCfg

Contains the password for logging into a service device.vnsMCredSecret

Represents the base level device configuration. This object serves as an anchor
to differentiate between different device configurations and the shared
configuration (MGrpCfg). The configuration under MDevCfg can be shared across
multiple instances of a function across multiple graphs.

vnsMDevCfg

Represents the meta-group configuration. It contains the part of the configuration
that can be shared across multiple functions in a graph. A configuration under
a group configuration is scoped within a graph instance and cannot be referred
to by another graph.

vnMGrpCfg

Represents meta-folder information. The model uses a generic configuration
that consists of MFolders and MParams. This object allows the configuration to
be specified as a hierarchy.

vnsMFolder

Enables a configuration to be specified as a hierarchy. The metadata within this
model consists of a key, a type (integer, string), and other attributes that are
related to parameters.

vnsMParam

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
36

Developing Device Specifications
Managed Object Model

DescriptionComponent

Represents a meta-relation to another object. It allows the referencing of another
folder or parameter.

vnsMRel

Contains the metadata for a single function on a device. A function contains a
set of connectors and a function-specific configuration tree. This managed object
contains the metadata for all such operations.

vnsMFunc

Represents a connector between logical functions. The metadata includes the
cardinality, direction, and encapsulation type (VXLAN or VLAN) for the given
connection.

vnsMConn

Represents an interface label. Interfaces can be labeled in an abstract way on
devices. For example, a firewall device can implement trusted, untrusted, and
management interfaces. The concrete models specify how many labels that a
device supports.

vnsMIfLbl

Identifies the function names on a device that can immediately follow the parent
function. This managed object contains the function names that can be chained
together.

vnsMChainable

A Function profile group container. Defines a collection of function profile
groups (graphs) for a specific application. Each function profile group can
contain one or more functions initialized with certain default parameters for a
specific application. A Function profile container can be defined within a device
model by a device package developer or can be defined by the tenant to provide
a catalog of graphs for a set of applications.

vnsAbsFuncProfContr

Represents a function profile group. A collection of functions initialized with
default parameters for a specific application. A function profile group can be
defined within a device package by a device package developer or it can be
defined by an APIC tenant as a catalog of graph for a specific applications.

vnsAbsFuncProfGrp

Represents a function profile. It contains vnsAbsDevCfg (an instance of
vnsMDevCfg), vnsAbsGrpCfg (an instance of vnsMGrpCfg) and vnsAbsFuncCfg
(an instance of vnsMFunc). A function profile is linked to a specific function
defined in the device model. A function profile can be defined within a device
package or can be defined by an APIC tenant as a catalog of function within a
vnsAbsFuncProfGrp.

vnsAbsFuncProf

Identifies a device model and associated attributes. It defines whether a device
model is type virtual or physical, whether it supports multiple contexts, and so
on. This object is primarily used to simplify device registration through the
APIC.

vnsDevProf

Allows device package vendors to define acceptable interface names for a given
device profile.

vnsDevInt

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
37

Developing Device Specifications
Managed Object Model

DescriptionComponent

Represents a a list of features applicable to the function, device or cluster
configuration. The APIC allows device package developers to group the folders
based on features. A given folder may be part of one or more features. Based
on the APIC GUI uses the vnsMFeature to display a subset of fulders while
configuring a function, device, or cluster.

vnsMFeature

Managed Object Example for v1.1
The following XML file contains a sample managed object configuration, including the dispLabel,
dispFeatrue, and vnsMFeature objects. You can use a similar XML file to instantiate a network device on
the APIC.
<polUni>

<infraInfra>
<vnsMDev vendor="Insieme"
model="NetworkService"
version="1.0"
funcMask="GoTo,GoThrough">

<!-- Associate a device script that defines APIs required by APIC script
Engine -->

<vnsDevScript name="InsiemeNetworkService"
packageName="DeviceScript.py"
versionExpr="1.0"
ctrlrVersion="1.0"
minorversion="01"/>

<!-- Define inteface labels for logical interface -->
<vnsMIfLbl name="external"/>
<vnsMIfLbl name="internal"/>
<vnsMIfLbl name="mgmt"/>

<!-- Describe device models and interface names allowed on the model -->
<vnsDevProf name = "N9k" type = "PHYSICAL" context="multi-Context"
pcPrefix="Port-channel">
<vnsDevInt name="eth1_0" mgmtOnly="yes"/>
<vnsDevInt name="eth1_1"/>
<vnsDevInt name="eth1_2"/>
<vnsDevInt name="eth1_3"/>
<vnsDevInt name="eth1_4"/>
<vnsDevInt name="eth1_5"/>

</vnsDevProf>

<vnsDevProf name = "N9kv" type = "VIRTUAL" pcPrefix="Port-channel">
<vnsDevInt name="eth1_0" mgmtOnly="yes"/>
<vnsDevInt name="eth1_2"/>
<vnsDevInt name="eth1_3"/>
<vnsDevInt name="eth1_4"/>
<vnsDevInt name="eth1_5"/>
<vnsDevInt name="eth1_6"/>

</vnsDevProf>

<vnsMCred name="username" key="username"/>
<vnsMCredSecret name="password" key="password"/>

<vnsComparison name="enable" cmp="match" value="^enable$"/>
<vnsComparison name="enableDisable" cmp="match" value="^(enable|disable)$"/>
<vnsComparison name="trueFalse" cmp="match" value="^(true|false)$"/>
<vnsComparison name="macAddress" cmp="match"
value="^([0-9a-fA-F]{1,4}.){2}[0-9a-fA-F]{1,4}$"/>

<vnsComparison name="ipv4Addr" cmp="match"
value="^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
38

Developing Device Specifications
Managed Object Example for v1.1

(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$"/>

<vnsComparison name="netmask" cmp="match"
value="^((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[0-9]{1,2})\.)
{3}(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[0-9]{1,2})$"/>

<vnsComparison name="hexKey" cmp="match" value="^[0-9a-fA-F]{32}$"/>
<vnsComparison name="str38" cmp="match" value="^\S{1,38}$"/>
<vnsComparison name="str128" cmp="match" value="^\S{1,128}$"/>
<vnsComparison name="any46" cmp="match" value="^any[46]?$"/>
<vnsComposite name="domainName" comp="and">

<vnsComparison name="dn_len" cmp="match" value="^.{1,63}$"/>
<vnsComparison name="dn_str" cmp="match"
value="^[a-zA-Z0-9-]+(\.[a-zA-Z0-9-]+)*$"/>

</vnsComposite>

<vnsComposite name="permitDeny" comp="or">
<vnsComparison name="permit" cmp="eq" value="permit"/>
<vnsComparison name="deny" cmp="eq" value="deny"/>

</vnsComposite>

<vnsMDfcts>
<vnsMDfct code="10"
descr="Configuration error"
recAct="Fix the configuration error and retry.">
<vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>

</vnsMDfct>
<vnsMDfct code="20"
descr="Connection error"
recAct="Check the device IP address and network connectivity.">
<vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>

</vnsMDfct>
<vnsMDfct code="30"
descr="Unexpected error"
recAct="Report this error to Insieme.">

<vnsRsDfctToCat tDn="dfctCats/dfctCat-critical"/>
</vnsMDfct>
<vnsMDfct code="40"
descr="Unsupported device version"
recAct="Upgrade to a device version that is supported by this Device
Package.">
<vnsRsDfctToCat tDn="dfctCats/dfctCat-major"/>

</vnsMDfct>
<vnsMDfct code="50"
descr="device is busy with a previous configuration"
recAct="Retry the operation after waiting for a short while.">
<vnsRsDfctToCat tDn="dfctCats/dfctCat-warning"/>

</vnsMDfct>
</vnsMDfcts>

<vnsClusterCfg name="ClusterConfig">
<vnsMFeature name="License" dispOrder="0"/>

<vnsDevCfg name="DeviceConfig">
<vnsMFeature name="HighAvailability" dispOrder="0"/>
<vnsMFolder dispFeature="HighAvailability"
dispLabel="Failover Settings" key="HighAvailability">
<vnsMParam dispLabel="Peer IP Address" key="ipaddress" dType="str"/>

<vnsMParam dispLabel="Peer NetMask" key="netmask" dType="str"/>
<vnsMParam dispLabel="Peer Unit ID" key="id" mandatory="true"/>

</vnsMFolder>
</vnsDevCfg>

<vnsMFolder dispFeature="License" dispLabel="Licensed Features"
key="enableFeature">
<vnsMParam dispLabel="L4 Load Balancing" key="LBV4" dType="str"/>
<vnsMParam dispLabel="L7 Load Balancing" key="LBV7" dType="str"/>

</vnsMFolder>

</vnsClusterCfg>

<vnsMDevCfg name="DeviceConfig">

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
39

Developing Device Specifications
Managed Object Example for v1.1

<vnsMFolder dispFeature="Network"
dispLabel="Configure Network"
key="Network"
scopedBy="epg"
cardinality="n">

<vnsMFolder dispLabel="Routing" key="route" cardinality="n">
<vnsMParam dispLabel="Subnet" key="network" dType="str"
validation="netmask" mandatory="true"/>

<vnsMParam dispLabel="Network Mask" key="netmask" dType="str"
validation="netmask" mandatory="true"/>

<vnsMParam dispLabel="Default Gateway" key="gateway" dType="str"
validation="ipv4Addr" mandatory="true"/>

</vnsMFolder>

<vnsMFolder dispLabel="Device IP" key="ip" cardinality="n">
<vnsMParam dispLabel="IP Address" key="ipaddress" dType="str"
validation="ipv4Addr" mandatory="true"/>

<vnsMParam dispLabel="Network Mask" key="netmask" dType="str"
validation="netmask" mandatory="true"/>

</vnsMFolder>

</vnsMFolder>

<vnsMFolder dispFeature="Policy"
dispLabel="Configure Traffic Processing Policies"
key="Policy"
scopedBy="epg"
cardinality="n">

<vnsMFolder dispFeature="Policy"
dispLabel="L7 Load Balancing"
key="l7policy"
cardinality="n">
<vnsMParam dispLabel="Name" key="policyname" dType="str"
mandatory="true"/>

<vnsMParam dispLabel="URL" key="url" dType="str"/>
<vnsMParam dispLabel="Rule" key="rule" dType="str"/>

</vnsMFolder>

<vnsMFolder dispFeature="Policy"
dispLabel="Caching Policy"
key="cachepolicy"
cardinality="n">
<vnsMParam dispLabel="Name" key="policyname" dType="str"
mandatory="true"/>

<vnsMParam dispLabel="Rule" key="rule" dType="str" mandatory="true"/>

<vnsMParam dispLabel="Action" key="action" dType="str"
validation="permitDeny" mandatory="true"/>

</vnsMFolder>
</vnsMFolder>

<vnsMFolder dispFeature="Server" dispLabel="Configure Server Pool"
key="serverpool" cardinality="n">
<vnsMParam dispLabel="Pool Name" key="serverpoolname" dType="str"
mandatory="true"/>

<vnsMParam dispLabel="Type" key="type" dType="str" mandatory="true"/>

<vnsMFolder dispLabel="LB Monitor" key="lbmonitor" cardinality="n">
<vnsMRel dispLabel="Select LB Monitor" key="monitorRel" >

<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/
mDevCfg/mFolder-lbmonitor"/>

</vnsMRel>
<vnsMParam dispLabel="Monitor State"
key="monstate" dType="str"
validation="enableDisable"/>

</vnsMFolder>

<vnsMFolder dispLabel="Server Pool Member" key="server" cardinality="n">

<vnsMParam dispLabel="Server Name" key="servername" dType="str"/>

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
40

Developing Device Specifications
Managed Object Example for v1.1

<vnsMParam dispLabel="Port" key="port" dType="str"/>
<vnsMParam dispLabel="IP Address" key="ip" dType="str"
validation="ipv4Addr" mandatory="true"/>

</vnsMFolder>
</vnsMFolder>

<vnsMFolder dispFeature="LBMonitor" dispLabel="Configure LB Monitor"
key="lbmonitor" cardinality="n">
<vnsMParam dispLabel="Name" key="monitorname" dType="str"
mandatory="true"/>

<vnsMParam dispLabel="Type" key="type" dType="str" mandatory="true"/>
</vnsMFolder>

<vnsMFolder dispFeature="SSL" dispLabel="Configure SSL Certificate Key"
key="sslcertkey" cardinality="n">
<vnsMParam dispLabel="Certificate Key Name" key="certkey" dType="str"
mandatory="true"/>

<vnsMParam dispLabel="Certficate Name" key="cert" dType="str"
mandatory="true"/>

<vnsMParam dispLabel="Key Name" key="key" dType="str" mandatory="true"/>

</vnsMFolder>

<vnsMFolder dispFeature="SLB" dispLabel="Virtual Server Configuration"
key="lbvserver" cardinality="n">
<vnsMParam dispLabel="Name" key="name" dType="str" mandatory="true"/>
<vnsMParam dispLabel="Type" key="servicetype" dType="str"
mandatory="true"/>

<vnsMParam dispLabel="IP Address" key="ipv4" dType="str"
mandatory="true" validation="ipv4Addr"/>

<vnsMParam dispLabel="Subnet" key="ipmask" dType="str"
mandatory="true" validation="netmask"/>

<vnsMParam dispLabel="Port" key="port" mandatory="true"/>
</vnsMFolder>

</vnsMDevCfg>

<vnsMFunc name="LoadBalancing" dispLabel="Load Balancing">

<vnsMConn name="external" dir="input" encType="vlan" epNotifications="subnet">

<vnsRsInterface
tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mIfLbl-external"/>

</vnsMConn>
<vnsMConn name="internal" dir="output" encType="vlan"
epNotifications="endpoint">
<vnsRsInterface tDn="uni/infra/mDev-Insieme-NetworkService-1.0/
mIfLbl-internal"/>

</vnsMConn>

<vnsMFeature name="SLB" dispOrder="0"/>
<vnsMFeature name="Server" dispOrder="1"/>
<vnsMFeature name="Monitor" dispOrder="2"/>
<vnsMFeature name="Policy" dispOrder="3"/>
<vnsMFeature name="Network" dispOrder="4"/>
<vnsMFeature name="SSL" dispOrder="5"/>

<vnsMFolder dispFeature="SLB" dispLabel="Virtual Server" key="lbvserverCfg"

cardinality="n">
<vnsMRel dispLabel="Select Virtual Server" key="lbvserverRel" >

<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

mFolder-lbvserver"/>
</vnsMRel>
<vnsRsConnector tDn="uni/infra/mDev-Insieme-NetworkService-1.0/
mFunc-LoadBalancing/mConn-external"/>

</vnsMFolder>

<vnsMFolder dispFeature="Server" dispLabel="Server Pool"
key="serverpoolCfg" cardinality="n">
<vnsMRel dispLabel="Select Server Pool" key="serverpoolRel" >

<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
41

Developing Device Specifications
Managed Object Example for v1.1

mFolder-serverpool"/>
</vnsMRel>

</vnsMFolder>

<vnsMFolder dispFeature="Monitor" dispLabel="Monitor" key="lbmonitorCfg"
cardinality="n">
<vnsMRel dispLabel="Select Monitor" key="lbmonitorRel" >

<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

mFolder-lbmonitor"/>
</vnsMRel>

</vnsMFolder>

<vnsMFolder dispFeature="Policy" dispLabel="Policies" key="policyCfg"
cardinality="n">
<vnsMRel dispLabel="Select Policies" key="policyRel" >

<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

mFolder-Policy"/>
</vnsMRel>

</vnsMFolder>

<vnsMFolder dispFeature="SLB" dispLabel="vip" key="vipCfg" cardinality="n">

<vnsMRel dispLabel="Select Network" key="vipRel">
<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

mFolder-Network/mFolder-ip"/>
</vnsMRel>

</vnsMFolder>

<vnsMFolder dispFeature="Network" dispLabel="Internal Network"
key="internalNetwork" cardinality="n">
<vnsMRel dispLabel="Select Internal Network" key="internalNetworkRel">

<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

mFolder-Network/mFolder-ip"/>
</vnsMRel>
<vnsRsConnector tDn="uni/infra/mDev-Insieme-NetworkService-1.0/
mFunc-LoadBalancing/mConn-internal"/>

</vnsMFolder>

<vnsMFolder dispFeature="Network" dispLabel="Internal Route"
key="internalRoute" cardinality="n">
<vnsMRel dispLabel="Select Internal Route" key="internalRouteRel" >

<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

mFolder-Network/mFolder-route"/>
</vnsMRel>
<vnsRsConnector tDn="uni/infra/mDev-Insieme-NetworkService-1.0/
mFunc-LoadBalancing/mConn-internal"/>

</vnsMFolder>

<vnsMFolder dispFeature="Network" dispLabel="External Network"
key="externalNetwork" cardinality="n">
<vnsMRel dispLabel="Select External Network" key="externalNetworkRel"

>
<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

mFolder-Network/mFolder-ip"/>
</vnsMRel>
<vnsRsConnector tDn="uni/infra/mDev-Insieme-NetworkService-1.0/
mFunc-LoadBalancing/mConn-external"/>

</vnsMFolder>

<vnsMFolder dispFeature="Network" dispLabel="External Route"
key="externalRoute" cardinality="n">
<vnsMRel dispLabel="Select External Route" key="externalRouteel" >

<vnsRsTarget tDn="uni/infra/mDev-Insieme-NetworkService-1.0/mDevCfg/

mFolder-Network/mFolder-route"/>
</vnsMRel>
<vnsRsConnector tDn="uni/infra/mDev-Insieme-NetworkService-1.0/

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
42

Developing Device Specifications
Managed Object Example for v1.1

mFunc-LoadBalancing/mConn-external"/>
</vnsMFolder>

</vnsMFunc>

<vnsAbsFuncProfContr name="FunctionProfiles">
<vnsAbsFuncProfGrp name = "GroupCfg">

<vnsAbsFuncProf name = "WebLoadBalancer">
<vnsRsProfToMFunc tDn=
"uni/infra/mDev-Insieme-NetworkService-1.0/mFunc-LoadBalancing"/>

<vnsAbsDevCfg>
<vnsAbsFolder key="lbvserver" name="lbvserver-Default">
<vnsAbsParam key="name" name="WebVServer" value="WebVServer"/>

<vnsAbsParam key="servicetype" name="servicetype"
value="http"/>

<vnsAbsParam key="port" name="port" value="80"/>
</vnsAbsFolder>
<vnsAbsFolder key="serverpool" name="serverpool-Default">

<vnsAbsParam key="serverpoolname" name="serverpoolname"
value="webserverpool"/>

<vnsAbsParam key="servicetype" name="servicetype"
value="http"/>

<vnsAbsParam key="port" name="port" value="8080"/>
</vnsAbsFolder>

</vnsAbsDevCfg>
<vnsAbsFuncCfg>

<vnsAbsFolder key="lbvserverCfg" name="lbvserver-Default">
<vnsAbsCfgRel name="lbvserverRel"
key="lbvserverRel" targetName="lbvserver-Default"/>

</vnsAbsFolder>
<vnsAbsFolder key="serverpoolCfg" name="serverpoolCfg-Default">

<vnsAbsCfgRel name="serverpoolRel"
key="serverpoolRel" targetName="serverpool-Default"/>

</vnsAbsFolder>
</vnsAbsFuncCfg>

</vnsAbsFuncProf>
</vnsAbsFuncProfGrp>

</vnsAbsFuncProfContr>
</vnsMDev>

</infraInfra>
</polUni>

Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
43

Developing Device Specifications
Managed Object Example for v1.1

 Cisco APIC Layer 4 to Layer 7 Device Package Development Guide, Release 1.1(1j)
44

Developing Device Specifications
Managed Object Example for v1.1

	Developing Device Specifications
	About Device Types
	About Device Specifications
	Device Script
	Devices Credentials
	Interface Labels
	Vendor Device Profile
	Vendor Device Interface Name

	About Cluster and Device Configurations
	Cluster Configurations
	Routing Capability

	Device Configurations

	About Functional Configurations
	Connector Objects
	Images
	Function Configurations
	Group Configurations
	Global Function Configurations
	Relations
	Parameter Scope and API Configuration Dictionary

	About Parameter Objects and Folders
	Parameter Objects
	Folders
	Features
	Parameter Validation
	Faults Codes
	Function Profile

	Managed Object Model
	Managed Object Example for v1.1

