

 REST API Configuration Guide, Release 2.2(x)

 [image: images/cover_page.png]

 Chapter 1. New and Changed Information

 This chapter contains the following sections:

 	New and Changed Information

 New and Changed Information

 The following table provides an overview of the significant changes to the organization and features in this guide up to this
 current release. The table does not provide an exhaustive list of all changes made to the guide.

 New Features and Changed Behavior in Cisco ACI Multi-Site

 	

 Cisco ACI Multi-Site Release

 	

 Feature

 	

 Where Documented

 	2.1(1)
 	

 PATCH API

 	

 REST API Requests

 	2.1(1)
 	

 OpenAPI/Swagger reference.

 	

 REST API Reference (OpenAPI/Swagger)

 Chapter 2. Cisco ACI Multi-Site REST API

 This chapter contains the following sections:

 	REST API Overview

 	REST API Reference (OpenAPI/Swagger)

 	Using In-Browser DevTools to View REST API Calls

 REST API Overview

 Cisco ACI Multi-Site REST API is a set of programming interfaces that uses Representational State Transfer (REST) architecture. The API contains
 resources represented by Uniform Resource Identifiers (URIs), which allow to unambiguously identify each resource. Each URI
 contains a protocol used to exchange the messages and the resource location string. For example, the https://<mso-ip>/api/v1/schemas URI specifies that the HTTPS protocol is to be used and the schemas resource path relative to the Cisco ACI Multi-Site Orchestrator address.

 URIs can refer to a single object or a collection of objects. For example, http://<mso-ip>/api/v1/schemas represents all the schemas that exist in the fabric, whereas http://<mso-ip>/api/v1/schemas/{id} specifies a schema with a specific ID.

 When you want to retrieve information or make changes to the fabric, you use API calls to exchange messages between your client
 and an URI. The messages must be in JavaScript Object Notation (JSON) format, but you can use any programming language to
 generate and send them.

 The following standard REST methods are supported by the Cisco ACI Multi-Site REST API:

 	

 GET

 	

 POST

 	

 PUT

 	

 DELETE

 	

 PATCH

 The PUT and PATCH methods are idempotent, which means that there is no additional effect if they are called more than once with the same input
 parameters. The GET method is nullipotent, meaning that it can be called zero or more times without making any changes, in other words it is
 a read-only operation.

 	REST API Requests

 	REST API User Roles and Authorization

 REST API Requests

 The Cisco ACI Multi-Site REST API supports a number of standard API calls, which allow you to retrieve information about or make changes to your fabric.
 A typical REST API operation consists of three elements:

 	

 Request URL: The address of the resource to which you make the API call.

 	

 Request message: The JSON-formatted payload that contains the new data you want to add or update. For read-only operation (GET) the request message is empty.

 	

 Request response: The JSON-formatted response that contains the requested information.

 The following sections provide an overview of each call as well as an example JSON payload.

 	GET Requests

 	POST and PUT Requests

 	DELETE Requests

 	PATCH Requests

 GET Requests

 The GET request is a read-only operation that allows you to retrieve information about one or more objects in the fabric. The following
 example uses a GET request to obtain information about Cisco ACI Multi-Site Orchestrator users, such as their names, contact information, status, and privileges.

 Request URL:
https://<mso-ip>/api/v1/users
Request payload:
EMPTY
Request response:
{
 "users": [{
 "id": "5b6380972d0000f85ddea55e",
 "username": "User01",
 "password": "******",
 "firstName": "fName01",
 "lastName": "lName01",
 "emailAddress": "User01@cisco.com",
 "phoneNumber": "098-765-4321",
 "accountStatus": "active",
 "needsPasswordUpdate": true,
 "roles": [{
 "roleId": "0000ffff0000000000000031"
 }, {
 "roleId": "0000ffff0000000000000033"
 }, {
 "roleId": "0000ffff0000000000000035"
 }
],
 "domainId": "0000ffff0000000000000090"
 }, {
 "id": "5bb7aabc2c0000f34c7b89f7",
 "username": "User02",
 "password": "******",
 "firstName": "fName02",
 "lastName": "lName02",
 "emailAddress": "User02@cisco.com",
 "phoneNumber": "123-456-7890",
 "accountStatus": "active",
 "needsPasswordUpdate": true,
 "roles": [{
 "roleId": "0000ffff0000000000000031"
 }, {
 "roleId": "0000ffff0000000000000032"
 }
],
 "domainId": "0000ffff0000000000000090"
 }
]
}

 POST and PUT Requests

 The POST and PUT requests are write operations that allow you to create a new or update an existing object. Keep in mind, that if you are
 updating an existing object, you must provide the object in its entirety. Any previously existing fields that are missing
 from the POST payload, will be replaced by an empty string or null.

 A PUT request is idempotent, which is the main difference between the PUT and POST requests.

 The following example uses a POST request to create a new user. The request response contains the newly created object.

 Request URL:
https://<mso-ip>/api/v1/users
Request payload:
{
 "id": "",
 "username": "<username>",
 "password": "<user-pass>",
 "confirmPassword": "<user-pass>",
 "firstName": "<user-first-name>",
 "lastName": "<user-last-name>",
 "emailAddress": "<user-email>",
 "phoneNumber": "<user-phone>",
 "accountStatus": "active",
 "needsPasswordUpdate": true,
 "roles": [{
 "roleId": "0000ffff0000000000000031"
 }
]
}

Request response:
{
 "id": "5c40b8832b0000744a77ec1a",
 "username": "<username>",
 "password": "******",
 "firstName": "<user-first-name>",
 "lastName": "<user-last-name>",
 "emailAddress": "<user-email>",
 "phoneNumber": "<user-phone>",
 "accountStatus": "active",
 "needsPasswordUpdate": true,
 "roles": [{
 "roleId": "0000ffff0000000000000031"
 }
],
 "domainId": "0000ffff0000000000000090"
}

 DELETE Requests

 The DELETE request is a write operation that allows you to delete an existing object. A DELETE request does not require a payload and does not return a response.

 The following example uses a DELETE request to delete the user we created in the POST example.

 Request URL:
https://<mso-ip>/api/v1/users/5c40b8832b0000744a77ec1a
Request payload:
EMPTY
Request response:
EMPTY

 PATCH Requests

 The PATCH request is a write operation that allow you to update an existing object. The main difference between PATCH and POST or PUT requests is that you can provide only the fields that contain new data rather than the entire object being updated. A PATCH
 request is neither safe nor idempotent, because a PATCH operation cannot ensure the entire resource has been updated. Also,
 unlike other API requests, a PATCH request contains instructions on how to modify a resource, rather than a version of the
 resource itself.

 	
 Note

 	

 The current release of Cisco ACI Multi-Site Orchestrator supports PATCH requests only for some objects. Check the Swagger API reference to see if an object supports PATCH requests.

 When creating PATCH requests, the payload must contain the following:

 	

 op: the operation to be performed by the request. Currently supported operations are add, remove, or replace.

 	

 path: the path to the resource that you are updating. The value contains the URI of the resource and the position inside that
 resource where the information will be added.

 For add operations, the position value can be any positive integer or a dash (-) to specify the end of the schema. For example, /templates/<template-name>/vrfs/- would indicate adding a new VRF at the end of the current list, whereas /templates/<template-name>/vrfs/2 would add the VRF at the second position.

 For replace operations, the position value can also be a the name of the object to replace in addition to the index. For example, /templates/<template-name>/anps/AP1 would replace the application profile named AP1

 	

 value: the new or updated value or object. For example, {"vrfname" : "vrf1"} would specify a new VRF with the name vrf1.

 You do not need to provide the value field for remove operations.

 PATCH API has the following limitations:

 	

 You cannot use the PATCH API to change a template name, because multiple references in the fabric must be updated. Use PUT
 request instead.

 Names should not contain the slash (/) character. If the name contains a slash, you cannot use it to access an element in an array and must use the element's index
 instead.

 Names must not contain numbers only. This limitation is caused by the fact that pure numbers are interpreted as the PATCH
 index.

 For site local schema objects, refer to the Site ID and Template name combination as <site-id>-<template-name>, for example /sites/5b7d29c2a7fa00a7fae9bbf3-SampleTemplate/epgs

 The following two example illustrate how to uses the PATCH requests to add and remove a VRF in a template in an existing schema. The request response contains the entire object that
 was updated.

 Add an Object Using PATCH Request

 The following example uses a PATCH request to add a VRF to a template in an existing schema. The request response contains the entire object that was updated.

 Original schema:

 {
 "id": "5c4b55db1a00003422f2215e",
 "displayName": "SampleSchema",
 "templates": [
 {
 "name": "Template1",
 "displayName": "Template1",
 "tenantId": "0000ffff0000000000000010",
 "anps": [],
 "vrfs": [],
 "bds": [],
 "contracts": [],
 "filters": [],
 "externalEpgs": [],
 "serviceGraphs": [],
 "intersiteL3outs": []
 }
]
}

 Request URL:

 https://<mso-ip>//api/v1/schemas/5c4b55db1a00003422f2215e

 Request payload:

 [{
 "op": "add",
 "path": "/templates/Template1/vrfs/-",
 "value": {
 "displayName" : "vrf1",
 "name" : "vrf1" }
}]

 Request response:

 {
 "id": "5c4b55db1a00003422f2215e",
 "displayName": "SampleSchema",
 "templates": [
 {
 "name": "Template1",
 "displayName": "T1",
 "tenantId": "0000ffff0000000000000010",
 "anps": [],
 "vrfs": [
 {
 "name": "vrf1",
 "displayName": "vrf1",
 "vrfRef": "/schemas/5c4b55db1a00003422f2215e/templates/Template1/vrfs/vrf1",
 "vzAnyProviderContracts": [],
 "vzAnyConsumerContracts": []
 }
],
 "bds": [],
 "contracts": [],
 "filters": [],
 "externalEpgs": [],
 "serviceGraphs": [],
 "intersiteL3outs": []
 }
]
}

 Remove an Object Using PATCH Request

 The following example uses a PATCH request to remove a VRF from a template in an existing schema. The request response contains the entire object that was updated.

 Original schema:

 {
 "id": "5c4b55db1a00003422f2215e",
 "displayName": "SampleSchema",
 "templates": [
 {
 "name": "Template1",
 "displayName": "T1",
 "tenantId": "0000ffff0000000000000010",
 "anps": [],
 "vrfs": [
 {
 "name": "vrf1",
 "displayName": "vrf1",
 "vrfRef": "/schemas/5c4b55db1a00003422f2215e/templates/Template1/vrfs/vrf1",
 "vzAnyProviderContracts": [],
 "vzAnyConsumerContracts": []
 }
],
 "bds": [],
 "contracts": [],
 "filters": [],
 "externalEpgs": [],
 "serviceGraphs": [],
 "intersiteL3outs": []
 }
]
}

 Request URL:

 https://<mso-ip>//api/v1/schemas/5c4b55db1a00003422f2215e

 Request payload:

 [{
 "op": "remove",
 "path": "/templates/Template1/vrfs/vrf1"
}]

 Request response:

 {
 "id": "5c4b55db1a00003422f2215e",
 "displayName": "SampleSchema",
 "templates": [
 {
 "name": "Template1",
 "displayName": "T1",
 "tenantId": "0000ffff0000000000000010",
 "anps": [],
 "vrfs": [],
 "bds": [],
 "contracts": [],
 "filters": [],
 "externalEpgs": [],
 "serviceGraphs": [],
 "intersiteL3outs": []
 }
]
}

 REST API User Roles and Authorization

 The Cisco ACI Multi-Site Orchestrator API supports multiple users, each with their own user-specific authorization and set of privileges based on
 their role. A user can be associated with specific roles for access based on their function and REST endpoints can be restricted
 based on the user's role. The admin user has unrestricted access. For more information on creating and manager users and their roles, see the Cisco ACI Multi-Site Configuration Guide.

 REST API Reference (OpenAPI/Swagger)

 Cisco ACI Multi-Site Orchestrator uses OpenAPI (also known as Swagger) to provide a complete API reference for developers linked directly from
 the Orchestrator's GUI. OpenAPI allows you to visualize and interact with the API's resources. The direct connection from
 the reference document to the live Orchestrator API provides an easy way to write and test simple request directly from the
 OpenAPI reference UI.

 	

 APIC Information API: Allows you to query the Cisco APIC sites directly for specific information, such as Pods, Tenants, VMM domains, L3Outs, and so on. This API is part of the site API.

 	

 Audit API: Allows you to access Cisco ACI Multi-Site Orchestrator's audit logs and query for information, such as records and users, as well as download all or specific records.

 	

 Backup API: Allows you to create, update, delete, or restore a backup of Cisco ACI Multi-Site Orchestrator configuration, as well as schedule a backup.

 	

 Deployment API: Allows you to deploy the Schemas and Templates directly to sites using SiteId and TemplateName.

 	

 Fabric Connectivity API: Allows you to query for fabric connectivity, connectivity status, multipod information, and so on. This API is part of the
 site API.

 	

 Infrastructure Logs API: Allows you to query for infrastructure and platform logs. This API is part of the platform API.

 	

 Platform API: Allows you to query for information about platform nodes and labels.

 	

 Policy Report API: Allows you to query for policy deployment reports. This API is part of the platform API.

 	

 Schema API: Allows you to create, update, patch, or delete schemas, as well as query for information associated with a schema.

 	

 Site API: Allows you to create, update, patch, or delete sites. This API is part of the site API.

 	

 Tenant API: Allows you to create, update, patch, or delete tenants, as well as query for information associated with a tenant. This
 API is part of the schema API.

 	

 User API: Allows you to create, update, or delete users, update user roles, and configure authentication providers, such as LDAP,
 TACACs, or RADIUS.

 	Accessing OpenAPI Reference

 	Using OpenAPI for Authentication

 	Using OpenAPI to Manage Users

 Accessing OpenAPI Reference

 This section describes how to access the OpenAPI (Swagger) reference documentation from your Cisco ACI Multi-Site Orchestrator.

 Procedure

 	Step 1
 	
 Log in to your Cisco ACI Multi-Site Orchestrator.

 	Step 2
 	
 In the top right corner of the main window, click the Options icon.

 	Step 3
 	
 Choose View Swagger Docs.

 	Step 4
 	
 In the Swagger APIs window that opens, select the API that you want to view

 For more information on each of the listed APIs, see REST API Reference (OpenAPI/Swagger)
.

 What to do next

 The OpenAPI reference provides a simple, visual representation of the Cisco ACI Multi-Site REST API. It also allows you to create and test simple API requests directly on your fabric. The following two sections provide
 examples that will help you to get started working with Cisco ACI Multi-Site Orchestrator API and OpenAPI reference.

 Using OpenAPI for Authentication

 The following example shows how to use the OpenAPI GUI to provide your login credentials to log in to the Orchestrator and
 receive an authentication token for use in any subsequent REST API requests.

 Before you begin

 Procedure

 	Step 1
 	
 Navigate to the User API reference as described in Accessing OpenAPI Reference, or you can open your browser to <mso-ip>/docs/userdocs#/ after logging into the Orchestrator.

 	Step 2
 	
 Scroll down to Authentication APIs section.

 [image: images/307315.jpg]

 	Step 3
 	
 Click the POST /api/v1/auth/login row to expand the section.

 [image: images/307316.jpg]

 	Step 4
 	
 Click the Try it out button.

 	Step 5
 	
 Edit the POST request message

 [image: images/307317.jpg]

 	Step 6
 	
 Click Execute to send the request.

 	Step 7
 	
 If the request was successful, you will be able to see the server response and get the authentication token you can use in
 future requests.

 [image: images/307318.jpg]

 Using OpenAPI to Manage Users

 The following example shows how to use the OpenAPI GUI to send and receive sample REST requests to create, modify, and then
 delete a user.

 Before you begin

 You must obtain an authentication token as described in Using OpenAPI for Authentication.

 Procedure

 	Step 1
 	
 Navigate to the User API reference as described in Accessing OpenAPI Reference, or you can open your browser to <mso-ip>/docs/userdocs#/ after logging into the Orchestrator.

 	Step 2
 	
 Scroll down to User APIs section.

 	Step 3
 	
 Click the POST /api/v1/users row and then Try it out.

 	Step 4
 	
 Edit the POST request message and then click Execute.

 In the following sample post, provide the ID of the user you have created in previous steps.{
 "id": "string",
 "username": "jsmith",
 "password": "welc0me!",
 "firstName": "John",
 "lastName": "Smith",
 "emailAddress": "jsmith@company.com",
 "phoneNumber": "123-456-7890",
 "accountStatus": {},
 "needsPasswordUpdate": 0,
 "roles": [
 {
 "roleId": "0000ffff0000000000000031"
 }
],
 "domainId": "0000ffff0000000000000090",
 "remote": false,
 "active": false
}

 	Step 5
 	
 If the request is successful, you will receive a response XML message containing the ID of the user that you created.

 You can verify that the new user was created by logging into your Cisco ACI Multi-SiteOrchestrator GUI and checking the Users page.

 	Step 6
 	
 Now click on PATCH /api/v1/users/{id} and then Try it out.

 In the following sample post, provide the ID of the user you created in previous steps as well as any details you wish to
 update.

 {
 "id": "<user-id>",
 "emailAddress": "johnsmith@company.com",
}

 	Step 7
 	
 If the request is successful, you will receive a response XML message containing the updated user details.

 You can verify that the user was updated by logging into your Cisco ACI Multi-SiteOrchestrator GUI and checking the Users page.

 	Step 8
 	
 Now click on DELETE /api/v1/users/{id} and then Try it out.

 	Step 9
 	
 Provide the ID of the user you created in previous steps and click Exectue.

 You can verify that the user was delete by logging into your Cisco ACI Multi-SiteOrchestrator GUI and checking the Users page.

 Using In-Browser DevTools to View REST API Calls

 Cisco ACI Multi-SiteOrchestrator is fully RESTful, as such each action performed in the GUI triggers one or more REST API calls to retrieve the
 fabric information to be displayed or to make changes to the fabric. You can view these API calls using the built-in developer
 tools in your browser of choice. Inspecting API calls associated with one or more UI actions may be useful for becoming familiar
 with the specific call syntax and contents.

 This section describes how to access developer tools in your browser.

 Procedure

 	Step 1
 	
 Open the built-in browser developer tools.

 	
 If you are using Google Chrome, right click in the main browser window and choose Inspect.

 	
 If you are using Mozilla Firefox, right click in the main browser window and choose Inspect Element.

 	
 If you are using Microsoft Edge, right click in the main browser window and choose Inspect Element.

 	
 If you are using Apple Safari, you must first enable the Develop menu.

 From the top menu bar, choose Safari > Preferences. Then select the Advanced tab and check the Show Develop menu in menu bar checkbox.

 Finally, open the developer tools pane by choosing Develop > Show Web Inspector from the top menu bar.

 A developer tools panel will open in the main browser window alongside the current page.

 	Step 2
 	
 In the developer tools panel that opens, select the Network tab.

 	Step 3
 	
 Navigate to your Multi-Site Orchestrator and log in.

 	Step 4
 	
 Perform an action in the Multi-Site GUI to trigger one or more API calls.

 You will be able to see the calls as they are being made by the browser to the Multi-Site Orchestrator.

 	
 Note

 	

 You may want to clear the list before performing an action by clicking Clear button in the Network tab's menu bar.

 	Step 5
 	
 (Optional) Filter the list of API calls to view the relevant ones.

 You can filter the list to display only the REST API calls by clicking the XHR button in the Network tab's menu bar.

 	Step 6
 	
 (Optional) Sort the list of API calls to group similar ones.

 You can click on the column title to sort the network calls based on the property.

 	Step 7
 	
 Select one of the listed API calls to inspect its content.

 When you select one of the calls, you can view its details in the pane that opens:

 	

 Headers tab shows the general, request, and response headers for the selected API call. You can view the call's request method, such
 as GET or POST, the remote address, authorization token, and the cookies.

 	

 Preview tab shows the XML text of the call sent to the server.

 	

 Response tab shows the XML text of the response received from the server.

 	

 Cookies tab shows the cookie information.

 What to do next

For in-depth information on each browser's developer tools and their capabilities, see their respective documentation:

 	

 Google Chrome: https://developers.google.com/web/tools/chrome-devtools/#network

 	

 Mozilla Firefox: https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor

 	

 Microsoft Edge: https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/network

 	

 Apple Safari: https://support.apple.com/guide/safari-developer/network-tab-dev1f3525e58/mac

 	Using In-Browser DevTools to Work with REST API Calls

 Using In-Browser DevTools to Work with REST API Calls

 This section illustrates some simple examples of using browser tools to view, modify, and re-send REST API calls. The examples
 presented here use Google Chrome, however the steps are similar for other browsers. Accessing each browser's developer tools
 is described in Using In-Browser DevTools to View REST API Calls.

 When you perform an action in the Cisco ACI Multi-Site Orchestrator GUI with DevTools open, you can see a list of the API calls made by the GUI to the Orchestrator. From there
 on, you can select each individual call to inspect its request and response contents.

 For example, if you click on the Schemas view in the left-hand navigation sidebar of the GUI, two calls are made to /api/v1/schemas – one to get a list of schemas and another to get a list of tenants for each schema:

 Schemas API Calls
 [image: images/502187.jpg]

 If you then select one of the calls, for example tenants, you can view the call details, such as the request method, request URL, authentication token, and so on. The response tab
 provides the exact XML string received in response to the call.

 If you right-click on any of the listed API calls, you can choose to copy the call in any of the available formats:

 Copy API Call
 [image: images/502188.jpg]

 For example, you can choose to copy the request as cURL, which you can then execute in 3rd party scripts:
curl "https://172.31.187.59/api/v1/schemas/tenants" -H "Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE1Mzg3NjkyNjcsImlhdCI6MTUzODc2ODA2NywiaXNzIjoiNDRiMGNlZjI1MTgzNDE3YTk5MDJhODg1MmFhNzhhZmUiLCJ1c2VySWQiOiIwMDAwZmZmZjAwMDAwMDAwMDAwMDAwMjAiLCJ1c2VybmFtZSI6ImFkbWluIiwicGVybWlzc2lvbnMiOlsidmlldy1zaXRlcyIsIm1hbmFnZS1zaXRlcyIsInZpZXctdGVuYW50cyIsIm1hbmFnZS10ZW5hbnRzIiwidmlldy10ZW5hbnQtc2NoZW1hcyIsIm1hbmFnZS10ZW5hbnQtc2NoZW1hcyIsInZpZXctc2NoZW1hcyIsIm1hbmFnZS1zY2hlbWFzIiwidmlldy11c2VycyIsIm1hbmFnZS11c2VycyIsInZpZXctcm9sZXMiLCJtYW5hZ2Utcm9sZXMiLCJ2aWV3LWxhYmVscyIsIm1hbmFnZS1sYWJlbHMiLCJwbGF0Zm9ybS1sb2dzIiwiYmFja3VwLWRiIiwidmlldy1hbGwtYXVkaXQtcmVjb3JkcyIsIm1hbmFnZS1hdWRpdC1yZWNvcmRzIl19.BDVrkImuIaX57aG0gfWUsXE5NVJPq2FGKP289XCjHRw" -H "DNT: 1" -H "Accept-Encoding: gzip, deflate, br" -H "Accept-Language: en-US,en;q=0.9" -H "User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36" -H "Content-Type: application/json" -H "Accept: application/json" -H "Referer: https://172.31.187.59/schemas" -H "Connection: keep-alive" --compressed --insecure
Another example would be the users API which is called when you select the Users view. The GUI retrieves the list of users using the following corresponding cURL request:

curl "https://172.31.187.59/api/v1/users" -H "Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE1Mzg3Njk1NzAsImlhdCI6MTUzODc2ODM3MCwiaXNzIjoiMThhNWM3MWNiNmM1NGMwNmFjNDIzYTI5ZWNiNWI5NzAiLCJ1c2VySWQiOiIwMDAwZmZmZjAwMDAwMDAwMDAwMDAwMjAiLCJ1c2VybmFtZSI6ImFkbWluIiwicGVybWlzc2lvbnMiOlsidmlldy1zaXRlcyIsIm1hbmFnZS1zaXRlcyIsInZpZXctdGVuYW50cyIsIm1hbmFnZS10ZW5hbnRzIiwidmlldy10ZW5hbnQtc2NoZW1hcyIsIm1hbmFnZS10ZW5hbnQtc2NoZW1hcyIsInZpZXctc2NoZW1hcyIsIm1hbmFnZS1zY2hlbWFzIiwidmlldy11c2VycyIsIm1hbmFnZS11c2VycyIsInZpZXctcm9sZXMiLCJtYW5hZ2Utcm9sZXMiLCJ2aWV3LWxhYmVscyIsIm1hbmFnZS1sYWJlbHMiLCJwbGF0Zm9ybS1sb2dzIiwiYmFja3VwLWRiIiwidmlldy1hbGwtYXVkaXQtcmVjb3JkcyIsIm1hbmFnZS1hdWRpdC1yZWNvcmRzIl19.CNs-nM3V73CBcYRBHqgfwtx3tAW5a9wsnMHqkKDGjDE" -H "DNT: 1" -H "Accept-Encoding: gzip, deflate, br" -H "Accept-Language: en-US,en;q=0.9" -H "User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36" -H "Content-Type: application/json" -H "Accept: application/json" -H "Referer: https://172.31.187.59/users" -H "Connection: keep-alive" --compressed --insecure

And the request returns a JSON-formatted XML message similar to the following:
{
 "users": [{
 "id": "59f17fe7120000da00bf0d11",
 "username": "max-usermgr",
 "password": "******",
 "firstName": "firstName",
 "lastName": "lastName",
 "emailAddress": "email@domain.com",
 "phoneNumber": "7474747477",
 "accountStatus": "active",
 "needsPasswordUpdate": false,
 "roles": [{
 "roleId": "0000ffff0000000000000035"
 }
],
 "domainId": "0000ffff0000000000000090"
 }, {
 "id": "59f17f9e0e00001701000326",
 "username": "max-schemamgr",
 "password": "******",
 "firstName": "firstName",
 "lastName": "lastName",
 "emailAddress": "email@domain.com",
 "phoneNumber": "34343442234",
 "accountStatus": "active",
 "needsPasswordUpdate": false,
 "roles": [{
 "roleId": "0000ffff0000000000000033"
 }
],
 "domainId": "0000ffff0000000000000090"
 }, {
 "id": "59f17f6b120000eb00bf0d10",
 "username": "max-sitemgr",
 "password": "******",
 "firstName": "firstName",
 "lastName": "lastName",
 "emailAddress": "email@domain.com",
 "phoneNumber": "3838833838",
 "accountStatus": "active",
 "needsPasswordUpdate": false,
 "roles": [{
 "roleId": "0000ffff0000000000000032"
 }
],
 "domainId": "0000ffff0000000000000090"
 }
]
}

 Modifying Examples and Making Changes to the Fabric

 In addition to being able to retrieve information about your Cisco ACI Multi-Site environment using the REST API, you can use it to make changes.

 For instance, if instead of viewing the users, you create one in the GUI, you can then copy the call as an example, modify
 it, and then use the modified call in your 3rd party script to create or update user accounts. Below is a sample cURL command
 to create a user along with the XML POST contents:

 curl "https://172.31.187.59/api/v1/users" -H "Origin: https://172.31.187.59" -H "Accept-Encoding: gzip, deflate, br" -H "Accept-Language: en-US,en;q=0.9" -H "Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE1Mzg3Njk1NzAsImlhdCI6MTUzODc2ODM3MCwiaXNzIjoiMThhNWM3MWNiNmM1NGMwNmFjNDIzYTI5ZWNiNWI5NzAiLCJ1c2VySWQiOiIwMDAwZmZmZjAwMDAwMDAwMDAwMDAwMjAiLCJ1c2VybmFtZSI6ImFkbWluIiwicGVybWlzc2lvbnMiOlsidmlldy1zaXRlcyIsIm1hbmFnZS1zaXRlcyIsInZpZXctdGVuYW50cyIsIm1hbmFnZS10ZW5hbnRzIiwidmlldy10ZW5hbnQtc2NoZW1hcyIsIm1hbmFnZS10ZW5hbnQtc2NoZW1hcyIsInZpZXctc2NoZW1hcyIsIm1hbmFnZS1zY2hlbWFzIiwidmlldy11c2VycyIsIm1hbmFnZS11c2VycyIsInZpZXctcm9sZXMiLCJtYW5hZ2Utcm9sZXMiLCJ2aWV3LWxhYmVscyIsIm1hbmFnZS1sYWJlbHMiLCJwbGF0Zm9ybS1sb2dzIiwiYmFja3VwLWRiIiwidmlldy1hbGwtYXVkaXQtcmVjb3JkcyIsIm1hbmFnZS1hdWRpdC1yZWNvcmRzIl19.CNs-nM3V73CBcYRBHqgfwtx3tAW5a9wsnMHqkKDGjDE" -H "Content-Type: application/json" -H "Accept: application/json" -H "Referer: https://172.31.187.59/users/create" -H "User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36" -H "Connection: keep-alive" -H "DNT: 1" --data-binary "^{^\^"lastName^\^":^\^"lastName^\^",^\^"needsPasswordUpdate^\^":true,^\^"username^\^":^\^"newUserName^\^",^\^"phoneNumber^\^":^\^"1234567890^\^",^\^"emailAddress^\^":^\^"email^@domain.com^\^",^\^"id^\^":^\^"^\^",^\^"firstName^\^":^\^"firstName^\^",^\^"confirmPassword^\^":^\^"passw0rd^#^\^",^\^"password^\^":^\^"passw0rd^#^\^",^\^"accountStatus^\^":^\^"active^\^",^\^"roles^\^":^[^{^\^"roleId^\^":^\^"0000ffff0000000000000031^\^"^},^{^\^"roleId^\^":^\^"0000ffff0000000000000032^\^"^}^]^}" --compressed --insecure

 And this is the contents of the POST call to create a user:

 {
 "id": "5bb7be240f00008206d3f137",
 "username": "newUserName",
 "password": "******",
 "firstName": "firstName",
 "lastName": "lastName",
 "emailAddress": "email@domain.com",
 "phoneNumber": "1234567890",
 "accountStatus": "active",
 "needsPasswordUpdate": true,
 "roles": [{
 "roleId": "0000ffff0000000000000031"
 }, {
 "roleId": "0000ffff0000000000000032"
 }
],
 "domainId": "0000ffff0000000000000090"
}

 Chapter 3. Cisco ACI Multi-Site REST API Data Structures

 This chapter contains the following sections:

 	REST API Data Structures Overview

 	Schema

 	Reference Fields

 REST API Data Structures Overview

 This section describes the objects used by the Cisco ACI Multi-Site REST API and their hierarchy. The objects are represented using JavaScript Object Notation (JSON) format with the top level
 containing Schemas. The data structure is consistent across Multi-Site with Schemas containing templates and tempaltes containing lower level objects such as application network profiles (anps),
 bridge domains (bds), virtual routing and forwarding (vrfs) instances and so on. These entities also contain other smaller
 structures.

 A few high-level entities or concepts are described in the following sections. In the examples presented, when a field name
 is pluralized (such as vrfs or bds), the field contains an array of that type of objects associated with the parent structure. For example, the vrfs array contains all the VRF instances associated with the template.

 For a complete object and method reference, see the OpenAPI reference as described in REST API Reference (OpenAPI/Swagger).

 Schema

 A schema object represents a schema. Each schema object contains the number templates and sites associated with it. When a site is chosen, it automatically gets added to
 the schema and mapped to a template in that schema.

 Each schemaobject contain the following fields:

 	

 id: the ID of the schema object.

 	

 displayName: the name of the schema as displayed by the GUI.

 	

 templates: templates associated with the schema.

 	

 sites: sites associated with the schema.

 The following snippet provides a high-level example of a schema object:
{
 "id": "583c7c482501002501061985",
 "displayName": "Schema 1",
 "templates": [],
 "sites": []
}

 	Template

 	site

 Template

 A template is the detailed structure that contains policies that you want to push to Cisco APIC. Templates exist in the context of a schema and not on their own. You can define the policy of a new template as desired.
 If there are multiple templates, you can choose a template from which to inherit the policy.

 Template objects contain the following fields:

 	

 name: the name of the template object.

 	

 displayName: the name as displayed by the GUI.

 	

 tenantId: the ID of the tenant with which the template is associated.

 	

 anps: application network profiles associated with the template.

 	

 vrfs: virtual route forwarding instances associated with the template.

 	

 bds: bridge domains associated with the template.

 	

 contracts: contracts associated with the template.

 	

 filters: filters associated with the schema.

 The following snippet provides a high-level example of a template object:
{
 "name": "Template1",
 "displayName": "Template 1",
 "tenantId": "5b90695f1e00005d3b46efa2",
 "anps": [],
 "vrfs": [],
 "bds": [],
 "contracts": [],
 "filters": []
}

 	anp

 	epg

 	bd

 	contract

 	filter

 anp

 An anp object represents an application profile.

 Each anp object contain the following fields:

 	

 name: the name of the application profile.

 	

 displayName: the name of the application profile as displayed by the GUI.

 	

 anpRef: application profile reference.

 	

 epgs: EPGs associated with the application profile.

 The following is a sample anp object:

{
 "name": "anp1",
 "displayName": "Anp 1",
 "anpRef": "/schemas/583c7c482501002501061985/templates/template1/anps/anp1",
 "epgs": []
}

 epg

 An epg object represents an End-Point Group (EPG). Each EPG can contain multiple contract relationships, bridge domains (BDs), subnets,
 and micro-segmentation attributes.

 The following snippet provides a sample epg object:

{
 "name": "epg1",
 "displayName": "EPG 1",
 "epgRef": "/schemas/583c7c482501002501061985/templates/template1/anps/anp1/epgs/epg1",
 "contractRelationships": [],
 "subnets": [],
 "uSegEpg": true,
 "uSegAttrs": [],
 "bdRef": "/schemas/583c7c482501002501061985/templates/template1/bds/bd1"
}

 bd

 An bd object represents Bridge Domain (BD).

 The following snippet provides a sample bd object:

{
 "name": "bd1",
 "displayName": "BD 1",
 "bdRef": "/schemas/583c7c482501002501061985/templates/template1/bds/bd1",
 "l3UnknownMulticastFlooding": "opt-flood",
 "intersiteBumTrafficAllow": true,
 "multiDestinationFlooding": "encap-flood",
 "l2UnknownUnicast": "flood",
 "l2Stretch": true,
 "subnets": [...],
 "vrfRef": "/schemas/583c7c482501002501061985/templates/template1/vrfs/vrf1"
}

The following values are supported for l3UnknownMulticastFlooding:

 	

 flood

 	

 opt-flood

 The following values are supported for multiDestinationFlooding:

 	

 bd-flood

 	

 drop

 	

 encap-flood

 The following values are supported for l2UnknownUnicast:

 	

 flood

 	

 proxy

 contract

 A contract object represents a contract between two EPGs.

 The following snippet provides a sample contract object:

{
 "name": "contract1",
 "displayName": "Contract 1",
 "filterRelationships": [{
 "filterRef": "/templates/template1/filters/filter1",
 "directives": ["log"]
 }
],
 "scope": "global"
}
The following scope values are supported:

 	

 global

 	

 tenant

 	

 context

 	

 application-profile

 filter

 An filter object represents a filter for a contract.

 The following snippet provides a sample filter object:

{
 "name": "filter1",
 "displayName": "Filter 1",
 "description": "",
 "entries": [{
 "name": "filterEntry11",
 "displayName": "Filter Entry 11",
 "description": "",
 "etherType": "ip",
 "ipProtocol": "icmp"
 }, {
 "name": "filterEntry12",
 "displayName": "Filter Entry 12",
 "description": "",
 "etherType": "ip",
 "ipProtocol": "udp",
 "matchOnlyFragments": false,
 "sourceFrom": "dns",
 "sourceTo": "http",
 "destinationFrom": "dns",
 "destinationTo": "80"
 }
]
}
The following filter criteria are supported:"etherType": "arp|fcoe|ip|mac_security|mpls_ucast|trill|unspecified",
"arpFlag": "request|reply|unspecified",
"ipProtocol": "eigrp|egp|icmp|icmpv6|igmp|igp|l2tp|ospfigp|pim|tcp|udp|unspecified",
"matchOnlyFragments": false,
"stateful": false,
"sourceFrom": "dns|ftp-data|http|https|pop3|rtsp|smtp|unspecified|[0..65535]",
"sourceTo": "dns|ftp-data|http|https|pop3|rtsp|smtp|unspecified|[0..65535]",
"destinationFrom": "dns|ftp-data|http|https|pop3|rtsp|smtp|unspecified|[0..65535]",
"destinationTo": "dns|ftp-data|http|https|pop3|rtsp|smtp|unspecified|[0..65535]",
"tcpSessionRules": [
 "acknowledgement|established|finish|synchronize|reset|unspecified",
 "acknowledgement|established|finish|synchronize|reset|unspecified"
]

 site

 Each site object represents a site associated with a template. The policies from specific templates are pushed to sites based on the
 list of sites associated with the template.

 The siteId field contains the ID of the site as defined in Cisco ACI Multi-Site Orchestrator.

 Each siteobject contain the following fields:

 	

 siteId: the ID of the site.

 	

 templateName: template associated with the site.

 	

 bds: bridge domains associated with the site.

 The following is an example of a site API snippet:
{
 "siteId": "58202f7066e6e10001c41236",
 "templateName": "template1",
 "bds": []
}

 Reference Fields

 Reference fields are generated for each and every policy to provide relationships between the policies. These fields are typically
 used in situations when you need to refer to other entities from within a particular entity, for example for policies within
 a template. A reference is generated on the first save, however, if you define a policy within the Schema and you want to reference it right away, you can specify a reference without having to wait for it to be generated.

 Sample References

 As an example, the anpRef and vrfRef fields are automatically generated by the system to identify application profiles (anpRef) and virtual routing and forwarding instance (vrfRef) respectively.

 The following snippet provides an example of the anpRef field in an application profile object:

 {
 "name": "anp1",
 "displayName": "AP 1",
 "anpRef": "/schemas/583c7c482501002501061985/templates/template1/anps/anp1",
 "epgs": []
}

 The following snippet provides an example of the vrfRef field in a VRF instance object:

 {
 "name": "vrf1",
 "displayName": "VRF 1",
 "vrfRef": "/schemas/583c7c482501002501061985/templates/template1/vrfs/vrf1"
}

 	Local References

 	References from Another Schema

 Local References

 In some cases, the reference that is supplied as input to the post operation, does not contain the Schema ID (as system generated references contain). A local reference means that an entity within this Schema is referenced by the path of that entity. In such a case, the ID is not used as a reference, and the reference does not contain
 Schema ID.

 For example, you create a contract, and you want to reference the contract within the EPG immediately. The system will not
 yet have generated a reference for the contract, so the generated 'ref' is not available. However, you can still ensure the
 relationship by referencing the contract to the path of an entity that already exists in the system.

 Once it persists, the system makes a local reference an absolute reference. The system prepends the Schema ID even though it is a local reference that is available in the same Schema, and thereby fully populates the reference.

 The following is an example of a local contract reference API snippet:

{
 "name": "epg1",
 "displayName": "EPG 2",
 "contractRelationships":
	 {
 "contractRef": "contractRef": "/templates/template1/contracts/contract1",
 "relationshipType": "consumer"
 }
 },

 References from Another Schema

 It is possible to associate an entity (for example, a provider contract) from another Schema. You can specify the contract reference by prepending it with an ID contained in an absolute reference from another Schema. This references another policy in another Schema.

 The following is an API snippet example of a reference from another Schema:

{
 "name": "epg1",
 "displayName": "EPG 2",
 "contractRelationships":
	 {
 "contractRef": "/schemas/590ca1811f000062006eef23/templates/template1/contracts/contract2",
 "relationshipType": "provider"
 }
 },

 Preface

 This preface includes the following sections:

 	Document Conventions

 	Related Documentation

 	Documentation Feedback

 	Obtaining Documentation and Submitting a Service Request

 Document
 	 Conventions

 		
 Command descriptions
 		 use the following conventions:
 		

 		

 	Convention
 				

 	Description
 				

 	
 					 bold
 				

 	
 					
 Bold text
 						indicates the commands and keywords that you enter literally as shown.
 					

 				

 	
 					 Italic
 					
 				

 	
 					
 Italic
 						text indicates arguments for which the user supplies the values.
 					

 				

 	[x]
 				

 	
 					
 Square
 						brackets enclose an optional element (keyword or argument).
 					

 				

 	[x | y]
 				

 	
 					
 Square
 						brackets enclosing keywords or arguments separated by a vertical bar indicate
 						an optional choice.
 					

 				

 	{x | y}
 				

 	
 					
 Braces
 						enclosing keywords or arguments separated by a vertical bar indicate a required
 						choice.
 					

 				

 	[x {y | z}]
 				

 	
 					
 Nested set
 						of square brackets or braces indicate optional or required choices within
 						optional or required elements. Braces and a vertical bar within square brackets
 						indicate a required choice within an optional element.
 					

 				

 	
 					 variable
 				

 	
 					
 Indicates
 						a variable for which you supply values, in context where italics cannot be
 						used.
 					

 				

 	string
 				

 	A nonquoted set of
 					 characters. Do not use quotation marks around the string or the string will
 					 include the quotation marks.
 				

 	

 		
 Examples use the
 		 following conventions:
 		

 		

 	Convention
 				

 	Description
 				

 	
 					 screen font
 				

 	
 					
 Terminal
 						sessions and information the switch displays are in screen font.
 					

 				

 	
 					
 						boldface screen font
 					
 				

 	
 					
 Information you must enter is in boldface screen font.
 					

 				

 	
 					
 						italic screen font
 					
 				

 	
 					
 Arguments
 						for which you supply values are in italic screen font.
 					

 				

 	< >
 				

 	
 					
 Nonprinting characters, such as passwords, are in angle
 						brackets.
 					

 				

 	[]
 				

 	
 					
 Default
 						responses to system prompts are in square brackets.
 					

 				

 	!, #
 				

 	
 					
 An
 						exclamation point (!) or a pound sign (#) at the beginning of a line of code
 						indicates a comment line.
 					

 				

 	

 		
 This document uses
 		 the following conventions:
 		

 		

 	
 Note

 	

 		
 Means
 			 reader take
 				note. Notes contain helpful suggestions or references to material not
 			 covered in the manual.
 		

 		

 		

 	
 Caution

 	

 		
 Means
 			 reader be
 				careful. In this situation, you might do something that could result in
 			 equipment damage or loss of data.
 		

 		

 			

 	
 Warning

 	

 				
 IMPORTANT SAFETY INSTRUCTIONS

 				
 This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment,
 be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents.
 Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that
 accompanied this device.

 				
 SAVE THESE INSTRUCTIONS

 			

 	

 Related Documentation

 The following documentation provides additional information on Cisco ACI Multi-Site:

 	

 Cisco ACI Multi-Site Fundamentals Guide

 	

 Cisco ACI Multi-Site Orchestrator Installation and Upgrade Guide

 	

 Cisco ACI Multi-Site Configuration Guide

 	

 Cisco ACI Multi-Site REST API Configuration Guide

 	

 Cisco ACI Multi-Site Troubleshooting Guide

 All these documents are available at the following URL: http://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html

 Documentation
 	 Feedback

 To provide technical feedback on this document, or to report an error or omission, please send your comments to apic-docfeedback@cisco.com. We appreciate your feedback.

 Obtaining
 	 Documentation and Submitting a Service Request

 		
 For information on
 		 obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a
 		 service request, and gathering additional information, see
 		 What's New in
 			 Cisco Product Documentation at:
 		 http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
 		
 		

 		
 Subscribe to
 		 What’s New in
 			 Cisco Product Documentation, which lists all new and revised Cisco
 		 technical documentation as an RSS feed and delivers content directly to your
 		 desktop using a reader application. The RSS feeds are a free service.
 		

 	

 Full Cisco Trademarks with Software License

 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS
 MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND
 RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED
 WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
 RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

 THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT
 ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE
 INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE
 LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

 The Cisco implementation of TCP header compression is an adaptation of
 a program developed by the University of California, Berkeley (UCB) as part of
 UCB's public domain version of the UNIX operating system. All rights reserved.
 Copyright © 1981, Regents of the University of California.

 NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND
 SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE
 ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING,
 WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
 AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
 PRACTICE.

 IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT,
 SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION,
 LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO
 USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

 Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone
 numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown
 for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and
 coincidental.

 All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version
 for the latest version.

 Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

 Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries.
 To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply
 a partnership relationship between Cisco and any other company. (1721R)

 nav.xhtml

 Contents

 		 Cover Page

 		Chapter 1. New and Changed Information
 		 New and Changed Information

 		Chapter 2. Cisco ACI Multi-Site REST API
 		 REST API Overview
 		 REST API Requests
 		 GET Requests

 		 POST and PUT Requests

 		 DELETE Requests

 		 PATCH Requests

 		 REST API User Roles and Authorization

 		 REST API Reference (OpenAPI/Swagger)
 		 Accessing OpenAPI Reference

 		 Using OpenAPI for Authentication

 		 Using OpenAPI to Manage Users

 		 Using In-Browser DevTools to View REST API Calls
 		 Using In-Browser DevTools to Work with REST API Calls

 		Chapter 3. Cisco ACI Multi-Site REST API Data Structures
 		 REST API Data Structures Overview

 		 Schema
 		 Template
 		 anp

 		 epg

 		 bd

 		 contract

 		 filter

 		 site

 		 Reference Fields
 		 Local References

 		 References from Another Schema

 		 Preface
 		 Document
 	 Conventions

 		 Related Documentation

 		 Documentation
 	 Feedback

 		 Obtaining
 	 Documentation and Submitting a Service Request

 		 Copyright Page

images/caut.gif

images/502188.jpg
coud-schemat

doudschems10

cloud-schems2

cloudschems

cloud-schemsé

cloudschems?

cloudschems

cloud-templatet

cloud-templte10

cloud-tempiste?

cloud-templated

cioud templates

coud-templtes

coud-templates

cloud-template?

cloud-tempiates

cloud-templates

~ (R (]| Eements Comole Network Sources Performance
cmersinz: 33 @ QLo o= v alve = 0cowsiom | 0 e
s viceova Uts a1 (D 5 G55 tmg A

eo TS

[<ot
o e RequestURL: s
I ruwmw et 1
Jcose: 200 o
doustenantt : [— Adbes 172.22.5. 10850
Clnbiercosies e Poly nvreferrer-wen-
douttenant10 :
= Br——"
pe——
k sk e AL il
Fp— S namigd
e —
doutenants : S i it ot
[—
> v D oyt
: B Copy it)
S Copy i o)
cloud-tenants. i el copmmronsshet
o Compstmtecn
Copyst s o
TR oy L)
5 et

coudenant? CopyatmHaR

[——————
Autorization: Seaer e300

coudtensnts

cloud-tenant9 (2 areques | 120K/ 151 KB .

images/tip.gif

images/307317.jpg
GCEU /api/v1/auth/login Logininto MSC and get Bearer token

Parameters

Name

body * reaired
(body)

Description

Enter username and password [domainid is optional]

Edit Value | Model

1 .
“usernane”: "admin,
passuord
¥
Cancel
Parameter content type

applicationfjson

Cancel

g

images/cover_shelf.png
alaln
cisco

— -

2
REST API Configuration
Guide, Release 2.2(x)

AW

images/502187.jpg
2 (R @] | Eements Console Network

ds ACI Multi-Site @O =¥ Q Ve

Fiter Videdoa UR
ClusterStatus 3/3 (-] (2] [AH (<3 c5> img Med Font Doc W
Schemas o

Q
Name. S Type
tistdentiy 20
NAME A TEMpLATES TENANTS e e e
tenants 0,
cloudschemat cloud-template1 cloud-tenant1 1 [§| = fNschemas 0K
cloud-schemat0 cloud-template10 cloud-tenant10 i

chema2 cloud-template2 cloud-tenant2

schema3 cloud-template3 cloud-tenant3

images/307318.jpg
<

“userTd™: "0000FFFF0000000000000020" ,
“needsPassuordupdate”: false,

~token’
"eyI0eXAI0i IKVIQiL CIDGCI0iTTUZTINI 9. ey T1eHAIOTEINDCINTENTYSInndCTGHTUONZ cOOTg N wia
X210 MGQON JR10NYSOTE SNDNNNTIOOWETHTIONMLXY Y2V L CT1.C2Vy SHQ10i TwHDAMZNZnZ JAwMDAMDA
MDAMDAMIALLCY1C2VybaF tZST6TnF KbWLUTiui CGVybZ 21vbnMi01 sidml dy1zaXR1cyTs It hbmFnZS1
2aXR1cyTs InZp7XCtdGVuYWSOCy TsInthbmFnZS167WShbnR2 Tiwi dul1dy107WShbngt 2NoZWt hcyIs Tnthbm
FnZS10ZWshbnQtc2NoZH1hcy TS InZpZXctc2NoZW1hcy s InihbmFnZS1zY2h1bK 2 Tiwidul 1dy11c2VycyIsT
m1hbRFZS11c2Vycy TsInZpZXCtcROSZIM LCItYHShZ2Utcuds TXMEL CJ2aRV3LUxhYaVs cyTsImhbuFnZS1s
VHIL0HAIL CIWbGFOZn9ybS15b2d2 Tiwi YaF ja3ViLWR Lisi dal 1y 1hbGatYXVKaXQtcaV jb3JkcyTs TmthbaF
NZS1RWRpAC1yZWWVCRRZT119. UnbL237_V2_6pVSESHEHGKKXGSUIPVTBFI1FVTSHBA"
“permissions™: [

“view-sites”,

“manage-sites”,

“vieu-tenants”,

“manage-tenants®,

“vieu-tenant-schemas”,

“manage-tenant-schenas”,

“vieu-schemas™,

“manage-schenas”,

“manage-users",

ke rates”

images/307316.jpg
Authentication APls 27

LI /api/vl/auth/login Login into MSC and get Bearer token a
Parameters Try it out
Name Description
body * reed

s Enter username and password [domainid is optional]

Example Value | Model

<

“username”: "string",

“password®: "string",
“dowainId": "string™

3

Parameter content type

applicationfjson

e

images/307315.jpg
Authentication APIs N7
‘ /api/vi/auth/login Logininto MSC and get Bearer token 8 ‘
‘ /api/vi/auth/logout Logoutof MSC 8 ‘
‘m /api/v1/auth/refresh-token Refresh token & ‘

e

images/cover_page.png
feen]n
CISCO.

REST API Configuration Guide,
Release 2.2(x)

©2019 Cisco Systems, m: Al rights reserved.

YR WU b

images/warn.gif

images/timesave.gif

images/note.gif

