Cisco Catalyst Blade Switch 3120 for HP Software Configuration Guide

Cisco IOS Release 12.2(55)SE
August 2010
CONTENTS

Preface xlix
Audience xlix
Purpose xlix
Conventions l
Related Publications l
Obtaining Documentation and Submitting a Service Request li

CHAPTER 1
Overview 1-1
Features 1-1
- Deployment Features 1-3
- Performance Features 1-4
- Management Options 1-5
- Manageability Features 1-6
- Availability and Redundancy Features 1-8
- VLAN Features 1-9
- Security Features 1-10
- QoS and CoS Features 1-13
- Layer 3 Features 1-14
- Monitoring Features 1-16

Default Settings After Initial Switch Configuration 1-17
Network Configuration Examples 1-19
- Design Concepts for Using the Switch 1-19
- Small to Medium-Sized Network 1-22

Where to Go Next 1-23

CHAPTER 2
Using the Command-Line Interface 2-1
- Understanding Command Modes 2-1
- Understanding the Help System 2-3
- Understanding Abbreviated Commands 2-3
- Understanding no and default Forms of Commands 2-4
- Understanding CLI Error Messages 2-4
- Using Configuration Logging 2-5
- Using Command History 2-5
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changing the Command History Buffer Size</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Recalling Commands</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>Disabling the Command History Feature</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>Using Editing Features</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>Enabling and Disabling Editing Features</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>Editing Commands through Keystrokes</td>
<td>2-7</td>
</tr>
<tr>
<td></td>
<td>Editing Command Lines that Wrap</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>Searching and Filtering Output of show and more Commands</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>Accessing the CLI</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>Accessing the CLI through a Console Connection or through Telnet</td>
<td>2-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHAPTER 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assigning the Switch IP Address and Default Gateway</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Understanding the Boot Process</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>Assigning Switch Information</td>
<td>3-3</td>
</tr>
<tr>
<td></td>
<td>Default Switch Information</td>
<td>3-3</td>
</tr>
<tr>
<td></td>
<td>Understanding DHCP-Based Autoconfiguration</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>DHCP Client Request Process</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Understanding DHCP-based Autoconfiguration and Image Update</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>DHCP Autoconfiguration</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>DHCP Auto-Image Update</td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>Limitations and Restrictions</td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>Configuring DHCP-Based Autoconfiguration</td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>DHCP Server Configuration Guidelines</td>
<td>3-7</td>
</tr>
<tr>
<td></td>
<td>Configuring the TFTP Server</td>
<td>3-7</td>
</tr>
<tr>
<td></td>
<td>Configuring the DNS</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>Configuring the Relay Device</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>Obtaining Configuration Files</td>
<td>3-9</td>
</tr>
<tr>
<td></td>
<td>Example Configuration</td>
<td>3-10</td>
</tr>
<tr>
<td></td>
<td>Understanding DHCP-based Autoconfiguration and Image Update</td>
<td>3-11</td>
</tr>
<tr>
<td></td>
<td>DHCP Autoconfiguration</td>
<td>3-11</td>
</tr>
<tr>
<td></td>
<td>DHCP Auto-Image Update</td>
<td>3-12</td>
</tr>
<tr>
<td></td>
<td>Limitations and Restrictions</td>
<td>3-12</td>
</tr>
<tr>
<td></td>
<td>Configuring the DHCP Auto Configuration and Image Update Features</td>
<td>3-13</td>
</tr>
<tr>
<td></td>
<td>Configuring DHCP Autoconfiguration (Only Configuration File)</td>
<td>3-13</td>
</tr>
<tr>
<td></td>
<td>Configuring DHCP Auto-Image Update (Configuration File and Image)</td>
<td>3-14</td>
</tr>
<tr>
<td></td>
<td>Configuring the Client</td>
<td>3-15</td>
</tr>
<tr>
<td></td>
<td>Manually Assigning IP Information</td>
<td>3-16</td>
</tr>
<tr>
<td></td>
<td>Configuring Protected Mode</td>
<td>3-17</td>
</tr>
<tr>
<td></td>
<td>Understanding Protected Mode</td>
<td>3-17</td>
</tr>
</tbody>
</table>
Contents

Configuration Guidelines and Restrictions 3-18
Enabling Protected Mode 3-18
Checking and Saving the Running Configuration 3-19
Configuring the NVRAM Buffer Size 3-20
Modifying the Startup Configuration 3-21
Default Boot Configuration 3-21
Automatically Downloading a Configuration File 3-21
Specifying the Filename to Read and Write the System Configuration 3-22
Booting Manually 3-22
Booting a Specific Software Image 3-23
Controlling Environment Variables 3-24
Scheduling a Reload of the Software Image 3-26
Configuring a Scheduled Reload 3-26
Displaying Scheduled Reload Information 3-27

CHAPTER 4
Configuring Cisco IOS Configuration Engine 4-1
Understanding Cisco Configuration Engine Software 4-1
Configuration Service 4-2
Event Service 4-3
NameSpace Mapper 4-3
What You Should Know About the CNS IDs and Device Hostnames 4-3
ConfigID 4-3
DeviceID 4-4
Hostname and DeviceID 4-4
Using Hostname, DeviceID, and ConfigID 4-4
Understanding Cisco IOS Agents 4-5
Initial Configuration 4-5
Incremental (Partial) Configuration 4-6
Synchronized Configuration 4-6
Configuring Cisco IOS Agents 4-6
Enabling Automated CNS Configuration 4-7
Enabling the CNS Event Agent 4-8
Enabling the Cisco IOS CNS Agent 4-9
Enabling an Initial Configuration 4-9
Enabling a Partial Configuration 4-13
Displaying CNS Configuration 4-14

CHAPTER 5
Administering the Switch 5-1
Managing the System Time and Date 5-1
Contents

Understanding the System Clock 5-2
Understanding Network Time Protocol 5-2
Configuring NTP 5-4
 Default NTP Configuration 5-4
 Configuring NTP Authentication 5-4
 Configuring NTP Associations 5-5
 Configuring NTP Broadcast Service 5-6
 Configuring NTP Access Restrictions 5-8
 Configuring the Source IP Address for NTP Packets 5-10
Displaying the NTP Configuration 5-11
Configuring Time and Date Manually 5-11
 Setting the System Clock 5-11
 Displaying the Time and Date Configuration 5-12
Configuring the Time Zone 5-12
 Configuring Summer Time (Daylight Saving Time) 5-13
Configuring a System Name and Prompt 5-14
 Default System Name and Prompt Configuration 5-15
 Configuring a System Name 5-15
Understanding DNS 5-15
 Default DNS Configuration 5-16
 Setting Up DNS 5-16
 Displaying the DNS Configuration 5-17
Creating a Banner 5-17
 Default Banner Configuration 5-17
 Configuring a Message-of-the-Day Login Banner 5-18
 Configuring a Login Banner 5-19
Managing the MAC Address Table 5-19
 Building the Address Table 5-20
 MAC Addresses and VLANs 5-20
 MAC Addresses and Switch Stacks 5-21
 Default MAC Address Table Configuration 5-21
 Changing the Address Aging Time 5-21
 Removing Dynamic Address Entries 5-22
 Configuring MAC Address Change Notification Traps 5-22
 Configuring MAC Address Move Notification Traps 5-24
 Configuring MAC Address Threshold Notification Traps 5-26
 Adding and Removing Static Address Entries 5-27
 Configuring Unicast MAC Address Filtering 5-28
 Disabling MAC Address Learning on a VLAN 5-29
CHAPTER 6

Configuring Switch-Based Authentication 6-1

Preventing Unauthorized Access to Your Switch 6-1
Protecting Access to Privileged EXEC Commands 6-2
 Default Password and Privilege Level Configuration 6-2
 Setting or Changing a Static Enable Password 6-3
 Protecting Enable and Enable Secret Passwords with Encryption 6-3
Disabling Password Recovery 6-5
Setting a Telnet Password for a Terminal Line 6-6
Configuring Username and Password Pairs 6-6
Configuring Multiple Privilege Levels 6-7
 Setting the Privilege Level for a Command 6-8
 Changing the Default Privilege Level for Lines 6-9
Logging into and Exiting a Privilege Level 6-9

Controlling Switch Access with TACACS+ 6-10

Understanding TACACS+ 6-10
TACACS+ Operation 6-12
Configuring TACACS+ 6-12
 Default TACACS+ Configuration 6-13
 Identifying the TACACS+ Server Host and Setting the Authentication Key 6-13
 Configuring TACACS+ Login Authentication 6-14
 Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services 6-16
 Starting TACACS+ Accounting 6-17
 Establishing a Session with a Router if the AAA Server is Unreachable 6-17

Displaying the TACACS+ Configuration 6-17

Controlling Switch Access with RADIUS 6-18

Understanding RADIUS 6-18
RADIUS Operation 6-19
RADIUS Change of Authorization 6-20
 Overview 6-20
 Change-of-Authorization Requests 6-20
 CoA Request Response Code 6-22
 CoA Request Commands 6-23
 Stacking Guidelines for Session Termination 6-26

Configuring RADIUS 6-27
 Default RADIUS Configuration 6-27
 Identifying the RADIUS Server Host 6-27
Configuring RADIUS Login Authentication 6-30
Defining AAA Server Groups 6-32
Configuring RADIUS Authorization for User Privileged Access and Network Services 6-34
Starting RADIUS Accounting 6-35
Establishing a Session with a Router if the AAA Server is Unreachable 6-35
Configuring Settings for All RADIUS Servers 6-36
Configuring the Switch to Use Vendor-Specific RADIUS Attributes 6-36
Configuring the Switch for Vendor-Proprietary RADIUS Server Communication 6-38
Configuring CoA on the Switch 6-39
Monitoring and Troubleshooting CoA Functionality 6-40
Configuring RADIUS Server Load Balancing 6-40

Displaying the RADIUS Configuration 6-40
Controlling Switch Access with Kerberos 6-40

Understanding Kerberos 6-41
Kerberos Operation 6-43
 Authenticating to a Boundary Switch 6-43
 Obtaining a TGT from a KDC 6-43
 Authenticating to Network Services 6-44
Configuring Kerberos 6-44

Configuring the Switch for Local Authentication and Authorization 6-44
Configuring the Switch for Secure Shell 6-45

Understanding SSH 6-46
 SSH Servers, Integrated Clients, and Supported Versions 6-46
 Limitations 6-47
Configuring SSH 6-47
 Configuration Guidelines 6-47
 Setting Up the Switch to Run SSH 6-47
 Configuring the SSH Server 6-48
Displaying the SSH Configuration and Status 6-49

Configuring the Switch for Secure Socket Layer HTTP 6-50
Understanding Secure HTTP Servers and Clients 6-50
 Certificate Authority Trustpoints 6-50
 CipherSuites 6-51
Configuring Secure HTTP Servers and Clients 6-52
 Default SSL Configuration 6-52
 SSL Configuration Guidelines 6-52
 Configuring a CA Trustpoint 6-53
 Configuring the Secure HTTP Server 6-53
 Configuring the Secure HTTP Client 6-55
CHAPTER 7
Displaying Secure HTTP Server and Client Status 6-56
Configuring the Switch for Secure Copy Protocol 6-57
 Information About Secure Copy 6-57

MANAGING SWITCH STACKS 7-1
Understanding Switch Stacks 7-1
 Switch Stack Membership 7-3
 Stack Master Election and Re-Election 7-6
 Switch Stack Bridge ID and Router MAC Address 7-8
Stack Member Numbers 7-8
Stack Member Priority Values 7-9
Switch Stack Offline Configuration 7-9
 Effects of Adding a Provisioned Switch to a Switch Stack 7-10
 Effects of Replacing a Provisioned Switch in a Switch Stack 7-11
 Effects of Removing a Provisioned Switch from a Switch Stack 7-11
Hardware Compatibility and SDM Mismatch Mode in Switch Stacks 7-12
Switch Stack Software Compatibility Recommendations 7-12
Stack Protocol Version Compatibility 7-12
Major Version Number Incompatibility Among Switches 7-12
Minor Version Number Incompatibility Among Switches 7-13
 Understanding Auto-Upgrade and Auto-Advise 7-13
 Auto-Upgrade and Auto-Advise Example Messages 7-14
Incompatible Software and Stack Member Image Upgrades 7-16
Switch Stack Configuration Files 7-16
 Additional Considerations for System-Wide Configuration on Switch Stacks 7-17
Switch Stack Management Connectivity 7-18
 Connectivity to the Switch Stack Through an IP Address 7-18
 Connectivity to the Switch Stack Through an SSH Session 7-18
 Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports 7-18
 Connectivity to Specific Stack Members 7-19
Switch Stack Configuration Scenarios 7-19
Configuring the Switch Stack 7-21
 Default Switch Stack Configuration 7-21
 Configuration Guidelines 7-22
 Enabling Persistent MAC Address 7-22
 Assigning Stack Member Information 7-24
 Assigning a Stack Member Number 7-24
 Setting the Stack Member Priority Value 7-25
 Provisioning a New Member for a Switch Stack 7-25
CHAPTER 8 Configuring SDM Templates 8-1
- Understanding the SDM Templates 8-1
 - Dual IPv4 and IPv6 SDM Templates 8-2
 - SDM Templates and Switch Stacks 8-3
- Configuring the Switch SDM Template 8-4
 - Default SDM Template 8-4
 - SDM Template Configuration Guidelines 8-4
- Setting the SDM Template 8-5
- Displaying the SDM Templates 8-6

CHAPTER 9 Configuring IEEE 802.1x Port-Based Authentication 9-1
- Understanding IEEE 802.1x Port-Based Authentication 9-2
 - Device Roles 9-3
 - Authentication Process 9-4
 - Authentication Initiation and Message Exchange 9-6
 - Authentication Manager 9-8
 - Port-Based Authentication Methods 9-8
 - Per-User ACLs and Filter-Ids 9-9
 - Authentication Manager CLI Commands 9-9
 - Ports in Authorized and Unauthorized States 9-11
 - 802.1x Authentication and Switch Stacks 9-12
 - 802.1x Host Mode 9-12
 - 802.1x Multiple Authentication Mode 9-13
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Move</td>
<td>9-14</td>
</tr>
<tr>
<td>MAC Replace</td>
<td>9-14</td>
</tr>
<tr>
<td>802.1x Accounting</td>
<td>9-15</td>
</tr>
<tr>
<td>802.1x Accounting Attribute-Value Pairs</td>
<td>9-15</td>
</tr>
<tr>
<td>802.1x Readiness Check</td>
<td>9-16</td>
</tr>
<tr>
<td>802.1x Authentication with VLAN Assignment</td>
<td>9-16</td>
</tr>
<tr>
<td>802.1x Authentication with Per-User ACLs</td>
<td>9-18</td>
</tr>
<tr>
<td>802.1x Authentication with Downloadable ACLs and Redirect URL</td>
<td>9-19</td>
</tr>
<tr>
<td>Cisco Secure ACS and Attribute-Value Pairs for the Redirect URL</td>
<td>9-20</td>
</tr>
<tr>
<td>Cisco Secure ACS and Attribute-Value Pairs for Downloadable ACLs</td>
<td>9-21</td>
</tr>
<tr>
<td>VLAN ID-based MAC Authentication</td>
<td>9-21</td>
</tr>
<tr>
<td>802.1x Authentication with Guest VLAN</td>
<td>9-21</td>
</tr>
<tr>
<td>802.1x Authentication with Restricted VLAN</td>
<td>9-22</td>
</tr>
<tr>
<td>802.1x Authentication with Inaccessible Authentication Bypass</td>
<td>9-23</td>
</tr>
<tr>
<td>Overview</td>
<td>9-23</td>
</tr>
<tr>
<td>Support on Multiple-Authentication Ports</td>
<td>9-24</td>
</tr>
<tr>
<td>Authentication Results</td>
<td>9-24</td>
</tr>
<tr>
<td>Feature Interactions</td>
<td>9-24</td>
</tr>
<tr>
<td>802.1x Authentication with Voice VLAN Ports</td>
<td>9-25</td>
</tr>
<tr>
<td>802.1x Authentication with Port Security</td>
<td>9-26</td>
</tr>
<tr>
<td>802.1x Authentication with Wake-on-LAN</td>
<td>9-27</td>
</tr>
<tr>
<td>802.1x User Distribution</td>
<td>9-27</td>
</tr>
<tr>
<td>802.1x User Distribution Configuration Guidelines</td>
<td>9-28</td>
</tr>
<tr>
<td>802.1x Authentication with MAC Authentication Bypass</td>
<td>9-28</td>
</tr>
<tr>
<td>Network Admission Control Layer 2 802.1x Validation</td>
<td>9-29</td>
</tr>
<tr>
<td>Flexible Authentication Ordering</td>
<td>9-30</td>
</tr>
<tr>
<td>Open1x Authentication</td>
<td>9-30</td>
</tr>
<tr>
<td>Multidomain Authentication</td>
<td>9-30</td>
</tr>
<tr>
<td>Voice Aware 802.1x Security</td>
<td>9-31</td>
</tr>
<tr>
<td>802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT)</td>
<td>9-32</td>
</tr>
<tr>
<td>Guidelines</td>
<td>9-33</td>
</tr>
<tr>
<td>Common Session ID</td>
<td>9-33</td>
</tr>
<tr>
<td>Configuring 802.1x Authentication</td>
<td>9-34</td>
</tr>
<tr>
<td>Default 802.1x Authentication Configuration</td>
<td>9-35</td>
</tr>
<tr>
<td>802.1x Authentication Configuration Guidelines</td>
<td>9-36</td>
</tr>
<tr>
<td>802.1x Authentication</td>
<td>9-36</td>
</tr>
<tr>
<td>VLAN Assignment, Guest VLAN, Restricted VLAN, and Inaccessible Authentication Bypass</td>
<td>9-37</td>
</tr>
<tr>
<td>MAC Authentication Bypass</td>
<td>9-38</td>
</tr>
<tr>
<td>Maximum Number of Allowed Devices Per Port</td>
<td>9-38</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring 802.1x Violation Modes</td>
<td>9-38</td>
</tr>
<tr>
<td>Configuring 802.1x Authentication</td>
<td>9-39</td>
</tr>
<tr>
<td>Configuring 802.1x Readiness Check</td>
<td>9-41</td>
</tr>
<tr>
<td>Configuring Voice Aware 802.1x Security</td>
<td>9-42</td>
</tr>
<tr>
<td>Configuring the Switch-to-RADIUS-Server Communication</td>
<td>9-43</td>
</tr>
<tr>
<td>Configuring the Host Mode</td>
<td>9-44</td>
</tr>
<tr>
<td>Configuring Periodic Re-Authentication</td>
<td>9-45</td>
</tr>
<tr>
<td>Manually Re-Authenticating a Client Connected to a Port</td>
<td>9-47</td>
</tr>
<tr>
<td>Changing the Quiet Period</td>
<td>9-47</td>
</tr>
<tr>
<td>Changing the Switch-to-Client Retransmission Time</td>
<td>9-48</td>
</tr>
<tr>
<td>Setting the Switch-to-Client Frame-Retransmission Number</td>
<td>9-48</td>
</tr>
<tr>
<td>Setting the Re-Authentication Number</td>
<td>9-49</td>
</tr>
<tr>
<td>Enabling MAC Move</td>
<td>9-50</td>
</tr>
<tr>
<td>Enabling MAC Replace</td>
<td>9-50</td>
</tr>
<tr>
<td>Configuring 802.1x Accounting</td>
<td>9-51</td>
</tr>
<tr>
<td>Configuring a Guest VLAN</td>
<td>9-52</td>
</tr>
<tr>
<td>Configuring a Restricted VLAN</td>
<td>9-53</td>
</tr>
<tr>
<td>Configuring the Inaccessible Authentication Bypass Feature</td>
<td>9-55</td>
</tr>
<tr>
<td>Configuring 802.1x User Distribution</td>
<td>9-58</td>
</tr>
<tr>
<td>Configuring 802.1x Authentication with WoL</td>
<td>9-59</td>
</tr>
<tr>
<td>Configuring MAC Authentication Bypass</td>
<td>9-59</td>
</tr>
<tr>
<td>Configuring NAC Layer 2 802.1x Validation</td>
<td>9-60</td>
</tr>
<tr>
<td>Configuring an Authenticator and a Supplicant Switch with NEAT</td>
<td>9-61</td>
</tr>
<tr>
<td>Configuring NEAT with ASP</td>
<td>9-63</td>
</tr>
<tr>
<td>Configuring 802.1x Authentication with Downloadable ACLs and Redirect URLs</td>
<td>9-63</td>
</tr>
<tr>
<td>Configuring Downloadable ACLs</td>
<td>9-63</td>
</tr>
<tr>
<td>Configuring a downloadable Policy</td>
<td>9-64</td>
</tr>
<tr>
<td>Configuring VLAN ID-based MAC Authentication</td>
<td>9-65</td>
</tr>
<tr>
<td>Configuring Flexible Authentication Ordering</td>
<td>9-66</td>
</tr>
<tr>
<td>Configuring Open1x</td>
<td>9-66</td>
</tr>
<tr>
<td>Disabling 802.1x Authentication on the Port</td>
<td>9-67</td>
</tr>
<tr>
<td>Resetting the 802.1x Authentication Configuration to the Default Values</td>
<td>9-67</td>
</tr>
<tr>
<td>Displaying 802.1x Statistics and Status</td>
<td>9-68</td>
</tr>
</tbody>
</table>

Chapter 10

Configuring Web-Based Authentication

- Understanding Web-Based Authentication
 - Device Roles
 - Host Detection
 - Session Creation
Contents

Authentication Process 10-3
Local Web Authentication Banner 10-4
Web Authentication Customizable Web Pages 10-6
 Guidelines 10-6
Web-based Authentication Interactions with Other Features 10-7
 Port Security 10-7
 LAN Port IP 10-8
 Gateway IP 10-8
 ACLs 10-8
 Context-Based Access Control 10-8
 802.1x Authentication 10-8
 EtherChannel 10-8
Configuring Web-Based Authentication 10-9
 Default Web-Based Authentication Configuration 10-9
 Web-Based Authentication Configuration Guidelines and Restrictions 10-9
 Web-Based Authentication Configuration Task List 10-10
 Configuring the Authentication Rule and Interfaces 10-10
 Configuring AAA Authentication 10-11
 Configuring Switch-to-RADIUS-Server Communication 10-11
 Configuring the HTTP Server 10-13
 Customizing the Authentication Proxy Web Pages 10-13
 Specifying a Redirection URL for Successful Login 10-15
 Configuring an AAA Fail Policy 10-15
 Configuring the Web-Based Authentication Parameters 10-16
 Configuring a Web Authentication Local Banner 10-16
 Removing Web-Based Authentication Cache Entries 10-17
 Displaying Web-Based Authentication Status 10-17

CHAPTER 11

Configuring Interface Characteristics 11-1
 Understanding Interface Types 11-1
 Port-Based VLANs 11-2
 Switch Ports 11-2
 Access Ports 11-3
 Trunk Ports 11-3
 Tunnel Ports 11-4
 Routed Ports 11-4
 Hidden Interfaces 11-5
 Switch Virtual Interfaces 11-5
 SVI Autostate Exclude 11-6
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtherChannel Port Groups</td>
<td>11-6</td>
</tr>
<tr>
<td>10-Gigabit Ethernet Interfaces</td>
<td>11-6</td>
</tr>
<tr>
<td>Connecting Interfaces</td>
<td>11-7</td>
</tr>
<tr>
<td>Using Interface Configuration Mode</td>
<td>11-8</td>
</tr>
<tr>
<td>Procedures for Configuring Interfaces</td>
<td>11-9</td>
</tr>
<tr>
<td>Configuring a Range of Interfaces</td>
<td>11-10</td>
</tr>
<tr>
<td>Configuring and Using Interface Range Macros</td>
<td>11-12</td>
</tr>
<tr>
<td>Using the Internal Ethernet Management Port</td>
<td>11-13</td>
</tr>
<tr>
<td>Understanding the Internal Ethernet Management Port</td>
<td>11-13</td>
</tr>
<tr>
<td>Supported Features on the Ethernet Management Port</td>
<td>11-16</td>
</tr>
<tr>
<td>Layer 3 Routing Configuration Guidelines</td>
<td>11-16</td>
</tr>
<tr>
<td>Monitoring the Ethernet Management Port</td>
<td>11-16</td>
</tr>
<tr>
<td>Configuring Ethernet Interfaces</td>
<td>11-17</td>
</tr>
<tr>
<td>Default Ethernet Interface Configuration</td>
<td>11-17</td>
</tr>
<tr>
<td>Configuring Interface Speed and Duplex Mode</td>
<td>11-18</td>
</tr>
<tr>
<td>Speed and Duplex Configuration Guidelines</td>
<td>11-18</td>
</tr>
<tr>
<td>Setting the Interface Speed and Duplex Parameters</td>
<td>11-19</td>
</tr>
<tr>
<td>Configuring IEEE 802.3x Flow Control</td>
<td>11-20</td>
</tr>
<tr>
<td>Configuring Auto-MDIX on an Interface</td>
<td>11-22</td>
</tr>
<tr>
<td>Adding a Description for an Interface</td>
<td>11-23</td>
</tr>
<tr>
<td>Configuring Layer 3 Interfaces</td>
<td>11-24</td>
</tr>
<tr>
<td>Configuring SVI Autostate Exclude</td>
<td>11-25</td>
</tr>
<tr>
<td>Configuring the System MTU</td>
<td>11-26</td>
</tr>
<tr>
<td>Monitoring and Maintaining the Interfaces</td>
<td>11-28</td>
</tr>
<tr>
<td>Monitoring Interface Status</td>
<td>11-28</td>
</tr>
<tr>
<td>Clearing and Resetting Interfaces and Counters</td>
<td>11-29</td>
</tr>
<tr>
<td>Shutting Down and Restarting the Interface</td>
<td>11-29</td>
</tr>
<tr>
<td>Chapter 12</td>
<td></td>
</tr>
<tr>
<td>Configuring Smartports Macros</td>
<td>12-1</td>
</tr>
<tr>
<td>Understanding Smartports Macros</td>
<td>12-1</td>
</tr>
<tr>
<td>Configuring Smartports Macros</td>
<td>12-2</td>
</tr>
<tr>
<td>Default Smartports Macros Configuration</td>
<td>12-2</td>
</tr>
<tr>
<td>Smartports Macros Configuration Guidelines</td>
<td>12-2</td>
</tr>
<tr>
<td>Creating Smartports Macros</td>
<td>12-4</td>
</tr>
<tr>
<td>Applying Smartports Macros</td>
<td>12-5</td>
</tr>
<tr>
<td>Applying Cisco-Default Smartports Macros</td>
<td>12-6</td>
</tr>
<tr>
<td>Displaying Smartports Macros</td>
<td>12-8</td>
</tr>
</tbody>
</table>
CHAPTER 13

Configuring VLANs 13-1

- Understanding VLANs 13-1
- Supported VLANs 13-2
- VLAN Port Membership Modes 13-3

Configuring Normal-Range VLANs 13-4
- Token Ring VLANs 13-6
- Normal-Range VLAN Configuration Guidelines 13-6
- Configuring Normal-Range VLANs 13-7
- Default Ethernet VLAN Configuration 13-8
- Creating or Modifying an Ethernet VLAN 13-8
- Deleting a VLAN 13-9
- Assigning Static-Access Ports to a VLAN 13-10

Configuring Extended-Range VLANs 13-11
- Default VLAN Configuration 13-11
- Extended-Range VLAN Configuration Guidelines 13-11
- Creating an Extended-Range VLAN 13-12
- Creating an Extended-Range VLAN with an Internal VLAN ID 13-13

Displaying VLANs 13-14

Configuring VLAN Trunks 13-15
- Trunking Overview 13-15
 - IEEE 802.1Q Configuration Considerations 13-17
- Default Layer 2 Ethernet Interface VLAN Configuration 13-17
- Configuring an Ethernet Interface as a Trunk Port 13-18
 - Interaction with Other Features 13-18
- Configuring a Trunk Port 13-19
- Defining the Allowed VLANs on a Trunk 13-20
- Changing the Pruning-Eligible List 13-21
- Configuring the Native VLAN for Untagged Traffic 13-22
- Configuring Trunk Ports for Load Sharing 13-22
 - Load Sharing Using STP Port Priorities 13-23
 - Load Sharing Using STP Path Cost 13-24

Configuring VM PS 13-26
- Understanding VM PS 13-26
 - Dynamic-Access Port VLAN Membership 13-27
- Default VM PS Client Configuration 13-27
- VM PS Configuration Guidelines 13-28
- Configuring the VM PS Client 13-28
 - Entering the IP Address of the VM PS 13-28
 - Configuring Dynamic-Access Ports on VM PS Clients 13-29
CHAPTER 14
Configuring VTP 14-1
Understanding VTP 14-1
The VTP Domain 14-2
VTP Modes 14-3
VTP Advertisements 14-4
VTP Version 2 14-4
VTP Version 3 14-5
VTP Pruning 14-6
VTP and Switch Stacks 14-8
Configuring VTP 14-8
Default VTP Configuration 14-8
VTP Configuration Guidelines 14-9
Domain Names 14-9
Passwords 14-10
VTP Version 14-10
Configuration Requirements 14-11
Configuring VTP Mode 14-11
Configuring a VTP Version 3 Password 14-13
Configuring a VTP Version 3 Primary Server 14-14
Enabling the VTP Version 14-15
Enabling VTP Pruning 14-16
Configuring VTP on a Per-Port Basis 14-16
Adding a VTP Client Switch to a VTP Domain 14-17
Monitoring VTP 14-18

CHAPTER 15
Configuring Voice VLAN 15-1
Understanding Voice VLAN 15-1
Cisco IP Phone Voice Traffic 15-2
Cisco IP Phone Data Traffic 15-2
Configuring Voice VLAN 15-3
Default Voice VLAN Configuration 15-3
Voice VLAN Configuration Guidelines 15-3
CHAPTER 16
Configuring Private VLANs 16-1
Understanding Private VLANs 16-1
 IP Addressing Scheme with Private VLANs 16-3
 Private VLANs across Multiple Switches 16-4
 Private-VLAN Interaction with Other Features 16-5
 Private VLANs and Unicast, Broadcast, and Multicast Traffic 16-5
 Private VLANs and SVIs 16-5
 Private VLANs and Switch Stacks 16-6
Configuring Private VLANs 16-6
 Tasks for Configuring Private VLANs 16-6
 Default Private-VLAN Configuration 16-7
 Private-VLAN Configuration Guidelines 16-7
 Secondary and Primary VLAN Configuration 16-7
 Private-VLAN Port Configuration 16-9
 Limitations with Other Features 16-9
 Configuring and Associating VLANs in a Private VLAN 16-10
 Configuring a Layer 2 Interface as a Private-VLAN Host Port 16-12
 Configuring a Layer 2 Interface as a Private-VLAN Promiscuous Port 16-13
 Mapping Secondary VLANs to a Primary VLAN Layer 3 VLAN Interface 16-14
Monitoring Private VLANs 16-15

CHAPTER 17
Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling 17-1
Understanding IEEE 802.1Q Tunneling 17-1
Configuring IEEE 802.1Q Tunneling 17-4
 Default IEEE 802.1Q Tunneling Configuration 17-4
 IEEE 802.1Q Tunneling Configuration Guidelines 17-4
 Native VLANs 17-4
 System MTU 17-5
 IEEE 802.1Q Tunneling and Other Features 17-6
 Configuring an IEEE 802.1Q Tunneling Port 17-6
Understanding Layer 2 Protocol Tunneling 17-7
Configuring Layer 2 Protocol Tunneling 17-10
 Default Layer 2 Protocol Tunneling Configuration 17-11
 Layer 2 Protocol Tunneling Configuration Guidelines 17-12
Chapter 18: Configuring STP

Understanding Spanning-Tree Features

STP Overview

- Spanning-Tree Topology and BPDUs
- Bridge ID, Switch Priority, and Extended System ID
- Spanning-Tree Interface States
 - Blocking State
 - Listening State
 - Learning State
 - Forwarding State
 - Disabled State
- How a Switch or Port Becomes the Root Switch or Root Port
- Spanning Tree and Redundant Connectivity
- Spanning-Tree Address Management
- Accelerated Aging to Retain Connectivity
- Spanning-Tree Modes and Protocols
- Supported Spanning-Tree Instances
- Spanning-Tree Interoperability and Backward Compatibility
- STP and IEEE 802.1Q Trunks
- VLAN-Bridge Spanning Tree
- Spanning Tree and Switch Stacks

Configuring Spanning-Tree Features

Default Spanning-Tree Configuration

Spanning-Tree Configuration Guidelines

Changing the Spanning-Tree Mode

Disabling Spanning Tree

Configuring the Root Switch

Configuring a Secondary Root Switch

Configuring Port Priority

Configuring Path Cost

Configuring the Switch Priority of a VLAN

Configuring Spanning-Tree Timers

Configuring the Hello Time
Configuring the Forwarding-Delay Time for a VLAN 18-23
Configuring the Maximum-Aging Time for a VLAN 18-23
Configuring the Transmit Hold-Count 18-24
Displaying the Spanning-Tree Status 18-24

CHAPTER 19
Configuring MSTP 19-1

Understanding MSTP 19-2
Multiple Spanning-Tree Regions 19-2
IST, CIST, and CST 19-3
Operations Within an MST Region 19-3
Operations Between MST Regions 19-4
IEEE 802.1S Terminology 19-5
Hop Count 19-5
Boundary Ports 19-6
IEEE 802.1s Implementation 19-6
Port Role Naming Change 19-7
Interoperation Between Legacy and Standard Switches 19-7
Detecting Unidirectional Link Failure 19-8
MSTP and Switch Stacks 19-8
Interoperability with IEEE 802.1D STP 19-9

Understanding RSTP 19-9
Port Roles and the Active Topology 19-9
Rapid Convergence 19-10
Synchronization of Port Roles 19-12
Bridge Protocol Data Unit Format and Processing 19-13
Processing Superior BPDU Information 19-13
Processing Inferior BPDU Information 19-14
Topology Changes 19-14

Configuring MSTP Features 19-14
Default MSTP Configuration 19-15
MSTP Configuration Guidelines 19-15
Specifying the MST Region Configuration and Enabling MSTP 19-17
Configuring the Root Switch 19-18
Configuring a Secondary Root Switch 19-19
Configuring Port Priority 19-20
Configuring Path Cost 19-22
Configuring the Switch Priority 19-23
Configuring the Hello Time 19-23
Configuring the Forwarding-Delay Time 19-24
Configuring the Maximum-Aging Time 19-25
Configuring the Maximum-Hop Count 19-25
Specifying the Link Type to Ensure Rapid Transitions 19-26
Designating the Neighbor Type 19-26
Restarting the Protocol Migration Process 19-27
Displaying the MST Configuration and Status 19-27

CHAPTER 20
Configuring Optional Spanning-Tree Features 20-1
Understanding Optional Spanning-Tree Features 20-1
Understanding Port Fast 20-2
Understanding BPDU Guard 20-2
Understanding BPDU Filtering 20-3
Understanding UplinkFast 20-3
Understanding Cross-Stack UplinkFast 20-5
 How CSUF Works 20-6
 Events that Cause Fast Convergence 20-7
Understanding BackboneFast 20-7
Understanding EtherChannel Guard 20-10
Understanding Root Guard 20-10
Understanding Loop Guard 20-11
Configuring Optional Spanning-Tree Features 20-11
 Default Optional Spanning-Tree Configuration 20-12
 Optional Spanning-Tree Configuration Guidelines 20-12
Enabling Port Fast 20-12
Enabling BPDU Guard 20-13
Enabling BPDU Filtering 20-14
Enabling UplinkFast for Use with Redundant Links 20-15
Enabling Cross-Stack UplinkFast 20-16
Enabling BackboneFast 20-16
Enabling EtherChannel Guard 20-17
Enabling Root Guard 20-18
Enabling Loop Guard 20-18
Displaying the Spanning-Tree Status 20-19

CHAPTER 21
Configuring Flex Links and the MAC Address-Table Move Update Feature 21-1
Understanding Flex Links and the MAC Address-Table Move Update 21-1
 Flex Links 21-2
 VLAN Flex Link Load Balancing and Support 21-3
 Flex Link Multicast Fast Convergence 21-3
Contents

Learning the Other Flex Link Port as the mrouter Port 21-3
Generating IGMP Reports 21-4
Leaking IGMP Reports 21-4
Configuration Examples 21-4
MAC Address-Table Move Update 21-6
Configuring Flex Links and MAC Address-Table Move Update 21-7
Configuration Guidelines 21-8
Default Configuration 21-8
Configuring Flex Links 21-9
Configuring VLAN Load Balancing on Flex Links 21-11
Configuring the MAC Address-Table Move Update Feature 21-12
Monitoring Flex Links and the MAC Address-Table Move Update Information 21-14

CHAPTER 22
Configuring DHCP Features and IP Source Guard 22-1
Understanding DHCP Features 22-1
DHCP Server 22-2
DHCP Relay Agent 22-2
DHCP Snooping 22-2
Option-82 Data Insertion 22-3
Cisco IOS DHCP Server Database 22-6
DHCP Snooping Binding Database 22-6
DHCP Snooping and Switch Stacks 22-8
Configuring DHCP Features 22-8
Default DHCP Configuration 22-8
DHCP Snooping Configuration Guidelines 22-9
Configuring the DHCP Server 22-10
DHCP Server and Switch Stacks 22-10
Configuring the DHCP Relay Agent 22-11
Specifying the Packet Forwarding Address 22-11
Enabling DHCP Snooping and Option 82 22-12
Enabling DHCP Snooping on Private VLANs 22-14
Enabling the Cisco IOS DHCP Server Database 22-14
Enabling the DHCP Snooping Binding Database Agent 22-15
Displaying DHCP Snooping Information 22-16
Understanding IP Source Guard 22-16
Source IP Address Filtering 22-17
Source IP and MAC Address Filtering 22-17
IP Source Guard for Static Hosts 22-17
Configuring IP Source Guard 22-18
Chapter 24

Configuring IGMP Snooping

Default IGMP Snooping Configuration

Enabling or Disabling IGMP Snooping

Setting the Snooping Method

Configuring a Multicast Router Port

Configuring a Blade Server Static to Join a Group

Enabling IGMP Immediate Leave

Configuring the IGMP Leave Timer

Configuring TCN-Related Commands

Controlling the Multicast Flooding Time After a TCN Event

Recovering from Flood Mode

Disabling Multicast Flooding During a TCN Event

Configuring the IGMP Snooping Querier

Disabling IGMP Report Suppression

Displaying IGMP Snooping Information

Understanding Multicast VLAN Registration

Using MVR in a Multicast Television Application

Configuring MVR

Default MVR Configuration

MVR Configuration Guidelines and Limitations

Configuring MVR Global Parameters

Configuring MVR Interfaces

Displaying MVR Information

Configuring IGMP Filtering and Throttling

Default IGMP Filtering and Throttling Configuration

Configuring IGMP Profiles

Applying IGMP Profiles

Setting the Maximum Number of IGMP Groups

Configuring the IGMP Throttling Action

Displaying IGMP Filtering and Throttling Configuration

Chapter 25

Configuring IPv6 MLD Snooping

Understanding MLD Snooping

MLD Messages

MLD Queries

Multicast Client Aging Robustness

Multicast Router Discovery

MLD Reports

MLD Done Messages and Immediate-Leave
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology Change Notification Processing</td>
<td>25-5</td>
</tr>
<tr>
<td>MLD Snooping in Switch Stacks</td>
<td>25-5</td>
</tr>
<tr>
<td>Configuring IPv6 MLD Snooping</td>
<td>25-5</td>
</tr>
<tr>
<td>Default MLD Snooping Configuration</td>
<td>25-6</td>
</tr>
<tr>
<td>MLD Snooping Configuration Guidelines</td>
<td>25-6</td>
</tr>
<tr>
<td>Enabling or Disabling MLD Snooping</td>
<td>25-7</td>
</tr>
<tr>
<td>Configuring a Static Multicast Group</td>
<td>25-8</td>
</tr>
<tr>
<td>Configuring a Multicast Router Port</td>
<td>25-9</td>
</tr>
<tr>
<td>Enabling MLD Immediate Leave</td>
<td>25-9</td>
</tr>
<tr>
<td>Configuring MLD Snooping Queries</td>
<td>25-10</td>
</tr>
<tr>
<td>Disabling MLD Listener Message Suppression</td>
<td>25-11</td>
</tr>
<tr>
<td>Displaying MLD Snooping Information</td>
<td>25-12</td>
</tr>
</tbody>
</table>

CHAPTER 26

Configuring Port-Based Traffic Control

- **Configuring Storm Control**
 - Understanding Storm Control
 - Default Storm Control Configuration
 - Configuring Storm Control and Threshold Levels
 - Configuring Small-Frame Arrival Rate

- **Configuring Protected Ports**
 - Default Protected Port Configuration
 - Protected Port Configuration Guidelines
 - Configuring a Protected Port

- **Configuring Port Blocking**
 - Default Port Blocking Configuration
 - Blocking Flooded Traffic on an Interface

- **Configuring Port Security**
 - Understanding Port Security
 - Secure MAC Addresses
 - Security Violations
 - Default Port Security Configuration
 - Port Security Configuration Guidelines
 - Enabling and Configuring Port Security
 - Enabling and Configuring Port Security Aging
 - Port Security and Switch Stacks
 - Port Security and Private VLANs

- **Displaying Port-Based Traffic Control Settings**
 - 26-19
CHAPTER 27
Configuring CDP 27-1
Understanding CDP 27-1
CDP and Switch Stacks 27-2
Configuring CDP 27-2
Default CDP Configuration 27-2
Configuring the CDP Characteristics 27-2
Disabling and Enabling CDP 27-3
Disabling and Enabling CDP on an Interface 27-4
Monitoring and Maintaining CDP 27-5

CHAPTER 28
Configuring LLDP, LLDP-MED, and Wired Location Service 28-1
Understanding LLDP, LLDP-MED, and Wired Location Service 28-1
LLDP 28-1
LLDP-MED 28-2
Wired Location Service 28-3
Configuring LLDP, LLDP-MED, and Wired Location Service 28-4
Default LLDP Configuration 28-4
Configuration Guidelines 28-5
Enabling LLDP 28-5
Configuring LLDP Characteristics 28-6
Configuring LLDP-MED TLVs 28-6
Configuring Network-Policy TLV 28-7
Configuring Location TLV and Wired Location Service 28-9
Monitoring and Maintaining LLDP, LLDP-MED, and Wired Location Service 28-10

CHAPTER 29
Configuring UDLD 29-1
Understanding UDLD 29-1
Modes of Operation 29-1
Methods to Detect Unidirectional Links 29-2
Configuring UDLD 29-3
Default UDLD Configuration 29-4
Configuration Guidelines 29-4
Enabling UDLD Globally 29-5
Enabling UDLD on an Interface 29-6
Resetting an Interface Disabled by UDLD 29-6
Displaying UDLD Status 29-7
CHAPTER 30

Configuring SPAN and RSPAN

Understanding SPAN and RSPAN
- Local SPAN
- Remote SPAN

SPAN and RSPAN Concepts and Terminology
- SPAN Sessions
- Monitored Traffic
- Source Ports
- Source VLANs
- VLAN Filtering
- Destination Port
- RSPAN VLAN

SPAN and RSPAN Interaction with Other Features

Understanding Flow-Based SPAN

Configuring SPAN and RSPAN
- Default SPAN and RSPAN Configuration

Configuring Local SPAN
- SPAN Configuration Guidelines
- Creating a Local SPAN Session
- Creating a Local SPAN Session and Configuring Incoming Traffic
- Specifying VLANs to Filter

Configuring RSPAN
- RSPAN Configuration Guidelines
- Configuring a VLAN as an RSPAN VLAN
- Creating an RSPAN Source Session
- Specifying VLANs to Filter
- Creating an RSPAN Destination Session
- Creating an RSPAN Destination Session and Configuring Incoming Traffic

Configuring FSPAN and FRSPAN
- Configuration Guidelines
- Configuring an FSPAN Session
- Configuring an FRSPAN Session

Displaying SPAN and RSPAN Status

CHAPTER 31

Configuring RM ON

Understanding RM ON

Configuring RM ON
- Default RM ON Configuration
Configuring RMON Alarms and Events 31-3
Collecting Group History Statistics on an Interface 31-5
Collecting Group Ethernet Statistics on an Interface 31-6
Displaying RMON Status 31-6

Chapter 32
Configuring System Message Logging 32-1
Understanding System Message Logging 32-1
Configuring System Message Logging 32-2
System Log Message Format 32-2
Default System Message Logging Configuration 32-4
Disabling Message Logging 32-4
Setting the Message Display Destination Device 32-5
Synchronizing Log Messages 32-6
Enabling and Disabling Time Stamps on Log Messages 32-8
Enabling and Disabling Sequence Numbers in Log Messages 32-8
Defining the Message Severity Level 32-9
Limiting Syslog Messages Sent to the History Table and to SNMP 32-10
Enabling the Configuration-Change Logger 32-11
Configuring UNIX Syslog Servers 32-12
Logging Messages to a UNIX Syslog Daemon 32-13
Configuring the UNIX System Logging Facility 32-13
Displaying the Logging Configuration 32-14

Chapter 33
Configuring SNMP 33-1
Understanding SNMP 33-1
SNMP Versions 33-2
SNMP Manager Functions 33-3
SNMP Agent Functions 33-4
SNMP Community Strings 33-4
Using SNMP to Access MIB Variables 33-4
SNMP Notifications 33-5
SNMP ifIndex MIB Object Values 33-5
Configuring SNMP 33-6
Default SNMP Configuration 33-6
SNMP Configuration Guidelines 33-6
Disabling the SNMP Agent 33-7
Configuring Community Strings 33-8
Configuring SNMP Groups and Users 33-9
Configuring SNMP Notifications 33-12
Contents

Setting the CPU Threshold Notification Types and Values 33-16
Setting the Agent Contact and Location Information 33-16
Limiting TFTP Servers Used Through SNMP 33-17
SNMP Examples 33-18
Displaying SNMP Status 33-19

CHAPTER 34
Configuring Embedded Event Manager 34-1
Understanding Embedded Event Manager 34-1
Event Detectors 34-3
Embedded Event Manager Actions 34-4
Embedded Event Manager Policies 34-4
Embedded Event Manager Environment Variables 34-5
EEM 3.2 34-5
Configuring Embedded Event Manager 34-6
Registering and Defining an Embedded Event Manager Applet 34-6
Registering and Defining an Embedded Event Manager TCL Script 34-7
Displaying Embedded Event Manager Information 34-8

CHAPTER 35
Configuring Network Security with ACLs 35-1
Understanding ACLs 35-2
Supported ACLs 35-2
Port ACLs 35-3
Router ACLs 35-4
VLAN Maps 35-5
Handling Fragmented and Unfragmented Traffic 35-5
ACLs and Switch Stacks 35-6
Configuring IPv4 ACLs 35-7
Creating Standard and Extended IPv4 ACLs 35-8
Access List Numbers 35-8
ACL Logging 35-9
Creating a Numbered Standard ACL 35-10
Creating a Numbered Extended ACL 35-11
Resequencing ACEs in an ACL 35-15
Creating Named Standard and Extended ACLs 35-15
Using Time Ranges with ACLs 35-17
Including Comments in ACLs 35-19
Applying an IPv4 ACL to a Terminal Line 35-19
Applying an IPv4 ACL to an Interface 35-20
Hardware and Software Treatment of IP ACLs 35-22
Troubleshooting ACLs 35-22
IPv4 ACL Configuration Examples 35-23
 Numbered ACLs 35-25
 Extended ACLs 35-25
 Named ACLs 35-26
 Time Range Applied to an IP ACL 35-26
 Commented IP ACL Entries 35-27
ACL Logging 35-27
Creating Named MAC Extended ACLs 35-28
 Applying a MAC ACL to a Layer 2 Interface 35-29
Configuring VLAN Maps 35-30
 VLAN Map Configuration Guidelines 35-31
 Creating a VLAN Map 35-32
 Examples of ACLs and VLAN Maps 35-33
 Applying a VLAN Map to a VLAN 35-35
 Using VLAN Maps in Your Network 35-35
 Denying Access to a Server on Another VLAN 35-35
Using VLAN Maps with Router ACLs 35-36
 VLAN Maps and Router ACL Configuration Guidelines 35-37
 Examples of Router ACLs and VLAN Maps Applied to VLANs 35-37
 ACLs and Switched Packets 35-37
 ACLs and Bridged Packets 35-38
 ACLs and Routed Packets 35-39
 ACLs and Multicast Packets 35-39
Displaying IPv4 ACL Configuration 35-40

CHAPTER 36
Configuring IPv6 ACLs 36-1
Supported IPv6 ACLs 36-2
Understanding IPv6 ACLs 36-2
 Supported ACL Features 36-2
 IPv6 ACL Limitations 36-3
 IPv6 ACLs and Switch Stacks 36-4
Configuring IPv6 ACLs 36-4
 Default IPv6 ACL Configuration 36-5
 Interaction with Other Features and Switches 36-5
 Creating IPv6 ACLs 36-5
 Applying an IPv6 ACL to an Interface 36-8
Displaying IPv4 ACL Configuration 35-40
Configuring QoS

Understanding QoS

Basic QoS Model

Classification

- Classification Based on QoS ACLs
- Classification Based on Class Maps and Policy Maps

Policing and Marking

- Policing on Physical Ports
- Policing on SVIs

Mapping Tables

Queueing and Scheduling Overview

- Weighted Tail Drop
- SRR Shaping and Sharing
- Queueing and Scheduling on Ingress Queues
- Queueing and Scheduling on Egress Queues

Packet Modification

Configuring Auto-QoS

Generated Auto-QoS Configuration

- VOIP Device Specifics
- Enhanced Auto-QoS for Video, Trust, and Classification
- Auto-QoS Configuration Migration
- Global Auto-QoS Configuration
- Auto-QoS Generated Configuration For VoIP Devices
- Auto-QoS Generated Configuration For Enhanced Video, Trust, and Classify Devices

Effects of Auto-QoS on the Configuration

Auto-QoS Configuration Guidelines

- Auto-QoS VoIP Considerations
- Auto-QoS Enhanced Considerations

Enabling Auto-QoS

Troubleshooting Auto QoS Commands

Displaying Auto-QoS Information

Configuring Standard QoS

Default Standard QoS Configuration

- Default Ingress Queue Configuration
- Default Egress Queue Configuration
- Default Mapping Table Configuration

Standard QoS Configuration Guidelines

QoS ACL Guidelines

IPv6 QoS ACL Guidelines
Applying QoS on Interfaces 37-39
Configuring IPv6 QoS on Switch Stacks 37-39
Policing Guidelines 37-40
General QoS Guidelines 37-40
Enabling QoS Globally 37-41
Enabling VLAN-Based QoS on Physical Ports 37-41
Configuring Classification Using Port Trust States 37-42
 Configuring the Trust State on Ports within the QoS Domain 37-42
 Configuring the CoS Value for an Interface 37-43
 Configuring a Trusted Boundary to Ensure Port Security 37-44
 Enabling DSCP Transparency Mode 37-45
 Configuring the DSCP Trust State on a Port Bordering Another QoS Domain 37-46
Configuring a QoS Policy 37-48
 Classifying Traffic by Using ACLs 37-49
 Classifying Traffic by Using Class Maps 37-54
 Classifying Traffic by Using Class Maps and Filtering IPv6 Traffic 37-57
 Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps 37-59
 Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps 37-64
 Classifying, Policing, and Marking Traffic by Using Aggregate Policers 37-72
Configuring DSCP Maps 37-74
 Configuring the CoS-to-DSCP Map 37-74
 Configuring the IP-Precedence-to-DSCP Map 37-75
 Configuring the Policed-DSCP Map 37-76
 Configuring the DSCP-to-CoS Map 37-77
 Configuring the DSCP-to-DSCP-Mutation Map 37-78
Configuring Ingress Queue Characteristics 37-80
 Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds 37-81
 Allocating Buffer Space Between the Ingress Queues 37-82
 Allocating Bandwidth Between the Ingress Queues 37-82
 Configuring the Ingress Priority Queue 37-83
Configuring Egress Queue Characteristics 37-84
 Configuration Guidelines 37-85
 Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set 37-85
 Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID 37-87
 Configuring SRR Shaped Weights on Egress Queues 37-89
 Configuring SRR Shared Weights on Egress Queues 37-90
 Configuring the Egress Expedite Queue 37-91
 Limiting the Bandwidth on an Egress Interface 37-91
Displaying Standard QoS Information 37-92
CHAPTER 38
Configuring EtherChannels and Link-State Tracking 38-1
Understanding EtherChannels 38-1
 EtherChannel Overview 38-2
 Port-Channel Interfaces 38-4
 Port Aggregation Protocol 38-5
 PAgP Modes 38-5
 PAgP Interaction with Virtual Switches and Dual-Active Detection 38-6
 PAgP Interaction with Other Features 38-6
 Link Aggregation Control Protocol 38-6
 LACP Modes 38-7
 LACP Interaction with Other Features 38-7
 EtherChannel On Mode 38-7
Configuring EtherChannels 38-10
 Default EtherChannel Configuration 38-10
 EtherChannel Configuration Guidelines 38-11
 Configuring Layer 2 EtherChannels 38-12
 Configuring Layer 3 EtherChannels 38-15
 Creating Port-Channel Logical Interfaces 38-15
 Configuring the Physical Interfaces 38-16
 Configuring EtherChannel Load-Balancing 38-18
 Configuring the PAgP Learn Method and Priority 38-19
 Configuring LACP Hot-Standby Ports 38-20
 Configuring the LACP System Priority 38-21
 Configuring the LACP Port Priority 38-22
Displaying EtherChannel, PAgP, and LACP Status 38-23
Understanding Link-State Tracking 38-23
Configuring Link-State Tracking 38-25
 Default Link-State Tracking Configuration 38-25
 Link-State Tracking Configuration Guidelines 38-25
Configuring Link-State Tracking 38-26
Displaying Link-State Tracking Status 38-27

CHAPTER 39
Configuring IP Unicast Routing 39-1
Supported IPv4 Features 39-2
Understanding IP Routing 39-3
 Types of Routing 39-3
 IP Routing and Switch Stacks 39-4
Steps for Configuring Routing 39-6
Configuring IP Addressing 39-6
 Default Addressing Configuration 39-7
Assigning IP Addresses to Network Interfaces 39-8
 Use of Subnet Zero 39-8
 Classless Routing 39-9
Configuring Address Resolution Methods 39-10
 Define a Static ARP Cache 39-11
 Set ARP Encapsulation 39-12
 Enable Proxy ARP 39-13
Routing Assistance When IP Routing is Disabled 39-13
 Proxy ARP 39-13
 Default Gateway 39-13
 ICMP Router Discovery Protocol (IRDP) 39-14
Configuring Broadcast Packet Handling 39-15
 Enabling Directed Broadcast-to-Physical Broadcast Translation 39-16
 Forwarding UDP Broadcast Packets and Protocols 39-17
 Establishing an IP Broadcast Address 39-17
 Flooding IP Broadcasts 39-18
 Monitoring and Maintaining IP Addressing 39-19
Enabling IP Unicast Routing 39-20
Configuring RIP 39-21
 Default RIP Configuration 39-22
 Configuring Basic RIP Parameters 39-22
 Configuring RIP Authentication 39-24
 Configuring Summary Addresses and Split Horizon 39-24
 Configuring Split Horizon 39-26
Configuring Stub Routing 39-26
 Understanding PIM Stub Routing 39-27
 Configuring PIM Stub Routing 39-27
 PIM Stub Routing Configuration Guidelines 39-28
 Enabling PIM Stub Routing 39-28
 Understanding EIGRP Stub Routing 39-29
 Configuring EIGRP Stub Routing 39-30
Configuring OSPF 39-31
 Default OSPF Configuration 39-32
 OSPF for Routed Access 39-34
 OSPF Nonstop Forwarding 39-34
 Configuring Basic OSPF Parameters 39-35
Configuring OSPF Interfaces 39-36
Configuring OSPF Area Parameters 39-37
Configuring Other OSPF Parameters 39-38
Changing LSA Group Pacing 39-40
Configuring a Loopback Interface 39-41
Monitoring OSPF 39-41
Configuring EIGRP 39-42
 Default EIGRP Configuration 39-44
 EIGRP Nonstop Forwarding 39-45
 Configuring Basic EIGRP Parameters 39-46
 Configuring EIGRP Interfaces 39-47
 Configuring EIGRP Route Authentication 39-48
 Monitoring and Maintaining EIGRP 39-49
Configuring BGP 39-49
 Default BGP Configuration 39-51
 Nonstop Forwarding Awareness 39-54
 Enabling BGP Routing 39-54
 Managing Routing Policy Changes 39-57
 Configuring BGP Decision Attributes 39-58
 Configuring BGP Filtering with Route Maps 39-60
 Configuring BGP Filtering by Neighbor 39-61
 Configuring Prefix Lists for BGP Filtering 39-62
 Configuring BGP Community Filtering 39-63
 Configuring BGP Neighbors and Peer Groups 39-65
 Configuring Aggregate Addresses 39-67
 Configuring Routing Domain Confederations 39-67
 Configuring BGP Route Refectors 39-68
 Configuring Route Dampening 39-69
 Monitoring and Maintaining BGP 39-70
Configuring ISO CLNS Routing 39-71
 Configuring IS-IS Dynamic Routing 39-72
 Default IS-IS Configuration 39-73
 Nonstop Forwarding Awareness 39-74
 Enabling IS-IS Routing 39-74
 Configuring IS-IS Global Parameters 39-76
 Configuring IS-IS Interface Parameters 39-78
 Monitoring and Maintaining ISO IGRP and IS-IS 39-81
Configuring Multi-VRF CE 39-82
 Understanding Multi-VRF CE 39-82
Default Multi-VRF CE Configuration 39-84
Multi-VRF CE Configuration Guidelines 39-84
Configuring VRFs 39-85
Configuring VRF-Aware Services 39-86
 User Interface for ARP 39-87
 User Interface for PING 39-87
 User Interface for SNMP 39-87
 User Interface for HSRP 39-88
 User Interface for Unicast RPF 39-88
 User Interface for Syslog 39-89
 User Interface for Traceroute 39-89
 User Interface for FTP and TFTP 39-89
 User Interface for VRF-Aware RADIUS 39-90
Configuring Multicast VRFs 39-90
Configuring a VPN Routing Session 39-91
Configuring BGP PE to CE Routing Sessions 39-92
Multi-VRF CE Configuration Example 39-92
Displaying Multi-VRF CE Status 39-96
Configuring Unicast Reverse Path Forwarding 39-97
Configuring Protocol-Independent Features 39-97
 Configuring Cisco Express Forwarding and Distributed Cisco Express Forwarding 39-97
 Configuring the Number of Equal-Cost Routing Paths 39-99
 Configuring Static Unicast Routes 39-99
 Specifying Default Routes and Networks 39-101
 Using Route Maps to Redistribute Routing Information 39-101
Configuring Policy-Based Routing 39-105
 PBR Configuration Guidelines 39-106
 Enabling PBR 39-107
 Filtering Routing Information 39-109
 Setting Passive Interfaces 39-109
 Controlling Advertising and Processing in Routing Updates 39-110
 Filtering Sources of Routing Information 39-111
 Managing Authentication Keys 39-111
 Monitoring and Maintaining the IP Network 39-113

Chapter 40

Configuring IPv6 Host Functions and Unicast Routing 40-1
 Supported IPv6 Host Functions and Unicast Routing Features 40-2
 Understanding IPv6 40-3
 IPv6 Addresses 40-3
Supported IPv6 Host Functions and Unicast Routing Features

- 128-Bit Wide Unicast Addresses
- DNS for IPv6
- Path MTU Discovery for IPv6 Unicast
- ICMPv6
- Neighbor Discovery
- Default Router Preference
- IPv6 Stateless Autoconfiguration and Duplicate Address Detection
- IPv6 Applications
- Dual IPv4 and IPv6 Protocol Stacks
- DHCP for IPv6 Address Assignment
- Static Routes for IPv6
- RIP for IPv6
- OSPF for IPv6
- EIGRP for IPv6
- HSRP for IPv6
- SNMP and Syslog Over IPv6
- HTTP(S) Over IPv6

Unsupported IPv6 Host Functions and Unicast Routing Features

Limitations

IPv6 and Switch Stacks

Configuring IPv6

- Default IPv6 Configuration
- Configuring IPv6 Addressing and Enabling IPv6 Host Functions or Routing
- Configuring Default Router Preference
- Configuring IPv4 and IPv6 Protocol Stacks
- Configuring DHCP for IPv6 Address Assignment
 - Default DHCPv6 Address Assignment Configuration
 - DHCPv6 Address Assignment Configuration Guidelines
- Enabling DHCPv6 Server Function
- Enabling DHCPv6 Client Function
- Configuring IPv6 ICMP Rate Limiting
- Configuring CEF and dCEF for IPv6
- Configuring Static Routes for IPv6
- Configuring RIP for IPv6
- Configuring OSPF for IPv6
- Configuring EIGRP for IPv6
- Configuring HSRP for IPv6
 - Enabling HSRP Version 2
 - Enabling an HSRP Group for IPv6
Chapter 41: Configuring HSRP

- **Understanding HSRP** 41-1
 - HSRP Versions 41-3
 - Multiple HSRP 41-4
 - HSRP and Switch Stacks 41-5
- **Configuring HSRP** 41-5
 - Default HSRP Configuration 41-6
 - HSRP Configuration Guidelines 41-6
 - Enabling HSRP 41-7
 - Configuring HSRP Priority 41-8
 - Configuring M HSRP 41-10
 - Configuring HSRP Authentication and Timers 41-11
 - Enabling HSRP Support for ICMP Redirect Messages 41-12
- **Displaying HSRP Configurations** 41-12

Chapter 42: Configuring Cisco IOS IP SLAs Operations

- **Understanding Cisco IOS IP SLAs** 42-1
 - Using Cisco IOS IP SLAs to Measure Network Performance 42-3
 - IP SLAs Responder and IP SLAs Control Protocol 42-4
 - Response Time Computation for IP SLAs 42-4
 - IP SLAs Operation Scheduling 42-5
 - IP SLAs Operation Threshold Monitoring 42-5
- **Configuring IP SLAs Operations** 42-6
 - Default Configuration 42-6
 - Configuration Guidelines 42-6
 - Configuring the IP SLAs Responder 42-7
 - Analyzing IP Service Levels by Using the UDP Jitter Operation 42-8
 - Analyzing IP Service Levels by Using the ICMP Echo Operation 42-11
- **Monitoring IP SLAs Operations** 42-13

Chapter 43: Configuring Enhanced Object Tracking

- **Understanding Enhanced Object Tracking** 43-1
- **Configuring Enhanced Object Tracking Features** 43-1
 - Default Configuration 43-2
 - Tracking Interface Line-Protocol or IP Routing State 43-2
 - Configuring a Tracked List 43-3
Default Multicast Routing Configuration 45-10
Multicast Routing Configuration Guidelines 45-11
 PIM v1 and PIM v2 Interoperability 45-11
 Auto-RP and BSR Configuration Guidelines 45-12
Configuring Basic Multicast Routing 45-12
Configuring Source-Specific Multicast 45-14
 SSM Components Overview 45-14
 How SSM Differs from Internet Standard Multicast 45-14
 SSM IP Address Range 45-15
 SSM Operations 45-15
 IGMPv3 Host Signalling 45-16
 Configuration Guidelines 45-16
 Configuring SSM 45-17
 Monitoring SSM 45-17
Configuring Source-Specific Multicast Mapping 45-18
 Configuration Guidelines 45-18
 SSM Mapping Overview 45-18
 Configuring SSM Mapping 45-20
 Monitoring SSM Mapping 45-23
Configuring Source-Specific Multicast 45-23
 SSM Components Overview 45-23
 How SSM Differs from Internet Standard Multicast 45-23
 SSM IP Address Range 45-24
 SSM Operations 45-24
 IGMPv3 Host Signalling 45-25
 Configuration Guidelines 45-25
 Configuring SSM 45-26
 Monitoring SSM 45-26
Enabling PIM Stub Routing 45-26
Configuring a Rendezvous Point 45-27
 Manually Assigning an RP to Multicast Groups 45-28
 Configuring Auto-RP 45-29
 Configuring PIM v2 BSR 45-33
Using Auto-RP and a BSR 45-37
 Monitoring the RP Mapping Information 45-39
 Troubleshooting PIM v1 and PIM v2 Interoperability Problems 45-39
Configuring Advanced PIM Features 45-39
 Understanding PIM Shared Tree and Source Tree 45-39
 Delaying the Use of PIM Shortest-Path Tree 45-41
 Modifying the PIM Router-Query Message Interval 45-42
Configuring Optional IGMP Features 45-43
 Default IGMP Configuration 45-43
 Configuring the Switch as a Member of a Group 45-43
 Controlling Access to IP Multicast Groups 45-44
 Changing the IGMP Version 45-45
 Modifying the IGMP Host-Query Message Interval 45-46
 Changing the IGMP Query Timeout for IGMPv2 45-47
 Changing the Maximum Query Response Time for IGMPv2 45-47
 Configuring the Switch as a Statically Connected Member 45-48

Configuring Optional Multicast Routing Features 45-48
 Enabling CGMP Server Support 45-49
 Configuring sdr Listener Support 45-50
 Enabling sdr Listener Support 45-50
 Limiting How Long an sdr Cache Entry Exists 45-50
 Configuring an IP Multicast Boundary 45-51

Configuring Basic DVMRP Interoperability Features 45-53
 Configuring DVMRP Interoperability 45-53
 Configuring a DVMRP Tunnel 45-55
 Advertising Network 0.0.0.0 to DVMRP Neighbors 45-57
 Responding to mrinfo Requests 45-58

Configuring Advanced DVMRP Interoperability Features 45-58
 Enabling DVMRP Unicast Routing 45-59
 Rejecting a DVMRP Nonpruning Neighbor 45-60
 Controlling Route Exchanges 45-62
 Limiting the Number of DVMRP Routes Advertised 45-62
 Changing the DVMRP Route Threshold 45-62
 Configuring a DVMRP Summary Address 45-63
 Disabling DVMRP Autosummarization 45-65
 Adding a Metric Offset to the DVMRP Route 45-65

Monitoring and Maintaining IP Multicast Routing 45-66
 Clearing Caches, Tables, and Databases 45-66
 Displaying System and Network Statistics 45-67
 Monitoring IP Multicast Routing 45-68

CHAPTER 46

Configuring MSDP 46-1
 Understanding MSDP 46-1
 MSDP Operation 46-2
 MSDP Benefits 46-3
 Configuring MSDP 46-4
Default MSDP Configuration 46-4
Configuring a Default MSDP Peer 46-4
Caching Source-Active State 46-6
Requesting Source Information from an MSDP Peer 46-8
Controlling Source Information that Your Switch Originates 46-8
 Redistributing Sources 46-9
 Filtering Source-Active Request Messages 46-10
Controlling Source Information that Your Switch Forwards 46-11
 Using a Filter 46-12
 Using TTL to Limit the Multicast Data Sent in SA Messages 46-13
Controlling Source Information that Your Switch Receives 46-14
Configuring an MSDP Mesh Group 46-15
Shutting Down an MSDP Peer 46-16
Including a Bordering PIM Dense-Mode Region in MSDP 46-16
Configuring an Originating Address other than the RP Address 46-17
Monitoring and Maintaining MSDP 46-18

Chapter 47

Configuring Fallback Bridging 47-1
Understanding Fallback Bridging 47-1
 Fallback Bridging Overview 47-1
 Fallback Bridging and Switch Stacks 47-3
Configuring Fallback Bridging 47-3
 Default Fallback Bridging Configuration 47-4
 Fallback Bridging Configuration Guidelines 47-4
Creating a Bridge Group 47-4
 Adjusting Spanning-Tree Parameters 47-6
 Changing the VLAN-Bridge Spanning-Tree Priority 47-6
 Changing the Interface Priority 47-7
 Assigning a Path Cost 47-8
 Adjusting BPDU Intervals 47-8
 Disabling the Spanning Tree on an Interface 47-10
Monitoring and Maintaining Fallback Bridging 47-11

Chapter 48

Troubleshooting 48-1
Recovering from a Software Failure 48-2
Recovering from a Lost or Forgotten Password 48-3
 Procedure with Password Recovery Enabled 48-5
 Procedure with Password Recovery Disabled 48-7
Preventing Switch Stack Problems 48-8
Preventing Autonegotiation Mismatches 48-9
Monitoring Temperature 48-10
Using Ping 48-10
 Understanding Ping 48-10
 Executing Ping 48-10
Using Layer 2 Traceroute 48-11
 Understanding Layer 2 Traceroute 48-11
 Usage Guidelines 48-12
 Displaying the Physical Path 48-13
Using IP Traceroute 48-13
 Understanding IP Traceroute 48-13
 Executing IP Traceroute 48-14
Using TDR 48-15
 Understanding TDR 48-15
 Running TDR and Displaying the Results 48-15
Using Debug Commands 48-16
 Enabling Debugging on a Specific Feature 48-16
 Enabling All-System Diagnostics 48-17
 Redirecting Debug and Error Message Output 48-17
Using the show platform forward Command 48-18
Using the crashinfo Files 48-20
 Basic crashinfo Files 48-20
 Extended crashinfo Files 48-20
Using On-Board Failure Logging 48-21
 Understanding OBFL 48-21
 Configuring OBFL 48-22
 Displaying OBFL Information 48-22
Troubleshooting CPU Utilization 48-23
 Possible Symptoms of High CPU Utilization 48-23
 Verifying the Problem and Cause 48-23

CHAPTER 49 Configuring Online Diagnostics 49-1
Understanding Online Diagnostics 49-1
Configuring Online Diagnostics 49-2
 Scheduling Online Diagnostics 49-2
 Configuring Health-Monitoring Diagnostics 49-3
Running Online Diagnostic Tests 49-5
 Starting Online Diagnostic Tests 49-5
Displaying Online Diagnostic Tests and Test Results 49-6

APPENDIX A

Supported MIBs A-1
MIB List A-1
Using FTP to Access the MIB Files A-4

APPENDIX B

Working with the Cisco IOS File System, Configuration Files, and Software Images B-1
Working with the Flash File System B-1
Displaying Available File Systems B-2
Setting the Default File System B-3
Displaying Information about Files on a File System B-3
Changing Directories and Displaying the Working Directory B-4
Creating and Removing Directories B-5
Copying Files B-5
Deleting Files B-6
Creating, Displaying, and Extracting Files B-6
Working with Configuration Files B-9
Guidelines for Creating and Using Configuration Files B-10
Configuration File Types and Location B-10
Creating a Configuration File By Using a Text Editor B-11
Copying Configuration Files By Using TFTP B-11
Preparing to Download or Upload a Configuration File By Using TFTP B-11
Downloading the Configuration File By Using TFTP B-12
Uploading the Configuration File By Using TFTP B-13
Copying Configuration Files By Using FTP B-13
Preparing to Download or Upload a Configuration File By Using FTP B-14
Downloading a Configuration File By Using FTP B-14
Uploading a Configuration File By Using FTP B-15
Copying Configuration Files By Using RCP B-16
Preparing to Download or Upload a Configuration File By Using RCP B-17
Downloading a Configuration File By Using RCP B-18
Uploading a Configuration File By Using RCP B-19
Clearing Configuration Information B-19
Clearing the Startup Configuration File B-20
Deleting a Stored Configuration File B-20
Replacing and Rolling Back Configurations B-20
Understanding Configuration Replacement and Rollback B-20
Configuration Guidelines B-22
Configuring the Configuration Archive B-22
Unsupported Global Configuration Commands C-4
Unsupported Interface Configuration Commands C-5

HSRP C-5
Unsupported Global Configuration Commands C-5
Unsupported Interface Configuration Commands C-6

IGMP Snooping Commands C-6
Unsupported Global Configuration Commands C-6

Interface Commands C-6
Unsupported Privileged EXEC Commands C-6
Unsupported Global Configuration Commands C-6
Unsupported Interface Configuration Commands C-6

IP Multicast Routing C-7
Unsupported Privileged EXEC Commands C-7
Unsupported Global Configuration Commands C-7
Unsupported Interface Configuration Commands C-7

IP Unicast Routing C-8
Unsupported Privileged EXEC or User EXEC Commands C-8
Unsupported Global Configuration Commands C-8
Unsupported Interface Configuration Commands C-9
Unsupported BGP Router Configuration Commands C-9
Unsupported VPN Configuration Commands C-9
Unsupported Route Map Commands C-9

MAC Address Commands C-10
Unsupported Privileged EXEC Commands C-10
Unsupported Global Configuration Commands C-10

Miscellaneous C-11
Unsupported User EXEC Commands C-11
Unsupported Privileged EXEC Commands C-11
Unsupported Global Configuration Commands C-11

MSDP C-11
Unsupported Privileged EXEC Commands C-11
Unsupported Global Configuration Commands C-12

NetFlow Commands C-12
Unsupported Global Configuration Commands C-12

Network Address Translation (NAT) Commands C-12
Unsupported Privileged EXEC Commands C-12

QoS C-12
Unsupported Global Configuration Command C-12
Unsupported Interface Configuration Commands C-12
Unsupported Policy-Map Configuration Command C-12

RADIUS C-13
Unsupported Global Configuration Commands C-13

SNMP C-13
Unsupported Global Configuration Commands C-13

Spanning Tree C-13
Unsupported Global Configuration Command C-13
Unsupported Interface Configuration Command C-13

VLAN C-13
Unsupported Global Configuration Command C-13
Unsupported User EXEC Commands C-14
Unsupported VLAN Database commands C-14

VTP C-14
Unsupported Privileged EXEC Command C-14
Preface

Audience

This guide is for the networking professional using the Cisco IOS command-line interface (CLI) to manage the standalone Cisco Catalyst Blade Switch 3120 for HP or blade switch stack, referred to as the switch. Before using this guide, you should have experience working with the Cisco IOS commands and the switch software features. Before using this guide, you should have experience working with the concepts and terminology of Ethernet and local area networking.

You install the switch in the HP BladeSystem server chassis, referred to as the enclosure.

Purpose

This guide provides procedures for using the commands that have been created or changed for use with the switches. It does not provide detailed information about these commands. For detailed information about these commands, see the command reference for this release. For information about the standard Cisco IOS Release 12.2 commands, see the Cisco IOS documentation set available from the Cisco.com home page at Products & Services > Technical Support & Documentation > See Documentation > Cisco IOS Software.

This guide does not provide detailed information on the GUIs for the embedded device manager or for Cisco Network Assistant (hereafter referred to as Network Assistant) that you can use to manage the switch. However, the concepts in this guide are applicable to the GUI user. For information about the device manager, see the switch online help. For information about Network Assistant, see Getting Started with Cisco Network Assistant, available on Cisco.com.

This guide does not describe system messages you might encounter or how to install your switch. For more information, see the system message guide for this release and the hardware installation guide.

For documentation updates, see the release notes for this release.

Conventions

This publication uses these conventions to convey instructions and information:

Command descriptions use these conventions:

- Commands and keywords are in boldface text.
- Arguments for which you supply values are in italic.
• Square brackets ([]) mean optional elements.
• Braces ({ }) group required choices, and vertical bars (|) separate the alternative elements.
• Braces and vertical bars within square brackets ([[|]]) mean a required choice within an optional element.

Interactive examples use these conventions:
• Terminal sessions and system displays are in **screen** font.
• Information you enter is in **boldface screen** font.
• Nonprinting characters, such as passwords or tabs, are in angle brackets (< >).

Notes, cautions, and timesavers use these conventions and symbols:

| Note | Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual. |
| Caution | Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data. |

Related Publications

These documents provide complete information about the switch and are available from this Cisco.com site:

Note	Before installing, configuring, or upgrading the switch, see these documents:
	• For initial configuration information, see the “Using Express Setup” section in the getting started guide or the “Configuring the Switch with the CLI-Based Setup Program” appendix in the hardware installation guide.
	• For device manager requirements, see the “System Requirements” section in the release notes (not orderable but available on Cisco.com).
	• For Network Assistant requirements, see the *Getting Started with Cisco Network Assistant* (not orderable but available on Cisco.com).
	• For upgrading information, see the “Downloading Software” section in the release notes.

* Release Notes for the Cisco Catalyst Blade Switch 3120 for HP*
* Cisco Catalyst Blade Switch 3120 for HP Software Configuration Guide*
* Cisco Catalyst Blade Switch 3120 for HP Command Reference*
* Cisco Catalyst Blade Switch 3120 for HP System Message Guide*
* Cisco Software Activation Document for HP*
* Device manager online help (available on the switch)*
* Cisco Catalyst Blade Switch 3120 for HP Hardware Installation Guide*
Preface

- Cisco Catalyst Blade Switch 3000 Series for HP Getting Started Guide
- Regulatory Compliance and Safety Information for the Cisco Catalyst Blade Switch 3000 Series for HP
- Installation Note for the Cisco TwinGig Converter Module
- Cisco Small Form-Factor Pluggable Modules Installation Notes
- Cisco CWDM GBIC and CWDM SFP Installation Note
- These compatibility matrix documents are available from this Cisco.com site:
 - Cisco Gigabit Ethernet Transceiver Modules Compatibility Matrix
 - Cisco 100-Megabit Ethernet SFP Modules Compatibility Matrix
 - Cisco Small Form-Factor Pluggable Modules Compatibility Matrix
 - Compatibility Matrix for 1000BASE-T Small Form-Factor Pluggable Modules
- For information about the Network Admission Control (NAC) features, see the Network Admission Control Software Configuration Guide

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS Version 2.0.
Overview

This chapter provides these topics about the switch software:

- Features, page 1-1
- Default Settings After Initial Switch Configuration, page 1-17
- Network Configuration Examples, page 1-19
- Where to Go Next, page 1-23

The term switch refers to a standalone switch and to a switch stack.

In this document, IP refers to IP Version 4 (IPv4) unless there is a specific reference to IP Version 6 (IPv6).

Note on WS-CBS3125G-S and WS-CBS3125X-S switch models:

- The WS-CBS3125G-S is the same product as the WS-CBS3120G-S.
- The WS-CBS3125X-S is the same product as the WS-CBS3120X-S.

The functionality and the performance of WS-CBS3125 switches are same as those of WS-CBS3120 switches. All Cisco Catalyst Blade Switch 3120/3125 for HP models are HP BladeSystem c-Class compatible.

Features

The switch supports either the cryptographic (supports encryption) or the noncryptographic universal software image. The cryptographic and noncryptographic universal software images support the IP base and IP services feature sets. To enable a specific feature set, you must have a Cisco IOS software license for that feature set. For more information about the software license, see the Cisco Software Activation for HP document on Cisco.com.

Some features described in this chapter are only available on the cryptographic software image. You must obtain authorization to use these features and to download the cryptographic software from Cisco.com. For more information, see the release notes for this release.
The switch supports one of these feature sets:

- **IP base feature set**, which provides Layer 2+ features (enterprise-class intelligent services). These features include access control lists (ACLs), quality of service (QoS), static routing, EIGRP stub routing, PIM stub routing, the Hot Standby Router Protocol (HSRP), Routing Information Protocol (RIP), and basic IPv6 management. Switches with the IP base feature set can be upgraded to the IP services feature set.

- **IP services feature set**, which provides a richer set of enterprise-class intelligent services and full IPv6 support. It includes all IP base features plus full Layer 3 routing (IP unicast routing, IP multicast routing, and fallback bridging). The IP services feature set includes protocols such as the Enhanced Interior Gateway Routing Protocol (EIGRP) and the Open Shortest Path First (OSPF) Protocol. This feature set also supports all IP service features with IPv6 routing and IPv6 ACLs and Multicast Listener Discovery (MLD) snooping.

IP services-only Layer 3 features are described in the “Layer 3 Features” section on page 1-14.

For more information, see Chapter 25, “Configuring IPv6 MLD Snooping,” and Chapter 36, “Configuring IPv6 ACLs.”

For more information on IPv6 routing, see Chapter 40, “Configuring IPv6 Host Functions and Unicast Routing.”

For more information about IPv6 ACLs, see Chapter 36, “Configuring IPv6 ACLs.”

Note
Unless otherwise noted, all features described in this chapter and in this guide are supported on both the IP base and IP services feature sets.

The switch has these features:

- Deployment Features, page 1-3
- Performance Features, page 1-4
- Management Options, page 1-5
- Manageability Features, page 1-6 (includes a feature requiring the cryptographic universal software image)
- Availability and Redundancy Features, page 1-8
- VLAN Features, page 1-9
- Security Features, page 1-10 (includes a feature requiring the cryptographic universal software image)
- Layer 3 Features, page 1-14 (includes features requiring the IP services feature set)
- Monitoring Features, page 1-16
Deployment Features

The switch ships with these features:

- **Express Setup** for quickly configuring a switch for the first time with basic IP information, contact information, switch and Telnet passwords, and Simple Network Management Protocol (SNMP) information through a browser-based program. For more information about Express Setup, see the getting started guide.

- **User-defined and Cisco-default Smartports macros** for creating custom switch configurations for simplified deployment across the network.

- **Local web authentication banner** so that custom banner or image file can be displayed at a web authentication login screen.

- **An embedded device manager GUI** for configuring and monitoring a single switch through a web browser. For information about starting the device manager, see the getting started guide. For more information about the device manager, see the switch online help.

- **Cisco Network Assistant (referred to as Network Assistant)** for
 - Managing communities, which are device groups like clusters, except that they can contain routers and access points and can be made more secure.
 - Simplifying and minimizing switch and switch stack management from anywhere in your intranet.
 - Accomplishing multiple configuration tasks from a single graphical interface without needing to remember command-line interface (CLI) commands to accomplish specific tasks.
 - Interactive guide mode that guides you in configuring complex features such as VLANs, ACLs, and quality of service (QoS).
 - Configuration wizards that prompt you to provide only the minimum required information to configure complex features such as QoS priorities for video traffic, priority levels for data applications, and security.
 - Downloading an image to a switch.
 - Applying actions to multiple ports and multiple switches at the same time, such as VLAN and QoS settings, inventory and statistic reports, link- and switch-level monitoring and troubleshooting, and multiple switch software upgrades.
 - Viewing a topology of interconnected devices to identify existing switch clusters and eligible switches that can join a cluster and to identify link information between switches.
 - Monitoring real-time status of a switch or multiple switches from the LEDs on the front-panel images. The system and port LED colors on the images are similar to those used on the physical LEDs.

- **Cisco StackWise Plus technology** on stacking-capable switches for
 - Connecting up to nine switches through their StackWise Plus ports that operate as a single switch or switch-router in the network.
 - Creating a bidirectional 32-Gb/s switching fabric across the switch stack, with all stack members having full access to the system bandwidth.
 - Using a single IP address and configuration file to manage the entire switch stack.
 - Automatic Cisco IOS version-check of new stack members with the option to automatically load images from the stack master or from a TFTP server.
- Adding, removing, and replacing switches in the stack without disrupting the operation of the stack.
- Provisioning a new member for a switch stack with the offline configuration feature. You can configure in advance the interface configuration for a specific stack member number and for a specific switch type of a new switch that is not part of the stack. The switch stack retains this information across stack reloads whether or not the provisioned switch is part of the stack.
- Displaying stack-ring activity statistics (the number of frames sent by each stack member to the ring).

• Stack troubleshooting enhancements

Performance Features

The switch ships with these performance features:

- Autosensing of port speed and autonegotiation of duplex mode on all switch ports for optimizing bandwidth
- Automatic-medium-dependent interface crossover (auto-MDIX) capability on 10/100- and 10/100/1000-Mb/s interfaces and on 10/100/1000 BASE-TX SFP module interfaces that enables the interface to automatically detect the required cable connection type (straight-through or crossover) and to configure the connection appropriately
- Support for the maximum packet size or maximum transmission unit (MTU) size for these types of frames:
 - Up to 9216 bytes for routed frames
 - Up to 9216 bytes for frames that are bridged in hardware and software through Gigabit Ethernet ports and 10-Gigabit Ethernet ports
- IEEE 802.3x flow control on all ports (the switch does not send pause frames)
- EtherChannel for enhanced fault tolerance and for providing up to 8 Gb/s (Gigabit EtherChannel) or 80 Gb/s (10-Gigabit EtherChannel) full-duplex bandwidth among switches, routers, and servers
- Port Aggregation Protocol (PAgP) and Link Aggregation Control Protocol (LACP) for automatic creation of EtherChannel links
- Support for up to 64 EtherChannels
- Forwarding of Layer 2 and Layer 3 packets at Gigabit line rate
- Forwarding of Layer 2 and Layer 3 packets at Gigabit line rate across the switches in the stack
- Per-port storm control for preventing broadcast, multicast, and unicast storms
- Port blocking on forwarding unknown Layer 2 unknown unicast, multicast, and bridged broadcast traffic
- Cisco Group Management Protocol (CGMP) server support and Internet Group Management Protocol (IGMP) snooping for IGMP Versions 1, 2, and 3:
 - (For CGMP devices) CGMP for limiting multicast traffic to specified end stations and reducing overall network traffic
 - (For IGMP devices) IGMP snooping for efficiently forwarding multimedia and multicast traffic
- IGMP report suppression for sending only one IGMP report per multicast router query to the multicast devices (supported only for IGMPv1 or IGMPv2 queries)
• IGMP snooping querier support to configure switch to generate periodic IGMP General Query messages
• IGMP Helper to allow the switch to forward a host request to join a multicast stream to a specific IP destination address
• Multicast Listener Discovery (MLD) snooping to enable efficient distribution of IP Version 6 (IPv6) multicast data to clients and routers in a switched network.
• Multicast VLAN registration (MVR) to continuously send multicast streams in a multicast VLAN while isolating the streams from subscriber VLANs for bandwidth and security reasons
• IGMP filtering for controlling the set of multicast groups to which hosts on a switch port can belong
• IGMP throttling for configuring the action when the maximum number of entries is in the IGMP forwarding table
• IGMP leave timer for configuring the leave latency for the network
• Switch Database Management (SDM) templates for allocating system resources to maximize support for user-selected features
• Web Cache Communication Protocol (WCCP) for redirecting traffic to wide-area application engines, for enabling content requests to be fulfilled locally, and for localizing web-traffic patterns in the network (requires the IP services feature set)
• Configurable small-frame arrival threshold to prevent storm control when small frames (64 bytes or less) arrive on an interface at a specified rate (the threshold)
• RADIUS server load balancing to allow access and authentication requests to be distributed evenly across a server group
• CDP and LLDP enhancements for exchanging location information with video end points for dynamic location-based content distribution from servers.

Management Options

These are the options for configuring and managing the switch:

• An embedded device manager—The device manager is a GUI that is integrated in the universal software image. You use it to configure and to monitor a single switch. For information about starting the device manager, see the getting started guide. For more information about the device manager, see the switch online help.
• Network Assistant—Network Assistant is a network management application that can be downloaded from Cisco.com. You use it to manage a single switch, a cluster of switches, or a community of devices. For more information about Network Assistant, see Getting Started with Cisco Network Assistant, available on Cisco.com.
• CLI—The Cisco IOS software supports desktop- and multilayer-switching features. You can access the CLI by connecting your management station directly to the switch console port, by connecting your PC directly to the Ethernet management port, or by using Telnet from a remote management station or PC. You can manage the switch stack by connecting to the console port or Ethernet management port of any stack member. For more information about the CLI, see Chapter 2, “Using the Command-Line Interface.”
• SNMP—SNMP management applications such as CiscoWorks2000 LAN Management Suite (LMS) and HP OpenView. You can manage from an SNMP-compatible management station or a PC that is running platforms such as HP OpenView or SunNet Manager. The switch supports a comprehensive set of MIB extensions and four remote monitoring (RMON) groups. For more information about using SNMP, see Chapter 33, “Configuring SNMP.”
• Cisco IOS Configuration Engine (previously known to as the Cisco IOS CNS agent)—Configuration service automates the deployment and management of network devices and services. You can automate initial configurations and configuration updates by generating switch-specific configuration changes, sending them to the switch, executing the configuration change, and logging the results.

For more information about CNS, see Chapter 4, “Configuring Cisco IOS Configuration Engine.”

• Onboard Administrator GUI—The internal Ethernet management port (also referred to as the \texttt{Fa0} or fastethernet0 port) on the switch sends and receives only management traffic between the switch and the Onboard Administrator. The port is connected to the Onboard Administrator through the backplane connector.

Manageability Features

These are the manageability features:

• CNS embedded agents for automating switch management, configuration storage, and delivery
• DHCP for automating configuration of switch information (such as IP address, default gateway, hostname, and Domain Name System [DNS] and TFTP server names)
• DHCP relay for forwarding User Datagram Protocol (UDP) broadcasts, including IP address requests, from DHCP clients
• DHCP server for automatic assignment of IP addresses and other DHCP options to IP hosts
• DHCP server port-based address allocation for the preassignment of an IP address to a switch port
• Directed unicast requests to a DNS server for identifying a switch through its IP address and its corresponding hostname and to a TFTP server for administering software upgrades from a TFTP server
• Address Resolution Protocol (ARP) for identifying a switch through its IP address and its corresponding MAC address
• Unicast MAC address filtering to drop packets with specific source or destination MAC addresses
• Configurable MAC address scaling that allows disabling MAC address learning on a VLAN to limit the size of the MAC address table
• Cisco Discovery Protocol (CDP) Versions 1 and 2 for network topology discovery and mapping between the switch and other Cisco devices on the network
• Link Layer Discovery Protocol (LLDP) and LLDP Media Endpoint Discovery (LLDP-MED) for interoperability with third-party IP phones
• Support for the LLDP-MED location TLV that provides location information from the switch to the endpoint device
• CDP and LLDP enhancements for exchanging location information with video end points for dynamic location-based content distribution from servers
• Network Time Protocol (NTP) for providing a consistent time stamp to all switches from an external source
• Cisco IOS File System (IFS) for providing a single interface to all file systems that the switch uses
• Configuration logging to log and to view changes to the switch configuration
• Configuration replacement and rollback to replace the running configuration on a switch with any saved Cisco IOS configuration file
Chapter 1 Overview

Features

• Unique device identifier to provide product identification information through a show inventory user EXEC command display
• In-band management access through the device manager over a Netscape Navigator or Microsoft Internet Explorer browser session
• In-band management access for up to 16 simultaneous Telnet connections for multiple CLI-based sessions over the network
• In-band management access for up to five simultaneous, encrypted Secure Shell (SSH) connections for multiple CLI-based sessions over the network (requires the cryptographic universal software image)
• In-band management access through SNMP Versions 1, 2c, and 3 get and set requests
• Out-of-band management access through the switch console port to a directly attached terminal or to a remote terminal through a serial connection or a modem
• Out-of-band management access through the internal Ethernet management port to a PC
• Secure Copy Protocol (SCP) feature to provide a secure and authenticated method for copying switch configuration or switch image files (requires the cryptographic universal software image)
• Wired location service that sends location and attachment tracking information for connected devices to a Cisco Mobility Services Engine (MSE)
• LLDP-MED network-policy profile time, length, value (TLV) for creating a profile for voice and voice-signalling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode CPU utilization threshold trap to monitor CPU utilization
• The HTTP client in Cisco IOS supports can send requests to both IPv4 and IPv6 HTTP servers, and the HTTP server in Cisco IOS can service HTTP requests from both IPv4 and IPv6 HTTP clients.
• SNMP can be configured over IPv6 transport so that an IPv6 host can send SNMP queries and receive SNMP notifications from a device running IPv6.
• IPv6 supports stateless autoconfiguration to manage link, subnet, and site addressing changes, such as management of host and mobile IP addresses.
• Support for including a hostname in the option 12 field of DHCPDISCOVER packets. This provides identical configuration files to be sent by using the DHCP protocol.
• DHCP Snooping enhancement to support the selection of a fixed string-based format for the circuit-id sub-option of the Option 82 DHCP field.
• Cisco EnergyWise to manage the power usage of EnergyWise entities, such as power over Ethernet (PoE) devices and end points running daemons.

Note
For additional descriptions of the management interfaces, see the “Network Configuration Examples” section on page 1-19.
Availability and Redundancy Features

These are the availability and redundancy features:

- **HSRP for command switch and Layer 3 router redundancy**

- **Automatic stack master re-election** (failover support) for replacing stack masters that become unavailable

The newly elected stack master begins accepting Layer 2 traffic in less than 1 second and Layer 3 traffic between 3 to 5 seconds.

- **Cross-stack EtherChannel for providing redundant links across the switch stack**

- **UniDirectional Link Detection (UDLD) and aggressive UDLD** for detecting and disabling unidirectional links on fiber-optic interfaces caused by incorrect fiber-optic wiring or port faults

- **IEEE 802.1D Spanning Tree Protocol (STP)** for redundant backbone connections and loop-free networks. STP has these features:

 - Up to 128 spanning-tree instances supported
 - Per-VLAN spanning-tree plus (PVST+) for load-balancing across VLANs
 - Rapid PVST+ for load-balancing across VLANs and providing rapid convergence of spanning-tree instances
 - UplinkFast, cross-stack UplinkFast, and BackboneFast for fast convergence after a spanning-tree topology change and for achieving load-balancing between redundant uplinks, including Gigabit uplinks and cross-stack Gigabit uplinks

- **IEEE 802.1s Multiple Spanning Tree Protocol (MSTP)** for grouping VLANs into a spanning-tree instance and for providing multiple forwarding paths for data traffic and load-balancing and rapid per-VLAN Spanning-Tree plus (rapid-PVST+) based on the IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) for rapid convergence of the spanning tree by immediately changing root and designated ports to the forwarding state

- **Optional spanning-tree features available in PVST+, rapid-PVST+, and MSTP mode:**

 - **Port Fast** for eliminating the forwarding delay by enabling a port to immediately change from the blocking state to the forwarding state
 - **BPDU guard** for shutting down Port Fast-enabled ports that receive bridge protocol data units (BPDUs)
 - **BPDU filtering** for preventing a Port Fast-enabled port from sending or receiving BPDUs
 - **Root guard** for preventing switches outside the network core from becoming the spanning-tree root
 - **Loop guard** for preventing alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link

- **Equal-cost routing for link-level and switch-level redundancy**

- **Flex Link Layer 2 interfaces** to back up one another as an alternative to STP for basic link redundancy
• Link-state tracking to mirror the state of the ports that carry upstream traffic from connected hosts and servers and to allow the failover of the server traffic to an operational link on another Cisco Ethernet switch.

• Support for VTP version 3 that includes support for configuring extended range VLANs (VLANs 1006 to 4094) in any VTP mode, enhanced authentication (hidden or secret passwords), propagation of other databases in addition to VTP, VTP primary and secondary servers, and the option to turn VTP on or off by port.

VLAN Features

These are the VLAN features:

• Support for up to 1005 VLANs for assigning users to VLANs associated with appropriate network resources, traffic patterns, and bandwidth.

• Support for VLAN IDs in the 1 to 4094 range as allowed by the IEEE 802.1Q standard.

• VLAN Query Protocol (VQP) for dynamic VLAN membership.

• IEEE 802.1Q trunking encapsulation on all ports for network moves, adds, and changes; management and control of broadcast and multicast traffic; and network security by establishing VLAN groups for high-security users and network resources.

• Dynamic Trunking Protocol (DTP) for negotiating trunking and encapsulation on a link between two devices.

• VLAN Trunking Protocol (VTP) and VTP pruning for reducing network traffic by restricting flooded traffic to links destined for stations receiving the traffic.

• Voice VLAN for creating subnets for voice traffic from Cisco IP Phones.

• Dynamic voice virtual LAN (VLAN) for multidomain authentication (MDA) to allow a dynamic voice VLAN on an MDA-enabled port.

• VLAN 1 minimization for reducing the risk of spanning-tree loops or storms by allowing VLAN 1 to be disabled on any individual VLAN trunk link. With this feature enabled, no user traffic is sent or received on the trunk. The switch CPU continues to send and receive control protocol frames.

• Private VLANs to address VLAN scalability problems, to provide a more controlled IP address allocation, and to allow Layer 2 ports to be isolated from other ports on the switch.

• Port security on a PVLAN host to limit the number of MAC addresses learned on a port, or define which MAC addresses may be learned on a port.

• VLAN Flex Link Load Balancing to provide Layer 2 redundancy without requiring Spanning Tree Protocol (STP). A pair of interfaces configured as primary and backup links can load balance traffic based on VLAN.
Security Features

The switch ships with these security features:

- Web authentication to allow a supplicant (client) that does not support IEEE 802.1x functionality to be authenticated using a web browser.
- Password-protected access (read-only and read-write access) to management interfaces (device manager, Network Assistant, and the CLI) for protection against unauthorized configuration changes.
- Multilevel security for a choice of security level, notification, and resulting actions.
- Static MAC addressing for ensuring security.
- Protected port option for restricting the forwarding of traffic to designated ports on the same switch.
- Port security option for limiting and identifying MAC addresses of the stations allowed to access the port.
- VLAN aware port security option to shut down the VLAN on the port when a violation occurs, instead of shutting down the entire port.
- Port security aging to set the aging time for secure addresses on a port.
- BPDU guard for shutting down a Port Fast-configured port when an invalid configuration occurs.
- Standard and extended IP access control lists (ACLs) for defining security policies in both directions on routed interfaces (router ACLs) and VLANs and inbound on Layer 2 interfaces (port ACLs).
- Extended MAC access control lists for defining security policies in the inbound direction on Layer 2 interfaces.
- VLAN ACLs (VLAN maps) for providing intra-VLAN security by filtering traffic based on information in the MAC, IP, and TCP/UDP headers.
- Source and destination MAC-based ACLs for filtering non-IP traffic.
- IPv6 ACLs to be applied to interfaces to filter IPv6 traffic.
- Support for dynamic creation or attachment of an auth-default ACL on a port that has no configured static ACLs.
- DHCP snooping to filter untrusted DHCP messages between untrusted hosts and DHCP servers.
- IP source guard to restrict traffic on nonrouted interfaces by filtering traffic based on the DHCP snooping database and IP source bindings.
- Dynamic ARP inspection to prevent malicious attacks on the switch by not relaying invalid ARP requests and responses to other ports in the same VLAN.
- IEEE 802.1Q tunneling so that customers with users at remote sites across a service-provider network can keep VLANs segregated from other customers and Layer 2 protocol tunneling to ensure that the customer’s network has complete STP, CDP, and VTP information about all users.
- Layer 2 point-to-point tunneling to facilitate the automatic creation of EtherChannels.
- Layer 2 protocol tunneling bypass feature to provide interoperability with third-party vendors.
- Flexible-authentication sequencing to configure the order of the authentication methods that a port tries when authenticating a new host.
- IEEE 802.1x with open access to allow a host to access the network before being authenticated.
IEEE 802.1x port-based authentication to prevent unauthorized devices (clients) from gaining access to the network. These features are supported:

- Multidomain authentication (MDA) to allow both a data device and a voice device, such as an IP phone (Cisco or non-Cisco), to independently authenticate on the same IEEE 802.1x-enabled switch port
- VLAN assignment for restricting IEEE 802.1x-authenticated users to a specified VLAN
- Support for VLAN assignment on a port configured for multi-auth mode. The RADIUS server assigns a VLAN to the first host to authenticate on the port, and subsequent hosts use the same VLAN. Voice VLAN assignment is supported for one IP phone
- Port security for controlling access to IEEE 802.1x ports
- Voice VLAN to permit a Cisco IP Phone to access the voice VLAN regardless of the authorized or unauthorized state of the port
- IP phone detection enhancement to detect and recognize a Cisco IP phone
- Guest VLAN to provide limited services to non-IEEE 802.1x-compliant users
- Restricted VLAN to provide limited services to users who are IEEE 802.1x compliant, but do not have the credentials to authenticate via the standard IEEE 802.1x processes
- IEEE 802.1x accounting to track network usage
- IEEE 802.1x with wake-on-LAN to allow dormant PCs to be powered on based on the receipt of a specific Ethernet frame
- Voice aware IEEE 802.1x and MAC authentication bypass (MAB) security violation to shut down only the data VLAN on a port when a security violation occurs
- IEEE 802.1x readiness check to determine the readiness of connected end hosts before configuring IEEE 802.1x on the switch
- Network Edge Access Topology (NEAT) with 802.1x switch supplicant, host authorization with Client Information Signalling Protocol (CISP), and auto enablement to authenticate a switch outside a wiring closet as a supplicant to another switch
- IEEE 802.1x authentication with downloadable ACLs and redirect URLs to allow per-user ACL downloads from a Cisco Secure ACS server to an authenticated switch
- Multiple-user authentication to allow more than one host to authenticate on an 802.1x-enabled port.

MAC authentication bypass to authorize clients based on the client MAC address.

Network Admission Control (NAC) features:

- NAC Layer 2 IEEE 802.1x validation of the antivirus condition or posture of endpoint systems or clients before granting the devices network access.

 For information about configuring NAC Layer 2 IEEE 802.1x validation, see the “Configuring NAC Layer 2 802.1x Validation” section on page 9-60.

- NAC Layer 2 IP validation of the posture of endpoint systems or clients before granting the devices network access.

 For information about configuring NAC Layer 2 IP validation, see the Network Admission Control Software Configuration Guide.
Features

- IEEE 802.1x inaccessible authentication bypass.

 For information about configuring this feature, see the “Configuring the Inaccessible Authentication Bypass Feature” section on page 9-55.

- Authentication, authorization, and accounting (AAA) down policy for a NAC Layer 2 IP validation of a host if the AAA server is not available when the posture validation occurs.

 For information about this feature, see the *Network Admission Control Software Configuration Guide*.

- TACACS+, a proprietary feature for managing network security through a TACACS server

- RADIUS for verifying the identity of, granting access to, and tracking the actions of remote users through AAA services

- Kerberos security system to authenticate requests for network resources by using a trusted third party (requires the cryptographic universal software image)

- Secure Socket Layer (SSL) Version 3.0 support for the HTTP 1.1 server authentication, encryption, and message integrity and HTTP client authentication to allow secure HTTP communications (requires the cryptographic universal software image)

- Support for IP source guard on static hosts.

- RADIUS Change of Authorization (CoA) to change the attributes of a certain session after it is authenticated. When there is a change in policy for a user or user group in AAA, administrators can send the RADIUS CoA packets from the AAA server, such as Cisco Secure ACS to reinitialize authentication, and apply to the new policies.

- IEEE 802.1x User Distribution to allow deployments with multiple VLANs (for a group of users) to improve scalability of the network by load balancing users across different VLANs. Authorized users are assigned to the least populated VLAN in the group, assigned by RADIUS server.

- Support for critical VLAN with multiple-host authentication so that when a port is configured for multi-auth, and an AAA server becomes unreachable, the port is placed in a critical VLAN in order to still permit access to critical resources.

- Customizable web authentication enhancement to allow the creation of user-defined *login*, *success*, *failure* and *expire* web pages for local web authentication.

- Support for Network Edge Access Topology (NEAT) to change the port host mode and to apply a standard port configuration on the authenticator switch port.

- VLAN-ID based MAC authentication to use the combined VLAN and MAC address information for user authentication to prevent network access from unauthorized VLANs.

- MAC move to allow hosts (including the hosts connected behind an IP phone) to move across ports within the same switch without any restrictions to enable mobility. With MAC move, the switch treats the reappearance of the same MAC address on another port in the same way as a completely new MAC address.

- Support for 3DES and AES with version 3 of the Simple Network Management Protocol (SNMPv3). This release adds support for the 168-bit Triple Data Encryption Standard (3DES) and the 128-bit, 192-bit, and 256-bit Advanced Encryption Standard (AES) encryption algorithms to SNMPv3.

- Support for the Security Group Tag (SCT) Exchange Protocol (SXP) component of Cisco TrustSec, a security architecture using authentication, encryption, and access control.
QoS and CoS Features

These are the QoS and CoS features:

- Automatic QoS (auto-QoS) to simplify the deployment of existing QoS features by classifying traffic and configuring egress queues
- Cross-stack QoS for configuring QoS features to all switches in a switch stack rather than on an individual-switch basis
- Classification
 - IP type-of-service/Differentiated Services Code Point (IP ToS/DSCP) and IEEE 802.1p CoS marking priorities on a per-port basis for protecting the performance of mission-critical applications
 - IP ToS/DSCP and IEEE 802.1p CoS marking based on flow-based packet classification (classification based on information in the MAC, IP, and TCP/UDP headers) for high-performance quality of service at the network edge, allowing for differentiated service levels for different types of network traffic and for prioritizing mission-critical traffic in the network
 - Trusted port states (CoS, DSCP, and IP precedence) within a QoS domain and with a port bordering another QoS domain
 - Trusted boundary for detecting the presence of a Cisco IP Phone, trusting the CoS value received, and ensuring port security
- Policing
 - Traffic-policing policies on the switch port for managing how much of the port bandwidth should be allocated to a specific traffic flow
 - If you configure multiple class maps for a hierarchical policy map, each class map can be associated with its own port-level (second-level) policy map. Each second-level policy map can have a different policer.
 - Aggregate policing for policing traffic flows in aggregate to restrict specific applications or traffic flows to metered, predefined rates
- Out-of-Profile
 - Out-of-profile markdown for packets that exceed bandwidth utilization limits
- Ingress queueing and scheduling
 - Two configurable ingress queues for user traffic (one queue can be the priority queue)
 - Weighted tail drop (WTD) as the congestion-avoidance mechanism for managing the queue lengths and providing drop precedences for different traffic classifications
 - Shaped round robin (SRR) as the scheduling service for specifying the rate at which packets are sent to the stack or internal ring (sharing is the only supported mode on ingress queues)
- Egress queues and scheduling
 - Four egress queues per port
 - WTD as the congestion-avoidance mechanism for managing the queue lengths and providing drop precedences for different traffic classifications
 - SRR as the scheduling service for specifying the rate at which packets are dequeued to the egress interface (shaping or sharing is supported on egress queues). Shaped egress queues are guaranteed but limited to using a share of port bandwidth. Shared egress queues are also
guaranteed a configured share of bandwidth, but can use more than the guarantee if other queues become empty and do not use their share of the bandwidth.

- Automatic quality of service (QoS) voice over IP (VoIP) enhancement for port-based trust of DSCP and priority queuing for egress traffic
- Full QoS support for IPv6 traffic
- Auto-QoS enhancements that add automatic configuration classification of traffic flow from video devices, such as the Cisco TelePresence System and Cisco Surveillance Camera.

Layer 3 Features

These are the Layer 3 features:

Note

Some features noted in this section are available only in the IP services feature set.

- HSRP Version 1 (HSRPv1) and HSRP Version 2 (HSRPv2) for Layer 3 router redundancy
- HSRP for IPv6 (requires the IP services feature set)
- IPv6 default router preference (DRP) for improving the ability of a host to select an appropriate router.
- IP routing protocols for load balancing and for constructing scalable, routed backbones:
 - RIP Versions 1 and 2
 - Full OSPF support (requires the IP services feature set) The IP Base image supports OSPF for routed access to enable customers to extend Layer 3 routing capabilities to the access or wiring closet.
 - HSRP for IPv6 (requires the IP services feature set)
 - Enhanced IGRP (EIGRP) (requires the IP services feature set)
 - Border Gateway Protocol (BGP) Version 4 (requires the IP services feature set)
- IP routing between VLANs (inter-VLAN routing) for full Layer 3 routing between two or more VLANs, allowing each VLAN to maintain its own autonomous data-link domain
- Policy-based routing (PBR) for configuring defined policies for traffic flows
- Multiple VPN routing/forwarding (multi-VRF) instances in customer edge devices to allow service providers to support multiple virtual private networks (VPNs) and overlap IP addresses between VPNs (requires the IP services feature set)
- VRF Lite for configuring multiple private routing domains for network virtualization and virtual private multicast networks
- Support for these IP services, making them VRF aware so that they can operate on multiple routing instances: HSRP, uRPF, ARP, SNMP, IP SLA, TFTP, FTP, syslog, traceroute, and ping
- Fallback bridging for forwarding non-IP traffic between two or more VLANs (requires the IP services feature set)
- Static IP routing for manually building a routing table of network path information
- Equal-cost routing for load-balancing and redundancy
• Internet Control Message Protocol (ICMP) and ICMP Router Discovery Protocol (IRDP) for using router advertisement and router solicitation messages to discover the addresses of routers on directly attached subnets
• Protocol-Independent Multicast (PIM) for multicast routing within the network, allowing for devices in the network to receive the multicast feed requested and for switches not participating in the multicast to be pruned. Includes support for PIM sparse mode (PIM-SM), PIM dense mode (PIM-DM), and PIM sparse-dense mode (requires the IP services feature set)
• Multicast Source Discovery Protocol (MSDP) for connecting multiple PIM-SM domains (requires the IP services feature set)
• Distance Vector Multicast Routing Protocol (DVMRP) tunneling for interconnecting two multicast-enabled networks across nonmulticast networks (requires the IP services feature set)
• DHCP relay for forwarding UDP broadcasts, including IP address requests, from DHCP clients
• DHCP for IPv6 relay, client, server address assignment and prefix delegation
• IPv6 unicast routing capability for forwarding IPv6 traffic through configured interfaces (requires the IP services feature set)
• IPv6 default router preference (DRP) for improving the ability of a host to select an appropriate router
• IPv6 unicast routing capability for forwarding IPv6 traffic through configured interfaces (requires the IP services feature set)
• Support for EIGRP IPv6, which utilizes IPv6 transport, communicates with IPv6 peers, and advertises IPv6 routes
• IP unicast reverse path forwarding (unicast RPF) for confirming source packet IP addresses
• Nonstop forwarding (NSF) awareness to enable the Layer 3 switch to continue forwarding packets from an NSF-capable neighboring router when the primary route processor (RP) is failing and the backup RP is taking over, or when the primary RP is manually reloaded for a nondisruptive software upgrade (requires the IP services feature set)
• NSF-capable routing for OSPF and EIGRP that allows the switch to rebuild routing tables based on information from NSF-aware and NSF-capable neighbors The ability to exclude a port in a VLAN from the SVI line-state up or down calculation
• Intermediate System-to-Intermediate System (IS-IS) routing supports dynamic routing protocols for Connectionless Network Service (CLNS) networks (requires the IP services feature set)
Monitoring Features

These are the monitoring features:

- MAC address notification traps and RADIUS accounting for tracking users on a network by storing the MAC addresses that the switch has learned or removed
- Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) for traffic monitoring on any port or VLAN
- SPAN and RSPAN support of Intrusion Detection Systems (IDS) to monitor, repel, and report network security violations
- Four groups (history, statistics, alarms, and events) of embedded RMON agents for network monitoring and traffic analysis
- Syslog facility for logging system messages about authentication or authorization errors, resource issues, and time-out events
- Layer 2 traceroute to identify the physical path that a packet takes from a source device to a destination device
- Time Domain Reflector (TDR) to diagnose and resolve cabling problems on 10/100 and 10/100/1000 copper Ethernet ports
- SFP module diagnostic management interface to monitor physical or operational status of an SFP module
- Online diagnostics to test the hardware functionality of the supervisor engine, modules, and switch while the switch is connected to a live network
- On-board failure logging (OBFL) to collect information about the switch and the power supplies connected to it
- Digital optical monitoring (DOM) to check status of X2 small form-factor pluggable (SFP) modules
- Enhanced object tracking (EOT) for HSRP to determine the proportion of hosts in a LAN by tracking the routing table state or to trigger the standby router failover
- IP Service Level Agreements (IP SLAs) support to measure network performance by using active traffic monitoring
- IP SLAs EOT to use the output from IP SLAs tracking operations triggered by an action such as latency, jitter, or packet loss for a standby router failover takeover
- Support for Embedded Event Manager (EEM) for event detection and recovery within a Cisco IOS device, and EEM 3.2, which introduces event detectors for Neighbor Discovery, Identity, and MAC-Address-Table.
Default Settings After Initial Switch Configuration

The switch is designed for plug-and-play operation, requiring only that you assign basic IP information to the switch and connect it to the other devices in your network. If you have specific network needs, you can change the interface-specific and system- and stack-wide settings.

For information about assigning an IP address by using the browser-based Express Setup program, see the getting started guide. For information about assigning an IP address by using the CLI-based setup program, see the hardware installation guide.

If you do not configure the switch at all, the switch operates with these default settings:

- Default switch IP address, subnet mask, and default gateway is 0.0.0.0. For more information, see Chapter 3, “Assigning the Switch IP Address and Default Gateway,” and Chapter 22, “Configuring DHCP Features and IP Source Guard.”
- Default domain name is not configured. For more information, see Chapter 3, “Assigning the Switch IP Address and Default Gateway.”
- DHCP client is enabled, the DHCP server is enabled (only if the device acting as a DHCP server is configured and is enabled), and the DHCP relay agent is enabled (only if the device is acting as a DHCP relay agent is configured and is enabled). For more information, see Chapter 3, “Assigning the Switch IP Address and Default Gateway,” and Chapter 22, “Configuring DHCP Features and IP Source Guard.”
- Switch stack is enabled (not configurable). For more information, see Chapter 7, “Managing Switch Stacks.”
- No passwords are defined. For more information, see Chapter 5, “Administering the Switch.”
- System name and prompt is Switch. For more information, see Chapter 5, “Administering the Switch.”
- NTP is enabled. For more information, see Chapter 5, “Administering the Switch.”
- DNS is enabled. For more information, see Chapter 5, “Administering the Switch.”
- TACACS+ is disabled. For more information, see Chapter 6, “Configuring Switch-Based Authentication.”
- RADIUS is disabled. For more information, see Chapter 6, “Configuring Switch-Based Authentication.”
- The standard HTTP server and Secure Socket Layer (SSL) HTTPS server are both enabled. For more information, see Chapter 6, “Configuring Switch-Based Authentication.”
- IEEE 802.1x is disabled. For more information, see Chapter 9, “Configuring IEEE 802.1x Port-Based Authentication.”
- Port parameters
 - Operating mode is Layer 2 (switchport). For more information, see Chapter 11, “Configuring Interface Characteristics.”
 - Interface speed and duplex mode is autonegotiate. For more information, see Chapter 11, “Configuring Interface Characteristics.”
Default Settings After Initial Switch Configuration

- Auto-MDIX is enabled. For more information, see Chapter 11, “Configuring Interface Characteristics.”
- Flow control is off. For more information, see Chapter 11, “Configuring Interface Characteristics.”

- No Smartports macros are defined. For more information, see Chapter 12, “Configuring Smartports Macros.”

- VLANs
 - Default VLAN is VLAN 1. For more information, see Chapter 13, “Configuring VLANs.”
 - VLAN trunking setting is dynamic auto (DTP). For more information, see Chapter 13, “Configuring VLANs.”
 - Trunk encapsulation is negotiate. For more information, see Chapter 13, “Configuring VLANs.”
 - VTP mode is server. For more information, see Chapter 14, “Configuring VTP.”
 - VTP version is Version 1. For more information, see Chapter 14, “Configuring VTP.”
 - No private VLANs are configured. For more information, see Chapter 16, “Configuring Private VLANs.”
 - Voice VLAN is disabled. For more information, see Chapter 15, “Configuring Voice VLAN.”

- IEEE 802.1Q tunneling and Layer 2 protocol tunneling are disabled. For more information, see Chapter 17, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”

- STP, PVST+ is enabled on VLAN 1. For more information, see Chapter 18, “Configuring STP”

- MSTP is disabled. For more information, see Chapter 19, “Configuring MSTP.”

- Optional spanning-tree features are disabled. For more information, see Chapter 20, “Configuring Optional Spanning-Tree Features.”

- Flex Links are not configured. For more information, see Chapter 21, “Configuring Flex Links and the MAC Address-Table Move Update Feature.”

- DHCP snooping is disabled. The DHCP snooping information option is enabled. For more information, see Chapter 22, “Configuring DHCP Features and IP Source Guard.”

- IP source guard is disabled. For more information, see Chapter 22, “Configuring DHCP Features and IP Source Guard.”

- Dynamic ARP inspection is disabled on all VLANs. For more information, see Chapter 23, “Configuring Dynamic ARP Inspection.”

- IGMP snooping is enabled. No IGMP filters are applied. For more information, see Chapter 24, “Configuring IGMP Snooping and MVR.”

- IGMP throttling setting is deny. For more information, see Chapter 24, “Configuring IGMP Snooping and MVR.”

- The IGMP snooping querier feature is disabled. For more information, see Chapter 24, “Configuring IGMP Snooping and MVR.”

- MVR is disabled. For more information, see Chapter 24, “Configuring IGMP Snooping and MVR.”

- Port-based traffic
 - Broadcast, multicast, and unicast storm control is disabled. For more information, see Chapter 26, “Configuring Port-Based Traffic Control.”
 - No protected ports are defined. For more information, see Chapter 26, “Configuring Port-Based Traffic Control.”
Network Configuration Examples

This section provides network configuration concepts and includes examples of using the switch to create dedicated network segments and interconnecting the segments through Gigabit Ethernet and 10-Gigabit Ethernet connections.

- “Design Concepts for Using the Switch” section on page 1-19
- “Small to Medium-Sized Network” section on page 1-22

Design Concepts for Using the Switch

As your network users compete for network bandwidth, it takes longer to send and receive data. When you configure your network, consider the bandwidth required by your network users and the relative priority of the network applications that they use.
Table 1-1 describes what can cause network performance to degrade and how you can configure your network to increase the bandwidth available to your network users.

Table 1-1 Increasing Network Performance

<table>
<thead>
<tr>
<th>Network Demands</th>
<th>Suggested Design Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Too many users on a single network segment and a growing number of users accessing the Internet</td>
<td>• Create smaller network segments so that fewer users share the bandwidth, and use VLANs and IP subnets to place the network resources in the same logical network as the users who access those resources most.
 • Use full-duplex operation between the switch and its connected workstations.</td>
</tr>
<tr>
<td>Increased power of new PCs, workstations, and servers</td>
<td>• Connect global resources—such as servers and routers to which the network users require equal access—directly to the high-speed switch ports so that they have their own high-speed segment.
 • Use the EtherChannel feature between the switch and its connected servers and routers.</td>
</tr>
<tr>
<td>High bandwidth demand from networked applications (such as e-mail with large attached files) and from bandwidth-intensive applications (such as multimedia)</td>
<td></td>
</tr>
</tbody>
</table>
You can use the switches and switch stacks to create the following:

- **Data center** (Figure 1-1)—For high-speed access to network resources, you can use switches and switch stacks in the access layer to provide Gigabit Ethernet access to the blade servers. To prevent congestion, use QoS DSCP marking priorities on these switches. For high-speed IP forwarding at the distribution layer, connect the switches in the access layer to a Gigabit multilayer switch in the backbone, such as a Catalyst 4500 Gigabit switch or Catalyst 6500 Gigabit switch.

- **Expanded data center** (Figure 1-2)—You can use standalone switches and switch stacks to interconnect groups of servers, centralizing physical security and administration of your network. For high-speed IP forwarding at the distribution layer, connect the switches in the access layer to multilayer switches with routing capability. The Gigabit interconnections minimize latency in the data flow.
QoS and policing on the switches provide preferential treatment for certain data streams. They segment traffic streams into different paths for processing. Security features on the switch ensure rapid handling of packets.

Fault tolerance from the server racks to the core is achieved through dual homing of servers connected to dual switch stacks or the switches, which have redundant Gigabit EtherChannels and cross-stack EtherChannels.

Using dual SFP module uplinks from the switches provides redundant uplinks to the network core. Using SFP modules provides flexibility in media and distance options through fiber-optic connections.

The various lengths of stack cable available, ranging from 0.5 meter to 3 meters, provide extended connections to the switch stacks across multiple server racks, for multiple stack aggregation.

Small to Medium-Sized Network

Figure 1-3 shows a configuration for a network of up to 500 employees. This network uses a Layer 3 switch stack with high-speed connections to two routers. For network reliability and load-balancing, this network has HSRP enabled on the routers and on the switches. This ensures connectivity to the Internet, WAN, and mission-critical network resources in case one of the routers or switches fails. The switches are using routed uplinks for faster failover. They are also configured with equal-cost routing for load sharing and redundancy. A Layer 2 switch stack can use cross-stack EtherChannel for load sharing.

The switches are connected to local servers. The server farm includes a call-processing server running Cisco CallManager software. Cisco CallManager controls call processing and routing. The switches are interconnected through Gigabit interfaces.

This network uses VLANs to logically segment the network into well-defined broadcast groups and for security management. Data and multimedia traffic are configured on the same VLAN. Voice traffic is configured on separate VVIDs. If data, multimedia, and voice traffic are assigned to the same VLAN, only one VLAN can be configured per wiring closet.
When an end station in one VLAN needs to communicate with an end station in another VLAN, a router or Layer 3 switch routes the traffic to the destination VLAN. In this network, the switch stack is providing inter-VLAN routing. VLAN access control lists (VLAN maps) on the switch stack or switch provide intra-VLAN security and prevent unauthorized users from accessing critical areas of the network.

In addition to inter-VLAN routing, the multilayer switches provide QoS mechanisms such as DSCP priorities to prioritize the different types of network traffic and to deliver high-priority traffic. If congestion occurs, QoS drops low-priority traffic to allow delivery of high-priority traffic.

Cisco CallManager controls call processing and routing. Users with workstations running Cisco SoftPhone software can place, receive, and control calls from their PCs. Using Cisco CallManager software and Cisco SoftPhone software integrates telephony and IP networks, and the IP network supports both voice and data.

With the multilayer switches providing inter-VLAN routing and other network services, the routers focus on firewall services, Network Address Translation (NAT) services, voice-over-IP (VoIP) gateway services, and WAN and Internet access.

Figure 1-3 Switch Stack in a Collapsed Backbone

Where to Go Next

Before configuring the switch, review these sections for startup information:

- Chapter 2, “Using the Command-Line Interface”
- Chapter 3, “Assigning the Switch IP Address and Default Gateway”
Using the Command-Line Interface

This chapter describes the Cisco IOS command-line interface (CLI) and how to use it to configure your standalone switch or a switch stack, referred to as the switch. It contains these sections:

- Understanding Command Modes, page 2-1
- Understanding the Help System, page 2-3
- Understanding Abbreviated Commands, page 2-3
- Understanding no and default Forms of Commands, page 2-4
- Understanding CLI Error Messages, page 2-4
- Using Configuration Logging, page 2-5
- Using Command History, page 2-5
- Using Editing Features, page 2-6
- Searching and Filtering Output of show and more Commands, page 2-9
- Accessing the CLI, page 2-9

Understanding Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

When you start a session on the switch, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as show commands, which show the current configuration status, and clear commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.
Table 2-1 describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode. The examples in the table use the hostname Switch.

Table 2-1 Command Mode Summary

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
</table>
| User EXEC | Begin a session with your switch. | Switch> | Enter **logout** or quit. | Use this mode to
| | | | | • Change terminal settings.
| | | | | • Perform basic tests.
| | | | | • Display system information. |
| Privileged EXEC | While in user EXEC mode, enter the **enable** command | Switch# | Enter **disable** to exit. | Use this mode to verify commands that you have entered. Use a password to protect access to this mode. |
| Global configuration | While in privileged EXEC mode, enter the **configure** command. | Switch(config)# | To exit to privileged EXEC mode, enter **exit** or **end**, or press Ctrl-Z. | Use this mode to configure parameters that apply to the entire switch. |
| VLAN configuration | While in global configuration mode, enter the **vlan vlan-id** command. | Switch(config-vlan)# | To exit to global configuration mode, enter the **exit** command.
| | | | To return to privileged EXEC mode, press Ctrl-Z or enter **end**. | Use this mode to configure VLAN parameters. When VTP mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005) and save configurations in the switch startup configuration file. |
| Interface configuration | While in global configuration mode, enter the **interface** command (with a specific interface). | Switch(config-if)# | To exit to global configuration mode, enter **exit**.
| | | | To return to privileged EXEC mode, press Ctrl-Z or enter **end**. | Use this mode to configure parameters for the Ethernet ports.
| | | | | For information about defining interfaces, see the “Using Interface Configuration Mode” section on page 11-8.
| | | | | To configure multiple interfaces with the same parameters, see the “Configuring a Range of Interfaces” section on page 11-10. |
| Line configuration | While in global configuration mode, specify a line with the **line vty** or **line console** command. | Switch(config-line)# | To exit to global configuration mode, enter **exit**.
| | | | To return to privileged EXEC mode, press Ctrl-Z or enter **end**. | Use this mode to configure parameters for the terminal line. |
Understanding the Help System

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command, as shown in Table 2-2.

Table 2-2 Help Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Obtain a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>abbreviated-command-entry?</td>
<td>Obtain a list of commands that begin with a particular character string.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch# di?</td>
</tr>
<tr>
<td></td>
<td>dir disable disconnect</td>
</tr>
<tr>
<td>abbreviated-command-entry<Tab></td>
<td>Complete a partial command name.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch# sh conf<tab></td>
</tr>
<tr>
<td></td>
<td>Switch# show configuration</td>
</tr>
<tr>
<td>?</td>
<td>List all commands available for a particular command mode.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch> ?</td>
</tr>
<tr>
<td>command ?</td>
<td>List the associated keywords for a command.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch> show ?</td>
</tr>
<tr>
<td>command keyword ?</td>
<td>List the associated arguments for a keyword.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# cdp holdtime ?</td>
</tr>
<tr>
<td></td>
<td><10-255> Length of time (in sec) that receiver must keep this packet</td>
</tr>
</tbody>
</table>

Understanding Abbreviated Commands

You need to enter only enough characters for the switch to recognize the command as unique.

This example shows how to enter the show configuration privileged EXEC command in an abbreviated form:

Switch# show conf
Chapter 2 Using the Command-Line Interface

Understanding no and default Forms of Commands

Almost every configuration command also has a no form. In general, use the no form to disable a feature or function or reverse the action of a command. For example, the no shutdown interface configuration command reverses the shutdown of an interface. Use the command without the keyword no to re-enable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a default form. The default form of a command returns the command setting to its default. Most commands are disabled by default, so the default form is the same as the no form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the default command enables the command and sets variables to their default values.

Understanding CLI Error Messages

Table 2-3 lists some error messages that you might encounter while using the CLI to configure your switch.

Table 2-3 Common CLI Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: 'show con'</td>
<td>You did not enter enough characters for your switch to recognize the command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by this command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Invalid input detected at '*' marker.</td>
<td>You entered the command incorrectly. The caret (*) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command appear.</td>
</tr>
</tbody>
</table>
Using Configuration Logging

You can log and view changes to the switch configuration. You can use the Configuration Change Logging and Notification feature to track changes on a per-session and per-user basis. The logger tracks each configuration command that is applied, the user who entered the command, the time that the command was entered, and the parser return code for the command. This feature includes a mechanism for asynchronous notification to registered applications whenever the configuration changes. You can choose to have the notifications sent to the syslog.

For more information, see the “Configuration Change Notification and Logging” section of the Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.4.

Note

Only CLI or HTTP changes are logged.

Using Command History

The software provides a history or record of commands that you have entered. The command history feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize this feature to suit your needs as described in these sections:

- Changing the Command History Buffer Size, page 2-5 (optional)
- Recalling Commands, page 2-6 (optional)
- Disabling the Command History Feature, page 2-6 (optional)

Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. You can alter this number for a current terminal session or for all sessions on a particular line. These procedures are optional.

Beginning in privileged EXEC mode, enter this command to change the number of command lines that the switch records during the current terminal session:

```
Switch# terminal history [size number-of-lines]
```

The range is from 0 to 256.

Beginning in line configuration mode, enter this command to configure the number of command lines the switch records for all sessions on a particular line:

```
Switch(config-line)# history [size number-of-lines]
```

The range is from 0 to 256.
Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in Table 2-4. These actions are optional.

<table>
<thead>
<tr>
<th>Table 2-4</th>
<th>Recalling Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Result</td>
</tr>
<tr>
<td>Press Ctrl-P or the up arrow key.</td>
<td>Recall commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Press Ctrl-N or the down arrow key.</td>
<td>Return to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.</td>
</tr>
<tr>
<td>show history</td>
<td>While in privileged EXEC mode, list the last several commands that you just entered. The number of commands that appear is controlled by the setting of the terminal history global configuration command and the history line configuration command.</td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.

Disabling the Command History Feature

The command history feature is automatically enabled. You can disable it for the current terminal session or for the command line. These procedures are optional.

To disable the feature during the current terminal session, enter the `terminal no history` privileged EXEC command.

To disable command history for the line, enter the `no history` line configuration command.

Using Editing Features

This section describes the editing features that can help you manipulate the command line. It contains these sections:

- Enabling and Disabling Editing Features, page 2-6 (optional)
- Editing Commands through Keystrokes, page 2-7 (optional)
- Editing Command Lines that Wrap, page 2-8 (optional)

Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it, re-enable it, or configure a specific line to have enhanced editing. These procedures are optional.

To globally disable enhanced editing mode, enter this command in line configuration mode:

```
Switch (config-line)# no editing
```
To re-enable the enhanced editing mode for the current terminal session, enter this command in privileged EXEC mode:

```
Switch# terminal editing
```

To reconfigure a specific line to have enhanced editing mode, enter this command in line configuration mode:

```
Switch(config-line)# editing
```

Editing Commands through Keystrokes

Table 2-5 shows the keystrokes that you need to edit command lines. These keystrokes are optional.

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke¹</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move around the command line to make changes or corrections.</td>
<td>Press Ctrl-B, or press the left arrow key.</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td>Move the cursor one character to the right.</td>
<td>Press Ctrl-F, or press the right arrow key.</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td>Move the cursor to the beginning of the command line.</td>
<td>Press Ctrl-A.</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Move the cursor to the end of the command line.</td>
<td>Press Ctrl-E.</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Move the cursor to the beginning of the command line.</td>
<td>Press Esc B.</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td>Move the cursor forward one word.</td>
<td>Press Esc F.</td>
<td>Move the cursor forward one word.</td>
</tr>
<tr>
<td>Transpose the character to the left of the cursor with the character located at the cursor.</td>
<td>Press Ctrl-T.</td>
<td></td>
</tr>
<tr>
<td>Recall commands from the buffer and paste them in the command line. The switch provides a buffer with the last ten items that you deleted.</td>
<td>Press Ctrl-Y.</td>
<td>Recall the most recent entry in the buffer.</td>
</tr>
<tr>
<td>Recall the next buffer entry.</td>
<td>Press Esc Y.</td>
<td>Recall the next buffer entry.</td>
</tr>
<tr>
<td>The buffer contains only the last 10 items that you have deleted or cut. If you press Esc Y more than ten times, you cycle to the first buffer entry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete entries if you make a mistake or change your mind.</td>
<td>Press the Delete or Backspace key.</td>
<td>Erase the character to the left of the cursor.</td>
</tr>
<tr>
<td>Delete the character at the cursor.</td>
<td>Press Ctrl-D.</td>
<td>Delete the character at the cursor.</td>
</tr>
<tr>
<td>Delete all characters from the cursor to the end of the command line.</td>
<td>Press Ctrl-K.</td>
<td>Delete all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Delete all characters from the cursor to the beginning of the command line.</td>
<td>Press Ctrl-U or Ctrl-X.</td>
<td>Delete all characters from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Delete the word to the left of the cursor.</td>
<td>Press Ctrl-W.</td>
<td>Delete the word to the left of the cursor.</td>
</tr>
<tr>
<td>Delete from the cursor to the end of the word.</td>
<td>Press Esc D.</td>
<td>Delete from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Capitalize or lowercase words or capitalize a set of letters.</td>
<td>Press Esc C.</td>
<td>Capitalize at the cursor.</td>
</tr>
</tbody>
</table>

¹ The keystrokes are optional.
Using Editing Features

Chapter 2 Using the Command-Line Interface

Using Editing Features

Editing Command Lines that Wrap

You can use a wrapping feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command. The keystroke actions are optional.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

Note: The arrow keys function only on ANSI-compatible terminals such as VT100s.

Table 2-5 Editing Commands through Keystrokes (continued)

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designate a particular keystroke as an executable command, perhaps as a shortcut.</td>
<td>Press Ctrl-V or Esc Q.</td>
<td>Capitalize letters from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Scroll down a line or screen on displays that are longer than the terminal screen can display.</td>
<td>Press the Return key.</td>
<td>Scroll down one line.</td>
</tr>
<tr>
<td>The More prompt is used for any output that has more lines than can be displayed on the terminal screen, including show command output. You can use the Return and Space bar keystrokes whenever you see the More prompt.</td>
<td>Press the Space bar.</td>
<td>Scroll down one screen.</td>
</tr>
<tr>
<td>Redisplay the current command line if the switch suddenly sends a message to your screen.</td>
<td>Press Ctrl-L or Ctrl-R.</td>
<td>Redisplay the current command line.</td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.

In this example, the access-list global configuration command entry extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1
Switch(config)# 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0
Switch(config)# 108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq 45

Note: The arrow keys function only on ANSI-compatible terminals such as VT100s.
After you complete the entry, press Ctrl-A to check the complete syntax before pressing the Return key to execute the command. The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right:

```
Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1$
```

The software assumes you have a terminal screen that is 80 columns wide. If you have a width other than that, use the terminal width privileged EXEC command to set the width of your terminal.

Use line wrapping with the command history feature to recall and modify previous complex command entries. For information about recalling previous command entries, see the “Editing Commands through Keystrokes” section on page 2-7.

Searching and Filtering Output of show and more Commands

You can search and filter the output for show and more commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see. Using these commands is optional.

To use this functionality, enter a show or more command followed by the pipe character (|), one of the keywords begin, include, or exclude, and an expression that you want to search for or filter out:

```
command | {begin | include | exclude} regular-expression
```

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output appear.

This example shows how to include in the output display only lines where the expression protocol appears:

```
Switch# show interfaces | include protocol
Vlan1 is up, line protocol is up
Vlan10 is up, line protocol is down
GigabitEthernet1/0/1 is up, line protocol is down
GigabitEthernet1/0/2 is up, line protocol is up
```

Accessing the CLI

You can access the CLI through a console connection, through Telnet, or by using the browser.

You manage the switch stack and the stack member interfaces through the stack master. You cannot manage stack members on an individual switch basis. You can connect to the stack master through the console port or the Ethernet management port of one or more stack members. Be careful with using multiple CLI sessions to the stack master. Commands you enter in one session are not displayed in the other sessions. Therefore, it is possible to lose track of the session from which you entered commands.

We recommend using one CLI session when managing the switch stack.

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation. For more information about interface notations, see the “Using Interface Configuration Mode” section on page 11-8.
To debug a specific stack member, you can access it from the stack master by using the `session stack-member-number` privileged EXEC command. The stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and where the system prompt for the stack master is `Switch`. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.

Accessing the CLI through a Console Connection or through Telnet

Before you can access the CLI, you must connect a terminal or a PC to the switch console or connect a PC to the Ethernet management port and then power on the switch, as described in the hardware installation guide that shipped with your switch. Then, to understand the boot up process and the options available for assigning IP information, see Chapter 3, “Assigning the Switch IP Address and Default Gateway.”

If your switch is already configured, you can access the CLI through a local console connection or through a remote Telnet session, but your switch must first be configured for this type of access. For more information, see the “Setting a Telnet Password for a Terminal Line” section on page 6-6.

You can use one of these methods to establish a connection with the switch:

- Connect the switch console port to a management station or dial-up modem, or connect the Ethernet management port to a PC. For information about connecting to the console or Ethernet management port, see the switch hardware installation guide.

- Use any Telnet TCP/IP or encrypted Secure Shell (SSH) package from a remote management station. The switch must have network connectivity with the Telnet or SSH client, and the switch must have an enable secret password configured.

 For information about configuring the switch for Telnet access, see the “Setting a Telnet Password for a Terminal Line” section on page 6-6. The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

 For information about configuring the switch for SSH, see the “Configuring the Switch for Secure Shell” section on page 6-45. The switch supports up to five simultaneous secure SSH sessions.

After you connect through the console port, through the Ethernet management port, through a Telnet session or through an SSH session, the user EXEC prompt appears on the management station.
CHAPTER 3

Assigning the Switch IP Address and Default Gateway

This chapter describes how to create the initial switch configuration (for example, assigning the IP address and default gateway information) by using a variety of automatic and manual methods. It also describes how to modify the switch startup configuration. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.2.

This chapter consists of these sections:

- Understanding the Boot Process, page 3-2
- Assigning Switch Information, page 3-3
- Checking and Saving the Running Configuration, page 3-19
- Modifying the Startup Configuration, page 3-21
- Scheduling a Reload of the Software Image, page 3-26

Note

Information in this chapter about configuring IP addresses and DHCP is specific to IP Version 4 (IPv4). If you plan to enable IP Version 6 (IPv6) forwarding on your switch, see Chapter 40, “Configuring IPv6 Host Functions and Unicast Routing” for information specific to IPv6 address format and configuration. To enable IPv6, the stack or switch must be running the IP services feature set.
Understanding the Boot Process

To start your switch, you need to follow the procedures in the hardware installation guide for installing and powering on the switch and setting up the initial switch configuration (IP address, subnet mask, default gateway, secret and Telnet passwords, and so forth).

The normal boot process involves the operation of the boot loader software, which performs these activities:

- Performs low-level CPU initialization. It initializes the CPU registers, which control where physical memory is mapped, its quantity, its speed, and so forth.
- Performs power-on self-test (POST) for the CPU subsystem. It tests the CPU DRAM and the portion of the flash device that makes up the flash file system.
- Initializes the flash file system on the system board.
- Loads a default operating system software image into memory and boots up the switch.

The boot loader provides access to the flash file system before the operating system is loaded. Normally, the boot loader is used only to load, uncompress, and start the operating system. After the boot loader gives the operating system control of the CPU, the boot loader is not active until the next system reset or power-on.

The boot loader also provides trap-door access into the system if the operating system has problems serious enough that it cannot be used. The trap-door mechanism provides enough access to the system so that if it is necessary, you can format the flash file system, reinstall the operating system software image by using the Xmodem Protocol, recover from a lost or forgotten password, and finally restart the operating system. For more information, see the “Recovering from a Software Failure” section on page 48-2 and the “Recovering from a Lost or Forgotten Password” section on page 48-3.

Note

You can disable password recovery. For more information, see the “Disabling Password Recovery” section on page 6-5.

Before you can assign switch information, make sure you have connected a PC or terminal to the console port or a PC to the Ethernet management port, and make sure you have configured the PC or terminal-emulation software baud rate and character format to match these of the switch console port:

- Baud rate default is 9600.
- Data bits default is 8.

Note

If the data bits option is set to 8, set the parity option to none.

- Stop bits default is 1.
- Parity settings default is none.
Assigning Switch Information

You can assign IP information through the Onboard Administrator (OA) GUI or manually.

If the switch reboots, it uses the IP address, subnet mask, and gateway in the saved configuration file.

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can still manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack, provided there is IP connectivity.

Note

Stack members retain their IP address when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP address of the switch that you removed from the switch stack.

Use a DHCP server for centralized control and automatic assignment of IP information after the server is configured.

Note

If you are using DHCP, do not respond to any of the questions in the setup program until the switch receives the dynamically assigned IP address and reads the configuration file.

If you are an experienced user familiar with the switch configuration steps, manually configure the switch. Otherwise, use the setup program described previously.

These sections contain this configuration information:

- Default Switch Information, page 3-3
- Understanding DHCP-Based Autoconfiguration, page 3-4
- Configuring DHCP-Based Autoconfiguration, page 3-6
- Manually Assigning IP Information, page 3-16

Default Switch Information

Table 3-1 shows the default switch information.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCHP client</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP address and subnet mask</td>
<td>No IP address or subnet mask are defined.</td>
</tr>
<tr>
<td>Default gateway</td>
<td>No default gateway is defined.</td>
</tr>
<tr>
<td>Enable secret password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Hostname</td>
<td>The factory-assigned default hostname is Switch.</td>
</tr>
<tr>
<td>Telnet password</td>
<td>No password is defined.</td>
</tr>
</tbody>
</table>
Understanding DHCP-Based Autoconfiguration

DHCP provides configuration information to Internet hosts and internetworking devices. This protocol consists of two components: one for delivering configuration parameters from a DHCP server to a device and a mechanism for allocating network addresses to devices. DHCP is built on a client-server model, in which designated DHCP servers allocate network addresses and deliver configuration parameters to dynamically configured devices. The switch can act as both a DHCP client and a DHCP server.

During DHCP-based autoconfiguration, your switch (DHCP client) is automatically configured at startup with IP address information and a configuration file.

With DHCP-based autoconfiguration, no DHCP client-side configuration is needed on your switch. However, you need to configure the DHCP server for various lease options associated with IP addresses. If you are using DHCP to relay the configuration file location on the network, you might also need to configure a Trivial File Transfer Protocol (TFTP) server and a Domain Name System (DNS) server.

We recommend a redundant connection between a switch stack and the DHCP, DNS, and TFTP servers. This is to help ensure that these servers remain accessible in case one of the connected stack members is removed from the switch stack.

The DHCP server for your switch can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay device between your switch and the DHCP server. A relay device forwards broadcast traffic between two directly connected LANs. A router does not forward broadcast packets, but it forwards packets based on the destination IP address in the received packet.

DHCP-based autoconfiguration replaces the BOOTP client functionality on your switch.

DHCP Client Request Process

When you boot up your switch, the DHCP client is invoked and requests configuration information from a DHCP server when the configuration file is not present on the switch. If the configuration file is present and the configuration includes the `ip address dhcp` interface configuration command on specific routed interfaces, the DHCP client is invoked and requests the IP address information for those interfaces.

Figure 3-1 shows the sequence of messages that are exchanged between the DHCP client and the DHCP server.

![DHCP Client and Server Message Exchange](image)

The client, Switch A, broadcasts a DHCPDISCOVER message to locate a DHCP server. The DHCP server offers configuration parameters (such as an IP address, subnet mask, gateway IP address, DNS IP address, a lease for the IP address, and so forth) to the client in a DHCPOFFER unicast message.
In a DHCPREQUEST broadcast message, the client returns a formal request for the offered configuration information to the DHCP server. The formal request is broadcast so that all other DHCP servers that received the DHCPOFFER broadcast message from the client can reclaim the IP addresses that they offered to the client.

The DHCP server confirms that the IP address has been allocated to the client by returning a DHCPACK unicast message to the client. With this message, the client and server are bound, and the client uses configuration information received from the server. The amount of information the switch receives depends on how you configure the DHCP server. For more information, see the “Configuring the TFTP Server” section on page 3-7.

If the configuration parameters sent to the client in the DHCPOFFER unicast message are invalid (a configuration error exists), the client returns a DHCPDECLINE broadcast message to the DHCP server.

The DHCP server sends the client a DHCPNAK denial broadcast message, which means that the offered configuration parameters have not been assigned, that an error has occurred during the negotiation of the parameters, or that the client has been slow in responding to the DHCPOFFER message (the DHCP server assigned the parameters to another client).

A DHCP client might receive offers from multiple DHCP or BOOTP servers and can accept any of the offers; however, the client usually accepts the first offer it receives. The offer from the DHCP server is not a guarantee that the IP address is allocated to the client; however, the server usually reserves the address until the client has had a chance to formally request the address. If the switch accepts replies from a BOOTP server and configures itself, the switch broadcasts, instead of unicasts, TFTP requests to obtain the switch configuration file.

The DHCP hostname option allows a group of switches to obtain hostnames and a standard configuration from the central management DHCP server. A client (switch) includes in its DCHPDISCOVER message an option 12 field used to request a hostname and other configuration parameters from the DHCP server. The configuration files on all clients are identical except for their DHCP-obtained hostnames.

If a client has a default hostname (the hostname name global configuration command is not configured or the no hostname global configuration command is entered to remove the hostname), the DHCP hostname option is not included in the packet when you enter the ip address dhcp interface configuration command. In this case, if the client receives the DCHP hostname option from the DHCP interaction while acquiring an IP address for an interface, the client accepts the DHCP hostname option and sets the flag to show that the system now has a hostname configured.

Understanding DHCP-based Autoconfiguration and Image Update

You can use the DHCP image upgrade features to configure a DHCP server to download both a new image and a new configuration file to one or more switches in a network. This helps ensure that each new switch added to a network receives the same image and configuration.

There are two types of DHCP image upgrades: DHCP autoconfiguration and DHCP auto-image update.

DHCP Autoconfiguration

DHCP autoconfiguration downloads a configuration file to one or more switches in your network from a DHCP server. The downloaded configuration file becomes the running configuration of the switch. It does not over write the bootup configuration saved in the flash, until you reload the switch.
DHCP Auto-Image Update

You can use DHCP auto-image upgrade with DHCP autoconfiguration to download both a configuration and a new image to one or more switches in your network. The switch (or switches) downloading the new configuration and the new image can be blank (or only have a default factory configuration loaded).

If the new configuration is downloaded to a switch that already has a configuration, the downloaded configuration is appended to the configuration file stored on the switch. (Any existing configuration is not overwritten by the downloaded one.)

Note

To enable a DHCP auto-image update on the switch, the TFTP server where the image and configuration files are located must be configured with the correct option 67 (the configuration filename), option 66 (the DHCP server hostname) option 150 (the TFTP server address), and option 125 (description of the file) settings.

For procedures to configure the switch as a DHCP server, see the “Configuring DHCP-Based Autoconfiguration” section on page 3-6 and the “Configuring DHCP” section of the “IP addressing and Services” section of the Cisco IOS IP Configuration Guide, Release 12.2.

After you install the switch in your network, the auto-image update feature starts. The downloaded configuration file is saved in the running configuration of the switch, and the new image is downloaded and installed on the switch. When you reboot the switch, the configuration is stored in the saved configuration on the switch.

Limitations and Restrictions

These are the limitations:

- The DHCP-based autoconfiguration with a saved configuration process stops if there is not at least one Layer 3 interface in an up state without an assigned IP address in the network.
- Unless you configure a timeout, the DHCP-based autoconfiguration with a saved configuration feature tries indefinitely to download an IP address.
- The auto-install process stops if a configuration file cannot be downloaded or it the configuration file is corrupted.

The configuration file that is downloaded from TFTP is merged with the existing configuration in the running configuration but is not saved in the NVRAM unless you enter the write memory or copy running-configuration startup-configuration privileged EXEC command. Note that if the downloaded configuration is saved to the startup configuration, the feature is not triggered during subsequent system restarts.

Configuring DHCP-Based Autoconfiguration

These sections contain this configuration information:

- DHCP Server Configuration Guidelines, page 3-7
- Configuring the TFTP Server, page 3-7
- Configuring the DNS, page 3-8
- Configuring the Relay Device, page 3-8
Chapter 3 Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

- Obtaining Configuration Files, page 3-9
- Example Configuration, page 3-10

If your DHCP server is a Cisco device, see the “Configuring DHCP” section of the “IP Addressing and Services” section of the Cisco IOS IP Configuration Guide, Release 12.2 for additional information about configuring DHCP.

DHCP Server Configuration Guidelines

Follow these guidelines if you are configuring a device as a DHCP server:

You should configure the DHCP server with reserved leases that are bound to each switch by the switch hardware address.

If you want the switch to receive IP address information, you must configure the DHCP server with these lease options:

- IP address of the client (required)
- Subnet mask of the client (required)
- DNS server IP address (optional)
- Router IP address (default gateway address to be used by the switch) (required)

If you want the switch to receive the configuration file from a TFTP server, you must configure the DHCP server with these lease options:

- TFTP server name (required)
- Boot filename (the name of the configuration file that the client needs) (recommended)
- Hostname (optional)

Depending on the settings of the DHCP server, the switch can receive IP address information, the configuration file, or both.

If you do not configure the DHCP server with the lease options described previously, it replies to client requests with only those parameters that are configured. If the IP address and the subnet mask are not in the reply, the switch is not configured. If the router IP address or the TFTP server name are not found, the switch might send broadcast, instead of unicast, TFTP requests. Unavailability of other lease options does not affect autoconfiguration.

The switch can act as a DHCP server. By default, the Cisco IOS DHCP server and relay agent features are enabled on your switch but are not configured. These features are not operational. If your DHCP server is a Cisco device, for additional information about configuring DHCP, see the “Configuring DHCP” section of the “IP Addressing and Services” section of the Cisco IOS IP Configuration Guide from the Cisco.com page under Documentation > Cisco IOS Software > 12.2 Mainline > Configuration Guides.

Configuring the TFTP Server

Based on the DHCP server configuration, the switch attempts to download one or more configuration files from the TFTP server. If you configured the DHCP server to respond to the switch with all the options required for IP connectivity to the TFTP server, and if you configured the DHCP server with a TFTP server name, address, and configuration filename, the switch attempts to download the specified configuration file from the specified TFTP server.
Assigning Switch Information

Chapter 3 Assigning the Switch IP Address and Default Gateway

If you did not specify the configuration filename, the TFTP server, or if the configuration file could not be downloaded, the switch attempts to download a configuration file by using various combinations of filenames and TFTP server addresses. The files include the specified configuration filename (if any) and these files: network-config, cisconet.cfg, hostname.config, or hostname.cfg, where hostname is the switch’s current hostname. The TFTP server addresses used include the specified TFTP server address (if any) and the broadcast address (255.255.255.255).

For the switch to successfully download a configuration file, the TFTP server must contain one or more configuration files in its base directory. The files can include these files:

- The configuration file named in the DHCP reply (the actual switch configuration file).
- The network-config or the cisconet.cfg file (known as the default configuration files).
- The router-config or the ciscortr.cfg file (These files contain commands common to all switches. Normally, if the DHCP and TFTP servers are properly configured, these files are not accessed.)

If you specify the TFTP server name in the DHCP server-lease database, you must also configure the TFTP server name-to-IP-address mapping in the DNS-server database.

If the TFTP server to be used is on a different LAN from the switch, or if it is to be accessed by the switch through the broadcast address (which occurs if the DHCP server response does not contain all the required information described previously), a relay must be configured to forward the TFTP packets to the TFTP server. For more information, see the “Configuring the Relay Device” section on page 3-8. The preferred solution is to configure the DHCP server with all the required information.

Configuring the DNS

The DHCP server uses the DNS server to resolve the TFTP server name to an IP address. You must configure the TFTP server name-to-IP-address map on the DNS server. The TFTP server contains the configuration files for the switch.

You can configure the IP addresses of the DNS servers in the lease database of the DHCP server from where the DHCP replies will retrieve them. You can enter up to two DNS server IP addresses in the lease database.

The DNS server can be on the same or on a different LAN as the switch. If it is on a different LAN, the switch must be able to access it through a router.

Configuring the Relay Device

You must configure a relay device, also referred to as a relay agent, when a switch sends broadcast packets that require a response from a host on a different LAN. Examples of broadcast packets that the switch might send are DHCP, DNS, and in some cases, TFTP packets. You must configure this relay device to forward received broadcast packets on an interface to the destination host.

If the relay device is a Cisco router, enable IP routing (ip routing global configuration command), and configure helper addresses by using the ip helper-address interface configuration command.

For example, in Figure 3-2, configure the router interfaces as follows:

On interface 10.0.0.2:

```
router(config-if)# ip helper-address 20.0.0.2
router(config-if)# ip helper-address 20.0.0.3
router(config-if)# ip helper-address 20.0.0.4
```

On interface 20.0.0.1

```
router(config-if)# ip helper-address 10.0.0.1
```
If the switch is acting as the relay device, configure the interface as a routed port. For more information, see the “Routed Ports” section on page 11-4 and the “Configuring Layer 3 Interfaces” section on page 11-24.

Figure 3-2 Relay Device Used in Autoconfiguration

Obtaining Configuration Files

Depending on the availability of the IP address and the configuration filename in the DHCP reserved lease, the switch obtains its configuration information in these ways:

- The IP address and the configuration filename is reserved for the switch and provided in the DHCP reply (one-file read method).

 The switch receives its IP address, subnet mask, TFTP server address, and the configuration filename from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the named configuration file from the base directory of the server and upon receipt, it completes its boot up process.

- The IP address and the configuration filename is reserved for the switch, but the TFTP server address is not provided in the DHCP reply (one-file read method).

 The switch receives its IP address, subnet mask, and the configuration filename from the DHCP server. The switch sends a broadcast message to a TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, it completes its boot up process.

- Only the IP address is reserved for the switch and provided in the DHCP reply. The configuration filename is not provided (two-file read method).

 The switch receives its IP address, subnet mask, and the TFTP server address from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the network-config or cisco-net.cfg default configuration file. (If the network-config file cannot be read, the switch reads the cisco-net.cfg file.)

 The default configuration file contains the hostnames-to-IP-address mapping for the switch. The switch fills its host table with the information in the file and obtains its hostname. If the hostname is not found in the file, the switch uses the hostname in the DHCP reply. If the hostname is not specified in the DHCP reply, the switch uses the default Switch as its hostname.
Assigning Switch Information

Chapter 3 Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

After obtaining its hostname from the default configuration file or the DHCP reply, the switch reads the configuration file that has the same name as its hostname (hostname-confg or hostname.cfg, depending on whether network-confg or cisconet.cfg was read earlier) from the TFTP server. If the cisconet.cfg file is read, the filename of the host is truncated to eight characters.

If the switch cannot read the network-confg, cisconet.cfg, or the hostname file, it reads the router-confg file. If the switch cannot read the router-confg file, it reads the ciscortr.cfg file.

Note
The switch broadcasts TFTP server requests if the TFTP server is not obtained from the DHCP replies, if all attempts to read the configuration file through unicast transmissions fail, or if the TFTP server name cannot be resolved to an IP address.

Example Configuration

Figure 3-3 shows a sample network for retrieving IP information by using DHCP-based autoconfiguration.

Figure 3-3 DHCP-Based Autoconfiguration Network Example

Table 3-2 shows the configuration of the reserved leases on the DHCP server.

Table 3-2 DHCP Server Configuration

<table>
<thead>
<tr>
<th>Binding key (hardware address)</th>
<th>Switch A</th>
<th>Switch B</th>
<th>Switch C</th>
<th>Switch D</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>10.0.0.21</td>
<td>10.0.0.22</td>
<td>10.0.0.23</td>
<td>10.0.0.24</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Router address</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
</tr>
<tr>
<td>DNS server address</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
</tr>
<tr>
<td>TFTP server name</td>
<td>tftpserver or 10.0.0.3</td>
<td>tftpserver or 10.0.0.3</td>
<td>tftpserver or 10.0.0.3</td>
<td>tftpserver or 10.0.0.3</td>
</tr>
<tr>
<td>Boot filename (configuration file) (optional)</td>
<td>switcha-confg</td>
<td>switchb-confg</td>
<td>switchc-confg</td>
<td>switchd-confg</td>
</tr>
<tr>
<td>Hostname (optional)</td>
<td>switcha</td>
<td>switchb</td>
<td>switchc</td>
<td>switchd</td>
</tr>
</tbody>
</table>
DNS Server Configuration

The DNS server maps the TFTP server name tftpserver to IP address 10.0.0.3.

TFTP Server Configuration (on UNIX)

The TFTP server base directory is set to /tftpserver/work. This directory contains the network-confg file used in the two-file read method. This file contains the hostname to be assigned to the switch based on its IP address. The base directory also contains a configuration file for each switch (switcha-confg, switchb-confg, and so forth) as shown in this display:

```
prompt> cd /tftpserver/work/
prompt> ls
network-confg
switcha-confg
switchb-confg
switchc-confg
switchd-confg
prompt> cat network-confg
ip host switcha 10.0.0.21
ip host switchb 10.0.0.22
ip host switchc 10.0.0.23
ip host switchd 10.0.0.24
```

DHCP Client Configuration

No configuration file is present on Switch A through Switch D.

Configuration Explanation

In Figure 3-3, Switch A reads its configuration file as follows:

- It obtains its IP address 10.0.0.21 from the DHCP server.
- If no configuration filename is given in the DHCP server reply, Switch A reads the network-confg file from the base directory of the TFTP server.
- It adds the contents of the network-confg file to its host table.
- It reads its host table by indexing its IP address 10.0.0.21 to its hostname (switcha).
- It reads the configuration file that corresponds to its hostname; for example, it reads switch1-confg from the TFTP server.

Switches B through D retrieve their configuration files and IP addresses in the same way.
Configuring the DHCP Auto Configuration and Image Update Features

Using DHCP to download a new image and a new configuration to a switch requires that you configure at least two switches: One switch acts as a DHCP and TFTP server. The client switch is configured to download either a new configuration file or a new configuration file and a new image file.

Configuring DHCP Autoconfiguration (Only Configuration File)

Beginning in privileged EXEC mode, follow these steps to configure DHCP autoconfiguration of the TFTP and DHCP settings on a new switch to download a new configuration file.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip dhcp poolname</td>
<td>Create a name for the DHCP Server address pool, and enter DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Step 3 bootfile filename</td>
<td>Specify the name of the configuration file that is used as a boot image.</td>
</tr>
<tr>
<td>Step 4 network network-number mask prefix-length</td>
<td>Specify the subnet network number and mask of the DHCP address pool.</td>
</tr>
<tr>
<td></td>
<td>Note: The prefix length specifies the number of bits that comprise the address prefix. The prefix length must be preceded by a forward slash (/).</td>
</tr>
<tr>
<td>Step 5 default-router address</td>
<td>Specify the IP address of the default router for a DHCP client.</td>
</tr>
<tr>
<td>Step 6 option 150 address</td>
<td>Specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 8 tftp-server flash:filename.text</td>
<td>Specify the configuration file on the TFTP server.</td>
</tr>
<tr>
<td>Step 9 interface interface-id</td>
<td>Specify the address of the client that will receive the configuration file.</td>
</tr>
<tr>
<td>Step 10 no switchport</td>
<td>Put the interface into Layer 3 mode.</td>
</tr>
<tr>
<td>Step 11 ip address address mask</td>
<td>Specify the IP address and mask for the interface.</td>
</tr>
<tr>
<td>Step 12 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 13 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure a switch as a DHCP server so that it downloads a configuration file:

```
Switch# configure terminal
Switch(config)# ip dhcp pool pool1
Switch(config)# network 10.10.10.0 255.255.255.0
Switch(config)# bootfile config-boot.text
Switch(config)# default-router 10.10.10.1
Switch(config)# option 150 10.10.10.1
Switch(config)# exit
Switch(config)# tftp-server flash:config-boot.text
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.10.10.1 255.255.255.0
Switch(config-if)# end
```
Chapter 3 Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

Configuring DHCP Auto-Image Update (Configuration File and Image)

Beginning in privileged EXEC mode, follow these steps to configure DHCP autoconfiguration to configure TFTP and DHCP settings on a new switch to download a new image and a new configuration file.

Before following the steps in this table, you must create a text file (for example, autoinstall_dhcp) that will be uploaded to the switch. In the text file, put the name of the image that you want to download. This image must be a tar and not a bin file.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip dhcp pool name</td>
<td>Create a name for the DHCP server address pool and enter DHCP pool configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>bootfile filename</td>
<td>Specify the name of the file that is used as a boot image.</td>
</tr>
<tr>
<td>4</td>
<td>network network-number mask</td>
<td>Specify the subnet network number and mask of the DHCP address pool.</td>
</tr>
<tr>
<td></td>
<td>prefix-length</td>
<td>Note: The prefix length specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the network mask of the client. The prefix length must be preceded by a forward slash (/).</td>
</tr>
<tr>
<td>5</td>
<td>default-router address</td>
<td>Specify the IP address of the default router for a DHCP client.</td>
</tr>
<tr>
<td>6</td>
<td>option 150 address</td>
<td>Specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td>7</td>
<td>option 125 /hex</td>
<td>Specify the path to the text file that describes the path to the image file.</td>
</tr>
<tr>
<td>8</td>
<td>copy tftp flash filename.txt</td>
<td>Upload the text file to the switch.</td>
</tr>
<tr>
<td>9</td>
<td>copy tftp flash imagename.tar</td>
<td>Upload the tarfile for the new image to the switch.</td>
</tr>
<tr>
<td>10</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>11</td>
<td>tftp-server flash:config.text</td>
<td>Specify the Cisco IOS configuration file on the TFTP server.</td>
</tr>
<tr>
<td>12</td>
<td>tftp-server flash:imagename.tar</td>
<td>Specify the image name on the TFTP server.</td>
</tr>
<tr>
<td>13</td>
<td>tftp-server flash:filename.txt</td>
<td>Specify the text file that contains the name of the image file to download</td>
</tr>
<tr>
<td>14</td>
<td>interface interface-id</td>
<td>Specify the address of the client that will receive the configuration file.</td>
</tr>
<tr>
<td>15</td>
<td>no switchport</td>
<td>Put the interface into Layer 3 mode.</td>
</tr>
<tr>
<td>16</td>
<td>ip address address mask</td>
<td>Specify the IP address and mask for the interface.</td>
</tr>
<tr>
<td>17</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>18</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure a switch as a DHCP server so it downloads a configuration file:

Switch# configure terminal
Switch(config)# ip dhcp pool pool1
Switch(dhcp-config)# network 10.10.10.0 255.255.255.0
Switch(dhcp-config)# bootfile config-boot.text
Switch(dhcp-config)# default-router 10.10.10.1
Switch(dhcp-config)# option 150 10.10.10.1
Switch(dhcp-config)# option 125 hex
0000.0009.0a05.08661.7574.6f69.6e73.7461.6c6c.5e64.686370

Note
Assigning Switch Information

Chapter 3 Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

Switch(dhcp-config)# exit
Switch(config)# tftp-server flash:config-boot.text
Switch(config)# tftp-server flash:cbs31x0-ipservices-mz.122-44.3.SE.tar
Switch(config)# tftp-server flash:boot-config.text
Switch(config)# tftp-server flash: autoinstall_dhcp
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.10.10.1 255.255.255.0
Switch(config-if)# end

Configuring the Client

Beginning in privileged EXEC mode, follow these steps to configure a switch to download a configuration file and new image from a DHCP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>boot host dhcp</td>
</tr>
<tr>
<td>Step 3</td>
<td>boot host retry timeout timeout-value</td>
</tr>
<tr>
<td>Step 4</td>
<td>banner config-save ^C warning-message ^C</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show boot</td>
</tr>
</tbody>
</table>

This example uses a Layer 3 SVI interface on VLAN 99 to enable DHCP-based autoconfiguration with a saved configuration:

Switch# configure terminal
Switch(config)# boot host dhcp
Switch(config)# boot host retry timeout 300
Switch(config)# banner config-save ^C Caution - Saving Configuration File to NVRAM May Cause You to Nolonger Automatically Download Configuration Files at Reboot^C
Switch(config)# vlan 99
Switch(config-vlan)# interface vlan 99
Switch(config-if)# no shutdown
Switch(config-if)# end
Switch# show boot
BOOT path-list:
 Config file: flash:/config.text
 Private Config file: flash:/private-config.text
 Enable Break: no
 Manual Boot: no
 HELPER path-list:
 NVRAM/Config file buffer size: 32768
 Timeout for Config Download: 300 seconds
 Config Download via DHCP: enabled (next boot: enabled)
Switch#
Manually Assigning IP Information

Beginning in privileged EXEC mode, follow these steps to manually assign IP information to multiple switched virtual interfaces (SVIs):

Note If the switch is running the IP services feature set, you can also manually assign IP information to a port if you first put the port into Layer 3 mode by using the `no switchport` interface configuration command.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface vlan vlan-id</td>
<td>Enter interface configuration mode, and enter the VLAN to which the IP information is assigned. The range is 1 to 4094.</td>
</tr>
<tr>
<td>3</td>
<td>ip address dhcp [client-id interface-name] [hostname host-name]</td>
<td>Get an IP address for the VLAN interface from the DHCP server.</td>
</tr>
<tr>
<td>4</td>
<td>ip address ip-address subnet-mask</td>
<td>Enter the IP address and subnet mask.</td>
</tr>
<tr>
<td>5</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>6</td>
<td>ip default-gateway ip-address</td>
<td>Enter the IP address of the next-hop router interface that is directly connected to the switch where a default gateway is being configured. The default gateway receives IP packets with unresolved destination IP addresses from the switch. Once the default gateway is configured, the switch has connectivity to the remote networks with which a host needs to communicate. Note When your switch is configured to route with IP, it does not need to have a default gateway set.</td>
</tr>
<tr>
<td>7</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>8</td>
<td>show interfaces vlan vlan-id</td>
<td>Verify the configured IP address.</td>
</tr>
<tr>
<td>9</td>
<td>show ip redirects</td>
<td>Verify the configured default gateway.</td>
</tr>
<tr>
<td>10</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the switch IP address, use the `no ip address` interface configuration command. If you are removing the address through a Telnet session, your connection to the switch will be lost. To remove the default gateway address, use the `no ip default-gateway` global configuration command.

All VLAN interfaces have assigned MAC addresses that are derived from the base MAC address. The base MAC address is the hardware address that is on the switch label. It also appears when you enter the `show version` privileged EXEC command.

On the first VLAN interface (VLAN 1), the MAC address is the base MAC address + 0 x 40. On the next VLAN interface that you configure, the MAC address is the base MAC address + 0 x 40 +1, and so on for other VLAN interfaces.
You can enter the `show interfaces vlan vlan-id` privileged EXEC command to show the MAC and IP addresses. The MAC addresses that appear in the `show interfaces vlan vlan-id` command output are not the same as the MAC address that is printed on the switch label (the base MAC address).

By default, VLAN 1 is the interface that connects to the management network. When the switch boots up, the DHCP client (switch) requests an IP address from a DHCP server by using the MAC address of VLAN 1.

For information on setting the switch system name, protecting access to privileged EXEC commands, and setting time and calendar services, see Chapter 5, “Administering the Switch.”
Checking and Saving the Running Configuration

You can check the configuration settings you entered or changes you made by entering this privileged EXEC command:

```
Switch# show running-config
Building configuration...

Current configuration: 1363 bytes
!
version 12.2
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Stack1
!
enable secret 5 $1$ej9.$DMUvAUzOAmvqBEzIxE0
!
interface gigabitethernet6/0/20
no switchport
ip address 172.20.137.50 255.255.255.0
!
interface gigabitethernet6/0/21
mvr type source

...!
interface VLAN1
ip address 172.20.137.50 255.255.255.0
no ip directed-broadcast
ip default-gateway 172.20.137.1
!
snmp-server community private RW
snmp-server community public RO
snmp-server community private@es0 RW
snmp-server community public@es0 RO
snmp-server chassis-id 0x12
!
end
```

To store the configuration or changes you have made to your startup configuration in flash memory, enter this privileged EXEC command:

```
Switch# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
```

This command saves the configuration settings that you made. If you fail to do this, your configuration will be lost the next time you reload the system. To display information stored in the NVRAM section of flash memory, use the `show startup-config` or `more startup-config` privileged EXEC command.

For more information about alternative locations from which to copy the configuration file, see Appendix B, “Working with the Cisco IOS File System, Configuration Files, and Software Images.”
Configuring the NVRAM Buffer Size

The default NVRAM buffer size is 512 KB. In some cases, the configuration file might be too large to save to NVRAM. Typically, this occurs when you have many switches in a switch stack. You can configure the size of the NVRAM buffer to support larger configuration files. The new NVRAM buffer size is synced to all current and new member switches.

After you configure the NVRAM buffer size, reload the switch or switch stack.

When you add a switch to a stack and the NVRAM size differs, the new switch syncs with the stack and reloads automatically.

Beginning in privileged EXEC mode, follow these steps to configure the NVRAM buffer size:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>boot buffersize size</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show boot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>boot buffersize size</td>
<td>Configure the NVRAM buffer size in KB. Valid range for size is from 4096 to 1048576.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show boot</td>
<td>Verify the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the NVRAM buffer size:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# boot buffersize 524288
Switch(config)# end
Switch# show boot
BOOT path-list : flash:/config.text
Config file : flash:/config.text
Private Config file : flash:/private-config.text
Enable Break : no
Manual Boot : no
HELPER path-list : auto_upgrade : yes
Auto upgrade path : NVRAM/Config file buffer size: 524288
Timeout for Config Download: 300 seconds
Config Download via DHCP: enabled (next boot: enabled)
Switch# 
```
Modifying the Startup Configuration

These sections describe how to modify the switch startup configuration:

- Default Boot Configuration, page 3-21
- Automatically Downloading a Configuration File, page 3-21
- Booting Manually, page 3-22
- Booting a Specific Software Image, page 3-23
- Controlling Environment Variables, page 3-24

See also Appendix B, “Working with the Cisco IOS File System, Configuration Files, and Software Images,” for information about switch configuration files. See the “Switch Stack Configuration Files” section on page 7-16 for information about switch stack configuration files.

Default Boot Configuration

Table 3-3 shows the default boot configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system software image</td>
<td>The switch attempts to automatically boot up the system using information in the BOOT environment variable. If the variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the flash file system. The Cisco IOS image is stored in a directory that has the same name as the image file (excluding the .bin extension). In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory.</td>
</tr>
<tr>
<td>Configuration file</td>
<td>Configured switches use the config.text file stored on the system board in flash memory. A new switch has no configuration file.</td>
</tr>
</tbody>
</table>

Automatically Downloading a Configuration File

You can automatically download a configuration file to your switch by using the DHCP-based autoconfiguration feature. For more information, see the “Understanding DHCP-Based Autoconfiguration” section on page 3-4.
Specifying the Filename to Read and Write the System Configuration

By default, the Cisco IOS software uses the file `config.text` to read and write a nonvolatile copy of the system configuration. However, you can specify a different filename, which will be loaded during the next boot cycle.

Note
This command only works properly from a standalone switch.

Beginning in privileged EXEC mode, follow these steps to specify a different configuration filename:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>boot config-file flash:/file-url</code></td>
<td>Specify the configuration file to load during the next boot cycle.</td>
</tr>
<tr>
<td></td>
<td>For <code>file-url</code>, specify the path (directory) and the configuration filename.</td>
</tr>
<tr>
<td></td>
<td>Filenames and directory names are case sensitive.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>show boot</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>The <code>boot config-file</code> global configuration command changes the setting of the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no boot config-file` global configuration command.

Booting Manually

By default, the switch automatically boots up; however, you can configure it to manually boot up.

Note
This command only works properly from a standalone switch.

Beginning in privileged EXEC mode, follow these steps to configure the switch to manually boot up during the next boot cycle:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>boot manual</code></td>
<td>Enable the switch to manually boot up during the next boot cycle.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Modifying the Startup Configuration

To disable manual booting, use the `no boot manual` global configuration command.

Booting a Specific Software Image

By default, the switch attempts to automatically boot up the system using information in the BOOT environment variable. If this variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory. However, you can specify a specific image to boot up.

Beginning in privileged EXEC mode, follow these steps to configure the switch to boot up a specific image during the next boot cycle:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
configure terminal | Enter global configuration mode. |
| **Step 2**
boot system filesystem:
file-url | Configure the switch to boot up a specific image in flash memory during the next boot cycle. |
| For `filesystem:` use `flash:` for the system board flash device. |
| For `file-url`, specify the path (directory) and the name of the bootable image. |
| Filenames and directory names are case sensitive. |
| **Step 3**
boot system switch `number | (Optional) Specify the switch members on which the system image is loaded during the next boot cycle: |
| all` | Use number to specify a stack member. (Specify only one stack member.) |
| Use all to specify all stack members. |
| **Step 4**
end | Return to privileged EXEC mode. |
Chapter 3 Assigning the Switch IP Address and Default Gateway

Modifying the Startup Configuration

To return to the default setting, use the no boot system global configuration command.

Controlling Environment Variables

With a normally operating switch, you enter the boot loader mode only through a switch console connection configured for 9600 b/s by performing these tasks:

1. Power off the switch by using the Onboard Administrator (OA) GUI or by removing the switch from the enclosure.
2. Power on the switch by using the GUI or re-inserting the switch in the enclosure.
3. Press the switch Mode button while powering on the switch.

 You can release the Mode button a second or two after the LED above port 1 turns off. Then the boot loader switch: prompt appears.

The switch boot loader software provides support for nonvolatile environment variables, which can be used to control how the boot loader, or any other software running on the system, behaves. Boot loader environment variables are similar to environment variables that can be set on UNIX or DOS systems.

Environment variables that have values are stored in flash memory outside of the flash file system.

Each line in these files contains an environment variable name and an equal sign followed by the value of the variable. A variable has no value if it is not listed in this file; it has a value if it is listed in the file even if the value is a null string. A variable that is set to a null string (for example, “”) is a variable with a value. Many environment variables are predefined and have default values.

Environment variables store two kinds of data:

- Data that controls code, which does not read the Cisco IOS configuration file. For example, the name of a boot loader helper file, which extends or patches the functionality of the boot loader can be stored as an environment variable.
- Data that controls code, which is responsible for reading the Cisco IOS configuration file. For example, the name of the Cisco IOS configuration file can be stored as an environment variable.

You can change the settings of the environment variables by accessing the boot loader or by using Cisco IOS commands. Under normal circumstances, it is not necessary to alter the setting of the environment variables.

Note

For complete syntax and usage information for the boot loader commands and environment variables, see the command reference for this release.
Table 3-4 describes the function of the most common environment variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boot Loader Command</th>
<th>Cisco IOS Global Configuration Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT</td>
<td>set BOOT filesystem:file-url ...</td>
<td>boot system {filesystem:file-url ...</td>
</tr>
<tr>
<td></td>
<td>A semicolon-separated list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot up the first bootable file that it can find in the flash file system.</td>
<td>Specifies the Cisco IOS image to load during the next boot cycle and the stack members on which the image is loaded. This command changes the setting of the BOOT environment variable.</td>
</tr>
<tr>
<td>MANUAL_BOOT</td>
<td>set MANUAL_BOOT yes</td>
<td>boot manual</td>
</tr>
<tr>
<td></td>
<td>Decides whether the switch automatically or manually boots.</td>
<td>Enables manually booting the switch during the next boot cycle and changes the setting of the MANUAL_BOOT environment variable.</td>
</tr>
<tr>
<td></td>
<td>Valid values are 1, yes, 0, and no. If it is set to no or 0, the boot loader attempts to automatically boot up the system. If it is set to anything else, you must manually boot up the switch from the boot loader mode.</td>
<td>The next time you reboot the system, the switch is in boot loader mode. To boot up the system, use the boot flash:filesystem:file-url boot loader command, and specify the name of the bootable image.</td>
</tr>
<tr>
<td>CONFIG_FILE</td>
<td>set CONFIG_FILE flash:file-url</td>
<td>boot config-file flash:file-url</td>
</tr>
<tr>
<td></td>
<td>Changes the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
<td>Specifies the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration. This command changes the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>SWITCH_NUMBER</td>
<td>set SWITCH_NUMBER stack-member-number</td>
<td>switch current-stack-member-number renumber new-stack-member-number</td>
</tr>
<tr>
<td></td>
<td>Changes the member number of a stack member.</td>
<td>Note Changes the member number of a stack member.</td>
</tr>
<tr>
<td>SWITCH_PRIORITY</td>
<td>set SWITCH_PRIORITY stack-member-number</td>
<td>switch stack-member-number priority priority-number</td>
</tr>
<tr>
<td></td>
<td>Changes the priority value of a stack member.</td>
<td>Note Changes the priority value of a stack member.</td>
</tr>
</tbody>
</table>
When the switch is connected to a PC through the internal Ethernet management port, you can download or upload a configuration file to the boot loader by using TFTP. Make sure the environment variables in Table 3-5 are configured.

Table 3-5 Environment Variables for TFTP

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC_ADDR</td>
<td>Specifies the MAC address of the switch.</td>
</tr>
<tr>
<td></td>
<td>Note We recommend that you do not modify this variable.</td>
</tr>
<tr>
<td></td>
<td>However, if you modify this variable after the boot loader is up or the value is different than the saved value, enter this command before using TFTP.</td>
</tr>
<tr>
<td>IP_ADDR</td>
<td>Specifies the IP address and the subnet mask for the associated IP subnet of the switch.</td>
</tr>
<tr>
<td>DEFAULT_ROUTER</td>
<td>Specifies the IP address and subnet mask of the default gateway.</td>
</tr>
</tbody>
</table>

Scheduling a Reload of the Software Image

You can schedule a reload of the software image to occur on the switch at a later time (for example, late at night or during the weekend when the switch is used less), or you can synchronize a reload network-wide (for example, to perform a software upgrade on all switches in the network).

Note

A scheduled reload must take place within approximately 24 days.

Configuring a Scheduled Reload

To configure your switch to reload the software image at a later time, use one of these commands in privileged EXEC mode:

- `reload in [hh:]mm [text]`

 This command schedules a reload of the software to take affect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days. You can specify the reason for the reload in a string up to 255 characters in length.

 To reload a specific switch in a switch stack, use the `reload slot stack-member-number` privileged EXEC command.

- `reload at hh:mm [month day | day month] [text]`

 This command schedules a reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight.
Note Use the `at` keyword only if the switch system clock has been set (through Network Time Protocol (NTP), the hardware calendar, or manually). The time is relative to the configured time zone on the switch. To schedule reloads across several switches to occur simultaneously, the time on each switch must be synchronized with NTP.

The `reload` command halts the system. If the system is not set to manually bootup, it reboots itself. Use the `reload` command after you save the switch configuration information to the startup configuration (`copy running-config startup-config`).

If your switch is configured for manual booting, do not reload it from a virtual terminal. This restriction prevents the switch from entering the boot loader mode and thereby taking it from the remote user’s control.

If you modify your configuration file, the switch prompts you to save the configuration before reloading. During the save operation, the system requests whether you want to proceed with the save if the `CONFIG_FILE` environment variable points to a startup configuration file that no longer exists. If you proceed in this situation, the system enters setup mode upon reload.

This example shows how to reload the software on the switch on the current day at 7:30 p.m:

```
Switch# reload at 19:30
Reload scheduled for 19:30:00 UTC Wed Jun 5 1996 (in 2 hours and 25 minutes)
Proceed with reload? [confirm]
```

This example shows how to reload the software on the switch at a future time:

```
Switch# reload at 02:00 jun 20
Reload scheduled for 02:00:00 UTC Thu Jun 20 1996 (in 344 hours and 53 minutes)
Proceed with reload? [confirm]
```

To cancel a previously scheduled reload, use the `reload cancel` privileged EXEC command.

Displaying Scheduled Reload Information

To display information about a previously scheduled reload or to find out if a reload has been scheduled on the switch, use the `show reload` privileged EXEC command.

It displays reload information including the time the reload is scheduled to occur and the reason for the reload (if it was specified when the reload was scheduled).
Scheduling a Reload of the Software Image
Configuring Cisco IOS Configuration Engine

This chapter describes how to configure the feature on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

This chapter consists of these sections:

- Understanding Cisco Configuration Engine Software, page 4-1
- Understanding Cisco IOS Agents, page 4-5
- Configuring Cisco IOS Agents, page 4-6
- Displaying CNS Configuration, page 4-14

Understanding Cisco Configuration Engine Software

The Cisco Configuration Engine is network management software that acts as a configuration service for automating the deployment and management of network devices and services (see Figure 4-1). Each Configuration Engine manages a group of Cisco devices (switches and routers) and the services that they deliver, storing their configurations and delivering them as needed. The Configuration Engine automates initial configurations and configuration updates by generating device-specific configuration changes, sending them to the device, executing the configuration change, and logging the results.

The Configuration Engine supports standalone and server modes and has these CNS components:

- Configuration service (web server, file manager, and namespace mapping server)
- Event service (event gateway)
- Data service directory (data models and schema)

In standalone mode, the Configuration Engine supports an embedded Directory Service. In this mode, no external directory or other data store is required. In server mode, the Configuration Engine supports the use of a user-defined external directory.
These sections contain this conceptual information:

- Configuration Service, page 4-2
- Event Service, page 4-3
- What You Should Know About the CNS IDs and Device Hostnames, page 4-3

Configuration Service

The Configuration Service is the core component of the Cisco Configuration Engine. It consists of a configuration server that works with Cisco IOS CNS agents on the switch. The Configuration Service delivers device and service configurations to the switch for initial configuration and mass reconfiguration by logical groups. Switches receive their initial configuration from the Configuration Service when they start up on the network for the first time.

The Configuration Service uses the CNS Event Service to send and receive configuration change events and to send success and failure notifications.

The configuration server is a web server that uses configuration templates and the device-specific configuration information stored in the embedded (standalone mode) or remote (server mode) directory. Configuration templates are text files containing static configuration information in the form of CLI commands. In the templates, variables are specified using Lightweight Directory Access Protocol (LDAP) URLs that reference the device-specific configuration information stored in a directory.

The Cisco IOS agent can perform a syntax check on received configuration files and publish events to show the success or failure of the syntax check. The configuration agent can either apply configurations immediately or delay the application until receipt of a synchronization event from the configuration server.
Event Service

The Configuration Engine uses the Event Service for receipt and generation of configuration events. The event agent is on the switch and facilitates the communication between the switch and the event gateway on the Configuration Engine.

The Event Service is a highly capable publish-and-subscribe communication method. The Event Service uses subject-based addressing to send messages to their destinations. Subject-based addressing conventions define a simple, uniform namespace for messages and their destinations.

NameSpace Mapper

The Configuration Engine includes the NameSpace Mapper (NSM) that provides a lookup service for managing logical groups of devices based on application, device or group ID, and event.

Cisco IOS devices recognize only event subject-names that match those configured in Cisco IOS software; for example, cisco.cns.config.load. You can use the namespace mapping service to designate events by using any desired naming convention. When you have populated your data store with your subject names, NSM changes your event subject-name strings to those known by Cisco IOS.

For a subscriber, when given a unique device ID and event, the namespace mapping service returns a set of events to which to subscribe. Similarly, for a publisher, when given a unique group ID, device ID, and event, the mapping service returns a set of events on which to publish.

What You Should Know About the CNS IDs and Device Hostnames

The Configuration Engine assumes that a unique identifier is associated with each configured switch. This unique identifier can take on multiple synonyms, where each synonym is unique within a particular namespace. The event service uses namespace content for subject-based addressing of messages.

The Configuration Engine intersects two namespaces, one for the event bus and the other for the configuration server. Within the scope of the configuration server namespace, the term ConfigID is the unique identifier for a device. Within the scope of the event bus namespace, the term DeviceID is the CNS unique identifier for a device.

Because the Configuration Engine uses both the event bus and the configuration server to provide configurations to devices, you must define both ConfigID and Device ID for each configured switch.

Within the scope of a single instance of the configuration server, no two configured switches can share the same value for ConfigID. Within the scope of a single instance of the event bus, no two configured switches can share the same value for DeviceID.

ConfigID

Each configured switch has a unique ConfigID, which serves as the key into the Configuration Engine directory for the corresponding set of switch CLI attributes. The ConfigID defined on the switch must match the ConfigID for the corresponding switch definition on the Configuration Engine.

The ConfigID is fixed at startup time and cannot be changed until the device restarts, even if the switch hostname is reconfigured.
DeviceID

Each configured switch participating on the event bus has a unique DeviceID, which is analogous to the switch source address so that the switch can be targeted as a specific destination on the bus. All switches configured with the `cns config partial` global configuration command must access the event bus. Therefore, the DeviceID, as originated on the switch, must match the DeviceID of the corresponding switch definition in the Configuration Engine.

The origin of the DeviceID is defined by the Cisco IOS hostname of the switch. However, the DeviceID variable and its usage reside within the event gateway adjacent to the switch.

The logical Cisco IOS termination point on the event bus is embedded in the event gateway, which in turn functions as a proxy on behalf of the switch. The event gateway represents the switch and its corresponding DeviceID to the event bus.

The switch declares its hostname to the event gateway immediately after the successful connection to the event gateway. The event gateway couples the DeviceID value to the Cisco IOS hostname each time this connection is established. The event gateway caches this DeviceID value for the duration of its connection to the switch.

Hostname and DeviceID

The DeviceID is fixed at the time of the connection to the event gateway and does not change even when the switch hostname is reconfigured.

When changing the switch hostname on the switch, the only way to refresh the DeviceID is to break the connection between the switch and the event gateway. Enter the `no cns event` global configuration command followed by the `cns event` global configuration command.

When the connection is re-established, the switch sends its modified hostname to the event gateway. The event gateway redefines the DeviceID to the new value.

Caution

When using the Configuration Engine user interface, you must first set the DeviceID field to the hostname value that the switch acquires after—not before—you use the `cns config initial` global configuration command at the switch. Otherwise, subsequent `cns config partial` global configuration command operations malfunction.

Using Hostname, DeviceID, and ConfigID

In standalone mode, when a hostname value is set for a switch, the configuration server uses the hostname as the DeviceID when an event is sent on hostname. If the hostname has not been set, the event is sent on the `cn=<value>` of the device.

In server mode, the hostname is not used. In this mode, the unique DeviceID attribute is always used for sending an event on the bus. If this attribute is not set, you cannot update the switch.

These and other associated attributes (tag value pairs) are set when you run Setup on the Configuration Engine.

Note

Understanding Cisco IOS Agents

The CNS event agent feature allows the switch to publish and subscribe to events on the event bus and works with the Cisco IOS agent. The Cisco IOS agent feature supports the switch by providing these features:

- Initial Configuration, page 4-5
- Incremental (Partial) Configuration, page 4-6
- Synchronized Configuration, page 4-6

Initial Configuration

When the switch first comes up, it attempts to get an IP address by broadcasting a DHCP request on the network. Assuming there is no DHCP server on the subnet, the distribution switch acts as a DHCP relay agent and forwards the request to the DHCP server. Upon receiving the request, the DHCP server assigns an IP address to the new switch and includes the TFTP server IP address, the path to the bootstrap configuration file, and the default gateway IP address in a unicast reply to the DHCP relay agent. The DHCP relay agent forwards the reply to the switch.

The switch automatically configures the assigned IP address on interface VLAN 1 (the default) and downloads the bootstrap configuration file from the TFTP server. Upon successful download of the bootstrap configuration file, the switch loads the file in its running configuration.

The Cisco IOS agents initiate communication with the Configuration Engine by using the appropriate ConfigID and EventID. The Configuration Engine maps the Config ID to a template and downloads the full configuration file to the switch.

Figure 4-2 shows a sample network configuration for retrieving the initial bootstrap configuration file by using DHCP-based autoconfiguration.
Incremental (Partial) Configuration

After the network is running, new services can be added by using the Cisco IOS agent. Incremental (partial) configurations can be sent to the switch. The actual configuration can be sent as an event payload by way of the event gateway (push operation) or as a signal event that triggers the switch to initiate a pull operation.

The switch can check the syntax of the configuration before applying it. If the syntax is correct, the switch applies the incremental configuration and publishes an event that signals success to the configuration server. If the switch does not apply the incremental configuration, it publishes an event showing an error status. When the switch has applied the incremental configuration, it can write it to NVRAM or wait until signaled to do so.

Synchronized Configuration

When the switch receives a configuration, it can defer application of the configuration upon receipt of a write-signal event. The write-signal event tells the switch not to save the updated configuration into its NVRAM. The switch uses the updated configuration as its running configuration. This ensures that the switch configuration is synchronized with other network activities before saving the configuration in NVRAM for use at the next reboot.

Configuring Cisco IOS Agents

The Cisco IOS agents embedded in the switch Cisco IOS software allow the switch to be connected and automatically configured as described in the “Enabling Automated CNS Configuration” section on page 4-7. If you want to change the configuration or install a custom configuration, see these sections for instructions:

- Enabling the CNS Event Agent, page 4-8
- Enabling the Cisco IOS CNS Agent, page 4-9
Enabling Automated CNS Configuration

To enable automated CNS configuration of the switch, you must first complete the prerequisites in Table 4-1. When you complete them, power on the switch. At the setup prompt, do nothing: The switch begins the initial configuration as described in the “Initial Configuration” section on page 4-5. When the full configuration file is loaded on your switch, you need to do nothing else.

<table>
<thead>
<tr>
<th>Device</th>
<th>Required Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access switch</td>
<td>Factory default (no configuration file)</td>
</tr>
<tr>
<td>Distribution switch</td>
<td>• IP helper address</td>
</tr>
<tr>
<td></td>
<td>• Enable DHCP relay agent</td>
</tr>
<tr>
<td></td>
<td>• IP routing (if used as default gateway)</td>
</tr>
<tr>
<td>DHCP server</td>
<td>• IP address assignment</td>
</tr>
<tr>
<td></td>
<td>• TFTP server IP address</td>
</tr>
<tr>
<td></td>
<td>• Path to bootstrap configuration file on the TFTP server</td>
</tr>
<tr>
<td></td>
<td>• Default gateway IP address</td>
</tr>
<tr>
<td>TFTP server</td>
<td>• A bootstrap configuration file that includes the CNS configuration commands that enable the switch to communicate with the Configuration Engine</td>
</tr>
<tr>
<td></td>
<td>• The switch configured to use either the switch MAC address or the serial number (instead of the default hostname) to generate the ConfigID and EventID</td>
</tr>
<tr>
<td></td>
<td>• The CNS event agent configured to push the configuration file to the switch</td>
</tr>
<tr>
<td>CNS Configuration Engine</td>
<td>One or more templates for each type of device, with the ConfigID of the device mapped to the template.</td>
</tr>
</tbody>
</table>

Note: For more information about running the setup program and creating templates on the Configuration Engine, see the Cisco Configuration Engine Installation and Setup Guide, 1.5 for Linux at http://www.cisco.com/en/US/docs/net_mgmt/configuration_engine/1.5/installation_linux/guide/setup_1.html
Enabling the CNS Event Agent

Note
You must enable the CNS event agent on the switch before you enable the CNS configuration agent.

Beginning in privileged EXEC mode, follow these steps to enable the CNS event agent on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
configure terminal | Enter global configuration mode. |
| **Step 2**
cns event \(\{ hostname \mid ip-address \} \) [port-number] [backup] [failover-time seconds] [keepalive seconds] [retry-count] [reconnect time] [source ip-address] | Enable the event agent, and enter the gateway parameters. |
| | • For \(\{ hostname \mid ip-address \} \), enter either the hostname or the IP address of the event gateway. |
| | • (Optional) For port number, enter the port number for the event gateway. The default port number is 11011. |
| | • (Optional) Enter backup to show that this is the backup gateway. (If omitted, this is the primary gateway.) |
| | • (Optional) For failover-time seconds, enter how long the switch waits for the primary gateway route after the route to the backup gateway is established. |
| | • (Optional) For keepalive seconds, enter how often the switch sends keepalive messages. For retry-count, enter the number of unanswered keepalive messages that the switch sends before the connection is terminated. The default for each is 0. |
| | • (Optional) For reconnect time, enter the maximum time interval that the switch waits before trying to reconnect to the event gateway. |
| | • (Optional) For source ip-address, enter the source IP address of this device. |
| **Step 3**
end | Return to privileged EXEC mode. |
| **Step 4**
show cns event connections | Verify information about the event agent. |
| **Step 5**
show running-config | Verify your entries. |
| **Step 6**
copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable the CNS event agent, use the no cns event \(\{ ip-address \mid hostname \} \) global configuration command.

This example shows how to enable the CNS event agent, set the IP address gateway to 10.180.1.27, set 120 seconds as the keepalive interval, and set 10 as the retry count.

\[\text{Switch(config)} \# \text{cns event 10.180.1.27 keepalive 120 10} \]
Enabling the Cisco IOS CNS Agent

After enabling the CNS event agent, start the Cisco IOS CNS agent on the switch. You can enable the Cisco IOS agent with these commands:

- The `cns config initial` global configuration command enables the Cisco IOS agent and initiates an initial configuration on the switch.
- The `cns config partial` global configuration command enables the Cisco IOS agent and initiates a partial configuration on the switch. You can then use the Configuration Engine to remotely send incremental configurations to the switch.

Enabling an Initial Configuration

Beginning in privileged EXEC mode, follow these steps to enable the CNS configuration agent and initiate an initial configuration on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>cns template connect name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>cli config-text</code></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>cns connect name [retries number] [retry-interval seconds] [sleep seconds] [timeout seconds]</code></td>
</tr>
</tbody>
</table>

- Enter the name of the CNS connect profile.
- (Optional) For `retries number`, enter the number of connection retries. The range is 1 to 30. The default is 3.
- (Optional) For `retry-interval seconds`, enter the interval between successive connection attempts to the Configuration Engine. The range is 1 to 40 seconds. The default is 10 seconds.
- (Optional) For `sleep seconds`, enter the amount of time before which the first connection attempt occurs. The range is 0 to 250 seconds. The default is 0.
- (Optional) For `timeout seconds`, enter the amount of time after which the connection attempts end. The range is 10 to 2000 seconds. The default is 120.
Configuring Cisco IOS Agents

Step 7
discover *(controller controller-type | dlci [subinterface subinterface-number] | interface [interface-type] | line line-type)*

Specify the interface parameters in the CNS connect profile.

- For **controller controller-type**, enter the controller type.
- For **dlci**, enter the active data-link connection identifiers (DLCIs).
- (Optional) For **subinterface subinterface-number**, specify the point-to-point subinterface number that is used to search for active DLCIs.
- For **interface [interface-type]**, enter the type of interface.
- For **line line-type**, enter the line type.

Step 8
template name [... name]

Specify the list of CNS connect templates in the CNS connect profile to be applied to the switch configuration. You can specify more than one template.

Step 9
Repeat Steps 7 to 8 to specify more interface parameters and CNS connect templates in the CNS connect profile.

Step 10
exit

Return to global configuration mode.

Step 11
hostname name

Enter the hostname for the switch.

Step 12
ip route network-number

(Optional) Establish a static route to the Configuration Engine whose IP address is **network-number**.
Command

Step 13

```bash
cns id interface num [dns-reverse | ipaddress | mac-address] [event] [image]
```

or

```bash
cns id [hardware-serial | hostname | string string | udi] [event] [image]
```

Purpose

(Optional) Set the unique EventID or ConfigID used by the Configuration Engine.

- For `interface num`, enter the type of interface—for example, ethernet, group-async, loopback, or virtual-template. This setting specifies from which interface the IP or MAC address should be retrieved to define the unique ID.

- For `{dns-reverse | ipaddress | mac-address}`, enter `dns-reverse` to retrieve the hostname and assign it as the unique ID, enter `ipaddress` to use the IP address, or enter `mac-address` to use the MAC address as the unique ID.

- (Optional) Enter `event` to set the ID to be the event-id value used to identify the switch.

- (Optional) Enter `image` to set the ID to be the image-id value used to identify the switch.

Note If both the `event` and `image` keywords are omitted, the image-id value is used to identify the switch.

- For `{hardware-serial | hostname | string string | udi}`, enter `hardware-serial` to set the switch serial number as the unique ID, enter `hostname` (the default) to select the switch hostname as the unique ID, enter an arbitrary text string for `string string` as the unique ID, or enter `udi` to set the unique device identifier (UDI) as the unique ID.
Chapter 4 Configuring Cisco IOS Configuration Engine

Configuring Cisco IOS Agents

Step 14

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`cns config initial {hostname</td>
<td>ip-address} [port-number] [event] [no-persist] [page page] [source ip-address] [syntax-check]`</td>
</tr>
</tbody>
</table>

- For `{hostname | ip-address}`, enter the hostname or the IP address of the configuration server.
- (Optional) For `port-number`, enter the port number of the configuration server. The default port number is 80.
- (Optional) Enable `event` for configuration success, failure, or warning messages when the configuration is finished.
- (Optional) Enable `no-persist` to suppress the automatic writing to NVRAM of the configuration pulled as a result of entering the `cns config initial` global configuration command. If the `no-persist` keyword is not entered, using the `cns config initial` command causes the resultant configuration to be automatically written to NVRAM.
- (Optional) For `page page`, enter the web page of the initial configuration. The default is `/Config/config/asp`.
- (Optional) Enter `source ip-address` to use for source IP address.
- (Optional) Enable `syntax-check` to check the syntax when this parameter is entered.

Note Though visible in the command-line help string, the `encrypt`, `status url`, and `inventory` keywords are not supported.

Step 15

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 16

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cns config connections</code></td>
<td>Verify information about the configuration agent.</td>
</tr>
</tbody>
</table>

Step 17

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

To disable the CNS Cisco IOS agent, use the `no cns config initial {ip-address | hostname} global configuration command.

This example shows how to configure an initial configuration on a remote switch when the switch configuration is unknown (the CNS Zero Touch feature).

```
Switch(config)# cns template connect template-dhcp
Switch(config-tmpl-conn)# cli ip address dhcp
Switch(config-tmpl-conn)# exit
Switch(config)# cns template connect ip-route
Switch(config-tmpl-conn)# cli ip route 0.0.0.0 0.0.0.0 ${next-hop}
Switch(config-tmpl-conn)# exit
Switch(config)# cns connect dhcp
Switch(config-cns-conn)# discover interface gigabitethernet
Switch(config-cns-conn)# template template-dhcp
Switch(config-cns-conn)# template ip-route
Switch(config-cns-conn)# exit
Switch(config)# hostname RemoteSwitch
RemoteSwitch(config)# cns config initial 10.1.1.1 no-persist
```

To disable the CNS Cisco IOS agent, use the `no cns config initial {ip-address | hostname} global configuration command.`
This example shows how to configure an initial configuration on a remote switch when the switch IP address is known. The Configuration Engine IP address is 172.28.129.22.

Switch(config)# cns template connect template-dhcp
Switch(config-tmpl-conn)# cli ip address dhcp
Switch(config-tmpl-conn)# exit
Switch(config)# cns template connect ip-route
Switch(config-tmpl-conn)# cli ip route 0.0.0.0 0.0.0.0 next-hop
Switch(config-tmpl-conn)# exit
Switch(config)# cns connect dhcp
Switch(config-cns-conn)# discover interface gigabitethernet
Switch(config-cns-conn)# template template-dhcp
Switch(config-cns-conn)# template ip-route
Switch(config-cns-conn)# exit
Switch(config)# hostname RemoteSwitch
RemoteSwitch(config)# ip route 172.28.129.22 255.255.255.255 11.11.11.1
RemoteSwitch(config)# cns id ethernet 0 ipaddress
RemoteSwitch(config)# cns config initial 172.28.129.22 no-persist

Enabling a Partial Configuration

Beginning in privileged EXEC mode, follow these steps to enable the Cisco IOS agent and to initiate a partial configuration on the switch:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cns config partial [ip-address</td>
<td>hostname] [port-number] [source ip-address]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For {ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For port-number, enter the port number of the configuration server. The default port number is 80.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Enter source ip-address to use for the source IP address.</td>
</tr>
</tbody>
</table>

Note: Though visible in the command-line help string, the `encrypt` keyword is not supported.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show cns config stats</td>
<td>Verify information about the configuration agent.</td>
</tr>
<tr>
<td></td>
<td>show cns config outstanding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the Cisco IOS agent, use the `no cns config partial [ip-address | hostname]` global configuration command. To cancel a partial configuration, use the `cns config cancel` privileged EXEC command.
Displaying CNS Configuration

You can use the privileged EXEC commands in Table 4-2 to display CNS configuration information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cns config connections</code></td>
<td>Displays the status of the CNS Cisco IOS agent connections.</td>
</tr>
<tr>
<td><code>show cns config outstanding</code></td>
<td>Displays information about incremental (partial) CNS configurations that have started but are not yet completed.</td>
</tr>
<tr>
<td><code>show cns config stats</code></td>
<td>Displays statistics about the Cisco IOS agent.</td>
</tr>
<tr>
<td><code>show cns event connections</code></td>
<td>Displays the status of the CNS event agent connections.</td>
</tr>
<tr>
<td><code>show cns event stats</code></td>
<td>Displays statistics about the CNS event agent.</td>
</tr>
<tr>
<td><code>show cns event subject</code></td>
<td>Displays a list of event agent subjects that are subscribed to by applications.</td>
</tr>
</tbody>
</table>
Administering the Switch

This chapter describes how to perform one-time operations to administer the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

This chapter consists of these sections:
- Managing the System Time and Date, page 5-1
- Configuring a System Name and Prompt, page 5-14
- Creating a Banner, page 5-17
- Managing the MAC Address Table, page 5-19
- Managing the ARP Table, page 5-31

Managing the System Time and Date

You can manage the system time and date on your switch using automatic configuration, such as the Network Time Protocol (NTP), or manual configuration methods.

Note

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2.

These sections contain this configuration information:
- Understanding the System Clock, page 5-2
- Understanding Network Time Protocol, page 5-2
- Configuring NTP, page 5-4
- Configuring Time and Date Manually, page 5-11
Understanding the System Clock

The heart of the time service is the system clock. This clock runs from the moment the system starts up and keeps track of the date and time.

The system clock can then be set from these sources:

- NTP
- Manual configuration

The system clock can provide time to these services:

- User show commands
- Logging and debugging messages

The system clock keeps track of time internally based on Universal Time Coordinated (UTC), also known as Greenwich Mean Time (GMT). You can configure information about the local time zone and summer time (daylight saving time) so that the time appears correctly for the local time zone.

The system clock keeps track of whether the time is authoritative or not (that is, whether it has been set by a time source considered to be authoritative). If it is not authoritative, the time is available only for display purposes and is not redistributed. For configuration information, see the “Configuring Time and Date Manually” section on page 5-11.

Understanding Network Time Protocol

The NTP is designed to time-synchronize a network of devices. NTP runs over User Datagram Protocol (UDP), which runs over IP. NTP is documented in RFC 1305.

An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two devices to within a millisecond of one another.

NTP uses the concept of a stratum to describe how many NTP hops away a device is from an authoritative time source. A stratum 1 time server has a radio or atomic clock directly attached, a stratum 2 time server receives its time through NTP from a stratum 1 time server, and so on. A device running NTP automatically chooses as its time source the device with the lowest stratum number with which it communicates through NTP. This strategy effectively builds a self-organizing tree of NTP speakers.

NTP avoids synchronizing to a device whose time might not be accurate by never synchronizing to a device that is not synchronized. NTP also compares the time reported by several devices and does not synchronize to a device whose time is significantly different than the others, even if its stratum is lower.

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP address of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, in that case, information flow is one-way only.

The time kept on a device is a critical resource; you should use the security features of NTP to avoid the accidental or malicious setting of an incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.
Cisco’s implementation of NTP does not support stratum 1 service; it is not possible to connect to a radio or atomic clock. We recommend that the time service for your network be derived from the public NTP servers available on the IP Internet.

Figure 5-1 shows a typical network example using NTP. Switch A is the NTP master, with the Switch E, Switch B, and Switch C configured in NTP server mode, in server association with Switch A. Switch D is configured as an NTP peer to the upstream and downstream switches, Switch E and the blade switch, respectively.

Figure 5-1 Typical NTP Network Configuration

If the network is isolated from the Internet, Cisco’s implementation of NTP allows a device to act as if it is synchronized through NTP, when in fact it has learned the time by using other means. Other devices then synchronize to that device through NTP.

When multiple sources of time are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software allows host systems to be time-synchronized as well.
Configuring NTP

The switch does not have a hardware-supported clock and cannot function as an NTP master clock to which peers synchronize themselves when an external NTP source is not available. The switch also has no hardware support for a calendar. As a result, the **ntp update-calendar** and the **ntp master** global configuration commands are not available.

These sections contain this configuration information:

- Default NTP Configuration, page 5-4
- Configuring NTP Authentication, page 5-4
- Configuring NTP Associations, page 5-5
- Configuring NTP Broadcast Service, page 5-6
- Configuring NTP Access Restrictions, page 5-8
- Configuring the Source IP Address for NTP Packets, page 5-10
- Displaying the NTP Configuration, page 5-11

Default NTP Configuration

Table 5-1 shows the default NTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP authentication</td>
<td>Disabled. No authentication key is specified.</td>
</tr>
<tr>
<td>NTP peer or server associations</td>
<td>None configured.</td>
</tr>
<tr>
<td>NTP broadcast service</td>
<td>Disabled; no interface sends or receives NTP broadcast packets.</td>
</tr>
<tr>
<td>NTP access restrictions</td>
<td>No access control is specified.</td>
</tr>
<tr>
<td>NTP packet source IP address</td>
<td>The source address is set by the outgoing interface.</td>
</tr>
</tbody>
</table>

NTP is enabled on all interfaces by default. All interfaces receive NTP packets.

Configuring NTP Authentication

This procedure must be coordinated with the administrator of the NTP server; the information you configure in this procedure must be matched by the servers used by the switch to synchronize its time to the NTP server.

Beginning in privileged EXEC mode, follow these steps to authenticate the associations (communications between devices running NTP that provide for accurate timekeeping) with other devices for security purposes:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>ntp authenticate</td>
<td>Enable the NTP authentication feature, which is disabled by default.</td>
</tr>
</tbody>
</table>
Managing the System Time and Date

To disable NTP authentication, use the `no ntp authenticate` global configuration command. To remove an authentication key, use the `no ntp authentication-key number md5` global configuration command. To disable authentication of the identity of a device, use the `no ntp trusted-key key-number` global configuration command.

The switch does not synchronize to a device unless both have one of these authentication keys, and the key number is specified by the `ntp trusted-key key-number` command.

Configuring NTP Associations

An NTP association can be a peer association (this switch can either synchronize to the other device or allow the other device to synchronize to it), or it can be a server association (meaning that only this switch synchronizes to the other device, and not the other way around).

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ntp authentication-key number md5 value</code></td>
<td>Define the authentication keys. By default, none are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>number</code>, specify a key number. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>md5</code> specifies that message authentication support is provided by using the message digest algorithm 5 (MD5).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>value</code>, enter an arbitrary string of up to eight characters for the key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The switch does not synchronize to a device unless both have one of these authentication keys, and the key number is specified by the <code>ntp trusted-key key-number</code> command.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ntp trusted-key key-number</code></td>
<td>Specify one or more key numbers (defined in Step 3) that a peer NTP device must provide in its NTP packets for this switch to synchronize to it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, no trusted keys are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For <code>key-number</code>, specify the key defined in Step 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This command provides protection against accidentally synchronizing the switch to a device that is not trusted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable NTP authentication, use the `no ntp authenticate` global configuration command. To remove an authentication key, use the `no ntp authentication-key number` global configuration command. To disable authentication of the identity of a device, use the `no ntp trusted-key key-number` global configuration command.

This example shows how to configure the switch to synchronize only to devices providing authentication key 42 in the device’s NTP packets:

```
Switch(config)# ntp authenticate
Switch(config)# ntp authentication-key 42 md5 aNiceKey
Switch(config)# ntp trusted-key 42
```
Beginning in privileged EXEC mode, follow these steps to form an NTP association with another device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>ntp peer ip-address [version number] [key keyid] [source interface] [prefer]</td>
<td>Configure the switch system clock to synchronize a peer or to be synchronized by a peer (peer association).</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>ntp server ip-address [version number] [key keyid] [source interface] [prefer]</td>
<td>Configure the switch system clock to be synchronized by a time server (server association).</td>
</tr>
</tbody>
</table>

No peer or server associations are defined by default.

- For `ip-address` in a peer association, specify either the IP address of the peer providing, or being provided, the clock synchronization. For a server association, specify the IP address of the time server providing the clock synchronization.

- (Optional) For `number`, specify the NTP version number. The range is 1 to 3. By default, Version 3 is selected.

- (Optional) For `keyid`, enter the authentication key defined with the `ntp authentication-key` global configuration command.

- (Optional) For `interface`, specify the interface from which to pick the IP source address. By default, the source IP address is taken from the outgoing interface.

- (Optional) Enter the `prefer` keyword to make this peer or server the preferred one that provides synchronization. This keyword reduces switching back and forth between peers and servers.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

You need to configure only one end of an association; the other device can automatically establish the association. If you are using the default NTP version (Version 3) and NTP synchronization does not occur, try using NTP Version 2. Many NTP servers on the Internet run Version 2.

To remove a peer or server association, use the `no ntp peer ip-address` or the `no ntp server ip-address` global configuration command.

This example shows how to configure the switch to synchronize its system clock with the clock of the peer at IP address 172.16.22.44 using NTP Version 2:

```plaintext
Switch(config)# ntp server 172.16.22.44 version 2
```

Configuring NTP Broadcast Service

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP addresses of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, the information flow is one-way only.
Chapter 5 Administering the Switch

Managing the System Time and Date

The switch can send or receive NTP broadcast packets on an interface-by-interface basis if there is an NTP broadcast server, such as a router, broadcasting time information on the network. The switch can send NTP broadcast packets to a peer so that the peer can synchronize to it. The switch can also receive NTP broadcast packets to synchronize its own clock. This section provides procedures for both sending and receiving NTP broadcast packets.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send NTP broadcast packets to peers so that they can synchronize their clock to the switch:

Command	**Purpose**
Step 1 configure terminal	Enter global configuration mode.
Step 2 interface interface-id	Specify the interface to send NTP broadcast packets, and enter interface configuration mode.
Step 3 ntp broadcast [version number] [key keyid] [destination-address]	Enable the interface to send NTP broadcast packets to a peer. By default, this feature is disabled on all interfaces.
	- (Optional) For *number*, specify the NTP version number. The range is 1 to 3. If you do not specify a version, Version 3 is used.
	- (Optional) For *keyid*, specify the authentication key to use when sending packets to the peer.
	- (Optional) For *destination-address*, specify the IP address of the peer that is synchronizing its clock to this switch.
Step 4 end | Return to privileged EXEC mode.
Step 5 show running-config | Verify your entries.
Step 6 copy running-config startup-config | (Optional) Save your entries in the configuration file.
Step 7 | Configure the connected peers to receive NTP broadcast packets as described in the next procedure.

To disable the interface from sending NTP broadcast packets, use the `no ntp broadcast` interface configuration command.

This example shows how to configure a port to send NTP Version 2 packets:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ntp broadcast version 2
```

Beginning in privileged EXEC mode, follow these steps to configure the switch to receive NTP broadcast packets from connected peers:

Command	**Purpose**
Step 1 configure terminal | Enter global configuration mode.
Step 2 interface interface-id | Specify the interface to receive NTP broadcast packets, and enter interface configuration mode.
Step 3 ntp broadcast client | Enable the interface to receive NTP broadcast packets. By default, no interfaces receive NTP broadcast packets.
Step 4 exit | Return to global configuration mode.
Managing the System Time and Date

Chapter 5 Administering the Switch

To disable an interface from receiving NTP broadcast packets, use the `no ntp broadcast client` interface configuration command. To change the estimated round-trip delay to the default, use the `no ntp broadcastdelay` global configuration command.

This example shows how to configure a port to receive NTP broadcast packets:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ntp broadcast client
```

Configuring NTP Access Restrictions

You can control NTP access on two levels as described in these sections:

- **Creating an Access Group and Assigning a Basic IP Access List, page 5-8**
- **Disabling NTP Services on a Specific Interface, page 5-10**

Creating an Access Group and Assigning a Basic IP Access List

Beginning in privileged EXEC mode, follow these steps to control access to NTP services by using access lists:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ntp access-group { query-only</td>
</tr>
<tr>
<td></td>
<td>Create an access group, and apply a basic IP access list.</td>
</tr>
<tr>
<td></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>- <code>query-only</code>— Allows only NTP control queries.</td>
</tr>
<tr>
<td></td>
<td>- <code>serve-only</code>— Allows only time requests.</td>
</tr>
<tr>
<td></td>
<td>- <code>serve</code>— Allows time requests and NTP control queries, but does not allow the switch to synchronize to the remote device.</td>
</tr>
<tr>
<td></td>
<td>- <code>peer</code>— Allows time requests and NTP control queries and allows the switch to synchronize to the remote device.</td>
</tr>
<tr>
<td></td>
<td>For <code>access-list-number</code>, enter a standard IP access list number from 1 to 99.</td>
</tr>
</tbody>
</table>
Managing the System Time and Date

The access group keywords are scanned in this order, from least restrictive to most restrictive:

1. peer—Allows time requests and NTP control queries and allows the switch to synchronize itself to a device whose address passes the access list criteria.
2. serve—Allows time requests and NTP control queries, but does not allow the switch to synchronize itself to a device whose address passes the access list criteria.
3. serve-only—Allows only time requests from a device whose address passes the access list criteria.
4. query-only—Allows only NTP control queries from a device whose address passes the access list criteria.

If the source IP address matches the access lists for more than one access type, the first type is granted. If no access groups are specified, all access types are granted to all devices. If any access groups are specified, only the specified access types are granted.

To remove access control to the switch NTP services, use the `no ntp access-group {query-only | serve-only | serve | peer}` global configuration command.

This example shows how to configure the switch to allow itself to synchronize to a peer from access list 99. However, the switch restricts access to allow only time requests from access list 42:

```
Switch# configure terminal
Switch(config)# ntp access-group peer 99
Switch(config)# ntp access-group serve-only 42
Switch(config)# access-list 99 permit 172.20.130.5
Switch(config)# access list 42 permit 172.20.130.6
```
Disabling NTP Services on a Specific Interface

NTP services are enabled on all interfaces by default.

Beginning in privileged EXEC mode, follow these steps to disable NTP packets from being received on an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to disable.</td>
</tr>
<tr>
<td>3</td>
<td>ntp disable</td>
<td>Disable NTP packets from being received on the interface. By default, all interfaces receive NTP packets.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable receipt of NTP packets on an interface, use the `no ntp disable` interface configuration command.

Configuring the Source IP Address for NTP Packets

When the switch sends an NTP packet, the source IP address is normally set to the address of the interface through which the NTP packet is sent. Use the `ntp source` global configuration command when you want to use a particular source IP address for all NTP packets. The address is taken from the specified interface. This command is useful if the address on an interface cannot be used as the destination for reply packets.

Beginning in privileged EXEC mode, follow these steps to configure a specific interface from which the IP source address is to be taken:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ntp source type number</td>
<td>Specify the interface type and number from which the IP source address is taken. By default, the source address is set by the outgoing interface.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The specified interface is used for the source address for all packets sent to all destinations. If a source address is to be used for a specific association, use the `source` keyword in the `ntp peer` or `ntp server` global configuration command as described in the “Configuring NTP Associations” section on page 5-5.
Displaying the NTP Configuration

You can use two privileged EXEC commands to display NTP information:

- `show ntp associations [detail]`
- `show ntp status`

For detailed information about the fields in these displays, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2.

Configuring Time and Date Manually

If no other source of time is available, you can manually configure the time and date after the system is restarted. The time remains accurate until the next system restart. We recommend that you use manual configuration only as a last resort. If you have an outside source to which the switch can synchronize, you do not need to manually set the system clock.

Note

You must reset this setting if you have manually set the system clock and the stack master fails and different stack member resumes the role of stack master.

These sections contain this configuration information:

- Setting the System Clock, page 5-11
- Displaying the Time and Date Configuration, page 5-12
- Configuring the Time Zone, page 5-12
- Configuring Summer Time (Daylight Saving Time), page 5-13

Setting the System Clock

If you have an outside source on the network that provides time services, such as an NTP server, you do not need to manually set the system clock.

Beginning in privileged EXEC mode, follow these steps to set the system clock:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>clock set hh:mm:ss day month year</code> or <code>clock set hh:mm:ss month day year</code></td>
<td>Manually set the system clock using one of these formats.</td>
</tr>
<tr>
<td></td>
<td>- For <code>hh:mm:ss</code>, specify the time in hours (24-hour format), minutes, and seconds. The time specified is relative to the configured time zone.</td>
</tr>
<tr>
<td></td>
<td>- For <code>day</code>, specify the day by date in the month.</td>
</tr>
<tr>
<td></td>
<td>- For <code>month</code>, specify the month by name.</td>
</tr>
<tr>
<td></td>
<td>- For <code>year</code>, specify the year (no abbreviation).</td>
</tr>
</tbody>
</table>

This example shows how to manually set the system clock to 1:32 p.m. on July 23, 2001:

```
Switch# clock set 13:32:00 23 July 2001
```
Displaying the Time and Date Configuration

To display the time and date configuration, use the `show clock [detail]` privileged EXEC command.

The system clock keeps an `authoritative` flag that shows whether the time is authoritative (believed to be accurate). If the system clock has been set by a timing source such as NTP, the flag is set. If the time is not authoritative, it is used only for display purposes. Until the clock is authoritative and the `authoritative` flag is set, the flag prevents peers from synchronizing to the clock when the peers’ time is invalid.

The symbol that precedes the `show clock` display has this meaning:
- *—Time is not authoritative.
- (blank)—Time is authoritative.
- .—Time is authoritative, but NTP is not synchronized.

Configuring the Time Zone

Beginning in privileged EXEC mode, follow these steps to manually configure the time zone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| clock timezone zone hours-offset [minutes-offset] | Set the time zone. The switch keeps internal time in universal time coordinated (UTC), so this command is used only for display purposes and when the time is manually set.
 - For `zone`, enter the name of the time zone to be displayed when standard time is in effect. The default is UTC.
 - For `hours-offset`, enter the hours offset from UTC.
 - (Optional) For `minutes-offset`, enter the minutes offset from UTC. |
| end | Return to privileged EXEC mode. |
| show running-config | Verify your entries. |
| copy running-config startup-config | (Optional) Save your entries in the configuration file. |

The `minutes-offset` variable in the `clock timezone` global configuration command is available for those cases where a local time zone is a percentage of an hour different from UTC. For example, the time zone for some sections of Atlantic Canada (AST) is UTC-3.5, where the 3 means 3 hours and .5 means 50 percent. In this case, the necessary command is `clock timezone AST -3 30`.

To set the time to UTC, use the `no clock timezone` global configuration command.
Configuring Summer Time (Daylight Saving Time)

Beginning in privileged EXEC mode, follow these steps to configure summer time (daylight saving time) in areas where it starts and ends on a particular day of the week each year:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>clock summer-time zone recurring</td>
<td>Configure summer time to start and end on the specified days every year.</td>
</tr>
<tr>
<td></td>
<td>[week day month hh:mm week day month hh:mm [offset]]</td>
<td>Summer time is disabled by default. If you specify clock summer-time zone recurring without parameters, the summer time rules default to the United States rules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For zone, specify the name of the time zone (for example, PDT) to be displayed when summer time is in effect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For week, specify the week of the month (1 to 5 or last).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For day, specify the day of the week (Sunday, Monday...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For month, specify the month (January, February...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For hh:mm, specify the time (24-hour format) in hours and minutes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For offset, specify the number of minutes to add during summer time. The default is 60.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The first part of the `clock summer-time` global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

This example shows how to specify that summer time starts on the first Sunday in April at 02:00 and ends on the last Sunday in October at 02:00:

```
Switch(config)# clock summer-time PDT recurring 1 Sunday April 2:00 last Sunday October 2:00
```
Beginning in privileged EXEC mode, follow these steps if summer time in your area does not follow a recurring pattern (configure the exact date and time of the next summer time events):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>clock summer-time zone date [month date year hh:mm month date year hh:mm [offset]]</code> or <code>clock summer-time zone date [month date year hh:mm month date year hh:mm [offset]]</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

The first part of the `clock summer-time` global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

To disable summer time, use the `no clock summer-time` global configuration command.

This example shows how to set summer time to start on October 12, 2000, at 02:00, and end on April 26, 2001, at 02:00:

```
Switch(config)# clock summer-time pdt date 12 October 2000 02:00 26 April 2001 02:00
```

Configuring a System Name and Prompt

You configure the system name on the switch to identify it. By default, the system name and prompt are `Switch`.

If you have not configured a system prompt, the first 20 characters of the system name are used as the system prompt. A greater-than symbol `>` is appended. The prompt is updated whenever the system name changes.

If you are accessing a stack member through the stack master, you must use the `session stack-member-number` privileged EXEC command. The stack member number range is from 1 through 9. When you use this command, the stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the switch stack is `Switch`.

The examples and information in this document were generated using software versions available in September 2010. Software versions subsequent to those used in the examples and information described in this document may affect the operation of the commands described. For specific configuration details, refer to the software configuration guide for your switch.
For complete syntax and usage information for the commands used in this section, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 and the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2.

These sections contain this configuration information:

- Default System Name and Prompt Configuration, page 5-15
- Configuring a System Name, page 5-15
- Understanding DNS, page 5-15

Default System Name and Prompt Configuration

The default switch system name and prompt is Switch.

Configuring a System Name

Beginning in privileged EXEC mode, follow these steps to manually configure a system name:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 hostname name</td>
<td>Manually configure a system name. The default setting is switch.</td>
</tr>
<tr>
<td></td>
<td>The name must follow the rules for ARPANET hostnames. They must start</td>
</tr>
<tr>
<td></td>
<td>with a letter, end with a letter or digit, and have as interior</td>
</tr>
<tr>
<td></td>
<td>characters only letters, digits, and hyphens. Names can be up to 63</td>
</tr>
<tr>
<td></td>
<td>characters.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When you set the system name, it is also used as the system prompt.

To return to the default hostname, use the no hostname global configuration command.

Understanding DNS

The DNS protocol controls the Domain Name System (DNS), a distributed database with which you can map hostnames to IP addresses. When you configure DNS on your switch, you can substitute the hostname for the IP address with all IP commands, such as ping, telnet, connect, and related Telnet support operations.

IP defines a hierarchical naming scheme that allows a device to be identified by its location or domain. Domain names are pieced together with periods (.) as the delimiting characters. For example, Cisco Systems is a commercial organization that IP identifies by a com domain name, so its domain name is cisco.com. A specific device in this domain, for example, the File Transfer Protocol (FTP) system is identified as ftp.cisco.com.
To keep track of domain names, IP has defined the concept of a domain name server, which holds a cache (or database) of names mapped to IP addresses. To map domain names to IP addresses, you must first identify the hostnames, specify the name server that is present on your network, and enable the DNS.

These sections contain this configuration information:

- Default DNS Configuration, page 5-16
- Setting Up DNS, page 5-16
- Displaying the DNS Configuration, page 5-17

Default DNS Configuration

Table 5-2 shows the default DNS configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS enable state</td>
<td>Enabled.</td>
</tr>
<tr>
<td>DNS default domain name</td>
<td>None configured.</td>
</tr>
<tr>
<td>DNS servers</td>
<td>No name server addresses are configured.</td>
</tr>
</tbody>
</table>

Setting Up DNS

Beginning in privileged EXEC mode, follow these steps to set up your switch to use the DNS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip domain-name name</td>
<td>Define a default domain name that the software uses to complete unqualified hostnames (names without a dotted-decimal domain name). Do not include the initial period that separates an unqualified name from the domain name. At bootup time, no domain name is configured; however, if the switch configuration comes from a BOOTP or Dynamic Host Configuration Protocol (DHCP) server, then the default domain name might be set by the BOOTP or DHCP server (if the servers were configured with this information).</td>
</tr>
<tr>
<td>ip name-server server-address1 [server-address2 ... server-address6]</td>
<td>Specify the address of one or more name servers to use for name and address resolution. You can specify up to six name servers. Separate each server address with a space. The first server specified is the primary server. The switch sends DNS queries to the primary server first. If that query fails, the backup servers are queried.</td>
</tr>
<tr>
<td>ip domain-lookup</td>
<td>(Optional) Enable DNS-based hostname-to-address translation on your switch. This feature is enabled by default. If your network devices require connectivity with devices in networks for which you do not control name assignment, you can dynamically assign device names that uniquely identify your devices by using the global Internet naming scheme (DNS).</td>
</tr>
</tbody>
</table>
Creating a Banner

If you use the switch IP address as its hostname, the IP address is used and no DNS query occurs. If you configure a hostname that contains no periods (.), a period followed by the default domain name is appended to the hostname before the DNS query is made to map the name to an IP address. The default domain name is the value set by the `ip domain-name` global configuration command. If there is a period (.) in the hostname, the Cisco IOS software looks up the IP address without appending any default domain name to the hostname.

To remove a domain name, use the `no ip domain-name` global configuration command. To remove a name server address, use the `no ip name-server server-address` global configuration command. To disable DNS on the switch, use the `no ip domain-lookup` global configuration command.

Displaying the DNS Configuration

To display the DNS configuration information, use the `show running-config` privileged EXEC command.

Creating a Banner

You can configure a message-of-the-day (MOTD) and a login banner. The MOTD banner displays on all connected terminals at login and is useful for sending messages that affect all network users (such as impending system shutdowns).

The login banner also displays on all connected terminals. It appears after the MOTD banner and before the login prompts.

Note

For complete syntax and usage information for the commands used in this section, see the *Cisco IOS Configuration Fundamentals Command Reference, Release 12.2*.

These sections contain this configuration information:

- Default Banner Configuration, page 5-17
- Configuring a Message-of-the-Day Login Banner, page 5-18
- Configuring a Login Banner, page 5-19

Default Banner Configuration

The MOTD and login banners are not configured.
Configuring a Message-of-the-Day Login Banner

You can create a single or multiline message banner that appears on the screen when someone logs in to the switch.

Beginning in privileged EXEC mode, follow these steps to configure a MOTD login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>banner motd c message c</code></td>
<td>Specify the message of the day.</td>
</tr>
<tr>
<td></td>
<td>For <code>c</code>, enter the delimiting character of your choice, for example, a pound sign (#), and press the Return key. The delimiting character signifies the beginning and end of the banner text. Characters after the ending delimiter are discarded. For <code>message</code>, enter a banner message up to 255 characters. You cannot use the delimiting character in the message.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the MOTD banner, use the **no banner motd** global configuration command.

This example shows how to configure a MOTD banner for the switch by using the pound sign (#) symbol as the beginning and ending delimiter:

```
Switch(config)# banner motd #
This is a secure site. Only authorized users are allowed.
For access, contact technical support.
#
Switch(config)#
```

This example shows the banner that appears from the previous configuration:

```
Unix> telnet 172.2.5.4
Trying 172.2.5.4...
Connected to 172.2.5.4.
Escape character is '^]'.

This is a secure site. Only authorized users are allowed.
For access, contact technical support.

User Access Verification

Password:
```
Configuring a Login Banner

You can configure a login banner to be displayed on all connected terminals. This banner appears after the MOTD banner and before the login prompt.

Beginning in privileged EXEC mode, follow these steps to configure a login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: banner login (c) message (c)</td>
<td>Specify the login message. For (c), enter the delimiting character of your choice, for example, a pound sign (#), and press the Return key. The delimiting character signifies the beginning and end of the banner text. Characters after the ending delimiter are discarded. For message, enter a login message up to 255 characters. You cannot use the delimiting character in the message.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the login banner, use the no banner login global configuration command.

This example shows how to configure a login banner for the switch by using the dollar sign ($) symbol as the beginning and ending delimiter:

```
Switch(config)# banner login $
Access for authorized users only. Please enter your username and password.
$
Switch(config)#
```

Managing the MAC Address Table

The MAC address table contains address information that the switch uses to forward traffic between ports. All MAC addresses in the address table are associated with one or more ports. The address table includes these types of addresses:

- Dynamic address: a source MAC address that the switch learns and then ages when it is not in use.
- Static address: a manually entered unicast address that does not age and that is not lost when the switch resets.

The address table lists the destination MAC address, the associated VLAN ID, and port number associated with the address and the type (static or dynamic).

For complete syntax and usage information for the commands used in this section, see the command reference for this release.
Managing the MAC Address Table

These sections contain this configuration information:

- Building the Address Table, page 5-20
- MAC Addresses and VLANs, page 5-20
- MAC Addresses and Switch Stacks, page 5-21
- Default MAC Address Table Configuration, page 5-21
- Changing the Address Aging Time, page 5-21
- Removing Dynamic Address Entries, page 5-22
- Configuring MAC Address Change Notification Traps, page 5-22
- Configuring MAC Address Move Notification Traps, page 5-24
- Configuring MAC Threshold Notification Traps, page 5-26
- Adding and Removing Static Address Entries, page 5-27
- Configuring Unicast MAC Address Filtering, page 5-28
- Disabling MAC Address Learning on a VLAN, page 5-29
- Displaying Address Table Entries, page 5-31

Building the Address Table

With multiple MAC addresses supported on all ports, you can connect any port on the switch to individual workstations, repeaters, switches, routers, or other network devices. The switch provides dynamic addressing by learning the source address of packets it receives on each port and adding the address and its associated port number to the address table. As stations are added or removed from the network, the switch updates the address table, adding new dynamic addresses and aging out those that are not in use.

The aging interval is globally configured on a standalone switch or on the switch stack. However, the switch maintains an address table for each VLAN, and STP can accelerate the aging interval on a per-VLAN basis.

The switch sends packets between any combination of ports, based on the destination address of the received packet. Using the MAC address table, the switch forwards the packet only to the port associated with the destination address. If the destination address is on the port that sent the packet, the packet is filtered and not forwarded. The switch always uses the store-and-forward method: complete packets are stored and checked for errors before transmission.

MAC Addresses and VLANs

All addresses are associated with a VLAN. An address can exist in more than one VLAN and have different destinations in each. Unicast addresses, for example, could be forwarded to port 1 in VLAN 1 and ports 9, 10, and 1 in VLAN 5.

Each VLAN maintains its own logical address table. A known address in one VLAN is unknown in another until it is learned or statically associated with a port in the other VLAN.
When private VLANs are configured, address learning depends on the type of MAC address:

- Dynamic MAC addresses learned in one VLAN of a private VLAN are replicated in the associated VLANs. For example, a MAC address learned in a private-VLAN secondary VLAN is replicated in the primary VLAN.

- Static MAC addresses configured in a primary or secondary VLAN are not replicated in the associated VLANs. When you configure a static MAC address in a private VLAN primary or secondary VLAN, you should also configure the same static MAC address in all associated VLANs.

For more information about private VLANs, see Chapter 16, “Configuring Private VLANs.”

MAC Addresses and Switch Stacks

The MAC address tables on all stack members are synchronized. At any given time, each stack member has the same copy of the address tables for each VLAN. When an address ages out, the address is removed from the address tables on all stack members. When a switch joins a switch stack, that switch receives the addresses for each VLAN learned on the other stack members. When a stack member leaves the switch stack, the remaining stack members age out or remove all addresses learned by the former stack member.

Default MAC Address Table Configuration

Table 5-3 shows the default MAC address table configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging time</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Dynamic addresses</td>
<td>Automatically learned</td>
</tr>
<tr>
<td>Static addresses</td>
<td>None configured</td>
</tr>
</tbody>
</table>

Changing the Address Aging Time

Dynamic addresses are source MAC addresses that the switch learns and then ages when they are not in use. You can change the aging time setting for all VLANs or for a specified VLAN.

Setting too short an aging time can cause addresses to be prematurely removed from the table. Then when the switch receives a packet for an unknown destination, it floods the packet to all ports in the same VLAN as the receiving port. This unnecessary flooding can impact performance. Setting too long an aging time can cause the address table to be filled with unused addresses, which prevents new addresses from being learned. Flooding results, which can impact switch performance.
Beginning in privileged EXEC mode, follow these steps to configure the dynamic address table aging time:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>mac address-table aging-time [0</td>
<td>10-1000000] [vlan vlan-id]</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show mac address-table aging-time</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default value, use the no mac address-table aging-time global configuration command.

Removing Dynamic Address Entries

To remove all dynamic entries, use the clear mac address-table dynamic command in privileged EXEC mode. You can also remove a specific MAC address (clear mac address-table dynamic address mac-address), remove all addresses on the specified physical port or port channel (clear mac address-table dynamic interface interface-id), or remove all addresses on a specified VLAN (clear mac address-table dynamic vlan vlan-id).

To verify that dynamic entries have been removed, use the show mac address-table dynamic privileged EXEC command.

Configuring MAC Address Change Notification Traps

MAC address change notification tracks users on a network by storing the MAC address change activity. When the switch learns or removes a MAC address, an SNMP notification trap can be sent to the NMS. If you have many users coming and going from the network, you can set a trap-interval time to bundle the notification traps to reduce network traffic. The MAC notification history table stores MAC address activity for each port for which the trap is set. MAC address change notifications are generated for dynamic and secure MAC addresses. Notifications are not generated for self addresses, multicast addresses, or other static addresses.
Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address change notification traps to an NMS host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server host host-addr {traps</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>snmp-server enable traps mac-notification change</td>
</tr>
<tr>
<td>Step 4</td>
<td>mac address-table notification change</td>
</tr>
<tr>
<td>Step 5</td>
<td>mac address-table notification change [interval value] [history-size value]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>snmp trap mac-notification change {added</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
</tbody>
</table>
Managing the MAC Address Table

Chapter 5 Administering the Switch

Managing the MAC Address Table

To disable MAC address-change notification traps, use the `no snmp-server enable traps mac-notification change` global configuration command. To disable the MAC address-change notification traps on a specific interface, use the `no snmp trap mac-notification change {added | removed}` interface configuration command. To disable the MAC address-change notification feature, use the `no mac address-table notification change` global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the switch to send MAC address notification traps to the NMS, enable the MAC address-change notification feature, set the interval time to 123 seconds, set the history-size to 100 entries, and enable traps whenever a MAC address is added on the specified port.

```
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification
Switch(config)# snmp-server enable traps mac-notification change
Switch(config)# mac address-table notification change
Switch(config)# mac address-table notification change interval 123
Switch(config)# mac address-table notification change history-size 100
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# snmp trap mac-notification change added
```

You can verify your settings by entering the `show mac address-table notification change interface` and the `show mac address-table notification change` privileged EXEC commands.

Configuring MAC Address Move Notification Traps

When you configure MAC-move notification, an SNMP notification is generated and sent to the network management system whenever a MAC address moves from one port to another within the same VLAN.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table notification change interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>show running-config</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable MAC address-change notification traps, use the `no snmp-server enable traps mac-notification change` global configuration command. To disable the MAC address-change notification traps on a specific interface, use the `no snmp trap mac-notification change {added | removed}` interface configuration command. To disable the MAC address-change notification feature, use the `no mac address-table notification change` global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address-move notification traps to an NMS host:

Command and Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>`snmp-server host host-addr {traps</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>snmp-server enable traps mac-notification move</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>mac address-table notification mac-move</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show mac address-table notification mac-move show running-config</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Specify the recipient of the trap message.
- For `host-addr`, specify the name or address of the NMS.
- Specify `traps` (the default) to send SNMP traps to the host. Specify `informs` to send SNMP informs to the host.
- Specify the SNMP version to support. Version 1, the default, is not available with informs.
- For `community-string`, specify the string to send with the notification operation. Though you can set this string by using the `snmp-server host` command, we recommend that you define this string by using the `snmp-server community` command before using the `snmp-server host` command.
- For `notification-type`, use the `mac-notification` keyword.

Enable the switch to send MAC address move notification traps to the NMS.

Enable the MAC address move notification feature.

Return to privileged EXEC mode.

Verify your entries.

(Optional) Save your entries in the configuration file.

To disable MAC address-move notification traps, use the **no snmp-server enable traps mac-notification move** global configuration command. To disable the MAC address-move notification feature, use the **no mac address-table notification mac-move** global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the switch to send MAC address move notification traps to the NMS, enable the MAC address move notification feature, and enable traps when a MAC address moves from one port to another.

```
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification
Switch(config)# snmp-server enable traps mac-notification move
Switch(config)# mac address-table notification mac-move
```

You can verify your settings by entering the `show mac address-table notification mac-move` privileged EXEC commands.
Configuring MAC Threshold Notification Traps

When you configure MAC threshold notification, an SNMP notification is generated and sent to the network management system when a MAC address table threshold limit is reached or exceeded.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address table threshold notification traps to an NMS host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | snmp-server host host-addr {traps | informs} {version {1 | 2c | 3}} community-string notification-type | Specify the recipient of the trap message.
 • For host-addr, specify the name or address of the NMS.
 • Specify traps (the default) to send SNMP traps to the host. Specify informs to send SNMP informs to the host.
 • Specify the SNMP version to support. Version 1, the default, is not available with informs.
 • For community-string, specify the string to send with the notification operation. Though you can set this string by using the snmp-server host command, we recommend that you define this string by using the snmp-server community command before using the snmp-server host command.
 • For notification-type, use the mac-notification keyword. |
| **Step 3** | snmp-server enable traps mac-notification threshold | Enable the switch to send MAC threshold notification traps to the NMS. |
| **Step 4** | mac address-table notification threshold | Enable the MAC address threshold notification feature. |
| **Step 5** | mac address-table notification threshold [limit percentage] | Enter the threshold value for the MAC address threshold usage monitoring.
 • (Optional) For limit percentage, specify the percentage of the MAC address table use; valid values are from 1 to 100 percent. The default is 50 percent.
 • (Optional) For interval time, specify the time between notifications; valid values are greater than or equal to 120 seconds. The default is 120 seconds. |
| **Step 6** | end | Return to privileged EXEC mode. |
| **Step 7** | show mac address-table notification threshold
show running-config | Verify your entries. |
| **Step 8** | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
To disable MAC address-threshold notification traps, use the `no snmp-server enable traps mac-notification threshold` global configuration command. To disable the MAC address-threshold notification feature, use the `no mac address-table notification threshold` global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the MAC address threshold notification feature, set the interval time to 123 seconds, and set the limit to 78 per cent.

```
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification
Switch(config)# snmp-server enable traps mac-notification threshold
Switch(config)# mac address-table notification threshold
Switch(config)# mac address-table notification threshold interval 123
Switch(config)# mac address-table notification threshold limit 78
```

You can verify your settings by entering the `show mac address-table notification threshold` privileged EXEC commands.

Adding and Removing Static Address Entries

A static address has these characteristics:

- It is manually entered in the address table and must be manually removed.
- It can be a unicast or multicast address.
- It does not age and is retained when the switch restarts.

You can add and remove static addresses and define the forwarding behavior for them. The forwarding behavior defines how a port that receives a packet forwards it to another port for transmission. Because all ports are associated with at least one VLAN, the switch acquires the VLAN ID for the address from the ports that you specify. You can specify a different list of destination ports for each source port.

A packet with a static address that arrives on a VLAN where it has not been statically entered is flooded to all ports and not learned.

You add a static address to the address table by specifying the destination MAC unicast address and the VLAN from which it is received. Packets received with this destination address are forwarded to the interface specified with the `interface-id` option.

When you configure a static MAC address in a private-VLAN primary or secondary VLAN, you should also configure the same static MAC address in all associated VLANs. Static MAC addresses configured in a private-VLAN primary or secondary VLAN are not replicated in the associated VLAN. For more information about private VLANs, see Chapter 16, “Configuring Private VLANs.”
Beginning in privileged EXEC mode, follow these steps to add a static address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: mac address-table static mac-addr vlan vlan-id interface interface-id</td>
<td>Add a static address to the MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• For mac-addr, specify the destination MAC unicast address to add to</td>
</tr>
<tr>
<td></td>
<td>the address table. Packets with this destination address received in</td>
</tr>
<tr>
<td></td>
<td>the specified VLAN are forwarded to the specified interface.</td>
</tr>
<tr>
<td></td>
<td>• For vlan-id, specify the VLAN for which the packet with the</td>
</tr>
<tr>
<td></td>
<td>specified MAC address is received. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For interface-id, specify the interface to which the received packet</td>
</tr>
<tr>
<td></td>
<td>is forwarded. Valid interfaces include physical ports or port</td>
</tr>
<tr>
<td></td>
<td>channels. For static multicast addresses, you can enter multiple</td>
</tr>
<tr>
<td></td>
<td>interface IDs. For static unicast addresses, you can enter only one</td>
</tr>
<tr>
<td></td>
<td>interface at a time, but you can enter the command multiple times</td>
</tr>
<tr>
<td></td>
<td>with the same MAC address and VLAN ID.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: show mac address-table static</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove static entries from the address table, use the **no mac address-table static mac-addr vlan vlan-id [interface interface-id]** global configuration command.

This example shows how to add the static address c2f3.220a.12f4 to the MAC address table. When a packet is received in VLAN 4 with this MAC address as its destination address, the packet is forwarded to the specified port:

```
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet1/0/1
```

Configuring Unicast MAC Address Filtering

When unicast MAC address filtering is enabled, the switch drops packets with specific source or destination MAC addresses. This feature is disabled by default and only supports unicast static addresses.

Follow these guidelines when using this feature:

- Multicast MAC addresses, broadcast MAC addresses, and router MAC addresses are not supported. If you specify one of these addresses when entering the **mac address-table static mac-addr vlan vlan-id drop** global configuration command, one of these messages appears:

 % Only unicast addresses can be configured to be dropped

 % CPU destined address cannot be configured as drop address

- Packets that are forwarded to the CPU are also not supported.
If you add a unicast MAC address as a static address and configure unicast MAC address filtering, the switch either adds the MAC address as a static address or drops packets with that MAC address, depending on which command was entered last. The second command that you entered overrides the first command.

For example, if you enter the `mac address-table static mac-addr vlan vlan-id interface interface-id` global configuration command followed by the `mac address-table static mac-addr vlan vlan-id drop` command, the switch drops packets with the specified MAC address as a source or destination.

If you enter the `mac address-table static mac-addr vlan vlan-id drop` global configuration command followed by the `mac address-table static mac-addr vlan vlan-id interface interface-id` command, the switch adds the MAC address as a static address.

You enable unicast MAC address filtering and configure the switch to drop packets with a specific address by specifying the source or destination unicast MAC address and the VLAN from which it is received.

Beginning in privileged EXEC mode, follow these steps to configure the switch to drop a source or destination unicast static address:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>mac address-table static mac-addr vlan vlan-id drop</code></td>
<td>Enable unicast MAC address filtering and configure the switch to drop a packet with the specified source or destination unicast static address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>mac-addr</code>, specify a source or destination unicast MAC address. Packets with this MAC address are dropped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>vlan-id</code>, specify the VLAN for which the packet with the specified MAC address is received. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show mac address-table static</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable unicast MAC address filtering, use the `no mac address-table static mac-addr vlan vlan-id` global configuration command.

This example shows how to enable unicast MAC address filtering and to configure the switch to drop packets that have a source or destination address of c2f3.220a.12f4. When a packet is received in VLAN 4 with this MAC address as its source or destination, the packet is dropped:

```
Switch(config)# macAddress-table static c2f3.220a.12f4 vlan 4 drop
```

Disabling MAC Address Learning on a VLAN

By default, MAC address learning is enabled on all VLANs on the switch. You can control MAC address learning on a VLAN to manage the available MAC address table space by controlling which VLANs, and therefore which ports, can learn MAC addresses. Before you disable MAC address learning, be sure that you are familiar with the network topology and the switch system configuration. Disabling MAC address learning on a VLAN could cause flooding in the network.
Follow these guidelines when disabling MAC address learning on a VLAN:

- Use caution before disabling MAC address learning on a VLAN with a configured switch virtual interface (SVI). The switch then floods all IP packets in the Layer 2 domain.
- You can disable MAC address learning on a single VLAN (for example, `no mac address-table learning vlan 223`) or on a range of VLANs (for example, `no mac address-table learning vlan 1-10, 15`).
- We recommend that you disable MAC address learning only in VLANs with two ports. If you disable MAC address learning on a VLAN with more than two ports, every packet entering the switch is flooded in that VLAN domain.
- You cannot disable MAC address learning on a VLAN that is used internally by the switch. If the VLAN ID that you enter is an internal VLAN, the switch generates an error message and rejects the command. To view internal VLANs in use, enter the `show vlan internal usage` privileged EXEC command.
- If you disable MAC address learning on a VLAN configured as a private-VLAN primary VLAN, MAC addresses are still learned on the secondary VLAN that belongs to the private VLAN and are then replicated on the primary VLAN. If you disable MAC address learning on the secondary VLAN, but not the primary VLAN of a private VLAN, MAC address learning occurs on the primary VLAN and is replicated on the secondary VLAN.
- You cannot disable MAC address learning on an RSPAN VLAN. The configuration is not allowed.
- If you disable MAC address learning on a VLAN that includes a secure port, MAC address learning is not disabled on that port. If you disable port security, the configured MAC address learning state is enabled.

Beginning in privileged EXEC mode, follow these steps to disable MAC address learning on a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no mac address-table learning vlan vlan-id</td>
<td>Disable MAC address learning on the specified VLAN or VLANs. You can specify a single VLAN ID or a range of VLAN IDs separated by a hyphen or comma. Valid VLAN IDs are 1 to 4094. It cannot be an internal VLAN.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show mac address-table learning [vlan vlan-id]</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To reenable MAC address learning on a VLAN, use the `default mac address-table learning vlan vlan-id` global configuration command. You can also reenable MAC address learning on a VLAN by entering the `mac address-table learning vlan vlan-id` global configuration command. The first (default) command returns to a default condition and therefore does not appear in the output from the `show running-config` command. The second command causes the configuration to appear in the `show running-config` privileged EXEC command display.

This example shows how to disable MAC address learning on VLAN 200:

```
Switch(config)# no mac address-table learning vlan 200
```

You can display the MAC address learning status of all VLANs or a specified VLAN by entering the `show mac-address-table learning [vlan vlan-id]` privileged EXEC command.
Displaying Address Table Entries

You can display the MAC address table by using one or more of the privileged EXEC commands described in Table 5-4:

Table 5-4 Commands for Displaying the MAC Address Table

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping groups</td>
<td>Displays the Layer 2 multicast entries for all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table address</td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td>show mac address-table aging-time</td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table count</td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table dynamic</td>
<td>Displays only dynamic MAC address table entries.</td>
</tr>
<tr>
<td>show mac address-table interface</td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td>show mac address-table notification</td>
<td>Displays the MAC notification parameters and history table.</td>
</tr>
<tr>
<td>show mac address-table static</td>
<td>Displays only static MAC address table entries.</td>
</tr>
<tr>
<td>show mac address-table vlan</td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>

Managing the ARP Table

To communicate with a device (over Ethernet, for example), the software first must learn the 48-bit MAC address or the local data link address of that device. The process of learning the local data link address from an IP address is called address resolution.

The Address Resolution Protocol (ARP) associates a host IP address with the corresponding media or MAC addresses and the VLAN ID. Using an IP address, ARP finds the associated MAC address. When a MAC address is found, the IP-MAC address association is stored in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network. Encapsulation of IP datagrams and ARP requests and replies on IEEE 802 networks other than Ethernet is specified by the Subnetwork Access Protocol (SNAP). By default, standard Ethernet-style ARP encapsulation (represented by the arpa keyword) is enabled on the IP interface.

ARP entries added manually to the table do not age and must be manually removed.

For CLI procedures, see the Cisco IOS Release 12.2 documentation on Cisco.com.
CHAPTER 6

Configuring Switch-Based Authentication

This chapter describes how to configure switch-based authentication on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Security Command Reference, Release 12.2.

This chapter consists of these sections:

- Preventing Unauthorized Access to Your Switch, page 6-1
- Protecting Access to Privileged EXEC Commands, page 6-2
- Controlling Switch Access with TACACS+, page 6-10
- Controlling Switch Access with RADIUS, page 6-18
- Controlling Switch Access with Kerberos, page 6-40
- Configuring the Switch for Local Authentication and Authorization, page 6-44
- Configuring the Switch for Secure Shell, page 6-45
- Configuring the Switch for Secure Socket Layer HTTP, page 6-50
- Configuring the Switch for Secure Copy Protocol, page 6-57

Preventing Unauthorized Access to Your Switch

You can prevent unauthorized users from reconfiguring your switch and viewing configuration information. Typically, you want network administrators to have access to your switch while you restrict access to users who dial from outside the network through an asynchronous port, connect from outside the network through a serial port, or connect through a terminal or workstation from within the local network.

To prevent unauthorized access into your switch, you should configure one or more of these security features:

- At a minimum, you should configure passwords and privileges at each switch port. These passwords are locally stored on the switch. When users attempt to access the switch through a port or line, they must enter the password specified for the port or line before they can access the switch. For more information, see the “Protecting Access to Privileged EXEC Commands” section on page 6-2.
For an additional layer of security, you can also configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or ports and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair. For more information, see the “Configuring Username and Password Pairs” section on page 6-6.

If you want to use username and password pairs, but you want to store them centrally on a server instead of locally, you can store them in a database on a security server. Multiple networking devices can then use the same database to obtain user authentication (and, if necessary, authorization) information. For more information, see the “Controlling Switch Access with TACACS+” section on page 6-10.

Protecting Access to Privileged EXEC Commands

A simple way of providing terminal access control in your network is to use passwords and assign privilege levels. Password protection restricts access to a network or network device. Privilege levels define what commands users can enter after they have logged into a network device.

These sections contain this configuration information:

- Default Password and Privilege Level Configuration, page 6-2
- Setting or Changing a Static Enable Password, page 6-3
- Protecting Enable and Enable Secret Passwords with Encryption, page 6-3
- Disabling Password Recovery, page 6-5
- Setting a Telnet Password for a Terminal Line, page 6-6
- Configuring Username and Password Pairs, page 6-6
- Configuring Multiple Privilege Levels, page 6-7

Default Password and Privilege Level Configuration

Table 6-1 shows the default password and privilege level configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is not encrypted in the configuration file.</td>
</tr>
<tr>
<td>Enable secret password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is encrypted before it is written to the configuration file.</td>
</tr>
<tr>
<td>Line password</td>
<td>No password is defined.</td>
</tr>
</tbody>
</table>

Protecting Access to Privileged EXEC Commands

A simple way of providing terminal access control in your network is to use passwords and assign privilege levels. Password protection restricts access to a network or network device. Privilege levels define what commands users can enter after they have logged into a network device.

These sections contain this configuration information:

- Default Password and Privilege Level Configuration, page 6-2
- Setting or Changing a Static Enable Password, page 6-3
- Protecting Enable and Enable Secret Passwords with Encryption, page 6-3
- Disabling Password Recovery, page 6-5
- Setting a Telnet Password for a Terminal Line, page 6-6
- Configuring Username and Password Pairs, page 6-6
- Configuring Multiple Privilege Levels, page 6-7

Default Password and Privilege Level Configuration

Table 6-1 shows the default password and privilege level configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is not encrypted in the configuration file.</td>
</tr>
<tr>
<td>Enable secret password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is encrypted before it is written to the configuration file.</td>
</tr>
<tr>
<td>Line password</td>
<td>No password is defined.</td>
</tr>
</tbody>
</table>
Setting or Changing a Static Enable Password

The enable password controls access to the privileged EXEC mode. Beginning in privileged EXEC mode, follow these steps to set or change a static enable password:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>enable password password</td>
<td>Define a new password or change an existing password for access to privileged EXEC mode. By default, no password is defined. For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. It can contain the question mark (?) character if you precede the question mark with the key combination Ctrl-v when you create the password; for example, to create the password abe?123, do this: Enter abc. Enter Ctrl-v. Enter ?123. When the system prompts you to enter the enable password, you need not precede the question mark with the Ctrl-v; you can simply enter abe?123 at the password prompt.</td>
</tr>
</tbody>
</table>

To remove the password, use the no enable password global configuration command.

This example shows how to change the enable password to 1lu2c3k4y5. The password is not encrypted and provides access to level 15 (traditional privileged EXEC mode access):

```
Switch(config)# enable password 1lu2c3k4y5
```

Protecting Enable and Enable Secret Passwords with Encryption

To provide an additional layer of security, particularly for passwords that cross the network or that are stored on a Trivial File Transfer Protocol (TFTP) server, you can use either the enable password or enable secret global configuration commands. Both commands accomplish the same thing; that is, you can establish an encrypted password that users must enter to access privileged EXEC mode (the default) or any privilege level you specify.

We recommend that you use the enable secret command because it uses an improved encryption algorithm.

If you configure the enable secret command, it takes precedence over the enable password command; the two commands cannot be in effect simultaneously.
Beginning in privileged EXEC mode, follow these steps to configure encryption for enable and enable secret passwords:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>enable password [level level] {password</td>
</tr>
<tr>
<td></td>
<td>Define a new password or change an existing password</td>
</tr>
<tr>
<td></td>
<td>for access to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>enable secret [level level] {password</td>
</tr>
<tr>
<td></td>
<td>Define a secret password, which is saved using a</td>
</tr>
<tr>
<td></td>
<td>nonreversible encryption method.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For level, the range is from 0 to 15. Level</td>
</tr>
<tr>
<td></td>
<td>1 is normal user EXEC mode privileges. The default</td>
</tr>
<tr>
<td></td>
<td>level is 15 (privileged EXEC mode privileges).</td>
</tr>
<tr>
<td></td>
<td>(Optional) For password, specify a string from 1 to</td>
</tr>
<tr>
<td></td>
<td>25 alphanumeric characters. The string cannot start</td>
</tr>
<tr>
<td></td>
<td>with a number, is case sensitive, and allows spaces</td>
</tr>
<tr>
<td></td>
<td>but ignores leading spaces. By default, no password</td>
</tr>
<tr>
<td></td>
<td>is defined.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For encryption-type, only type 5, a Cisco</td>
</tr>
<tr>
<td></td>
<td>proprietary encryption algorithm, is available. If</td>
</tr>
<tr>
<td></td>
<td>you specify an encryption type, you must provide an</td>
</tr>
<tr>
<td></td>
<td>encrypted password—an encrypted password that you</td>
</tr>
<tr>
<td></td>
<td>copy from another switch configuration.</td>
</tr>
<tr>
<td>Note</td>
<td>If you specify an encryption type and then enter a</td>
</tr>
<tr>
<td></td>
<td>clear text password, you cannot re-enter privileged</td>
</tr>
<tr>
<td></td>
<td>EXEC mode. You cannot recover a lost encrypted</td>
</tr>
<tr>
<td></td>
<td>password by any method.</td>
</tr>
<tr>
<td></td>
<td>Step 3</td>
</tr>
<tr>
<td>Step 3</td>
<td>service password-encryption</td>
</tr>
<tr>
<td></td>
<td>(Optional) Encrypt the password when the password</td>
</tr>
<tr>
<td></td>
<td>is defined or when the configuration is written.</td>
</tr>
<tr>
<td></td>
<td>Encryption prevents the password from being readable</td>
</tr>
<tr>
<td></td>
<td>in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Step 4</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Step 5</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

If both the enable and enable secret passwords are defined, users must enter the enable secret password.

Use the level keyword to define a password for a specific privilege level. After you specify the level and set a password, give the password only to users who need to have access at this level. Use the privilege level global configuration command to specify commands accessible at various levels. For more information, see the “Configuring Multiple Privilege Levels” section on page 6-7.

If you enable password encryption, it applies to all passwords including username passwords, authentication key passwords, the privileged command password, and console and virtual terminal line passwords.

To remove a password and level, use the no enable password [level level] or no enable secret [level level] global configuration command. To disable password encryption, use the no service password-encryption global configuration command.
This example shows how to configure the encrypted password 1FaD0$Xyi5Rkl3LoyxzS8 for privilege level 2:

```
Switch(config)# enable secret level 2 5 $1$FaD0$Xyi5Rkl3LoyxzS8
```

Disabling Password Recovery

By default, any end user with physical access to the switch can recover from a lost password by interrupting the bootup process while the switch is powering on and then by entering a new password.

The password-recovery disable feature protects access to the switch password by disabling part of this functionality. When this feature is enabled, the end user can interrupt the bootup process only by agreeing to set the system back to the default configuration. With password recovery disabled, you can still interrupt the bootup process and change the password, but the configuration file (config.text) and the VLAN database file (vlan.dat) are deleted.

If you disable password recovery, we recommend that you keep a backup copy of the configuration file on a secure server in case the end user interrupts the bootup process and sets the system back to default values. Do not keep a backup copy of the configuration file on the switch. If the switch is operating in VTP transparent mode, we recommend that you also keep a backup copy of the VLAN database file on a secure server. When the switch is returned to the default system configuration, you can download the saved files to the switch by using the Xmodem protocol. For more information, see the “Recovering from a Lost or Forgotten Password” section on page 48-3.

Beginning in privileged EXEC mode, follow these steps to disable password recovery:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>no service password-recovery</td>
<td>Disable password recovery. This setting is saved in an area of the flash memory that is accessible by the bootloader and the Cisco IOS image, but it is not part of the file system and is not accessible by any user.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show version</td>
<td>Verify the configuration by checking the last few lines of the command output.</td>
</tr>
</tbody>
</table>

To re-enable password recovery, use the `service password-recovery` global configuration command.

Disabling password recovery will not work if you have set the switch to boot up manually by using the `boot manual` global configuration command. This command produces the bootloader prompt (`switch:`) after the switch is power cycled.
Chapter 6 Configuring Switch-Based Authentication

Setting a Telnet Password for a Terminal Line

When you power-up your switch for the first time, an automatic setup program runs to assign IP information and to create a default configuration for continued use. The setup program also prompts you to configure your switch for Telnet access through a password. If you did not configure this password during the setup program, you can configure it now through the command-line interface (CLI).

Beginning in privileged EXEC mode, follow these steps to configure your switch for Telnet access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Attach a PC or workstation with emulation software to the switch console port, or attach a PC to the Ethernet management port. The default data characteristics of the console port are 9600, 8, 1, no parity. You might need to press the Return key several times to see the command-line prompt.</td>
</tr>
<tr>
<td>Step 2</td>
<td>enable password password</td>
</tr>
<tr>
<td></td>
<td>Enter privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>line vty 0 15</td>
</tr>
<tr>
<td></td>
<td>Configure the number of Telnet sessions (lines), and enter line configuration mode. There are 16 possible sessions on a command-capable switch. The 0 and 15 mean that you are configuring all 16 possible Telnet sessions.</td>
</tr>
<tr>
<td>Step 5</td>
<td>password password</td>
</tr>
<tr>
<td></td>
<td>Enter a Telnet password for the line or lines.</td>
</tr>
<tr>
<td></td>
<td>For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>The password is listed under the command line vty 0 15.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the password, use the no password global configuration command.

This example shows how to set the Telnet password to let45me67in89:

```
Switch(config)# line vty 10
Switch(config-line)# password let45me67in89
```

Configuring Username and Password Pairs

You can configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or ports and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair.
Beginning in privileged EXEC mode, follow these steps to establish a username-based authentication system that requests a login username and a password:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 username name [privilege level] {password encryption-type password}</td>
<td>Enter the username, privilege level, and password for each user.</td>
</tr>
<tr>
<td></td>
<td>• For name, specify the user ID as one word. Spaces and quotation marks are not allowed.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For level, specify the privilege level the user has after gaining access. The range is 0 to 15. Level 15 gives privileged EXEC mode access. Level 1 gives user EXEC mode access.</td>
</tr>
<tr>
<td></td>
<td>• For encryption-type, enter 0 to specify that an unencrypted password will follow. Enter 7 to specify that a hidden password will follow.</td>
</tr>
<tr>
<td></td>
<td>• For password, specify the password the user must enter to gain access to the switch. The password must be from 1 to 25 characters, can contain embedded spaces, and must be the last option specified in the username command.</td>
</tr>
<tr>
<td>Step 3 line console 0</td>
<td>Enter line configuration mode, and configure the console port (line 0) or the VTY lines (line 0 to 15).</td>
</tr>
<tr>
<td>Step 4 login local</td>
<td>Enable local password checking at login time. Authentication is based on the username specified in Step 2.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable username authentication for a specific user, use the no username name global configuration command. To disable password checking and allow connections without a password, use the no login line configuration command.

Configuring Multiple Privilege Levels

By default, the Cisco IOS software has two modes of password security: user EXEC and privileged EXEC. You can configure up to 16 hierarchical levels of commands for each mode. By configuring multiple passwords, you can allow different sets of users to have access to specified commands.

For example, if you want many users to have access to the clear line command, you can assign it level 2 security and distribute the level 2 password fairly widely. But if you want more restricted access to the configure command, you can assign it level 3 security and distribute that password to a more restricted group of users.

These sections contain this configuration information:

- Setting the Privilege Level for a Command, page 6-8
- Changing the Default Privilege Level for Lines, page 6-9
- Logging into and Exiting a Privilege Level, page 6-9
Setting the Privilege Level for a Command

Beginning in privileged EXEC mode, follow these steps to set the privilege level for a command mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>privilege mode level level command</code></td>
</tr>
<tr>
<td></td>
<td>• For <code>mode</code>, enter <code>configure</code> for global configuration mode, <code>exec</code> for EXEC mode, <code>interface</code> for interface configuration mode, or <code>line</code> for line configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• For <code>level</code>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the <code>enable</code> password.</td>
</tr>
<tr>
<td></td>
<td>• For <code>command</code>, specify the command to which you want to restrict access.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>enable password level level password</code></td>
</tr>
<tr>
<td></td>
<td>• For <code>level</code>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges.</td>
</tr>
<tr>
<td></td>
<td>• For <code>password</code>, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config</code> or <code>show privilege</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

When you set a command to a privilege level, all commands whose syntax is a subset of that command are also set to that level. For example, if you set the `show ip traffic` command to level 15, the `show ip` commands and `show ip` commands are automatically set to privilege level 15 unless you set them individually to different levels.

To return to the default privilege for a given command, use the `no privilege mode level level command` global configuration command.

This example shows how to set the `configure` command to privilege level 14 and define `SecretPswd14` as the password users must enter to use level 14 commands:

```
Switch(config)# privilege exec level 14 configure
Switch(config)# enable password level 14 SecretPswd14
```
Changing the Default Privilege Level for Lines

Beginning in privileged EXEC mode, follow these steps to change the default privilege level for a line:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>line vty line</td>
<td>Select the virtual terminal line on which to restrict access.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>privilege level level</td>
<td>Change the default privilege level for the line.</td>
</tr>
<tr>
<td></td>
<td>For level, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the enable password.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>or</td>
<td>The first command shows the password and access level configuration.</td>
</tr>
<tr>
<td>show privilege</td>
<td>The second command shows the privilege level configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Users can override the privilege level you set using the privilege level line configuration command by logging in to the line and enabling a different privilege level. They can lower the privilege level by using the disable command. If users know the password to a higher privilege level, they can use that password to enable the higher privilege level. You might specify a high level or privilege level for your console line to restrict line usage.

To return to the default line privilege level, use the no privilege level line configuration command.

Logging into and Exiting a Privilege Level

Beginning in privileged EXEC mode, follow these steps to log in to a specified privilege level and to exit to a specified privilege level:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable level</td>
<td>Log in to a specified privilege level.</td>
</tr>
<tr>
<td></td>
<td>For level, the range is 0 to 15.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>disable level</td>
<td>Exit to a specified privilege level.</td>
</tr>
<tr>
<td></td>
<td>For level, the range is 0 to 15.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with TACACS+

This section describes how to enable and configure Terminal Access Controller Access Control System Plus (TACACS+), which provides detailed accounting information and flexible administrative control over authentication and authorization processes. TACACS+ is facilitated through authentication, authorization, accounting (AAA) and can be enabled only through AAA commands.

Note

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Security Command Reference, Release 12.2.

These sections contain this configuration information:

- Understanding TACACS+, page 6-10
- TACACS+ Operation, page 6-12
- Configuring TACACS+, page 6-12
- Displaying the TACACS+ Configuration, page 6-17

Understanding TACACS+

TACACS+ is a security application that provides centralized validation of users attempting to gain access to your switch. TACACS+ services are maintained in a database on a TACACS+ daemon typically running on a UNIX or Windows NT workstation. You should have access to and should configure a TACACS+ server before the configuring TACACS+ features on your switch.

Note

We recommend a redundant connection between a switch stack and the TACACS+ server. This is to help ensure that the TACACS+ server remains accessible in case one of the connected stack members is removed from the switch stack.

TACACS+ provides for separate and modular authentication, authorization, and accounting facilities. TACACS+ allows for a single access control server (the TACACS+ daemon) to provide each service—authentication, authorization, and accounting—individually. Each service can be tied into its own database to take advantage of other services available on that server or on the network, depending on the capabilities of the daemon.

The goal of TACACS+ is to provide a method for managing multiple network access points from a single management service. Your switch can be a network access server along with other Cisco routers and access servers. A network access server provides connections to a single user, to a network or subnetwork, and to interconnected networks as shown in Figure 6-1.
TACACS+, administered through the AAA security services, can provide these services:

- Authentication—Provides complete control of authentication through login and password dialog, challenge and response, and messaging support.

 The authentication facility can conduct a dialog with the user (for example, after a username and password are provided, to challenge a user with several questions, such as home address, mother’s maiden name, service type, and social security number). The TACACS+ authentication service can also send messages to user screens. For example, a message could notify users that their passwords must be changed because of the company’s password aging policy.

- Authorization—Provides fine-grained control over user capabilities for the duration of the user’s session, including but not limited to setting autocommands, access control, session duration, or protocol support. You can also enforce restrictions on what commands a user can execute with the TACACS+ authorization feature.

- Accounting—Collects and sends information used for billing, auditing, and reporting to the TACACS+ daemon. Network managers can use the accounting facility to track user activity for a security audit or to provide information for user billing. Accounting records include user identities, start and stop times, executed commands (such as PPP), number of packets, and number of bytes.

The TACACS+ protocol provides authentication between the switch and the TACACS+ daemon, and it ensures confidentiality because all protocol exchanges between the switch and the TACACS+ daemon are encrypted.

You need a system running the TACACS+ daemon software to use TACACS+ on your switch.
TACACS+ Operation

When a user attempts a simple ASCII login by authenticating to a switch using TACACS+, this process occurs:

1. When the connection is established, the switch contacts the TACACS+ daemon to obtain a username prompt to show to the user. The user enters a username, and the switch then contacts the TACACS+ daemon to obtain a password prompt. The switch displays the password prompt to the user, the user enters a password, and the password is then sent to the TACACS+ daemon.

 TACACS+ allows a dialog between the daemon and the user until the daemon receives enough information to authenticate the user. The daemon prompts for a username and password combination, but can include other items, such as the user’s mother’s maiden name.

2. The switch eventually receives one of these responses from the TACACS+ daemon:
 - ACCEPT—The user is authenticated and service can begin. If the switch is configured to require authorization, authorization begins at this time.
 - REJECT—The user is not authenticated. The user can be denied access or is prompted to retry the login sequence, depending on the TACACS+ daemon.
 - ERROR—An error occurred at some time during authentication with the daemon or in the network connection between the daemon and the switch. If an ERROR response is received, the switch typically tries to use an alternative method for authenticating the user.
 - CONTINUE—The user is prompted for additional authentication information.

 After authentication, the user undergoes an additional authorization phase if authorization has been enabled on the switch. Users must first successfully complete TACACS+ authentication before proceeding to TACACS+ authorization.

3. If TACACS+ authorization is required, the TACACS+ daemon is again contacted, and it returns an ACCEPT or REJECT authorization response. If an ACCEPT response is returned, the response contains data in the form of attributes that direct the EXEC or NETWORK session for that user and the services that the user can access:
 - Telnet, Secure Shell (SSH), rlogin, or privileged EXEC services
 - Connection parameters, including the host or client IP address, access list, and user timeouts

Configuring TACACS+

This section describes how to configure your switch to support TACACS+. At a minimum, you must identify the host or hosts maintaining the TACACS+ daemon and define the method lists for TACACS+ authentication. You can optionally define method lists for TACACS+ authorization and accounting. A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used, thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.

These sections contain this configuration information:
- Default TACACS+ Configuration, page 6-13
- Identifying the TACACS+ Server Host and Setting the Authentication Key, page 6-13
- Configuring TACACS+ Login Authentication, page 6-14
Default TACACS+ Configuration

TACACS+ and AAA are disabled by default.

To prevent a lapse in security, you cannot configure TACACS+ through a network management application. When enabled, TACACS+ can authenticate users accessing the switch through the CLI.

Note
Although TACACS+ configuration is performed through the CLI, the TACACS+ server authenticates HTTP connections that have been configured with a privilege level of 15.

Identifying the TACACS+ Server Host and Setting the Authentication Key

You can configure the switch to use a single server or AAA server groups to group existing server hosts for authentication. You can group servers to select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list and contains the list of IP addresses of the selected server hosts.

Beginning in privileged EXEC mode, follow these steps to identify the IP host or host maintaining TACACS+ server and optionally set the encryption key:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | tacacs-server host hostname [port integer] [timeout integer] [key string] | Identify the IP host or hosts maintaining a TACACS+ server. Enter this command multiple times to create a list of preferred hosts. The software searches for hosts in the order in which you specify them.
 - For hostname, specify the name or IP address of the host.
 - (Optional) For port integer, specify a server port number. The default is port 49. The range is 1 to 65535.
 - (Optional) For timeout integer, specify a time in seconds the switch waits for a response from the daemon before it times out and declares an error. The default is 5 seconds. The range is 1 to 1000 seconds.
 - (Optional) For key string, specify the encryption key for encrypting and decrypting all traffic between the switch and the TACACS+ daemon. You must configure the same key on the TACACS+ daemon for encryption to be successful. |
| Step 3 | aaa new-model | Enable AAA. |
| Step 4 | aaa group server tacacs+ group-name | (Optional) Define the AAA server-group with a group name. This command puts the switch in a server group subconfiguration mode. |
| Step 5 | server ip-address | (Optional) Associate a particular TACACS+ server with the defined server group. Repeat this step for each TACACS+ server in the AAA server group. Each server in the group must be previously defined in Step 2. |
Controlling Switch Access with TACACS+

To remove the specified TACACS+ server name or address, use the `no tacacs-server host hostname` global configuration command. To remove a server group from the configuration list, use the `no aaa group server tacacs+ group-name` global configuration command. To remove the IP address of a TACACS+ server, use the `no server ip-address` server group subconfiguration command.

Configuring TACACS+ Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various ports. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific port before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all ports except those that have a named method list explicitly defined. A defined method list overrides the default method list.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure login authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>

To remove the specified TACACS+ server name or address, use the `no tacacs-server host hostname` global configuration command. To remove a server group from the configuration list, use the `no aaa group server tacacs+ group-name` global configuration command. To remove the IP address of a TACACS+ server, use the `no server ip-address` server group subconfiguration command.
Chapter 6 Configuring Switch-Based Authentication

Controlling Switch Access with TACACS+

Step 3

aaa authentication login {default | list-name} method1 [method2...]

Create a login authentication method list.

- To create a default list that is used when a named list is not specified in the login authentication command, use the default keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all ports.
- For list-name, specify a character string to name the list you are creating.
- For method1..., specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.

Select one of these methods:

- enable—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the enable password global configuration command.
- group tacacs+—Uses TACACS+ authentication. Before you can use this authentication method, you must configure the TACACS+ server. For more information, see the “Identifying the TACACS+ Server Host and Setting the Authentication Key” section on page 6-13.
- line—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the password password line configuration command.
- local—Use the local username database for authentication. You must enter username information in the database. Use the username password global configuration command.
- local-case—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the username name password global configuration command.
- none—Do not use any authentication for login.

Step 4

line [console | tty | vty] line-number [ending-line-number]

Enter line configuration mode, and configure the lines to which you want to apply the authentication list.

Step 5

login authentication {default | list-name}

Apply the authentication list to a line or set of lines.

- If you specify default, use the default list created with the aaa authentication login command.
- For list-name, specify the list created with the aaa authentication login command.

Step 6

copy running-config startup-config

(Optional) Save your entries in the configuration file.

Step 7

disable

Return to privileged EXEC mode.

Step 8

show running-config

Verify your entries.

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Create a login authentication method list.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enter line configuration mode, and configure the lines to which you want to apply the authentication list.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Apply the authentication list to a line or set of lines.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable AAA, use the no aaa new-model global configuration command. To disable AAA authentication, use the no aaa authentication login {default | list-name} method1 [method2...] global configuration command. To disable TACACS+ authentication for logins or to return to the default value, use the no login authentication {default | list-name} line configuration command.
Controlling Switch Access with TACACS+

To secure the switch for HTTP access by using AAA methods, you must configure the switch with the `ip http authentication aaa` global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.

For more information about the `ip http authentication` command, see the Cisco IOS Security Command Reference, Release 12.2.

Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is located either in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the `aaa authorization` global configuration command with the `tacacs+` keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The `aaa authorization exec tacacs+ local` command sets these authorization parameters:

- Use TACACS+ for privileged EXEC access authorization if authentication was performed by using TACACS+.
- Use the local database if authentication was not performed by using TACACS+.

Note: Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Beginning in privileged EXEC mode, follow these steps to specify TACACS+ authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>aaa authorization network tacacs+</code></td>
<td>Configure the switch for user TACACS+ authorization for all network-related service requests.</td>
</tr>
</tbody>
</table>
| Step 3: `aaa authorization exec tacacs+` | Configure the switch for user TACACS+ authorization if the user has privileged EXEC access.
 The `exec` keyword might return user profile information (such as `autocommand` information). |
| Step 4: `end` | Return to privileged EXEC mode. |
| Step 5: `show running-config` | Verify your entries. |
| Step 6: `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |

To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.
Starting TACACS+ Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable TACACS+ accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>aaa accounting network start-stop tacacs+</td>
<td>Enable TACACS+ accounting for all network-related service requests.</td>
</tr>
<tr>
<td>3</td>
<td>aaa accounting exec start-stop tacacs+</td>
<td>Enable TACACS+ accounting to send a start-record accounting notice at the beginning of a privileged EXEC process and a stop-record at the end.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable accounting, use the `no aaa accounting {network | exec} {start-stop} method1...` global configuration command.

Establishing a Session with a Router if the AAA Server is Unreachable

The `aaa accounting system guarantee-first` command guarantees system accounting as the first record, which is the default condition. In some situations, users might be prevented from starting a session on the console or terminal connection until after the system reloads, which can take more than 3 minutes.

To establish a console or Telnet session with the router if the AAA server is unreachable when the router reloads, use the `no aaa accounting system guarantee-first` command.

Displaying the TACACS+ Configuration

To display TACACS+ server statistics, use the `show tacacs` privileged EXEC command.
Controlling Switch Access with RADIUS

This section describes how to enable and configure the RADIUS, which provides detailed accounting information and flexible administrative control over authentication and authorization processes. RADIUS is facilitated through AAA and can be enabled only through AAA commands.

These sections contain this configuration information:

- Understanding RADIUS, page 6-18
- RADIUS Operation, page 6-19
- RADIUS Change of Authorization, page 6-20
- Configuring RADIUS, page 6-27
- Displaying the RADIUS Configuration, page 6-40

Understanding RADIUS

RADIUS is a distributed client/server system that secures networks against unauthorized access. RADIUS clients run on supported Cisco routers and switches. Clients send authentication requests to a central RADIUS server, which contains all user authentication and network service access information. The RADIUS host is normally a multiuser system running RADIUS server software from Cisco (Cisco Secure Access Control Server Version 3.0), Livingston, Merit, Microsoft, or another software provider. For more information, see the RADIUS server documentation.

Note

We recommend a redundant connection between a switch stack and the RADIUS server. This is to help ensure that the RADIUS server remains accessible in case one of the connected stack members is removed from the switch stack.

Use RADIUS in these network environments that require access security:

- Networks with multiple-vendor access servers, each supporting RADIUS. For example, access servers from several vendors use a single RADIUS server-based security database. In an IP-based network with multiple vendors’ access servers, dial-in users are authenticated through a RADIUS server that has been customized to work with the Kerberos security system.
- Turnkey network security environments in which applications support the RADIUS protocol, such as in an access environment that uses a smart card access control system. In one case, RADIUS has been used with Enigma’s security cards to validates users and to grant access to network resources.
- Networks already using RADIUS. You can add a Cisco switch containing a RADIUS client to the network. This might be the first step when you make a transition to a TACACS+ server. See Figure 6-2 on page 6-19.
- Network in which the user must only access a single service. Using RADIUS, you can control user access to a single host, to a single utility such as Telnet, or to the network through a protocol such as IEEE 802.1x. For more information about this protocol, see Chapter 9, “Configuring IEEE 802.1x Port-Based Authentication.”
- Networks that require resource accounting. You can use RADIUS accounting independently of RADIUS authentication or authorization. The RADIUS accounting functions allow data to be sent at the start and end of services, showing the amount of resources (such as time, packets, bytes, and so forth) used during the session. An Internet service provider might use a freeware-based version of RADIUS access control and accounting software to meet special security and billing needs.
RADIUS is not suitable in these network security situations:

- Multiprotocol access environments. RADIUS does not support AppleTalk Remote Access (ARA), NetBIOS Frame Control Protocol (NBFCP), NetWare Asynchronous Services Interface (NASI), or X.25 PAD connections.
- Switch-to-switch or router-to-router situations. RADIUS does not provide two-way authentication. RADIUS can be used to authenticate from one device to a non-Cisco device if the non-Cisco device requires authentication.
- Networks using a variety of services. RADIUS generally binds a user to one service model.

Figure 6-2 Transitioning from RADIUS to TACACS+ Services

RADIUS Operation

When a user attempts to log in and authenticate to a switch that is access controlled by a RADIUS server, these events occur:

1. The user is prompted to enter a username and password.
2. The username and encrypted password are sent over the network to the RADIUS server.
3. The user receives one of these responses from the RADIUS server:
 a. ACCEPT—The user is authenticated.
 b. REJECT—The user is either not authenticated and is prompted to re-enter the username and password, or access is denied.
 c. CHALLENGE—A challenge requires additional data from the user.
 d. CHALLENGE PASSWORD—A response requests the user to select a new password.
The ACCEPT or REJECT response is bundled with additional data that is used for privileged EXEC or network authorization. Users must first successfully complete RADIUS authentication before proceeding to RADIUS authorization, if it is enabled. The additional data included with the ACCEPT or REJECT packets includes these items:

- Telnet, SSH, rlogin, or privileged EXEC services
- Connection parameters, including the host or client IP address, access list, and user timeouts

RADIUS Change of Authorization

This section provides an overview of the RADIUS interface including available primitives and how they are used during a Change of Authorization (CoA).

- **Overview, page 6-20**
- **Change-of-Authorization Requests, page 6-20**
- **CoA Request Response Code, page 6-22**
- **CoA Request Commands, page 6-23**
- **Session Reauthentication, page 6-24**
- **Stacking Guidelines for Session Termination, page 6-26**

Overview

A standard RADIUS interface is typically used in a pulled model where the request originates from a network attached device and the response come from the queried servers. Catalyst switches support the RADIUS Change of Authorization (CoA) extensions defined in RFC 5176 that are typically used in a pushed model and allow for the dynamic reconfiguring of sessions from external authentication, authorization, and accounting (AAA) or policy servers.

Beginning with Cisco IOS Release 12.2(52)SE, the switch supports these per-session CoA requests:

- Session reauthentication
- Session termination
- Session termination with port shutdown
- Session termination with port bounce

This feature is integrated with the Cisco Secure Access Control Server (ACS) 5.1.

The RADIUS interface is enabled by default on Catalyst switches. However, some basic configuration is required for the following attributes:

- Security and Password—refer to the “Preventing Unauthorized Access to Your Switch” section in the Configuring Switch-Based Authentication chapter in the *Catalyst 3750 Switch Software Configuration Guide, 12.2(50)SE*.
- Accounting—refer to the “Starting RADIUS Accounting” section in the Configuring Switch-Based Authentication chapter in the *Catalyst 3750 Switch Software Configuration Guide, 12.2(50)SE*.

Change-of-Authorization Requests

Change of Authorization (CoA) requests, as described in RFC 5176, are used in a push model to allow for session identification, host reauthentication, and session termination. The model is comprised of one request (CoA-Request) and two possible response codes.
CoA acknowledgement (ACK) [CoA-ACK]
CoA non-acknowledgement (NAK) [CoA-NAK]

The request is initiated from a CoA client (typically a RADIUS or policy server) and directed to the switch that acts as a listener.

This section includes these topics:
- CoA Request Response Code
- CoA Request Commands
- Session Reauthentication

RFC 5176 Compliance

The Disconnect Request message, which is also referred to as Packet of Disconnect (POD), is supported by the switch for session termination.

Table 6-2 shows the IETF attributes are supported for this feature.

<table>
<thead>
<tr>
<th>Attribute Number</th>
<th>Attribute Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>State</td>
</tr>
<tr>
<td>31</td>
<td>Calling-Station-ID</td>
</tr>
<tr>
<td>44</td>
<td>Acct-Session-ID</td>
</tr>
<tr>
<td>80</td>
<td>Message-Authenticator</td>
</tr>
<tr>
<td>101</td>
<td>Error-Cause</td>
</tr>
</tbody>
</table>

Table 6-3 shows the possible values for the Error-Cause attribute.

<table>
<thead>
<tr>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Residual Session Context Removed</td>
</tr>
<tr>
<td>202</td>
<td>Invalid EAP Packet (Ignored)</td>
</tr>
<tr>
<td>401</td>
<td>Unsupported Attribute</td>
</tr>
<tr>
<td>402</td>
<td>Missing Attribute</td>
</tr>
<tr>
<td>403</td>
<td>NAS Identification Mismatch</td>
</tr>
<tr>
<td>404</td>
<td>Invalid Request</td>
</tr>
<tr>
<td>405</td>
<td>Unsupported Service</td>
</tr>
<tr>
<td>406</td>
<td>Unsupported Extension</td>
</tr>
<tr>
<td>407</td>
<td>Invalid Attribute Value</td>
</tr>
<tr>
<td>501</td>
<td>Administratively Prohibited</td>
</tr>
<tr>
<td>502</td>
<td>Request Not Routable (Proxy)</td>
</tr>
<tr>
<td>503</td>
<td>Session Context Not Found</td>
</tr>
<tr>
<td>504</td>
<td>Session Context Not Removable</td>
</tr>
</tbody>
</table>
Controlling Switch Access with RADIUS

Chapter 6 Configuring Switch-Based Authentication

Table 6-3 Error-Cause Values (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
<td>Other Proxy Processing Error</td>
</tr>
<tr>
<td>506</td>
<td>Resources Unavailable</td>
</tr>
<tr>
<td>507</td>
<td>Request Initiated</td>
</tr>
<tr>
<td>508</td>
<td>Multiple Session Selection Unsupported</td>
</tr>
</tbody>
</table>

Preconditions

To use the CoA interface, a session must already exist on the switch. CoA can be used to identify a session and enforce a disconnect request. The update affects only the specified session.

CoA Request Response Code

The CoA Request response code can be used to convey a command to the switch. The supported commands are listed in Table 6-4 on page 6-23.

Session Identification

For disconnect and CoA requests targeted at a particular session, the switch locates the session based on one or more of the following attributes:

- Calling-Station-Id (IETF attribute #31 which contains the host MAC address)
- Audit-Session-Id (Cisco VSA)
- Acct-Session-Id (IETF attribute #44)

Unless all session identification attributes included in the CoA message match the session, the switch returns a Disconnect-NAK or CoA-NAK with the “Invalid Attribute Value” error-code attribute.

For disconnect and CoA requests targeted to a particular session, any one of the following session identifiers can be used:

- Calling-Station-ID (IETF attribute #31, which should contain the MAC address)
- Audit-Session-ID (Cisco vendor-specific attribute)
- Accounting-Session-ID (IETF attribute #44).

If more than one session identification attribute is included in the message, all the attributes must match the session or the switch returns a Disconnect- negative acknowledgement (NAK) or CoA-NAK with the error code “Invalid Attribute Value.”
The packet format for a CoA Request code as defined in RFC 5176 consists of the fields: Code, Identifier, Length, Authenticator, and Attributes in Type:Length:Value (TLV) format.

```
+-------------+-------------+-------------+-------------+-------------+
<table>
<thead>
<tr>
<th>Code</th>
<th>Identifier</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
+-------------+-------------+-------------+-------------+-------------+-------------+
```

The attributes field is used to carry Cisco VSAs.

CoA ACK Response Code

If the authorization state is changed successfully, a positive acknowledgement (ACK) is sent. The attributes returned within CoA ACK will vary based on the CoA Request and are discussed in individual CoA Commands.

CoA NAK Response Code

A negative acknowledgement (NAK) indicates a failure to change the authorization state and can include attributes that indicate the reason for the failure. Use `show` commands to verify a successful CoA.

CoA Request Commands

This section includes:

- Session Reauthentication
- Session Reauthentication in a Switch Stack
- Session Termination
- CoA Disconnect-Request
- CoA Request: Disable Host Port
- CoA Request: Bounce-Port

Beginning with Cisco IOS Release 12.2(52)SE, the switch supports the commands shown in Table 6-4.

Table 6-4 CoA Commands Supported on the Switch

<table>
<thead>
<tr>
<th>Command</th>
<th>Cisco VSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reauthenticate host</td>
<td><code>Cisco:Avpair="subscriber:command=reauthenticate"</code></td>
</tr>
<tr>
<td>Terminate session</td>
<td>This is a standard disconnect request that does not require a VSA.</td>
</tr>
<tr>
<td>Bounce host port</td>
<td><code>Cisco:Avpair="subscriber:command=bounce-host-port"</code></td>
</tr>
<tr>
<td>Disable host port</td>
<td><code>Cisco:Avpair="subscriber:command=disable-host-port"</code></td>
</tr>
</tbody>
</table>

1. All CoA commands must include the session identifier between the switch and the CoA client.
Session Reauthentication

The AAA server typically generates a session reauthentication request when a host with an unknown identity or posture joins the network and is associated with a restricted access authorization profile (such as a guest VLAN). A reauthentication request allows the host to be placed in the appropriate authorization group when its credentials are known.

To initiate session authentication, the AAA server sends a standard CoA-Request message which contains a Cisco vendor-specific attribute (VSA) in this form:

```
Cisco:Avpair="subscriber:command=reauthenticate"
```

and one or more session identification attributes.

The current session state determines the switch response to the message. If the session is currently authenticated by IEEE 802.1x, the switch responds by sending an EAPoL\(^1\)-RequestId message (see footnote 1 below) to the server.

If the session is currently authenticated by MAC authentication bypass (MAB), the switch sends an access-request to the server, passing the same identity attributes used for the initial successful authentication.

If session authentication is in progress when the switch receives the command, the switch terminates the process, and restarts the authentication sequence, starting with the method configured to be attempted first.

If the session is not yet authorized, or is authorized via guest VLAN, or critical VLAN, or similar policies, the reauthentication message restarts the access control methods, beginning with the method configured to be attempted first. The current authorization of the session is maintained until the reauthentication leads to a different authorization result.

Session Reauthentication in a Switch Stack

When a switch stack receives a session reauthentication message:

- It checkpoints the need for a re-authentication before returning an acknowledgement (ACK).
- It initiates reauthentication for the appropriate session.
- If authentication completes with either success or failure, the signal that triggered the reauthentication is removed from the stack member.
- If the stack master fails before authentication completes, reauthentication is initiated after stack master switch-over based on the original command (which is subsequently removed).
- If the stack master fails before sending an ACK, the new stack master treats the re-transmitted command as a new command.

Session Termination

There are three types of CoA requests that can trigger session termination. A CoA Disconnect-Request terminates the session, without disabling the host port. This command causes re-initialization of the authenticator state machine for the specified host, but does not restrict that host’s access to the network.

To restrict a host’s access to the network, use a CoA Request with the Cisco:Avpair="subscriber:command=disable-host-port" VSA. This command is useful when a host is known to be causing problems on the network, and you need to immediately block network access for the host. When you want to restore network access on the port, re-enable it using a non-RADIUS mechanism.

1. Extensible Authentication Protocol over Lan
When a device with no supplicant, such as a printer, needs to acquire a new IP address (for example, after a VLAN change), terminate the session on the host port with port-bounce (temporarily disable and then re-enable the port).

CoA Disconnect-Request

This command is a standard Disconnect-Request. Because this command is session-oriented, it must be accompanied by one or more of the session identification attributes described in the “Session Identification” section on page 6-22. If the session cannot be located, the switch returns a Disconnect-NAK message with the “Session Context Not Found” error-code attribute. If the session is located, the switch terminates the session. After the session has been completely removed, the switch returns a Disconnect-ACK.

If the switch fails-over to a standby switch before returning a Disconnect-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the session is not found following re-sending, a Disconnect-ACK is sent with the “Session Context Not Found” error-code attribute.

CoA Request: Disable Host Port

This command is carried in a standard CoA-Request message that has this new VSA:

```
Cisco:Avpair="subscriber:command=disable-host-port"
```

Because this command is session-oriented, it must be accompanied by one or more of the session identification attributes described in the “Session Identification” section on page 6-22. If the session cannot be located, the switch returns a CoA-NAK message with the “Session Context Not Found” error-code attribute. If the session is located, the switch disables the hosting port and returns a CoA-ACK message.

If the switch fails before returning a CoA-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the switch fails after returning a CoA-ACK message to the client but before the operation has completed, the operation is restarted on the new active switch.

Note

A Disconnect-Request failure following command re-sending could be the result of either a successful session termination before change-over (if the Disconnect-ACK was not sent) or a session termination by other means (for example, a link failure) that occurred after the original command was issued and before the standby switch became active.

CoA Request: Bounce-Port

This command is carried in a standard CoA-Request message that contains the following new VSA:

```
Cisco:Avpair="subscriber:command=bounce-host-port"
```

Because this command is session-oriented, it must be accompanied by one or more of the session identification attributes described in the “Session Identification” section on page 6-22. If the session cannot be located, the switch returns a CoA-NAK message with the “Session Context Not Found” error-code attribute. If the session is located, the switch disables the hosting port for a period of 10 seconds, re-enables it (port-bounce), and returns a CoA-ACK.

If the switch fails before returning a CoA-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the switch fails after returning a CoA-ACK message to the client but before the operation has completed, the operation is re-started on the new active switch.
Stacking Guidelines for Session Termination

No special handling is required for CoA Disconnect-Request messages in a switch stack.

Stacking Guidelines for CoA-Request Bounce-Port

Because the **bounce-port** command is targeted at a session, not a port, if the session is not found, the command cannot be executed.

When the Auth Manager command handler on the stack master receives a valid **bounce-port** command, it checkpoints the following information before returning a CoA-ACK message:

- the need for a port-bounce
- the port-id (found in the local session context)

The switch initiates a port-bounce (disables the port for 10 seconds, then re-enables it).

If the port-bounce is successful, the signal that triggered the port-bounce is removed from the standby stack master.

If the stack master fails before the port-bounce completes, a port-bounce is initiated after stack master change-over based on the original command (which is subsequently removed).

If the stack master fails before sending a CoA-ACK message, the new stack master treats the re-sent command as a new command.

Stacking Guidelines for CoA-Request Disable-Port

Because the **disable-port** command is targeted at a session, not a port, if the session is not found, the command cannot be executed.

When the Auth Manager command handler on the stack master receives a valid **disable-port** command, it verifies this information before returning a CoA-ACK message:

- the need for a port-disable
- the port-id (found in the local session context)

The switch attempts to disable the port.

If the port-disable operation is successful, the signal that triggered the port-disable is removed from the standby stack master.

If the stack master fails before the port-disable operation completes, the port is disabled after stack master change-over based on the original command (which is subsequently removed).

If the stack master fails before sending a CoA-ACK message, the new stack master treats the re-sent command as a new command.
Configuring RADIUS

This section describes how to configure your switch to support RADIUS. At a minimum, you must identify the host or hosts that run the RADIUS server software and define the method lists for RADIUS authentication. You can optionally define method lists for RADIUS authorization and accounting.

A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used (such as TACACS+ or local username lookup), thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.

You should have access to and should configure a RADIUS server before configuring RADIUS features on your switch.

These sections contain this configuration information:
- Default RADIUS Configuration, page 6-27
- Identifying the RADIUS Server Host, page 6-27 (required)
- Configuring RADIUS Login Authentication, page 6-30 (required)
- Defining AAA Server Groups, page 6-32 (optional)
- Configuring RADIUS Authorization for User Privileged Access and Network Services, page 6-34 (optional)
- Starting RADIUS Accounting, page 6-35 (optional)
- Configuring Settings for All RADIUS Servers, page 6-36 (optional)
- Configuring the Switch to Use Vendor-Specific RADIUS Attributes, page 6-36 (optional)
- Configuring the Switch for Vendor-Proprietary RADIUS Server Communication, page 6-38 (optional)
- Configuring CoA on the Switch, page 6-39
- Monitoring and Troubleshooting CoA Functionality, page 6-40
- Configuring RADIUS Server Load Balancing, page 6-40 (optional)

Default RADIUS Configuration

RADIUS and AAA are disabled by default.

To prevent a lapse in security, you cannot configure RADIUS through a network management application. When enabled, RADIUS can authenticate users accessing the switch through the CLI.

Identifying the RADIUS Server Host

Switch-to-RADIUS-server communication involves several components:
- Hostname or IP address
- Authentication destination port
- Accounting destination port
- Key string
Controlling Switch Access with RADIUS

- Timeout period
- Retransmission value

You identify RADIUS security servers by their hostname or IP address, hostname and specific UDP port numbers, or their IP address and specific UDP port numbers. The combination of the IP address and the UDP port number creates a unique identifier, allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. This unique identifier enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address.

If two different host entries on the same RADIUS server are configured for the same service—for example, accounting—the second host entry configured acts as a fail-over backup to the first one. Using this example, if the first host entry fails to provide accounting services, the `%RADIUS-4-RADIUS_DEAD` message appears, and then the switch tries the second host entry configured on the same device for accounting services. (The RADIUS host entries are tried in the order that they are configured.)

A RADIUS server and the switch use a shared secret text string to encrypt passwords and exchange responses. To configure RADIUS to use the AAA security commands, you must specify the host running the RADIUS server daemon and a secret text (key) string that it shares with the switch.

The timeout, retransmission, and encryption key values can be configured globally for all RADIUS servers, on a per-server basis, or in some combination of global and per-server settings. To apply these settings globally to all RADIUS servers communicating with the switch, use the three unique global configuration commands: `radius-server timeout`, `radius-server retransmit`, and `radius-server key`. To apply these values on a specific RADIUS server, use the `radius-server host` global configuration command.

Note If you configure both global and per-server functions (timeout, retransmission, and key commands) on the switch, the per-server timer, retransmission, and key value commands override global timer, retransmission, and key value commands. For information on configuring these settings on all RADIUS servers, see the “Configuring Settings for All RADIUS Servers” section on page 6-36.

You can configure the switch to use AAA server groups to group existing server hosts for authentication. For more information, see the “Defining AAA Server Groups” section on page 6-32.
Beginning in privileged EXEC mode, follow these steps to configure per-server RADIUS server communication. This procedure is required.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | radius-server host {hostname | ip-address} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string] | Specify the IP address or hostname of the remote RADIUS server host.
- (Optional) For auth-port port-number, specify the UDP destination port for authentication requests.
- (Optional) For acct-port port-number, specify the UDP destination port for accounting requests.
- (Optional) For timeout seconds, specify the time interval that the switch waits for the RADIUS server to reply before resending. The range is 1 to 1000. This setting overrides the radius-server timeout global configuration command setting. If no timeout is set with the radius-server host command, the setting of the radius-server timeout command is used.
- (Optional) For retransmit retries, specify the number of times a RADIUS request is resent to a server if that server is not responding or responding slowly. The range is 1 to 1000. If no retransmit value is set with the radius-server host command, the setting of the radius-server retransmit global configuration command is used.
- (Optional) For key string, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.
Note The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in the radius-server host command. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.
To configure the switch to recognize more than one host entry associated with a single IP address, enter this command as many times as necessary, making sure that each UDP port number is different. The switch software searches for hosts in the order in which you specify them. Set the timeout, retransmit, and encryption key values to use with the specific RADIUS host. |
| 3 | end | Return to privileged EXEC mode. |
| 4 | show running-config | Verify your entries. |
| 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove the specified RADIUS server, use the no radius-server host hostname | ip-address global configuration command.
Controlling Switch Access with RADIUS

This example shows how to configure one RADIUS server to be used for authentication and another to be used for accounting:

```
Switch(config)# radius-server host 172.29.36.49 auth-port 1612 key rad1
Switch(config)# radius-server host 172.20.36.50 acct-port 1618 key rad2
```

This example shows how to configure host1 as the RADIUS server and to use the default ports for both authentication and accounting:

```
Switch(config)# radius-server host host1
```

Note

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, see the RADIUS server documentation.

Configuring RADIUS Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various ports. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific port before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all ports except those that have a named method list explicitly defined.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure login authentication. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>
Chapter 6 Configuring Switch-Based Authentication

Controlling Switch Access with RADIUS

Step 3

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>`aaa authentication login {default</td>
</tr>
</tbody>
</table>

Create a login authentication method list.

- To create a default list that is used when a named list is not specified in the `login authentication` command, use the `default` keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all ports.
- For `list-name`, specify a character string to name the list you are creating.
- For `method1...`, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.

Select one of these methods:

- **enable**—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the `enable password` global configuration command.

- **group radius**—Use RADIUS authentication. Before you can use this authentication method, you must configure the RADIUS server. For more information, see the “Identifying the RADIUS Server Host” section on page 6-27.

- **line**—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the `password password` line configuration command.

- **local**—Use the local username database for authentication. You must enter username information in the database. Use the `username name password` global configuration command.

- **local-case**—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the `username name password` global configuration command.

- **none**—Do not use any authentication for login.

Step 4

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>`line [console</td>
</tr>
</tbody>
</table>

Enter line configuration mode, and configure the lines to which you want to apply the authentication list.

Step 5

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>`login authentication {default</td>
</tr>
</tbody>
</table>

Apply the authentication list to a line or set of lines.

- If you specify `default`, use the default list created with the `aaa authentication login` command.
- For `list-name`, specify the list created with the `aaa authentication login` command.

Step 6

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
</tr>
</tbody>
</table>

Return to privileged EXEC mode.

Step 7

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
</tr>
</tbody>
</table>

Verify your entries.

Step 8

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

(Optional) Save your entries in the configuration file.
To disable AAA, use the **no aaa new-model** global configuration command. To disable AAA authentication, use the **no aaa authentication login {default | list-name} method1 [method2...]** global configuration command. To either disable RADIUS authentication for logins or to return to the default value, use the **no login authentication {default | list-name}** line configuration command.

Note

To secure the switch for HTTP access by using AAA methods, you must configure the switch with the **ip http authentication aaa** global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.

For more information about the **ip http authentication** command, see the *Cisco IOS Security Command Reference, Release 12.2.*

Defining AAA Server Groups

You can configure the switch to use AAA server groups to group existing server hosts for authentication. You select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list, which lists the IP addresses of the selected server hosts.

Server groups also can include multiple host entries for the same server if each entry has a unique identifier (the combination of the IP address and UDP port number), allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. If you configure two different host entries on the same RADIUS server for the same service, (for example, accounting), the second configured host entry acts as a fail-over backup to the first one.

You use the **server** group server configuration command to associate a particular server with a defined group server. You can either identify the server by its IP address or identify multiple host instances or entries by using the optional **auth-port** and **acct-port** keywords.
Beginning in privileged EXEC mode, follow these steps to define the AAA server group and associate a particular RADIUS server with it:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 radius-server host [hostname</td>
<td>Specify the IP address or hostname of the remote RADIUS server host.</td>
</tr>
<tr>
<td>ip-address] [auth-port port-number]</td>
<td>- (Optional) For auth-port port-number, specify the UDP destination</td>
</tr>
<tr>
<td>[acct-port port-number] [timeout seconds]</td>
<td>port for authentication requests.</td>
</tr>
<tr>
<td>[retransmit retries] [key string]</td>
<td>- (Optional) For acct-port port-number, specify the UDP destination</td>
</tr>
<tr>
<td></td>
<td>port for accounting requests.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For timeout seconds, specify the time interval that the</td>
</tr>
<tr>
<td></td>
<td>switch waits for the RADIUS server to reply before resending. The</td>
</tr>
<tr>
<td></td>
<td>range is 1 to 1000. This setting overrides the radius-server timeout</td>
</tr>
<tr>
<td></td>
<td>global configuration command setting. If no timeout is set with the</td>
</tr>
<tr>
<td></td>
<td>radius-server host command, the setting of the radius-server timeout</td>
</tr>
<tr>
<td></td>
<td>command is used.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For retransmit retries, specify the number of times a</td>
</tr>
<tr>
<td></td>
<td>RADIUS request is resent to a server if that server is not responding</td>
</tr>
<tr>
<td></td>
<td>or responding slowly. The range is 1 to 1000. If no retransmit value</td>
</tr>
<tr>
<td></td>
<td>is set with the radius-server host command, the setting of the</td>
</tr>
<tr>
<td></td>
<td>radius-server retransmit global configuration command is used.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For key string, specify the authentication and encryption</td>
</tr>
<tr>
<td></td>
<td>key used between the switch and the RADIUS daemon running on the</td>
</tr>
<tr>
<td></td>
<td>RADIUS server.</td>
</tr>
<tr>
<td>Note</td>
<td>The key is a text string that must match the encryption key used on the</td>
</tr>
<tr>
<td></td>
<td>RADIUS server. Always configure the key as the last item in the</td>
</tr>
<tr>
<td></td>
<td>radius-server host command. Leading spaces are ignored, but spaces</td>
</tr>
<tr>
<td></td>
<td>within and at the end of the key are used. If you use spaces in your</td>
</tr>
<tr>
<td></td>
<td>key, do not enclose the key in quotation marks unless the quotation</td>
</tr>
<tr>
<td></td>
<td>marks are part of the key.</td>
</tr>
<tr>
<td>Step 3 aaa new-model</td>
<td>Enable AAA.</td>
</tr>
<tr>
<td>Step 4 aaa group server radius group-name</td>
<td>Define the AAA server-group with a group name.</td>
</tr>
<tr>
<td></td>
<td>This command puts the switch in a server group configuration mode.</td>
</tr>
<tr>
<td>Step 5 server ip-address</td>
<td>Associate a particular RADIUS server with the defined server group.</td>
</tr>
<tr>
<td></td>
<td>Repeat this step for each RADIUS server in the AAA server group.</td>
</tr>
<tr>
<td></td>
<td>Each server in the group must be previously defined in Step 2.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with RADIUS

Chapter 6 Configuring Switch-Based Authentication

Configuring Switch-Based Authentication

Controlling Switch Access with RADIUS

To remove the specified RADIUS server, use the **no radius-server host hostname | ip-address** global configuration command. To remove a server group from the configuration list, use the **no aaa group server radius group-name** global configuration command. To remove the IP address of a RADIUS server, use the **no server ip-address** server configuration command.

In this example, the switch is configured to recognize two different RADIUS group servers (**group1** and **group2**). **Group1** has two different host entries on the same RADIUS server configured for the same services. The second host entry acts as a fail-over backup to the first entry.

```
Switch(config)# radius-server host 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# radius-server host 172.10.0.1 auth-port 1645 acct-port 1646
Switch(config)# aaa new-model
Switch(config)# aaa group server radius group1
Switch(config-sg-radius)# server 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config-sg-radius)# exit
Switch(config)# aaa group server radius group2
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# exit
```

Configuring RADIUS Authorization for User Privileged Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the **aaa authorization** global configuration command with the **radius** keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The **aaa authorization exec radius local** command sets these authorization parameters:

- Use RADIUS for privileged EXEC access authorization if authentication was performed by using RADIUS.
- Use the local database if authentication was not performed by using RADIUS.

Note

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Beginning in privileged EXEC mode, follow these steps to specify RADIUS authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>aaa authorization network radius</td>
<td>Configure the switch for user RADIUS authorization for all network-related service requests.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with RADIUS

To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.

Starting RADIUS Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the RADIUS security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable RADIUS accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>aaa authorization exec radius</code> Configure the switch for RADIUS authorization if the user has privileged EXEC access. The <code>exec</code> keyword might return user profile information (such as <code>autocommand</code> information).</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable accounting, use the `no aaa accounting {network | exec} {start-stop} method1...` global configuration command.

Establishing a Session with a Router if the AAA Server is Unreachable

The `aaa accounting system guarantee-first` command guarantees system accounting as the first record, which is the default condition. In some situations, users might be prevented from starting a session on the console or terminal connection until after the system reloads, which can take more than 3 minutes.

To establish a console or Telnet session with the router if the AAA server is unreachable when the router reloads, use the `no aaa accounting system guarantee-first` command.
Configuring Settings for All RADIUS Servers

Beginning in privileged EXEC mode, follow these steps to configure global communication settings between the switch and all RADIUS servers:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server key string</td>
</tr>
<tr>
<td>Note</td>
<td>The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Step 3</td>
<td>radius-server retransmit retries</td>
</tr>
<tr>
<td>Step 4</td>
<td>radius-server timeout seconds</td>
</tr>
<tr>
<td>Step 5</td>
<td>radius-server deadtime minutes</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting for the retransmit, timeout, and deadtime, use the no forms of these commands.

Configuring the Switch to Use Vendor-Specific RADIUS Attributes

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific information between the switch and the RADIUS server by using the vendor-specific attribute (attribute 26). Vendor-specific attributes (VSAs) allow vendors to support their own extended attributes not suitable for general use. The Cisco RADIUS implementation supports one vendor-specific option by using the format recommended in the specification. Cisco’s vendor-ID is 9, and the supported option has vendor-type 1, which is named cisco-avpair. The value is a string with this format:

```
protocol : attribute sep value *
```

Protocol is a value of the Cisco protocol attribute for a particular type of authorization. *Attribute* and *value* are an appropriate attribute-value (AV) pair defined in the Cisco TACACS+ specification, and *sep* is = for mandatory attributes and is * for optional attributes. The full set of features available for TACACS+ authorization can then be used for RADIUS.
Chapter 6 Configuring Switch-Based Authentication

For example, this AV pair activates Cisco’s multiple named ip address pools feature during IP authorization (during PPP IPCP address assignment):

cisco-avpair= "ip:addr-pool=first"

This example shows how to provide a user logging in from a switch with immediate access to privileged EXEC commands:

cisco-avpair= "shell:priv-lvl=15"

This example shows how to specify an authorized VLAN in the RADIUS server database:

cisco-avpair= "tunnel-type(#64)=VLAN(13)"
cisco-avpair= "tunnel-medium-type(#65)=802 media(6)"
cisco-avpair= "tunnel-private-group-ID(#81)=vlanid"

This example shows how to apply an input ACL in ASCII format to an interface for the duration of this connection:

cisco-avpair= "ip:inacl#1=deny ip 10.10.10.10 0.0.255.255 20.20.20.20 255.255.0.0"
cisco-avpair= "ip:inacl#2=deny ip 10.10.10.10 0.0.255.255 any"
cisco-avpair= "mac:inacl#3=deny any any decnet-iv"

This example shows how to apply an output ACL in ASCII format to an interface for the duration of this connection:

cisco-avpair= "ip:outacl#2=deny ip 10.10.10.10 0.0.255.255 any"

Other vendors have their own unique vendor-IDs, options, and associated VSAs. For more information about vendor-IDs and VSAs, see RFC 2138, “Remote Authentication Dial-In User Service (RADIUS).”

Beginning in privileged EXEC mode, follow these steps to configure the switch to recognize and use VSAs:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>radius-server vsa send [accounting</td>
<td>Enable the switch to recognize and use VSAs as defined by RADIUS IETF attribute 26.</td>
</tr>
<tr>
<td></td>
<td>authentication]</td>
<td>• (Optional) Use the accounting keyword to limit the set of recognized vendor-specific attributes to only accounting attributes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Use the authentication keyword to limit the set of recognized vendor-specific attributes to only authentication attributes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If you enter this command without keywords, both accounting and authentication vendor-specific attributes are used.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For a complete list of RADIUS attributes or more information about vendor-specific attribute 26, see the “RADIUS Attributes” appendix in the Cisco IOS Security Configuration Guide, Release 12.2.
Configuring the Switch for Vendor-Proprietary RADIUS Server Communication

Although an IETF draft standard for RADIUS specifies a method for communicating vendor-proprietary information between the switch and the RADIUS server, some vendors have extended the RADIUS attribute set in a unique way. Cisco IOS software supports a subset of vendor-proprietary RADIUS attributes.

As mentioned earlier, to configure RADIUS (whether vendor-proprietary or IETF draft-compliant), you must specify the host running the RADIUS server daemon and the secret text string it shares with the switch. You specify the RADIUS host and secret text string by using the `radius-server` global configuration commands.

Beginning in privileged EXEC mode, follow these steps to specify a vendor-proprietary RADIUS server host and a shared secret text string:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`radius-server host {hostname</td>
<td>ip-address} non-standard`</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>radius-server key string</code></td>
<td>Specify the shared secret text string used between the switch and the vendor-proprietary RADIUS server. The switch and the RADIUS server use this text string to encrypt passwords and exchange responses. Note The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config</code></td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the vendor-proprietary RADIUS host, use the `no radius-server host {hostname | ip-address} non-standard` global configuration command. To disable the key, use the `no radius-server key` global configuration command.

This example shows how to specify a vendor-proprietary RADIUS host and to use a secret key of `rad124` between the switch and the server:

```
Switch(config)# radius-server host 172.20.30.15 nonstandard
Switch(config)# radius-server key rad124
```
Chapter 6 Configuring Switch-Based Authentication

Controlling Switch Access with RADIUS

Configuring CoA on the Switch

Beginning in privileged EXEC mode, follow these steps to configure CoA on a switch. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model Enable AAA.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa server radius dynamic-author Configure the switch as an authentication, authorization, and accounting (AAA) server to facilitate interaction with an external policy server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>client {ip-address</td>
</tr>
<tr>
<td>Step 5</td>
<td>server-key [0</td>
</tr>
<tr>
<td>Step 6</td>
<td>port port-number Specify the port on which a device listens for RADIUS requests from configured RADIUS clients.</td>
</tr>
<tr>
<td>Step 7</td>
<td>auth-type {any</td>
</tr>
<tr>
<td>Step 8</td>
<td>ignore session-key (Optional) Configure the switch to ignore the session-key. For more information about the ignore command, see the Cisco IOS Intelligent Services Gateway Command Reference on Cisco.com.</td>
</tr>
<tr>
<td>Step 9</td>
<td>ignore server-key (Optional) Configure the switch to ignore the server-key. For more information about the ignore command, see the Cisco IOS Intelligent Services Gateway Command Reference on Cisco.com.</td>
</tr>
<tr>
<td>Step 10</td>
<td>authentication command bounce-port ignore (Optional) Configure the switch to ignore a CoA request to temporarily disable the port hosting a session. The purpose of temporarily disabling the port is to trigger a DHCP renegotiation from the host when a VLAN change occurs and there is no supplicant on the endpoint to detect the change.</td>
</tr>
<tr>
<td>Step 11</td>
<td>authentication command disable-port ignore (Optional) Configure the switch to ignore a nonstandard command requesting that the port hosting a session be administratively shut down. Shutting down the port results in termination of the session. Use standard CLI or SNMP commands to re-enable the port.</td>
</tr>
<tr>
<td>Step 12</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 13</td>
<td>show running-config Verify your entries.</td>
</tr>
<tr>
<td>Step 14</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable AAA, use the no aaa new-model global configuration command. To disable the AAA server functionality on the switch, use the no aaa server radius dynamic authorization global configuration command.
Monitoring and Troubleshooting CoA Functionality

The following Cisco IOS commands can be used to monitor and troubleshoot CoA functionality on the switch:

- debug radius
- debug aaa coa
- debug aaa pod
- debug aaa subsys
- debug cmdhd [detail | error | events]
- show aaa attributes protocol radius

Configuring RADIUS Server Load Balancing

This feature allows access and authentication requests to be evenly across all RADIUS servers in a server group. For more information, see the “RADIUS Server Load Balancing” chapter of the “Cisco IOS Security Configuration Guide”, Release 12.2:

Displaying the RADIUS Configuration

To display the RADIUS configuration, use the `show running-config` privileged EXEC command.

Controlling Switch Access with Kerberos

This section describes how to enable and configure the Kerberos security system, which authenticates requests for network resources by using a trusted third party. To use this feature, the cryptographic (that is, supports encryption) versions of the switch software must be installed on your switch.

You can download the cryptographic software image from www.hp.com/support. For more information, see the release notes for this release.

These sections contain this information:

- Understanding Kerberos, page 6-41
- Kerberos Operation, page 6-43
- Configuring Kerberos, page 6-44

Note

In the Kerberos configuration examples and in the Cisco IOS Security Command Reference, Release 12.2, the trusted third party can be a switch that supports Kerberos, that is configured as a network security server, and that can authenticate users by using the Kerberos protocol.
Understanding Kerberos

Kerberos is a secret-key network authentication protocol, which was developed at the Massachusetts Institute of Technology (MIT). It uses the Data Encryption Standard (DES) cryptographic algorithm for encryption and authentication and authenticates requests for network resources. Kerberos uses the concept of a trusted third party to perform secure verification of users and services. This trusted third party is called the key distribution center (KDC).

Kerberos verifies that users are who they claim to be and the network services that they use are what the services claim to be. To do this, a KDC or trusted Kerberos server issues tickets to users. These tickets, which have a limited lifespan, are stored in user credential caches. The Kerberos server uses the tickets instead of usernames and passwords to authenticate users and network services.

Note

A Kerberos server can be a switch that is configured as a network security server and that can authenticate users by using the Kerberos protocol.

The Kerberos credential scheme uses a process called single logon. This process authenticates a user once and then allows secure authentication (without encrypting another password) wherever that user credential is accepted.

This software release supports Kerberos 5, which allows organizations that are already using Kerberos 5 to use the same Kerberos authentication database on the KDC that they are already using on their other network hosts (such as UNIX servers and PCs).

In this software release, Kerberos supports these network services:

- Telnet
- rlogin
- rsh (Remote Shell Protocol)

Table 6-5 lists the common Kerberos-related terms and definitions:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>A process by which a user or service identifies itself to another service. For example, a client can authenticate to a switch or a switch can authenticate to another switch.</td>
</tr>
<tr>
<td>Authorization</td>
<td>A means by which the switch identifies what privileges the user has in a network or on the switch and what actions the user can perform.</td>
</tr>
<tr>
<td>Credential</td>
<td>A general term that refers to authentication tickets, such as TGTs and service credentials. Kerberos credentials verify the identity of a user or service. If a network service decides to trust the Kerberos server that issued a ticket, it can be used in place of re-entering a username and password. Credentials have a default lifespan of eight hours.</td>
</tr>
</tbody>
</table>
Chapter 6 Configuring Switch-Based Authentication

Controlling Switch Access with Kerberos

A Kerberos principal with a Kerberos instance has the form `user/instance@REALM` (for example, `smith/admin@EXAMPLE.COM`). The Kerberos instance can be used to specify the authorization level for the user if authentication is successful. The server of each network service might implement and enforce the authorization mappings of Kerberos instances but is not required to do so.

Note The Kerberos principal and instance names must be in all lowercase characters. The Kerberos realm name must be in all uppercase characters.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance</td>
<td>An authorization level label for Kerberos principals. Most Kerberos principals are of the form <code>user@REALM</code> (for example, smith@EXAMPLE.COM). A Kerberos principal with a Kerberos instance has the form <code>user/instance@REALM</code> (for example, smith/admin@EXAMPLE.COM). The Kerberos instance can be used to specify the authorization level for the user if authentication is successful. The server of each network service might implement and enforce the authorization mappings of Kerberos instances but is not required to do so.</td>
</tr>
<tr>
<td>KDC</td>
<td>Key distribution center that consists of a Kerberos server and database program that is running on a network host.</td>
</tr>
<tr>
<td>Kerberized</td>
<td>A term that describes applications and services that have been modified to support the Kerberos credential infrastructure.</td>
</tr>
<tr>
<td>Kerberos realm</td>
<td>A domain consisting of users, hosts, and network services that are registered to a Kerberos server. The Kerberos server is trusted to verify the identity of a user or network service to another user or network service.</td>
</tr>
<tr>
<td>Kerberos server</td>
<td>A daemon that is running on a network host. Users and network services register their identity with the Kerberos server. Network services query the Kerberos server to authenticate to other network services.</td>
</tr>
<tr>
<td>KEYTAB</td>
<td>A password that a network service shares with the KDC. In Kerberos 5 and later Kerberos versions, the network service authenticates an encrypted service credential by using the KEYTAB to decrypt it. In Kerberos versions earlier than Kerberos 5, KEYTAB is referred to as SRVTAB.</td>
</tr>
<tr>
<td>Principal</td>
<td>Also known as a Kerberos identity, this is who you are or what a service is according to the Kerberos server.</td>
</tr>
<tr>
<td>Service credential</td>
<td>A credential for a network service. When issued from the KDC, this credential is encrypted with the password shared by the network service and the KDC. The password is also shared with the user TGT.</td>
</tr>
<tr>
<td>SRVTAB</td>
<td>A password that a network service shares with the KDC. In Kerberos 5 or later Kerberos versions, SRVTAB is referred to as KEYTAB.</td>
</tr>
<tr>
<td>TGT</td>
<td>Ticket granting ticket that is a credential that the KDC issues to authenticated users. When users receive a TGT, they can authenticate to network services within the Kerberos realm represented by the KDC.</td>
</tr>
</tbody>
</table>

1. TGT = ticket granting ticket
2. KDC = key distribution center
3. KEYTAB = key table
4. SRVTAB = server table
Kerberos Operation

A Kerberos server can be a switch that is configured as a network security server and that can authenticate remote users by using the Kerberos protocol. Although you can customize Kerberos in a number of ways, remote users attempting to access network services must pass through three layers of security before they can access network services.

To authenticate to network services by using a switch as a Kerberos server, remote users must follow these steps:

1. Authenticating to a Boundary Switch, page 6-43
2. Obtaining a TGT from a KDC, page 6-43
3. Authenticating to Network Services, page 6-44

Authenticating to a Boundary Switch

This section describes the first layer of security through which a remote user must pass. The user must first authenticate to the boundary switch. This process then occurs:

1. The user opens an un-Kerberized Telnet connection to the boundary switch.
2. The switch prompts the user for a username and password.
3. The switch requests a TGT from the KDC for this user.
4. The KDC sends an encrypted TGT that includes the user identity to the switch.
5. The switch attempts to decrypt the TGT by using the password that the user entered.
 - If the decryption is successful, the user is authenticated to the switch.
 - If the decryption is not successful, the user repeats Step 2 either by re-entering the username and password (noting if Caps Lock or Num Lock is on or off) or by entering a different username and password.

A remote user who initiates a un-Kerberized Telnet session and authenticates to a boundary switch is inside the firewall, but the user must still authenticate directly to the KDC before getting access to the network services. The user must authenticate to the KDC because the TGT that the KDC issues is stored on the switch and cannot be used for additional authentication until the user logs on to the switch.

Obtaining a TGT from a KDC

This section describes the second layer of security through which a remote user must pass. The user must now authenticate to a KDC and obtain a TGT from the KDC to access network services.

For instructions about how to authenticate to a KDC, see the “Obtaining a TGT from a KDC” section in the “Security Server Protocols” chapter of the Cisco IOS Security Configuration Guide, Release 12.2.
Configuring the Switch for Local Authentication and Authorization

Authenticating to Network Services

This section describes the third layer of security through which a remote user must pass. The user with a TGT must now authenticate to the network services in a Kerberos realm.

For instructions about how to authenticate to a network service, see the “Authenticating to Network Services” section in the “Security Server Protocols” chapter of the Cisco IOS Security Configuration Guide, Release 12.2, at this URL:

Configuring Kerberos

So that remote users can authenticate to network services, you must configure the hosts and the KDC in the Kerberos realm to communicate and mutually authenticate users and network services. To do this, you must identify them to each other. You add entries for the hosts to the Kerberos database on the KDC and add KEYTAB files generated by the KDC to all hosts in the Kerberos realm. You also create entries for the users in the KDC database.

When you add or create entries for the hosts and users, follow these guidelines:

- The Kerberos principal name must be in all lowercase characters.
- The Kerberos instance name must be in all lowercase characters.
- The Kerberos realm name must be in all uppercase characters.

Note

A Kerberos server can be a switch that is configured as a network security server and that can authenticate users by using the Kerberos protocol.

To set up a Kerberos-authenticated server-client system, follow these steps:

- Configure the KDC by using Kerberos commands.
- Configure the switch to use the Kerberos protocol.

For instructions, see the “Kerberos Configuration Task List” section in the “Security Server Protocols” chapter of the Cisco IOS Security Configuration Guide, Release 12.2, at this URL:

Configuring the Switch for Local Authentication and Authorization

You can configure AAA to operate without a server by setting the switch to implement AAA in local mode. The switch then handles authentication and authorization. No accounting is available in this configuration.

Beginning in privileged EXEC mode, follow these steps to configure the switch for local AAA:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>
To disable AAA, use the `no aaa new-model` global configuration command. To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.

Note

To secure the switch for HTTP access by using AAA methods, you must configure the switch with the `ip http authentication aaa` global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.

For more information about the `ip http authentication` command, see the *Cisco IOS Security Command Reference, Release 12.2*.

Configuring the Switch for Secure Shell

This section describes how to configure the Secure Shell (SSH) feature. To use this feature, you must install the cryptographic (encrypted) software image on your switch. You can download the cryptographic software files from www.hp.com/support. For more information, see the release notes for this release.

These sections contain this information:

- **Understanding SSH**, page 6-46
Understanding SSH

SSH is a protocol that provides a secure, remote connection to a device. SSH provides more security for remote connections than Telnet does by providing strong encryption when a device is authenticated. This software release supports SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2).

This section consists of these topics:
- SSH Servers, Integrated Clients, and Supported Versions, page 6-46
- Limitations, page 6-47

Note

The SSH connection to the stack can be lost if a stack master running the cryptographic software image and the IP base or the IP services feature set fails and is replaced by a switch that is running a noncryptographic image and the same feature set. We recommend that a switch running the cryptographic software image and the IP base or IP services feature set be the stack master. Encryption features are unavailable if the stack master is running the noncryptographic software image and the feature set.

SSH Servers, Integrated Clients, and Supported Versions

The SSH feature has an SSH server and an SSH integrated client, which are applications that run on the switch. You can use an SSH client to connect to a switch running the SSH server. The SSH server works with the SSH client supported in this release and with non-Cisco SSH clients. The SSH client also works with the SSH server supported in this release and with non-Cisco SSH servers.

The switch supports an SSHv1 or an SSHv2 server.

The switch supports an SSHv1 client.

SSH supports the Data Encryption Standard (DES) encryption algorithm, the Triple DES (3DES) encryption algorithm, and password-based user authentication.

SSH also supports these user authentication methods:
- TACACS+ (for more information, see the “Controlling Switch Access with TACACS+” section on page 6-10)
- RADIUS (for more information, see the “Controlling Switch Access with RADIUS” section on page 6-18)
- Local authentication and authorization (for more information, see the “Configuring the Switch for Local Authentication and Authorization” section on page 6-44)

Note

This software release does not support IP Security (IPSec).
Limitations

These limitations apply to SSH:

- The switch supports Rivest, Shamir, and Adelman (RSA) authentication.
- SSH supports only the execution-shell application.
- The SSH server and the SSH client are supported only on DES (56-bit) and 3DES (168-bit) data encryption software.
- The switch supports the Advanced Encryption Standard (AES) encryption algorithm with a 128-bit key, 192-bit key, or 256-bit key. However, symmetric cipher AES to encrypt the keys is not supported.

Configuring SSH

This section has this configuration information:

- Configuration Guidelines, page 6-47
- Setting Up the Switch to Run SSH, page 6-47 (required)
- Configuring the SSH Server, page 6-48 (required only if you are configuring the switch as an SSH server)

Configuration Guidelines

Follow these guidelines when configuring the switch as an SSH server or SSH client:

- An RSA key pair generated by a SSHv1 server can be used by an SSHv2 server, and the reverse.
- If the SSH server is running on a stack master and the stack master fails, the new stack master uses the RSA key pair generated by the previous stack master.
- If you get CLI error messages after entering the `crypto key generate rsa` global configuration command, an RSA key pair has not been generated. Reconfigure the hostname and domain, and then enter the `crypto key generate rsa` command. For more information, see the “Setting Up the Switch to Run SSH” section on page 6-47.
- When generating the RSA key pair, the message `No host name specified` might appear. If it does, you must configure a hostname by using the `hostname` global configuration command.
- When generating the RSA key pair, the message `No domain specified` might appear. If it does, you must configure an IP domain name by using the `ip domain-name` global configuration command.
- When configuring the local authentication and authorization authentication method, make sure that AAA is disabled on the console.

Setting Up the Switch to Run SSH

Follow these steps to set up your switch to run SSH:

1. Download the cryptographic software image from www.hp.com/support. This step is required. For more information, see the release notes for this release.

2. Configure a hostname and IP domain name for the switch. Follow this procedure only if you are configuring the switch as an SSH server.
3. Generate an RSA key pair for the switch, which automatically enables SSH. Follow this procedure only if you are configuring the switch as an SSH server.

4. Configure user authentication for local or remote access. This step is required. For more information, see the “Configuring the Switch for Local Authentication and Authorization” section on page 6-44.

Beginning in privileged EXEC mode, follow these steps to configure a hostname and an IP domain name and to generate an RSA key pair. This procedure is required if you are configuring the switch as an SSH server.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 hostname hostname</td>
<td>Configure a hostname for your switch.</td>
</tr>
<tr>
<td>Step 3 ip domain-name domain_name</td>
<td>Configure a host domain for your switch.</td>
</tr>
<tr>
<td>Step 4 crypto key generate rsa</td>
<td>Enable the SSH server for local and remote authentication on the switch and generate an RSA key pair.</td>
</tr>
<tr>
<td></td>
<td>We recommend that a minimum modulus size of 1024 bits.</td>
</tr>
<tr>
<td></td>
<td>When you generate RSA keys, you are prompted to enter a modulus length. A longer modulus length might be more secure, but it takes longer to generate and to use.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show ip ssh</td>
<td>Show the version and configuration information for your SSH server.</td>
</tr>
<tr>
<td>or show ssh</td>
<td>Show the status of the SSH server on the switch.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Chapter 6 Configuring Switch-Based Authentication

Configuring the Switch for Secure Shell

To configure the SSH control parameters, use the `ip ssh {timeout seconds | authentication-retries number}` global configuration command.

Step 3

- **Command**: `ip ssh {timeout seconds | authentication-retries number}

 Purpose: Configure the SSH control parameters:
 - Specify the time-out value in seconds; the default is 120 seconds. The range is 0 to 120 seconds. This parameter applies to the SSH negotiation phase. After the connection is established, the switch uses the default time-out values of the CLI-based sessions.
 - Specify the number of times that a client can re-authenticate to the server. The default is 3; the range is 0 to 5.

Repeat this step when configuring both parameters.

Step 4

- **Command**: `line vty line_number [ending_line_number] transport input ssh` (Optional) Configure the virtual terminal line settings.

 Purpose: Configure the virtual terminal line settings. For `line_number` and `ending_line_number`, specify a pair of lines. The range is 0 to 15.
 - Specify that the switch prevent non-SSH Telnet connections. This limits the router to only SSH connections.

Step 5

- **Command**: `end`

 Purpose: Return to privileged EXEC mode.

Step 6

- **Command**: `show ip ssh` or `show ssh`

 Purpose: Show the version and configuration information for your SSH server. Show the status of the SSH server connections on the switch.

Step 7

- **Command**: `copy running-config startup-config` (Optional) Save your entries in the configuration file.

To return to the default SSH control parameters, use the `no ip ssh {timeout | authentication-retries}` global configuration command.

Displaying the SSH Configuration and Status

To display the SSH server configuration and status, use one or more of the privileged EXEC commands in Table 6-6:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip ssh</code></td>
<td>Shows the version and configuration information for the SSH server.</td>
</tr>
<tr>
<td><code>show ssh</code></td>
<td>Shows the status of the SSH server.</td>
</tr>
</tbody>
</table>

For more information about these commands, see the “Secure Shell Commands” chapter of the *Cisco IOS Security Command Reference, Cisco IOS Release 12.2*.
Configuring the Switch for Secure Socket Layer HTTP

This section describes how to configure Secure Socket Layer (SSL) Version 3.0 support for the HTTP 1.1 server and client. SSL provides server authentication, encryption, and message integrity, as well as HTTP client authentication, to allow secure HTTP communications. To use this feature, the cryptographic (encrypted) software image must be installed on your switch. You can download the cryptographic software image from www.hp.com/support. For more information about the cryptographic image, see the release notes for this release.

These sections contain this information:

- Understanding Secure HTTP Servers and Clients, page 6-50
- Configuring Secure HTTP Servers and Clients, page 6-52
- Displaying Secure HTTP Server and Client Status, page 6-56

For configuration examples and complete syntax and usage information for the commands used in this section, see the “HTTPS - HTTP Server and Client with SSL 3.0” feature description for Cisco IOS Release 12.2(15)T.

Understanding Secure HTTP Servers and Clients

On a secure HTTP connection, data to and from an HTTP server is encrypted before being sent over the Internet. HTTP with SSL encryption provides a secure connection to allow such functions as configuring a switch from a Web browser. Cisco's implementation of the secure HTTP server and secure HTTP client uses an implementation of SSL Version 3.0 with application-layer encryption. HTTP over SSL is abbreviated as HTTPS; the URL of a secure connection begins with https:// instead of http://.

The primary role of the HTTP secure server (the switch) is to listen for HTTPS requests on a designated port (the default HTTPS port is 443) and pass the request to the HTTP 1.1 Web server. The HTTP 1.1 server processes requests and passes responses (pages) back to the HTTP secure server, which, in turn, responds to the original request.

The primary role of the HTTP secure client (the web browser) is to respond to Cisco IOS application requests for HTTPS User Agent services, perform HTTPS User Agent services for the application, and pass the response back to the application.

Certificate Authority Trustpoints

Certificate authorities (CAs) manage certificate requests and issue certificates to participating network devices. These services provide centralized security key and certificate management for the participating devices. Specific CA servers are referred to as trustpoints.

When a connection attempt is made, the HTTPS server provides a secure connection by issuing a certified X.509v3 certificate, obtained from a specified CA trustpoint, to the client. The client (usually a Web browser), in turn, has a public key that allows it to authenticate the certificate.

For secure HTTP connections, we highly recommend that you configure a CA trustpoint. If a CA trustpoint is not configured for the device running the HTTPS server, the server certifies itself and generates the needed RSA key pair. Because a self-certified (self-signed) certificate does not provide adequate security, the connecting client generates a notification that the certificate is self-certified, and the user has the opportunity to accept or reject the connection. This option is useful for internal network topologies (such as testing).
If you do not configure a CA trustpoint, when you enable a secure HTTP connection, either a temporary or a persistent self-signed certificate for the secure HTTP server (or client) is automatically generated.

- If the switch is not configured with a hostname and a domain name, a temporary self-signed certificate is generated. If the switch reboots, any temporary self-signed certificate is lost, and a new temporary new self-signed certificate is assigned.
- If the switch has been configured with a host and domain name, a persistent self-signed certificate is generated. This certificate remains active if you reboot the switch or if you disable the secure HTTP server so that it will be there the next time you re-enable a secure HTTP connection.

If a self-signed certificate has been generated, this information is included in the output of the `show running-config` privileged EXEC command. This is a partial sample output from that command displaying a self-signed certificate.

```
Switch# show running-config
Building configuration...
<output truncated>
crypto pki trustpoint TP-self-signed-3080755072
   enrollment selfsigned
   subject-name cn=IOS-Self-Signed-Certificate-3080755072
   revocation-check none
   rsakeypair TP-self-signed-3080755072
   !
   !
crypto ca certificate chain TP-self-signed-3080755072
   certificate self-signed 01
       3082029F 30820208 A0030201
       0202101 300D0609 2A864886 F70D0101
       0405003059312F30 2D060355 04031326
       494F532D 53656C66 2D536967 6E65642D
       43657274 69666963 6174652D
       33303830 37353530 37323126
       30240609 2A864886 F70D0109
       02161743 45322D33 3535302D
       31332E73 756D6D30 342D3335
       35330301 303303030 35395A17
       0D323030 31330313 30303030
       35395A17 305A3059 312F302D
<output truncated>
```

You can remove this self-signed certificate by disabling the secure HTTP server and entering the `no crypto pki trustpoint TP-self-signed-30890755072` global configuration command. If you later re-enable a secure HTTP server, a new self-signed certificate is generated.

Note

The values that follow `TP self-signed` depend on the serial number of the device.

You can use an optional command (`ip http secure-client-auth`) to allow the HTTPS server to request an X.509v3 certificate from the client. Authenticating the client provides more security than server authentication by itself.

For additional information on Certificate Authorities, see the “Configuring Certification Authority Interoperability” chapter in the *Cisco IOS Security Configuration Guide, Release 12.2*.

CipherSuites

A CipherSuite specifies the encryption algorithm and the digest algorithm to use on a SSL connection. When connecting to the HTTPS server, the client Web browser offers a list of supported CipherSuites, and the client and server negotiate the best encryption algorithm to use from those on the list that are supported by both. For example, Netscape Communicator 4.76 supports U.S. security with RSA Public Key Cryptography, MD2, MD5, RC2-CBC, RC4, DES-CBC, and DES-EDE3-CBC.
For the best possible encryption, you should use a client browser that supports 128-bit encryption, such as Microsoft Internet Explorer Version 5.5 (or later) or Netscape Communicator Version 4.76 (or later). The SSL_RSA_WITH_DES_CBC_SHA CipherSuite provides less security than the other CipherSuites, as it does not offer 128-bit encryption.

The more secure and more complex CipherSuites require slightly more processing time. This list defines the CipherSuites supported by the switch and ranks them from fastest to slowest in terms of router processing load (speed):

1. SSL_RSA_WITH_DES_CBC_SHA—RSA key exchange (RSA Public Key Cryptography) with DES-CBC for message encryption and SHA for message digest
2. SSL_RSA_WITH_RC4_128_MD5—RSA key exchange with RC4 128-bit encryption and MD5 for message digest
3. SSL_RSA_WITH_RC4_128_SHA—RSA key exchange with RC4 128-bit encryption and SHA for message digest
4. SSL_RSA_WITH_3DES_EDE_CBC_SHA—RSA key exchange with 3DES and DES-EDE3-CBC for message encryption and SHA for message digest

RSA (in conjunction with the specified encryption and digest algorithm combinations) is used for both key generation and authentication on SSL connections. This usage is independent of whether or not a CA trustpoint is configured.

Configuring Secure HTTP Servers and Clients

These sections contain this configuration information:

- Default SSL Configuration, page 6-52
- SSL Configuration Guidelines, page 6-52
- Configuring a CA Trustpoint, page 6-53
- Configuring the Secure HTTP Server, page 6-53
- Configuring the Secure HTTP Client, page 6-55

Default SSL Configuration

The standard HTTP server is enabled.

SSL is enabled.

No CA trustpoints are configured.

No self-signed certificates are generated.

SSL Configuration Guidelines

Before you configure a CA trustpoint, you should ensure that the system clock is set. If the clock is not set, the certificate is rejected due to an incorrect date.

In a switch stack, the SSL session terminates at the stack master.
Configuring a CA Trustpoint

For secure HTTP connections, we recommend that you configure an official CA trustpoint. A CA trustpoint is more secure than a self-signed certificate.

Beginning in privileged EXEC mode, follow these steps to configure a CA trustpoint:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>hostname hostname</td>
<td>Specify the hostname of the switch (required only if you have not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>previously configured a hostname). The hostname is required for security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keys and certificates.</td>
</tr>
<tr>
<td>3</td>
<td>ip domain-name domain-name</td>
<td>Specify the IP domain name of the switch (required only if you have not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>previously configured an IP domain name). The domain name is required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for security keys and certificates.</td>
</tr>
<tr>
<td>4</td>
<td>crypto key generate rsa</td>
<td>(Optional) Generate an RSA key pair. RSA key pairs are required before</td>
</tr>
<tr>
<td></td>
<td></td>
<td>you can obtain a certificate for the switch. RSA key pairs are generated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>automatically. You can use this command to regenerate the keys, if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>needed.</td>
</tr>
<tr>
<td>5</td>
<td>crypto ca trustpoint name</td>
<td>Specify a local configuration name for the CA trustpoint and enter CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trustpoint configuration mode.</td>
</tr>
<tr>
<td>6</td>
<td>enrollment url url</td>
<td>Specify the URL to which the switch should send certificate requests.</td>
</tr>
<tr>
<td>7</td>
<td>enrollment http-proxy host-name port-number</td>
<td>(Optional) Configure the switch to obtain certificates from the CA through an HTTP proxy server.</td>
</tr>
<tr>
<td>8</td>
<td>crl query url</td>
<td>Configure the switch to request a certificate revocation list (CRL) to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ensure that the certificate of the peer has not been revoked.</td>
</tr>
<tr>
<td>9</td>
<td>primary</td>
<td>(Optional) Specify that the trustpoint should be used as the primary (default) trustpoint for CA requests.</td>
</tr>
<tr>
<td>10</td>
<td>exit</td>
<td>Exit CA trustpoint configuration mode and return to global configuration</td>
</tr>
<tr>
<td>11</td>
<td>crypto ca authentication name</td>
<td>Authenticate the CA by getting the public key of the CA. Use the same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>name used in Step 5.</td>
</tr>
<tr>
<td>12</td>
<td>crypto ca enroll name</td>
<td>Obtain the certificate from the specified CA trustpoint. This command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>requests a signed certificate for each RSA key pair.</td>
</tr>
<tr>
<td>13</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>14</td>
<td>show crypto ca trustpoints</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>15</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no crypto ca trustpoint name` global configuration command to delete all identity information and certificates associated with the CA.

Configuring the Secure HTTP Server

If you are using a certificate authority for certification, you should use the previous procedure to configure the CA trustpoint on the switch before enabling the HTTP server. If you have not configured a CA trustpoint, a self-signed certificate is generated the first time that you enable the secure HTTP
server. After you have configured the server, you can configure options (path, access list to apply, maximum number of connections, or timeout policy) that apply to both standard and secure HTTP servers.

Beginning in privileged EXEC mode, follow these steps to configure a secure HTTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show ip http server status</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip http secure-server</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip http secure-port port-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip http secure-ciphersuite</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip http secure-client-auth</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip http secure-trustpoint name</td>
</tr>
<tr>
<td>Step 8</td>
<td>ip http path path-name</td>
</tr>
<tr>
<td>Step 9</td>
<td>ip http access-class access-list-number</td>
</tr>
<tr>
<td>Step 10</td>
<td>ip http max-connections value</td>
</tr>
</tbody>
</table>
| **Step 11** | **ip http timeout-policy idle seconds life seconds requests value** | (Optional) Specify how long a connection to the HTTP server can remain open under the defined circumstances:
 - **idle**—the maximum time period when no data is received or response data cannot be sent. The range is 1 to 600 seconds. The default is 180 seconds (3 minutes).
 - **life**—the maximum time period from the time that the connection is established. The range is 1 to 86400 seconds (24 hours). The default is 180 seconds.
 - **requests**—the maximum number of requests processed on a persistent connection. The maximum value is 86400. The default is 1. |
Chapter 6 Configuring Switch-Based Authentication

Configuring the Switch for Secure Socket Layer HTTP

Use the `no ip http server` global configuration command to disable the standard HTTP server. Use the `no ip http secure-server` global configuration command to disable the secure HTTP server. Use the `no` `ip http secure-port` and the `no ip http secure-ciphersuite` global configuration commands to return to the default settings. Use the `no ip http secure-client-auth` global configuration command to remove the requirement for client authentication.

To verify the secure HTTP connection by using a Web browser, enter `https://URL`, where the URL is the IP address or hostname of the server switch. If you configure a port other than the default port, you must also specify the port number after the URL. For example:

`https://209.165.129:1026`

or

`https://host.domain.com:1026`

Configuring the Secure HTTP Client

The standard HTTP client and secure HTTP client are always enabled. A certificate authority is required for secure HTTP client certification. This procedure assumes that you have previously configured a CA trustpoint on the switch. If a CA trustpoint is not configured and the remote HTTPS server requires client authentication, connections to the secure HTTP client fail.

Beginning in privileged EXEC mode, follow these steps to configure a secure HTTP client:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip http client secure-trustpoint name</code> (Optional) Specify the CA trustpoint to be used if the remote HTTP server requests client authentication. Using this command assumes that you have already configured a CA trustpoint by using the previous procedure. The command is optional if client authentication is not needed or if a primary trustpoint has been configured.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip http client secure-ciphersuite [3des-ede-cbc-sha] [rc4-128-md5] [rc4-128-sha] [des-cbc-sha]</code> (Optional) Specify the CipherSuites (encryption algorithms) to be used for encryption over the HTTPS connection. If you do not have a reason to specify a particular CipherSuite, you should allow the server and client to negotiate a CipherSuite that they both support. This is the default.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show ip http client secure status</code> Display the status of the HTTP secure server to verify the configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ip http client secure-trustpoint name` to remove a client trustpoint configuration. Use the `no ip http client secure-ciphersuite` to remove a previously configured CipherSuite specification for the client.
Displaying Secure HTTP Server and Client Status

To display the SSL secure server and client status, use the privileged EXEC commands in Table 6-7:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip http client secure status</td>
<td>Shows the HTTP secure client configuration.</td>
</tr>
<tr>
<td>show ip http server secure status</td>
<td>Shows the HTTP secure server configuration.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Shows the generated self-signed certificate for secure HTTP connections.</td>
</tr>
</tbody>
</table>
Configuring the Switch for Secure Copy Protocol

The Secure Copy Protocol (SCP) feature provides a secure and authenticated method for copying switch configurations or switch image files. SCP relies on Secure Shell (SSH), an application and a protocol that provides a secure replacement for the Berkeley r-tools.

For SSH to work, the switch needs an RSA public/private key pair. This is the same with SCP, which relies on SSH for its secure transport.

Because SSH also relies on AAA authentication, and SCP relies further on AAA authorization, correct configuration is necessary.

- Before enabling SCP, you must correctly configure SSH, authentication, and authorization on the switch.
- Because SCP relies on SSH for its secure transport, the router must have an Rivest, Shamir, and Adelman (RSA) key pair.

Note

When using SCP, you cannot enter the password into the copy command. You must enter the password when prompted.

Information About Secure Copy

To configure Secure Copy feature, you should understand these concepts.

The behavior of SCP is similar to that of remote copy (rcp), which comes from the Berkeley r-tools suite, except that SCP relies on SSH for security. SCP also requires that authentication, authorization, and accounting (AAA) authorization be configured so the router can determine whether the user has the correct privilege level.

A user who has appropriate authorization can use SCP to copy any file in the Cisco IOS File System (IFS) to and from a switch by using the copy command. An authorized administrator can also do this from a workstation.

For information about how to configure and verify SCP, see the “Secure Copy Protocol” section in the Cisco IOS Security Configuration Guide: Securing User Services, Release 12.4.
Managing Switch Stacks

This chapter provides the concepts and procedures to manage switch stacks.

Note

The switch command reference has command syntax and usage information.

- Understanding Switch Stacks, page 7-1
- Configuring the Switch Stack, page 7-21
- Accessing the CLI of a Specific Stack Member, page 7-26
- Displaying Switch Stack Information, page 7-27
- Troubleshooting Stacks, page 7-27

For other switch stack-related information, such as cabling the switches through their StackWise Plus ports and using the LEDs to display switch stack status, see the hardware installation guide.

Caution

The Cisco Catalyst Blade Switch 3120 for HP does not support switch stacks with different types of blade switches as members. Combining the Cisco Catalyst Blade Switch 3120 for HP with other types of blade switches in a switch stack might cause the switch to work improperly or to fail.

Understanding Switch Stacks

A switch stack is a set of up to nine stacking-capable switches connected through their StackWise Plus ports.

One of the switches controls the operation of the stack and is called the stack master. The stack master and the other switches in the stack are all stack members. The stack members use the Cisco StackWise Plus technology to work together as a unified system. Layer 2 and Layer 3 protocols present the entire switch stack as a single entity to the network. The stack members can be in different enclosures.

The stack master is the single point of stack-wide management. From the stack master, you configure:

- System-level (global) features that apply to all stack members
- Interface-level features for each stack member

A switch stack is identified in the network by its bridge ID and, if it is operating as a Layer 3 device, its router MAC address. The bridge ID and router MAC address are determined by the MAC address of the stack master. Every stack member is identified by its own stack member number.
All stack members are eligible to be stack masters. If the stack master becomes unavailable, the remaining stack members elect a new stack master from among themselves. The switch with the highest stack member priority value becomes the new stack master.

The system-level features supported on the stack master are supported on the entire switch stack. If a switch in the stack is running the IP base or IP services feature set and the cryptographic (that is, supporting encryption) universal software image, we recommend that this switch be the stack master. Encryption features are unavailable if the stack master is running the IP base or IP services feature set and the noncryptographic software image.

The stack master contains the saved and running configuration files for the switch stack. The configuration files include the system-level settings for the switch stack and the interface-level settings for each stack member. Each stack member has a current copy of these files for back-up purposes.

You manage the switch stack through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack.

You can use these methods to manage switch stacks:

- Network Assistant (available on Cisco.com)
- Command-line interface (CLI) over a serial connection to the console port of any stack member or the Ethernet management port of a stack member
- A network management application through the Simple Network Management Protocol (SNMP)

 Use SNMP to manage network features across the switch stack that are defined by supported MIBs. The switch does not support MIBs to manage stacking-specific features such as stack membership and election.
- CiscoWorks network management software

To manage switch stacks, you should understand:

- These concepts on how switch stacks are formed:
 - Switch Stack Membership, page 7-3
 - Stack Master Election and Re-Election, page 7-6
- These concepts on how switch stacks and stack members are configured:
 - Switch Stack Bridge ID and Router MAC Address, page 7-8
 - Stack Member Numbers, page 7-8
 - Stack Member Priority Values, page 7-9
 - Switch Stack Offline Configuration, page 7-9
 - Hardware Compatibility and SDM Mismatch Mode in Switch Stacks, page 7-12
 - Switch Stack Software Compatibility Recommendations, page 7-12
 - Stack Protocol Version Compatibility, page 7-12
 - Major Version Number Incompatibility Among Switches, page 7-12
 - Minor Version Number Incompatibility Among Switches, page 7-13
 - Incompatible Software and Stack Member Image Upgrades, page 7-16
 - Switch Stack Configuration Files, page 7-16
 - Additional Considerations for System-Wide Configuration on Switch Stacks, page 7-17
Switch Stack Membership

A switch stack has up to nine stack members connected through their StackWise Plus ports. A switch stack always has one stack master.

A standalone switch is a switch stack with one stack member that also operates as the stack master. You can connect one standalone switch to another (Figure 7-1 on page 7-4 and Figure 7-2 on page 7-5) to create a switch stack containing two stack members, with one of them as the stack master. You can connect standalone switches to an existing switch stack (Figure 7-3 on page 7-6) to increase the stack membership.

If you replace a stack member with an identical model, the new switch functions with exactly the same configuration as the replaced switch, assuming that the new switch is using the same member number as the replaced switch. For information about the benefits of provisioning a switch stack, see the “Switch Stack Offline Configuration” section on page 7-9. For information about replacing a failed switch, see the “Troubleshooting” chapter in the hardware installation guide.

The operation of the switch stack continues uninterrupted during membership changes unless you remove the stack master or you add powered-on standalone switches or switch stacks.

Make sure that you power off the switches that you add to or remove from the switch stack.

After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (64 Gb/s). Press the Mode button on a stack member until the Stack mode LED is on. The last two right port LEDs on all switches in the stack should be green. Depending on the switch model, the last two right ports are 10-Gigabit Ethernet ports or small form-factor pluggable (SFP) module ports (10/100/1000 ports). If one or both of these LEDs are not green on any of the switches, the stack is not operating at full bandwidth.

- Adding powered-on switches (merging) causes the stack masters of the merging switch stacks to elect a stack master from among themselves. The re-elected stack master retains its role and configuration and so do its stack members. All remaining switches, including the former stack masters, reload and join the switch stack as stack members. They change their stack member numbers to the lowest available numbers and use the stack configuration of the re-elected stack master.
- Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. This can cause an IP address configuration conflict in your network. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks. If you did not intend to partition the switch stack:
 a. Power off the switches in the newly created switch stacks.
 b. Reconnect them to the original switch stack through their StackWise Plus ports.
 c. Power on the switches.

For more information about cabling and powering switch stacks, see the “Switch Installation” chapter in the hardware installation guide.
Figure 7-1 Creating a Switch Stack from Two Standalone Switches in Two Enclosures

- Enclosure 1
 - Stack member 1
 - Blade switch
 - Blade switch
 - Blade switch

- Enclosure 2
 - Stack member 1
 - Blade switch
 - Blade switch

- Enclosure 1
 - Stack member 1
 - Blade switch
 - Blade switch
 - Blade switch

- Enclosure 2
 - Stack member 2 and stack master
 - Blade switch
 - Blade switch
 - Blade switch
Figure 7-2 Creating a Switch Stack from Two Standalone Switches in the Same Enclosures
Figure 7-3 Adding a Standalone Switch to a Switch Stack

Stack Member Election and Re-Election

The stack master is elected or re-elected based on one of these factors and in the order listed:

1. The switch that is currently the stack master.
2. The switch with the highest stack member priority value.

Note We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is re-elected as stack master if a re-election occurs.

3. The switch that is not using the default interface-level configuration.

Note The internal Ethernet management ports on the stack members are disabled.
4. The switch with the higher priority feature set and software image combination. These combinations are listed from highest to lowest priority:
 - IP services feature set and the cryptographic software image
 - IP services feature set and the noncryptographic software image
 - IP base feature set and the cryptographic software image
 - IP base feature set and the noncryptographic software image

 During the stack master switch election, differences in start-up times between the feature sets determine the stack master. The switch with the shorter start-up time becomes the stack master.

 For example, a switch running the IP services feature set and the cryptographic software image has a higher priority than the switch running the IP base feature set and the noncryptographic image. But the switch running the IP base feature set becomes the stack master because the other switch takes 10 seconds longer to start. To avoid this problem, upgrade the switch running the IP base feature set to the same feature set and software image as the other switch, or manually start the master switch and wait at least 8 seconds before starting the new member switch running the IP base feature set.

5. The switch with the lowest MAC address.

A stack master retains its role unless one of these events occurs:

 - The switch stack is reset.*
 - The stack master is removed from the switch stack.
 - The stack master is reset or powered off.
 - The stack master fails.
 - The switch stack membership is increased by adding powered-on standalone switches or switch stacks.*

 In the events marked by an asterisk (*), the current stack master might be re-elected based on the listed factors.

When you power on or reset an entire switch stack, some stack members might not participate in the stack master election. Stack members that are powered on within the same 20-second time frame participate in the stack master election and have a chance to become the stack master. Stack members that are powered on after the 20-second time frame do not participate in this initial election and become stack members. All stack members participate in re-elections. For all powering considerations that affect stack-master elections, see the “Switch Installation” chapter in the hardware installation guide.

The new stack master becomes available after a few seconds. In the meantime, the switch stack uses the forwarding tables in memory to minimize network disruption. The physical interfaces on the other available stack members are not affected during a new stack master election and reset.

After a new stack master is elected and the previous stack master becomes available, the previous stack master does not resume its role as stack master.

As described in the hardware installation guide, you can use the Master LED on the switch to see if the switch is the stack master.
Switch Stack Bridge ID and Router MAC Address

The bridge ID and router MAC address identify the switch stack in the network. When the switch stack initializes, the MAC address of the stack master determines the bridge ID and router MAC address. If the stack master changes, the MAC address of the new stack master determines the new bridge ID and router MAC address. However, when the persistent MAC address feature is enabled, the stack MAC address changes in approximately 4 minutes. During this time period, if the previous stack master rejoins the stack, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member and not a stack master. If the previous stack master does not rejoin the stack during this period, the switch stack takes the MAC address of the new stack master as the stack MAC address. See the “Enabling Persistent MAC Address” section on page 7-22 for more information.

Stack Member Numbers

The stack member number (1 to 9) identifies each member in the switch stack. The member number also determines the interface-level configuration that a stack member uses. You can display the stack member number by using the show switch user EXEC command.

A new, out-of-the-box switch (one that has not joined a switch stack or has not been manually assigned a stack member number) ships with a default stack member number of 1. When it joins a switch stack, its default stack member number changes to the lowest available member number in the stack.

Stack members in the same switch stack cannot have the same stack member number. Every stack member, including a standalone switch, retains its member number until you manually change the number or unless the number is already being used by another member in the stack.

- If you manually change the stack member number by using the switch current-stack-member-number renumber new-stack-member-number global configuration command, the new number goes into effect after that stack member resets (or after you use the reload slot stack-member-number privileged EXEC command) and only if that number is not already assigned to any other members in the stack. For more information, see the “Assigning a Stack Member Number” section on page 7-24. Another way to change the stack member number is by changing the SWITCH_NUMBER environment variable, as explained in the “Controlling Environment Variables” section on page 3-24.

If the number is being used by another member in the stack, the switch selects the lowest available number in the stack.

If you manually change the number of a stack member and no interface-level configuration is associated with that new member number, that stack member resets to its default configuration. For more information about stack member numbers and configurations, see the “Switch Stack Configuration Files” section on page 7-16.

You cannot use the switch current-stack-member-number renumber new-stack-member-number global configuration command on a provisioned switch. If you do, the command is rejected.

- If you move a stack member to a different switch stack, the stack member retains its number only if the number is not being used by another member in the stack. If it is being used, the switch selects the lowest available number in the stack.

- If you merge switch stacks, the switches that join the switch stack of a new stack master select the the lowest available numbers in the stack. For more information about merging switch stacks, see the “Switch Stack Membership” section on page 7-3.
Stack Member Priority Values

A higher priority value for a stack member increases its likelihood of being elected stack master and retaining its stack member number. The priority value can be 1 to 15. The default priority value is 1. You can display the stack member priority value by using the `show switch` user EXEC command.

Note

We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is re-elected as stack master.

You can change the priority value for a stack member by using the `switch stack-member-number priority new-priority-value` global configuration command. For more information, see the “Setting the Stack Member Priority Value” section on page 7-25. Another way to change the member priority value is by changing the SWITCH_PRIORITY environment variable, as explained in the “Controlling Environment Variables” section on page 3-24.

The new priority value takes effect immediately but does not affect the current stack master. The new priority value helps determine which stack member is elected as the new stack master when the current stack master or the switch stack resets.

Switch Stack Offline Configuration

You can use the offline configuration feature to provision (to supply a configuration to) a new switch before it joins the switch stack. You can configure in advance the stack member number, the switch type, and the interfaces associated with a switch that is not currently part of the stack. The configuration that you create on the switch stack is called the provisioned configuration. The switch that is added to the switch stack and that receives this configuration is called the provisioned switch.

You manually create the provisioned configuration through the `switch stack-member-number provision type` global configuration command. The provisioned configuration is automatically created when a switch is added to a switch stack and when no provisioned configuration exists.

When you configure the interfaces associated with a provisioned switch (for example, as part of a VLAN), the switch stack accepts the configuration, and the information appears in the running configuration. The interface associated with the provisioned switch is not active, operates as if it is administratively shut down, and the `no shutdown` interface configuration command does not return it to active service. The interface associated with the provisioned switch does not appear in the display of the specific feature; for example, it does not appear in the `show vlan` user EXEC command output.

The switch stack retains the provisioned configuration in the running configuration whether or not the provisioned switch is part of the stack. You can save the provisioned configuration to the startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. The startup configuration file ensures that the switch stack can reload and can use the saved information whether or not the provisioned switch is part of the switch stack.
Effects of Adding a Provisioned Switch to a Switch Stack

When you add a provisioned switch to the switch stack, the stack applies either the provisioned configuration or the default configuration. Table 7-1 lists the events that occur when the switch stack compares the provisioned configuration with the provisioned switch.

Table 7-1 Results of Comparing the Provisioned Configuration with the Provisioned Switch

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stack member numbers and the switch types match.</td>
<td>1. If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, and 2. If the switch type of the provisioned switch matches the switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td>The stack member numbers match but the switch types do not match.</td>
<td>1. If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, but 2. The switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td>The stack member number is not found in the provisioned configuration.</td>
<td>The switch stack applies the default configuration to the provisioned switch and adds it to the stack. The provisioned configuration is changed to reflect the new information.</td>
</tr>
<tr>
<td>The stack member number of the provisioned switch is in conflict with an existing stack member.</td>
<td>The stack master assigns a new stack member number to the provisioned switch. The stack member numbers and the switch types match: 1. If the new stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, and 2. If the switch type of the provisioned switch matches the switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td>The stack member numbers match, but the switch types do not match: 1. If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, but 2. The switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack.</td>
<td>The switch stack applies the default configuration to the provisioned switch and adds it to the stack. The provisioned configuration is changed to reflect the new information.</td>
</tr>
</tbody>
</table>
If you add a provisioned switch that is a different type than specified in the provisioned configuration to a powered-down switch stack and then apply power, the switch stack rejects the (now incorrect) `switch stack-member-number provision type` global configuration command in the startup configuration file. However, during stack initialization, the nondefault interface configuration information in the startup configuration file for the provisioned interfaces (potentially of the wrong type) is executed. Depending on the differences between the actual switch type and the previously provisioned switch type, some commands are rejected, and some commands are accepted.

If the switch stack does not contain a provisioned configuration for a new switch, the switch joins the stack with the default interface configuration. The switch stack then adds to its running configuration a `switch stack-member-number provision type` global configuration command that matches the new switch.

For configuration information, see the “Provisioning a New Member for a Switch Stack” section on page 7-25.

Effects of Replacing a Provisioned Switch in a Switch Stack

When a provisioned switch in a switch stack fails, is removed from the stack, and is replaced with another switch, the stack applies either the provisioned configuration or the default configuration to it. The events that occur when the switch stack compares the provisioned configuration with the provisioned switch are the same as those described in the “Effects of Adding a Provisioned Switch to a Switch Stack” section on page 7-10.

Effects of Removing a Provisioned Switch from a Switch Stack

If you remove a provisioned switch from the switch stack, the configuration associated with the removed stack member remains in the running configuration as provisioned information. To completely remove the configuration, use the `no switch stack-member-number provision` global configuration command.
Hardware Compatibility and SDM Mismatch Mode in Switch Stacks

The switch supports only the desktop Switch Database Management (SDM) templates. All stack members use the SDM template configured on the stack master. Version-mismatch (VM) mode has priority over SDM-mismatch mode. If a VM-mode condition and an SDM-mismatch mode exist, the switch stack first attempts to resolve the VM-mode condition. You can use the `show switch` privileged EXEC command to see if any stack members are in SDM-mismatch mode.

For more information about SDM templates and SDM-mismatch mode, see Chapter 8, “Configuring SDM Templates.”

Switch Stack Software Compatibility Recommendations

To ensure complete compatibility between stack members, use the information in this section and also in the “Hardware Compatibility and SDM Mismatch Mode in Switch Stacks” section on page 7-12.

All stack members must run the same Cisco IOS software image and feature set to ensure compatibility between stack members. For example, all stack members should run the cryptographic universal software image and have the IP services feature set enabled for Cisco IOS Release 12.2(40)EX or later.

For more information, see the “Stack Protocol Version Compatibility” section on page 7-12.

Stack Protocol Version Compatibility

Each software image includes a stack protocol version. The stack protocol version has a major version number and a minor version number (for example 1.4, where 1 is the major version number and 4 is the minor version number). Both version numbers determine the level of compatibility among the stack members. You can display the stack protocol version by using the `show platform stack-manager all` privileged EXEC command.

Switches with the same Cisco IOS software version have the same stack protocol version. Such switches are fully compatible, and all features function properly across the switch stack. Switches with the same Cisco IOS software version as the stack master immediately join the switch stack.

If an incompatibility exists, the fully functional stack members generate a system message that describes the cause of the incompatibility on the specific stack members. The stack master sends the message to all stack members. For more information, see the “Major Version Number Incompatibility Among Switches” procedure on page 7-12 and the “Minor Version Number Incompatibility Among Switches” procedure on page 7-13.

Major Version Number Incompatibility Among Switches

Switches with different major Cisco IOS software versions usually have different stack protocol versions. Switches with different major version numbers are incompatible and cannot exist in the same switch stack.
Minor Version Number Incompatibility Among Switches

Switches with the same major version number but with a different minor version number are considered partially compatible. When connected to a switch stack, a partially compatible switch enters version-mismatch (VM) mode and cannot join the stack as a fully functioning member. The software detects the mismatched software and tries to upgrade (or downgrade) the switch in VM mode with the switch stack image or with a tar file image from the switch stack flash memory. The software uses the automatic upgrade (auto-upgrade) and the automatic advise (auto-advise) features. For more information, see the “Understanding Auto-Upgrade and Auto-Advise” section on page 7-13.

To see if there are switches in VM mode, use the `show switch` user EXEC command. The port LEDs on switches in VM mode stay off. Pressing the Mode button does not change the LED mode.

You can use the `boot auto-download-sw` global configuration command to specify a URL pathname for the master switch to use to get an image in case of version mismatch.

Understand Auto-Upgrade and Auto-Advise

When the software detects mismatched software and tries to upgrade the switch in VM mode, two software processes are involved: automatic upgrade and automatic advise.

- The automatic upgrade (auto-upgrade) process includes an auto-copy process and an auto-extract process. By default, auto-upgrade is enabled (the `boot auto-copy-sw` global configuration command is enabled). You can disable auto-upgrade by using the `no boot auto-copy-sw` global configuration command on the stack master. You can check the status of auto-upgrade by using the `show boot` privileged EXEC command and by checking the Auto upgrade line in the display.

 - Auto-copy automatically copies the software image running on any stack member to the switch in VM mode to upgrade (auto-upgrade) it. Auto-copy occurs if auto-upgrade is enabled, if there is enough flash memory in the switch in VM mode, and if the software image running on the switch stack is suitable for the switch in VM mode.

 Note A switch in VM mode might not run all released software. For example, new switch hardware is not recognized in earlier versions of software.

 - Automatic extraction (auto-extract) occurs when the auto-upgrade process cannot find the appropriate software in the stack to copy to the switch in VM mode. In that case, the auto-extract process searches all switches in the stack, whether they are in VM mode or not, for the tar file needed to upgrade the switch stack or the switch in VM mode. The tar file can be in any flash file system in the switch stack (including the switch in VM mode). If a tar file suitable for the switch in VM mode is found, the process extracts the file and automatically upgrades that switch.

The auto-upgrade (auto-copy and auto-extract) processes wait for a few minutes after the mismatched software is detected before starting.

When the auto-upgrade process is complete, the switch that was in VM mode reloads and joins the stack as a fully functioning member. If you have both StackWise Plus cables connected during the reload, network downtime does not occur because the switch stack operates on two rings.
Understanding Switch Stacks

Note: Auto-upgrade performs the upgrade only when the two feature sets are the same type. For example, it does not automatically upgrade a switch in VM mode from IP services feature set to IP base feature set (or the reverse) or from cryptographic universal software image to noncryptographic universal software image (or the reverse).

- Automatic advise (auto-advise) occurs when the auto-upgrade process cannot find appropriate stack member software to copy to the switch in VM mode. This process tells you the command (archive copy-sw or archive download-sw privileged EXEC command) and the image name (tar filename) needed to manually upgrade the switch stack or the switch in VM mode. The recommended image can be the running switch stack image or a tar file in any flash file system in the switch stack (including the switch in VM mode). If an appropriate image is not found in the stack flash file systems, the auto-advise process tells you to install new software on the switch stack. Auto-advise cannot be disabled, and there is no command to check its status.

The auto-advise software does not give suggestions when the switch stack software and the software of the switch in VM mode do not contain the same feature sets. For example, if the switch stack is running the IP base image and you add a switch that is running the IP services image, the auto-advise software does not provide a recommendation. The same events occur when cryptographic and noncryptographic images are running.

You can use the archive-download-sw /allow-feature-upgrade privileged EXEC command to allow installing a different software image.

Auto-Upgrade and Auto-Advise Example Messages

When you add a switch that has a different minor version number to the switch stack, the software displays messages in sequence (assuming that there are no other system messages generated by the switch).

This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts, finds suitable software to copy from a stack member to the switch in VM mode, upgrades the switch in VM mode, and then reloads it:

```
*Mar 11 20:31:19.247:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 11 20:31:23.232:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack
   (VERSION_MISMATCH)
*Mar 11 20:31:23.291:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack
   (VERSION_MISMATCH) (Stack_1-3)
*Mar 11 20:33:23.248:%IMAGEMGR-6-AUTO_COPY_SW_INITIATED:Auto-copy-software process
   initiated for switch number(s) 1
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Searching for stack member to act
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:as software donor...
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Found donor (system #2) for
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:member(s) 1
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:System software to be uploaded:
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:System Type: 0x00000000
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving cbs31x0-universal-mz.122-40.EX
   (directory)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving
   cbs31x0-universal-mz.122-40.EX/cbs31x0-universal-mz.122-40.EX.bin (4945851 bytes)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving
   cbs31x0-universal-mz.122-40.EX/info (450 bytes)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving info (104 bytes)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:extracting info (104 bytes)
```
This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts but cannot find software in the switch stack to copy to the VM-mode switch to make it compatible with the switch stack. The auto-advice process starts and recommends that you download a tar file from the network to the switch in VM mode:

```
*Mar 11 00:01:11.319:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 11 00:01:15.547:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack (VERSION_MISMATCH)
```

```
stack_2# *Mar 11 00:03:15.554:%IMAGEMGR-6-AUTO_COPY_SW_INITIATED:Auto-copy-software process initiated for switch number(s) 1
*Mar 11 00:03:15.554:%IMAGEMGR-6-AUTO_COPY_SW:Software successfully copied to system(s) 1
*Mar 11 00:03:15.554:%IMAGEMGR-6-AUTO_COPY_SW:Reloading system(s) 1
```
Chapter 7 Managing Switch Stacks

Understanding Switch Stacks

For information about using the archive download-sw privileged EXEC command, see the “Working with Software Images” section on page B-24.

Note
Auto-advise and auto-copy identify which images are running by examining the info file and by searching the directory structure on the switch stack. If you download your image by using the copy tftp: boot loader command instead of the archive download-sw privileged EXEC command, the proper directory structure is not created. For more information about the info file, see the “File Format of Images on a Server or Cisco.com” section on page B-25.

Incompatible Software and Stack Member Image Upgrades

You can upgrade a switch that has an incompatible universal software image by using the archive copy-sw privileged EXEC command. It copies the software image from an existing stack member to the one with incompatible software. That switch automatically reloads and joins the stack as a fully functioning member. For more information, see the “Copying an Image File from One Stack Member to Another” section on page B-39.

Switch Stack Configuration Files

The configuration files record these settings:

- System-level (global) configuration settings—such as IP, STP, VLAN, and SNMP settings—that apply to all stack members

- Stack member interface-specific configuration settings that are specific for each stack member

The stack master has the saved and running configuration files for the switch stack. All stack members periodically receive synchronized copies of the configuration files from the stack master. If the stack master becomes unavailable, any stack member assuming the role of stack master has the latest configuration files.

Note
We recommend that all stack members run Cisco IOS Release 12.2(40)EX or later. The interface-specific settings of the stack master are saved if the stack master is replaced without saving the running configuration to the startup configuration.
When a new, out-of-box switch joins a switch stack, it uses the system-level settings of that switch stack. If a switch is moved to a different switch stack, that switch loses its saved configuration file and uses the system-level configuration of the new switch stack.

The interface-specific configuration of each stack member is associated with the stack member number. As mentioned in the “Stack Member Numbers” section on page 7-8, stack members retain their numbers unless they are manually changed or they are already used by another member in the same switch stack.

- If an interface-specific configuration does not exist for that member number, the stack member uses its default interface-specific configuration.
- If an interface-specific configuration exists for that member number, the stack member uses the interface-specific configuration associated with that member number.

If a stack member fails and you replace it with an identical model, the replacement switch automatically uses the same interface-specific configuration as the failed switch. Hence, you do not need to reconfigure the interface settings. The replacement switch must have the same stack member number as the failed switch. For information about the benefits of provisioning a switch stack, see the “Switch Stack Offline Configuration” section on page 7-9.

You back up and restore the stack configuration in the same way as you would for a standalone switch configuration. For more information about file systems and configuration files, see Appendix B, “Working with the Cisco IOS File System, Configuration Files, and Software Images.”

Additional Considerations for System-Wide Configuration on Switch Stacks

These sections provide additional considerations for configuring system-wide features on switch stacks:

- “Planning and Creating Clusters” chapter in the *Getting Started with Cisco Network Assistant*, available on Cisco.com
- “MAC Addresses and Switch Stacks” section on page 5-21
- “Setting the SDM Template” section on page 8-5
- “802.1x Authentication and Switch Stacks” section on page 9-12
- “VTP and Switch Stacks” section on page 14-8
- “Private VLANs and Switch Stacks” section on page 16-6
- “Spanning Tree and Switch Stacks” section on page 18-12
- “MSTP and Switch Stacks” section on page 19-8
- “DHCP Snooping and Switch Stacks” section on page 22-8
- “IGMP Snooping and Switch Stacks” section on page 24-7
- “Port Security and Switch Stacks” section on page 26-18
- “CDP and Switch Stacks” section on page 27-2
- “SPAN and RSPAN and Switch Stacks” section on page 30-10
- “ACLs and Switch Stacks” section on page 35-6
- “EtherChannel and Switch Stacks” section on page 38-9
- “IP Routing and Switch Stacks” section on page 39-4
- “IPv6 and Switch Stacks” section on page 40-11
- “HSRP and Switch Stacks” section on page 41-5
Switch Stack Management Connectivity

You manage the switch stack and the stack member interfaces through the stack master. You can use the CLI, SNMP, Network Assistant, and CiscoWorks network management applications. You cannot manage stack members on an individual switch basis.

These sections provide switch stack connectivity information:

- Connectivity to the Switch Stack Through an IP Address, page 7-18
- Connectivity to the Switch Stack Through an SSH Session, page 7-18
- Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports, page 7-18
- Connectivity to Specific Stack Members, page 7-19

Connectivity to the Switch Stack Through an IP Address

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can still manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack, provided there is IP connectivity.

Note
Stack members retain their IP addresses when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP addresses of any switches that you remove from the switch stack.

For related information about switch stack configurations, see the “Switch Stack Configuration Files” section on page 7-16.

Connectivity to the Switch Stack Through an SSH Session

The Secure Shell (SSH) connectivity to the switch stack can be lost if a stack master running the cryptographic software image and the IP base or IP services feature set fails and is replaced by a switch that is running the noncryptographic image and the same feature set. We recommend that a switch running the cryptographic software image and the IP base or IP services feature set be the stack master. Encryption features are unavailable if the stack master is running the noncryptographic software image.

Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports

You can connect to the stack master by using one of these methods:

- You can connect a terminal or a PC to the stack master through the console port of one or more stack members.
- You can connect a PC to the stack master through the Ethernet management ports of one or more stack members. For more information about connecting to the switch stack through Ethernet management ports, see the “Using the Internal Ethernet Management Port” section on page 11-13.
Be careful when using multiple CLI sessions to the stack master. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

We recommend using only one CLI session when managing the switch stack.

Connectivity to Specific Stack Members

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation. For more information, see the “Using Interface Configuration Mode” section on page 11-8.

To debug a specific stack member, you can access it from the stack master by using the `session stack-member-number` privileged EXEC command. The stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the stack master is `Switch`. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.

Switch Stack Configuration Scenarios

Table 7-2 provides switch stack configuration scenarios. Most of the scenarios assume that at least two switches are connected through their StackWise Plus ports.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack master election specifically determined by existing stack masters</td>
<td>Connect two powered-on switch stacks through the StackWise Plus ports. Only one of the two stack masters becomes the new stack master. None of the other stack members become the stack master.</td>
</tr>
<tr>
<td>Stack master election specifically determined by the stack member priority value</td>
<td>1. Connect two switches through their StackWise Plus ports. 2. Use the <code>switch stack-member-number priority new-priority-number</code> global configuration command to set one stack member with a higher member priority value. 3. Restart both stack members at the same time. The stack member with the higher priority value is elected stack master.</td>
</tr>
<tr>
<td>Stack master election specifically determined by the configuration file</td>
<td>Assuming that both stack members have the same priority value: 1. Make sure that one stack member has a default configuration and that the other stack member has a saved (nondefault) configuration file. 2. Restart both stack members at the same time. The stack member with the saved configuration file is elected stack master.</td>
</tr>
</tbody>
</table>
Understanding Switch Stacks

Stack master election specifically determined by the cryptographic software image and the IP services feature set and the IP services feature set:

1. Make sure that one stack member has the cryptographic image installed and the IP services feature set enabled and that the other stack member has the noncryptographic image installed and the IP services feature set enabled.
2. Restart both stack members at the same time.

The stack member with the cryptographic image and the IP services feature set is elected stack master.

Stack master election specifically determined by the cryptographic software image and the IP base feature set:

1. Make sure that one stack member has the cryptographic image installed and the IP base feature set enabled and that the other stack member has the noncryptographic image installed and the IP base feature set enabled.
2. Restart both stack members at the same time.

The stack member with the cryptographic image and the IP base feature set is elected stack master.

Stack master election specifically determined by the MAC address:

Assuming that both stack members have the same priority value, configuration file, and feature set, restart both stack members at the same time.

The stack member with the lower MAC address is elected stack master.

Stack member number conflict:

Assuming that one stack member has a higher priority value than the other stack member:

1. Ensure that both stack members have the same stack member number. If necessary, use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command.
2. Restart both stack members at the same time.

The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number.

Add a stack member:

1. Power off the new switch.
2. Through their StackWise Plus ports, connect the new switch to a powered-on switch stack.
3. Power on the new switch.

The stack master is retained. The new switch is added to the switch stack.

Table 7-2 Switch Stack Configuration Scenarios (continued)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack master election specifically determined by the cryptographic software image and the IP services feature set</td>
<td>The stack member with the cryptographic image and the IP services feature set is elected stack master.</td>
</tr>
<tr>
<td>Stack master election specifically determined by the cryptographic software image and the IP base feature set</td>
<td>The stack member with the cryptographic image and the IP base feature set is elected stack master.</td>
</tr>
<tr>
<td>Stack master election specifically determined by the MAC address</td>
<td>The stack member with the lower MAC address is elected stack master.</td>
</tr>
<tr>
<td>Stack member number conflict</td>
<td>The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number.</td>
</tr>
<tr>
<td>Add a stack member</td>
<td>The stack master is retained. The new switch is added to the switch stack.</td>
</tr>
</tbody>
</table>
Configuring the Switch Stack

These sections contain this configuration information:

- Default Switch Stack Configuration, page 7-21
- Enabling Persistent MAC Address, page 7-22
- Assigning Stack Member Information, page 7-24

Default Switch Stack Configuration

Table 7-3 shows the default switch stack configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack MAC address timer</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Stack member number</td>
<td>1</td>
</tr>
<tr>
<td>Stack member priority value</td>
<td>1</td>
</tr>
<tr>
<td>Offline configuration</td>
<td>The switch stack is not provisioned.</td>
</tr>
</tbody>
</table>

Enabling Persistent MAC Address

The switch stack MAC address is determined by the MAC address of the stack master. When a stack master is removed from the stack and a new stack master takes over, the default is for the MAC address of the new stack master to immediately become the new stack MAC router address. However, you can enable the persistent MAC address feature to allow a time delay before the stack MAC address changes. During this time period, if the previous stack master rejoins the stack, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member and not a stack master. If
the previous stack master does not rejoin the stack during this period, the switch stack takes the MAC address of the new stack master as the stack MAC address. You can also configure stack MAC persistency so that the stack never switches to the MAC address of the new stack master.

Note

When you enter the command to configure this feature, a warning message appears containing the consequences of your configuration. You should use this feature cautiously. Using the old stack master MAC address elsewhere in the same domain could result in lost traffic.

You can configure the time period as 0 to 60 minutes.

- If you enter the command with no value, the default delay is 4 minutes. We recommend that you always enter a value. If the command is entered without a value, the time delay appears in the running-config file with an explicit timer value of 4 minutes.
- If you enter 0, the stack MAC address of the previous stack master is used until you enter the `no stack-mac persistent timer` command, which immediately changes the stack MAC address to that of the current stack master. If you do not enter the `no stack-mac persistent timer` command, the stack MAC address never changes.
- If you enter a time delay of 1 to 60 minutes, the stack MAC address of the previous stack master is used until the configured time period expires or until you enter the `no stack-mac persistent timer` command.

Note

If the entire switch stack reloads, it uses with the MAC address of the stack master as the stack MAC address.

Beginning in privileged EXEC mode, follow these steps to enable persistent MAC address. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2**
stack-mac persistent timer [0 | time-value] | Enable a time delay after a stack-master change before the stack MAC address changes to that of the new stack master. If the previous stack master rejoins the stack during this period, the stack uses that MAC address as the stack MAC address.
 - Enter the command with no value to set the default delay of approximately 4 minutes. We recommend that you always configure a value.
 - Enter 0 to continue using the MAC address of the current stack master indefinitely.
 - Enter a `time-value` from 1 to 60 minutes to configure the time period before the stack MAC address changes to the new stack master.
 Note When you enter this command, a warning states that traffic might be lost if the old master MAC address appears elsewhere in the network domain. |

If you enter the `no stack-mac persistent timer` command after a new stack master takes over, before the time expires, the switch stack moves to the current stack master MAC address.
Use the `no stack-mac persistent timer` global configuration command to disable the persistent MAC address feature.

This example shows how to configure the persistent MAC address feature for a 7-minute time delay and to verify the configuration:

```
Switch(config)# stack-mac persistent timer 7
```

WARNING: The stack continues to use the base MAC of the old Master
WARNING: as the stack MAC after a master switchover until the MAC
WARNING: persistency timer expires. During this time the Network
WARNING: Administrators must make sure that the old stack-mac does
WARNING: not appear elsewhere in this network domain. If it does,
WARNING: user traffic may be blackholed.

```
Switch(config)# end
```

```
Switch# show switch
Switch/Stack Mac Address : 0016.4727.a900
Mac persistency wait time: 7 mins
```

```
Switch# Role  Mac Address     Priority Version  State
*1 Master 0016.4727.a900     1      0       Ready
```

Assigning Stack Member Information

These sections describe how to assign stack member information:

- Assigning a Stack Member Number, page 7-24 (optional)
- Setting the Stack Member Priority Value, page 7-25 (optional)
- Provisioning a New Member for a Switch Stack, page 7-25 (optional)

Assigning a Stack Member Number

Note

This task is available only from the stack master.
Beginning in privileged EXEC mode, follow these steps to assign a member number to a stack member. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch current-stack-member-number renumber new-stack-member-number Specify the current stack member number and the new stack member number for the stack member. The range is 1 to 9. You can display the current stack member number by using the show switch user EXEC command.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>reload slot stack-member-number Reset the stack member.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show switch Verify the stack member number.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Chapter 7 Managing Switch Stacks

Setting the Stack Member Priority Value

Note This task is available only from the stack master.

Beginning in privileged EXEC mode, follow these steps to assign a priority value to a stack member:

This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch stack-member-number priority new-priority-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>reload slot stack-member-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>show switch stack-member-number</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Provisioning a New Member for a Switch Stack

Note This task is available only from the stack master.

Beginning in privileged EXEC mode, follow these steps to provision a new member for a switch stack:

This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show switch</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch stack-member-number provision type</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
</tbody>
</table>
Accessing the CLI of a Specific Stack Member

To remove provisioned information and to avoid receiving an error message, remove the specified switch from the stack before you use the `no` form of this command.

For example, if you are removing a provisioned switch in a stack with this configuration:

- The stack has four members
- Stack member 1 is the master
- Stack member 3 is a provisioned switch

and want to remove the provisioned information and to avoid receiving an error message, you can remove power from stack member 3, disconnect the StackWise Plus cables between the stack member 3 and switches to which it is connected, reconnect the cables between the remaining stack members, and enter the `no switch stack-member-number provision` global configuration command.

This example shows how to provision a switch with a stack member number of 2 for the switch stack. The `show running-config` command output shows the interfaces associated with the provisioned switch:

```
Switch(config)# switch 2 provision WS-CBS3120G
Switch(config)# end
Switch# show running-config | include switch 2
!
interface GigabitEthernet2/0/1
!
interface GigabitEthernet2/0/2
!
interface GigabitEthernet2/0/3
<output truncated>
```

Accessing the CLI of a Specific Stack Member

Note

This task is only for debugging purposes, and is only available from the master.

You can access all or specific members by using the `remote command {all | stack-member-number}` privileged EXEC command. The stack member number range is 1 to 9.

You can access specific members by using the `session stack-member-number` privileged EXEC command. The member number is appended to the system prompt. For example, the prompt for member 2 is `Switch-2#`, and system prompt for the master is `Switch#`. Enter exit to return to the CLI session on the master. Only the `show` and `debug` commands are available on a specific member.
Displaying Switch Stack Information

To display saved configuration changes after resetting a specific member or the stack, use these privileged EXEC commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show platform stack manager all</code></td>
<td>Display all stack information, such as the stack protocol version.</td>
</tr>
<tr>
<td>`show platform stack ports { buffer</td>
<td>history}`</td>
</tr>
<tr>
<td><code>show switch</code></td>
<td>Display summary information about the stack, including the status of provisioned switches and switches in version-mismatch mode.</td>
</tr>
<tr>
<td><code>show switch stack-member-number</code></td>
<td>Display information about a specific member.</td>
</tr>
<tr>
<td><code>show switch detail</code></td>
<td>Display detailed information about the stack ring.</td>
</tr>
<tr>
<td><code>show switch neighbors</code></td>
<td>Display the stack neighbors.</td>
</tr>
<tr>
<td><code>show switch stack-ports [summary]</code></td>
<td>Display port information for the stack. Use the <code>summary</code> keyword to display the stack cable length, the stack link status, and the loopback status.</td>
</tr>
<tr>
<td><code>show switch stack-ring activity [detail]</code></td>
<td>Display the number of frames per member that are sent to the stack ring. The <code>detail</code> keyword displays the number of frames per member that are sent to the stack ring, the receive queues, and the ASIC.</td>
</tr>
</tbody>
</table>

Troubleshooting Stacks

- Manually Disabling a Stack Port, page 7-28
- Re-Enabling a Stack Port While Another Member Starts, page 7-28
- Understanding the show switch stack-ports summary Output, page 7-29
- Identifying Loopback Problems, page 7-30
- Finding a Disconnected Stack Cable, page 7-33
- Fixing a Bad Connection Between Stack Ports, page 7-34
Manually Disabling a Stack Port

If a stack port is flapping and causing instability in the stack ring, to disable the port, enter the `switch stack-member-number stack port port-number disable` privileged EXEC command. To re-enable the port, enter the `switch stack-member-number stack port port-number enable` command.

Note

Be careful when using the `switch stack-member-number stack port port-number disable` command. When you disable the stack port, the stack operates at half bandwidth.

- A stack is in the **full-ring** state when all members are connected through the stack ports and are in the ready state.
- The stack is in the **partial-ring** state when
 - All members are connected through the stack ports, but some all are not in the ready state.
 - Some members are not connected through the stack ports.

When you enter the `switch stack-member-number stack port port-number disable` privileged EXEC command and

- The stack is in the full-ring state, you can disable only one stack port. This message appears:

  ```
  Enabling/disabling a stack port may cause undesired stack changes. Continue?[confirm]
  ```

- The stack is in the partial-ring state, you cannot disable the port. This message appears:

  ```
  Disabling stack port not allowed with current stack configuration.
  ```

Re-Enabling a Stack Port While Another Member Starts

Stack Port 1 on Switch 1 is connected to Port 2 on Switch 4. If Port 1 is flapping, disable Port 1 with the `switch 1 stack port 1 disable` privileged EXEC command.

While Port 1 on Switch 1 is disabled and Switch 1 is still powered on:

1. Disconnect the stack cable between Port 1 on Switch 1 and Port 2 on Switch 4.
2. Remove Switch 4 from the stack.
3. Add a switch to replace Switch 4 and assign it switch-number 4.
4. Reconnect the cable between Port 1 on Switch 1 and Port 2 on Switch 4 (the replacement switch).
5. Re-enable the link between the switches. Enter the `switch 1 stack port 1 enable` privileged EXEC command to enable Port 1 on Switch 1.

Caution

Powering on Switch 4 before enabling the Port 1 on Switch 1 might cause one of the switches to reload.

If Switch 4 is powered on first, you might need to enter the `switch 1 stack port 1 enable` and the `switch 4 stack port 2 enable` privileged EXEC commands to bring up the link.
Understanding the `show switch stack-ports summary` Output

Only Port 1 on stack member 2 is disabled.

```
Switch# `show switch stack-ports summary`
```

<table>
<thead>
<tr>
<th>Switch#/Port#</th>
<th>Stack Port Status</th>
<th>Neighbor</th>
<th>Cable Length</th>
<th>Link OK</th>
<th>Link Active</th>
<th>Sync OK</th>
<th># Changes To LinkOK</th>
<th>In Loopback</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>OK</td>
<td>3</td>
<td>50 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>1/2</td>
<td>Down</td>
<td>None</td>
<td>3 m</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>2/1</td>
<td>Down</td>
<td>None</td>
<td>3 m</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>2/2</td>
<td>OK</td>
<td>3</td>
<td>50 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>3/1</td>
<td>OK</td>
<td>2</td>
<td>50 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>3/2</td>
<td>OK</td>
<td>1</td>
<td>50 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch#/Port#</td>
<td>Member number and its stack port number.</td>
</tr>
</tbody>
</table>
| Stack Port Status | • Absent—No cable is detected on the stack port.
• Down—A cable is detected, but either no connected neighbor is up, or the stack port is disabled.
• OK—A cable is detected, and the connected neighbor is up. |
| Neighbor | Switch number of the active member at the other end of the stack cable. |
| Cable Length | Valid lengths are 50 cm, 1 m, or 3 m.
If the switch cannot detect the cable length, the value is no cable. The cable might not be connected, or the link might be unreliable. |
| Link OK | This shows if the link is stable.
The link partner is a stack port on a neighbor switch.
• No—The link partner receives invalid protocol messages from the port.
• Yes—The link partner receives valid protocol messages from the port. |
| Link Active | This shows if the stack port is in the same state as its link partner.
• No—The port cannot send traffic to the link partner.
• Yes—The port can send traffic to the link partner. |
| Sync OK | • No—The link partner does not send valid protocol messages to the stack port.
• Yes—The link partner sends valid protocol messages to the port. |
| # Changes to LinkOK | This shows the relative stability of the link.
If a large number of changes occur in a short period of time, link flapping can occur. |
| In Loopback | • No—At least one stack port on the member has an attached stack cable.
• Yes—None of the stack ports on the member has an attached stack cable. |
Identifying Loopback Problems

- Software Loopback, page 7-30
- Software Loopback Example: No Connected Stack Cable, page 7-31
- Software Loopback Examples: Connected Stack Cables, page 7-31
- Hardware Loopback, page 7-32
- Hardware Loopback Example: LINK OK event, page 7-32
- Hardware Loop Example: LINK NOT OK Event, page 7-33

Software Loopback

In a stack with three members, stack cables connect all the members.

```
Switch# show switch stack-ports summary
Switch#/  Stack   Neighbor   Cable    Link   Link   Sync      #         In
Port#     Port              Length    OK   Active   OK    Changes   Loopback
Status                                          To LinkOK
--------  ------  --------  --------  ----  ------  ----  ---------  --------
1/1     OK         3      50 cm     Yes    Yes    Yes        1        No
1/2     OK         2      3 m       Yes    Yes    Yes        1        No
2/1     OK         1      3 m       Yes    Yes    Yes        1        No
2/2     OK         3      50 cm     Yes    Yes    Yes        1        No
3/1     OK         2      50 cm     Yes    Yes    Yes        1        No
3/2     OK         1      50 cm     Yes    Yes    Yes        1        No
```

If you disconnect the stack cable from Port 1 on Switch 1, these messages appear:

```
01:09:55: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 3 has changed to state DOWN
01:09:56: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 1 has changed to state DOWN
```

```
Switch# show switch stack-ports summary
Switch#/  Stack   Neighbor   Cable    Link   Link   Sync      #         In
Port#     Port              Length    OK   Active   OK    Changes   Loopback
Status                                          To LinkOK
--------  ------  --------  --------  ----  ------  ----  ---------  --------
1/1     Absent    None    No cable  No     No     No         1        No
1/2     OK         2      3 m       Yes    Yes    Yes        1        No
2/1     OK         1      3 m       Yes    Yes    Yes        1        No
2/2     OK         3      50 cm     Yes    Yes    Yes        1        No
3/1     OK         2      50 cm     Yes    Yes    Yes        1        No
3/2     Down      None    50 cm     No     No     No         1        No
```

If you disconnect the stack cable from Port 2 on Switch 1, the stack splits.

```
Switch 2 and Switch 3 are now in a two-member stack connected through stack cables.
```

```
Switch# show sw stack-ports summary
Switch#/  Stack   Neighbor   Cable    Link   Link   Sync      #         In
Port#     Port              Length    OK   Active   OK    Changes   Loopback
Status                                          To LinkOK
--------  ------  --------  --------  ----  ------  ----  ---------  --------
2/1     Down      None    3 m       No     No     No         1        No
2/2     OK         3      50 cm     Yes    Yes    Yes        1        No
3/1     OK         2      50 cm     Yes    Yes    Yes        1        No
3/2     Down      None    50 cm     No     No     No         1        No
```
Switch 1 is a standalone switch.

```
Switch# show switch stack-ports summary
Switch#/ Stack Neighbor Cable Link Link Sync # In
Port#  Port     Length OK  Active OK Changes Loopback
--------- ------ -------- ---- ---- ---- ---------  --------
1/1    Absent None      No    No   No   No    1         Yes
1/2    Absent None      No    No   No   No    1         Yes
```

Software Loopback Example: No Connected Stack Cable

Port status:
```
Switch# show switch stack-ports summary
Switch#/ Stack Neighbor Cable Link Link Sync # In
Port#  Port     Length OK  Active OK Changes Loopback
--------- ------ -------- ---- ---- ---- ---------  --------
1/1    Absent None      No    No   No   No    1         Yes
1/2    Absent None      No    No   No   No    1         Yes
```

Software Loopback Examples: Connected Stack Cables

- On Port 1 on Switch 1, the port status is **Down**, and a cable is connected.
- On Port 2 on Switch 1, the port status is **Absent**, and no cable is connected.

```
Switch# show switch stack-ports summary
Switch#/ Stack Neighbor Cable Link Link Sync # In
Port#  Port     Length OK  Active OK Changes Loopback
--------- ------ -------- ---- ---- ---- ---------  --------
1/1    Down    None      50 cm Yes    Yes    Yes       1         No
1/2    Absent  None      No    No   No   No       1         No
```

- In a **physical loopback**, a cable connects both stack ports on a switch. You can use this configuration to test
 - Cables on a switch that is running properly
 - Stack ports with a cable that works properly

```
Switch# show switch stack-ports summary
Switch#/ Stack Neighbor Cable Link Link Sync # In
Port#  Port     Length OK  Active OK Changes Loopback
--------- ------ -------- ---- ---- ---- ---------  --------
2/1    OK      2      50 cm Yes    Yes    Yes       1         No
2/2    OK      2      50 cm Yes    Yes    Yes       1         No
```

The port status shows that
- Switch 2 is a standalone switch.
- The ports can send and receive traffic.
Hardware Loopback

The `show platform stack ports buffer` privileged EXEC command output shows the hardware loopback values.

```
Switch# show platform stack ports buffer
```

```
Stack Debug Event Data Trace

Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK

<table>
<thead>
<tr>
<th>Event Count</th>
<th>Stack Port</th>
<th>Stack PCS Info</th>
<th>Ctrl-Status IOS / HW length</th>
<th>Loopback</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event type: LINK OK Stack Port 1</td>
<td>0000000011</td>
<td>FF08FF00 860302A5 AA5FFFFF FFFFFFFF</td>
<td>0CE61CE6</td>
<td>Yes/Yes</td>
<td>No cable</td>
</tr>
<tr>
<td>Event type: LINK OK Stack Port 2</td>
<td>0000000012</td>
<td>FF08FF00 860302A5 AA5FFFFF FFFFFFFF</td>
<td>0CE61CE6</td>
<td>Yes/Yes</td>
<td>No cable</td>
</tr>
<tr>
<td>Event type: RAC</td>
<td>0000000013</td>
<td>FF08FF00 860302A5 AA5FFFFF FFFFFFFF</td>
<td>0CE61CE6</td>
<td>Yes/Yes</td>
<td>No cable</td>
</tr>
</tbody>
</table>

On a member,

- If a stack port has an connected stack cable, the *Loopback HW* value for the stack port is *No*.
- If the stack port does not have an connected stack cable, the *Loopback HW* value for the stack port is *Yes*.

### Hardware Loopback Example: LINK OK event

```
Switch# show platform stack ports buffer
```

```
Stack Debug Event Data Trace

Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK

<table>
<thead>
<tr>
<th>Event Count</th>
<th>Stack Port</th>
<th>Stack PCS Info</th>
<th>Ctrl-Status IOS / HW length</th>
<th>Loopback</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event type: LINK OK Stack Port 1</td>
<td>00000000153</td>
<td>FF01FF00 860351A5 55A5FFFF FFFFFFFF</td>
<td>0CE60C10</td>
<td>No /No</td>
<td>50 cm</td>
</tr>
<tr>
<td>Event type: RAC</td>
<td>00000000154</td>
<td>FF01FF00 860351A5 55A5FFFF FFFFFFFF</td>
<td>0CE60C10</td>
<td>No /No</td>
<td>50 cm</td>
</tr>
<tr>
<td>Event type: RAC</td>
<td>00000000154</td>
<td>FF01FF00 860351A5 55A5FFFF FFFFFFFF</td>
<td>0CE60C10</td>
<td>No /No</td>
<td>3 m</td>
</tr>
</tbody>
</table>
Hardware Loop Example: LINK NOT OK Event

Switch# show platform stack ports buffer
Stack Debug Event Data Trace

Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK

==
Event type LINK: Link status change
Event type RAC: RAC changes to Not OK
Event type SYNC: Sync changes to Not OK

<table>
<thead>
<tr>
<th>Event Count</th>
<th>Stack Port</th>
<th>Stack PCS Info</th>
<th>Ctrl-Status IOS / HW</th>
<th>Loopback</th>
<th>Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000014</td>
<td>1</td>
<td>FF01FF00 860204A7 5555FFFF 00000000 0CE60CA6</td>
<td>No /No 50 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000000014</td>
<td>2</td>
<td>FF01FF00 85020823 AAAAFFFF 00000000 0CE60CA6</td>
<td>No /No 3 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000000015</td>
<td>1</td>
<td>FF01FF00 860204A7 5555FFFF 00000000 0CE60CA6</td>
<td>No /No 50 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000000015</td>
<td>2</td>
<td>FF01FF00 85020823 AAAAFFFF 00000000 0CE60CA6</td>
<td>No /No 3 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000000029</td>
<td>1</td>
<td>FF01FF00 860204A7 5555FFFF 00000000 1CE61CE6</td>
<td>No /No 50 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000000029</td>
<td>2</td>
<td>FF01FF00 86020823 AAAAFFFF 00000000 1CE61CE6</td>
<td>No /No 3 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000000030</td>
<td>1</td>
<td>FF01FF00 860204A7 5555FFFF 00000000 1CE61CE6</td>
<td>No /No 50 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000000030</td>
<td>2</td>
<td>FF01FF00 86020823 AAAAFFFF 00000000 1CE61CE6</td>
<td>No /No 3 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finding a Disconnected Stack Cable

Stack cables connect all stack members. Port 2 on Switch 1 connects to Port 1 on Switch 2.

This is the port status for the members:

Switch# show switch stack-ports summary

<table>
<thead>
<tr>
<th>Switch Port Status</th>
<th>Stack Port</th>
<th>Neighbor Port</th>
<th>Cable Length</th>
<th>Link OK</th>
<th>Link Active</th>
<th>Sync Changes To LinkOK</th>
<th>In Loopback</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1 OK</td>
<td>2</td>
<td>50 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>1/2 OK</td>
<td>2</td>
<td>50 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>2/1 OK</td>
<td>1</td>
<td>50 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>2/2 OK</td>
<td>1</td>
<td>50 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

If you disconnect the cable from Port 2 on Switch 1, these messages appear:

%STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 2 has changed to state DOWN

%STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 1 has changed to state DOWN
This is now the port status:

```
Switch# show switch stack-ports summary
Switch#/ Port#     Port Name  Neighbor Port Name  Cable Length  Link OK  Link Active  Sync OK  # Changes  In Loopback To LinkOK
-------  ------  --------  --------  --------  ----  ------  ----  ---------  --------
1/1      OK      2     50 cm     Yes      Yes      Yes         1          No
1/2     Absent  None  No cable  No      No      No          2          No
2/1      Down    None  50 cm      No      No      No          2          No
2/2      OK      1     50 cm     Yes      Yes      Yes         1          No
```

Only one end of the cable connects to a stack port, Port 1 on Switch 2.

- The Stack Port Status value for Port 2 on Switch 1 is Absent, and the value for Port 1 on Switch 2 is Down.
- The Cable Length value is No cable.

Diagnosing the problem:
- Verify the cable connection for Port 2 on Switch 1.
- Port 2 on Switch 1 has a port or cable problem if
 - The In Loopback value is Yes.
 - or
 - The Link OK, Link Active, or Sync OK value is No.

Fixing a Bad Connection Between Stack Ports

Stack cables connect all members. Port 2 on Switch 1 connects to Port 1 on Switch 2.

This is the port status:

```
Switch# show switch stack-ports summary
Switch#/ Port#     Port Name  Neighbor Port Name  Cable Length  Link OK  Link Active  Sync OK  # Changes  In Loopback To LinkOK
-------  ------  --------  --------  --------  ----  ------  ----  ---------  --------
1/1      OK      2     50 cm      Yes      Yes      Yes         1          No
1/2      Down    None  50 cm      No      No      No          2      No
2/1      Down    None  50 cm      No      No      No          2      No
2/2      OK      1     50 cm      Yes      Yes      Yes         1          No
```

Diagnosing the problem:
- The Stack Port Status value is Down.
- Link OK, Link Active, and Sync OK values are No.
- The Cable Length value is 50 cm. The switch detects and correctly identifies the cable.

The connection between Port 2 on Switch 1 and Port 1 on Switch 2 is unreliable on at least one of the connector pins.
Configuring SDM Templates

This chapter describes how to configure the Switch Database Management (SDM) templates on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:
- Understanding the SDM Templates, page 8-1
- Configuring the Switch SDM Template, page 8-4
- Displaying the SDM Templates, page 8-6

Understanding the SDM Templates

You can use SDM templates to configure system resources in the switch to optimize support for specific features, depending on how the switch is used in the network. You can select a template to provide maximum system usage for some functions; for example, use the default template to balance resources, and use access template to obtain maximum ACL usage.

To allocate hardware resources for different usages, the switch SDM templates prioritize system resources to optimize support for certain features. You can select SDM templates for IP Version 4 (IPv4) to optimize these features:
- Routing—The routing template maximizes system resources for unicast routing, typically required for a router in the center of a network.
- VLANs—The VLAN template disables routing and supports the maximum number of unicast MAC addresses. It would typically be selected for a Layer 2 switch.
- Default—The default template gives balance to all functions.
- Access—The access template maximizes system resources for access control lists (ACLs) to accommodate a large number of ACLs.
Table 8-1 lists the approximate numbers of each resource supported in each of the four templates.

Table 8-1 Approximate Number of Feature Resources Allowed by Each Template

<table>
<thead>
<tr>
<th>Resource</th>
<th>Access</th>
<th>Default</th>
<th>Routing</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast MAC addresses</td>
<td>4 K</td>
<td>6 K</td>
<td>3 K</td>
<td>12 K</td>
</tr>
<tr>
<td>IGMP groups and multicast routes</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Unicast routes</td>
<td>6 K</td>
<td>8 K</td>
<td>11 K</td>
<td>0</td>
</tr>
<tr>
<td>• Directly connected hosts</td>
<td>4 K</td>
<td>6 K</td>
<td>3 K</td>
<td>0</td>
</tr>
<tr>
<td>• Indirect routes</td>
<td>2 K</td>
<td>2 K</td>
<td>8 K</td>
<td>0</td>
</tr>
<tr>
<td>Policy-based routing ACEs</td>
<td>0.5 K</td>
<td>0</td>
<td>0.5 K</td>
<td>0</td>
</tr>
<tr>
<td>QoS classification ACEs</td>
<td>0.5 K</td>
<td>0.5 K</td>
<td>0.5 K</td>
<td>0.5 K</td>
</tr>
<tr>
<td>Security ACEs</td>
<td>2 K</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>VLANs</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
</tbody>
</table>

The first eight rows in the tables (unicast MAC addresses through security ACEs) represent approximate hardware boundaries set when a template is selected. If a section of a hardware resource is full, all processing overflow is sent to the CPU, seriously impacting switch performance. The last row is a guideline used to calculate hardware resource consumption related to the number of Layer 2 VLANs on the switch.

Dual IPv4 and IPv6 SDM Templates

You can select SDM templates to support IP Version 6 (IPv6). For more information about IPv6 and how to configure IPv6 unicast routing, see Chapter 40, “Configuring IPv6 Host Functions and Unicast Routing.”

This software release does not support IPv6 multicast routing and QoS.

This software release does not support policy-based routing (PBR) when forwarding IPv6 traffic. The software supports IPv4 PBR only when the dual-ipv4-and-ipv6 routing template is configured.

The dual IPv4 and IPv6 templates allow the switch to be used in dual stack environments (supporting both IPv4 and IPv6). Using the dual stack templates results in less hardware capacity allowed for each resource. Do not use them if you plan to forward only IPv4 traffic. These SDM templates support IPv4 and IPv6 environments:

- Dual IPv4 and IPv6 default template—supports Layer 2, multicast, routing, QoS, and ACLs for IPv4; and Layer 2, routing, and ACLs for IPv6 on the switch.
- Dual IPv4 and IPv6 routing template—supports Layer 2, multicast, routing (including policy-based routing), QoS, and ACLs for IPv4; and Layer 2, routing, and ACLs for IPv6 on the switch.
- Dual IPv4 and IPv6 VLAN template—supports basic Layer 2, multicast, QoS, and ACLs for IPv4, and basic Layer 2 and ACLs for IPv6 on the switch.

Table 8-2 defines the approximate feature resources allocated by each dual IPv4 and IPv6 template. Template estimations are based on a switch with 8 routed interfaces and 1024 VLANs.
Understanding the SDM Templates

SDM Templates and Switch Stacks

All stack members must use the same SDM desktop template that is stored on the stack master. When a new switch is added to a stack, the SDM configuration that is stored on the stack master overrides the template configured on an individual switch. For more information about stacking, see Chapter 7, “Managing Switch Stacks.”

You can use the show switch privileged EXEC command to see if any stack members are in SDM mismatch mode. This example shows the output from the show switch privileged EXEC command when an SDM mismatch exists:

```
Switch# show switch
Current
Switch#  Role      Mac Address     Priority     State
--------------------------------------------
*2       Master    000a.fdfd.0100     5         Ready
4        Member     0003.fd63.9c00    5        SDM Mismatch
```

This is an example of a syslog message notifying the stack master that a stack member is in SDM mismatch mode:

```
2d23h:%STACKMGR-6-SWITCH_ADDED_SDM:Switch 2 has been ADDED to the stack (SDM_MISMATCH)
2d23h:%SDM-6-MISMATCH_ADVISE:
2d23h:%SDM-6-MISMATCH_ADVISE:
2d23h:%SDM-6-MISMATCH_ADVISE: System (#2) is incompatible with the SDM
2d23h:%SDM-6-MISMATCH_ADVISE:template currently running on the stack and
2d23h:%SDM-6-MISMATCH_ADVISE: will not function unless the stack is
downgraded. Issuing the following commands
```

Table 8-2 Approximate Feature Resources Allowed by Dual IPv4-IPv6 Templates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast MAC addresses</td>
<td>2 K</td>
<td>1.5 K</td>
<td>8 K</td>
</tr>
<tr>
<td>IPv4 IGMP groups and multicast routes</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K for IGMP groups 0 for multicast routes</td>
</tr>
<tr>
<td>Total IPv4 unicast routes:</td>
<td>3 K</td>
<td>2.75 K</td>
<td>0</td>
</tr>
<tr>
<td>• Directly connected IPv4 hosts</td>
<td>2 K</td>
<td>1.5 K</td>
<td>0</td>
</tr>
<tr>
<td>• Indirect IPv4 routes</td>
<td>1 K</td>
<td>1.25 K</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 multicast groups</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Directly connected IPv6 addresses</td>
<td>2 K</td>
<td>1.5 K</td>
<td>0</td>
</tr>
<tr>
<td>Indirect IPv6 unicast routes</td>
<td>1 K</td>
<td>1.25 K</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 policy-based routing ACEs</td>
<td>0</td>
<td>0.25 K</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 or MAC QoS ACEs (total)</td>
<td>0.5 K</td>
<td>0.5 K</td>
<td>0.5 K</td>
</tr>
<tr>
<td>IPv4 or MAC security ACEs (total)</td>
<td>1 K</td>
<td>0.5 K</td>
<td>1 K</td>
</tr>
<tr>
<td>IPv6 security ACEs</td>
<td>0.5 K</td>
<td>0.5 K</td>
<td>0.5 K</td>
</tr>
</tbody>
</table>

```

Cisco Catalyst Switch Module 3110 and 3012 for IBM BladeCenter Software Configuration Guide

OL-12189-05

B-3
Configuring the Switch SDM Template

These sections contain this configuration information:

- Default SDM Template, page 8-4
- SDM Template Configuration Guidelines, page 8-4
- Setting the SDM Template, page 8-5

Default SDM Template

The default template is the default Switch Database Management (SDM) desktop template.

SDM Template Configuration Guidelines

Follow these guidelines when selecting and configuring SDM templates:

- You must reload the switch for the configuration to take effect.
- Use the `sdm prefer vlan` global configuration command only on switches intended for Layer 2 switching with no routing.
  
  When you use the VLAN template, no system resources are reserved for routing entries, and any routing is done through software. This overloads the CPU and severely degrades routing performance.
- Do not use the routing template if you do not have routing enabled on your switch. To prevent other features from using the memory allocated to unicast routing in the routing template, use the `sdm prefer routing` global configuration command.
- If you try to configure IPv6 without first selecting a dual IPv4 and IPv6 template, a warning message appears.
- Using the dual stack template results in less hardware capacity allowed for each resource, so do not use it if you plan to forward only IPv4 traffic.
Setting the SDM Template

Beginning in privileged EXEC mode, follow these steps to use the SDM template to maximize feature usage:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>sdm prefer {access</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• access—Maximize system resources for ACLs.</td>
</tr>
<tr>
<td></td>
<td>• default—Give balance to all functions.</td>
</tr>
<tr>
<td></td>
<td>• dual-ipv4-and-ipv6—Select a template that supports both IPv4 and IPv6 routing.</td>
</tr>
<tr>
<td></td>
<td>• default—Balance IPv4 and IPv6 Layer 2 and Layer 3 functionality.</td>
</tr>
<tr>
<td></td>
<td>• routing—Provide maximum usage for IPv4 and IPv6 routing, including IPv4 policy-based routing.</td>
</tr>
<tr>
<td></td>
<td>• vlan—Provide maximum usage for IPv4 and IPv6 VLANs.</td>
</tr>
<tr>
<td></td>
<td>• routing—Maximize routing on the switch.</td>
</tr>
<tr>
<td></td>
<td>• vlan—Maximize VLAN configuration on the switch with no routing supported in hardware.</td>
</tr>
<tr>
<td></td>
<td>Use the no sdm prefer command to reset the switch to the default desktop template. The default template balances the use of system resources.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>reload</td>
</tr>
<tr>
<td></td>
<td>Reload the operating system.</td>
</tr>
</tbody>
</table>

After the system reboots, you can use the show sdm prefer privileged EXEC command to verify the new template configuration. If you enter the show sdm prefer command before you enter the reload privileged EXEC command, the show sdm prefer command shows the template currently in use and the template that will become active after a reload.

This is an example of an output display when you have changed the template and have not reloaded the switch:

```
Switch# show sdm prefer
The current template is "desktop routing" template.
The selected template optimizes the resources in the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

number of unicast mac addresses: 3K
number of igmp groups + multicast routes: 1K
number of unicast routes: 11K
 number of directly connected hosts: 3K
 number of indirect routes: 8K
number of qos aces: 0.5K
number of security aces: 1K
```
On next reload, template will be "desktop vlan" template.

To return to the default template, use the **no sdm prefer** global configuration command.

This example shows how to configure a switch with the routing template:

Switch(config)# sdm prefer routing
Switch(config)# end
Switch# reload
Proceed with reload? [confirm]

This example shows how to configure the IPv4-and-IPv6 default template:

Switch(config)# sdm prefer dual-ipv4-and-ipv6 default
Switch(config)# exit
Switch# reload
Proceed with reload? [confirm]

### Displaying the SDM Templates

Use the **show sdm prefer** privileged EXEC command with no parameters to display the active template.

To display the resource numbers supported by the specified template, use the **show sdm prefer** [access | default | dual-ipv4-and-ipv6 (default | vlan) | routing | vlan] privileged EXEC command.

This is an example of output from the **show sdm prefer** command that displays the template in use.

Switch# show sdm prefer
The current template is "desktop default" template.
The selected template optimizes the resources in the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

number of unicast mac addresses: 6K
number of igmp groups + multicast routes: 1K
number of unicast routes:
  number of directly connected hosts: 6K
  number of indirect routes: 2K
number of policy based routing aces: 0
number of qos aces: 0.5K
number of security aces: 1K

This is an example of output from the **show sdm prefer routing** command:

Switch# show sdm prefer routing
"desktop routing" template:
The selected template optimizes the resources in the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

number of unicast mac addresses: 3K
number of igmp groups + multicast routes: 1K
number of unicast routes:
  number of directly connected hosts: 3K
  number of indirect routes: 8K
number of policy based routing aces: 0.5K
number of qos aces: 0.5K
number of security aces: 1K
This is an example of output from the `show sdm prefer dual-ipv4-and-ipv6 routing` command:

```
Switch# show sdm prefer dual-ipv4-and-ipv6 routing
The current template is "desktop IPv4 and IPv6 routing" template.
The selected template optimizes the resources in the switch to support this level of features for 8 routed interfaces and 1024 VLANs.

number of unicast mac addresses: 1.5K
number of IPv4 IGMP groups + multicast routes: 1K
number of IPv4 unicast routes: 2.75K
 number of directly-connected IPv4 hosts: 1.5K
 number of indirect IPv4 routes: 1.25K
number of IPv6 multicast groups: 1K
number of directly-connected IPv6 addresses: 1.5K
number of indirect IPv6 unicast routes: 1.25K
number of IPv4 policy based routing aces: 0.25K
number of IPv4/MAC qos aces: 0.5K
number of IPv4/MAC security aces: 0.5K
number of IPv6 policy based routing aces: 0.25K
number of IPv6 qos aces: 0.5K
number of IPv6 security aces: 0.5K
```
CHAPTER 9

Configuring IEEE 802.1x Port-Based Authentication

This chapter describes how to configure IEEE 802.1x port-based authentication on the switch. IEEE 802.1x authentication prevents unauthorized devices (clients) from gaining access to the network. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the “RADIUS Commands” section in the Cisco IOS Security Command Reference, Release 12.2 and the command reference or this release.

The switch also supports Cisco TrustSec Security Group Tag (SCT) Exchange Protocol (SXP). This feature supports security group access control lists (SGACLs), which define ACL policies for a group of devices instead of an IP address. The SXP control protocol allows tagging packets with SCTs without a hardware upgrade, and runs between access layer devices at the Cisco TrustSec domain edge and distribution layer devices within the Cisco TrustSec domain. The blade switches operate as access layer switches in the Cisco TrustSec network.

For more information about Cisco TrustSec, see the “Cisco TrustSec Switch Configuration Guide” at this URL:


The sections on SXP define the capabilities supported on the blade switches.

This chapter consists of these sections:

- Understanding IEEE 802.1x Port-Based Authentication, page 9-2
- Configuring 802.1x Authentication, page 9-34
- Displaying 802.1x Statistics and Status, page 9-68
Understanding IEEE 802.1x Port-Based Authentication

The IEEE 802.1x standard defines a client-server-based access control and authentication protocol that prevents unauthorized clients from connecting to a LAN through publicly accessible ports unless they are properly authenticated. The authentication server authenticates each client connected to a switch port before making available any services offered by the switch or the LAN.

Until the client is authenticated, 802.1x access control allows only Extensible Authentication Protocol over LAN (EAPOL), Cisco Discovery Protocol (CDP), and Spanning Tree Protocol (STP) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

These sections describe 802.1x port-based authentication:

- Device Roles, page 9-3
- Authentication Process, page 9-4
- Authentication Initiation and Message Exchange, page 9-6
- Authentication Manager, page 9-8
- Ports in Authorized and Unauthorized States, page 9-11
- 802.1x Authentication and Switch Stacks, page 9-12
- 802.1x Host Mode, page 9-12
- 802.1x Multiple Authentication Mode, page 9-13
- MAC Move, page 9-14
- MAC Replace, page 9-14
- 802.1x Accounting, page 9-15
- 802.1x Accounting Attribute-Value Pairs, page 9-15
- 802.1x Readiness Check, page 9-16
- 802.1x Authentication with VLAN Assignment, page 9-16
- 802.1x Authentication with Per-User ACLs, page 9-18
- 802.1x Multiple Authentication Mode, page 9-13
- 802.1x Authentication with Guest VLAN, page 9-21
- 802.1x Authentication with Restricted VLAN, page 9-22
- 802.1x Authentication with Inaccessible Authentication Bypass, page 9-23
- 802.1x User Distribution, page 9-27
- 802.1x Authentication with Voice VLAN Ports, page 9-25
- 802.1x Authentication with Port Security, page 9-26
- 802.1x Authentication with downloadable ACLs and Redirect URLs, page 9-19
- VLAN ID-based MAC Authentication, page 9-21
- 802.1x Authentication with Wake-on-LAN, page 9-27
- 802.1x Authentication with MAC Authentication Bypass, page 9-28
- Network Admission Control Layer 2 802.1x Validation, page 9-29
- Multidomain Authentication, page 9-30
Device Roles

With 802.1x port-based authentication, the devices in the network have specific roles as shown in Figure 9-1.

- **Client**—the device (workstation) that requests access to the LAN and switch services and responds to requests from the switch. The workstation must be running 802.1x-compliant client software such as that offered in the Microsoft Windows XP operating system. (The client is the *supplicant* in the 802.1x standard.)

  Note: To resolve Windows XP network connectivity and 802.1x authentication issues, read the Microsoft Knowledge Base article at this URL: [http://support.microsoft.com/support/kb/articles/Q303/5/97.ASP](http://support.microsoft.com/support/kb/articles/Q303/5/97.ASP)

- **Authentication server**—performs the actual authentication of the client. The authentication server validates the identity of the client and notifies the switch whether or not the client is authorized to access the LAN and switch services. Because the switch acts as the proxy, the authentication service is transparent to the client. In this release, the RADIUS security system with Extensible Authentication Protocol (EAP) extensions is the only supported authentication server. It is available in Cisco Secure Access Control Server Version 3.0 or later. RADIUS operates in a client/server model in which secure authentication information is exchanged between the RADIUS server and one or more RADIUS clients.

- **Switch** (edge switch or wireless access point)—controls the physical access to the network based on the authentication status of the client. The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client. The switch includes the RADIUS client, which is responsible for encapsulating and decapsulating the EAP frames and interacting with the authentication server. (The switch is the *authenticator* in the 802.1x standard.)
When the switch receives EAPOL frames and relays them to the authentication server, the Ethernet header is stripped, and the remaining EAP frame is re-encapsulated in the RADIUS format. The EAP frames are not modified during encapsulation, and the authentication server must support EAP within the native frame format. When the switch receives frames from the authentication server, the server’s frame header is removed, leaving the EAP frame, which is then encapsulated for Ethernet and sent to the client.

The devices that can act as intermediaries include the Catalyst 3750-E, Catalyst 3750, Catalyst 3560-E, Catalyst 3560, Catalyst 3550, Catalyst 2970, Catalyst 2960, Catalyst 2955, Catalyst 2950, Catalyst 2940 switches, or a wireless access point. These devices must be running software that supports the RADIUS client and IEEE 802.1x authentication.

**Authentication Process**

When 802.1x port-based authentication is enabled and the client supports 802.1x-compliant client software, these events occur:

- If the client identity is valid and the 802.1x authentication succeeds, the switch grants the client access to the network.
- If 802.1x authentication times out while waiting for an EAPOL message exchange and MAC authentication bypass is enabled, the switch can use the client MAC address for authorization. If the client MAC address is valid and the authorization succeeds, the switch grants the client access to the network. If the client MAC address is invalid and the authorization fails, the switch assigns the client to a guest VLAN that provides limited services if a guest VLAN is configured.
- If the switch gets an invalid identity from an 802.1x-capable client and a restricted VLAN is specified, the switch can assign the client to a restricted VLAN that provides limited services.
- If the RADIUS authentication server is unavailable (down) and inaccessible authentication bypass is enabled, the switch grants the client access to the network by putting the port in the critical-authentication state in the RADIUS-configured or the user-specified access VLAN.

**Note**

Inaccessible authentication bypass is also referred to as critical authentication or the AAA fail policy.

Figure 9-2 shows the authentication process.

If Multi Domain Authentication (MDA) is enabled on a port, this flow can be used with some exceptions that are applicable to voice authorization. For more information on MDA, see the "Multidomain Authentication" section on page 9-30.
Figure 9-2  **Authentication Flowchart**

The switch re-authenticates a client when one of these situations occurs:

- Periodic re-authentication is enabled, and the re-authentication timer expires.

You can configure the re-authentication timer to use a switch-specific value or to be based on values from the RADIUS server.

After 802.1x authentication using a RADIUS server is configured, the switch uses timers based on the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute [29]).

The Session-Timeout RADIUS attribute (Attribute[27]) specifies the time after which re-authentication occurs.
The Termination-Action RADIUS attribute (Attribute [29]) specifies the action to take during re-authentication. The actions are Initialize and ReAuthenticate. When the Initialize action is set (the attribute value is DEFAULT), the 802.1x session ends, and connectivity is lost during re-authentication. When the ReAuthenticate action is set (the attribute value is RADIUS-Request), the session is not affected during re-authentication.

- You manually re-authenticate the client by entering the `dot1x re-authenticate interface interface-id` privileged EXEC command.

**Authentication Initiation and Message Exchange**

During 802.1x authentication, the switch or the client can initiate authentication. If you enable authentication on a port by using the `authentication port-control auto` or `dot1x port-control auto` interface configuration command, the switch initiates authentication when the link state changes from down to up or periodically as long as the port remains up and unauthenticated. The switch sends an EAP-request/identity frame to the client to request its identity. Upon receipt of the frame, the client responds with an EAP-response/identity frame.

However, if during bootup, the client does not receive an EAP-request/identity frame from the switch, the client can initiate authentication by sending an EAPOL-start frame, which prompts the switch to request the client’s identity.

---

**Note**

If 802.1x authentication is not enabled or supported on the network access device, any EAPOL frames from the client are dropped. If the client does not receive an EAP-request/identity frame after three attempts to start authentication, the client sends frames as if the port is in the authorized state. A port in the authorized state effectively means that the client has been successfully authenticated. For more information, see the “Ports in Authorized and Unauthorized States” section on page 9-11.

When the client supplies its identity, the switch begins its role as the intermediary, passing EAP frames between the client and the authentication server until authentication succeeds or fails. If the authentication succeeds, the switch port becomes authorized. If the authentication fails, authentication can be retried, the port might be assigned to a VLAN that provides limited services, or network access is not granted. For more information, see the “Ports in Authorized and Unauthorized States” section on page 9-11.

The specific exchange of EAP frames depends on the authentication method being used. Figure 9-3 shows a message exchange initiated by the client when the client uses the One-Time-Password (OTP) authentication method with a RADIUS server.
If 802.1x authentication times out while waiting for an EAPOL message exchange and MAC authentication bypass is enabled, the switch can authorize the client when the switch detects an Ethernet packet from the client. The switch uses the MAC address of the client as its identity and includes this information in the RADIUS-access/request frame that is sent to the RADIUS server. After the server sends the switch the RADIUS-access/accept frame (authorization is successful), the port becomes authorized. If authorization fails and a guest VLAN is specified, the switch assigns the port to the guest VLAN. If the switch detects an EAPOL packet while waiting for an Ethernet packet, the switch stops the MAC authentication bypass process and stops 802.1x authentication.

Figure 9-4 shows the message exchange during MAC authentication bypass.
Authentication Manager

In Cisco IOS Release 12.2(46)SE and earlier, you could not use the same authorization methods, including CLI commands and messages, on this switch and also on other network devices, such as Catalyst 6000 switches. You had to use separate authentication configurations. Cisco IOS Release 12.2(50)SE and later supports the same authorization methods on all Catalyst switches in a network.

Cisco IOS Release 12.2(55)SE supports filtering verbose system messages from the authentication manager. For details, see the “Authentication Manager CLI Commands” section on page 9-9.

- Port-Based Authentication Methods, page 9-8
- Per-User ACLs and Filter-Ids, page 9-9
- Authentication Manager CLI Commands, page 9-9

Port-Based Authentication Methods

<table>
<thead>
<tr>
<th>Authentication method</th>
<th>Mode</th>
<th>Single host</th>
<th>Multiple host</th>
<th>MDA¹</th>
<th>Multiple Authentication²²</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1x</td>
<td></td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>Per-user ACL²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per-user ACL</td>
<td>Per-user ACL²</td>
<td>Filter-Id attribute²</td>
<td>Filter-Id attribute²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filter-ID attribute</td>
<td>Downloadable ACL²</td>
<td></td>
<td>Downloadable ACL²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Downloadable ACL³</td>
<td>Redirect URL²</td>
<td></td>
<td>Redirect URL²</td>
</tr>
<tr>
<td>MAC authentication bypass</td>
<td></td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>Per-user ACL²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per-user ACL</td>
<td>Per-user ACL²</td>
<td>Filter-Id attribute²</td>
<td>Filter-Id attribute²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filter-ID attribute</td>
<td>Downloadable ACL²</td>
<td></td>
<td>Downloadable ACL²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Downloadable ACL²</td>
<td>Redirect URL²</td>
<td></td>
<td>Redirect URL²</td>
</tr>
<tr>
<td>Standalone web authentication³</td>
<td>Proxy ACL, Filter-Id attribute, downloadable ACL²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC Layer 2 IP validation</td>
<td>Filter-Id attribute²</td>
<td>Filter-Id attribute²</td>
<td>Filter-Id attribute²</td>
<td>Filter-Id attribute²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redirect URL</td>
<td>Redirect URL</td>
<td>Redirect URL</td>
<td>Redirect URL</td>
<td></td>
</tr>
<tr>
<td>Web authentication as fallback method⁴</td>
<td>Proxy ACL</td>
<td>Proxy ACL</td>
<td>Proxy ACL</td>
<td>Proxy ACL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter-Id attribute²</td>
<td>Filter-Id attribute²</td>
<td>Filter-Id attribute²</td>
<td>Filter-Id attribute²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downloadable ACL²</td>
<td>Downloadable ACL²</td>
<td>Downloadable ACL²</td>
<td>Downloadable ACL²</td>
<td></td>
</tr>
</tbody>
</table>

1. MDA = Multidomain authentication.
2. Also referred to as multiauth.
4. For clients that do not support 802.1x authentication.

**Per-User ACLs and Filter-Ids**

In releases earlier than Cisco IOS Release 12.2(50)SE, an ACL configured on the switch is not compatible with an ACL configured on another device running Cisco IOS software, such as a Catalyst 6000 switch.

In Cisco IOS Release 12.2(50)SE or later, the ACLs configured on the switch are compatible with other devices running Cisco IOS release.

You can only set `any` as the source in the ACL.

Note

For any ACL configured for multiple-host mode, the source portion of statement must be `any`. (For example, `permit icmp any host 10.10.1.1`.)

**Authentication Manager CLI Commands**

The authentication-manager interface-configuration commands control all the authentication methods, such as 802.1x, MAC authentication bypass, and web authentication. The authentication manager commands determine the priority and order of authentication methods applied to a connected host.

The authentication manager commands control generic authentication features, such as host-mode, violation mode, and the authentication timer. Generic authentication commands include the `authentication host-mode`, `authentication violation`, and `authentication timer` interface configuration commands.

802.1x-specific commands begin with the `dot1x` keyword. For example, the `authentication port-control auto` interface configuration command enables authentication on an interface. However, the `dot1x system-authentication control` global configuration command only globally enables or disables 802.1x authentication.

Note

If 802.1x authentication is globally disabled, other authentication methods are still enabled on that port, such as web authentication.
The authentication manager commands provide the same functionality as earlier 802.1x commands.

Table 9-2  
<table>
<thead>
<tr>
<th>Authentication Manager Commands and Earlier 802.1x Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>The authentication manager commands in Cisco IOS Release 12.2(50)SE or later</td>
</tr>
<tr>
<td>authentication control-direction {both</td>
</tr>
</tbody>
</table>
| authentication event | dot1x auth-fail vlan  
dot1x critical (interface configuration)  
dot1x guest-vlan6 | Enable the restricted VLAN on a port.  
Enable the inaccessible-authentication-bypass feature.  
Specify an active VLAN as an 802.1x guest VLAN. |
| authentication fallback  
fallback-profile | dot1x fallback fallback-profile | Configure a port to use web authentication as a fallback method for clients that do not support 802.1x authentication. |
| authentication host-mode [multi-auth | multi-domain | multi-host | single-host] | dot1x host-mode [single-host | multi-host | multi-domain] | Allow a single host (client) or multiple hosts on an 802.1x-authorized port. |
| authentication order | mab | Enable the MAC authentication bypass feature. |
| authentication periodic | dot1x reauthentication | Enable periodic re-authentication of the client. |
| authentication port-control {auto | force-authorized | force-unauthorized} | dot1x port-control {auto | force-authorized | force-unauthorized} | Enable manual control of the authorization state of the port. |
| authentication timer | dot1x timeout | Set the 802.1x timers. |
| authentication violation {protect | restrict | shutdown} | dot1x violation-mode {shutdown | restrict | protect} | Configure the violation modes that occur when a new device connects to a port or when a new device connects to a port after the maximum number of devices are connected to that port. |
| show authentication | show dot1x | Display 802.1x statistics, administrative status, and operational status for the switch or for the specified port. |

Beginning with Cisco IOS Release 12.2(55)SE, you can filter out verbose system messages generated by the authentication manager. The filtered content typically relates to authentication success. You can also filter verbose messages for 802.1x authentication and MAB authentication. There is a separate command for each authentication method:

- The no authentication logging verbose global configuration command filters verbose messages from the authentication manager.
- The no dot1x logging verbose global configuration command filters 802.1x authentication verbose messages.
- The no mab logging verbose global configuration command filters MAC authentication bypass (MAB) verbose messages.

For more information, see the command reference for this release.
Ports in Authorized and Unauthorized States

During 802.1x authentication, depending on the switch port state, the switch can grant a client access to the network. The port starts in the unauthorized state. While in this state, the port that is not configured as a voice VLAN port disallows all ingress and egress traffic except for 802.1x authentication, CDP, and STP packets. When a client is successfully authenticated, the port changes to the authorized state, allowing all traffic for the client to flow normally. If the port is configured as a voice VLAN port, the port allows VoIP traffic and 802.1x protocol packets before the client is successfully authenticated.

If a client that does not support 802.1x authentication connects to an unauthorized 802.1x port, the switch requests the client’s identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.

In contrast, when an 802.1x-enabled client connects to a port that is not running the 802.1x standard, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state.

You control the port authorization state by using the `dot1x port-control` interface configuration command and these keywords:

- **force-authorized** — disables 802.1x authentication and causes the port to change to the authorized state without any authentication exchange required. The port sends and receives normal traffic without 802.1x-based authentication of the client. This is the default setting.

- **force-unauthorized** — causes the port to remain in the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the port.

- **auto** — enables 802.1x authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port changes from down to up or when an EAPOL-start frame is received. The switch requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each client attempting to access the network is uniquely identified by the switch by using the client MAC address.

If the client is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated client are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the switch can resend the request. If no response is received from the server after the specified number of attempts, authentication fails, and network access is not granted.

When a client logs off, it sends an EAPOL-logoff message, causing the switch port to change to the unauthorized state.

If the link state of a port changes from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.
Understanding IEEE 802.1x Port-Based Authentication

802.1x Authentication and Switch Stacks

If a switch is added to or removed from a switch stack, 802.1x authentication is not affected as long as the IP connectivity between the RADIUS server and the stack remains intact. This statement also applies if the stack master is removed from the switch stack. Note that if the stack master fails, a stack member becomes the new stack master by using the election process described in Chapter 7, “Managing Switch Stacks,” and the 802.1x authentication process continues as usual.

If IP connectivity to the RADIUS server is interrupted because the switch that was connected to the server is removed or fails, these events occur:

- Ports that are already authenticated and that do not have periodic re-authentication enabled remain in the authenticated state. Communication with the RADIUS server is not required.
- Ports that are already authenticated and that have periodic re-authentication enabled (with the `dot1x re-authentication` global configuration command) fail the authentication process when the re-authentication occurs. Ports return to the unauthenticated state during the re-authentication process. Communication with the RADIUS server is required.

For an ongoing authentication, the authentication fails immediately because there is no server connectivity.

If the switch that failed comes up and rejoins the switch stack, the authentications might or might not fail depending on the boot-up time and whether the connectivity to the RADIUS server is re-established by the time the authentication is attempted.

To avoid loss of connectivity to the RADIUS server, you should ensure that there is a redundant connection to it. For example, you can have a redundant connection to the stack master and another to a stack member, and if the stack master fails, the switch stack still has connectivity to the RADIUS server.

802.1x Host Mode

The switch is usually not configured in the network configuration shown in Figure 9-5.

You can configure an 802.1x port for single-host or for multiple-hosts mode. In single-host mode (see Figure 9-1 on page 9-3), only one client can be connected to the 802.1x-enabled switch port. The switch detects the client by sending an EAPOL frame when the port link state changes to the up state. If a client leaves or is replaced with another client, the switch changes the port link state to down, and the port returns to the unauthorized state.

In multiple-hosts mode, you can attach multiple hosts to a single 802.1x-enabled port. Figure 9-5 on page 9-13 shows 802.1x port-based authentication in a wireless LAN. In this mode, only one of the attached clients must be authorized for all clients to be granted network access. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), the switch denies network access to all of the attached clients. In this topology, the wireless access point is responsible for authenticating the clients attached to it, and it also acts as a client to the switch.

With the multiple-hosts mode enabled, you can use 802.1x authentication to authenticate the port and port security to manage network access for all MAC addresses, including that of the client.


802.1x Multiple Authentication Mode

Multiple-authentication (multiauth) mode allows one client on the voice VLAN and multiple authenticated clients on the data VLAN. When a hub or access point is connected to an 802.1x-enabled port, multiple-authentication mode provides enhanced security over multiple-hosts mode by requiring authentication of each connected client. For non-802.1x devices, you can use MAC authentication bypass or web authentication as the fallback method for individual host authentications to authenticate different hosts through by different methods on a single port.

Multiple-authentication mode also supports MDA functionality on the voice VLAN by assigning authenticated devices to either a data or voice VLAN, depending on the VSAs received from the authentication server.

Note

When a port is in multiple-authentication mode, the guest VLAN and authentication-failed VLAN features do not activate.

Beginning with Cisco IOS Release 12.2(55)SE, you can assign a RADIUS-server-supplied VLAN in multi-auth mode, under these conditions:

- The host is the first host authorized on the port, and the RADIUS server supplies VLAN information.
- Subsequent hosts are authorized with a VLAN that matches the operational VLAN.
- A host is authorized on the port with no VLAN assignment, and subsequent hosts either have no VLAN assignment, or their VLAN information matches the operational VLAN.
- The first host authorized on the port has a group VLAN assignment, and subsequent hosts either have no VLAN assignment, or their group VLAN matches the group VLAN on the port. Subsequent hosts must use the same VLAN from the VLAN group as the first host. If a VLAN list is used, all hosts are subject to the conditions specified in the VLAN list.
- Only one voice VLAN assignment is supported on a multi-auth port.
- After a VLAN is assigned to a host on the port, subsequent hosts must have matching VLAN information or be denied access to the port.
- You cannot configure a guest VLAN or an auth-fail VLAN in multi-auth mode.
- The behavior of the critical-auth VLAN is not changed for multi-auth mode. When a host tries to authenticate and the server is not reachable, all authorized hosts are reinitialized in the configured VLAN.

Figure 9-5 Multiple Host Mode Example
For more information about critical authentication mode and the critical VLAN, see the “802.1x Authentication with Inaccessible Authentication Bypass” section on page 9-23.

For more information see the “Configuring the Host Mode” section on page 9-44.

MAC Move

When a MAC address is authenticated on one switch port, that address is not allowed on another authentication manager-enabled port of the switch. If the switch detects that same MAC address on another authentication manager-enabled port, the address is not allowed.

There are situations where a MAC address might need to move from one port to another on the same switch. For example, when there is another device (for example a hub or an IP phone) between an authenticated host and a switch port, you might want to disconnect the host from the device and connect it directly to another port on the same switch.

You can globally enable MAC move so the device is reauthenticated on the new port. When a host moves to a second port, the session on the first port is deleted, and the host is reauthenticated on the new port.

MAC move is supported on all host modes. (The authenticated host can move to any port on the switch, no matter which host mode is enabled on the that port.)

Beginning with Cisco IOS Release 12.2(55)SE, MAC move can be configured in all host modes, along with port security. When a MAC address moves from one port to another, the switch terminates the authenticated session on the original port and initiates a new authentication sequence on the new port. Port security behavior remains the same when you configure MAC move.

The MAC move feature applies to both voice and data hosts.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>In open authentication mode, a MAC address is immediately moved from the original port to the new port, with no requirement for authorization on the new port.</td>
</tr>
</tbody>
</table>

For more information see the “Enabling MAC Move” section on page 9-50.

MAC Replace

Beginning with Cisco IOS Release 12.2(55)SE, the MAC replace feature can be configured to address the violation that occurs when a host attempts to connect to a port where another host was previously authenticated.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>This feature does not apply to ports in multi-auth mode, because violations are not triggered in that mode. It does not apply to ports in multiple host mode, because in that mode, only the first host requires authentication.</td>
</tr>
</tbody>
</table>

If you configure the **authentication violation** interface configuration command with the **replace** keyword, the authentication process on a port in multi-domain mode is:

- A new MAC address is received on a port with an existing authenticated MAC address.
- The authentication manager replaces the MAC address of the current data host on the port with the new MAC address.
The authentication manager initiates the authentication process for the new MAC address.

If the authentication manager determines that the new host is a voice host, the original voice host is removed.

If a port is in open authentication mode, any new MAC address is immediately added to the MAC address table.

For more information see the “Enabling MAC Replace” section on page 9-50.

### 802.1x Accounting

The 802.1x standard defines how users are authorized and authenticated for network access but does not keep track of network usage. 802.1x accounting is disabled by default. You can enable 802.1x accounting to monitor this activity on 802.1x-enabled ports:

- User successfully authenticates.
- User logs off.
- Link-down occurs.
- Re-authentication successfully occurs.
- Re-authentication fails.

The switch does not log 802.1x accounting information. Instead, it sends this information to the RADIUS server, which must be configured to log accounting messages.

### 802.1x Accounting Attribute-Value Pairs

The information sent to the RADIUS server is represented in the form of Attribute-Value (AV) pairs. These AV pairs provide data for different applications. (For example, a billing application might require information that is in the Acct-Input-Octets or the Acct-Output-Octets attributes of a RADIUS packet.)

AV pairs are automatically sent by a switch that is configured for 802.1x accounting. Three types of RADIUS accounting packets are sent by a switch:

- START—sent when a new user session starts
- INTERIM—sent during an existing session for updates
- STOP—sent when a session terminates

Table 9-3 lists the AV pairs and when they are sent are sent by the switch:

<table>
<thead>
<tr>
<th>Attribute Number</th>
<th>AV Pair Name</th>
<th>START</th>
<th>INTERIM</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute[1]</td>
<td>User-Name</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[4]</td>
<td>NAS-IP-Address</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[5]</td>
<td>NAS-Port</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[8]</td>
<td>Framed-IP-Address</td>
<td>Never</td>
<td>Sometimes¹</td>
<td>Sometimes¹</td>
</tr>
<tr>
<td>Attribute[25]</td>
<td>Class</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[30]</td>
<td>Called-Station-ID</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[31]</td>
<td>Calling-Station-ID</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
</tbody>
</table>
You can view the AV pairs that are being sent by the switch by entering the `debug radius accounting` privileged EXEC command. For more information about this command, see the *Cisco IOS Debug Command Reference, Release 12.2*.

For more information about AV pairs, see RFC 3580, “802.1x Remote Authentication Dial In User Service (RADIUS) Usage Guidelines.”

### 802.1x Readiness Check

The 802.1x readiness check monitors 802.1x activity on all the switch ports and displays information about the devices connected to the ports that support 802.1x. You can use this feature to determine if the devices connected to the switch ports are 802.1x-capable. You use an alternate authentication such as MAC authentication bypass or web authentication for the devices that do not support 802.1x functionality.

This feature only works if the supplicant on the client supports a query with the NOTIFY EAP notification packet. The client must respond within the 802.1x timeout value.

For information on configuring the switch for the 802.1x readiness check, see the “Configuring 802.1x Authentication” section on page 9-39.

### 802.1x Authentication with VLAN Assignment

The switch supports 802.1x authentication with VLAN assignment. After successful 802.1x authentication of a port, the RADIUS server sends the VLAN assignment to configure the switch port. The RADIUS server database maintains the username-to-VLAN mappings, assigning the VLAN based on the username of the client connected to the switch port. You can use this feature to limit network access for certain users.

Voice device authentication is supported. When a voice device is authorized and the RADIUS server returned an authorized VLAN, the voice VLAN on the port is configured to send and receive packets on the assigned voice VLAN. Voice VLAN assignment behaves the same as data VLAN assignment on multidomain authentication (MDA)-enabled ports. For more information, see the “Multidomain Authentication” section on page 9-30.

**Table 9-3 Accounting AV Pairs (continued)**

<table>
<thead>
<tr>
<th>Attribute Number</th>
<th>AV Pair Name</th>
<th>START</th>
<th>INTERIM</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute[40]</td>
<td>Acct-Status-Type</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[41]</td>
<td>Acct-Delay-Time</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[42]</td>
<td>Acct-Input-Octets</td>
<td>Never</td>
<td>Never</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[43]</td>
<td>Acct-Output-Octets</td>
<td>Never</td>
<td>Never</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[44]</td>
<td>Acct-Session-ID</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[45]</td>
<td>Acct-Authenticate</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[46]</td>
<td>Acct-Session-Time</td>
<td>Never</td>
<td>Never</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[49]</td>
<td>Acct-Terminate-Cause</td>
<td>Never</td>
<td>Never</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[61]</td>
<td>NAS-Port-Type</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
</tbody>
</table>

1. The Framed-IP-Address AV pair is sent only if a valid Dynamic Host Control Protocol (DHCP) binding exists for the host in the DHCP snooping bindings table.
When configured on the switch and the RADIUS server, 802.1x authentication with VLAN assignment has these characteristics:

- If no VLAN is supplied by the RADIUS server or if 802.1x authentication is disabled, the port is configured in its access VLAN after successful authentication. Recall that an access VLAN is a VLAN assigned to an access port. All packets sent from or received on this port belong to this VLAN.

- If 802.1x authentication is enabled but the VLAN information from the RADIUS server is not valid, authorization fails and configured VLAN remains in use. This prevents ports from appearing unexpectedly in an inappropriate VLAN because of a configuration error. Configuration errors could include specifying a VLAN for a routed port, a malformed VLAN ID, a nonexistent or internal (routed port) VLAN ID, an RSPAN VLAN, a shut down or suspended VLAN. In the case of a multidomain host port, configuration errors can also be due to an attempted assignment of a data VLAN that matches the configured or assigned voice VLAN ID (or the reverse).

- If 802.1x authentication is enabled and all information from the RADIUS server is valid, the authorized device is placed in the specified VLAN after authentication.

- If the multiple-hosts mode is enabled on an 802.1x port, all hosts are placed in the same VLAN (specified by the RADIUS server) as the first authenticated host.

- Enabling port security does not impact the RADIUS server-assigned VLAN behavior.

- If 802.1x authentication is disabled on the port, it is returned to the configured access VLAN and configured voice VLAN.

When the port is in the force authorized, force unauthorized, unauthorized, or shutdown state, it is put into the configured access VLAN.

If an 802.1x port is authenticated and put in the RADIUS server-assigned VLAN, any change to the port access VLAN configuration does not take effect. In the case of a multidomain host, the same applies to voice devices when the port is fully authorized with these exceptions:

- If the VLAN configuration change of one device results in matching the other device configured or assigned VLAN, authorization of all devices on the port is terminated and multidomain host mode is disabled until a valid configuration is restored where data and voice device configured VLANs no longer match.

- If a voice device is authorized and is using a downloaded voice VLAN, the removal of the voice VLAN configuration, or modifying the configuration value to dot1p or untagged results in voice device un-authorization and the disablement of multi-domain host mode.

The 802.1x authentication with VLAN assignment feature is not supported on trunk ports, dynamic ports, or with dynamic-access port assignment through a VLAN Membership Policy Server (VMPS).

To configure VLAN assignment you need to perform these tasks:

- Enable AAA authorization by using the network keyword to allow interface configuration from the RADIUS server.

- Enable 802.1x authentication. (The VLAN assignment feature is automatically enabled when you configure 802.1x authentication on an access port).

- Assign vendor-specific tunnel attributes in the RADIUS server. The RADIUS server must return these attributes to the switch:
  - [64] Tunnel-Type = VLAN
  - [65] Tunnel-Medium-Type = 802
  - [81] Tunnel-Private-Group-ID = VLAN name or VLAN ID
Understanding IEEE 802.1x Port-Based Authentication

Attribute [64] must contain the value VLAN (type 13). Attribute [65] must contain the value 802 (type 6). Attribute [81] specifies the VLAN name or VLAN ID assigned to the IEEE 802.1x-authenticated user.

For examples of tunnel attributes, see the “Configuring the Switch to Use Vendor-Specific RADIUS Attributes” section on page 6-36.

802.1x Authentication with Per-User ACLs

You can enable per-user access control lists (ACLs) to provide different levels of network access and service to an 802.1x-authenticated user. When the RADIUS server authenticates a user connected to an 802.1x port, it retrieves the ACL attributes based on the user identity and sends them to the switch. The switch applies the attributes to the 802.1x port for the duration of the user session. The switch removes the per-user ACL configuration when the session is over, if authentication fails, or if a link-down condition occurs. The switch does not save RADIUS-specified ACLs in the running configuration. When the port is unauthorized, the switch removes the ACL from the port.

You can configure router ACLs and input port ACLs on the same switch. However, a port ACL takes precedence over a router ACL. If you apply input port ACL to an interface that belongs to a VLAN, the port ACL takes precedence over an input router ACL applied to the VLAN interface. Incoming packets received on the port to which a port ACL is applied are filtered by the port ACL. Incoming routed packets received on other ports are filtered by the router ACL. Outgoing routed packets are filtered by the router ACL. To avoid configuration conflicts, you should carefully plan the user profiles stored on the RADIUS server.

RADIUS supports per-user attributes, including vendor-specific attributes. These vendor-specific attributes (VSAs) are in octet-string format and are passed to the switch during the authentication process. The VSAs used for per-user ACLs are inacl#{n} for the ingress direction and outacl#{n} for the egress direction. MAC ACLs are supported only in the ingress direction. The switch supports VSAs only in the ingress direction. It does not support port ACLs in the egress direction on Layer 2 ports. For more information, see Chapter 35, “Configuring Network Security with ACLs.”

Use only the extended ACL syntax style to define the per-user configuration stored on the RADIUS server. When the definitions are passed from the RADIUS server, they are created by using the extended naming convention. However, if you use the Filter-Id attribute, it can point to a standard ACL.

You can use the Filter-Id attribute to specify an inbound or outbound ACL that is already configured on the switch. The attribute contains the ACL number followed by .in for ingress filtering or .out for egress filtering. If the RADIUS server does not allow the .in or .out syntax, the access list is applied to the outbound ACL by default. Because of limited support of Cisco IOS access lists on the switch, the Filter-Id attribute is supported only for IP ACLs numbered 1 to 199 and 1300 to 2699 (IP standard and IP extended ACLs).

Per-user ACLs are supported only in single-host mode.

The maximum size of the per-user ACL is 4000 ASCII characters but is limited by the maximum size of RADIUS-server per-user ACLs.

For examples of vendor-specific attributes, see the “Configuring the Switch to Use Vendor-Specific RADIUS Attributes” section on page 6-36. For more information about configuring ACLs, see Chapter 35, “Configuring Network Security with ACLs.”
To configure per-user ACLs:

- Enable AAA authentication.
- Enable AAA authorization by using the `network` keyword to allow interface configuration from the RADIUS server.
- Enable 802.1x authentication.
- Configure the user profile and VSAs on the RADIUS server.
- Configure the 802.1x port for single-host mode.

### 802.1x Authentication with Downloadable ACLs and Redirect URLs

You can download ACLs and redirect URLs from a RADIUS server to the switch during 802.1x authentication or MAC authentication bypass of the host. You can also download ACLs during web authentication.

Note

A downloadable ACL is also referred to as a dACL.

If more than one host is authenticated and the host is in single-host, MDA, or multiple-authentication mode, the switch changes the source address of the ACL to the host IP address.

You can apply the ACLs and redirect URLs to all the devices connected to the 802.1x-enabled port. If no ACLs are downloaded during 802.1x authentication, the switch applies the static default ACL on the port to the host. On a voice VLAN port configured in multi-auth or MDA mode, the switch applies the ACL only to the phone as part of the authorization policies.

Beginning with Cisco IOS Release 12.2(55)SE, if there is no static ACL on a port, a dynamic auth-default ACL is created, and policies are enforced before dACLs are downloaded and applied.

Note

The auth-default-ACL does not appear in the running configuration.

The auth-default ACL is created when at least one host with an authorization policy is detected on the port. The auth-default ACL is removed from the port when the last authenticated session ends. You can configure the auth-default ACL by using the `ip access-list extended auth-default-acl` global configuration command.

Note

The auth-default-ACL does not support Cisco Discovery Protocol (CDP) bypass in the single host mode. You must configure a static ACL on the interface to support CDP bypass.

The 802.1x and MAB authentication methods support two authentication modes, open and closed. If there is no static ACL on a port in closed authentication mode:

- An auth-default-ACL is created.
- The auth-default-ACL allows only DHCP traffic until policies are enforced.
Chapter 9      Configuring IEEE 802.1x Port-Based Authentication

Understanding IEEE 802.1x Port-Based Authentication

- When the first host authenticates, the authorization policy is applied without IP address insertion.
- When a second host is detected, the policies for the first host are refreshed, and policies for the first and subsequent sessions are enforced with IP address insertion.

If there is no static ACL on a port in open authentication mode:
- An auth-default-ACL-OPEN is created and allows all traffic.
- Policies are enforced with IP address insertion to prevent security breaches.
- Web authentication is subject to the auth-default-ACL-OPEN.

To control access for hosts with no authorization policy, you can configure a directive. The supported values for the directive are open and default. When you configure the open directive, all traffic is allowed. The default directive subjects traffic to the access provided by the port. You can configure the directive either in the user profile on the AAA server or on the switch. To configure the directive on the AAA server, use the authz-directive =<open/default> global command. To configure the directive on the switch, use the epm access-control open global configuration command.

Note
The default value of the directive is default.

If a host falls back to web authentication on a port without a configured ACL:
- If the port is in open authentication mode, the auth-default-ACL-OPEN is created.
- If the port is in closed authentication mode, the auth-default-ACL is created.

The access control entries (ACEs) in the fallback ACL are converted to per-user entries. If the configured fallback profile does not include a fallback ACL, the host is subject to the auth-default-ACL associated with the port.

Note
If you use a custom logo with web authentication and it is stored on an external server, the port ACL must allow access to the external server before authentication. You must either configure a static port ACL or change the auth-default-ACL to provide appropriate access to the external server.

Cisco Secure ACS and Attribute-Value Pairs for the Redirect URL

The switch uses these cisco-av-pair VSAs:
- url-redirect is the HTTP or HTTPS URL.
- url-redirect-acl is the switch ACL name or number.

The switch uses the CiscoSecure-Defined-ACL AV pair to intercept an HTTP or HTTPS request from the endpoint device. The switch then forwards the client web browser to the specified redirect address. The url-redirect AV pair on the Cisco Secure ACS contains the URL to which the web browser is redirected. The url-redirect-acl AV pair contains the name or number of an ACL that specifies the HTTP or HTTPS traffic to redirect.

Note
- Traffic that matches a permit ACE in the ACL is redirected.
- Define the URL redirect ACL and the default port ACL on the switch.

If a redirect URL configured for a client on the authentication server, a default port ACL on the connected client switch port must also be configured.
Cisco Catalyst Switch Module 3110 and 3012 for IBM BladeCenter Software Configuration Guide

Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

Understanding IEEE 802.1x Port-Based Authentication

Cisco Secure ACS and Attribute-Value Pairs for Downloadable ACLs

You can set the CiscoSecure-Defined-ACL Attribute-Value (AV) pair on the Cisco Secure ACS with the RADIUS cisco-av-pair vendor-specific attributes (VSAs). This pair specifies the names of the downloadable ACLs on the Cisco Secure ACS with the #ACL#-IP-name-number attribute.

- The name is the ACL name.
- The number is the version number (for example, 3f783768).

If a downloadable ACL is configured for a client on the authentication server, a default port ACL on the connected client switch port must also be configured.

If the default ACL is configured on the switch and the Cisco Secure ACS sends a host-access-policy to the switch, it applies the policy to traffic from the host connected to a switch port. If the policy does not apply, the switch applies the default ACL. If the Cisco Secure ACS sends the switch a downloadable ACL, this ACL takes precedence over the default ACL that is configured on the switch port. However, if the switch receives an host access policy from the Cisco Secure ACS but the default ACL is not configured, the authorization failure is declared.

For configuration details, see the “Authentication Manager” section on page 9-8 and the “Configuring 802.1x Authentication with Downloadable ACLs and Redirect URLs” section on page 9-63.

VLAN ID-based MAC Authentication

You can use VLAN ID-based MAC authentication if you wish to authenticate hosts based on a static VLAN ID instead of a downloadable VLAN. When you have a static VLAN policy configured on your switch, VLAN information is sent to an IAS (Microsoft) RADIUS server along with the MAC address of each host for authentication. The VLAN ID configured on the connected port is used for MAC authentication. By using VLAN ID-based MAC authentication with an IAS server, you can have a fixed number of VLANs in the network.

The feature also limits the number of VLANs monitored and handled by STP. The network can be managed as a fixed VLAN.

Note

This feature is not supported on Cisco ACS Server. (The ACS server ignores the sent VLAN-IDs for new hosts and only authenticates based on the MAC address.)

For configuration information, see the “Configuring VLAN ID-based MAC Authentication” section on page 9-65. Additional configuration is similar MAC authentication bypass, as described in the “Configuring MAC Authentication Bypass” section on page 9-59.

802.1x Authentication with Guest VLAN

You can configure a guest VLAN for each 802.1x port on the switch to provide limited services to clients, such as downloading the 802.1x client. These clients might be upgrading their system for 802.1x authentication, and some hosts, such as Windows 98 systems, might not be IEEE 802.1x-capable.

When you enable a guest VLAN on an 802.1x port, the switch assigns clients to a guest VLAN when the switch does not receive a response to its EAP request/identity frame or when EAPOL packets are not sent by the client.
The switch maintains the EAPOL packet history. If an EAPOL packet is detected on the interface during the lifetime of the link, the switch determines that the device connected to that interface is an IEEE 802.1x-capable supplicant, and the interface does not change to the guest VLAN state. EAPOL history is cleared if the interface link status goes down. If no EAPOL packet is detected on the interface, the interface changes to the guest VLAN state.

If the switch is trying to authorize an 802.1x-capable voice device and the AAA server is unavailable, the authorization attempt fails, but the detection of the EAPOL packet is saved in the EAPOL history. When the AAA server becomes available, the switch authorizes the voice device. However, the switch no longer allows other devices access to the guest VLAN. To prevent this situation, use one of these command sequences:

- Enter the `dot1x guest-vlan supplicant` global configuration command to allow access to the guest VLAN.
- Enter the `shutdown` interface configuration command followed by the `no shutdown` interface configuration command to restart the port.

Use a restricted VLAN to allow clients that failed authentication access to the network by entering the `dot1x auth-fail vlan vlan-id` interface configuration command.

If devices send EAPOL packets to the switch during the lifetime of the link, the switch no longer allows clients that fail authentication access to the guest VLAN.

---

**Note**

If an EAPOL packet is detected after the interface has changed to the guest VLAN, the interface reverts to an unauthorized state, and 802.1x authentication restarts.

Any number of 802.1x-incapable clients are allowed access when the switch port is moved to the guest VLAN. If an 802.1x-capable client joins the same port on which the guest VLAN is configured, the port is put into the unauthorized state in the user-configured access VLAN, and authentication is restarted.

Guest VLANs are supported on 802.1x ports in single-host or multiple-hosts mode.

You can configure any active VLAN except an RSPAN VLAN, a private VLAN, or a voice VLAN as an 802.1x guest VLAN. The guest VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

The switch supports **MAC authentication bypass**. When MAC authentication bypass is enabled on an 802.1x port, the switch can authorize clients based on the client MAC address when IEEE 802.1x authentication times out while waiting for an EAPOL message exchange. After detecting a client on an 802.1x port, the switch waits for an Ethernet packet from the client. The switch sends the authentication server a RADIUS-access/request frame with a username and password based on the MAC address. If authorization succeeds, the switch grants the client access to the network. If authorization fails, the switch assigns the port to the guest VLAN if one is specified. For more information, see the “802.1x Authentication with MAC Authentication Bypass” section on page 9-28.

For more information, see the “Configuring a Guest VLAN” section on page 9-52.

---

**802.1x Authentication with Restricted VLAN**

You can configure a restricted VLAN (also referred to as an **authentication failed VLAN**) for each IEEE 802.1x port on a switch stack or a switch to provide limited services to clients that cannot access the guest VLAN. These clients are 802.1x-compliant and cannot access another VLAN because they fail the authentication process. A restricted VLAN allows users without valid credentials in an authentication server (typically, visitors to an enterprise) to access a limited set of services. The administrator can control the services available to the restricted VLAN.
Understanding IEEE 802.1x Port-Based Authentication

**Note**

You can configure a VLAN to be both the guest VLAN and the restricted VLAN if you want to provide the same services to both types of users.

Without this feature, the client attempts and fails authentication indefinitely, and the switch port remains in the spanning-tree blocking state. With this feature, you can configure the switch port to be in the restricted VLAN after a specified number of authentication attempts (the default value is 3 attempts).

The authenticator counts the failed authentication attempts for the client. When this count exceeds the configured maximum number of authentication attempts, the port moves to the restricted VLAN. The failed attempt count increments when the RADIUS server replies with either an EAP failure or an empty response without an EAP packet. When the port moves into the restricted VLAN, the failed attempt counter resets.

Users who fail authentication remain in the restricted VLAN until the next re-authentication attempt. A port in the restricted VLAN tries to re-authenticate at configured intervals (the default is 60 seconds). If re-authentication fails, the port remains in the restricted VLAN. If re-authentication is successful, the port moves either to the configured VLAN or to a VLAN sent by the RADIUS server. You can disable re-authentication. If you do this, the only way to restart the authentication process is for the port to receive a link down or EAP logoff event. We recommend that you keep re-authentication enabled if a client might connect through a hub. When a client disconnects from the hub, the port might not receive the link down or EAP logoff event.

After a port moves to the restricted VLAN, a simulated EAP success message is sent to the client. This prevents clients from indefinitely attempting authentication. Some clients (for example, devices running Windows XP) cannot implement DHCP without EAP success.

Restricted VLANs are supported only on 802.1x ports in single-host mode and on Layer 2 ports.

You can configure any active VLAN except an RSPAN VLAN, a primary private VLAN, or a voice VLAN as an 802.1x restricted VLAN. The restricted VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

This feature works with port security. As soon as the port is authorized, a MAC address is provided to port security. If port security does not permit the MAC address or if the maximum secure address count is reached, the port becomes unauthorized and error disabled.

Other port security features such as dynamic ARP Inspection, DHCP snooping, and IP source guard can be configured independently on a restricted VLAN.

For more information, see the “Configuring a Restricted VLAN” section on page 9-53.

### 802.1x Authentication with Inaccessible Authentication Bypass

**Overview**

Use the inaccessible authentication bypass feature, also referred to as critical authentication or the AAA fail policy, when the switch cannot reach the configured RADIUS servers and new hosts cannot be authenticated. You can configure the switch to connect those hosts to critical ports.

When a new host tries to connect to the critical port, that host is moved to a user-specified access VLAN, the critical VLAN. The administrator gives limited authentication to the hosts.
When the switch tries to authenticate a host connected to a critical port, the switch checks the status of the configured RADIUS server. If a server is available, the switch can authenticate the host. However, if all the RADIUS servers are unavailable, the switch grants network access to the host and puts the port in the *critical-authentication* state, which is a special case of the authentication state.

**Support on Multiple-Authentication Ports**

To support inaccessible bypass on multiple-authentication (multiauth) ports, you can use the `authentication event server dead action reinitialize vlan vlan-id`. When a new host tries to connect to the critical port, that port is reinitialized and all the connected hosts are moved to the user-specified access VLAN.

The `authentication event server dead action reinitialize vlan vlan-id` interface configuration command is supported on all host modes.

**Authentication Results**

The behavior of the inaccessible authentication bypass feature depends on the authorization state of the port:

- If the port is unauthorized when a host connected to a critical port tries to authenticate and all servers are unavailable, the switch puts the port in the critical-authentication state in the RADIUS-configured or user-specified access VLAN.
- If the port is already authorized and reauthentication occurs, the switch puts the critical port in the critical-authentication state in the current VLAN, which might be the one previously assigned by the RADIUS server.
- If the RADIUS server becomes unavailable during an authentication exchange, the current exchange times out, and the switch puts the critical port in the critical-authentication state during the next authentication attempt.

You can configure the critical port to reinitialize hosts and move them out of the critical VLAN when the RADIUS server is again available. When this is configured, all critical ports in the critical-authentication state are automatically re-authenticated. For more information, see the command reference for this release and the “Configuring the Inaccessible Authentication Bypass Feature” on page -55.

**Feature Interactions**

Inaccessible authentication bypass interacts with these features:

- Guest VLAN—Inaccessible authentication bypass is compatible with guest VLAN. When a guest VLAN is enabled on 8021.x port, the features interact as follows:
  - If at least one RADIUS server is available, the switch assigns a client to a guest VLAN when the switch does not receive a response to its EAP request/identity frame or when EAPOL packets are not sent by the client.
  - If all the RADIUS servers are not available and the client is connected to a critical port, the switch authenticates the client and puts the critical port in the critical-authentication state in the RADIUS-configured or user-specified access VLAN.
- If all the RADIUS servers are not available and the client is not connected to a critical port, the switch might not assign clients to the guest VLAN if one is configured.
- If all the RADIUS servers are not available and if a client is connected to a critical port and was previously assigned to a guest VLAN, the switch keeps the port in the guest VLAN.

- **Restricted VLAN**—If the port is already authorized in a restricted VLAN and the RADIUS servers are unavailable, the switch puts the critical port in the critical-authentication state in the restricted VLAN.
- **802.1x accounting**—Accounting is not affected if the RADIUS servers are unavailable.
- **Private VLAN**—You can configure inaccessible authentication bypass on a private VLAN host port. The access VLAN must be a secondary private VLAN.
- **Voice VLAN**—Inaccessible authentication bypass is compatible with voice VLAN, but the RADIUS-configured or user-specified access VLAN and the voice VLAN must be different.
- **Remote Switched Port Analyzer (RSPAN)**—Do not configure an RSPAN VLAN as the RADIUS-configured or user-specified access VLAN for inaccessible authentication bypass.

### 802.1x Authentication with Voice VLAN Ports

A voice VLAN port is a special access port associated with two VLAN identifiers:

- **VVID** to carry voice traffic to and from the IP phone. The VVID is used to configure the IP phone connected to the port.
- **PVID** to carry the data traffic to and from the workstation connected to the switch through the IP phone. The PVID is the native VLAN of the port.

The IP phone uses the VVID for its voice traffic, regardless of the authorization state of the port. This allows the phone to work independently of IEEE 802.1x authentication.

In single-host mode, only the IP phone is allowed on the voice VLAN. In multiple-hosts mode, additional clients can send traffic on the voice VLAN after a supplicant is authenticated on the PVID. When multiple-hosts mode is enabled, the supplicant authentication affects both the PVID and the VVID.

**Note**

When IP phones are connected to an 802.1x-enabled switch port that is in single host mode, the switch grants the phones network access without authenticating them. We recommend that you use multidomain authentication (MDA) on the port to authenticate both a data device and a voice device, such as an IP phone.

A voice VLAN port becomes active when there is a link, and the device MAC address appears after the first CDP message from the IP phone. Cisco IP phones do not relay CDP messages from other devices. As a result, if several IP phones are connected in series, the switch recognizes only the one directly connected to it. When 802.1x authentication is enabled on a voice VLAN port, the switch drops packets from unrecognized IP phones more than one hop away.

When 802.1x authentication is enabled on a port, you cannot configure a port VLAN that is equal to a voice VLAN.

**Note**

If you enable 802.1x authentication on an access port on which a voice VLAN is configured and to which a Cisco IP Phone is connected, the Cisco IP phone loses connectivity to the switch for up to 30 seconds.
For more information about voice VLANs, see Chapter 15, “Configuring Voice VLAN.”

**802.1x Authentication with Port Security**

You can configure an 802.1x port with port security in either single-host or multiple-hosts mode. (You also must configure port security on the port by using the `switchport port-security` interface configuration command.) When you enable port security and 802.1x authentication on a port, 802.1x authentication authenticates the port, and port security manages network access for all MAC addresses, including that of the client. You can then limit the number or group of clients that can access the network through an 802.1x port.

These are some examples of the interaction between 802.1x authentication and port security on the switch:

- When a client is authenticated, and the port security table is not full, the client MAC address is added to the port security list of secure hosts. The port then proceeds to come up normally.

  When a client is authenticated and manually configured for port security, it is guaranteed an entry in the secure host table (unless port security static aging has been enabled).

  A security violation occurs if the client is authenticated, but the port security table is full. This can happen if the maximum number of secure hosts has been statically configured or if the client ages out of the secure host table. If the client address is aged, its place in the secure host table can be taken by another host.

  If the security violation is caused by the first authenticated host, the port becomes error-disabled and immediately shuts down.

  The port security violation modes determine the action for security violations. For more information, see the “Security Violations” section on page 26-10.

- When you manually remove an 802.1x client address from the port security table by using the `no switchport port-security mac-address` interface configuration command, you should re-authenticate the 802.1x client by using the `dot1x re-authenticate interface interface-id` privileged EXEC command.

- When an 802.1x client logs off, the port changes to an unauthenticated state, and all dynamic entries in the secure host table are cleared, including the entry for the client. Normal authentication then takes place.

- If the port is administratively shut down, the port becomes unauthenticated, and all dynamic entries are removed from the secure host table.

- Port security and a voice VLAN can be configured simultaneously on an 802.1x port that is in either single-host or multiple-hosts mode. Port security applies to both the voice VLAN identifier (VVID) and the port VLAN identifier (PVID).

You can configure the `authentication violation` or `dot1x violation-mode` interface configuration command so that a port shuts down, generates a syslog error, or discards packets from a new device when it connects to an IEEE 802.1x-enabled port or when the maximum number of allowed devices have been authenticated. For more information see the “Maximum Number of Allowed Devices Per Port” section on page 9-38 and the command reference for this release.

For more information about enabling port security on your switch, see the “Configuring Port Security” section on page 26-8.
802.1x Authentication with Wake-on-LAN

The 802.1x authentication with wake-on-LAN (WoL) feature allows dormant PCs to be powered when the switch receives a specific Ethernet frame, known as the magic packet. You can use this feature in environments where administrators need to connect to systems that have been powered down.

When a host that uses WoL is attached through an 802.1x port and the host powers off, the IEEE 802.1x port becomes unauthorized. The port can only receive and send EAPOL packets, and WoL magic packets cannot reach the host. When the PC is powered off, it is not authorized, and the switch port is not opened.

When the switch uses 802.1x authentication with WoL, the switch forwards traffic to unauthorized IEEE 802.1x ports, including magic packets. While the port is unauthorized, the switch continues to block ingress traffic other than EAPOL packets. The host can receive packets but cannot send packets to other devices in the network.

Note

If PortFast is not enabled on the port, the port is forced to the bidirectional state.

When you configure a port as unidirectional by using the dot1x control-direction in interface configuration command, the port changes to the spanning-tree forwarding state. The port can send packets to the host but cannot receive packets from the host.

When you configure a port as bidirectional by using the dot1x control-direction both interface configuration command, the port is access-controlled in both directions. The port does not receive packets from or send packets to the host.

802.1x User Distribution

You can configure 802.1x user distribution to load-balance users with the same group name across multiple different VLANs.

The VLANs are either supplied by the RADIUS server or configured through the switch CLI under a VLAN group name.

- Configure the RADIUS server to send more than one VLAN name for a user. The multiple VLAN names can be sent as part of the response to the user. The 802.1x user distribution tracks all the users in a particular VLAN and achieves load balancing by moving the authorized user to the least populated VLAN.

- Configure the RADIUS server to send a VLAN group name for a user. The VLAN group name can be sent as part of the response to the user. You can search for the selected VLAN group name among the VLAN group names that you configured by using the switch CLI. If the VLAN group name is found, the corresponding VLANs under this VLAN group name are searched to find the least populated VLAN. Load balancing is achieved by moving the corresponding authorized user to that VLAN.

Note

The RADIUS server can send the VLAN information in any combination of VLAN-IDs, VLAN names, or VLAN groups.
802.1x User Distribution Configuration Guidelines

- Confirm that at least one VLAN is mapped to the VLAN group.
- You can map more than one VLAN to a VLAN group.
- You can modify the VLAN group by adding or deleting a VLAN.
- When you clear an existing VLAN from the VLAN group name, none of the authenticated ports in the VLAN are cleared, but the mappings are removed from the existing VLAN group.
- If you clear the last VLAN from the VLAN group name, the VLAN group is cleared.
- You can clear a VLAN group even when the active VLANs are mapped to the group. When you clear a VLAN group, none of the ports or users that are in the authenticated state in any VLAN within the group are cleared, but the VLAN mappings to the VLAN group are cleared.

For more information, see the “Configuring 802.1x User Distribution” section on page 9-58.

802.1x Authentication with MAC Authentication Bypass

You can configure the switch to authorize clients based on the client MAC address (see Figure 9-2 on page 9-5) by using the MAC authentication bypass feature. For example, you can enable this feature on IEEE 802.1x ports connected to devices such as printers.

If 802.1x authentication times out while waiting for an EAPOL response from the client, the switch tries to authorize the client by using MAC authentication bypass.

When the MAC authentication bypass feature is enabled on an 802.1x port, the switch uses the MAC address as the client identity. The authentication server has a database of client MAC addresses that are allowed network access. After detecting a client on an 802.1x port, the switch waits for an Ethernet packet from the client. The switch sends the authentication server a RADIUS-access/request frame with a username and password based on the MAC address. If authorization succeeds, the switch grants the client access to the network. If authorization fails, the switch assigns the port to the guest VLAN if one is configured.

If an EAPOL packet is detected on the interface during the lifetime of the link, the switch determines that the device connected to that interface is an 802.1x-capable supplicant and uses 802.1x authentication (not MAC authentication bypass) to authorize the interface. EAPOL history is cleared if the interface link status goes down.

If the switch already authorized a port by using MAC authentication bypass and detects an 802.1x supplicant, the switch does not unauthorize the client connected to the port. When re-authentication occurs, the switch uses 802.1x authentication as the preferred re-authentication process if the previous session ended because the Termination-Action RADIUS attribute value is DEFAULT.

Clients that were authorized with MAC authentication bypass can be re-authenticated. The re-authentication process is the same as that for clients that were authenticated with 802.1x. During re-authentication, the port remains in the previously assigned VLAN. If re-authentication is successful, the switch keeps the port in the same VLAN. If re-authentication fails, the switch assigns the port to the guest VLAN, if one is configured.

If re-authentication is based on the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute [29]) and if the Termination-Action RADIUS attribute (Attribute [29]) action is Initialize, (the attribute value is DEFAULT), the MAC authentication bypass session ends, and connectivity is lost during re-authentication. If MAC authentication bypass is enabled and the 802.1x authentication times out, the switch uses the MAC authentication bypass feature to initiate reAuthorization. For more information about these AV pairs, see RFC 3580, “IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines.”
MAC authentication bypass interacts with the features:

- 802.1x authentication—You can enable MAC authentication bypass only if 802.1x authentication is enabled on the port.
- Guest VLAN—If a client has an invalid MAC address identity, the switch assigns the client to a guest VLAN if one is configured.
- Restricted VLAN—This feature is not supported when the client connected to an IEEE 802.1x port is authenticated with MAC authentication bypass.
- Port security—See the “802.1x Authentication with Port Security” section on page 9-26.
- Voice VLAN—See the “802.1x Authentication with Voice VLAN Ports” section on page 9-25.
- VLAN Membership Policy Server (VMPS)—IEEE802.1x and VMPS are mutually exclusive.
- Private VLAN—You can assign a client to a private VLAN.
- Network admission control (NAC) Layer 2 IP validation—This feature takes effect after an IEEE 802.1x port is authenticated with MAC authentication bypass, including hosts in the exception list.

For more configuration information, see the “Authentication Manager” section on page 9-8.

Cisco IOS Release 12.2(55)SE and later supports filtering of verbose MAB system messages. See the “Authentication Manager CLI Commands” section on page 9-9.

### Network Admission Control Layer 2 802.1x Validation

The switch supports the Network Admission Control (NAC) Layer 2 802.1x validation, which checks the antivirus condition or posture of endpoint systems or clients before granting the devices network access. With NAC Layer 2 802.1x validation, you can do these tasks:

- Download the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute[29]) from the authentication server.
- Set the number of seconds between re-authentication attempts as the value of the Session-Timeout RADIUS attribute (Attribute[27]) and get an access policy against the client from the RADIUS server.
- Set the action to be taken when the switch tries to re-authenticate the client by using the Termination-Action RADIUS attribute (Attribute[29]). If the value is the DEFAULT or is not set, the session ends. If the value is RADIUS-Request, the re-authentication process starts.
- View the NAC posture token, which shows the posture of the client, by using the `show dot1x` privileged EXEC command.
- Configure secondary private VLANs as guest VLANs.

Configuring NAC Layer 2 802.1x validation is similar to configuring 802.1x port-based authentication except that you must configure a posture token on the RADIUS server. For information about configuring NAC Layer 2 802.1x validation, see the “Configuring NAC Layer 2 802.1x Validation” section on page 9-60 and the “Configuring Periodic Re-Authentication” section on page 9-45.

For more information about NAC, see the Network Admission Control Software Configuration Guide.

For more configuration information, see the “Authentication Manager” section on page 9-8.
Flexible Authentication Ordering

You can use flexible authentication ordering to configure the order of methods that a port uses to authenticate a new host. MAC authentication bypass and 802.1x can be the primary or secondary authentication methods, and web authentication can be the fallback method if either or both of those authentication attempts fail. For more information see the “Configuring Flexible Authentication Ordering” section on page 9-66.

Open1x Authentication

Open1x authentication allows a device access to a port before that device is authenticated. When open authentication is configured, a new host on the port can only send traffic to the switch. After the host is authenticated, the policies configured on the RADIUS server are applied to that host.

You can configure open authentication with these scenarios:

- Single-host mode with open authentication–Only one user is allowed network access before and after authentication.
- MDA mode with open authentication–Only one user in the voice domain and one user in the data domain are allowed.
- Multiple-hosts mode with open authentication–Any host can access the network.
- Multiple-authentication mode with open authentication–Similar to MDA, except multiple hosts can be authenticated.

For more information see the “Configuring the Host Mode” section on page 9-44.

Multidomain Authentication

The switch supports multidomain authentication (MDA), which allows both a data device and voice device, such as an IP phone (Cisco or non-Cisco), to authenticate on the same switch port. The port is divided into a data domain and a voice domain.

MDA does not enforce the order of device authentication. However, for best results, we recommend that a voice device is authenticated before a data device on an MDA-enabled port.

Follow these guidelines for configuring MDA:

- To configure a switch port for MDA, see the “Configuring the Host Mode” section on page 9-44.
- You must configure the voice VLAN for the IP phone when the host mode is set to multidomain. For more information, see Chapter 15, “Configuring Voice VLAN.”
- Voice VLAN assignment on an MDA-enabled port is supported.

Note

If you use a dynamic VLAN to assign a voice VLAN on an MDA-enabled switch port, the voice device fails authorization.

- To authorize a voice device, the AAA server must be configured to send a Cisco Attribute-Value (AV) pair attribute with a value of device-traffic-class=voice. Without this value, the switch treats the voice device as a data device.
- The guest VLAN and restricted VLAN features only apply to the data devices on an MDA-enabled port. The switch treats a voice device that fails authorization as a data device.
Chapter 9    Configuring IEEE 802.1x Port-Based Authentication

Understanding IEEE 802.1x Port-Based Authentication

• If more than one device attempts authorization on either the voice or the data domain of a port, it is error disabled.

• Until a device is authorized, the port drops its traffic. Non-Cisco IP phones or voice devices are allowed into both the data and voice VLANs. The data VLAN allows the voice device to contact a DHCP server to obtain an IP address and acquire the voice VLAN information. After the voice device starts sending on the voice VLAN, its access to the data VLAN is blocked.

• A voice device MAC address that is binding on the data VLAN is not counted towards the port security MAC address limit.

• You can use dynamic VLAN assignment from a RADIUS server only for data devices.

• MDA can use MAC authentication bypass as a fallback mechanism to allow the switch port to connect to devices that do not support 802.1x authentication. For more information, see the “MAC Authentication Bypass” section on page 9-38.

• When a data or a voice device is detected on a port, its MAC address is blocked until authorization succeeds. If the authorization fails, the MAC address remains blocked for 5 minutes.

• If more than five devices are detected on the data VLAN or more than one voice device is detected on the voice VLAN while a port is unauthorized, the port is error disabled.

• When a port host mode is changed from single- or multihost to multidomain mode, an authorized data device remains authorized on the port. However, a Cisco IP phone that has been allowed on the port voice VLAN is automatically removed and must be reauthenticated on that port.

• Active fallback mechanisms such as guest VLAN and restricted VLAN remain configured after a port changes from single- or multihost mode to multidomain mode.

• Switching a port host mode from multidomain to single- or multihost mode removes all authorized devices from the port.

• If a data domain is authorized first and placed in the guest VLAN, non-802.1x-capable voice devices need to tag their packets on the voice VLAN to trigger authentication.

• We do not recommend per-user ACLs with an MDA-enabled port. An authorized device with a per-user ACL policy might impact traffic on both the voice and data VLANs of the port. If used, only one device on the port should enforce per-user ACLs.

Voice Aware 802.1x Security

You use the voice aware 802.1x security feature to configure the switch to disable only the VLAN on which a security violation occurs, whether it is a data or voice VLAN. In previous releases, when an attempt to authenticate the data client caused a security violation, the entire port shut down, resulting in a complete loss of connectivity.

You can use this feature in IP phone deployments where a PC is connected to the IP phone. A security violation found on the data VLAN results in the shutdown of only the data VLAN. The traffic on the voice VLAN flows through the switch without interruption.

For information on configuring voice aware 802.1x security, see the “Configuring Voice Aware 802.1x Security” section on page 9-42.
802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT)

The Network Edge Access Topology (NEAT) feature extends identity to areas outside the wiring closet (such as conference rooms). This allows any type of device to authenticate on the port.

- 802.1x switch supplicant: You can configure a switch to act as a supplicant to another switch by using the 802.1x supplicant feature. This configuration is helpful in a scenario, where, for example, a switch is outside a wiring closet and is connected to an upstream switch through a trunk port. A switch configured with the 802.1x switch supplicant feature authenticates with the upstream switch for secure connectivity.

Once the supplicant switch authenticates successfully the port mode changes from access to trunk.

- If the access VLAN is configured on the authenticator switch, it becomes the native VLAN for the trunk port after successful authentication.

You can enable MDA or multiath mode on the authenticator switch interface that connects to one more supplicant switches. Multihost mode is not supported on the authenticator switch interface.

Use the `dot1x supplicant force-multicast` global configuration command on the supplicant switch for Network Edge Access Topology (NEAT) to work in all host modes.

- Host Authorization: Ensures that only traffic from authorized hosts (connecting to the switch with supplicant) is allowed on the network. The switches use Client Information Signalling Protocol (CISP) to send the MAC addresses connecting to the supplicant switch to the authenticator switch, as shown in Figure 9-6.

- Auto enablement: Automatically enables trunk configuration on the authenticator switch, allowing user traffic from multiple VLANs coming from supplicant switches. Configure the cisco-av-pair as `device-traffic-class=switch` at the ACS. (You can configure this under the group or the user settings.)

![Figure 9-6 Authenticator and Supplicant Switch using CISP](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Workstations (clients)</td>
</tr>
<tr>
<td>3</td>
<td>Authenticator switch</td>
</tr>
<tr>
<td>5</td>
<td>Trunk port</td>
</tr>
</tbody>
</table>
Guidelines

- You can configure NEAT ports with the same configurations as the other authentication ports. When the supplicant switch authenticates, the port mode is changed from access to trunk based on the switch vendor-specific attributes (VSAs). (device-traffic-class=switch).
- The VSA changes the authenticator switch port mode from access to trunk and enables 802.1x trunk encapsulation and the access VLAN if any would be converted to a native trunk VLAN. VSA does not change any of the port configurations on the supplicant.
- To change the host mode and apply a standard port configuration on the authenticator switch port, you can also use AutoSmart ports user-defined macros, instead of the switch VSA. This allows you to remove unsupported configurations on the authenticator switch port and to change the port mode from access to trunk. For more information, see Chapter 12, “Configuring Smartports Macros”.

For more information, see the “Configuring an Authenticator and a Supplicant Switch with NEAT” section on page 9-61.

Common Session ID

Authentication manager uses a single session ID (referred to as a common session ID) for a client no matter which authentication method is used. This ID is used for all reporting purposes, such as the show commands and MIBs. The session ID appears with all per-session syslog messages.

The session ID includes:

- The IP address of the Network Access Device (NAD)
- A monotonically increasing unique 32 bit integer
- The session start time stamp (a 32 bit integer)

This example shows how the session ID appears in the output of the show authentication command. The session ID in this example is 160000050000000B288508E5:

```
Switch# show authentication sessions
Interface MAC Address Method Domain Status Session ID
Fa4/0/4 0000.0000.0203 mab DATA Authz Success 160000050000000B288508E5
```

This is an example of how the session ID appears in the syslog output. The session ID in this example is also 160000050000000B288508E5:

```
1w0d: %AUTHMGR-5-START: Starting 'mab' for client (0000.0000.0203) on Interface Fa4/0/4 AuditSessionID 160000050000000B288508E5
1w0d: %MAB-5-SUCCESS: Authentication successful for client (0000.0000.0203) on Interface Fa4/0/4 AuditSessionID 160000050000000B288508E5
1w0d: %AUTHMGR-7-RESULT: Authentication result 'success' from 'mab' for client (0000.0000.0203) on Interface Fa4/0/4 AuditSessionID 160000050000000B288508E5
```

The session ID is used by the NAD, the AAA server, and other report-analyzing applications to identify the client. The ID appears automatically. No configuration is required.
Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

These sections contain this configuration information:

- Default 802.1x Authentication Configuration, page 9-35
- 802.1x Authentication Configuration Guidelines, page 9-36
- Configuring 802.1x Authentication, page 9-39 (required)
- Configuring 802.1x Readiness Check, page 9-41
- Configuring 802.1x Violation Modes, page 9-38
- Configuring Voice Aware 802.1x Security, page 9-42
- Configuring the Switch-to-RADIUS-Server Communication, page 9-43 (required)
- Configuring the Host Mode, page 9-44 (optional)
- Configuring Periodic Re-Authentication, page 9-45 (optional)
- Manually Re-Authenticating a Client Connected to a Port, page 9-47 (optional)
- Changing the Quiet Period, page 9-47 (optional)
- Changing the Switch-to-Client Retransmission Time, page 9-48 (optional)
- Setting the Switch-to-Client Retransmission Number, page 9-48 (optional)
- Setting the Re-Authentication Number, page 9-49 (optional)
- Enabling MAC Move, page 9-50 (optional)
- Enabling MAC Replace, page 9-50 (optional)
- Configuring 802.1x Accounting, page 9-51 (optional)
- Configuring a Guest VLAN, page 9-52 (optional)
- Configuring a Restricted VLAN, page 9-53 (optional)
- Configuring the Inaccessible Authentication Bypass Feature, page 9-55 (optional)
- Configuring 802.1x Authentication with WoL, page 9-59 (optional)
- Configuring MAC Authentication Bypass, page 9-59 (optional)
- Configuring 802.1x User Distribution, page 9-58 (optional)
- Configuring NAC Layer 2 802.1x Validation, page 9-60 (optional)
- Configuring an Authenticator and a Supplicant Switch with NEAT, page 9-61 (optional)
- Configuring 802.1x Authentication with Downloadable ACLs and Redirect URLs, page 9-63 (optional)
- Configuring VLAN ID-based MAC Authentication, page 9-65 (optional)
- Configuring Flexible Authentication Ordering, page 9-66 (optional)
- Configuring Open1x, page 9-66 (optional)
- Disabling 802.1x Authentication on the Port, page 9-67 (optional)
- Resetting the 802.1x Authentication Configuration to the Default Values, page 9-67 (optional)
## Default 802.1x Authentication Configuration

Table 9-4 shows the default 802.1x authentication configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 802.1x enable state</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Per-port 802.1x enable state</td>
<td>Disabled (force-authorized). The port sends and receives normal traffic without 802.1x-based authentication of the client.</td>
</tr>
<tr>
<td>AAA</td>
<td>Disabled.</td>
</tr>
<tr>
<td>RADIUS server</td>
<td>• None specified.</td>
</tr>
<tr>
<td>• IP address</td>
<td>• 1812.</td>
</tr>
<tr>
<td>• UDP authentication port</td>
<td>• None specified.</td>
</tr>
<tr>
<td>• Key</td>
<td></td>
</tr>
<tr>
<td>Host mode</td>
<td>Single-host mode.</td>
</tr>
<tr>
<td>Control direction</td>
<td>Bidirectional control.</td>
</tr>
<tr>
<td>Periodic re-authentication</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Number of seconds between re-authentication attempts</td>
<td>3600 seconds.</td>
</tr>
<tr>
<td>Re-authentication number</td>
<td>2 times (number of times that the switch restarts the authentication process before the port changes to the unauthorized state).</td>
</tr>
<tr>
<td>Quiet period</td>
<td>60 seconds (number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client).</td>
</tr>
<tr>
<td>Retransmission time</td>
<td>30 seconds (number of seconds that the switch should wait for a response to an EAP request/identity frame from the client before resending the request).</td>
</tr>
<tr>
<td>Maximum retransmission number</td>
<td>2 times (number of times that the switch will send an EAP-request/identity frame before restarting the authentication process).</td>
</tr>
<tr>
<td>Client timeout period</td>
<td>30 seconds (when relaying a request from the authentication server to the client, the amount of time the switch waits for a response before resending the request to the client.)</td>
</tr>
<tr>
<td>Authentication server timeout period</td>
<td>30 seconds (when relaying a response from the client to the authentication server, the amount of time the switch waits for a reply before resending the response to the server. This setting is not configurable.)</td>
</tr>
<tr>
<td>Guest VLAN</td>
<td>None specified.</td>
</tr>
<tr>
<td>Inaccessible authentication bypass</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Restricted VLAN</td>
<td>None specified.</td>
</tr>
</tbody>
</table>
Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

This section has configuration guidelines for these features:

- **802.1x Authentication**, page 9-36
- **VLAN Assignment, Guest VLAN, Restricted VLAN, and Inaccessible Authentication Bypass**, page 9-37
- **MAC Authentication Bypass**, page 9-38
- **Maximum Number of Allowed Devices Per Port**, page 9-38

### 802.1x Authentication

These are the 802.1x authentication configuration guidelines:

- When 802.1x authentication is enabled, ports are authenticated before any other Layer 2 or Layer 3 features are enabled.
- If you try to change the mode of an 802.1x-enabled port (for example, from access to trunk), an error message appears, and the port mode is not changed.
- If the VLAN to which an 802.1x-enabled port is assigned changes, this change is transparent and does not affect the switch. For example, this change occurs if a port is assigned to a RADIUS server-assigned VLAN and is then assigned to a different VLAN after re-authentication.
- If the VLAN to which an 802.1x port is assigned to shut down, disabled, or removed, the port becomes unauthorized. For example, the port is unauthorized after the access VLAN to which a port is assigned shuts down or is removed.
- The 802.1x protocol is supported on Layer 2 static-access ports, voice VLAN ports, and Layer 3 routed ports, but it is not supported on these port types:
  - Trunk port—If you try to enable 802.1x authentication on a trunk port, an error message appears, and 802.1x authentication is not enabled. If you try to change the mode of an 802.1x-enabled port to trunk, an error message appears, and the port mode is not changed.
  - Dynamic ports—A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1x authentication on a dynamic port, an error message appears, and 802.1x authentication is not enabled. If you try to change the mode of an 802.1x-enabled port to dynamic, an error message appears, and the port mode is not changed.
  - Dynamic-access ports—If you try to enable 802.1x authentication on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and 802.1x authentication is not enabled. If you try to change an 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

**Configuring 802.1x Authentication**

- EtherChannel port—Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an 802.1x port. If you try to enable 802.1x authentication on an EtherChannel port, an error message appears, and 802.1x authentication is not enabled.

- Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) destination ports—You can enable 802.1x authentication on a port that is a SPAN or RSPAN destination port. However, 802.1x authentication is disabled until the port is removed as a SPAN or RSPAN destination port. You can enable 802.1x authentication on a SPAN or RSPAN source port.

Before globally enabling 802.1x authentication on a switch by entering the `dot1x system-auth-control` global configuration command, remove the EtherChannel configuration from the interfaces on which 802.1x authentication and EtherChannel are configured.

- If you are using a device running the Cisco Access Control Server (ACS) application for IEEE 802.1x authentication with EAP-Transparent LAN Services (TLS) and EAP-MD5, make sure that the device is running ACS Version 3.2.1 or later.

- Cisco IOS Release 12.2(55)SE and later supports filtering of system messages related to 802.1x authentication. See the “Authentication Manager CLI Commands” section on page 9-9.

**VLAN Assignment, Guest VLAN, Restricted VLAN, and Inaccessible Authentication Bypass**

These are the configuration guidelines for VLAN assignment, guest VLAN, restricted VLAN, and inaccessible authentication bypass:

- When 802.1x authentication is enabled on a port, you cannot configure a port VLAN that is equal to a voice VLAN.

- The 802.1x authentication with VLAN assignment feature is not supported on trunk ports, dynamic ports, or with dynamic-access port assignment through a VMPS.

- You can configure 802.1x authentication on a private-VLAN port, but do not configure IEEE 802.1x authentication with port security, a voice VLAN, a guest VLAN, a restricted VLAN, or a per-user ACL on private-VLAN ports.

- You can configure any VLAN except an RSPAN VLAN, private VLAN, or a voice VLAN as an 802.1x guest VLAN. The guest VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

- After you configure a guest VLAN for an 802.1x port to which a DHCP client is connected, you might need to get a host IP address from a DHCP server. You can change the settings for restarting the 802.1x authentication process on the switch before the DHCP process on the client times out and tries to get a host IP address from the DHCP server. Decrease the settings for the 802.1x authentication process (authentication timer inactivity or `dot1x timeout quiet-period` and authentication timer reauthentication or `dot1x timeout tx-period`). The amount to decrease the settings depends on the connected 802.1x client type.

- When configuring the inaccessible authentication bypass feature, follow these guidelines:
  - The feature is supported on 802.1x port in single-host mode and multihosts mode.
  - If the client is running Windows XP and the port to which the client is connected is in the critical-authentication state, Windows XP might report that the interface is not authenticated.
- If the Windows XP client is configured for DHCP and has an IP address from the DHCP server, receiving an EAP-Success message on a critical port might not re-initiate the DHCP configuration process.
- You can configure the inaccessible authentication bypass feature and the restricted VLAN on an 802.1x port. If the switch tries to re-authenticate a critical port in a restricted VLAN and all the RADIUS servers are unavailable, switch changes the port state to the critical authentication state and remains in the restricted VLAN.
- You can configure the inaccessible bypass feature and port security on the same switch port.
- You can configure any VLAN except an RSPAN VLAN or a voice VLAN as an 802.1x restricted VLAN. The restricted VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

**MAC Authentication Bypass**

These are the MAC authentication bypass configuration guidelines:

- Unless otherwise stated, the MAC authentication bypass guidelines are the same as the 802.1x authentication guidelines. For more information, see the “802.1x Authentication” section on page 9-36.
- If you disable MAC authentication bypass from a port after the port has been authorized with its MAC address, the port state is not affected.
- If the port is in the unauthorized state and the client MAC address is not the authentication-server database, the port remains in the unauthorized state. However, if the client MAC address is added to the database, the switch can use MAC authentication bypass to re-authorize the port.
- If the port is in the authorized state, the port remains in this state until re-authorization occurs.

**Maximum Number of Allowed Devices Per Port**

This is the maximum number of devices allowed on an 802.1x-enabled port:

- In single-host mode, only one device is allowed on the access VLAN. If the port is also configured with a voice VLAN, an unlimited number of Cisco IP phones can send and receive traffic through the voice VLAN.
- In multidomain authentication (MDA) mode, one device is allowed for the access VLAN, and one IP phone is allowed for the voice VLAN.
- In multihost mode, only one 802.1x supplicant is allowed on the port, but an unlimited number of non-802.1x hosts are allowed on the access VLAN. An unlimited number of devices are allowed on the voice VLAN.

**Configuring 802.1x Violation Modes**

You can configure an 802.1x port so that it shuts down, generates a syslog error, or discards packets from a new device when:

- a device connects to an 802.1x-enabled port
- the maximum number of allowed about devices have been authenticated on the port
Beginning in privileged EXEC mode, follow these steps to configure the security violation actions on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model Enable AAA.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authentication dot1x {default} method1 Create an 802.1x authentication method list. To create a default list that is used when a named list is not specified in the authentication command, use the default keyword followed by the method that is to be used in default situations. The default method list is automatically applied to all ports. For method1, enter the group radius keywords to use the list of all RADIUS servers for authentication. Note Though other keywords are visible in the command-line help string, only the group radius keywords are supported.</td>
</tr>
<tr>
<td>Step 4</td>
<td>interface interface-id Specify the port connected to the client that is to be enabled for IEEE 802.1x authentication, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switchport mode access Set the port to access mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>authentication violation shutdown</td>
</tr>
<tr>
<td>Step 7</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show authentication or show dot1x Verify your entries.</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Configuring 802.1x Authentication

To configure 802.1x port-based authentication, you must enable authentication, authorization, and accounting (AAA) and specify the authentication method list. A method list describes the sequence and authentication method to be queried to authenticate a user.

To allow per-user ACLs or VLAN assignment, you must enable AAA authorization to configure the switch for all network-related service requests.
This is the 802.1x AAA process:

Step 1  A user connects to a port on the switch.
Step 2  Authentication is performed.
Step 3  VLAN assignment is enabled, as appropriate, based on the RADIUS server configuration.
Step 4  The switch sends a start message to an accounting server.
Step 5  Re-authentication is performed, as necessary.
Step 6  The switch sends an interim accounting update to the accounting server that is based on the result of re-authentication.
Step 7  The user disconnects from the port.
Step 8  The switch sends a stop message to the accounting server.

Beginning in privileged EXEC mode, follow these steps to configure 802.1x port-based authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  aaa new-model</td>
<td>Enable AAA.</td>
</tr>
<tr>
<td>Step 3  aaa authentication dot1x {default} method1</td>
<td>Create an 802.1x authentication method list.</td>
</tr>
<tr>
<td></td>
<td>To create a default list that is used when a named list is not specified in the authentication command, use the default keyword followed by the method that is to be used in default situations. The default method list is automatically applied to all ports.</td>
</tr>
<tr>
<td></td>
<td>For method1, enter the group radius keywords to use the list of all RADIUS servers for authentication.</td>
</tr>
<tr>
<td></td>
<td>Note Though other keywords are visible in the command-line help string, only the group radius keywords are supported.</td>
</tr>
<tr>
<td>Step 4  dot1x system-auth-control</td>
<td>Enable 802.1x authentication globally on the switch.</td>
</tr>
<tr>
<td>Step 5  aaa authorization network {default} group radius</td>
<td>(Optional) Configure the switch to use user-RADIUS authorization for all network-related service requests, such as per-user ACLs or VLAN assignment.</td>
</tr>
<tr>
<td></td>
<td>Note For per-user ACLs, single-host mode must be configured. This setting is the default.</td>
</tr>
<tr>
<td>Step 6  radius-server host ip-address</td>
<td>(Optional) Specify the IP address of the RADIUS server.</td>
</tr>
<tr>
<td>Step 7  radius-server key string</td>
<td>(Optional) Specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.</td>
</tr>
<tr>
<td>Step 8  interface interface-id</td>
<td>Specify the port connected to the client that is to be enabled for IEEE 802.1x authentication, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 9  switchport mode access</td>
<td>(Optional) Set the port to access mode only if you configured the RADIUS server in Step 6 and Step 7.</td>
</tr>
</tbody>
</table>
Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Readiness Check

The 802.1x readiness check monitors 802.1x activity on all the switch ports and displays information about the devices connected to the ports that support 802.1x. You can use this feature to determine if the devices connected to the switch ports are 802.1x-capable.

The 802.1x readiness check is allowed on all ports that can be configured for 802.1x. The readiness check is not available on a port that is configured as dot1x force-unauthorized.

Follow these guidelines to enable the readiness check on the switch:

- The readiness check is typically used before 802.1x is enabled on the switch.
- If you use the dot1x test eapol-capable privileged EXEC command without specifying an interface, all the ports on the switch stack are tested.
- When you configure the dot1x test eapol-capable command on an 802.1x-enabled port, and the link comes up, the port queries the connected client about its 802.1x capability. When the client responds with a notification packet, it is 802.1x-capable. A syslog message is generated if the client responds within the timeout period. If the client does not respond to the query, the client is not 802.1x-capable. No syslog message is generated.
- The readiness check can be sent on a port that handles multiple hosts (for example, a PC that is connected to an IP phone). A syslog message is generated for each of the clients that respond to the readiness check within the timer period.

Beginning in privileged EXEC mode, follow these steps to enable the 802.1x readiness check on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>dot1x test eapol-capable [interface interface-id]</td>
<td>Enable the 802.1x readiness check on the switch. (Optional) For interface-id specify the port on which to check for IEEE 802.1x readiness. <strong>Note</strong> If you omit the optional interface keyword, all interfaces on the switch are tested.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>(Optional) Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>dot1x test timeout timeout</td>
<td>(Optional) Configure the timeout used to wait for EAPOL response. The range is from 1 to 65535 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>(Optional) Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>(Optional) Verify your modified timeout values.</td>
</tr>
</tbody>
</table>
This example shows how to enable a readiness check on a switch to query a port. It also shows the response received from the queried port verifying that the device connected to it is 802.1x-capable:

```
switch# dot1x test eapol-capable interface gigabitethernet1/0/13
```

```
DOT1X_PORT_EAPOL_CAPABLE:DOT1X: MAC 00-01-02-4b-f1-a3 on gigabitethernet1/0/13 is EAPOL capable
```

### Configuring Voice Aware 802.1x Security

You use the voice aware 802.1x security feature on the switch to disable only the VLAN on which a security violation occurs, whether it is a data or voice VLAN. You can use this feature in IP phone deployments where a PC is connected to the IP phone. A security violation found on the data VLAN results in the shutdown of only the data VLAN. The traffic on the voice VLAN flows through the switch without interruption.

Follow these guidelines to configure voice aware 802.1x voice security on the switch:

- You enable voice aware 802.1x security by entering the `errdisable detect cause security-violation shutdown vlan` global configuration command. You disable voice aware 802.1x security by entering the `no` version of this command. This command applies to all 802.1x-configured ports in the switch.

**Note**

If you do not include the `shutdown vlan` keywords, the entire port is shut down when it enters the error-disabled state.

- If you use the `errdisable recovery cause security-violation` global configuration command to configure error-disabled recovery, the port is automatically re-enabled. If error-disabled recovery is not configured for the port, you re-enable it by using the `shutdown` and `no-shutdown` interface configuration commands.

- You can re-enable individual VLANs by using the `clear errdisable interface interface-id vlan [vlan-list]` privileged EXEC command. If you do not specify a range, all VLANs on the port are enabled.

Beginning in privileged EXEC mode, follow these steps to enable voice aware 802.1x security:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>errdisable detect cause security-violation shutdown vlan</code></td>
</tr>
<tr>
<td></td>
<td>Shut down any VLAN on which a security violation error occurs.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> If the <code>shutdown vlan</code> keywords are not included, the entire port enters the error-disabled state and shuts down.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>errdisable recovery cause security-violation</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Enable automatic per-VLAN error recovery.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>clear errdisable interface interface-id vlan [vlan-list]</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Reenable individual VLANs that have been error disabled.</td>
</tr>
<tr>
<td></td>
<td>• For <code>interface-id</code> specify the port on which to reenable individual VLANs.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>vlan-list</code> specify a list of VLANs to be re-enabled. If <code>vlan-list</code> is not specified, all VLANs are re-enabled.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>shutdown</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Re-enable an error-disabled VLAN, and clear all error-disable indications.</td>
</tr>
</tbody>
</table>
### Configuring IEEE 802.1x Port-Based Authentication

#### Configuring 802.1x Authentication

This example shows how to configure the switch to shut down any VLAN on which a security violation error occurs:

```bash
Switch(config)# errdisable detect cause security-violation shutdown vlan
```

This example shows how to re-enable all VLANs that were error disabled on port Gi4/0/2.

```bash
Switch# clear errdisable interface GigabitEthernet4/0/2 vlan
```

You can verify your settings by entering the `show errdisable detect` privileged EXEC command.

### Configuring the Switch-to-RADIUS-Server Communication

RADIUS security servers are identified by their hostname or IP address, hostname and specific UDP port numbers, or IP address and specific UDP port numbers. The combination of the IP address and UDP port number creates a unique identifier, which enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service—for example, authentication—the second host entry configured acts as the fail-over backup to the first one. The RADIUS host entries are tried in the order that they were configured.

Beginning in privileged EXEC mode, follow these steps to configure the RADIUS server parameters on the switch. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>`radius-server host {hostname</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
</tbody>
</table>

This example shows how to configure the switch to shut down any VLAN on which a security violation error occurs:

```bash
Switch(config)# errdisable detect cause security-violation shutdown vlan
```

This example shows how to re-enable all VLANs that were error disabled on port Gi4/0/2.

```bash
Switch# clear errdisable interface GigabitEthernet4/0/2 vlan
```

You can verify your settings by entering the `show errdisable detect` privileged EXEC command.
To delete the specified RADIUS server, use the `no radius-server host {hostname | ip-address}` global configuration command.

This example shows how to specify the server with IP address 172.20.39.46 as the RADIUS server, to use port 1612 as the authorization port, and to set the encryption key to `rad123`, matching the key on the RADIUS server:

```
Switch(config)# radius-server host 172.20.39.46 auth-port 1612 key rad123
```

You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using the `radius-server host` global configuration command. If you want to configure these options on a per-server basis, use the `radius-server timeout`, `radius-server retransmit`, and the `radius-server key` global configuration commands. For more information, see the “Configuring Settings for All RADIUS Servers” section on page 6-36.

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, see the RADIUS server documentation.

### Configuring the Host Mode

Beginning in privileged EXEC mode, follow these steps to allow multiple hosts (clients) on an IEEE 802.1x-authorized port that has the `dot1x port-control` interface configuration command set to `auto`. Use the `multi-domain` keyword to configure and enable multidomain authentication (MDA), which allows both a host and a voice device, such as an IP phone (Cisco or non-Cisco), on the same switch port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the port to which multiple hosts are indirectly attached, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Chapter 9 Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

### Configuring 802.1x Authentication

To disable multiple hosts on the port, use the `no authentication host-mode` or the `no dot1x host-mode multi-host` interface configuration command.

This example shows how to enable 802.1x authentication and to allow multiple hosts:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# dot1x host-mode multi-host
```

This example shows how to enable MDA and to allow both a host and a voice device on the port:

```
Switch(config)# interface gigabitethernet3/0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# dot1x host-mode multi-domain
Switch(config-if)# switchport voice vlan 101
Switch(config-if)# end
```

### Configuring Periodic Re-Authentication

You can enable periodic 802.1x client re-authentication and specify how often it occurs. If you do not specify a time period before enabling re-authentication, the number of seconds between attempts is 3600.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>`authentication host-mode [multi-auth</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show authentication interface interface-id</code> or <code>show dot1x interface interface-id</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

To disable multiple hosts on the port, use the `no authentication host-mode` or the `no dot1x host-mode multi-host` interface configuration command.
Beginning in privileged EXEC mode, follow these steps to enable periodic re-authentication of the client and to configure the number of seconds between re-authentication attempts. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>authentication periodic or dot1x reauthentication</td>
</tr>
<tr>
<td>Enable periodic re-authentication of the client, which is disabled by default.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>authentication timer {{[inactivity</td>
</tr>
<tr>
<td>Set the number of seconds between re-authentication attempts.</td>
<td></td>
</tr>
<tr>
<td>The authentication timer keywords have these meanings:</td>
<td></td>
</tr>
<tr>
<td>• inactivity—Interval in seconds after which if there is no activity from the client then it is unauthorized</td>
<td></td>
</tr>
<tr>
<td>• reauthenticate—Time in seconds after which an automatic re-authentication attempt is be initiated</td>
<td></td>
</tr>
<tr>
<td>• restart value—Interval in seconds after which an attempt is made to authenticate an unauthorized port</td>
<td></td>
</tr>
<tr>
<td>The dot1x timeout reauth-period keywords have these meanings:</td>
<td></td>
</tr>
<tr>
<td>• seconds—Sets the number of seconds from 1 to 65535; the default is 3600 seconds.</td>
<td></td>
</tr>
<tr>
<td>• server—Sets the number of seconds based on the value of the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute [29]).</td>
<td></td>
</tr>
<tr>
<td>This command affects the behavior of the switch only if periodic re-authentication is enabled.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show authentication interface-id or show dot1x interface interface-id</td>
</tr>
<tr>
<td>Verify your entries.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>(Optional) Save your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>

To disable periodic re-authentication, use the no authentication periodic or the no dot1x reauthentication interface configuration command. To return to the default number of seconds between re-authentication attempts, use the no authentication timer or the no dot1x timeout reauth-period interface configuration command.

This example shows how to enable periodic re-authentication and set the number of seconds between re-authentication attempts to 4000:

```
Switch(config-if)# dot1x reauthentication
Switch(config-if)# dot1x timeout reauth-period 4000
```
Manually Re-Authenticating a Client Connected to a Port

You can manually re-authenticate the client connected to a specific port at any time by entering the `dot1x re-authenticate interface interface-id` privileged EXEC command. This step is optional. If you want to enable or disable periodic re-authentication, see the “Configuring Periodic Re-Authentication” section on page 9-45.

This example shows how to manually re-authenticate the client connected to a port:

```
Switch# dot1x re-authenticate interface gigabitethernet2/0/1
```

Changing the Quiet Period

When the switch cannot authenticate the client, the switch remains idle for a set period of time and then tries again. The `dot1x timeout quiet-period` interface configuration command controls the idle period. A failed authentication of the client might occur because the client provided an invalid password. You can provide a faster response time to the user by entering a number smaller than the default.

Beginning in privileged EXEC mode, follow these steps to change the quiet period. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> dot1x timeout quiet-period seconds</td>
<td>Set the number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client. The range is 1 to 65535 seconds; the default is 60.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> show authentication interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> show dot1x interface interface-id</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default quiet time, use the `no dot1x timeout quiet-period` interface configuration command.

This example shows how to set the quiet time on the switch to 30 seconds:

```
Switch(config-if)# dot1x timeout quiet-period 30
```
Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

Changing the Switch-to-Client Retransmission Time

The client responds to the EAP-request/identity frame from the switch with an EAP-response/identity frame. If the switch does not receive this response, it waits a set period of time (known as the retransmission time) and then resends the frame.

**Note**

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to change the amount of time that the switch waits for client notification. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3  dot1x timeout tx-period</td>
<td>Set the number of seconds that the switch waits for a response to an</td>
</tr>
<tr>
<td>seconds</td>
<td>EAP-request/identity frame from the client before resending the request.</td>
</tr>
<tr>
<td>The range is 1 to 65535 seconds; the default is 5.</td>
<td></td>
</tr>
<tr>
<td>Step 4  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5  show authentication</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
<tr>
<td>or show dot1xinterface interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 6  copy running-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>startup-config</td>
<td></td>
</tr>
</tbody>
</table>

To return to the default retransmission time, use the `no dot1x timeout tx-period` interface configuration command.

This example shows how to set 60 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request:

```
Switch(config-if)# dot1x timeout tx-period 60
```

Setting the Switch-to-Client Frame-Retransmission Number

In addition to changing the switch-to-client retransmission time, you can change the number of times that the switch sends an EAP-request/identity frame (assuming no response is received) to the client before restarting the authentication process.

**Note**

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.
Beginning in privileged EXEC mode, follow these steps to set the switch-to-client frame-retransmission number. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3  dot1x max-reauth-req count</td>
<td>Set the number of times that the switch sends an EAP-request/identity frame to the client before restarting the authentication process. The range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 4  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5  show authentication interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>or                                             show dot1x interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 6  copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default retransmission number, use the `no dot1x max-req` interface configuration command.

This example shows how to set 5 as the number of times that the switch sends an EAP-request/identity request before restarting the authentication process:

```
Switch(config-if)# dot1x max-req 5
```

### Setting the Re-Authentication Number

You can also change the number of times that the switch restarts the authentication process before the port changes to the unauthorized state.

**Note** You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to set the re-authentication number. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3  dot1x max-reauth-req count</td>
<td>Set the number of times that the switch restarts the authentication process before the port changes to the unauthorized state. The range is 0 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 4  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>


**Configuring 802.1x Authentication**

Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

To return to the default re-authentication number, use the `no dot1x max-reauth-req` interface configuration command.

This example shows how to set 4 as the number of times that the switch restarts the authentication process before the port changes to the unauthorized state:

```
Switch(config-if)# dot1x max-reauth-req 4
```

Enabling MAC Move

MAC move allows an authenticated host to move from one port on the switch to another. Beginning in privileged EXEC mode, follow these steps to globally enable MAC move on the switch. This procedure is optional.

```
Step 1 configure terminal
Step 2 interface interface-id
```

Command	Purpose
`authentication mac-move permit` | Enable
`end` | Return to privileged EXEC mode.
`show run` | Verify your entries.
`copy running-config startup-config` | (Optional) Save your entries in the configuration file.

This example shows how to globally enable MAC move on a switch:

```
Switch(config)# authentication mac-move permit
```

Enabling MAC Replace

MAC replace allows a host to replace an authenticated host on a port. Beginning in privileged EXEC mode, follow these steps to enable MAC replace on an interface. This procedure is optional.

```
Step 1 configure terminal
Step 2 interface interface-id
```

Command	Purpose
`configure terminal` | Enter global configuration mode.
`interface interface-id` | Specify the port to be configured, and enter interface configuration mode.
Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

This example shows how to enable MAC replace on an interface:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# authentication violation replace
```

### Configuring 802.1x Accounting

Enabling AAA system accounting with 802.1x accounting allows system reload events to be sent to the accounting RADIUS server for logging. The server can then infer that all active 802.1x sessions are closed.

Because RADIUS uses the unreliable UDP transport protocol, accounting messages might be lost due to poor network conditions. If the switch does not receive the accounting response message from the RADIUS server after a configurable number of retransmissions of an accounting request, this system message appears:

```
Accounting message %s for session %s failed to receive Accounting Response.
```

When the stop message is not sent successfully, this message appears:

```
00:09:55: %RADIUS-4-RADIUS_DEAD: RADIUS server 172.20.246.201:1645,1646 is not responding.
```

**Note**

You must configure the RADIUS server to perform accounting tasks, such as logging start, stop, and interim-update messages and time stamps. To turn on these functions, enable logging of “Update/Watchdog packets from this AAA client” in your RADIUS server Network Configuration tab. Next, enable “CVS RADIUS Accounting” in your RADIUS server System Configuration tab.

Beginning in privileged EXEC mode, follow these steps to configure 802.1x accounting after AAA is enabled on your switch. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Configuring IEEE 802.1x Port-Based Authentication

Chapter 9

Configuring 802.1x Authentication

Use the `show radius statistics` privileged EXEC command to display the number of RADIUS messages that do not receive the accounting response message.

This example shows how to configure 802.1x accounting. The first command configures the RADIUS server, specifying 1813 as the UDP port for accounting:

```
Switch(config)# radius-server host 172.120.39.46 auth-port 1812 acct-port 1813 key rad123
Switch(config)# aaa accounting dot1x default start-stop group radius
Switch(config)# aaa accounting system default start-stop group radius
```

Configuring a Guest VLAN

When you configure a guest VLAN, clients that are not 802.1x-capable are put into the guest VLAN when the server does not receive a response to its EAP request/identity frame. Clients that are 802.1x-capable but that fail authentication are not granted network access. The switch supports guest VLANs in single-host or multiple-hosts mode.

Beginning in privileged EXEC mode, follow these steps to configure a guest VLAN. This procedure is optional.

```
Command | Purpose
--------|--------
Step 1 | configure terminal
 | Enter global configuration mode.
Step 2 | interface interface-id
 | Specify the port to be configured, and enter interface configuration mode. For the supported port types, see the “802.1x Authentication Configuration Guidelines” section on page 9-36.
Step 3 | switchport mode access
 | Set the port to access mode,
 | or
 | switchport mode private-vlan host
 | Configure the Layer 2 port as a private-VLAN host port.
Step 4 | dot1x port-control auto
 | Enable 802.1x authentication on the port.
Step 5 | dot1x guest-vlan vlan-id
 | Specify an active VLAN as an 802.1x guest VLAN. The range is 1 to 4094.
 | You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN, a primary private VLAN, or a voice VLAN as an 802.1x guest VLAN.
Step 6 | end
 | Return to privileged EXEC mode.
```
Configuring 802.1x Authentication

To disable and remove the guest VLAN, use the `no dot1x guest-vlan` interface configuration command. The port returns to the unauthorized state.

This example shows how to enable VLAN 2 as an 802.1x guest VLAN:

Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# dot1x guest-vlan 2

This example shows how to set 3 as the quiet time on the switch, to set 15 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before re-sending the request, and to enable VLAN 2 as an IEEE 802.1x guest VLAN when an 802.1x port is connected to a DHCP client:

Switch(config-if)# dot1x timeout quiet-period 3
Switch(config-if)# dot1x timeout tx-period 15
Switch(config-if)# dot1x guest-vlan 2

Configuring a Restricted VLAN

When you configure a restricted VLAN on a switch stack or a switch, clients that are IEEE 802.1x-compliant are moved into the restricted VLAN when the authentication server does not receive a valid username and password. The switch supports restricted VLANs only in single-host mode.

Beginning in privileged EXEC mode, follow these steps to configure a restricted VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode access</td>
</tr>
<tr>
<td>Step 4</td>
<td>authentication port-control auto</td>
</tr>
<tr>
<td>Step 5</td>
<td>dot1x auth-fail vlan vlan-id</td>
</tr>
</tbody>
</table>
Chapter 9 Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

To disable and remove the restricted VLAN, use the `no dot1x auth-fail vlan` interface configuration command. The port returns to the unauthorized state.

This example shows how to enable VLAN 2 as an 802.1x restricted VLAN:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# dot1x auth-fail vlan 2
```

You can configure the maximum number of authentication attempts allowed before a user is assigned to the restricted VLAN by using the `dot1x auth-fail max-attempts` interface configuration command. The range of allowable authentication attempts is 1 to 3. The default is 3 attempts.

Beginning in privileged EXEC mode, follow these steps to configure the maximum number of allowed authentication attempts. This procedure is optional.

```
Step 1 configure terminal
Step 2 interface interface-id
Step 3 switchport mode access
or
Step 4 switchport mode private-vlan host
Step 5 dot1x port-control auto
or
Step 6 dot1x port-control auto
Step 7 end
Step 8 show authentication interface-id
or
Step 9 show dot1x interface interface-id
Step 8 copy running-config startup-config
```

To disable and remove the restricted VLAN, use the **no dot1x auth-fail vlan** interface configuration command. The port returns to the unauthorized state.

This example shows how to enable VLAN 2 as an 802.1x restricted VLAN:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# dot1x auth-fail vlan 2
```

You can configure the maximum number of authentication attempts allowed before a user is assigned to the restricted VLAN by using the **dot1x auth-fail max-attempts** interface configuration command. The range of allowable authentication attempts is 1 to 3. The default is 3 attempts.

Beginning in privileged EXEC mode, follow these steps to configure the maximum number of allowed authentication attempts. This procedure is optional.
To return to the default value, use the `no dot1x auth-fail max-attempts` interface configuration command.

This example shows how to set 2 as the number of authentication attempts allowed before the port moves to the restricted VLAN:

```
Switch(config-if)# dot1x auth-fail max-attempts 2
```

## Configuring the Inaccessible Authentication Bypass Feature

You can configure the inaccessible bypass feature, also referred to as critical authentication or the AAA fail policy.

Beginning in privileged EXEC mode, follow these steps to configure the port as a critical port and enable the inaccessible authentication bypass feature. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 radius-server dead-criteria time time tries tries | (Optional) Set the conditions that are used to decide when a RADIUS server is considered unavailable or dead.  
The range for `time` is from 1 to 120 seconds. The switch dynamically determines the default `seconds` value that is 10 to 60 seconds.  
The range for `tries` is from 1 to 100. The switch dynamically determines the default `tries` parameter that is 10 to 100. |
| Step 3 radius-server deadtime minutes | (Optional) Set the number of minutes that a RADIUS server is not sent requests. The range is from 0 to 1440 minutes (24 hours). The default is 0 minutes. |
Chapter 9  Configuring IEEE 802.1x Port-Based Authentication

### Configuring 802.1x Authentication

#### Step 4

```bash
radius-server host ip-address
[acct-port udp-port] [auth-port udp-port] [test username name]
[idle-time time] [ignore-acct-port]
[ignore-auth-port] [key string]
```

(Optional) Configure the RADIUS server parameters by using these keywords:

- **acct-port udp-port**—Specify the UDP port for the RADIUS accounting server. The range for the UDP port number is from 0 to 65536. The default is 1646.
- **auth-port udp-port**—Specify the UDP port for the RADIUS authentication server. The range for the UDP port number is from 0 to 65536. The default is 1645.

**Note** You should configure the UDP port for the RADIUS accounting server and the UDP port for the RADIUS authentication server to nondefault values.

- **test username name**—Enable automated testing of the RADIUS server status, and specify the username to be used.
- **idle-time time**—Set the interval of time in minutes after which the switch sends test packets to the server. The range is from 1 to 35791 minutes. The default is 60 minutes (1 hour).
- **ignore-acct-port**—Disable testing on the RADIUS-server accounting port.
- **ignore-auth-port**—Disable testing on the RADIUS-server authentication port.

**Note** For **key string**, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.

**Note** Always configure the key as the last item in the `radius-server host` command syntax because leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.

You can also configure the authentication and encryption key by using the `radius-server key {0 string | 7 string | string}` global configuration command.

#### Step 5

```bash
dot1x critical {eapol | recovery delay milliseconds}
```

(Optional) Configure the parameters for inaccessible authentication bypass:

- **eapol**—Specify that the switch sends an EAPOL-Success message when the switch successfully authenticates the critical port.
- **recovery delay milliseconds**—Set the recovery delay period during which the switch waits to re-initialize a critical port when a RADIUS server that was unavailable becomes available. The range is from 1 to 10000 milliseconds. The default is 1000 milliseconds (a port can be re-initialized every second).
Configuring IEEE 802.1x Port-Based Authentication

Chapter 9

Configuring 802.1x Authentication

Command	Purpose
**Step 6**

```
interface interface-id
```
Specify the port to be configured, and enter interface configuration mode. For the supported port types, see the “802.1x Authentication Configuration Guidelines” section on page 9-36.

**Step 7**

```
authentication event server dead action [authorize | reinitialize] vlan vlan-id
```
Use these keywords to move hosts on the port if the RADIUS server is unreachable:

- **authorize**—Move any new hosts trying to authenticate to the user-specified critical VLAN.
- **reinitialize**—Move all authorized hosts on the port to the user-specified critical VLAN.

**Step 8**

```
dot1x critical [recovery action reinitialize | vlan vlan-id]
```
Enable the inaccessible authentication bypass feature, and use these keywords to configure the feature:

- **recovery action reinitialize**—Enable the recovery feature, and specify that the recovery action is to authenticate the port when an authentication server is available.
- **vlan vlan-id**—Specify the access VLAN to which the switch can assign a critical port. The range is from 1 to 4094.

**Step 9**

```
end
```
Return to privileged EXEC mode.

**Step 10**

```
show authentication interface-id
```
(Optional) Verify your entries.

**Step 11**

```
copy running-config startup-config
```
(Optional) Save your entries in the configuration file.

To return to the RADIUS server default settings, use the **no radius-server dead-criteria**, the **no radius-server deadtime**, and the **no radius-server host** global configuration commands. To return to the default settings of inaccessible authentication bypass, use the **no dot1x critical {eapol | recovery delay}** global configuration command. To disable inaccessible authentication bypass, use the **no dot1x critical** interface configuration command.

This example shows how to configure the inaccessible authentication bypass feature:

```
Switch(config)# radius-server dead-criteria time 30 tries 20
Switch(config)# radius-server deadtime 60
Switch(config)# radius-server host 1.1.1.2 acct-port 1550 auth-port 1560 test username
user1 idle-time 30 key abc1234
Switch(config)# dot1x critical eapol
Switch(config)# dot1x critical recovery delay 2000
Switch(config)# interface gigabitethernet 1/0/1
Switch(config)# radius-server deadtime 60
Switch(config-if)# dot1x critical
Switch(config-if)# dot1x critical recovery action reinitialize
Switch(config-if)# dot1x critical vlan 20
Switch(config-if)# end
```
Configuring 802.1x User Distribution

Beginning in global configuration, follow these steps to configure a VLAN group and to map a VLAN to it:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>vlan group &lt;vlan-group-name&gt; vlan-list &lt;vlan-list&gt;</td>
</tr>
<tr>
<td>Step 2</td>
<td>show vlan group all &lt;vlan-group-name&gt;</td>
</tr>
<tr>
<td>Step 3</td>
<td>no vlan group &lt;vlan-group-name&gt; vlan-list &lt;vlan-list&gt;</td>
</tr>
</tbody>
</table>

This example shows how to configure the VLAN groups, to map the VLANs to the groups, to and verify the VLAN group configurations and mapping to the specified VLANs:

```
switch(config)# vlan group eng-dept vlan-list 10

switch(config)# show vlan group group-name eng-dept
Group Name Vlans Mapped
---------------- ------------
eng-dept 10

switch# show dot1x vlan-group all
Group Name Vlans Mapped
---------------- ------------
eng-dept 10
hr-dept 20
```

This example shows how to add a VLAN to an existing VLAN group and to verify that the VLAN was added:

```
switch(config)# vlan group eng-dept vlan-list 30
switch(config)# show vlan group eng-dept
Group Name Vlans Mapped
---------------- ------------
eng-dept 10,30
```

This example shows how to remove a VLAN from a VLAN group:

```
switch# no vlan group eng-dept vlan-list 10
```

This example shows that when all the VLANs are cleared from a VLAN group, the VLAN group is cleared:

```
switch(config)# no vlan group eng-dept vlan-list 30
Vlan 30 is successfully cleared from vlan group eng-dept.

switch(config)# show vlan group group-name eng-dept
```

This example shows how to clear all the VLAN groups:

```
switch(config)# no vlan group end-dept vlan-list all
switch(config)# show vlan-group all
```

For more information about these commands, see the Cisco IOS Security Command Reference.
Configuring 802.1x Authentication with WoL

Beginning in privileged EXEC mode, follow these steps to enable 802.1x authentication with WoL. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode. For the supported port types, see the “802.1x Authentication Configuration Guidelines” section on page 9-36.</td>
</tr>
</tbody>
</table>
| Step 3: dot1x control-direction {both | in} | Enable 802.1x authentication with WoL on the port, and use these keywords to configure the port as bidirectional or unidirectional.  
  • both—Sets the port as bidirectional. The port cannot receive packets from or send packets to the host. By default, the port is bidirectional.  
  • in—Sets the port as unidirectional. The port can send packets to the host but cannot receive packets from the host. |
| Step 4: end | Return to privileged EXEC mode. |
| Step 5: show authentication interface-id  
or  
show dot1x interface interface-id | Verify your entries. |
| Step 6: copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable 802.1x authentication with WoL, use the no dot1x control-direction interface configuration command.

This example shows how to enable 802.1x authentication with WoL and set the port as bidirectional:

```
Switch(config-if)# dot1x control-direction both
```

Configuring MAC Authentication Bypass

Beginning in privileged EXEC mode, follow these steps to enable MAC authentication bypass. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode. For the supported port types, see the “802.1x Authentication Configuration Guidelines” section on page 9-36.</td>
</tr>
</tbody>
</table>
| Step 3: authentication port-control auto  
or  
dot1x port-control auto | Enable 802.1x authentication on the port. |
Configuring 802.1x Authentication

To disable MAC authentication bypass, use the `no mab` interface configuration command.

This example shows how to enable MAC authentication bypass:

```
Switch(config-if)# mab
```

### Configuring NAC Layer 2 802.1x Validation

You can configure NAC Layer 2 802.1x validation, which is also referred to as 802.1x authentication with a RADIUS server.

Beginning in privileged EXEC mode, follow these steps to configure NAC Layer 2 802.1x validation. The procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 dot1x guest-vlan vlan-id</td>
<td>Specify an active VLAN as an 802.1x guest VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN, or a voice VLAN as an 802.1x guest VLAN.</td>
</tr>
<tr>
<td>Step 4 authentication periodic or dot1x reauthentication</td>
<td>Enable periodic re-authentication of the client, which is disabled by default.</td>
</tr>
<tr>
<td>Step 5 dot1x timeout reauth-period {seconds</td>
<td>Set the number of seconds between re-authentication attempts.</td>
</tr>
<tr>
<td></td>
<td>server}</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

This example shows how to configure NAC Layer 2 802.1x validation:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# dot1x reauthentication
Switch(config-if)# dot1x timeout reauth-period server
```

Configuring an Authenticator and a Supplicant Switch with NEAT

Configuring this feature requires that one switch outside a wiring closet is configured as a supplicant and is connected to an authenticator switch.

For overview information, see the “802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT)” section on page 9-32.

**Note**

The `cisco-av-pairs` must be configured as `device-traffic-class=switch` on the ACS, which sets the interface as a trunk after the supplicant is successfully authenticated.

Beginning in privileged EXEC mode, follow these steps to configure a switch as an authenticator:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>cisp enable</td>
<td>Enable CISP.</td>
</tr>
<tr>
<td>3</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>switchport mode access</td>
<td>Set the port mode to access.</td>
</tr>
<tr>
<td>5</td>
<td>authentication port-control auto</td>
<td>Set the port-authorization mode to auto.</td>
</tr>
<tr>
<td>6</td>
<td>dot1x pae authenticator</td>
<td>Configure the interface as a port access entity (PAE) authenticator.</td>
</tr>
<tr>
<td>7</td>
<td>spanning-tree portfast</td>
<td>Enable Port Fast on an access port connected to a single workstation or server.</td>
</tr>
<tr>
<td>8</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>9</td>
<td>show running-config interface interface-id</td>
<td>Verify your configuration.</td>
</tr>
<tr>
<td>10</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to configure a switch as an 802.1x authenticator:

```
Switch# configure terminal
Switch(config)# cisp enable
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# authentication port-control auto
Switch(config-if)# dot1x pae authenticator
Switch(config-if)# spanning-tree portfast trunk
```

Beginning in privileged EXEC mode, follow these steps to configure a switch as a supplicant:

```
Step 1 configure terminal Enter global configuration mode.
Step 2 cisp enable Enable CISP.
Step 3 dot1x credentials profile Create 802.1x credentials profile. This must be attached to the port that is configured as supplicant.
Step 4 username suppswitch Create a username.
Step 5 password password Create a password for the new username.
Step 6 dot1x supplicant force-multicast Force the switch to send only multicast EAPOL packets when it receives either unicast or multicast packets. This also allows NEAT to work on the supplicant switch in all host modes.
Step 7 interface interface-id Specify the port to be configured, and enter interface configuration mode.
Step 8 switchport trunk encapsulation dot1q Set the port to trunk mode.
Step 9 switchport mode trunk Configure the interface as a VLAN trunk port.
Step 10 dot1x pae supplicant Configure the interface as a port access entity (PAE) supplicant.
Step 11 dot1x credentials profile-name Attach the 802.1x credentials profile to the interface.
Step 12 end Return to privileged EXEC mode.
Step 13 show running-config interface interface-id Verify your configuration.
Step 14 copy running-config startup-config (Optional) Save your entries in the configuration file.
```

This example shows how to configure a switch as a supplicant:

```
Switch# configure terminal
Switch(config)# cisp enable
Switch(config)# dot1x credentials test
Switch(config)# username suppswitch
Switch(config)# password myswitch
Switch(config)# dot1x supplicant force-multicast
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# dot1x pae supplicant
Switch(config-if)# dot1x credentials test
Switch(config-if)# end
```
Configuring NEAT with ASP

You can also use an AutoSmart Ports user-defined macro instead of the switch VSA to configure the authenticator switch. For more information, see the Chapter 12, “Configuring Smartports Macros.”

Configuring 802.1x Authentication with Dow nloadable ACLs and Redirect URLs

In addition to configuring 802.1x authentication on the switch, you need to configure the ACS. For more information, see the Cisco Secure ACS configuration guides.

Note
You must configure a downloadable ACL on the ACS before downloading it to the switch.

After authentication on the port, you can use the `show ip access-list` privileged EXEC command to display the downloaded ACLs on the port.

Configuring Downloadable ACLs

The policies take effect after client authentication and the client IP address addition to the IP device tracking table. The switch then applies the downloadable ACL to the port.

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip device tracking Configure the ip device tracking table.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa new-model Enables AAA.</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa authorization network default group radius Sets the authorization method to local. To remove the authorization method, use the <code>no aaa authorization network default group radius</code> command.</td>
</tr>
<tr>
<td>Step 5</td>
<td>radius-server vsa send authentication Configure the radius vsa send authentication.</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface interface-id Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip access-group acl-id in Configure the default ACL on the port in the input direction. <strong>Note</strong> The <code>acl-id</code> is an access list name or number.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config interface interface-id Verify your configuration.</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring a Dowloadable Policy

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** access-list access-list-number deny source source-wildcard log | Defines the default port ACL by using a source address and wildcard. The access-list-number is a decimal number from 1 to 99 or 1300 to 1999. Enter deny or permit to specify whether to deny or permit access if conditions are matched. The source is the source address of the network or host that sends a packet, such as this:  
  • The 32-bit quantity in dotted-decimal format.  
  • The keyword any as an abbreviation for source and source-wildcard value of 0.0.0.0 255.255.255.255. You do not need to enter a source-wildcard value.  
  • The keyword host as an abbreviation for source and source-wildcard of source 0.0.0.0. (Optional) Applies the source-wildcard wildcard bits to the source. (Optional) Enters log to cause an informational logging message about the packet that matches the entry to be sent to the console. |
| **Step 3** interface interface-id            | Enter interface configuration mode.                                     |
| **Step 4** ip access-group acl-id in         | Configure the default ACL on the port in the input direction.          |
| **Step 5** exit                             | Returns to global configuration mode.                                  |
| **Step 6** aaa new-model                     | Enables AAA.                                                           |
| **Step 7** aaa authorization network default group radius | Sets the authorization method to local. To remove the authorization method, use the no aaa authorization network default group radius command. |
| **Step 8** ip device tracking                | Enables the IP device tracking table.                                  |
| **Step 9** ip device tracking probe [count | (Optional) Configures the IP device tracking table:                  |
| interval | use-svi]                                    |   • count count—Sets the number of times that the switch sends the ARP probe. The range is from 1 to 5. The default is 3.  
   • interval interval—Sets the number of seconds that the switch waits for a response before resending the ARP probe. The range is from 30 to 300 seconds. The default is 30 seconds.  
   • use-svi—Uses the switch virtual interface (SVI) IP address as source of ARP probes. |
Chapter 9 Configuring IEEE 802.1x Port-Based Authentication

Configuring 802.1x Authentication

This example shows how to configure a switch for a downloadable policy:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# aaa new-model
Switch(config)# aaa authorization network default group radius
Switch(config)# ip device tracking
Switch(config)# ip access-list extended default_acl
Switch(config-ext-nacl)# permit ip any any
Switch(config-ext-nacl)# exit
Switch(config)# radius-server vsa send authentication
Switch(config)# int fastEthernet 2/13
Switch(config-if)# ip access-group default_acl in
Switch(config-if)# exit
```

Configuring VLAN ID-based MAC Authentication

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>mab request format attribute 32 vlan access-vlan</td>
<td>Enable VLAN ID-based MAC authentication.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

There is no show command to confirm the status of VLAN ID-based MAC authentication. You can use the `debug radius accounting` privileged EXEC command to confirm the RADIUS attribute 32. For more information about this command, see the Cisco IOS Debug Command Reference, Release 12.2 at this URL:


This example shows how to globally enable VLAN ID-based MAC authentication on a switch:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# mab request format attribute 32 vlan access-vlan
Switch(config-if)# exit
```
Configuring Flexible Authentication Ordering

Beginning in privileged EXEC mode, follow these steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>authentication order dot1x</td>
</tr>
<tr>
<td></td>
<td>mab [webauth]</td>
</tr>
<tr>
<td>Step 4</td>
<td>authentication priority dot1x</td>
</tr>
<tr>
<td></td>
<td>mab [webauth]</td>
</tr>
<tr>
<td>Step 5</td>
<td>show authentication</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to configure a port attempt 802.1x authentication first, followed by web authentication as fallback method:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet 1/0/1
Switch(config)# authentication order dot1x webauth
```

Configuring Open1x

Beginning in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>authentication control-direction</td>
</tr>
<tr>
<td></td>
<td>{both</td>
</tr>
<tr>
<td>Step 4</td>
<td>authentication fallback name</td>
</tr>
<tr>
<td>Step 5</td>
<td>authentication host-mode</td>
</tr>
<tr>
<td></td>
<td>{multi-auth</td>
</tr>
<tr>
<td>Step 6</td>
<td>authentication open</td>
</tr>
<tr>
<td>Step 7</td>
<td>authentication order dot1x</td>
</tr>
<tr>
<td></td>
<td>mab [webauth]</td>
</tr>
<tr>
<td>Step 8</td>
<td>authentication periodic</td>
</tr>
<tr>
<td>Step 9</td>
<td>authentication port-control</td>
</tr>
<tr>
<td></td>
<td>{auto</td>
</tr>
<tr>
<td>Step 10</td>
<td>show authentication</td>
</tr>
<tr>
<td>Step 11</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Disabling 802.1x Authentication on the Port

You can disable 802.1x authentication on the port by using the **no dot1x pae** interface configuration command.

Beginning in privileged EXEC mode, follow these steps to disable 802.1x authentication on the port. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>no dot1x pae</td>
<td>Disable 802.1x authentication on the port.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show authentication interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or show dot1x interface interface-id</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To configure the port as an 802.1x port access entity (PAE) authenticator, which enables IEEE 802.1x on the port but does not allow clients connected to the port to be authorized, use the **dot1x pae authenticator** interface configuration command.

This example shows how to disable 802.1x authentication on the port:

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# no dot1x pae authenticator

Resetting the 802.1x Authentication Configuration to the Default Values

Beginning in privileged EXEC mode, follow these steps to reset the 802.1x authentication configuration to the default values. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the port to be configured.</td>
</tr>
<tr>
<td>3</td>
<td>dot1x default</td>
<td>Reset the 802.1x parameters to the default values.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>show authentication</td>
<td>Verify your entries.</td>
<td></td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show dot1x interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>copy running-config</td>
<td>(Optional) Save your entries in the</td>
<td></td>
</tr>
<tr>
<td>startup-config</td>
<td>configuration file.</td>
<td></td>
</tr>
</tbody>
</table>

### Displaying 802.1x Statistics and Status

To display 802.1x statistics for all ports, use the `show dot1x all statistics` privileged EXEC command. To display 802.1x statistics for a specific port, use the `show dot1x statistics interface interface-id` privileged EXEC command.

To display the 802.1x administrative and operational status for the switch, use the `show dot1x all [details | statistics | summary]` privileged EXEC command. To display the 802.1x administrative and operational status for a specific port, use the `show dot1x interface interface-id` privileged EXEC command.

Beginning with Cisco IOS Release 12.2(55)SE, you can use the `no dot1x logging verbose` global configuration command to filter verbose 802.1x authentication messages. See the “Authentication Manager CLI Commands” section on page 9-9.

For detailed information about the fields in these displays, see the command reference for this release.
Configuring Web-Based Authentication

This chapter describes how to configure web-based authentication. It contains these sections:

- Understanding Web-Based Authentication, page 10-1
- Configuring Web-Based Authentication, page 10-9
- Displaying Web-Based Authentication Status, page 10-17

Note: For complete syntax and usage information for the switch commands used in this chapter, refer to the command reference for this release.

Understanding Web-Based Authentication

Use the web-based authentication feature, known as web authentication proxy, to authenticate end users on host systems that do not run the IEEE 802.1x supplicant.

Note: You can configure web-based authentication on Layer 2 and Layer 3 interfaces.

When you initiate an HTTP session, web-based authentication intercepts ingress HTTP packets from the host and sends an HTML login page to the users. The users enter their credentials, which the web-based authentication feature sends to the authentication, authorization, and accounting (AAA) server for authentication.

If authentication succeeds, web-based authentication sends a Login-Successful HTML page to the host and applies the access policies returned by the AAA server.

If authentication fails, web-based authentication forwards a Login-Fail HTML page to the user, prompting the user to retry the login. If the user exceeds the maximum number of attempts, web-based authentication forwards a Login-Expired HTML page to the host, and the user is placed on a watch list for a waiting period.

These sections describe the role of web-based authentication as part of AAA:

- Device Roles, page 10-2
- Host Detection, page 10-2
- Session Creation, page 10-3
- Authentication Process, page 10-3
Device Roles

With web-based authentication, the devices in the network have these specific roles:

- **Client**—The device (workstation) that requests access to the LAN and the services and responds to requests from the switch. The workstation must be running an HTML browser with Java Script enabled.

- **Authentication server**—Authenticates the client. The authentication server validates the identity of the client and notifies the switch that the client is authorized to access the LAN and the switch services or that the client is denied.

- **Switch**—Controls the physical access to the network based on the authentication status of the client. The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client.

Figure 10-1 shows the roles of these devices in a network:

**Host Detection**

The switch maintains an IP device tracking table to store information about detected hosts.

By default, the IP device tracking feature is disabled on a switch. You must enable the IP device tracking feature to use web-based authentication.

For Layer 2 interfaces, web-based authentication detects IP hosts by using these mechanisms:

- ARP based trigger—ARP redirect ACL allows web-based authentication to detect hosts with a static IP address or a dynamic IP address.

- Dynamic ARP inspection

- DHCP snooping—Web-based authentication is notified when the switch creates a DHCP-binding entry for the host.
Session Creation

When web-based authentication detects a new host, it creates a session as follows:

- Reviews the exception list.
  If the host IP is included in the exception list, the policy from the exception list entry is applied, and the session is established.
- Reviews for authorization bypass
  If the host IP is not on the exception list, web-based authentication sends a nonresponsive-host (NRH) request to the server.
  If the server response is access accepted, authorization is bypassed for this host. The session is established.
- Sets up the HTTP intercept ACL
  If the server response to the NRH request is access rejected, the HTTP intercept ACL is activated, and the session waits for HTTP traffic from the host.

Authentication Process

When you enable web-based authentication, these events occur:

- The user initiates an HTTP session.
- The HTTP traffic is intercepted, and authorization is initiated. The switch sends the login page to the user. The user enters a username and password, and the switch sends the entries to the authentication server.
- If the authentication succeeds, the switch downloads and activates the user’s access policy from the authentication server. The login success page is sent to the user.
- If the authentication fails, the switch sends the login fail page. The user retries the login. If the maximum number of attempts fails, the switch sends the login expired page, and the host is placed in a watch list. After the watch list times out, the user can retry the authentication process.
- If the authentication server does not respond to the switch, and if an AAA fail policy is configured, the switch applies the failure access policy to the host. The login success page is sent to the user. (See the “Local Web Authentication Banner” section on page 10-4.)
- The switch reauthenticates a client when the host does not respond to an ARP probe on a Layer 2 interface, or when the host does not send any traffic within the idle timeout on a Layer 3 interface.
- The feature applies the downloaded timeout or the locally configured session timeout.
- If the terminate action is RADIUS, the feature sends a nonresponsive host (NRH) request to the server. The terminate action is included in the response from the server.
- If the terminate action is default, the session is dismantled, and the applied policy is removed.
Local Web Authentication Banner

You can create a banner that will appear when you log in to a switch by using web authentication. The banner appears on both the login page and the authentication-result pop-up pages.

- **Authentication Successful**
- **Authentication Failed**
- **Authentication Expired**

You create a banner by using the `ip admission auth-proxy-banner http` global configuration command. The default banner *Cisco Systems* and *Switch host-name Authentication* appear on the Login Page. *Cisco Systems* appears on the authentication result pop-up page, as shown in Figure 10-2.

**Figure 10-2  Authentication Successful Banner**

You can also customize the banner, as shown in Figure 10-3.

- Add a switch, router, or company name to the banner by using the `ip admission auth-proxy-banner http banner-text` global configuration command.
- Add a logo or text file to the banner by using the `ip admission auth-proxy-banner http file-path` global configuration command.
If you do not enable a banner, only the username and password dialog boxes appear in the web authentication login screen, and no banner appears when you log into the switch, as shown in Figure 10-4.

For more information, see the Cisco IOS Security Command Reference and the “Configuring a Web Authentication Local Banner” section on page 10-16.
Web Authentication Customizable Web Pages

During the web-based authentication process, the switch internal HTTP server hosts four HTML pages to deliver to an authenticating client. The server uses these pages to notify you of these four-authentication process states:

- Login—Your credentials are requested.
- Success—The login was successful.
- Fail—The login failed.
- Expire—The login session has expired because of excessive login failures.

Guidelines

- You can substitute your own HTML pages for the default internal HTML pages.
- You can use a logo or specify text in the login, success, failure, and expire web pages.
- On the banner page, you can specify text in the login page.
- The pages are in HTML.
- You must include an HTML redirect command in the success page to access a specific URL.
- The URL string must be a valid URL (for example, http://www.cisco.com). An incomplete URL might cause page not found or similar errors on a web browser.
- If you configure web pages for HTTP authentication, they must include the appropriate HTML commands (for example, to set the page time out, to set a hidden password, or to confirm that the same page is not submitted twice).
- The CLI command to redirect users to a specific URL is not available when the configured login form is enabled. The administrator should ensure that the redirection is configured in the web page.
- If the CLI command redirecting users to specific URL after authentication occurs is entered and then the command configuring web pages is entered, the CLI command redirecting users to a specific URL does not take effect.
- Configured web pages can be copied to the switch boot flash or flash.
- Configured pages can be accessed from the flash on the stack master or members.
- The login page can be on one flash, and the success and failure pages can be another flash (for example, the flash on the stack master or a member).
- You must configure all four pages.
- The banner page has no effect if it is configured with the web page.
- All of the logo files (image, flash, audio, video, and so on) that are stored in the system directory (for example, flash, disk0, or disk) and that must be displayed on the login page must use web_auth_<filename> as the file name.
- The configured authentication proxy feature supports both HTTP and SSL.

You can substitute your HTML pages, as shown in Figure 10-5 on page 10-7, for the default internal HTML pages. You can also specify a URL to which users are redirected after authentication occurs, which replaces the internal Success page.
Chapter 10      Configuring Web-Based Authentication

Understanding Web-Based Authentication

Figure 10-5 Customizable Authentication Page

For more information, see the “Customizing the Authentication Proxy Web Pages” section on page 10-13.

Web-based Authentication Interactions with Other Features

- Port Security, page 10-7
- LAN Port IP, page 10-8
- Gateway IP, page 10-8
- ACLs, page 10-8
- Context-Based Access Control, page 10-8
- 802.1x Authentication, page 10-8
- EtherChannel, page 10-8

Port Security

You can configure web-based authentication and port security on the same port. Web-based authentication authenticates the port, and port security manages network access for all MAC addresses, including that of the client. You can then limit the number or group of clients that can access the network through the port.

For more information about enabling port security, see the “Configuring Port Security” section on page 26-8
LAN Port IP

You can configure LAN port IP (LPIP) and Layer 2 web-based authentication on the same port. The host is authenticated by using web-based authentication first, followed by LPIP posture validation. The LPIP host policy overrides the web-based authentication host policy.

If the web-based authentication idle timer expires, the NAC policy is removed. The host is authenticated, and posture is validated again.

Gateway IP

You cannot configure Gateway IP (GWIP) on a Layer 3 VLAN interface if web-based authentication is configured on any of the switch ports in the VLAN.

You can configure web-based authentication on the same Layer 3 interface as Gateway IP. The host policies for both features are applied in software. The GWIP policy overrides the web-based authentication host policy.

ACLs

If you configure a VLAN ACL or a Cisco IOS ACL on an interface, the ACL is applied to the host traffic only after the web-based authentication host policy is applied.

For Layer 2 web-based authentication, you must configure a port ACL (PACL) as the default access policy for ingress traffic from hosts connected to the port. After authentication, the web-based authentication host policy overrides the PACL.

You cannot configure a MAC ACL and web-based authentication on the same interface.

You cannot configure web-based authentication on a port whose access VLAN is configured for VACL capture.

Context-Based Access Control

Web-based authentication cannot be configured on a Layer 2 port if context-based access control (CBAC) is configured on the Layer 3 VLAN interface of the port VLAN.

802.1x Authentication

You cannot configure web-based authentication on the same port as 802.1x authentication except as a fallback authentication method.

EtherChannel

You can configure web-based authentication on a Layer 2 EtherChannel interface. The web-based authentication configuration applies to all member channels.
Configuring Web-Based Authentication

- Default Web-Based Authentication Configuration, page 10-9
- Web-Based Authentication Configuration Guidelines and Restrictions, page 10-9
- Web-Based Authentication Configuration Task List, page 10-10
- Configuring the Authentication Rule and Interfaces, page 10-10
- Configuring AAA Authentication, page 10-11
- Configuring Switch-to-RADIUS-Server Communication, page 10-11
- Configuring the HTTP Server, page 10-13
- Configuring the Web-Based Authentication Parameters, page 10-16
- Removing Web-Based Authentication Cache Entries, page 10-17

Default Web-Based Authentication Configuration

Table 10-1 shows the default web-based authentication configuration.

Table 10-1 Default Web-based Authentication Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Disabled</td>
</tr>
<tr>
<td>RADIUS server</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>None specified</td>
</tr>
<tr>
<td>UDP authentication port</td>
<td>1812</td>
</tr>
<tr>
<td>Key</td>
<td>None specified</td>
</tr>
<tr>
<td>Default value of inactivity timeout</td>
<td>3600 seconds</td>
</tr>
<tr>
<td>Inactivity timeout</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Web-Based Authentication Configuration Guidelines and Restrictions

- Web-based authentication is an ingress-only feature.
- You can configure web-based authentication only on access ports. Web-based authentication is not supported on trunk ports, EtherChannel member ports, or dynamic trunk ports.
- You must configure the default ACL on the interface before configuring web-based authentication. Configure a port ACL for a Layer 2 interface or a Cisco IOS ACL for a Layer 3 interface.
- You cannot authenticate hosts on Layer 2 interfaces with static ARP cache assignment. These hosts are not detected by the web-based authentication feature because they do not send ARP messages.
- By default, the IP device tracking feature is disabled on a switch. You must enable the IP device tracking feature to use web-based authentication.
- You must configure at least one IP address to run the switch HTTP server. You must also configure routes to reach each host IP address. The HTTP server sends the HTTP login page to the host.
Hosts that are more than one hop away might experience traffic disruption if an STP topology change results in the host traffic arriving on a different port. This occurs because the ARP and DHCP updates might not be sent after a Layer 2 (STP) topology change.

Web-based authentication does not support VLAN assignment as a downloadable-host policy.

Web-based authentication is not supported for IPv6 traffic.

Web-Based Authentication Configuration Task List

- Configuring the Authentication Rule and Interfaces, page 10-10
- Configuring AAA Authentication, page 10-11
- Configuring Switch-to-RADIUS-Server Communication, page 10-11
- Configuring the HTTP Server, page 10-13
- Configuring an AAA Fail Policy, page 10-15
- Configuring the Web-Based Authentication Parameters, page 10-16
- Removing Web-Based Authentication Cache Entries, page 10-17

Configuring the Authentication Rule and Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ip admission name name proxy http</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip access-group name</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip admission name</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip device tracking</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show ip admission configuration</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to enable web-based authentication on Fast Ethernet port 5/1:

```
Switch(config)# ip admission name webauth1 proxy http
Switch(config)# interface fastethernet 5/1
Switch(config-if)# ip admission webauth1
Switch(config-if)# exit
Switch(config)# ip device tracking
```

This example shows how to verify the configuration:

```
Switch# show ip admission configuration
Authentication Proxy Banner not configured
Authentication global cache time is 60 minutes
```
Authentication global absolute time is 0 minutes
Authentication global init state time is 2 minutes
Authentication Proxy Watch-list is disabled

Authentication Proxy Rule Configuration
Auth-proxy name webauth1
  http list not specified inactivity-time 60 minutes

Authentication Proxy Auditing is disabled
Max Login attempts per user is 5

Configuring AAA Authentication

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>aaa new-model Enables AAA functionality.</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa authentication login default group {tacacs+</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authorization auth-proxy default group {tacacs+</td>
</tr>
<tr>
<td>Step 4</td>
<td>tacacs-server host {hostname</td>
</tr>
<tr>
<td>Step 5</td>
<td>tacacs-server key {key-data} Configure the authorization and encryption key used between the switch and the TACACS server.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable AAA:

```bash
Switch(config)# aaa new-model
Switch(config)# aaa authentication login default group tacacs+
Switch(config)# aaa authorization auth-proxy default group tacacs+
```

Configuring Switch-to-RADIUS-Server Communication

RADIUS security servers identification:
- Host name
- Host IP address
- Host name and specific UDP port numbers
- IP address and specific UDP port numbers

The combination of the IP address and UDP port number creates a unique identifier, that enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service (for example, authentication) the second host entry that is configured functions as the failover backup to the first one. The RADIUS host entries are chosen in the order that they were configured.
To configure the RADIUS server parameters, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>ip radius source-interface <em>interface_name</em> Specify that the RADIUS packets have the IP address of the indicated interface.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>radius-server host {hostname</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>radius-server key <em>string</em> Configure the authorization and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>radius-server vsa send authentication Enable downloading of an ACL from the RADIUS server. This feature is supported in Cisco IOS Release 12.2(50)SG.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>radius-server dead-criteria tries <em>num-tries</em> Specify the number of unanswered sent messages to a RADIUS server before considering the server to be inactive. The range of <em>num-tries</em> is 1 to 100.</td>
</tr>
</tbody>
</table>

When you configure the RADIUS server parameters:

- Specify the *key* *string* on a separate command line.
- For *key* *string*, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.
- When you specify the *key* *string*, use spaces within and at the end of the key. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.
- You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using with the radius-server host global configuration command. If you want to configure these options on a per-server basis, use the radius-server timeout, radius-server retransmit, and the radius-server key global configuration commands. For more information, see the Cisco IOS Security Configuration Guide, Release 12.2 and the Cisco IOS Security Command Reference, Release 12.2 at this URL: http://www.cisco.com/en/US/docs/ios/12_2/security/command/reference/fsecur_r.html

**Note** You need to configure some settings on the RADIUS server, including: the switch IP address, the key string to be shared by both the server and the switch, and the downloadable ACL (DACL). For more information, see the RADIUS server documentation.
This example shows how to configure the RADIUS server parameters on a switch:

Switch(config)# ip radius source-interface Vlan80
Switch(config)# radius-server host 172.120.39.46 test username user1
Switch(config)# radius-server key rad123
Switch(config)# radius-server dead-criteria tries 2

### Configuring the HTTP Server

To use web-based authentication, you must enable the HTTP server within the switch. You can enable the server for either HTTP or HTTPS.

#### Command Purpose

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip http server</td>
<td>Enable the HTTP server. The web-based authentication feature uses the HTTP server to communicate with the hosts for user authentication.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip http secure-server</td>
<td>Enable HTTPS.</td>
</tr>
</tbody>
</table>

You can configure custom authentication proxy web pages or specify a redirection URL for successful login.

- Customizing the Authentication Proxy Web Pages
- Specifying a Redirection URL for Successful Login

### Customizing the Authentication Proxy Web Pages

You can configure web authentication to display four substitute HTML pages to the user in place of the switch default HTML pages during web-based authentication.

To specify the use of your custom authentication proxy web pages, first store your custom HTML files on the switch flash memory, then perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ip admission proxy http login page file device:login-filename</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip admission proxy http success page file device:success-filename</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip admission proxy http failure page file device:fail-filename</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip admission proxy http login expired page file device:expired-filename</td>
</tr>
</tbody>
</table>
When configuring customized authentication proxy web pages, follow these guidelines:

- To enable the custom web pages feature, specify all four custom HTML files. If you specify fewer than four files, the internal default HTML pages are used.

- The four custom HTML files must be present on the flash memory of the switch. The maximum size of each HTML file is 8 KB.

- Any images on the custom pages must be on an accessible HTTP server. Configure an intercept ACL within the admission rule.

- Any external link from a custom page requires configuration of an intercept ACL within the admission rule.

- To access a valid DNS server, any name resolution required for external links or images requires configuration of an intercept ACL within the admission rule.

- If the custom web pages feature is enabled, a configured auth-proxy-banner is not used.

- If the custom web pages feature is enabled, the redirection URL for successful login feature is not available.

- To remove the specification of a custom file, use the `no` form of the command.

Because the custom login page is a public web form, consider these guidelines for the page:

- The login form must accept user entries for the username and password and must show them as `uname` and `pwd`.

- The custom login page should follow best practices for a web form, such as page timeout, hidden password, and prevention of redundant submissions.

This example shows how to configure custom authentication proxy web pages:

```
Switch(config)# ip admission proxy http login page file flash:login.htm
Switch(config)# ip admission proxy http success page file flash:success.htm
Switch(config)# ip admission proxy http fail page file flash:fail.htm
Switch(config)# ip admission proxy http login expired page flash flash:expired.htm
```

This example shows how to verify the configuration of a custom authentication proxy web pages:

```
Switch# show ip admission configuration
Authentication proxy webpage
 Login page : flash:login.htm
 Success page : flash:success.htm
 Fail Page : flash:fail.htm
 Login expired Page : flash:expired.htm

Authentication global cache time is 60 minutes
Authentication global absolute time is 0 minutes
Authentication global init state time is 2 minutes
Authentication Proxy Session ratelimit is 100
Authentication Proxy Watch-list is disabled
Authentication Proxy Auditing is disabled
Max Login attempts per user is 5
```
Specifying a Redirection URL for Successful Login

You can specify a URL to which the user is redirected after authentication, effectively replacing the internal Success HTML page.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip admission proxy http success redirect url-string</td>
<td>Specify a URL for redirection of the user in place of the default login success page.</td>
</tr>
</tbody>
</table>

When configuring a redirection URL for successful login, consider these guidelines:

- If the custom authentication proxy web pages feature is enabled, the redirection URL feature is disabled and is not available in the CLI. You can perform redirection in the custom-login success page.
- If the redirection URL feature is enabled, a configured auth-proxy-banner is not used.
- To remove the specification of a redirection URL, use the no form of the command.

This example shows how to configure a redirection URL for successful login:

```
Switch(config)# ip admission proxy http success redirect www.cisco.com
```

This example shows how to verify the redirection URL for successful login:

```
Switch# show ip admission configuration
Authentication Proxy Banner not configured
Customizable Authentication Proxy webpage not configured
HTTP Authentication success redirect to URL: http://www.cisco.com
Authentication global cache time is 60 minutes
Authentication global absolute time is 0 minutes
Authentication global init state time is 2 minutes
Authentication Proxy Watch-list is disabled
Authentication Proxy Max HTTP process is 7
Authentication Proxy Auditing is disabled
Max Login attempts per user is 5
```

Configuring an AAA Fail Policy

```
Step 1 ip admission name rule-name proxy http event timeout aaa policy identity identity_policy_name
Step 2 ip admission ratelimit aaa-down number_of_sessions
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip admission name rule-name proxy http event timeout aaa policy identity identity_policy_name</td>
<td>Create an AAA failure rule and associate an identity policy to be apply to sessions when the AAA server is unreachable.</td>
</tr>
<tr>
<td>ip admission ratelimit aaa-down number_of_sessions</td>
<td>(Optional) Rate-limit the authentication attempts from hosts in the AAA down state to avoid flooding the AAA server when it returns to service.</td>
</tr>
</tbody>
</table>

Note: To remove the rule, use the no ip admission name rule-name proxy http event timeout aaa policy identity global configuration command.

This example shows how to apply an AAA failure policy:

```
Switch(config)# ip admission name AAA_FAIL_POLICY proxy http event timeout aaa policy identity GLOBAL_POLICY1
```
This example shows how to determine whether any connected hosts are in the AAA Down state:

```
Switch# show ip admission cache
Authentication Proxy Cache
Client IP 209.165.201.11 Port 0, timeout 60, state ESTAB (AAA Down)
```

This example shows how to view detailed information about a particular session based on the host IP address:

```
Switch# show ip admission cache 209.165.201.11
Address : 209.165.201.11
MAC Address : 0000.0000.0000
Interface : Vlan333
Port : 3999
Timeout : 60
Age : 1
State : AAA Down
AAA Down policy : AAA_FAIL_POLICY
```

## Configuring the Web-Based Authentication Parameters

You can configure the maximum number of failed login attempts before the client is placed in a watch list for a waiting period.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ip admission max-login-attempts number</td>
</tr>
<tr>
<td>Step 2</td>
<td>end</td>
</tr>
<tr>
<td>Step 3</td>
<td>show ip admission configuration</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip admission cache</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to set the maximum number of failed login attempts to 10:

```
Switch(config)# ip admission max-login-attempts 10
```

## Configuring a Web Authentication Local Banner

Beginning in privileged EXEC mode, follow these steps to configure a local banner on a switch that has web authentication configured.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip admission auth-proxy-banner http [banner-text [file-path]]</td>
</tr>
</tbody>
</table>
### Displaying Web-Based Authentication Status

Perform this task to display the web-based authentication settings for all interfaces or for specific ports:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show authentication sessions [interface type slot/port]</td>
<td>Displays the web-based authentication settings. Type = fastethernet, gigabitethernet, or tengigabitethernet. (Optional) Use the interface keyword to display the web-based authentication settings for a specific interface.</td>
</tr>
</tbody>
</table>

This example shows how to view only the global web-based authentication status:

```
Switch# show authentication sessions
```

This example shows how to view the web-based authentication settings for gigabit interface 3/27:

```
Switch# show authentication sessions interface gigabitethernet 3/27
```
Configuring Interface Characteristics

This chapter defines the types of interfaces on the switch and describes how to configure them. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

The chapter consists of these sections:

- Understanding Interface Types, page 11-1
- Using Interface Configuration Mode, page 11-8
- Using the Internal Ethernet Management Port, page 11-13
- Configuring Ethernet Interfaces, page 11-17
- Configuring Layer 3 Interfaces, page 11-24
- Configuring the System MTU, page 11-26
- Monitoring and Maintaining the Interfaces, page 11-28

For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the online Cisco IOS Interface Command Reference, Release 12.2.

Understanding Interface Types

This section describes the different types of interfaces supported by the switch with references to chapters that contain more detailed information about configuring these interface types. The rest of the chapter describes configuration procedures for physical interface characteristics.

You cannot use these switch ports:

- In a switch stack, the internal cross-connect 1000 Mb/s ports that are disabled
- The stack ports on the front of the switch that are not Ethernet ports

These sections describe the interface types:

- Port-Based VLANs, page 11-2
- Switch Ports, page 11-2
- Routed Ports, page 11-4
Port-Based VLANs

A VLAN is a switched network that is logically segmented by function, team, or application, without regard to the physical location of the users. For more information about VLANs, see Chapter 13, “Configuring VLANs.” Packets received on a port are forwarded only to ports that belong to the same VLAN as the receiving port. Network devices in different VLANs cannot communicate with one another without a Layer 3 device to route traffic between the VLANs.

VLAN partitions provide hard firewalls for traffic in the VLAN, and each VLAN has its own MAC address table. A VLAN comes into existence when a local port is configured to be associated with the VLAN, when the VLAN Trunking Protocol (VTP) learns of its existence from a neighbor on a trunk, or when a user creates a VLAN. VLANs can be formed with ports across the stack.

To configure VLANs, use the `vlan vlan-id` global configuration command to enter VLAN configuration mode. The VLAN configurations for normal-range VLANs (VLAN IDs 1 to 1005) are saved in the VLAN database. If VTP is version 1 or 2, to configure extended-range VLANs (VLAN IDs 1006 to 4094), you must first set VTP mode to transparent. Extended-range VLANs created in transparent mode are not added to the VLAN database but are saved in the switch running configuration. With VTP version 3, you can create extended-range VLANs in client or server mode. These VLANs are saved in the VLAN database.

In a switch stack, the VLAN database is downloaded to all switches in a stack, and all switches in the stack build the same VLAN database. In a switch stack, the running configuration and the saved configuration are the same for all switches in a stack.

Add ports to a VLAN by using the `switchport` interface configuration commands:

- Identify the interface.
- For a trunk port, set trunk characteristics, and, if desired, define the VLANs to which it can belong.
- For an access port, set and define the VLAN to which it belongs.
- For a tunnel port, set and define the VLAN ID for the customer-specific VLAN tag. See Chapter 17, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”

Switch Ports

Switch ports are Layer 2-only interfaces associated with a physical port. Switch ports belong to one or more VLANs. A switch port can be an access port, a trunk port, or a tunnel port. You can configure a port as an access port or trunk port or let the Dynamic Trunking Protocol (DTP) operate on a per-port basis to set the switchport mode by negotiating with the port on the other end of the link. You must manually configure tunnel ports as part of an asymmetric link connected to an IEEE 802.1Q trunk port. Switch ports are used for managing the physical interface and associated Layer 2 protocols and do not handle routing or bridging.

Configure switch ports by using the `switchport` interface configuration commands. Use the `switchport` command with no keywords to put an interface that is in Layer 3 mode into Layer 2 mode.
When you put an interface that is in Layer 3 mode into Layer 2 mode, the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.

For detailed information about configuring access port and trunk port characteristics, see Chapter 13, “Configuring VLANs.” For more information about tunnel ports, see Chapter 17, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”

Access Ports

An access port belongs to and carries the traffic of only one VLAN (unless it is configured as a voice VLAN port). Traffic is received and sent in native formats with no VLAN tagging. Traffic arriving on an access port is assumed to belong to the VLAN assigned to the port. If an access port receives an IEEE 802.1Q tagged packet, the packet is dropped, and the source address is not learned.

Two types of access ports are supported:

- Static access ports are manually assigned to a VLAN (or through a RADIUS server for use with IEEE 802.1x. For more information, see the “802.1x Authentication with VLAN Assignment” section on page 9-16.)
- VLAN membership of dynamic access ports is learned through incoming packets. By default, a dynamic access port is not a member of any VLAN, and forwarding to and from the port is enabled only when the VLAN membership of the port is discovered. Dynamic access ports on the switch are assigned to a VLAN by a VLAN Membership Policy Server (VMPS). The VMPS can be a Catalyst 6500 series switch; the switch cannot be a VMPS server.

You can also configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. For more information about voice VLAN ports, see Chapter 15, “Configuring Voice VLAN.”

Trunk Ports

A trunk port carries the traffic of multiple VLANs and by default is a member of all VLANs in the VLAN database. An IEEE 802.1Q trunk port supports simultaneous tagged and untagged traffic. An IEEE 802.1Q trunk port is assigned a default port VLAN ID (PVID), and all untagged traffic travels on the port default PVID. All untagged traffic and tagged traffic with a NULL VLAN ID are assumed to belong to the port default PVID. A packet with a VLAN ID equal to the outgoing port default PVID is sent untagged. All other traffic is sent with a VLAN tag.

Although by default, a trunk port is a member of every VLAN known to the VTP, you can limit VLAN membership by configuring an allowed list of VLANs for each trunk port. The list of allowed VLANs does not affect any other port but the associated trunk port. By default, all possible VLANs (VLAN ID 1 to 4094) are in the allowed list. A trunk port can become a member of a VLAN only if VTP knows of the VLAN and if the VLAN is in the enabled state. If VTP learns of a new, enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of that VLAN and traffic is forwarded to and from the trunk port for that VLAN. If VTP learns of a new, enabled VLAN that is not in the allowed list for a trunk port, the port does not become a member of the VLAN, and no traffic for the VLAN is forwarded to or from the port.

For more information about trunk ports, see Chapter 13, “Configuring VLANs.”
Understanding Interface Types

Tunnel Ports

Tunnel ports are used in IEEE 802.1Q tunneling to segregate the traffic of customers in a service-provider network from other customers who are using the same VLAN number. You configure an asymmetric link from a tunnel port on a service-provider edge switch to an IEEE 802.1Q trunk port on the customer switch. Packets entering the tunnel port on the edge switch, already IEEE 802.1Q-tagged with the customer VLANs, are encapsulated with another layer of an IEEE 802.1Q tag (called the metro tag), containing a VLAN ID unique in the service-provider network, for each customer. The double-tagged packets go through the service-provider network keeping the original customer VLANs separate from those of other customers. At the outbound interface, also a tunnel port, the metro tag is removed, and the original VLAN numbers from the customer network are retrieved.

Tunnel ports cannot be trunk ports or access ports and must belong to a VLAN unique to each customer. For more information about tunnel ports, see Chapter 17, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”

Routed Ports

A routed port is a physical port that acts like a port on a router; it does not have to be connected to a router. A routed port is not associated with a particular VLAN, as is an access port. A routed port behaves like a regular router interface, except that it does not support VLAN subinterfaces. Routed ports can be configured with a Layer 3 routing protocol. A routed port is a Layer 3 interface only and does not support Layer 2 protocols, such as DTP and STP.

Configure routed ports by putting the interface into Layer 3 mode with the `no switchport` interface configuration command. Then assign an IP address to the port, enable routing, and assign routing protocol characteristics by using the `ip routing` and `router protocol` global configuration commands.

Note

Entering a `no switchport` interface configuration command shuts down the interface and then re-enables it, which might generate messages on the device to which the interface is connected. When you put an interface that is in Layer 2 mode into Layer 3 mode, the previous configuration information related to the affected interface might be lost.

The number of routed ports that you can configure is not limited by software. However, the interrelationship between this number and the number of other features being configured might impact CPU performance because of hardware limitations. See the “Configuring Layer 3 Interfaces” section on page 11-24 for information about what happens when hardware resource limitations are reached.

For more information about IP unicast and multicast routing and routing protocols, see Chapter 39, “Configuring IP Unicast Routing” and Chapter 45, “Configuring IP Multicast Routing.”

Note

The IP base feature set supports static routing and the Routing Information Protocol (RIP). For full Layer 3 routing or for fallback bridging, you must enable the IP services feature set on the standalone switch, or the stack master.
Switch Virtual Interfaces

A switch virtual interface (SVI) represents a VLAN of switch ports as one interface to the routing or bridging function in the system. Only one SVI can be associated with a VLAN, but you need to configure an SVI for a VLAN only when you wish to route between VLANs, to fallback-bridge nonroutable protocols between VLANs, or to provide IP host connectivity to the switch. By default, an SVI is created for the default VLAN (VLAN 1) to permit remote switch administration. Additional SVIs must be explicitly configured.

**Note**

You cannot delete interface VLAN 1.

SVIs provide IP host connectivity only to the system; in Layer 3 mode, you can configure routing across SVIs.

Although the switch stack or switch supports a total of 1005 VLANs (and SVIs), the interrelationship between the number of SVIs and routed ports and the number of other features being configured might impact CPU performance because of hardware limitations. See the “Configuring Layer 3 Interfaces” section on page 11-24 for information about what happens when hardware resource limitations are reached.

SVIs are created the first time that you enter the `vlan interface configuration` command for a VLAN interface. The VLAN corresponds to the VLAN tag associated with data frames on an 802.1Q encapsulated trunk or the VLAN ID configured for an access port. Configure a VLAN interface for each VLAN for which you want to route traffic, and assign it an IP address. For more information, see the “Manually Assigning IP Information” section on page 3-16.

**Note**

When you create an SVI, it does not become active until it is associated with a physical port.

SVIs support routing protocols and bridging configurations. For more information about configuring IP routing, see Chapter 39, “Configuring IP Unicast Routing,” Chapter 45, “Configuring IP Multicast Routing,” and Chapter 47, “Configuring Fallback Bridging.”

**Note**

The IP base feature set supports static routing and RIP. For more advanced routing or for fallback bridging, enable the IP services feature set on standalone switch, or the stack master.

SVI Autostate Exclude

The line state of an SVI with multiple ports on a VLAN is in the *up* state when it meets these conditions:

- The VLAN exists and is active in the VLAN database on the switch.
- The VLAN interface exists and is not administratively down.
- At least one Layer 2 (access or trunk) port exists, has a link in the *up* state on this VLAN, and is in the spanning-tree forwarding state on the VLAN.

**Note**

The protocol link state for VLAN interfaces come up when the first switchport belonging to the corresponding VLAN link comes up and is in STP forwarding state.
The default action, when a VLAN has multiple ports, is that the SVI goes down when all ports in the VLAN go down. You can use the SVI autostate exclude feature to configure a port so that it is not included in the SVI line-state up-down calculation. For example, if the only active port on the VLAN is a monitoring port, you might configure autostate exclude on that port so that the VLAN goes down when all other ports go down. When enabled on a port, autostate exclude applies to all VLANs that are enabled on that port.

The VLAN interface is brought up when one Layer 2 port in the VLAN has had time to converge (transition from STP listening-learning state to forwarding state). This prevents features such as routing protocols from using the VLAN interface as if it were fully operational and minimizes other problems, such as routing black holes. For information about configuring autostate exclude, see the “Configuring SVI Autostate Exclude” section on page 11-25.

EtherChannel Port Groups

EtherChannel port groups treat multiple switch ports as one switch port. These port groups act as a single logical port for high-bandwidth connections between switches or between switches and servers. An EtherChannel balances the traffic load across the links in the channel. If a link within the EtherChannel fails, traffic previously carried over the failed link changes to the remaining links. You can group multiple trunk ports into one logical trunk port, group multiple access ports into one logical access port, group multiple tunnel ports into one logical tunnel port, or group multiple routed ports into one logical routed port. Most protocols operate over either single ports or aggregated switch ports and do not recognize the physical ports within the port group. Exceptions are the DTP, the Cisco Discovery Protocol (CDP), and the Port Aggregation Protocol (PAgP), which operate only on physical ports.

When you configure an EtherChannel, you create a port-channel logical interface and assign an interface to the EtherChannel. For Layer 3 interfaces, you manually create the logical interface by using the interface port-channel global configuration command. Then you manually assign an interface to the EtherChannel by using the channel-group interface configuration command. For Layer 2 interfaces, use the channel-group interface configuration command to dynamically create the port-channel logical interface. This command binds the physical and logical ports together. For more information, see Chapter 38, “Configuring EtherChannels and Link-State Tracking.”

10-Gigabit Ethernet Interfaces

The switch has two 10-Gigabit Ethernet module slots. For uplink connections to other switches and routers, use the Cisco TwinGig Converter Modules.

A 10-Gigabit Ethernet interface operates only in full-duplex mode. The interface can be configured as a switched or routed port.

For more information about the Cisco TwinGig Converter Module, see the switch hardware installation guide and your transceiver module documentation.
Connecting Interfaces

Devices within a single VLAN can communicate directly through any switch. Ports in different VLANs cannot exchange data without going through a routing device. With a standard Layer 2 switch, ports in different VLANs have to exchange information through a router.

By using the switch with routing enabled, when you configure both VLAN 20 and VLAN 30 with an SVI to which an IP address is assigned, packets can be sent from Blade Server A to Blade Server B directly through the switch with no need for an external router (Figure 11-1).

Figure 11-1   Connecting VLANs with the Blade Switch

When the IP services feature set is running on the switch or the stack master, the switch uses two methods to forward traffic between interfaces: routing and fallback bridging. If the IP base feature set is on the switch or the stack master, only basic routing (static routing and RIP) is supported. Whenever possible, to maintain high performance, forwarding is done by the switch hardware. However, only IPv4 packets with Ethernet II encapsulation are routed in hardware. Non-IP traffic and traffic with other encapsulation methods are fallback-bridged by hardware.
Using Interface Configuration Mode

The switch supports these interface types:

- Physical ports—switch ports and routed ports
- VLANs—switch virtual interfaces
- Port channels—EtherChannel interfaces

You can also configure a range of interfaces (see the “Configuring a Range of Interfaces” section on page 11-10).

To configure a physical interface (port), specify the interface type, stack member number, module number, and switch port number, and enter interface configuration mode.

- Type—Gigabit Ethernet (gigabitethernet or gi) for 10/100/1000 Mb/s Ethernet ports, 10-Gigabit Ethernet (tengigabitethernet or te) for 10,000 Mb/s, or small form-factor pluggable (SFP) module Gigabit Ethernet interfaces (gigabitethernet or gi).
- Stack member number—The number that identifies the switch within the stack. The switch number range is 1 to 9 and is assigned the first time the switch initializes. The default switch number, before it is integrated into a switch stack, is 1. When a switch has been assigned a stack member number, it keeps that number until another is assigned to it.
  
  You can use the switch port LEDs in Stack mode to identify the stack member number of a switch.

  For information about stack member numbers, see the “Stack Member Numbers” section on page 7-8.

- Module number—The module or slot number on the switch that is always 0.
- Port number—The interface number on the switch. The internal 1000 Mb/s ports are numbered consecutively from 1 to 16, for example, gigabitethernet 1/0/1.

  The switch also has two internal cross-connect 1000 Mb/s ports that connect to two switches in an enclosure. These ports are numbered from 17 to 18; for example, gigabitethernet 1/0/17.

  On a switch with Cisco TwinGig Converter Modules in the 10-Gigabit Ethernet module slots, the 10-Gigabit Ethernet port numbers restart; for example, tengigabitethernet 1/0/1. If the switch has Cisco dual SFP X2 converter modules in the 10-Gigabit Ethernet module slots, the SFP module ports are numbered from 19 to 22; for example, gigabitethernet1/0/20. The external 10/100/1000 ports numbers are from 23 to 26; for example, gigabitethernet 1/0/25.

  On a switch with Cisco dual SFP X2 converter modules in the 10-Gigabit Ethernet module slots, the SFP module ports are numbered from 19 to 22; for example, gigabitethernet1/0/22. The external 10/100/1000 ports are numbered from 23 to 26; for example, gigabitethernet1/0/23.
Chapter 11  Configuring Interface Characteristics

You can identify physical interfaces by physically checking the interface location on the switch. You can also use the **show** privileged EXEC commands to display information about a specific interface or all the interfaces on the switch. The remainder of this chapter primarily provides physical interface configuration procedures.

These are examples of how to identify interfaces on a switch:

- To configure 10/100/1000 port 4 on a standalone switch, enter this command:
  ```
 Switch(config)# interface gigabitethernet1/0/4
  ```

- To configure 10-Gigabit Ethernet port 1 on a standalone switch, enter this command:
  ```
 Switch(config)# interface tengigabitethernet1/0/1
  ```

- To configure 10-Gigabit Ethernet port on stack member 3, enter this command:
  ```
 Switch(config)# interface tengigabitethernet3/0/1
  ```

If the switch has SFP modules, the port numbers continue consecutively. To configure the first SFP module port on stack member 1 with 16 10/100/1000 ports, enter this command:

```
Switch(config)# interface gigabitethernet1/0/19
```

**Procedures for Configuring Interfaces**

These general instructions apply to all interface configuration processes.

**Step 1** Enter the **configure terminal** command at the privileged EXEC prompt:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#
```

**Step 2** Enter the **interface** global configuration command. Identify the interface type, the switch number, and the number of the connector. In this example, Gigabit Ethernet port 1 on switch 1 is selected:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)#
```

**Note** You do not need to add a space between the interface type and the interface number. For example, in the preceding line, you can specify either `gigabitethernet 1/0/1`, `gigabitethernet1/0/1`, `gi 1/0/1`, or `gi1/0/1`.

**Step 3** Follow each **interface** command with the interface configuration commands that the interface requires. The commands that you enter define the protocols and applications that will run on the interface. The commands are collected and applied to the interface when you enter another interface command or enter **end** to return to privileged EXEC mode.

You can also configure a range of interfaces by using the **interface range** or **interface range macro** global configuration commands. Interfaces configured in a range must be the same type and must be configured with the same feature options.

**Step 4** After you configure an interface, verify its status by using the **show** privileged EXEC commands listed in the “Monitoring and Maintaining the Interfaces” section on page 11-28.
Enter the `show interfaces` privileged EXEC command to see a list of all interfaces on or configured for the switch. A report is provided for each interface that the device supports or for the specified interface.

### Configuring a Range of Interfaces

You can use the `interface range` global configuration command to configure multiple interfaces with the same configuration parameters. When you enter the interface-range configuration mode, all command parameters that you enter are attributed to all interfaces within that range until you exit this mode.

Beginning in privileged EXEC mode, follow these steps to configure a range of interfaces with the same parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface range `{port-range</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show interfaces <code>[interface-id]</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

When using the `interface range` global configuration command, note these guidelines:

- Valid entries for `port-range`:
  - `vlan vlan-ID - vlan-ID`, where the VLAN ID is 1 to 4094
  - `gigabitethernet stack member/module/{first port} - {last port}`, where the module is always 0
  - `tengigabitethernet stack member/module/{first port} - {last port}`, where the module is always 0
  - `port-channel port-channel-number - port-channel-number`, where the `port-channel-number` is 1 to 64

**Note** When you use the `interface range` command with port channels, the first and last port-channel number must be active port channels.
**You must add a space between the first interface number and the hyphen when using the interface range command. For example, the command interface range gigabitethernet1/0/1 - 4 is a valid range; the command interface range gigabitethernet1/0/1-4 is not a valid range.**

**The interface range command only works with VLAN interfaces that have been configured with the interface vlan command. The show running-config privileged EXEC command displays the configured VLAN interfaces. VLAN interfaces not displayed by the show running-config command cannot be used with the interface range command.**

**All interfaces defined in a range must be the same type (all Gigabit Ethernet ports, all 10-Gigabit Ethernet ports, all EtherChannel ports, or all VLANs), but you can enter multiple ranges in a command.**

This example shows how to use the interface range global configuration command to set the speed to 100 Mb/s on ports 1 to 4 on switch 1:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet1/0/19 - 20
Switch(config-if-range)# speed 100
```

This example shows how to use a comma to add different interface type strings to the range to enable Gigabit Ethernet ports 1 to 3 and 10-Gigabit Ethernet ports 1 and 2 to receive flow-control pause frames:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet1/0/1 - 3, tengigabitethernet1/0/1 - 2
Switch(config-if-range)# flowcontrol receive on
```

If you enter multiple configuration commands while you are in interface-range mode, each command is executed as it is entered. The commands are not batched and executed after you exit interface-range mode. If you exit interface-range configuration mode while the commands are being executed, some commands might not be executed on all interfaces in the range. Wait until the command prompt reappears before exiting interface-range configuration mode.
Configuring and Using Interface Range Macros

You can create an interface range macro to automatically select a range of interfaces for configuration. Before you can use the `macro` keyword in the `interface range macro` global configuration command string, you must use the `define interface-range` global configuration command to define the macro.

Beginning in privileged EXEC mode, follow these steps to define an interface range macro:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>define interface-range macro_name interface-range</code> Define the interface-range macro, and save it in NVRAM.</td>
</tr>
<tr>
<td> </td>
<td>• The <code>macro_name</code> is a 32-character maximum character string.</td>
</tr>
<tr>
<td> </td>
<td>• A macro can contain up to five comma-separated interface ranges.</td>
</tr>
<tr>
<td> </td>
<td>• Each <code>interface-range</code> must consist of the same port type.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>interface range macro macro_name</code> Select the interface range to be configured using the values saved in the interface-range macro called <code>macro_name</code>. You can now use the normal configuration commands to apply the configuration to all interfaces in the defined macro.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>`show running-config</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no define interface-range macro_name` global configuration command to delete a macro.

When using the `define interface-range` global configuration command, note these guidelines:

- Valid entries for `interface-range`:
  - `vlan vlan-ID - vlan-ID`, where the VLAN ID is 1 to 4094
  - `gigabitethernet stack member/module/{first port} - {last port}`, where the module is always 0
  - `tengigabitethernet stack member/module/{first port} - {last port}`, where the module is always 0
  - `port-channel port-channel-number - port-channel-number`, where the `port-channel-number` is 1 to 64.

  **Note** When you use the interface ranges with port channels, the first and last port-channel number must be active port channels.

- You must add a space between the first interface number and the hyphen when entering an `interface-range`. For example, `gigabitethernet1/0/1 - 4` is a valid range; `gigabitethernet1/0/1-4` is not a valid range.

- The VLAN interfaces must have been configured with the `interface vlan` command. The `show running-config` privileged EXEC command displays the configured VLAN interfaces. VLAN interfaces not displayed by the `show running-config` command cannot be used as `interface-ranges`.

- All interfaces defined as in a range must be the same type (all Gigabit Ethernet ports, all 10-Gigabit Ethernet ports, all EtherChannel ports, or all VLANs), but you can combine multiple interface types in a macro.
This example shows how to define an interface-range named \texttt{enet\_list} to include ports 1 and 2 on switch 1 and to verify the macro configuration:

```
Switch# configure terminal
Switch(config)# define interface-range enet_list gigabitethernet1/0/1 - 2
Switch(config)# end
Switch# show running-config | include define
define interface-range enet_list GigabitEthernet1/0/1 - 2
```

This example shows how to create a multiple-interface macro named \texttt{macro1}:

```
Switch# configure terminal
Switch(config)# define interface-range macro1 gigabitethernet1/0/1 - 2, gigabitethernet1/0/5 - 7, tengigabitethernet1/0/1 -2
Switch(config)# end
```

This example shows how to enter interface-range configuration mode for the interface-range macro \texttt{enet\_list}:

```
Switch# configure terminal
Switch(config)# interface range macro enet_list
Switch(config-if-range)#
```

This example shows how to delete the interface-range macro \texttt{enet\_list} and to verify that it was deleted.

```
Switch# configure terminal
Switch(config)# no define interface-range enet_list
Switch(config)# end
Switch# show run | include define
Switch#
```

## Using the Internal Ethernet Management Port

This section has this information:

- Understanding the Internal Ethernet Management Port, page 11-13
- Supported Features on the Ethernet Management Port, page 11-16
- Layer 3 Routing Configuration Guidelines, page 11-16
- Monitoring the Ethernet Management Port, page 11-16
- TFTP and the Ethernet Management Port, page 11-19

## Understanding the Internal Ethernet Management Port

The internal Ethernet management port, also referred to as the \texttt{Fa0 or fastethernet0} port, is an internal Layer 3 port connected to the Onboard Administrator. (See Figure 11-2). You assign the IP addresses to the management port through the Onboard Administrator or by the DHCP server. You can manage the switch through these IP addresses.

We recommend that you let the Onboard Administrator acts as the DCHP server, assigning an IP addresses assigned to the internal Ethernet management port. You can use this address to manage the switch. You must first configure the internal Ethernet management port as a DCHP client by using the `ip address dhcp interface configuration` command.

In a switch stack, only the Ethernet management port on the stack master is enabled. The ports on the stack members are disabled. You can modify the IP address of a stack member without affecting the stack configuration.
Chapter 11  Configuring Interface Characteristics

Using the Internal Ethernet Management Port

Figure 11-2  Connecting a Switch to a PC

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Onboard Administrator</td>
</tr>
<tr>
<td>2</td>
<td>Internal Ethernet management port</td>
</tr>
</tbody>
</table>

Figure 11-3 shows how to connect the Ethernet management ports in the switch stack to the PC. All the Ethernet management ports on the stack members in the same enclosure are connected to the OA. However, only the Ethernet management port for the stack master is enabled. The active link is from the Ethernet management port on the stack master through the OA to the PC. If the stack master fails and a new stack master is elected, the active link is now from the Ethernet management port on the new stack master through the OA to the PC. In a stack that has members in multiple enclosures, the PC must be connected to the OA of the enclosure with the stack master. The PC should also be able to access the all of the enclosure OAs.
By default, the Ethernet management port is enabled. The switch cannot route packets from the Ethernet management port to a network port and the reverse.
Supported Features on the Ethernet Management Port

The Ethernet management port supports only these features:

- Express Setup (only in switch stacks)
- Network Assistant
- Telnet with passwords
- TFTP
- Secure Shell (SSH)
- DHCP-based autoconfiguration
- SMNP (only the ENTITY-MIB and the IF-MIB)
- IP ping
- Interface features
  - Speed—100 Mb/s (nonconfigurable)
  - Duplex mode—Full (nonconfigurable)
  - Loopback detection
- Cisco Discovery Protocol (CDP)
- DHCP relay agent
- IPv4 and IPv6 access control lists (ACLs)
- Routing protocols

Caution

Before enabling a feature on the Ethernet management port, make sure that the feature is supported. If you try to configure an unsupported feature on the Ethernet Management port, the feature might not work properly, and the switch might fail.

Layer 3 Routing Configuration Guidelines

When Layer 3 routing is enabled, you should be aware of these guidelines:

- If Routing Information Protocol (RIP) or Open Shortest Path First (OSPF) is enabled, RIP or OSPF advertises routes with the internal Ethernet management port. By default, RIP and OSPF are disabled.
- For traffic to be routed between VLAN 1 and the Ethernet management port, IP routing must be enabled.
- Virtual private network routing and forwarding (VRF) can be used to separate the routing domains for the Ethernet management port and for data packets.
- The default gateway is not available. It is available when IP routing is disabled.
- Control packets (such as for routing, CDP, and STP) that are received on the Ethernet management port might not return to the port. This can occur because the default route of the router uses a router in the network instead of the device in the network to which the blade switch belongs. The control-packet source host might not be on the same subnet as the blade switch. To avoid this problem, use VRF or configure static route to forward the packets to specific hosts and networks.
Monitoring the Ethernet Management Port

To display the link status, use the `show interfaces fastethernet 0` privileged EXEC command.

TFTP and the Ethernet Management Port

Use the commands in Table 11-1 when using TFTP to download or upload a configuration file to the boot loader.

<table>
<thead>
<tr>
<th>Table 11-1 Boot Loader Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
</tr>
<tr>
<td><code>arp [ip_address]</code></td>
</tr>
<tr>
<td><code>mgmt_clr</code></td>
</tr>
<tr>
<td><code>mgmt_init</code></td>
</tr>
<tr>
<td><code>mgmt_show</code></td>
</tr>
<tr>
<td><code>ping host_ip_address</code></td>
</tr>
<tr>
<td><code>boot tftp:/file-url ...</code></td>
</tr>
<tr>
<td><code>copy tftp:/source-file-url filesystem:/destination-file-url</code></td>
</tr>
</tbody>
</table>

1. ARP = Address Resolution Protocol.

Configuring Ethernet Interfaces

These sections contain this configuration information:

- Default Ethernet Interface Configuration, page 11-17
- Configuring Interface Speed and Duplex Mode, page 11-18
- Configuring IEEE 802.3x Flow Control, page 11-20
- Configuring Auto-MDIX on an Interface, page 11-22
- Adding a Description for an Interface, page 11-23
Default Ethernet Interface Configuration

Table 11-1 shows the Ethernet interface default configuration, including some features that apply only to Layer 2 interfaces. For more details on the VLAN parameters listed in the table, see Chapter 13, “Configuring VLANs.” For details on controlling traffic to the port, see Chapter 26, “Configuring Port-Based Traffic Control.”

To configure Layer 2 parameters, if the interface is in Layer 3 mode, you must enter the `switchport` interface configuration command without any parameters to put the interface into Layer 2 mode. This shuts down the interface and then re-enables it, which might generate messages on the device to which the interface is connected. When you put an interface that is in Layer 3 mode into Layer 2 mode, the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.

Table 11-2 Default Layer 2 Ethernet Interface Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
<td>Layer 2 or switching mode (<code>switchport</code> command).</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1–4094.</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1 (Layer 2 interfaces only).</td>
</tr>
<tr>
<td>Native VLAN (for IEEE 802.1Q trunks)</td>
<td>VLAN 1 (Layer 2 interfaces only).</td>
</tr>
<tr>
<td>VLAN trunking</td>
<td>Switchport mode dynamic auto (supports DTP) (Layer 2 interfaces only).</td>
</tr>
<tr>
<td>Port enable state</td>
<td>All ports are enabled.</td>
</tr>
<tr>
<td>Port description</td>
<td>None defined.</td>
</tr>
<tr>
<td>Speed</td>
<td>1000 Mb/s for the internal ports (nonconfigurable)</td>
</tr>
<tr>
<td></td>
<td>Autonegotiate for the external 10/100/1000-Mb/s and SFP module ports. (Not supported on the 10-Gigabit interfaces.)</td>
</tr>
<tr>
<td>Duplex mode</td>
<td>Full duplex for the internal ports (nonconfigurable)</td>
</tr>
<tr>
<td></td>
<td>Autonegotiate for the external 10/100/1000-Mb/s and SFP module ports. (Not supported on the 10-Gigabit interfaces.)</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control is set to receive: off. It is always off for sent packets.</td>
</tr>
<tr>
<td>EtherChannel (PAgP)</td>
<td>Disabled on all Ethernet ports. See Chapter 38, “Configuring EtherChannels and Link-State Tracking.”</td>
</tr>
<tr>
<td>Port blocking (unknown multicast and unknown unicast traffic)</td>
<td>Disabled (not blocked) (Layer 2 interfaces only). See the “Configuring Port Blocking” section on page 26-7.</td>
</tr>
<tr>
<td>Broadcast, multicast, and unicast storm control</td>
<td>Disabled. See the “Default Storm Control Configuration” section on page 26-3.</td>
</tr>
<tr>
<td>Protected port</td>
<td>Disabled (Layer 2 interfaces only). See the “Configuring Protected Ports” section on page 26-6.</td>
</tr>
<tr>
<td>Port security</td>
<td>Disabled (Layer 2 interfaces only). See the “Default Port Security Configuration” section on page 26-11.</td>
</tr>
</tbody>
</table>
Chapter 11      Configuring Interface Characteristics

Configuring Interface Speed and Duplex Mode

Ethernet interfaces on the switch operate at 10, 100, 1000, or 10,000 Mb/s and in either full- or half-duplex mode. In full-duplex mode, two stations can send and receive traffic at the same time. Normally, 10-Mb/s ports operate in half-duplex mode, which means that stations can either receive or send traffic.

Switch models include external Gigabit Ethernet (10/100/1000-Mb/s) ports, 10-Gigabit Ethernet ports, internal 1000 Mb/s ports, and small form-factor pluggable (SFP) module slots supporting SFP modules.

These sections describe how to configure the interface speed and duplex mode:

- Speed and Duplex Configuration Guidelines, page 11-18
- Setting the Interface Speed and Duplex Parameters, page 11-19

Speed and Duplex Configuration Guidelines

When configuring an interface speed and duplex mode, note these guidelines:

- The 10-Gigabit Ethernet ports do not support the speed and duplex features. These ports operate only at 10,000 Mb/s and in full-duplex mode.
- The external Gigabit Ethernet (10/100/1000-Mb/s) ports support all speed options and all duplex options (auto, half, and full). However, Gigabit Ethernet ports operating at 1000 Mb/s do not support half-duplex mode.
- The internal Ethernet management ports do not support the speed and duplex features. These ports operate only at 1000 Mb/s and in full-duplex mode.
- For SFP module ports, the speed and duplex CLI options change depending on the SFP module type:
  - The 1000BASE-x (where -x is -LX or -SX) SFP module ports support the nonegotiate keyword in the speed interface configuration command. Duplex options are not supported.
  - The 1000BASE-T SFP module ports support the same speed and duplex options as the 10/100/1000-Mb/s ports.

For information about which SFP modules are supported on your switch, see the product release notes.

- If both ends of the line support autonegotiation, we highly recommend the default setting of auto negotiation.
- If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces; do not use the auto setting on the supported side.
- When STP is enabled and a port is reconfigured, the switch can take up to 30 seconds to check for loops. The port LED is amber while STP reconfigures.

---

Table 11-2 Default Layer 2 Ethernet Interface Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Fast</td>
<td>Disabled. See the “Default Optional Spanning-Tree Configuration” section on page 20-12.</td>
</tr>
<tr>
<td>Auto-MDIX</td>
<td>Enabled.</td>
</tr>
</tbody>
</table>

Cisco Catalyst Switch Module 3110 and 3012 for IBM BladeCenter Software Configuration Guide
Caution
Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

### Setting the Interface Speed and Duplex Parameters

Beginning in privileged EXEC mode, follow these steps to set the speed and duplex mode for a physical interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>
| **Step 3** | speed {10 | 100 | 1000 | auto [10 | 100 | 1000] | nonegotiate} | This command is not available on a 10-Gigabit Ethernet interface or an internal 1000 Mb/s port. Enter the appropriate speed parameter for the interface:  
  - Enter 10, 100, or 1000 to set a specific speed for the interface. The 1000 keyword is available only for 10/100/1000 Mb/s ports.  
  - Enter auto to enable the interface to autonegotiate speed with the connected device. If you use the 10, 100, or the 1000 keywords with the auto keyword, the port autonegotiates only at the specified speeds.  
  - The nonegotiate keyword is available only for SFP module ports. SFP module ports operate only at 1000 Mb/s but can be configured to not negotiate if connected to a device that does not support autonegotiation. For more information about speed settings, see the “Speed and Duplex Configuration Guidelines” section on page 11-18. |
| **Step 4** | duplex {auto | full | half} | This command is not available on a 10-Gigabit Ethernet interface or an internal 1000 Mb/s port. Enter the duplex parameter for the interface. Enable half-duplex mode (for interfaces operating only at 10 or 100 Mb/s). You cannot configure half-duplex mode for interfaces operating at 1000 Mb/s. You can configure the duplex setting when the speed is set to auto. For more information about duplex settings, see the “Speed and Duplex Configuration Guidelines” section on page 11-18. |
| **Step 5** | end | Return to privileged EXEC mode. |
| **Step 6** | show interfaces interface-id | Display the interface speed and duplex mode configuration. |
| **Step 7** | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

Use the no speed and no duplex interface configuration commands to return the interface to the default speed and duplex settings (autonegotiate). To return all interface settings to the defaults, use the default interface interface-id interface configuration command.
This example shows how to set the interface speed to 100 Mb/s and the duplex mode to half on an external 10/100/1000 Mb/s port:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/17
Switch(config-if)# speed 10
Switch(config-if)# duplex half

This example shows how to set the interface speed to 100 Mb/s on an external 10/100/1000 Mb/s port:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/17
Switch(config-if)# speed 100

## Configuring IEEE 802.3x Flow Control

Flow control enables connected Ethernet ports to control traffic rates during congestion by allowing congested nodes to pause link operation at the other end. If one port experiences congestion and cannot receive any more traffic, it notifies the other port by sending a pause frame to stop sending until the condition clears. Upon receipt of a pause frame, the sending device stops sending any data packets, which prevents any loss of data packets during the congestion period.

**Note**

Switch ports can receive, but not send, pause frames.

You use the `flowcontrol` interface configuration command to set the interface’s ability to receive pause frames to on, off, or desired. The default state is off.

When set to desired, an interface can operate with an attached device that is required to send flow-control packets or with an attached device that is not required to but can send flow-control packets.

These rules apply to flow control settings on the device:

- **receive on** (or desired): The port cannot send pause frames but can operate with an attached device that is required to or can send pause frames; the port can receive pause frames.
- **receive off**: Flow control does not operate in either direction. In case of congestion, no indication is given to the link partner, and no pause frames are sent or received by either device.

**Note**

For details on the command settings and the resulting flow control resolution on local and remote ports, see the `flowcontrol` interface configuration command in the command reference for this release.

Beginning in privileged EXEC mode, follow these steps to configure flow control on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the physical interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 flowcontrol {receive} {on</td>
<td>Configure the flow control mode for the port.</td>
</tr>
<tr>
<td>off</td>
<td>desired}</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces interface-id</td>
<td>Verify the interface flow control settings.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable flow control, use the `flowcontrol receive off` interface configuration command.
Chapter 11  Configuring Interface Characteristics

Configuring Auto-MDIX on an Interface

When automatic medium-dependent interface crossover (auto-MDIX) is enabled on an interface, the interface automatically detects the required cable connection type (straight through or crossover) and configures the connection appropriately. When connecting switches without the auto-MDIX feature, you must use straight-through cables to connect to devices such as servers, workstations, or routers and crossover cables to connect to other switches or repeaters. With auto-MDIX enabled, you can use either type of cable to connect to other devices, and the interface automatically corrects for any incorrect cabling. For more information about cabling requirements, see the hardware installation guide.

Auto-MDIX is enabled by default. When you enable auto-MDIX, you must also set the interface speed and duplex to auto so that the feature operates correctly. Auto-MDIX is supported on all 10/100/1000-Mb/s and on 10/100/1000BASE-TX small form-factor pluggable (SFP)-module interfaces. It is not supported on 1000BASE-SX or -LX SFP module interfaces.

Table 11-2 shows the link states that result from auto-MDIX settings and correct and incorrect cabling.

<table>
<thead>
<tr>
<th>Local Side Auto-MDIX</th>
<th>Remote Side Auto-MDIX</th>
<th>With Correct Cabling</th>
<th>With Incorrect Cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>On</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Link up</td>
<td>Link down</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to configure auto-MDIX on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the physical interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>speed auto</td>
<td>Configure the interface to autonegotiate speed with the connected device.</td>
</tr>
<tr>
<td>duplex auto</td>
<td>Configure the interface to autonegotiate duplex mode with the connected device.</td>
</tr>
<tr>
<td>mdix auto</td>
<td>Enable auto-MDIX on the interface.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show controllers ethernet-controller interface-id phy</td>
<td>Verify the operational state of the auto-MDIX feature on the interface.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable auto-MDIX, use the no mdix auto interface configuration command.
This example shows how to enable auto-MDIX on a port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# speed auto
Switch(config-if)# duplex auto
Switch(config-if)# mdix auto
Switch(config-if)# end
```

### Adding a Description for an Interface

You can add a description about an interface to help you remember its function. The description appears in the output of these privileged EXEC commands: `show configuration`, `show running-config`, and `show interfaces`.

Beginning in privileged EXEC mode, follow these steps to add a description for an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface for which you are adding a description, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 description string</td>
<td>Add a description (up to 240 characters) for an interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces interface-id description</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no description` interface configuration command to delete the description.

This example shows how to add a description on a port and how to verify the description:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# description Connects to Marketing
Switch(config-if)# end
Switch# show interfaces gigabitethernet1/0/2 description
Interface Status Protocol Description
G11/0/2 admin down down Connects to Marketing
```
Configuring Layer 3 Interfaces

The switch supports these types of Layer 3 interfaces:

- **SVIs**: You should configure SVIs for any VLANs for which you want to route traffic. SVIs are created when you enter a VLAN ID following the `interface vlan` global configuration command. To delete an SVI, use the `no interface vlan` global configuration command. You cannot delete interface VLAN 1.

  **Note** When you create an SVI, it does not become active until it is associated with a physical port. For information about assigning Layer 2 ports to VLANs, see Chapter 13, “Configuring VLANs.”

- Routed ports: Routed ports are physical ports configured to be in Layer 3 mode by using the `no switchport` interface configuration command.

- Layer 3 EtherChannel ports: EtherChannel interfaces made up of routed ports. EtherChannel port interfaces are described in Chapter 38, “Configuring EtherChannels and Link-State Tracking.”

A Layer 3 switch can have an IP address assigned to each routed port and SVI.

There is no defined limit to the number of SVIs and routed ports that can be configured in a switch or in a switch stack. However, the interrelationship between the number of SVIs and routed ports and the number of other features being configured might have an impact on CPU usage because of hardware limitations. If the switch is using its maximum hardware resources, attempts to create a routed port or SVI have these results:

- If you try to create a new routed port, the switch generates a message that there are not enough resources to convert the interface to a routed port, and the interface remains as a switchport.
- If you try to create an extended-range VLAN, an error message is generated, and the extended-range VLAN is rejected.
- If the switch is notified by VLAN Trunking Protocol (VTP) of a new VLAN, it sends a message that there are not enough hardware resources available and shuts down the VLAN. The output of the `show vlan` user EXEC command shows the VLAN in a suspended state.
- If the switch attempts to boot up with a configuration that has more VLANs and routed ports than hardware can support, the VLANs are created, but the routed ports are shut down, and the switch sends a message that this was due to insufficient hardware resources.

All Layer 3 interfaces require an IP address to route traffic. This procedure shows how to configure an interface as a Layer 3 interface and how to assign an IP address to an interface.

  **Note** If the physical port is in Layer 2 mode (the default), you must enter the `no switchport` interface configuration command to put the interface into Layer 3 mode. Entering a `no switchport` command disables and then re-enables the interface, which might generate messages on the device to which the interface is connected. Furthermore, when you put an interface that is in Layer 2 mode into Layer 3 mode, the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.
Beginning in privileged EXEC mode, follow these steps to configure a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface {gigabitethernet interface-id}</td>
<td>Specify the interface to be configured as a Layer 3 interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>no switchport</td>
<td>For physical ports only, enter Layer 3 mode.</td>
</tr>
<tr>
<td>ip address ip_address subnet_mask</td>
<td>Configure the IP address and IP subnet.</td>
</tr>
<tr>
<td>no shutdown</td>
<td>Enable the interface.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show interfaces [interface-id]</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>show running-config interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove an IP address from an interface, use the **no ip address** interface configuration command.

This example shows how to configure a port as a routed port and to assign it an IP address:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 192.20.135.21 255.255.255.0
Switch(config-if)# no shutdown
```

### Configuring SVI Autostate Exclude

Configuring SVI autostate exclude on an access or trunk port in an SVI excludes that port in the calculation of the status of the SVI line state (up or down) even if it belongs to the same VLAN. When the excluded port is in the up state, and all other ports in the VLAN are in the down state, the SVI state is changed to down.

At least one port in the VLAN should be up and not excluded to keep the SVI state up. You can use this command to exclude the monitoring port status when determining the status of the SVI.

Beginning in privileged EXEC mode, follow these steps to exclude a port from SVI state-change calculations:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify a Layer 2 interface (physical port or port channel), and enter interface configuration mode.</td>
</tr>
<tr>
<td>switchport autostate exclude</td>
<td>Exclude the access or trunk port when defining the status of an SVI line state (up or down)</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 11 Configuring Interface Characteristics

Configuring the System MTU

The default maximum transmission unit (MTU) size for frames received and sent on all interfaces on the switch or switch stack is 1500 bytes. You can change the MTU size to support switched jumbo frames on all Gigabit Ethernet and 10-Gigabit Ethernet interfaces and to support routed frames on all routed ports.

- The system jumbo MTU value applies to switched packets on the Gigabit Ethernet and 10-Gigabit Ethernet ports of the switch or switch stack. Use the `system mtu jumbo bytes` global configuration command to specify the system jumbo MTU value.
- The system routing MTU value applies only to routed packets on all routed ports of the switch or switch stack. Use the `system mtu routing bytes` global configuration command to specify the system routing MTU value.

When configuring the system MTU values, follow these guidelines:

- The switch does not support the MTU on a per-interface basis.
- You can enter the `system mtu bytes` global configuration command on a switch, but the command does not take effect on the switch.
- The `system mtu jumbo` global configuration commands do not take effect when you enter the `system mtu routing` command on a switch on which only Layer 2 ports are configured.
- When you use the `system mtu bytes` or `system mtu jumbo bytes` command to change the system MTU or system jumbo MTU size, you must reset the switch before the new configuration takes effect. The `system mtu routing` command does not require a switch reset to take effect.

The system MTU jumbo setting is saved in the switch environmental variable in NVRAM and becomes effective when the switch reloads. Unlike the system MTU routing configuration, the MTU settings you enter with the `system mtu` and `system mtu jumbo` commands are not saved in the switch Cisco IOS configuration file, even if you enter the `copy running-config startup-config` privileged EXEC command. Therefore, if you use TFTP to configure a new switch by using a backup configuration file and want the system MTU to be other than the default, you must explicitly configure the `system mtu` and `system mtu jumbo` settings on the new switch and then reload the switch.

### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config interface interface-id</code></td>
<td>(Optional) Show the running configuration.</td>
</tr>
<tr>
<td><code>show interface interface-id switchport</code></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure an access or trunk port in an SVI to be excluded from the status calculation:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport autostate exclude
Switch(config-if)# exit
```
The upper limit of the system routing MTU value is based on the switch or switch stack configuration and refers to either the currently applied system MTU or the system jumbo MTU value. For more information about setting the MTU sizes, see the system mtu global configuration command in the command reference for this release.

Beginning in privileged EXEC mode, follow these steps to change the MTU size for switched and routed packets:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 system mtu jumbo</td>
<td>(Optional) Change the MTU size for all Gigabit Ethernet and 10-Gigabit Ethernet interfaces on the switch or the switch stack. The range is from 1500 to 9198 bytes.</td>
</tr>
<tr>
<td>Step 3 system mtu routing</td>
<td>(Optional) Change the system MTU for routed ports. You can also set the maximum MTU to be advertised by the routing protocols that support the configured MTU size. The system routing MTU is the maximum MTU for routed packets and is also the maximum MTU that the switch advertises in routing updates for protocols such as OSPF. The range is from 1500 to the system jumbo MTU value (in bytes).</td>
</tr>
<tr>
<td>Step 4 system mtu</td>
<td>(Optional) Change the MTU size for all interfaces. The range is 1500 to 1998 bytes; the default is 1500 bytes.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>Save your entries in the configuration file.</td>
</tr>
<tr>
<td>Step 7 reload</td>
<td>Reload the operating system.</td>
</tr>
<tr>
<td>Step 8 show system mtu</td>
<td>Verify your settings.</td>
</tr>
</tbody>
</table>

If you enter a value that is outside the allowed range for the specific type of interface, the value is not accepted.

This example shows how to set the maximum packet size for a Gigabit Ethernet port to 7500 bytes:

```
Switch(config)# system mtu jumbo 7500
Switch(config)# exit
Switch# reload
```

This example shows the response when you try to set Gigabit Ethernet interfaces to an out-of-range number:

```
Switch(config)# system mtu jumbo 25000
^A
% Invalid input detected at '^' marker.
```
Monitoring and Maintaining the Interfaces

These sections contain interface monitoring and maintenance information:

- Monitoring Interface Status, page 11-28
- Clearing and Resetting Interfaces and Counters, page 11-29
- Shutting Down and Restarting the Interface, page 11-29

Monitoring Interface Status

Commands entered at the privileged EXEC prompt display information about the interface, including the versions of the software and the hardware, the configuration, and statistics about the interfaces. Table 11-3 lists some of these interface monitoring commands. (You can display the full list of show commands by using the show ? command at the privileged EXEC prompt.) These commands are fully described in the Cisco IOS Interface Command Reference, Release 12.2.

Table 11-4  Show Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces [interface-id]</td>
<td>Display the status and configuration of all interfaces or a specific interface.</td>
</tr>
<tr>
<td>show interfaces interface-id status [err-disabled]</td>
<td>Display interface status or a list of interfaces in the error-disabled state.</td>
</tr>
<tr>
<td>show interfaces [interface-id] switchport</td>
<td>Display administrative and operational status of switching (nonrouting) ports. You can use this command to find out if a port is in routing or in switching mode.</td>
</tr>
<tr>
<td>show interfaces [interface-id] description</td>
<td>Display the description configured on an interface or all interfaces and the interface status.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td>Display the usability status of all interfaces configured for IP routing or the specified interface.</td>
</tr>
<tr>
<td>show interface [interface-id] stats</td>
<td>Display the input and output packets by the switching path for the interface.</td>
</tr>
<tr>
<td>show interfaces interface-id</td>
<td>(Optional) Display speed and duplex on the interface.</td>
</tr>
<tr>
<td>show interfaces transceiver properties</td>
<td>(Optional) Display temperature, voltage, or amount of current on the interface.</td>
</tr>
<tr>
<td>show interfaces [interface-id] [[transceiver properties</td>
<td>detail]] module number</td>
</tr>
<tr>
<td>show running-config interface [interface-id]</td>
<td>Display the running configuration in RAM for the interface.</td>
</tr>
<tr>
<td>show version</td>
<td>Display the hardware configuration, software version, the names and sources of configuration files, and the boot images.</td>
</tr>
<tr>
<td>show controllers ethernet-controller interface-id phy</td>
<td>Display the operational state of the auto-MDI feature on the interface.</td>
</tr>
</tbody>
</table>
Clearing and Resetting Interfaces and Counters

Table 11-4 lists the privileged EXEC mode `clear` commands that you can use to clear counters and reset interfaces.

Table 11-5  Clear Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear counters [interface-id]</code></td>
<td>Clear interface counters.</td>
</tr>
<tr>
<td><code>clear interface interface-id</code></td>
<td>Reset the hardware logic on an interface.</td>
</tr>
<tr>
<td>`clear line [number</td>
<td>console 0</td>
</tr>
</tbody>
</table>

To clear the interface counters shown by the `show interfaces` privileged EXEC command, use the `clear counters` privileged EXEC command. The `clear counters` command clears all current interface counters from the interface unless you specify optional arguments that clear only a specific interface type from a specific interface number.

Note
The `clear counters` privileged EXEC command does not clear counters retrieved by using Simple Network Management Protocol (SNMP), but only those seen with the `show interface` privileged EXEC command.

Shutting Down and Restarting the Interface

Shutting down an interface disables all functions on the specified interface and marks the interface as unavailable on all monitoring command displays. This information is communicated to other network servers through all dynamic routing protocols. The interface is not mentioned in any routing updates.

Beginning in privileged EXEC mode, follow these steps to shut down an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>`interface {vlan vlan-id}</td>
<td>{gigabitethernet interface-id}</td>
</tr>
<tr>
<td><code>shutdown</code></td>
<td>Shut down an interface.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entry.</td>
</tr>
</tbody>
</table>

Use the `no shutdown` interface configuration command to restart the interface.

To verify that an interface is disabled, enter the `show interfaces` privileged EXEC command. A disabled interface is shown as `administratively down` in the display.
Configuring Smartports Macros

This chapter describes how to configure and apply Smartports macros on the switch.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:
- Understanding Smartports Macros, page 12-1
- Configuring Smartports Macros, page 12-2
- Displaying Smartports Macros, page 12-8

Understanding Smartports Macros

Smartports macros provide a convenient way to save and share common configurations. You can use Smartports macros to enable features and settings based on the location of a switch in the network and for mass configuration deployments across the network.

Each Smartports macro is a set of command-line interface (CLI) commands that you define. Smartports macros do not contain new CLI commands; they are simply a group of existing CLI commands.

When you apply a Smartports macro on an interface, the CLI commands within the macro are configured on the interface. When the macro is applied to an interface, the existing interface configurations are not lost. The new commands are added to the interface and are saved in the running configuration file.

There are Cisco-default Smartports macros embedded in the switch software (see Table 12-1). You can display these macros and the commands they contain by using the `show parser macro` user EXEC command.

<table>
<thead>
<tr>
<th>Macro Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco-global</td>
<td>Use this global configuration macro to enable rapid PVST+, loop guard, and dynamic port error recovery for link state failures.</td>
</tr>
<tr>
<td>cisco-desktop</td>
<td>Use this interface configuration macro for increased network security and reliability when connecting a desktop device, such as a PC, to a switch port.</td>
</tr>
</tbody>
</table>
Configuring Smartports Macros

You can create a new Smartports macro or use an existing macro as a template to create a new macro that is specific to your application. After you create the macro, you can apply it globally to a switch or to a switch interface or range of interfaces.

These sections contain this configuration information:

- Default Smartports Macro Configuration, page 12-2
- Smartports Macro Configuration Guidelines, page 12-2
- Creating Smartports Macros, page 12-4
- Applying Smartports Macros, page 12-5
- Applying Cisco-Default Smartports Macros, page 12-6

Default Smartports Macro Configuration

There are no Smartports macros enabled.

Smartports Macro Configuration Guidelines

Follow these guidelines when configuring macros on your switch:

- When creating a macro, do not use the `exit` or `end` commands or change the command mode by using `interface interface-id`. This could cause commands that follow `exit`, `end`, or `interface interface-id` to execute in a different command mode.
- When creating a macro, all CLI commands should be in the same configuration mode.
- When creating a macro that requires the assignment of unique values, use the `parameter value` keywords to designate values specific to the interface. Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of...
a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

- Macro names are case sensitive. For example, the commands `macro name Sample-Macro` and `macro name sample-macro` will result in two separate macros.

- Some macros might contain keywords that require a parameter value. You can use the `macro global apply macro-name ?` global configuration command or the `macro apply macro-name ?` interface configuration command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

- When a macro is applied globally to a switch or to a switch interface, all existing configuration on the interface is retained. This is helpful when applying an incremental configuration.

- If you modify a macro definition by adding or deleting commands, the changes are not reflected on the interface where the original macro was applied. You need to reapply the updated macro on the interface to apply the new or changed commands.

- You can use the `macro global trace macro-name` global configuration command or the `macro trace macro-name` interface configuration command to apply and debug a macro to find any syntax or configuration errors. If a command fails because of a syntax error or a configuration error, the macro continues to apply the remaining commands.

- Some CLI commands are specific to certain interface types. If a macro is applied to an interface that does not accept the configuration, the macro will fail the syntax check or the configuration check, and the switch will return an error message.

- Applying a macro to an interface range is the same as applying a macro to a single interface. When you use an interface range, the macro is applied sequentially to each interface within the range. If a macro command fails on one interface, it is still applied to the remaining interfaces.

- When you apply a macro to a switch or a switch interface, the macro name is automatically added to the switch or interface. You can display the applied commands and macro names by using the `show running-config` user EXEC command.

There are Cisco-default Smartports macros embedded in the switch software (see Table 12-1). You can display these macros and the commands they contain by using the `show parser macro` user EXEC command.

Follow these guidelines when you apply a Cisco-default Smartports macro on an interface:

- Display all macros on the switch by using the `show parser macro` user EXEC command. Display the contents of a specific macro by using the `show parser macro macro-name` user EXEC command.

- Keywords that begin with `$` mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the `parameter value` keywords.

The Cisco-default macros use the `$` character to help identify required keywords. There is no restriction on using the `$` character to define keywords when you create a macro.
Creating Smartports Macros

Beginning in privileged EXEC mode, follow these steps to create a Smartports macro:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>macro name macro-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show parser macro name macro-name</td>
</tr>
</tbody>
</table>

The no form of the macro name global configuration command only deletes the macro definition. It does not affect the configuration of those interfaces on which the macro is already applied.

This example shows how to create a macro that defines the switchport access VLAN and the number of secure MAC addresses and also includes two help string keywords by using # macro keywords:

```
Switch(config)# macro name test
switchport access vlan $VLANID
switchport port-security maximum $MAX
#macro keywords $VLANID $MAX
@
```
## Applying Smartports Macros

Beginning in privileged EXEC mode, follow these steps to apply a Smartports macro:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><strong>macro global</strong> {<strong>apply</strong></td>
<td><strong>trace</strong>} <strong>macro-name</strong> {<strong>parameter</strong> {<strong>value</strong>}} {<strong>parameter</strong> {<strong>value</strong>}} {<strong>parameter</strong> {<strong>value</strong>}}</td>
</tr>
<tr>
<td></td>
<td><strong>interface</strong> interface-id</td>
<td>(Optional) Enter interface configuration mode, and specify the interface on which to apply the macro.</td>
</tr>
<tr>
<td></td>
<td><strong>default interface</strong> interface-id</td>
<td>(Optional) Clear all configuration from the specified interface.</td>
</tr>
<tr>
<td>6</td>
<td><strong>macro</strong> {<strong>apply</strong></td>
<td><strong>trace</strong>} <strong>macro-name</strong> {<strong>parameter</strong> {<strong>value</strong>}} {<strong>parameter</strong> {<strong>value</strong>}} {<strong>parameter</strong> {<strong>value</strong>}}</td>
</tr>
<tr>
<td>7</td>
<td><strong>macro description</strong> text</td>
<td>(Optional) Enter a description about the macro that is applied to the interface.</td>
</tr>
<tr>
<td>8</td>
<td><strong>end</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>9</td>
<td><strong>show parser macro description</strong> {<strong>interface</strong> interface-id}</td>
<td>Verify that the macro is applied to the interface.</td>
</tr>
<tr>
<td>10</td>
<td><strong>copy running-config startup-config</strong></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

You can delete a global macro-applied configuration on a switch only by entering the **no** version of each command that is in the macro. You can delete a macro-applied configuration on an interface by entering the **default interface** interface-id interface configuration command.
This example shows how to apply the user-created macro called **snmp**, to set the hostname address to **test-server**, and to set the IP precedence value to **7**:

```
Switch(config)# macro global apply snmp ADDRESS test-server VALUE 7
```

This example shows how to debug the user-created macro called **snmp** by using the **macro global trace** global configuration command to find any syntax or configuration errors in the macro when it is applied to the switch.

```
Switch(config)# macro global trace snmp VALUE 7
Applying command...'snmp-server enable traps port-security'
Applying command...'snmp-server enable traps linkup'
Applying command...'snmp-server enable traps linkdown'
Applying command...'snmp-server host'
%Error Unknown error.
Applying command...'snmp-server ip precedence 7'
```

This example shows how to apply the user-created macro called **desktop-config** and to verify the configuration.

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# macro apply desktop-config
Switch(config-if)# end
Switch# show parser macro description
Interface Macro Description
Gi1/0/2 desktop-config
```

This example shows how to apply the user-created macro called **desktop-config** and to replace all occurrences of VLAN 1 with VLAN 25:

```
Switch(config-if)# macro apply desktop-config vlan 25
```

### Applying Cisco-Default Smartports Macros

Beginning in privileged EXEC mode, follow these steps to apply a Smartports macro:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>show parser macro</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>show parser macro <strong>macro-name</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>configure terminal <strong>macro-name</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>macro global</strong> {<strong>apply</strong></td>
</tr>
<tr>
<td></td>
<td><strong>trace</strong>}</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>interface <strong>interface-id</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>default interface <strong>interface-id</strong></td>
</tr>
</tbody>
</table>
## Chapter 12 Configuring Smartports Macros

### Configuring Smartports Macros

You can delete a global macro-applied configuration on a switch only by entering the **no** version of each command that is in the macro. You can delete a macro-applied configuration on an interface by entering the **default interface interface-id** interface configuration command.

This example shows how to display the **cisco-desktop** macro, how to apply the macro, and to set the access VLAN ID to 25 on an interface:

```
Switch# show parser macro cisco-desktop

Macro name : cisco-desktop
Macro type : default

Basic interface - Enable data VLAN only
Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

Enable port security limiting port to a single
MAC address -- that of desktop
switchport port-security
switchport port-security maximum 1

Ensure port-security age is greater than one minute
and use inactivity timer
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity

Configure port as an edge network port
spanning-tree portfast
spanning-tree bpduguard enable

Switch#
Switch# configure terminal
Switch(config)# gigabitethernet1/0/4
Switch(config-if)# macro apply cisco-desktop $AVID 25
```

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**macro {apply</td>
<td>trace} macro-name**&lt;br&gt;[<strong>parameter {value}]</strong> [<strong>parameter {value}]</strong></td>
<td>Append the Cisco-default macro with the required values by using the <strong>parameter value</strong> keywords, and apply the macro to the interface. Keywords that begin with $ mean that a unique parameter value is required. You can use the <strong>macro apply macro-name</strong>? command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.</td>
</tr>
</tbody>
</table>

| Step 8 | end | Return to privileged EXEC mode. |

| Step 9 | show running-config interface interface-id | Verify that the macro is applied to an interface. |

| Step 10 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**macro apply</td>
<td>macro-name**&lt;br&gt;[<strong>parameter {value}]</strong> [<strong>parameter {value}]</strong></td>
</tr>
</tbody>
</table>

You can delete a global macro-applied configuration on a switch only by entering the **no** version of each command that is in the macro. You can delete a macro-applied configuration on an interface by entering the **default interface interface-id** interface configuration command.
Displaying Smartports Macros

To display the Smartports macros, use one or more of the privileged EXEC commands in Table 12-2.

Table 12-2 Commands for Displaying Smartports Macros

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show parser macro</td>
<td>Displays all configured macros.</td>
</tr>
<tr>
<td>show parser macro name macro-name</td>
<td>Displays a specific macro.</td>
</tr>
<tr>
<td>show parser macro brief</td>
<td>Displays the configured macro names.</td>
</tr>
<tr>
<td>show parser macro description [interface interface-id]</td>
<td>Displays the macro description for all interfaces or for a specified interface.</td>
</tr>
</tbody>
</table>
CHAPTER 13

Configuring VLANs

This chapter describes how to configure normal-range VLANs (VLAN IDs 1 to 1005) and extended-range VLANs (VLAN IDs 1006 to 4094) on the switch. It includes information about VLAN membership modes, VLAN configuration modes, VLAN trunks, and dynamic VLAN assignment from a VLAN Membership Policy Server (VMPS). Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note: For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

The chapter consists of these sections:
- Understanding VLANs, page 13-1
- Configuring Normal-Range VLANs, page 13-4
- Configuring Extended-Range VLANs, page 13-11
- Displaying VLANs, page 13-14
- Configuring VLAN Trunks, page 13-15
- Configuring VMPS, page 13-26

Understanding VLANs

A VLAN is a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment. Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in the VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router or a switch supporting fallback bridging, as shown in Figure 13-1. In a switch stack, VLANs can be formed with ports across the stack. Because a VLAN is considered a separate logical network, it contains its own bridge Management Information Base (MIB) information and can support its own implementation of spanning tree. See Chapter 18, “Configuring STP.”

Note: Before you create VLANs, you must decide whether to use VLAN Trunking Protocol (VTP) to maintain global VLAN configuration for your network. For more information on VTP, see Chapter 14, “Configuring VTP.”
Figure 13-1 shows an example of VLANs segmented into logically defined networks.

VLANs are often associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. Interface VLAN membership on the switch is assigned manually on an interface-by-interface basis. When you assign switch interfaces to VLANs by using this method, it is known as interface-based, or static, VLAN membership.

Traffic between VLANs must be routed or fallback bridged. The switch can route traffic between VLANs by using switch virtual interfaces (SVIs). An SVI must be explicitly configured and assigned an IP address to route traffic between VLANs. For more information, see the “Switch Virtual Interfaces” section on page 11-5 and the “Configuring Layer 3 Interfaces” section on page 11-24.

Note

If you plan to configure many VLANs on the switch and to not enable routing, you can use the sdm prefer vlan global configuration command to set the Switch Database Management (sdm) feature to the VLAN template, which configures system resources to support the maximum number of unicast MAC addresses. For more information on the SDM templates, see Chapter 8, “Configuring SDM Templates,” or see the sdm prefer command in the command reference for this release.

Supported VLANs

The switch supports VLANs in VTP client, server, and transparent modes. VLANs are identified by a number from 1 to 4094. VLAN IDs 1002 through 1005 are reserved for Token Ring and FDDI VLANs.

VTP version 1 and version 2 support only normal-range VLANs (VLAN IDs 1 to 1005). In these versions, the switch must be in VTP transparent mode when you create VLAN IDs from 1006 to 4094. Cisco IOS Release 12.2(52)SE and later support VTP version 3. VTP version 3 supports the entire
VLAN range (VLANs 1 to 4094). Extended range VLANs (VLANs 1006 to 4094) are supported only in VTP version 3. You cannot convert from VTP version 3 to VTP version 2 if extended VLANs are configured in the domain.

Although the switch or switch stack supports a total of 1005 (normal range and extended range) VLANs, the number of routed ports, SVIs, and other configured features affects the use of the switch hardware.

The switch supports per-VLAN spanning-tree plus (PVST+) or rapid PVST+ with a maximum of 128 spanning-tree instances. One spanning-tree instance is allowed per VLAN. See the “Normal-Range VLAN Configuration Guidelines” section on page 13-6 for more information about the number of spanning-tree instances and the number of VLANs. The switch supports IEEE 802.1Q trunking for sending VLAN traffic over Ethernet ports.

### VLAN Port Membership Modes

You configure a port to belong to a VLAN by assigning a membership mode that specifies the kind of traffic the port carries and the number of VLANs to which it can belong. Table 13-1 lists the membership modes and membership and VTP characteristics.

<table>
<thead>
<tr>
<th>Membership Mode</th>
<th>VLAN Membership Characteristics</th>
<th>VTP Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static-access</td>
<td>A static-access port can belong to one VLAN and is manually assigned to that VLAN. For more information, see the “Assigning Static-Access Ports to a VLAN” section on page 13-10.</td>
<td>VTP is not required. If you do not want VTP to globally propagate information, set the VTP mode to transparent. To participate in VTP, there must be at least one trunk port on the switch or the switch stack connected to a trunk port of a second switch or switch stack.</td>
</tr>
<tr>
<td>Trunk (IEEE 802.1Q)</td>
<td>A trunk port is a member of all VLANs by default, including extended-range VLANs, but membership can be limited by configuring the allowed-VLAN list. You can also modify the pruning-eligible list to block flooded traffic to VLANs on trunk ports that are included in the list. For information about configuring trunk ports, see the “Configuring an Ethernet Interface as a Trunk Port” section on page 13-18.</td>
<td>VTP is recommended but not required. VTP maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP exchanges VLAN configuration messages with other switches over trunk links.</td>
</tr>
<tr>
<td>Dynamic access</td>
<td>A dynamic-access port can belong to one VLAN (VLAN ID 1 to 4094) and is dynamically assigned by a VMPS. The VMPS can be a Catalyst 5000 or Catalyst 6500 series switch, for example, but never a blade switch. The switch is a VMPS client. You can have dynamic-access ports and trunk ports on the same switch, but you must connect the dynamic-access port to an end station or hub and not to another switch. For configuration information, see the “Configuring Dynamic-Access Ports on VMPS Clients” section on page 13-29.</td>
<td>VTP is required. Configure the VMPS and the client with the same VTP domain name. To participate in VTP, at least one trunk port on the switch or a switch stack must be connected to a trunk port of a second switch or switch stack.</td>
</tr>
</tbody>
</table>
### Configuring Normal-Range VLANs

Normal-range VLANs are VLANs with VLAN IDs 1 to 1005. If the switch is in VTP server or VTP transparent mode, you can add, modify or remove configurations for VLANs 2 to 1001 in the VLAN database. (VLAN IDs 1 and 1002 to 1005 are automatically created and cannot be removed.)

In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create extended-range VLANs (VLANs with IDs from 1006 to 4094), but these VLANs are not saved in the VLAN database. VTP version 3 supports extended-range VLANs in VTP server and transparent mode. See the “Configuring Extended-Range VLANs” section on page 13-11.

Configurations for VLAN IDs 1 to 1005 are written to the file vlan.dat (VLAN database), and you can display them by entering the `show vlan` privileged EXEC command. The `vlan.dat` file is stored in flash memory. The `vlan.dat` file is stored in flash memory on the stack master. Stack members have a `vlan.dat` file that is consistent with the stack master.

### Table 13-1  Port Membership Modes and Characteristics (continued)

<table>
<thead>
<tr>
<th>Membership Mode</th>
<th>VLAN Membership Characteristics</th>
<th>VTP Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice VLAN</td>
<td>A voice VLAN port is an access port attached to a Cisco IP Phone, configured to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. For more information about voice VLAN ports, see Chapter 15, “Configuring Voice VLAN.”</td>
<td>VTP is not required; it has no effect on a voice VLAN.</td>
</tr>
<tr>
<td>Private VLAN</td>
<td>A private VLAN port is a host or promiscuous port that belongs to a private VLAN primary or secondary VLAN. For information about private VLANs, see Chapter 16, “Configuring Private VLANs.”</td>
<td>In VTP versions 1 and 2, the switch must be in VTP transparent mode when you configure private VLANs. When private VLANs are configured on the switch, do not change VTP mode from transparent to client or server mode. VTP version 3 supports private VLANs in any mode.</td>
</tr>
<tr>
<td>Tunnel (dot1q-tunnel)</td>
<td>Tunnel ports are used for IEEE 802.1Q tunneling to maintain customer VLAN integrity across a service-provider network. You configure a tunnel port on an edge switch in the service-provider network and connect it to an IEEE 802.1Q trunk port on a customer interface, creating an asymmetric link. A tunnel port belongs to a single VLAN that is dedicated to tunneling. For more information about tunnel ports, see Chapter 17, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling.”</td>
<td>VTP is not required. You manually assign the tunnel port to a VLAN by using the <code>switchport access vlan</code> interface configuration command.</td>
</tr>
</tbody>
</table>

For more detailed definitions of access and trunk modes and their functions, see Table 13-4 on page 13-16.

When a port belongs to a VLAN, the switch learns and manages the addresses associated with the port on a per-VLAN basis. For more information, see the “Managing the MAC Address Table” section on page 5-19.
You can cause inconsistency in the VLAN database if you attempt to manually delete the vlan.dat file. If you want to modify the VLAN configuration, use the commands described in these sections and in the command reference for this release. To change the VTP configuration, see Chapter 14, “Configuring VTP.”

You use the interface configuration mode to define the port membership mode and to add and remove ports from VLANs. The results of these commands are written to the running-configuration file, and you can display the file by entering the `show running-config` privileged EXEC command.

You can set these parameters when you create a new normal-range VLAN or modify an existing VLAN in the VLAN database:

- VLAN ID
- VLAN name
- VLAN type (Ethernet, Fiber Distributed Data Interface [FDDI], FDDI network entity title [NET], TrBRF, or TrCRF, Token Ring, Token Ring-Net)
- VLAN state (active or suspended)
- Maximum transmission unit (MTU) for the VLAN
- Security Association Identifier (SAID)
- Bridge identification number for TrBRF VLANs
- Ring number for FDDI and TrCRF VLANs
- Parent VLAN number for TrCRF VLANs
- Spanning Tree Protocol (STP) type for TrCRF VLANs
- VLAN number to use when translating from one VLAN type to another

This section does not provide configuration details for most of these parameters. For complete information on the commands and parameters that control VLAN configuration, see the command reference for this release.

These sections contain normal-range VLAN configuration information:

- Token Ring VLANs, page 13-6
- Normal-Range VLAN Configuration Guidelines, page 13-6
- Configuring Normal-Range VLANs, page 13-7
- The configurations of VLAN IDs 1 to 1005 are always saved in the VLAN database (vlan.dat file). If the VTP mode is transparent, they are also saved in the switch running configuration file. You can enter the `copy running-config startup-config` privileged EXEC command to save the configuration in the startup configuration file. In a switch stack, the whole stack uses the same vlan.dat file and running configuration. To display the VLAN configuration, enter the `show vlan` privileged EXEC command., page 13-7
- Default Ethernet VLAN Configuration, page 13-8
- Creating or Modifying an Ethernet VLAN, page 13-8
- Deleting a VLAN, page 13-9
- Assigning Static-Access Ports to a VLAN, page 13-10
Token Ring VLANs

Although the switch does not support Token Ring connections, a remote device such as a Catalyst 5000 series switch with Token Ring connections could be managed from one of the supported switches. Switches running VTP Version 2 advertise information about these Token Ring VLANs:

- Token Ring TrBRF VLANs
- Token Ring TrCRF VLANs

For more information on configuring Token Ring VLANs, see the Catalyst 5000 Series Software Configuration Guide.

Normal-Range VLAN Configuration Guidelines

Follow these guidelines when creating and modifying normal-range VLANs in your network:

- The switch supports 1005 VLANs in VTP client, server, and transparent modes.
- Normal-range VLANs are identified with a number between 1 and 1001. VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs.
- VLAN configuration for VLANs 1 to 1005 are always saved in the VLAN database. If the VTP mode is transparent, VTP and VLAN configuration are also saved in the switch running configuration file.
- With VTP versions 1 and 2, the switch supports VLAN IDs 1006 through 4094 only in VTP transparent mode (VTP disabled). These are extended-range VLANs and configuration options are limited. Extended-range VLANs are not saved in the VLAN database and are not propagated. VTP version 3 supports extended range VLAN (VLANs 1006 to 4094) database propagation. If extended VLANs are configured, you cannot convert from VTP version 3 to version 1 or 2. See the “Configuring Extended-Range VLANs” section on page 13-11.
- Before you can create a VLAN, the switch must be in VTP server mode or VTP transparent mode. If the switch is a VTP server, you must define a VTP domain or VTP will not function.
- The switch does not support Token Ring or FDDI media. The switch does not forward FDDI, FDDI-Net, TrCRF, or TrBRF traffic, but it does propagate the VLAN configuration through VTP.
- The switch supports 128 spanning-tree instances. If a switch has more active VLANs than supported spanning-tree instances, spanning tree can be enabled on 128 VLANs and is disabled on the remaining VLANs. If you have already used all available spanning-tree instances on a switch, adding another VLAN anywhere in the VTP domain creates a VLAN on that switch that is not running spanning-tree. If you have the default allowed list on the trunk ports of that switch (which is to allow all VLANs), the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that would not be broken, particularly if there are several adjacent switches that all have run out of spanning-tree instances. You can prevent this possibility by setting allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances.

If the number of VLANs on the switch exceeds the number of supported spanning-tree instances, we recommend that you configure the IEEE 802.1s Multiple STP (MSTP) on your switch to map multiple VLANs to a single spanning-tree instance. For more information about MSTP, see Chapter 19, “Configuring MSTP.”
• When a switch in a stack learns a new VLAN or deletes or modifies an existing VLAN (either through VTP over network ports or through the CLI), the VLAN information is communicated to all stack members.

• When a switch joins a stack or when stacks merge, VTP information (the vlan.dat file) on the new switches will be consistent with the stack master.

### Configuring Normal-Range VLANs

You configure VLANs in `vlan` global configuration command by entering a VLAN ID. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify that VLAN. You can use the default VLAN configuration (Table 13-2) or enter multiple commands to configure the VLAN. For more information about commands available in this mode, see the `vlan` global configuration command description in the command reference for this release. When you have finished the configuration, you must exit VLAN configuration mode for the configuration to take effect. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

The configurations of VLAN IDs 1 to 1005 are always saved in the VLAN database (vlan.dat file). If the VTP mode is transparent, they are also saved in the switch running configuration file. You can enter the `copy running-config startup-config` privileged EXEC command to save the configuration in the startup configuration file. In a switch stack, the whole stack uses the same vlan.dat file and running configuration. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

When you save VLAN and VTP information (including extended-range VLAN configuration information) in the startup configuration file and reboot the switch, the switch configuration is selected as follows:

• If the VTP mode is transparent in the startup configuration, and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.

• If the VTP mode or domain name in the startup configuration does not match the VLAN database, the domain name and VTP mode and configuration for the first 1005 VLANs use the VLAN database information.

• In VTP versions 1 and 2, if VTP mode is server, the domain name and VLAN configuration for only the first 1005 VLANs use the VLAN database information. VTP version 3 also supports VLANs 1006 to 4094.
Default Ethernet VLAN Configuration

Table 13-2 shows the default configuration for Ethernet VLANs.

The switch supports Ethernet interfaces exclusively. Because FDDI and Token Ring VLANs are not locally supported, you only configure FDDI and Token Ring media-specific characteristics for VTP global advertisements to other switches.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1</td>
<td>1 to 4094.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td>Extended-range VLANs (VLAN IDs 1006 to 4094) are not saved in the VLAN database.</td>
</tr>
<tr>
<td></td>
<td>VLANxxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number</td>
<td>No range</td>
</tr>
<tr>
<td>IEEE 802.10 SAID</td>
<td>100001 (100000 plus the VLAN ID)</td>
<td>1 to 4294967294</td>
</tr>
<tr>
<td>MTU size</td>
<td>1500</td>
<td>1500 to 18190</td>
</tr>
<tr>
<td>Translational bridge 1</td>
<td>0</td>
<td>0 to 1005</td>
</tr>
<tr>
<td>Translational bridge 2</td>
<td>0</td>
<td>0 to 1005</td>
</tr>
<tr>
<td>VLAN state</td>
<td>active</td>
<td>active, suspend</td>
</tr>
<tr>
<td>Remote SPAN</td>
<td>disabled</td>
<td>enabled, disabled</td>
</tr>
<tr>
<td>Private VLANs</td>
<td>none configured</td>
<td>2 to 1001, 1006 to 4094.</td>
</tr>
</tbody>
</table>

Creating or Modifying an Ethernet VLAN

Each Ethernet VLAN in the VLAN database has a unique, 4-digit ID that can be a number from 1 to 1001. VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs. To create a normal-range VLAN to be added to the VLAN database, assign a number and name to the VLAN.

With VTP version 1 and 2, if the switch is in VTP transparent mode, you can assign VLAN IDs greater than 1006, but they are not added to the VLAN database. See the “Configuring Extended-Range VLANs” section on page 13-11.

For the list of default parameters that are assigned when you add a VLAN, see the “Configuring Normal-Range VLANs” section on page 13-4.
Beginning in privileged EXEC mode, follow these steps to create or modify an Ethernet VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: vlan vlan-id</td>
<td>Enter a VLAN ID, and enter VLAN configuration mode. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify that VLAN.</td>
</tr>
<tr>
<td>Note: The available VLAN ID range for this command is 1 to 4094. For information about adding VLAN IDs greater than 1005 (extended-range VLANs), see the “Configuring Extended-Range VLANs” section on page 13-11.</td>
<td></td>
</tr>
<tr>
<td>Step 3: name vlan-name</td>
<td>(Optional) Enter a name for the VLAN. If no name is entered for the VLAN, the default is to append the “vlan-id” with leading zeros to the word VLAN. For example, VLAN0004 is a default VLAN name for VLAN 4.</td>
</tr>
<tr>
<td>Step 4: mtu mtu-size</td>
<td>(Optional) Change the MTU size (or other VLAN characteristic).</td>
</tr>
<tr>
<td>Step 5: remote-span</td>
<td>(Optional) Configure the VLAN as the RSPAN VLAN for a remote SPAN session. For more information on remote SPAN, see Chapter 30, “Configuring SPAN and RSPAN.”</td>
</tr>
<tr>
<td>Step 6: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7: show vlan {name vlan-name</td>
<td>id vlan-id}</td>
</tr>
<tr>
<td>Step 8: copy running-config startup config</td>
<td>(Optional) If the switch is in VTP transparent mode, the VLAN configuration is saved in the running configuration file as well as in the VLAN database. This saves the configuration in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

To return the VLAN name to the default settings, use the no name, no mtu, or no remote-span VLAN configuration commands.

This example shows how to create Ethernet VLAN 20, name it test20, and add it to the VLAN database:

```
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# name test20
Switch(config-vlan)# end
```

You can also create or modify Ethernet VLANs by using the VLAN database configuration mode.

## Deleting a VLAN

When you delete a VLAN from a switch that is in VTP server mode, the VLAN is removed from the VLAN database for all switches in the VTP domain. When you delete a VLAN from a switch that is in VTP transparent mode, the VLAN is deleted only on that specific switch or a switch stack.

You cannot delete the default VLANs for the different media types: Ethernet VLAN 1 and FDDI or Token Ring VLANs 1002 to 1005.

Caution When you delete a VLAN, any ports assigned to that VLAN become inactive. They remain associated with the VLAN (and thus inactive) until you assign them to a new VLAN.
Beginning in privileged EXEC mode, follow these steps to delete a VLAN on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  no vlan vlan-id</td>
<td>Remove the VLAN by entering the VLAN ID.</td>
</tr>
<tr>
<td>Step 3  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4  show vlan brief</td>
<td>Verify the VLAN removal.</td>
</tr>
<tr>
<td>Step 5  copy running-config startup config</td>
<td>(Optional) If the switch is in VTP transparent mode, the VLAN configuration is saved in the running configuration file as well as in the VLAN database. This saves the configuration in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

### Assigning Static-Access Ports to a VLAN

You can assign a static-access port to a VLAN without having VTP globally propagate VLAN configuration information by disabling VTP (VTP transparent mode).

**Note**

If you assign an interface to a VLAN that does not exist, the new VLAN is created. (See the “Creating or Modifying an Ethernet VLAN” section on page 13-8.)

Beginning in privileged EXEC mode, follow these steps to assign a port to a VLAN in the VLAN database:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  interface interface-id</td>
<td>Enter the interface to be added to the VLAN.</td>
</tr>
<tr>
<td>Step 3  switchport mode access</td>
<td>Define the VLAN membership mode for the port (Layer 2 access port).</td>
</tr>
<tr>
<td>Step 4  switchport access vlan vlan-id</td>
<td>Assign the port to a VLAN. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td>Step 5  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6  show running-config interface interface-id</td>
<td>Verify the VLAN membership mode of the interface.</td>
</tr>
<tr>
<td>Step 7  show interfaces interface-id switchport</td>
<td>Verify your entries in the Administrative Mode and the Access Mode VLAN fields of the display.</td>
</tr>
<tr>
<td>Step 8  copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the **default interface interface-id** interface configuration command.

This example shows how to configure a port as an access port in VLAN 2:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 2
Switch(config-if)# end
```
Configuring Extended-Range VLANs

With VTP version 1 and version 2, when the switch is in VTP transparent mode (VTP disabled), you can create extended-range VLANs (in the range 1006 to 4094). VTP version supports extended-range VLANs in server or transparent move. Extended-range VLANs enable service providers to extend their infrastructure to a greater number of customers. The extended-range VLAN IDs are allowed for any switchport commands that allow VLAN IDs.

With VTP version 1 or 2, extended-range VLAN configurations are not stored in the VLAN database, but because VTP mode is transparent, they are stored in the switch running configuration file, and you can save the configuration in the startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

Although the switch supports 4094 VLAN IDs, see the “Supported VLANs” section on page 13-2 for the actual number of VLANs supported.

These sections contain extended-range VLAN configuration information:

- Default VLAN Configuration, page 13-11
- Extended-Range VLAN Configuration Guidelines, page 13-11
- Creating an Extended-Range VLAN, page 13-12
- Creating an Extended-Range VLAN with an Internal VLAN ID, page 13-13

Default VLAN Configuration

See Table 13-2 on page 13-8 for the default configuration for Ethernet VLANs. You can change only the MTU size, private VLAN, and the remote SPAN configuration state on extended-range VLANs; all other characteristics must remain at the default state.

Extended-Range VLAN Configuration Guidelines

Follow these guidelines when creating extended-range VLANs:

- VLAN IDs in the extended range are not saved in the VLAN database and are not recognized by VTP.
- You cannot include extended-range VLANs in the pruning eligible range.
- In VTP version 1 and 2, a switch must be in VTP transparent mode when you create extended-range VLANs. If VTP mode is server or client, an error message is generated, and the extended-range VLAN is rejected. VTP version 3 supports extended VLANs in server and transparent modes.
- For VTP version 1 or 2, you can set the VTP mode to transparent in global configuration mode or in VLAN database configuration mode. See the “Configuring VTP Mode” section on page 14-11. You should save this configuration to the startup configuration so that the switch boots up in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets.
- If you create extended-range VLANs in VTP version 3, you cannot convert to VTP version 1 or 2.
- STP is enabled by default on extended-range VLANs, but you can disable it by using the `no spanning-tree vlan vlan-id` global configuration command. When the maximum number of spanning-tree instances are on the switch, spanning tree is disabled on any newly created VLANs. If the number of VLANs on the switch exceeds the maximum number of spanning-tree instances,
we recommend that you configure the IEEE 802.1s Multiple STP (MSTP) on your switch to map multiple VLANs to a single spanning-tree instance. For more information about MSTP, see Chapter 19, “Configuring MSTP.”

- Each routed port on the switch creates an internal VLAN for its use. These internal VLANs use extended-range VLAN numbers, and the internal VLAN ID cannot be used for an extended-range VLAN. If you try to create an extended-range VLAN with a VLAN ID that is already allocated as an internal VLAN, an error message is generated, and the command is rejected.
  - Because internal VLAN IDs are in the lower part of the extended range, we recommend that you create extended-range VLANs beginning from the highest number (4094) and moving to the lowest (1006) to reduce the possibility of using an internal VLAN ID.
  - Before configuring extended-range VLANs, enter the `show vlan internal usage` privileged EXEC command to see which VLANs have been allocated as internal VLANs.
  - If necessary, you can shut down the routed port assigned to the internal VLAN, which frees up the internal VLAN, and then create the extended-range VLAN and re-enable the port, which then uses another VLAN as its internal VLAN. See the “Creating an Extended-Range VLAN with an Internal VLAN ID” section on page 13-13.

- Although the switch or switch stack supports a total of 1005 (normal-range and extended-range) VLANs, the number of routed ports, SVIs, and other configured features affects the use of the switch hardware. If you try to create an extended-range VLAN and there are not enough hardware resources available, an error message is generated, and the extended-range VLAN is rejected.

- In a switch stack, the whole stack uses the same running configuration and saved configuration, and extended-range VLAN information is shared across the stack.

### Creating an Extended-Range VLAN

You create an extended-range VLAN in global configuration mode by entering the `vlan` global configuration command with a VLAN ID from 1006 to 4094. This command accesses the VLAN configuration mode. The extended-range VLAN has the default Ethernet VLAN characteristics (see Table 13-2) and the MTU size, private VLAN, and RSPAN configuration are the only parameters you can change. See the description of the `vlan` global configuration command in the command reference for the default settings of all parameters. In VTP version 1 or 2, if you enter an extended-range VLAN ID when the switch is not in VTP transparent mode, an error message is generated when you exit VLAN configuration mode, and the extended-range VLAN is not created.

Extended-range VLANs are not saved in the VLAN database; they are saved in the switch running configuration file. You can save the extended-range VLAN configuration in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

!!! Note

Before you create an extended-range VLAN, you can verify that the VLAN ID is not used internally by entering the `show vlan internal usage` privileged EXEC command. If the VLAN ID is used internally and you want to free it up, go to the “Creating an Extended-Range VLAN with an Internal VLAN ID” section on page 13-13 before creating the extended-range VLAN.
Beginning in privileged EXEC mode, follow these steps to create an extended-range VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>vtp mode transparent</td>
</tr>
<tr>
<td></td>
<td>Configure the switch for VTP transparent mode, disabling VTP.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> This step is not required for VTP version 3.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Enter an extended-range VLAN ID and enter VLAN configuration mode.</td>
</tr>
<tr>
<td></td>
<td>The range is 1006 to 4094.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>mtu mtu-size</td>
</tr>
<tr>
<td></td>
<td>(Optional) Modify the VLAN by changing the MTU size.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Although all VLAN commands appear in the CLI help, only the</td>
</tr>
<tr>
<td></td>
<td>mtu mtu-size, private-vlan, and remote-span commands are supported for</td>
</tr>
<tr>
<td></td>
<td>extended-range VLANs.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>remote-span</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configure the VLAN as the RSPAN VLAN. See the</td>
</tr>
<tr>
<td></td>
<td>“Configuring a VLAN as an RSPAN VLAN” section on page 30-18.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>show vlan id vlan-id</td>
</tr>
<tr>
<td></td>
<td>Verify that the VLAN has been created.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>copy running-config startup config</td>
</tr>
<tr>
<td></td>
<td>Save your entries in the switch startup configuration file. To save</td>
</tr>
<tr>
<td></td>
<td>extended-range VLAN configurations, you need to save the VTP</td>
</tr>
<tr>
<td></td>
<td>transparent mode configuration and the extended-range VLAN</td>
</tr>
<tr>
<td></td>
<td>configuration in the switch startup configuration file. Otherwise, if</td>
</tr>
<tr>
<td></td>
<td>the switch resets, it will default to VTP server mode, and the</td>
</tr>
<tr>
<td></td>
<td>extended-range VLAN IDs will not be saved.</td>
</tr>
</tbody>
</table>

To delete an extended-range VLAN, use the **no vlan vlan-id** global configuration command.

The procedure for assigning static-access ports to an extended-range VLAN is the same as for normal-range VLANs. See the “Assigning Static-Access Ports to a VLAN” section on page 13-10.

This example shows how to create a new extended-range VLAN with all default characteristics, enter VLAN configuration mode, and save the new VLAN in the switch startup configuration file:

```
Switch(config)# vtp mode transparent
Switch(config)# vlan 2000
Switch(config-vlan)# end
Switch# copy running-config startup config
```

**Creating an Extended-Range VLAN with an Internal VLAN ID**

If you enter an extended-range VLAN ID that is already assigned to an internal VLAN, an error message is generated, and the extended-range VLAN is rejected. To manually free an internal VLAN ID, you must temporarily shut down the routed port that is using the internal VLAN ID.
Displaying VLANs

Use the `show vlan` privileged EXEC command to display a list of all VLANs on the switch, including extended-range VLANs. The display includes VLAN status, ports, and configuration information.

Table 13-3 lists the commands for monitoring VLANs.

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces [vlan vlan-id]</td>
<td>Display characteristics for all interfaces or for the specified VLAN configured on the switch.</td>
</tr>
<tr>
<td>show vlan [id vlan-id]</td>
<td>Display parameters for all VLANs or the specified VLAN on the switch.</td>
</tr>
</tbody>
</table>
```

For more details about the show command options and explanations of output fields, see the command reference for this release.
Configuring VLAN Trunks

These sections contain this conceptual information:

- Trunking Overview, page 13-15
- Default Layer 2 Ethernet Interface VLAN Configuration, page 13-17
- Configuring an Ethernet Interface as a Trunk Port, page 13-18
- Configuring Trunk Ports for Load Sharing, page 13-22

Trunking Overview

A trunk is a point-to-point link between one or more Ethernet switch interfaces and another networking device such as a router or a switch. Ethernet trunks carry the traffic of multiple VLANs over a single link, and you can extend the VLANs across an entire network. IEEE 802.1Q is an industry-standard trunking encapsulation.

Figure 13-2 shows a network of switches that are connected by IEEE 802.1Q trunks.

Figure 13-2 Switches in an IEEE 802.1Q Trunking Environment

You can configure a trunk on a single Ethernet interface or on an EtherChannel bundle. For more information about EtherChannel, see Chapter 38, “Configuring EtherChannels and Link-State Tracking.”

Ethernet trunk interfaces support different trunking modes (see Table 13-4). You can set an interface as trunking or nontrunking or to negotiate trunking with the neighboring interface. To autonegotiate trunking, the interfaces must be in the same VTP domain.
Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a Point-to-Point Protocol. However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations.

To avoid this, you should configure interfaces connected to devices that do not support DTP to not forward DTP frames, that is, to turn off DTP.

- If you do not intend to trunk across those links, use the `switchport mode access` interface configuration command to disable trunking.
- To enable trunking to a device that does not support DTP, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands to cause the interface to become a trunk but to not generate DTP frames. Use the `switchport trunk encapsulation dot1q` interface to select the encapsulation type on the trunk port.

You can also specify on DTP interfaces whether the trunk uses IEEE 802.1Q encapsulation or if the encapsulation type is autonegotiated. The DTP supports autonegotiation of IEEE 802.1Q trunks.

---

### Table 13-4  Layer 2 Interface Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport mode access</code></td>
<td>Puts the interface (access port) into permanent nontrunking mode and negotiates to convert the link into a nontrunk link. The interface becomes a nontrunk interface regardless of whether or not the neighboring interface is a trunk interface.</td>
</tr>
<tr>
<td><code>switchport mode dynamic auto</code></td>
<td>Makes the interface able to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to <code>trunk</code> or <code>desirable</code> mode. The default switchport mode for all Ethernet interfaces is <code>dynamic auto</code>.</td>
</tr>
<tr>
<td><code>switchport mode dynamic desirable</code></td>
<td>Makes the interface actively attempt to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to <code>trunk</code>, <code>desirable</code>, or <code>auto</code> mode.</td>
</tr>
<tr>
<td><code>switchport mode trunk</code></td>
<td>Puts the interface into permanent trunking mode and negotiates to convert the neighboring link into a trunk link. The interface becomes a trunk interface even if the neighboring interface is not a trunk interface.</td>
</tr>
<tr>
<td><code>switchport nonegotiate</code></td>
<td>Prevents the interface from generating DTP frames. You can use this command only when the interface switchport mode is <code>access</code> or <code>trunk</code>. You must manually configure the neighboring interface as a trunk interface to establish a trunk link.</td>
</tr>
<tr>
<td><code>switchport mode dot1q-tunnel</code></td>
<td>Configures the interface as a tunnel (nontrunking) port to be connected in an asymmetric link with an IEEE 802.1Q trunk port. The IEEE 802.1Q tunneling is used to maintain customer VLAN integrity across a service provider network. See Chapter 17, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling,” for more information on tunnel ports.</td>
</tr>
<tr>
<td><code>switchport trunk encapsulation negotiate</code></td>
<td>Specifies that the interface negotiate with the neighboring interface become an IEEE 802.1Q trunk, depending on the configuration and capabilities of the neighboring interface. This is the default for the switch.</td>
</tr>
</tbody>
</table>

---

Note: DTP is not supported on private-VLAN ports or tunnel ports.
Note

The switch does not support Layer 3 trunks; you cannot configure subinterfaces or use the `encapsulation` keyword on Layer 3 interfaces. The switch does support Layer 2 trunks and Layer 3 VLAN interfaces, which provide equivalent capabilities.

IEEE 802.1Q Configuration Considerations

IEEE 802.1Q trunks impose these limitations on the trunking strategy for a network:

- In a network of Cisco switches connected through IEEE 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks. Non-Cisco devices might support one spanning-tree instance for all VLANs.

  When you connect a Cisco switch to a non-Cisco device through an IEEE 802.1Q trunk, the Cisco switch combines the spanning-tree instance of the VLAN of the trunk with the spanning-tree instance of the non-Cisco IEEE 802.1Q switch. However, spanning-tree information for each VLAN is maintained by Cisco switches separated by a cloud of non-Cisco IEEE 802.1Q switches. The non-Cisco IEEE 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

- Make sure the native VLAN for an IEEE 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning-tree loops might result.

- Disabling spanning tree on the native VLAN of an IEEE 802.1Q trunk without disabling spanning tree on every VLAN in the network can potentially cause spanning-tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an IEEE 802.1Q trunk or disable spanning tree on every VLAN in the network. Make sure your network is loop-free before disabling spanning tree.

Default Layer 2 Ethernet Interface VLAN Configuration

Table 13-5 shows the default Layer 2 Ethernet interface VLAN configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface mode</td>
<td><code>switchport mode dynamic auto</code></td>
</tr>
<tr>
<td>Trunk encapsulation</td>
<td><code>switchport trunk encapsulation negotiate</code></td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 4094</td>
</tr>
<tr>
<td>VLAN range eligible for pruning</td>
<td>VLANs 2 to 1001</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Native VLAN (for IEEE 802.1Q trunks)</td>
<td>VLAN 1</td>
</tr>
</tbody>
</table>
Configuring an Ethernet Interface as a Trunk Port

Because trunk ports send and receive VTP advertisements, to use VTP you must ensure that at least one trunk port is configured on the switch and that this trunk port is connected to the trunk port of a second switch. Otherwise, the switch cannot receive any VTP advertisements.

These sections contain this configuration information:

- Interaction with Other Features, page 13-18
- Defining the Allowed VLANs on a Trunk, page 13-20
- Changing the Pruning-Eligible List, page 13-21
- Configuring the Native VLAN for Untagged Traffic, page 13-22

Note

By default, an interface is in Layer 2 mode. The default mode for Layer 2 interfaces is `switchport mode dynamic auto`. If the neighboring interface supports trunking and is configured to allow trunking, the link is a Layer 2 trunk or, if the interface is in Layer 3 mode, it becomes a Layer 2 trunk when you enter the `switchport` interface configuration command. By default, trunks negotiate encapsulation.

Interaction with Other Features

Trunking interacts with other features in these ways:

- A trunk port cannot be a secure port.
- A trunk port cannot be a tunnel port.
- Trunk ports can be grouped into EtherChannel port groups, but all trunks in the group must have the same configuration. When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, the switch propagates the setting you entered to all ports in the group:
  - allowed-VLAN list.
  - STP port priority for each VLAN.
  - STP Port Fast setting.
  - trunk status: if one port in a port group ceases to be a trunk, all ports cease to be trunks.
- We recommend that you configure no more than 24 trunk ports in PVST mode and no more than 40 trunk ports in MST mode.
- If you try to enable IEEE 802.1x on a trunk port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to trunk, the port mode is not changed.
- A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable IEEE 802.1x on a dynamic port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to dynamic, the port mode is not changed.
Configuring a Trunk Port

Beginning in privileged EXEC mode, follow these steps to configure a port as a trunk port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk encapsulation {dot1q</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode {dynamic {auto</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>switchport trunk native vlan vlan-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 9</td>
<td>show interfaces interface-id trunk</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the default interface interface-id interface configuration command. To reset all trunking characteristics of a trunking interface to the defaults, use the no switchport trunk interface configuration command. To disable trunking, use the switchport mode access interface configuration command to configure the port as a static-access port.

This example shows how to configure a port as an IEEE 802.1Q trunk. The example assumes that the neighbor interface is configured to support IEEE 802.1Q trunking.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode dynamic desirable
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# end
Defining the Allowed VLANs on a Trunk

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs, 1 to 4094, are allowed on each trunk. However, you can remove VLANs from the allowed list, preventing traffic from those VLANs from passing over the trunk. To restrict the traffic a trunk carries, use the `switchport trunk allowed vlan remove vlan-list` interface configuration command to remove specific VLANs from the allowed list.

Note
VLAN 1 is the default VLAN on all trunk ports in all Cisco switches, and it has previously been a requirement that VLAN 1 always be enabled on every trunk link. You can use the VLAN 1 minimization feature to disable VLAN 1 on any individual VLAN trunk link so that no user traffic (including spanning-tree advertisements) is sent or received on VLAN 1.

To reduce the risk of spanning-tree loops or storms, you can disable VLAN 1 on any individual VLAN trunk port by removing VLAN 1 from the allowed list. When you remove VLAN 1 from a trunk port, the interface continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), DTP, and VTP in VLAN 1.

If a trunk port with VLAN 1 disabled is converted to a nontrunk port, it is added to the access VLAN. If the access VLAN is set to 1, the port will be added to VLAN 1, regardless of the `switchport trunk allowed` setting. The same is true for any VLAN that has been disabled on the port.

A trunk port can become a member of a VLAN if the VLAN is enabled, if VTP knows of the VLAN, and if the VLAN is in the allowed list for the port. When VTP detects a newly enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of the enabled VLAN. When VTP detects a new VLAN and the VLAN is not in the allowed list for a trunk port, the trunk port does not become a member of the new VLAN.

Beginning in privileged EXEC mode, follow these steps to modify the allowed list of a trunk:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>switchport mode trunk</td>
<td>Configure the interface as a VLAN trunk port.</td>
</tr>
<tr>
<td>4</td>
<td>switchport trunk allowed vlan {add</td>
<td>all</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show interfaces interface-id switchport</td>
<td>Verify your entries in the <code>Trunking VLANs Enabled</code> field of the display.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return to the default allowed VLAN list of all VLANs, use the `no switchport trunk allowed vlan` interface configuration command.

This example shows how to remove VLAN 2 from the allowed VLAN list on a port:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk allowed vlan remove 2
Switch(config-if)# end
```

### Changing the Pruning-Eligible List

The pruning-eligible list applies only to trunk ports. Each trunk port has its own eligibility list. VTP pruning must be enabled for this procedure to take effect. The “Enabling VTP Pruning” section on page 14-16 describes how to enable VTP pruning.

Beginning in privileged EXEC mode, follow these steps to remove VLANs from the pruning-eligible list on a trunk port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switchport trunk pruning vlan {add</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default pruning-eligible list of all VLANs, use the `no switchport trunk pruning vlan` interface configuration command.
Configuring the Native VLAN for Untagged Traffic

A trunk port configured with IEEE 802.1Q tagging can receive both tagged and untagged traffic. By default, the switch forwards untagged traffic in the native VLAN configured for the port. The native VLAN is VLAN 1 by default.

Note

The native VLAN can be assigned any VLAN ID.

For information about IEEE 802.1Q configuration issues, see the “IEEE 802.1Q Configuration Considerations” section on page 13-17.

Beginning in privileged EXEC mode, follow these steps to configure the native VLAN on an IEEE 802.1Q trunk:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk native vlan vlan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default native VLAN, VLAN 1, use the no switchport trunk native vlan interface configuration command.

If a packet has a VLAN ID that is the same as the outgoing port native VLAN ID, the packet is sent untagged; otherwise, the switch sends the packet with a tag.

Configuring Trunk Ports for Load Sharing

Load sharing divides the bandwidth supplied by parallel trunks connecting switches. To avoid loops, STP normally blocks all but one parallel link between switches. Using load sharing, you divide the traffic between the links according to which VLAN the traffic belongs.

You configure load sharing on trunk ports by using STP port priorities or STP path costs. For load sharing using STP port priorities, both load-sharing links must be connected to the same switch. For load sharing using STP path costs, each load-sharing link can be connected to the same switch or to two different switches. For more information about STP, see Chapter 18, “Configuring STP.”
Load Sharing Using STP Port Priorities

When two ports on the same switch form a loop, the switch uses the STP port priority to decide which port is enabled and which port is in a blocking state. You can set the priorities on a parallel trunk port so that the port carries all the traffic for a given VLAN. The trunk port with the higher priority (lower values) for a VLAN is forwarding traffic for that VLAN. The trunk port with the lower priority (higher values) for the same VLAN remains in a blocking state for that VLAN. One trunk port sends or receives all traffic for the VLAN.

Figure 13-3 shows two trunks connecting supported switches. In this example, the switches are configured as follows:

- VLANs 8 through 10 are assigned a port priority of 16 on Trunk 1.
- VLANs 3 through 6 retain the default port priority of 128 on Trunk 1.
- VLANs 3 through 6 are assigned a port priority of 16 on Trunk 2.
- VLANs 8 through 10 retain the default port priority of 128 on Trunk 2.

In this way, Trunk 1 carries traffic for VLANs 8 through 10, and Trunk 2 carries traffic for VLANs 3 through 6. If the active trunk fails, the trunk with the lower priority takes over and carries the traffic for all of the VLANs. No duplication of traffic occurs over any trunk port.

Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 13-3.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode on Switch A.</td>
</tr>
<tr>
<td>2</td>
<td>vtp domain domain-name</td>
<td>Configure a VTP administrative domain. The domain name can be 1 to 32 characters.</td>
</tr>
<tr>
<td>3</td>
<td>vtp mode server</td>
<td>Configure Switch A as the VTP server.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Note

If your switch is a member of a switch stack, you must use the spanning-tree [vlan vlan-id] cost cost interface configuration command instead of the spanning-tree [vlan vlan-id] port-priority priority interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. For more information, see the “Load Sharing Using STP Path Cost” section on page 13-24.
Configuring VLAN Trunks

Load Sharing Using STP Path Cost

You can configure parallel trunks to share VLAN traffic by setting different path costs on a trunk and associating the path costs with different sets of VLANs, blocking different ports for different VLANs. The VLANs keep the traffic separate and maintain redundancy in the event of a lost link.
In Figure 13-4, Trunk ports 1 and 2 are configured as 100BASE-T ports. These VLAN path costs are assigned:

- VLANs 2 through 4 are assigned a path cost of 30 on Trunk port 1.
- VLANs 8 through 10 retain the default 100BASE-T path cost on Trunk port 1 of 19.
- VLANs 8 through 10 are assigned a path cost of 30 on Trunk port 2.
- VLANs 2 through 4 retain the default 100BASE-T path cost on Trunk port 2 of 19.

Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 13-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk encapsulation {dot1q</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 9</td>
<td>show vlan</td>
</tr>
<tr>
<td>Step 10</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 11</td>
<td>interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>Step 12</td>
<td>spanning-tree vlan 2-4 cost 30</td>
</tr>
<tr>
<td>Step 13</td>
<td>end</td>
</tr>
</tbody>
</table>
The VLAN Query Protocol (VQP) is used to support dynamic-access ports, which are not permanently assigned to a VLAN, but give VLAN assignments based on the MAC source addresses seen on the port. Each time an unknown MAC address is seen, the switch sends a VQP query to a remote VMPS; the query includes the newly seen MAC address and the port on which it was seen. The VMPS responds with a VLAN assignment for the port. The switch cannot be a VMPS server but can act as a client to the VMPS and communicate with it through VQP.

These sections contain this information:
- “Understanding VMPS” section on page 13-26
- “Default VMPS Client Configuration” section on page 13-27
- “VMPS Configuration Guidelines” section on page 13-28
- “Configuring the VMPS Client” section on page 13-28
- “Monitoring the VMPS” section on page 13-30
- “Troubleshooting Dynamic-Access Port VLAN Membership” section on page 13-31
- “VMPS Configuration Example” section on page 13-31

## Configuring VMPS

### Understanding VMPS

Each time the client switch receives the MAC address of a new host, it sends a VQP query to the VMPS. When the VMPS receives this query, it searches its database for a MAC-address-to-VLAN mapping. The server response is based on this mapping and whether or not the server is in open or secure mode. In secure mode, the server shuts down the port when an illegal host is detected. In open mode, the server simply denies the host access to the port.

If the port is currently unassigned (that is, it does not yet have a VLAN assignment), the VMPS provides one of these responses:

- If the host is allowed on the port, the VMPS sends the client a vlan-assignment response containing the assigned VLAN name and allowing access to the host.
- If the host is not allowed on the port and the VMPS is in open mode, the VMPS sends an access-denied response.
- If the VLAN is not allowed on the port and the VMPS is in secure mode, the VMPS sends a port-shutdown response.

### Command Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Repeat Steps 9 through 13 on the other configured trunk interface on Switch A, and set the spanning-tree path cost to 30 for VLANs 8, 9, and 10.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>exit</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>16</td>
<td>show running-config</td>
<td>Verify your entries. In the display, verify that the path costs are set correctly for both trunk interfaces.</td>
</tr>
<tr>
<td>17</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
If the port already has a VLAN assignment, the VMPS provides one of these responses:

- If the VLAN in the database matches the current VLAN on the port, the VMPS sends an *success* response, allowing access to the host.
- If the VLAN in the database does not match the current VLAN on the port and active hosts exist on the port, the VMPS sends an *access-denied* or a *port-shutdown* response, depending on the secure mode of the VMPS.

If the switch receives an *access-denied* response from the VMPS, it continues to block traffic to and from the host MAC address. The switch continues to monitor the packets directed to the port and sends a query to the VMPS when it identifies a new host address. If the switch receives a *port-shutdown* response from the VMPS, it disables the port. The port must be manually re-enabled by using Network Assistant, the CLI, or SNMP.

**Dynamic-Access Port VLAN Membership**

A dynamic-access port can belong to only one VLAN with an ID from 1 to 4094. When the link comes up, the switch does not forward traffic to or from this port until the VMPS provides the VLAN assignment. The VMPS receives the source MAC address from the first packet of a new host connected to the dynamic-access port and attempts to match the MAC address to a VLAN in the VMPS database.

If there is a match, the VMPS sends the VLAN number for that port. If the client switch was not previously configured, it uses the domain name from the first VTP packet it receives on its trunk port from the VMPS. If the client switch was previously configured, it includes its domain name in the query packet to the VMPS to obtain its VLAN number. The VMPS verifies that the domain name in the packet matches its own domain name before accepting the request and responds to the client with the assigned VLAN number for the client. If there is no match, the VMPS either denies the request or shuts down the port (depending on the VMPS secure mode setting).

Multiple hosts (MAC addresses) can be active on a dynamic-access port if they are all in the same VLAN; however, the VMPS shuts down a dynamic-access port if more than 20 hosts are active on the port.

If the link goes down on a dynamic-access port, the port returns to an isolated state and does not belong to a VLAN. Any hosts that come online through the port are checked again through the VQP with the VMPS before the port is assigned to a VLAN.

Dynamic-access ports can be used for direct host connections, or they can connect to a network. A maximum of 20 MAC addresses are allowed per port on the switch. A dynamic-access port can belong to only one VLAN at a time, but the VLAN can change over time, depending on the MAC addresses seen.

**Default VMPS Client Configuration**

Table 13-6 shows the default VMPS and dynamic-access port configuration on client switches.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMPS domain server</td>
<td>None</td>
</tr>
<tr>
<td>VMPS reconfirm interval</td>
<td>60 minutes</td>
</tr>
<tr>
<td>VMPS server retry count</td>
<td>3</td>
</tr>
<tr>
<td>Dynamic-access ports</td>
<td>None configured</td>
</tr>
</tbody>
</table>

---

**Table 13-6 Default VMPS Client and Dynamic-Access Port Configuration**
VMPS Configuration Guidelines

These guidelines and restrictions apply to dynamic-access port VLAN membership:

- You should configure the VMPS before you configure ports as dynamic-access ports.
- When you configure a port as a dynamic-access port, the spanning-tree Port Fast feature is automatically enabled for that port. The Port Fast mode accelerates the process of bringing the port into the forwarding state.
- IEEE 802.1x ports cannot be configured as dynamic-access ports. If you try to enable IEEE 802.1x on a dynamic-access (VQP) port, an error message appears, and IEEE 802.1x is not enabled. If you try to change an IEEE 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
- Trunk ports cannot be dynamic-access ports, but you can enter the `switchport access vlan dynamic` interface configuration command for a trunk port. In this case, the switch retains the setting and applies it if the port is later configured as an access port.
- Dynamic-access ports cannot be monitor ports.
- Secure ports cannot be dynamic-access ports. You must disable port security on a port before it becomes dynamic.
- Private VLAN ports cannot be dynamic-access ports.
- Dynamic-access ports cannot be members of an EtherChannel group.
- Port channels cannot be configured as dynamic-access ports.
- A dynamic-access port can participate in fallback bridging.
- The VTP management domain of the VMPS client and the VMPS server must be the same.
- The VLAN configured on the VMPS server should not be a voice VLAN.

Configuring the VMPS Client

You configure dynamic VLANs by using the VMPS (server). The switch can be a VMPS client; it cannot be a VMPS server.

Entering the IP Address of the VMPS

You must first enter the IP address of the server to configure the switch as a client.

Beginning in privileged EXEC mode, follow these steps to enter the IP address of the VMPS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vmps server ipaddress primary</td>
<td>Enter the IP address of the switch acting as the primary VMPS server.</td>
</tr>
<tr>
<td>Step 3 vmps server ipaddress</td>
<td>(Optional) Enter the IP address of the switch acting as a secondary VMPS server. You can enter up to three secondary server addresses.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 13 Configuring VLANs

Configuring VMPS

**Note**

You must have IP connectivity to the VMPS for dynamic-access ports to work. You can test for IP connectivity by pinging the IP address of the VMPS and verifying that you get a response.

**Configuring Dynamic-Access Ports on VMPS Clients**

**Caution**

Dynamic-access port VLAN membership is for end stations or hubs connected to end stations. Connecting dynamic-access ports to other switches can cause a loss of connectivity.

Beginning in privileged EXEC mode, follow these steps to configure a dynamic-access port on a VMPS client switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the switch port that is connected to the end station, and enter interface configuration mode.</td>
</tr>
<tr>
<td>switchport mode access</td>
<td>Set the port to access mode.</td>
</tr>
<tr>
<td>switchport access vlan dynamic</td>
<td>Configure the port as eligible for dynamic VLAN membership. The dynamic-access port must be connected to an end station.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show interfaces interface-id switchport</td>
<td>Verify your entries in the Operational Mode field of the display.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the `default interface interface-id` interface configuration command. To return an interface to its default switchport mode (dynamic auto), use the `no switchport mode` interface configuration command. To reset the access mode to the default VLAN for the switch, use the `no switchport access vlan` interface configuration command.

**Reconfirming VLAN Memberships**

Beginning in privileged EXEC mode, follow these steps to confirm the dynamic-access port VLAN membership assignments that the switch has received from the VMPS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmps reconfirm</td>
<td>Reconfirm dynamic-access port VLAN membership.</td>
</tr>
<tr>
<td>show vmps</td>
<td>Verify the dynamic VLAN reconfirmation status.</td>
</tr>
</tbody>
</table>
Changing the Reconfirmation Interval

VMPS clients periodically reconfirm the VLAN membership information received from the VMPS. You can set the number of minutes after which reconfirmation occurs.

Beginning in privileged EXEC mode, follow these steps to change the reconfirmation interval:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vmps reconfirm minutes</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show vmps</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no vmps reconfirm global configuration command.

Changing the Retry Count

Beginning in privileged EXEC mode, follow these steps to change the number of times that the switch attempts to contact the VMPS before querying the next server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vmps retry count</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show vmps</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no vmps retry global configuration command.

Monitoring the VMPS

You can display information about the VMPS by using the show vmps privileged EXEC command. The switch displays this information about the VMPS:

- VMPS VQP Version—the version of VQP used to communicate with the VMPS. The switch queries the VMPS that is using VQP Version 1.
- Reconfirm Interval—the number of minutes the switch waits before reconfirming the VLAN-to-MAC-address assignments.
- Server Retry Count—the number of times VQP resends a query to the VMPS. If no response is received after this many tries, the switch starts to query the secondary VMPS.
- VMPS domain server—the IP address of the configured VLAN membership policy servers. The switch sends queries to the one marked current. The one marked primary is the primary server.
- VMPS Action—the result of the most recent reconfirmation attempt. A reconfirmation attempt can occur automatically when the reconfirmation interval expires, or you can force it by entering the `vmps reconfirm` privileged EXEC command or its Network Assistant or SNMP equivalent.

This is an example of output for the `show vmps` privileged EXEC command:

```
Switch# show vmps
VQP Client Status:

VMPS VQP Version: 1
Reconfirm Interval: 60 min
Server Retry Count: 3
VMPS domain server: 172.20.128.86 (primary, current)
 172.20.128.87

Reconfirmation status

VMPS Action: other
```

### Troubleshooting Dynamic-Access Port VLAN Membership

The VMPS shuts down a dynamic-access port under these conditions:
- The VMPS is in secure mode, and it does not allow the host to connect to the port. The VMPS shuts down the port to prevent the host from connecting to the network.
- More than 20 active hosts reside on a dynamic-access port.

To re-enable a disabled dynamic-access port, enter the `shutdown` interface configuration command followed by the `no shutdown` interface configuration command.

### VMPS Configuration Example

Figure 13-5 shows a network with a VMPS server switch and VMPS client switches with dynamic-access ports. In this example, these assumptions apply:
- The VMPS server and the VMPS client are separate switches.
- The Catalyst 6500 series Switch A is the primary VMPS server.
- The Catalyst 6500 series Switch C and Switch J are secondary VMPS servers.
- End stations are connected to the clients, Switch B and Switch I.
- The database configuration file is stored on the TFTP server with the IP address 172.20.22.7.
Figure 13-5 Dynamic Port VLAN Membership Configuration

Catalyst 6500 series switch A
Primary VMPS
Server 1 172.20.26.150

Server 1 Dynamic-access port
Client switch B 172.20.26.151
Trunk port

Catalyst 6500 series
Secondary VMPS
Server 2 172.20.26.152

Switch D 172.20.26.153

Switch E 172.20.26.154

Switch F 172.20.26.155

Switch G 172.20.26.156

Switch H 172.20.26.157

Server 2 Dynamic-access port
Client switch I 172.20.26.158
Trunk port

Catalyst 6500 series
Secondary VMPS
Server 3 172.20.26.159

Switch J

TFTP server 172.20.22.7

Router

Ethernet segment (Trunk link)
Configuring VTP

This chapter describes how to use the VLAN Trunking Protocol (VTP) and the VLAN database for managing VLANs with the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

The chapter consists of these sections:
- Understanding VTP, page 14-1
- Configuring VTP, page 14-8
- Monitoring VTP, page 14-18

Understanding VTP

VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP minimizes misconfigurations and configuration inconsistencies that can cause several problems, such as duplicate VLAN names, incorrect VLAN-type specifications, and security violations.

Before you create VLANs, you must decide whether to use VTP in your network. Using VTP, you can make configuration changes centrally on one or more switches and have those changes automatically communicated to all the other switches in the network. Without VTP, you cannot send information about VLANs to other switches.

VTP is designed to work in an environment where updates are made on a single switch and are sent through VTP to other switches in the domain. It does not work well in a situation where multiple updates to the VLAN database occur simultaneously on switches in the same domain, which would result in an inconsistency in the VLAN database.

VTP functionality is supported across the stack, and all switches in the stack maintain the same VLAN and VTP configuration inherited from the stack master. When a switch learns of a new VLAN through VTP messages or when a new VLAN is configured by the user, the new VLAN information is communicated to all switches in the stack.

When a switch joins the stack or when stacks merge, the new switches get VTP information from the stack master.
Understanding VTP

The switch supports 1005 VLANs, but the number of routed ports, SVIs, and other configured features affects the usage of the switch hardware. If the switch is notified by VTP of a new VLAN and the switch is already using the maximum available hardware resources, it sends a message that there are not enough hardware resources available and shuts down the VLAN. The output of the `show vlan` user EXEC command shows the VLAN in a suspended state.

VTP version 1 and version 2 support only normal-range VLANs (VLAN IDs 1 to 1005). Cisco IOS Release 12.2(52)SE and later support VTP version 3. VTP version 3 supports the entire VLAN range (VLANs 1 to 4094). Extended range VLANs (VLANs 1006 to 4094) are supported only in VTP version 3. You cannot convert from VTP version 3 to VTP version 2 if extended VLANs are configured in the domain.

These sections contain this conceptual information:

- The VTP Domain, page 14-2
- VTP Modes, page 14-3
- VTP Advertisements, page 14-4
- VTP Version 2, page 14-4
- VTP Version 3, page 14-5
- VTP Pruning, page 14-6
- VTP and Switch Stacks, page 14-8

The VTP Domain

A VTP domain (also called a VLAN management domain) consists of one switch or several interconnected switches or switch stacks under the same administrative responsibility sharing the same VTP domain name. A switch can be in only one VTP domain. You make global VLAN configuration changes for the domain.

By default, the switch is in the VTP no-management-domain state until it receives an advertisement for a domain over a trunk link (a link that carries the traffic of multiple VLANs) or until you configure a domain name. Until the management domain name is specified or learned, you cannot create or modify VLANs on a VTP server, and VLAN information is not propagated over the network.

If the switch receives a VTP advertisement over a trunk link, it inherits the management domain name and the VTP configuration revision number. The switch then ignores advertisements with a different domain name or an earlier configuration revision number.

---

**Caution**

Before adding a VTP client switch to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain. See the “Adding a VTP Client Switch to a VTP Domain” section on page 14-17 for the procedure for verifying and resetting the VTP configuration revision number.

When you make a change to the VLAN configuration on a VTP server, the change is propagated to all switches in the VTP domain. VTP advertisements are sent over all IEEE trunk connections. VTP dynamically maps VLANs with unique names and internal index associates across multiple LAN types. Mapping eliminates excessive device administration required from network administrators.
If you configure a switch for VTP transparent mode, you can create and modify VLANs, but the changes are not sent to other switches in the domain, and they affect only the individual switch. However, configuration changes made when the switch is in this mode are saved in the switch running configuration and can be saved to the switch startup configuration file.

For domain name and password configuration guidelines, see the “Domain Names” section on page 14-9.

VTP Modes

You can configure a supported switch or switch stack to be in one of the VTP modes listed in Table 14-1.

<table>
<thead>
<tr>
<th>VTP Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP server</td>
<td>In VTP server mode, you can create, modify, and delete VLANs, and specify other configuration parameters (such as the VTP version) for the entire VTP domain. VTP servers advertise their VLAN configurations to other switches in the same VTP domain and synchronize their VLAN configurations with other switches based on advertisements received over trunk links. VTP server is the default mode. Note: In VTP server mode, VLAN configurations are saved in NVRAM. If the switch detects a failure while writing a configuration to NVRAM, VTP mode automatically changes from server mode to client mode. If this happens, the switch cannot be returned to VTP server mode until the NVRAM is functioning.</td>
</tr>
<tr>
<td>VTP client</td>
<td>A VTP client behaves like a VTP server and transmits and receives VTP updates on its trunks, but you cannot create, change, or delete VLANs on a VTP client. VLANs are configured on another switch in the domain that is in server mode. In VTP versions 1 and 2, in VTP client mode, VLAN configurations are not saved in NVRAM. In VTP version 3, VLAN configurations are saved in NVRAM in client mode.</td>
</tr>
<tr>
<td>VTP transparent</td>
<td>VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. However, in VTP version 2 or version 3, transparent switches do forward VTP advertisements that they receive from other switches through their trunk interfaces. You can create, modify, and delete VLANs on a switch in VTP transparent mode. In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create extended-range VLANs. VTP version 3 also supports creating extended-range VLANs in client or server mode. See the “Configuring Extended-Range VLANs” section on page 13-11. In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create private VLANs and when they are configured, you should not change the VTP mode from transparent to client or server mode. VTP version 3 also supports private VLANs in client and server modes. See Chapter 16, “Configuring Private VLANs.” When the switch is in VTP transparent mode, the VTP and VLAN configurations are saved in NVRAM, but they are not advertised to other switches. In this mode, VTP mode and domain name are saved in the switch running configuration, and you can save this information in the switch startup configuration file by using the copy running-config startup-config privileged EXEC command. The running configuration and the saved configuration are the same for all switches in a stack.</td>
</tr>
<tr>
<td>VTP off</td>
<td>A switch in VTP off mode functions in the same manner as a VTP transparent switch, except that it does not forward VTP advertisements on trunks.</td>
</tr>
</tbody>
</table>
VTP Advertisements

Each switch in the VTP domain sends periodic global configuration advertisements from each trunk port to a reserved multicast address. Neighboring switches receive these advertisements and update their VTP and VLAN configurations as necessary.

Because trunk ports send and receive VTP advertisements, you must ensure that at least one trunk port is configured on the switch or switch stack and that this trunk port is connected to the trunk port of another switch. Otherwise, the switch cannot receive any VTP advertisements. For more information on trunk ports, see the “Configuring VLAN Trunks” section on page 13-15.

VTP Advertisements distribute this global domain information:
- VTP domain name
- VTP configuration revision number
- Update identity and update timestamp
- MD5 digest VLAN configuration, including maximum transmission unit (MTU) size for each VLAN.
- Frame format

VTP advertisements distribute this VLAN information for each configured VLAN:
- VLAN IDs (IEEE 802.1Q)
- VLAN name
- VLAN type
- VLAN state
- Additional VLAN configuration information specific to the VLAN type. In VTP version 3, VTP advertisements also include the primary server ID, an instance number, and a start index.

VTP Version 2

If you use VTP in your network, you must decide which version of VTP to use. By default, VTP operates in version 1.

VTP version 2 supports these features that are not supported in version 1:
- Token Ring support—VTP version 2 supports Token Ring Bridge Relay Function (TrBRF) and Token Ring Concentrator Relay Function (TrCRF) VLANs. For more information about Token Ring VLANs, see the “Configuring Normal-Range VLANs” section on page 13-4.
- Unrecognized Type-Length-Value (TLV) support—A VTP server or client propagates configuration changes to its other trunks, even for TLVs it is not able to parse. The unrecognized TLV is saved in NVRAM when the switch is operating in VTP server mode.
• Version-Dependent Transparent Mode—In VTP version 1, a VTP transparent switch inspects VTP messages for the domain name and version and forwards a message only if the version and domain name match. Although VTP version 2 supports only one domain, a VTP version 2 transparent switch forwards a message only when the domain name matches.

• Consistency Checks—In VTP version 2, VLAN consistency checks (such as VLAN names and values) are performed only when you enter new information through the CLI or SNMP. Consistency checks are not performed when new information is obtained from a VTP message or when information is read from NVRAM. If the MD5 digest on a received VTP message is correct, its information is accepted.

VTP Version 3

VTP version 3 supports these features that are not supported in version 1 or version 2:

• Enhanced authentication—you can configure the authentication as hidden or secret. When hidden, the secret key from the password string is saved in the VLAN database file, but it does not appear in plain text in the configuration. Instead, the key associated with the password is saved in hexadecimal format in the running configuration. You must reenter the password if you enter a takeover command in the domain. When you enter the secret keyword, you can directly configure the password secret key.

• Support for extended range VLAN (VLANs 1006 to 4094) database propagation. VTP versions 1 and 2 propagate only VLANs 1 to 1005. If extended VLANs are configured, you cannot convert from VTP version 3 to version 1 or 2.

Note VTP pruning still applies only to VLANs 1 to 1005, and VLANs 1002 to 1005 are still reserved and cannot be modified.

• Private VLAN support.

• Support for any database in a domain. In addition to propagating VTP information, version 3 can propagate Multiple Spanning Tree (MST) protocol database information. A separate instance of the VTP protocol runs for each application that uses VTP.

• VTP primary server and VTP secondary servers. A VTP primary server updates the database information and sends updates that are honored by all devices in the system. A VTP secondary server can only back up the updated VTP configurations received from the primary server to its NVRAM. By default, all devices come up as secondary servers. You can enter the vtp primary privileged EXEC command to specify a primary server. Primary server status is only needed for database updates when the administrator issues a takeover message in the domain. You can have a working VTP domain without any primary servers. Primary server status is lost if the device reloads or domain parameters change, even when a password is configured on the switch.

• The option to turn VTP on or off on a per-trunk (per-port) basis. You can enable or disable VTP per port by entering the [no] vtp interface configuration command. When you disable VTP on trunking ports, all VTP instances for that port are disabled. You cannot set VTP to off for the MST database and on for the VLAN database on the same port.

When you globally set VTP mode to off, it applies to all the trunking ports in the system. However, you can specify on or off on a per-VP instance basis. For example, you can configure the switch as a VTP server for the VLAN database but with VTP off for the MST database.
VTP Pruning

VTP pruning increases network available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to reach the destination devices. Without VTP pruning, a switch floods broadcast, multicast, and unknown unicast traffic across all trunk links within a VTP domain even though receiving switches might discard them. VTP pruning is disabled by default.

VTP pruning blocks unneeded flooded traffic to VLANs on trunk ports that are included in the pruning-eligible list. Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible switch trunk ports. If the VLANs are configured as pruning-ineligible, the flooding continues. VTP pruning is supported in all VTP versions.

Figure 14-1 shows a switched network without VTP pruning enabled. Port 1 on Switch A and Port 2 on Switch D are assigned to the Red VLAN. If a broadcast is sent from the host connected to Switch A, Switch A floods the broadcast and every switch in the network receives it, even though Switches C, E, and F have no ports in the Red VLAN.

Figure 14-1 Flooding Traffic without VTP Pruning
Figure 14-2 shows a switched network with VTP pruning enabled. The broadcast traffic from Switch A is not forwarded to Switches C, E, and F because traffic for the Red VLAN has been pruned on the links shown (Port 5 on Switch B and Port 4 on Switch D).

Enabling VTP pruning on a VTP server enables pruning for the entire management domain. Making VLANs pruning-eligible or pruning-ineligible affects pruning eligibility for those VLANs on that trunk only (not on all switches in the VTP domain).

See the “Enabling VTP Pruning” section on page 14-16. VTP pruning takes effect several seconds after you enable it. VTP pruning does not prune traffic from VLANs that are pruning-ineligible. VLAN 1 and VLANs 1002 to 1005 are always pruning-ineligible; traffic from these VLANs cannot be pruned. Extended-range VLANs (VLAN IDs higher than 1005) are also pruning-ineligible.

VTP pruning is not designed to function in VTP transparent mode. If one or more switches in the network are in VTP transparent mode, you should do one of these:

- Turn off VTP pruning in the entire network.
- Turn off VTP pruning by making all VLANs on the trunk of the switch upstream to the VTP transparent switch pruning ineligible.

To configure VTP pruning on an interface, use the `switchport trunk pruning vlan` interface configuration command (see the “Changing the Pruning-Eligible List” section on page 13-21). VTP pruning operates when an interface is trunking. You can set VLAN pruning-eligibility, whether or not VTP pruning is enabled for the VTP domain, whether or not any given VLAN exists, and whether or not the interface is currently trunking.
VTP and Switch Stacks

VTP configuration is the same in all members of a switch stack. When the switch stack is in VTP server or client mode, all switches in the stack carry the same VTP configuration. When VTP mode is transparent or off, the stack is not taking part in VTP.

- When a switch joins the stack, it inherits the VTP and VLAN properties of the stack master.
- All VTP updates are carried across the stack.
- When VTP mode is changed in a switch in the stack, the other switches in the stack also change VTP mode, and the switch VLAN database remains consistent.

VTP version 3 functions the same on a standalone switch or a stack except when the switch stack is the primary server for the VTP database. In this case, the MAC address of the stack master is used as the primary server ID. If the master switch reloads or is powered off, a new stack master is elected.

- If you do not configure the persistent MAC address feature (by entering the `stack-mac persistent timer [0 | time-value]` global configuration command, when the new master is elected, it sends a takeover message with the new master MAC address as the primary server.
- If persistent MAC address is configured, the new master waits for the configured `stack-mac persistent timer` value. If the previous master switch does not rejoin the stack during this time, then the new master issues the takeover message.

For more information about the switch stack, see Chapter 7, “Managing Switch Stacks.”

Configuring VTP

These sections contain this configuration information:

- Default VTP Configuration, page 14-8
- VTP Configuration Guidelines, page 14-9
- Configuring VTP Mode, page 14-11
- Enabling the VTP Version, page 14-15
- Enabling VTP Pruning, page 14-16
- Configuring VTP on a Per-Port Basis, page 14-16
- Adding a VTP Client Switch to a VTP Domain, page 14-17

Default VTP Configuration

Table 14-2 shows the default VTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP domain name</td>
<td>Null.</td>
</tr>
<tr>
<td>VTP mode (VTP version 1 and version 2)</td>
<td>Server.</td>
</tr>
<tr>
<td>VTP mode (VTP version 3)</td>
<td>The mode is the same as the mode in VTP version 1 or 2 before conversion to version 3.</td>
</tr>
</tbody>
</table>
Chapter 14  Configuring VTP

Configuring VTP

VTP Configuration Guidelines

You can use the `vtp` global configuration command to set the VTP password, the version, the VTP file name, the interface providing updated VTP information, the domain name, and the mode, and to disable or enable pruning. For more information about available keywords, see the command descriptions in the command reference for this release. The VTP information is saved in the VTP VLAN database. When VTP mode is transparent, the VTP domain name and mode are also saved in the switch running configuration file, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. You must use this command if you want to save VTP mode as transparent, even if the switch resets.

When you save VTP information in the switch startup configuration file and reboot the switch, the switch configuration is selected as follows:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for the first 1005 VLANs use the VLAN database information.

Domain Names

When configuring VTP for the first time, you must always assign a domain name. You must configure all switches in the VTP domain with the same domain name. Switches in VTP transparent mode do not exchange VTP messages with other switches, and you do not need to configure a VTP domain name for them.

If NVRAM and DRAM storage is sufficient, all switches in a VTP domain should be in VTP server mode.

Do not configure a VTP domain if all switches are operating in VTP client mode. If you configure the domain, it is impossible to make changes to the VLAN configuration of that domain. Make sure that you configure at least one switch in the VTP domain for VTP server mode.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP version</td>
<td>Version 1 (Version 2 is disabled).</td>
</tr>
<tr>
<td>MST database mode</td>
<td>Transparent.</td>
</tr>
<tr>
<td>VTP version 3 server type</td>
<td>Secondary.</td>
</tr>
<tr>
<td>VTP password</td>
<td>None.</td>
</tr>
<tr>
<td>VTP pruning</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Table 14-2  Default VTP Configuration (continued)
**Passwords**

You can configure a password for the VTP domain, but it is not required. If you do configure a domain password, all domain switches must share the same password and you must configure the password on each switch in the management domain. Switches without a password or with the wrong password reject VTP advertisements.

If you configure a VTP password for a domain, a switch that is booted without a VTP configuration does not accept VTP advertisements until you configure it with the correct password. After the configuration, the switch accepts the next VTP advertisement that uses the same password and domain name in the advertisement.

If you are adding a new switch to an existing network with VTP capability, the new switch learns the domain name only after the applicable password has been configured on it.

⚠️ **Caution**

When you configure a VTP domain password, the management domain does not function properly if you do not assign a management domain password to each switch in the domain.

**VTP Version**

Follow these guidelines when deciding which VTP version to implement:

- All switches in a VTP domain must have the same domain name, but they do not need to run the same VTP version.

- A VTP version 2-capable switch can operate in the same VTP domain as a switch running VTP version 1 if version 2 is disabled on the version 2-capable switch (version 2 is disabled by default).

- If a switch running VTP version 1 but capable of running VTP version 2 receives VTP version 3 advertisements, it automatically moves to VTP version 2.

- If a switch running VTP version 3 is connected to a switch running VTP version 1, the VTP version 1 switch moves to VTP version 2, and the VTP version 3 switch sends scaled-down versions of the VTP packets so that the VTP version 2 switch can update its database.

- A switch running VTP version 3 cannot move to version 1 or 2 if it has extended VLANs.

- Do not enable VTP version 2 on a switch unless all of the switches in the same VTP domain are version-2-capable. When you enable version 2 on a switch, all of the version-2-capable switches in the domain enable version 2. If there is a version 1-only switch, it does not exchange VTP information with switches that have version 2 enabled.

- Cisco recommends placing VTP version 1 and 2 switches at the edge of the network because they do not forward VTP version 3 advertisements.

- If there are TrBRF and TrCRF Token Ring networks in your environment, you must enable VTP version 2 or version 3 for Token Ring VLAN switching to function properly. To run Token Ring and Token Ring-Net, disable VTP version 2.

- VTP version 1 and version 2 do not propagate configuration information for extended range VLANs (VLANs 1006 to 4094). You must configure these VLANs manually on each device. VTP version 3 supports extended-range VLANs. You cannot convert from VTP version 3 to VTP version 2 if extended VLANs are configured.

- When a VTP version 3 device trunk port receives messages from a VTP version 2 device, it sends a scaled-down version of the VLAN database on that particular trunk in VTP version 2 format. A VTP version 3 device does not send VTP version 2-formatted packets on a trunk unless it first receives VTP version 2 packets on that trunk port.
• When a VTP version 3 device detects a VTP version 2 device on a trunk port, it continues to send VTP version 3 packets, in addition to VTP version 2 packets, to allow both kinds of neighbors to coexist on the same trunk.

• A VTP version 3 device does not accept configuration information from a VTP version 2 or version 1 device.

• Two VTP version 3 regions can only communicate in transparent mode over a VTP version 1 or version 2 region.

• Devices that are only VTP version 1 capable cannot interoperate with VTP version 3 devices.

**Configuration Requirements**

When you configure VTP, you must configure a trunk port on the switch or switch stack so that the switch can send and receive VTP advertisements to and from other switches in the domain.

For more information, see the “Configuring VLAN Trunks” section on page 13-15.

In VTP versions 1 and 2, when you configure extended-range VLANs on the switch, the switch must be in VTP transparent mode. VTP version 3 also supports creating extended-range VLANs in client or server mode.

VTP does not support private VLANs. VTP version 3 does support private VLANs. If you configure private VLANs when the switch is running VTP version 1 or 2, the switch must be in VTP transparent mode. When private VLANs are configured on the switch, do not change the VTP mode from transparent to client or server mode.

**Configuring VTP Mode**

You can configure VTP mode as one of these:

• When a switch is in VTP server mode, you can change the VLAN configuration and have it propagated throughout the network.

• When a switch is in VTP client mode, you cannot change its VLAN configuration. The client switch receives VTP updates from a VTP server in the VTP domain and then modifies its configuration accordingly.

• When you configure the switch for VTP transparent mode, VTP is disabled on the switch. The switch does not send VTP updates and does not act on VTP updates received from other switches. However, a VTP transparent switch running VTP version 2 does forward received VTP advertisements on its trunk links.

• VTP off mode is the same as VTP transparent mode except that VTP advertisements are not forwarded.
Follow these guidelines:

- For VTP version 1 and version 2, if extended-range VLANs are configured on the switch stack, you cannot change VTP mode to client or server. You receive an error message, and the configuration is not allowed. VTP version 1 and version 2 do not propagate configuration information for extended range VLANs (VLANs 1006 to 4094). You must manually configure these VLANs on each device.

**Note** For VTP version 1 and 2, before you create extended-range VLANs (VLAN IDs 1006 to 4094), you must set VTP mode to transparent by using the `vtp mode transparent` global configuration command. Save this configuration to the startup configuration so that the switch starts in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets and boots up in VTP server mode (the default).

- VTP version 3 supports extended-range VLANs. If extended VLANs are configured, you cannot convert from VTP version 3 to VTP version 2.

- If you configure the switch for VTP client mode, the switch does not create the VLAN database file (vlan.dat). If the switch is then powered off, it resets the VTP configuration to the default. To keep the VTP configuration with VTP client mode after the switch restarts, you must first configure the VTP domain name before the VTP mode.

**Caution** If all switches are operating in VTP client mode, do not configure a VTP domain name. If you do, it is impossible to make changes to the VLAN configuration of that domain. Therefore, make sure you configure at least one switch as a VTP server.

Beginning in privileged EXEC mode, follow these steps to configure the VTP mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>vtp domain domain-name</code></td>
<td>Configure the VTP administrative-domain name. The name can be 1 to 32 characters. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name. This command is optional for modes other than server mode. VTP server mode requires a domain name. If the switch has a trunk connection to a VTP domain, the switch learns the domain name from the VTP server in the domain. You should configure the VTP domain before configuring other VTP parameters.</td>
</tr>
</tbody>
</table>
| `vtp mode [client | server | transparent | off] {vlan | mst | unknown}` | Configure the switch for VTP mode (client, server, transparent or off). (Optional) Configure the database:  
  - `vlan`—the VLAN database is the default if none are configured.  
  - `mst`—the multiple spanning tree (MST) database.  
  - `unknown`—an unknown database type. |
### Configuring VTP

When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

To return a switch in another mode to VTP server mode, use the `no vtp mode` global configuration command. To return the switch to a no-password state, use the `no vtp password` global configuration command.

This example shows how to configure the switch as a VTP server with the domain name `eng_group` and the password `mypassword`:

```
Switch(config)# vtp domain eng_group
Setting VTP domain name to eng_group.
Switch(config)# vtp mode server
Setting device to VTP Server mode for VLANS.
Switch(config)# vtp password mypassword
Setting device VLAN database password to mypassword.
Switch(config)# end
```

#### Configuring a VTP Version 3 Password

Beginning in privileged EXEC mode, follow these steps to configure the password when using VTP version 3:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>vtp password password</code></td>
<td>(Optional) Set the password for the VTP domain. The password can be 8 to 64 characters.</td>
</tr>
<tr>
<td>`[hidden</td>
<td>secret]`</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Optional) hidden—Enter hidden to ensure that the secret key generated from the password string is saved in the nvam:vlan.dat file. If you configure a takeover by configuring a VTP primary server, you are prompted to reenter the password.</td>
</tr>
<tr>
<td></td>
<td>(Optional) secret—Enter secret to directly configure the password. The secret password must contain 32 hexadecimal characters.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring VTP

To clear the password, enter the no vtp password global configuration command.

This example shows how to configure a hidden password and how it appears.

```
Switch(config)# vtp password mypassword hidden
Generating the secret associated to the password.
Switch(config)# end
Switch# show vtp password
VTP password: 89914640C8D90868B6A0D8103847A733
```

Configuring a VTP Version 3 Primary Server

Beginning in privileged EXEC mode, follow these steps on a VTP server to configure it as a VTP primary server (version 3 only), which starts a takeover operation:

```
Command Purpose
----------------- ---
Step 1 vtp primary-server [vlan | mst] Change the operational state of a switch from a secondary server (the default) to a primary server and advertise the configuration to the domain. If the switch password is configured as hidden, you are prompted to reenter the password.
 [force] - (Optional) vlan—Select the VLAN database as the takeover feature. This is the default.
 - (Optional) mst—Select the multiple spanning tree (MST) database as the takeover feature.
 - (Optional) force—Entering force overwrites the configuration of any conflicting servers. If you do not enter force, you are prompted for confirmation before the takeover.
Step 4 show vtp password Verify your entries.
Step 5 copy running-config startup-config (Optional) Save the configuration in the startup configuration file.
```

This example shows how to configure a switch as the primary server for the VLAN database (the default) when a hidden or secret password was configured:

```
Switch# vtp primary-vlan
Enter VTP password: mypassword
This switch is becoming Primary server for vlan feature in the VTP domain

VTP Database Conf Switch ID Primary Server Revision System Name
----------------------------- --------------------- ------------------- ---------------------
VLANDB Yes 00d0.00b8.1400=00d0.00b8.1400 1 stp7
Do you want to continue (y/n) [n]? y
```
Enabling the VTP Version

VTP version 2 and version 3 are disabled by default.

- When you enable VTP version 2 on a switch, every VTP version 2-capable switch in the VTP domain enables version 2. To enable VTP version 3, you must manually configure it on each switch.
- With VTP versions 1 and 2, you can configure the version only on switches in VTP server or transparent mode. If a switch is running VTP version 3, you can change to version 2 when the switch is in client mode if no extended VLANs exist, no private VLANs exist, and no hidden password was configured.

Caution VTP version 1 and VTP version 2 are not interoperable on switches in the same VTP domain. Do not enable VTP version 2 unless every switch in the VTP domain supports version 2.

- In TrCRF and TrBRF Token ring environments, you must enable VTP version 2 or VTP version 3 for Token Ring VLAN switching to function properly. For Token Ring and Token Ring-Net media, disable VTP version 2 must be disabled.
- VTP version 3 is supported on switches running Cisco IOS Release 12.2(52) SE or later.

Caution In VTP version 3, both the primary and secondary servers can exist on an instance in the domain.

For more information on VTP version configuration guidelines, see the “VTP Version” section on page 14-10.

Beginning in privileged EXEC mode, follow these steps to configure the VTP version:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vtp version {1</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show vtp status</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default VTP version 1, use the **no vtp version** global configuration command.
Enabling VTP Pruning

Pruning increases available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to access the destination devices. You can only enable VTP pruning on a switch in VTP server mode.

Beginning in privileged EXEC mode, follow these steps to enable VTP pruning in the VTP domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>vtp pruning</td>
<td>Enable pruning in the VTP administrative domain. By default, pruning is</td>
</tr>
<tr>
<td></td>
<td>disabled. You need to enable pruning on only one switch in VTP server</td>
</tr>
<tr>
<td></td>
<td>mode.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show vtp status</td>
<td>Verify your entries in the VTP Pruning Mode field of the display.</td>
</tr>
</tbody>
</table>

To disable VTP pruning, use the `no vtp pruning` global configuration command.

With VTP versions 1 and 2, when you enable pruning on the VTP server, it is enabled for the entire VTP domain. In VTP version 3, you must manually enable pruning on each switch in the domain.

Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning-eligible on trunk ports. Reserved VLANs and extended-range VLANs cannot be pruned. To change the pruning-eligible VLANs, see the “Changing the Pruning-Eligible List” section on page 13-21.

Configuring VTP on a Per-Port Basis

With VTP version 3, you can enable or disable VTP on a per-port basis. You can enable VTP only on ports that are in trunk mode. Incoming and outgoing VTP traffic are blocked, not forwarded.

Beginning in privileged EXEC mode, follow these steps to enable VTP on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Identify an interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>vtp</td>
<td>Enable VTP on the specified port.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config interface interface-id</td>
<td>Verify the change to the port.</td>
</tr>
<tr>
<td>show vtp status</td>
<td>Verify the configuration.</td>
</tr>
</tbody>
</table>

To disable VTP on the interface, use the `no vtp` interface configuration command.
Adding a VTP Client Switch to a VTP Domain

Before adding a VTP client to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. With VTP versions 1 and 2, adding a switch that has a revision number higher than the revision number in the VTP domain can erase all VLAN information from the VTP server and VTP domain. With VTP version 3, the VLAN information is not erased.

Beginning in privileged EXEC mode, follow these steps to verify and reset the VTP configuration revision number on a switch before adding it to a VTP domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show vtp status</td>
<td>Check the VTP configuration revision number. If the number is 0, add the switch to the VTP domain. If the number is greater than 0, follow these steps:</td>
</tr>
<tr>
<td></td>
<td>a. Write down the domain name.</td>
</tr>
<tr>
<td></td>
<td>b. Write down the configuration revision number.</td>
</tr>
<tr>
<td></td>
<td>c. Continue with the next steps to reset the switch configuration revision number.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3 vtp domain domain-name</td>
<td>Change the domain name from the original one displayed in Step 1 to a new name.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>The VLAN information on the switch is updated and the configuration revision number is reset to 0. You return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show vtp status</td>
<td>Verify that the configuration revision number has been reset to 0.</td>
</tr>
<tr>
<td>Step 6 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 7 vtp domain domain-name</td>
<td>Enter the original domain name on the switch.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>The VLAN information on the switch is updated, and you return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9 show vtp status</td>
<td>(Optional) Verify that the domain name is the same as in Step 1 and that the configuration revision number is 0.</td>
</tr>
</tbody>
</table>

After resetting the configuration revision number, add the switch to the VTP domain.

**Note** You can use the *vtp mode transparent* global configuration command to disable VTP on the switch and then to change its VLAN information without affecting the other switches in the VTP domain.
Monitoring VTP

You monitor VTP by displaying VTP configuration information: the domain name, the current VTP revision, and the number of VLANs. You can also display statistics about the advertisements sent and received by the switch.

Table 14-3 shows the privileged EXEC commands for monitoring VTP activity.

Table 14-3  VTP Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vtp counters</td>
<td>Display counters about VTP messages that have been sent and received.</td>
</tr>
<tr>
<td>show vtp devices [conflict]</td>
<td>Display information about all VTP version 3 devices in the domain. Conflicts are VTP version 3 devices with conflicting primary servers. The show vtp devices command does not display information when the switch is in transparent or off mode.</td>
</tr>
<tr>
<td>show vtp interface [interface-id]</td>
<td>Display VTP status and configuration for all interfaces or the specified interface.</td>
</tr>
<tr>
<td>show vtp password</td>
<td>Display the VTP password. The form of the password displayed depends on whether or not the hidden keyword was entered and if encryption is enabled on the switch.</td>
</tr>
<tr>
<td>show vtp status</td>
<td>Display the VTP switch configuration information.</td>
</tr>
</tbody>
</table>
CHAPTER 15

Configuring Voice VLAN

This chapter describes how to configure the voice VLAN feature on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack. Voice VLAN is referred to as an auxiliary VLAN in some Catalyst 6500 family switch documentation.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

• Understanding Voice VLAN, page 15-1
• Configuring Voice VLAN, page 15-3
• Displaying Voice VLAN, page 15-7

Understanding Voice VLAN

The voice VLAN feature enables access ports to carry IP voice traffic from an IP phone. When the switch is connected to a Cisco 7960 IP Phone, the phone sends voice traffic with Layer 3 IP precedence and Layer 2 class of service (CoS) values, which are both set to 5 by default. Because the sound quality of an IP phone call can deteriorate if the data is unevenly sent, the switch supports quality of service (QoS) based on IEEE 802.1p CoS. QoS uses classification and scheduling to send network traffic from the switch in a predictable manner. For more information on QoS, see Chapter 37, “Configuring QoS.”

The Cisco 7960 IP Phone is a configurable device, and you can configure it to forward traffic with an IEEE 802.1p priority. You can configure the switch to trust or override the traffic priority assigned by a Cisco IP Phone.

The Cisco IP Phone contains an integrated three-port 10/100 switch as shown in Figure 15-1. The ports provide dedicated connections to these devices:

• Port 1 connects to the switch or other voice-over-IP (VoIP) device.
• Port 2 is an internal 10/100 interface that carries the IP Phone traffic.
• Port 3 (access port) connects to a PC or other device.
Figure 15-1 shows one way to connect a Cisco 7960 IP Phone.

**Cisco IP Phone Voice Traffic**

You can configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. You can configure access ports on the switch to send Cisco Discovery Protocol (CDP) packets that instruct an attached phone to send voice traffic to the switch in any of these ways:

- In the voice VLAN tagged with a Layer 2 CoS priority value
- In the access VLAN tagged with a Layer 2 CoS priority value
- In the access VLAN, untagged (no Layer 2 CoS priority value)

**Note**

In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5 for voice traffic and 3 for voice control traffic).

**Cisco IP Phone Data Traffic**

The switch can also process tagged data traffic (traffic in IEEE 802.1Q or IEEE 802.1p frame types) from the device attached to the access port on the Cisco IP Phone (see Figure 15-1). You can configure Layer 2 access ports on the switch to send CDP packets that instruct the attached phone to configure the phone access port in one of these modes:

- In trusted mode, all traffic received through the access port on the Cisco IP Phone passes through the phone unchanged.
- In untrusted mode, all traffic in IEEE 802.1Q or IEEE 802.1p frames received through the access port on the Cisco IP Phone receive a configured Layer 2 CoS value. The default Layer 2 CoS value is 0. Untrusted mode is the default.
Untagged traffic from the device attached to the Cisco IP Phone passes through the phone unchanged, regardless of the trust state of the access port on the phone.

### Configuring Voice VLAN

These sections contain this configuration information:

- Default Voice VLAN Configuration, page 15-3
- Voice VLAN Configuration Guidelines, page 15-3
- Configuring a Port Connected to a Cisco 7960 IP Phone, page 15-4

#### Default Voice VLAN Configuration

The voice VLAN feature is disabled by default.

When the voice VLAN feature is enabled, all untagged traffic is sent according to the default CoS priority of the port.

The CoS value is not trusted for IEEE 802.1p or IEEE 802.1Q tagged traffic.

#### Voice VLAN Configuration Guidelines

These are the voice VLAN configuration guidelines:

- You should configure voice VLAN on switch access ports; voice VLAN is not supported on trunk ports. You can configure a voice VLAN only on Layer 2 ports.

  **Note**: Voice VLAN is only supported on access ports and not on trunk ports, even though the configuration is allowed.

- The voice VLAN should be present and active on the switch for the IP phone to correctly communicate on the voice VLAN. Use the `show vlan` privileged EXEC command to see if the VLAN is present (listed in the display). If the VLAN is not listed, see Chapter 13, “Configuring VLANs,” for information on how to create the voice VLAN.

- Do not configure voice VLAN on private VLAN ports.

- Before you enable voice VLAN, we recommend that you enable QoS on the switch by entering the `mls qos` global configuration command and configure the port trust state to trust by entering the `mls qos trust cos` interface configuration command. If you use the auto-QoS feature, these settings are automatically configured. For more information, see Chapter 37, “Configuring QoS.”

- You must enable CDP on the switch port connected to the Cisco IP Phone to send the configuration to the phone. (CDP is globally enabled by default on all switch interfaces.)

- The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.
Chapter 15 Configuring Voice VLAN

Configuring Voice VLAN

- If the Cisco IP Phone and a device attached to the phone are in the same VLAN, they must be in the same IP subnet. These conditions indicate that they are in the same VLAN:
  - They both use IEEE 802.1p or untagged frames.
  - The Cisco IP Phone uses IEEE 802.1p frames, and the device uses untagged frames.
  - The Cisco IP Phone uses untagged frames, and the device uses IEEE 802.1p frames.
  - The Cisco IP Phone uses IEEE 802.1Q frames, and the voice VLAN is the same as the access VLAN.
- The Cisco IP Phone and a device attached to the phone cannot communicate if they are in the same VLAN and subnet but use different frame types because traffic in the same subnet is not routed (routing would eliminate the frame type difference).
- You cannot configure static secure MAC addresses in the voice VLAN.
- Voice VLAN ports can also be these port types:
  - Dynamic access port. See the “Configuring Dynamic-Access Ports on VMPS Clients” section on page 13-29 for more information.
  - IEEE 802.1x authenticated port. See the “Configuring 802.1x Authentication” section on page 9-39 for more information.
    
    **Note** If you enable IEEE 802.1x on an access port on which a voice VLAN is configured and to which a Cisco IP Phone is connected, the phone loses connectivity to the switch for up to 30 seconds.
  - Protected port. See the “Configuring Protected Ports” section on page 26-6 for more information.
  - A source or destination port for a SPAN or RSPAN session.
  - Secure port. See the “Configuring Port Security” section on page 26-8 for more information.
    
    **Note** When you enable port security on an interface that is also configured with a voice VLAN, you must set the maximum allowed secure addresses on the port to two plus the maximum number of secure addresses allowed on the access VLAN. When the port is connected to a Cisco IP Phone, the phone requires up to two MAC addresses. The phone address is learned on the voice VLAN and might also be learned on the access VLAN. Connecting a PC to the phone requires additional MAC addresses.

Configuring a Port Connected to a Cisco 7960 IP Phone

Because a Cisco 7960 IP Phone also supports a connection to a PC or other device, a port connecting the switch to a Cisco IP Phone can carry mixed traffic. You can configure a port to decide how the Cisco IP Phone carries voice traffic and data traffic.

These sections contain this configuration information:

- **Configuring Cisco IP Phone Voice Traffic, page 15-5**
- **Configuring the Priority of Incoming Data Frames, page 15-6**
Configuring Cisco IP Phone Voice Traffic

You can configure a port connected to the Cisco IP Phone to send CDP packets to the phone to configure the way in which the phone sends voice traffic. The phone can carry voice traffic in IEEE 802.1Q frames for a specified voice VLAN with a Layer 2 CoS value. It can use IEEE 802.1p priority tagging to give voice traffic a higher priority and forward all voice traffic through the native (access) VLAN. The Cisco IP Phone can also send untagged voice traffic or use its own configuration to send voice traffic in the access VLAN. In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5).

Beginning in privileged EXEC mode, follow these steps to configure voice traffic on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface connected to the phone, and enter interface</td>
</tr>
<tr>
<td></td>
<td>configuration mode.</td>
</tr>
<tr>
<td>Step 3 mls qos trust cos</td>
<td>Configure the interface to classify incoming traffic packets by using</td>
</tr>
<tr>
<td></td>
<td>the packet CoS value. For untagged packets, the port default CoS value</td>
</tr>
<tr>
<td></td>
<td>is used.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Before configuring the port trust state, you must first globally enable QoS by using the <code>mls qos</code> global configuration command.</td>
</tr>
<tr>
<td>Step 4 switchport voice {detect</td>
<td>Configure how the Cisco IP Phone carries voice traffic:</td>
</tr>
<tr>
<td>cisco-phone [full-duplex]</td>
<td>vlan {vlan-id</td>
</tr>
<tr>
<td></td>
<td>phone.</td>
</tr>
<tr>
<td></td>
<td>• cisco-phone — When you initially implement the switchport voice detect</td>
</tr>
<tr>
<td></td>
<td>command, this is the only allowed option. The default is <strong>no switchport</strong></td>
</tr>
<tr>
<td></td>
<td>voice detect cisco-phone [full-duplex].</td>
</tr>
<tr>
<td></td>
<td>• full-duplex — (Optional) Configure the switch to only accept a full-duplex Cisco IP phone.</td>
</tr>
<tr>
<td></td>
<td>• vlan-id — Configure the phone to forward all voice traffic through</td>
</tr>
<tr>
<td></td>
<td>the specified VLAN. By default, the Cisco IP Phone forwards the voice</td>
</tr>
<tr>
<td></td>
<td>traffic with an IEEE 802.1Q priority of 5. Valid VLAN IDs are 1 to</td>
</tr>
<tr>
<td></td>
<td>4094.</td>
</tr>
<tr>
<td></td>
<td>• dot1p — Configure the phone to use IEEE 802.1p priority tagging for</td>
</tr>
<tr>
<td></td>
<td>voice traffic and to use the default native VLAN (VLAN 0) to carry all</td>
</tr>
<tr>
<td></td>
<td>traffic. By default, the Cisco IP Phone forwards the voice traffic with</td>
</tr>
<tr>
<td></td>
<td>an IEEE 802.1p priority of 5.</td>
</tr>
<tr>
<td></td>
<td>• none — Allow the phone to use its own configuration to send untagged</td>
</tr>
<tr>
<td></td>
<td>voice traffic.</td>
</tr>
<tr>
<td></td>
<td>• untagged — Configure the phone to send untagged voice traffic.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show interfaces interface-id switchport or show running-config interface interface-id</td>
<td>Verify your voice VLAN entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to configure a port connected to a Cisco IP Phone to use the CoS value to classify incoming traffic, to use IEEE 802.1p priority tagging for voice traffic, and to use the default native VLAN (VLAN 0) to carry all traffic:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# switchport voice vlan dot1p
Switch(config-if)# end
```

To return the port to its default setting, use the `no switchport voice vlan` interface configuration command.

This example shows how to enable `switchport voice detect` on a Cisco IP Phone:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# switchport voice?
detect detection enhancement keyword
vlan VLAN for voice traffic
Switch(config-if)# switchport voice detect?
cisco-phone Cisco IP Phone
Switch(config-if)# switchport voice detect cisco-phone?
fault-duplex full duplex keyword
Switch(config-if)# switchport voice detect cisco-phone fault-duplex
Switch(config-if)# end
```

This example shows how to disable `switchport voice detect` on a Cisco IP Phone:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# no switchport voice detect cisco-phone
Switch(config-if)# no switchport voice detect cisco-phone fault-duplex
```

### Configuring the Priority of Incoming Data Frames

You can connect a PC or other data device to a Cisco IP Phone port. To process tagged data traffic (in IEEE 802.1Q or IEEE 802.1p frames), you can configure the switch to send CDP packets to instruct the phone how to send data packets from the device attached to the access port on the Cisco IP Phone. The PC can generate packets with an assigned CoS value. You can configure the phone to not change (trust) or to override (not trust) the priority of frames arriving on the phone port from connected devices.

Beginning in privileged EXEC mode, follow these steps to set the priority of data traffic received from the nonvoice port on the Cisco IP Phone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the interface connected to the Cisco IP Phone, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
This example shows how to configure a port connected to a Cisco IP Phone to not change the priority of frames received from the PC or the attached device:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport priority extend trust
```

To return the port to its default setting, use the `no switchport priority extend` interface configuration command.

### Displaying Voice VLAN

To display voice VLAN configuration for an interface, use the `show interfaces interface-id switchport` privileged EXEC command.
Configuring Private VLANs

This chapter describes how to configure private VLANs on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

The chapter consists of these sections:

- Understanding Private VLANs, page 16-1
- Configuring Private VLANs, page 16-6
- Monitoring Private VLANs, page 16-15

Note

When you configure private VLANs, the switch must be in VTP transparent mode. See Chapter 14, “Configuring VTP.”

Understanding Private VLANs

The private-VLAN feature addresses two problems that service providers face when using VLANs:

- Scalability: The switch supports up to 1005 active VLANs. If a service provider assigns one VLAN per customer, this limits the numbers of customers the service provider can support.
- To enable IP routing, each VLAN is assigned a subnet address space or a block of addresses, which can result in wasting the unused IP addresses, and cause IP address management problems.

Using private VLANs addresses the scalability problem and provides IP address management benefits for service providers and Layer 2 security for customers. Private VLANs partition a regular VLAN domain into subdomains. A subdomain is represented by a pair of VLANs: a primary VLAN and a secondary VLAN. A private VLAN can have multiple VLAN pairs, one pair for each subdomain. All VLAN pairs in a private VLAN share the same primary VLAN. The secondary VLAN ID differentiates one subdomain from another. See Figure 16-1.
Understanding Private VLANs

There are two types of secondary VLANs:

- **Isolated VLANs**—Ports within an isolated VLAN cannot communicate with each other at the Layer 2 level.
- **Community VLANs**—Ports within a community VLAN can communicate with each other but cannot communicate with ports in other communities at the Layer 2 level.

Private VLANs provide Layer 2 isolation between ports within the same private VLAN. Private-VLAN ports are access ports that are one of these types:

- **Promiscuous**—A promiscuous port belongs to the primary VLAN and can communicate with all interfaces, including the community and isolated host ports that belong to the secondary VLANs associated with the primary VLAN.
- **Isolated**—An isolated port is a host port that belongs to an isolated secondary VLAN. It has complete Layer 2 separation from other ports within the same private VLAN, except for the promiscuous ports. Private VLANs block all traffic to isolated ports except traffic from promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports.
- **Community**—A community port is a host port that belongs to a community secondary VLAN. Community ports communicate with other ports in the same community VLAN and with promiscuous ports. These interfaces are isolated at Layer 2 from all other interfaces in other communities and from isolated ports within their private VLAN.

**Note**

Trunk ports carry traffic from regular VLANs and also from primary, isolated, and community VLANs.
Primary and secondary VLANs have these characteristics:

- **Primary VLAN**—A private VLAN has only one primary VLAN. Every port in a private VLAN is a member of the primary VLAN. The primary VLAN carries unidirectional traffic downstream from the promiscuous ports to the (isolated and community) host ports and to other promiscuous ports.

- **Isolated VLAN**—A private VLAN has only one isolated VLAN. An isolated VLAN is a secondary VLAN that carries unidirectional traffic upstream from the hosts toward the promiscuous ports and the gateway.

- **Community VLAN**—A community VLAN is a secondary VLAN that carries upstream traffic from the community ports to the promiscuous port gateways and to other host ports in the same community. You can configure multiple community VLANs in a private VLAN.

A promiscuous port can serve only one primary VLAN, one isolated VLAN, and multiple community VLANs. Layer 3 gateways are typically connected to the switch through a promiscuous port. With a promiscuous port, you can connect a wide range of devices as access points to a private VLAN. For example, you can use a promiscuous port to monitor or back up all the private-VLAN servers from an administration workstation.

In a switched environment, you can assign an individual private VLAN and associated IP subnet to each individual or common group of end stations. The end stations need to communicate only with a default gateway to communicate outside the private VLAN.

You can use private VLANs to control access to end stations in these ways:

- Configure selected interfaces connected to end stations as isolated ports to prevent any communication at Layer 2. For example, if the end stations are servers, this configuration prevents Layer 2 communication between the servers.

- Configure interfaces connected to default gateways and selected end stations (for example, backup servers) as promiscuous ports to allow all end stations access to a default gateway.

You can extend private VLANs across multiple devices by trunking the primary, isolated, and community VLANs to other devices that support private VLANs. To maintain the security of your private-VLAN configuration and to avoid other use of the VLANs configured as private VLANs, configure private VLANs on all intermediate devices, including devices that have no private-VLAN ports.

**IP Addressing Scheme with Private VLANs**

Assigning a separate VLAN to each customer creates an inefficient IP addressing scheme:

- Assigning a block of addresses to a customer VLAN can result in unused IP addresses.

- If the number of devices in the VLAN increases, the number of assigned address might not be large enough to accommodate them.

These problems are reduced by using private VLANs, where all members in the private VLAN share a common address space, which is allocated to the primary VLAN. Hosts are connected to secondary VLANs, and the DHCP server assigns them IP addresses from the block of addresses allocated to the primary VLAN. Subsequent IP addresses can be assigned to customer devices in different secondary VLANs, but in the same primary VLAN. When new devices are added, the DHCP server assigns them the next available address from a large pool of subnet addresses.
Private VLANs across Multiple Switches

As with regular VLANs, private VLANs can span multiple switches. A trunk port carries the primary VLAN and secondary VLANs to a neighboring switch. The trunk port treats the private VLAN as any other VLAN. A feature of private VLANs across multiple switches is that traffic from an isolated port in switch A does not reach an isolated port on Switch B. See Figure 16-2.

![Figure 16-2 Private VLANs across Switches](image)

VLAN 100 = Primary VLAN
VLAN 201 = Secondary isolated VLAN
VLAN 202 = Secondary community VLAN

Because VTP does not support private VLANs, you must manually configure private VLANs on all switches in the Layer 2 network. If you do not configure the primary and secondary VLAN association in some switches in the network, the Layer 2 databases in these switches are not merged. This can result in unnecessary flooding of private-VLAN traffic on those switches.

**Note**

When configuring private VLANs on the switch, always use the default Switch Database Management (SDM) template to balance system resources between unicast routes and Layer 2 entries. If another SDM template is configured, use the `sdm prefer default` global configuration command to set the default template. See Chapter 8, “Configuring SDM Templates.”
Private-VLAN Interaction with Other Features

Private VLANs have specific interaction with some other features, described in these sections:

- Private VLANs and Unicast, Broadcast, and Multicast Traffic, page 16-5
- Private VLANs and SVIs, page 16-5
- Private VLANs and Switch Stacks, page 16-6

You should also see the "Secondary and Primary VLAN Configuration" section on page 16-7 under the "Private-VLAN Configuration Guidelines" section.

Private VLANs and Unicast, Broadcast, and Multicast Traffic

In regular VLANs, devices in the same VLAN can communicate with each other at the Layer 2 level, but devices connected to interfaces in different VLANs must communicate at the Layer 3 level. In private VLANs, the promiscuous ports are members of the primary VLAN, while the host ports belong to secondary VLANs. Because the secondary VLAN is associated to the primary VLAN, members of these VLANs can communicate with each other at the Layer 2 level.

In a regular VLAN, broadcasts are forwarded to all ports in that VLAN. Private VLAN broadcast forwarding depends on the port sending the broadcast:

- An isolated port sends a broadcast only to the promiscuous ports or trunk ports.
- A community port sends a broadcast to all promiscuous ports, trunk ports, and ports in the same community VLAN.
- A promiscuous port sends a broadcast to all ports in the private VLAN (other promiscuous ports, trunk ports, isolated ports, and community ports).

Multicast traffic is routed or bridged across private-VLAN boundaries and within a single community VLAN. Multicast traffic is not forwarded between ports in the same isolated VLAN or between ports in different secondary VLANs.

Private VLANs and SVIs

In a Layer 3 switch, a switch virtual interface (SVI) represents the Layer 3 interface of a VLAN. Layer 3 devices communicate with a private VLAN only through the primary VLAN and not through secondary VLANs. Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

- If you try to configure a VLAN with an active SVI as a secondary VLAN, the configuration is not allowed until you disable the SVI.
- If you try to create an SVI on a VLAN that is configured as a secondary VLAN and the secondary VLAN is already mapped at Layer 3, the SVI is not created, and an error is returned. If the SVI is not mapped at Layer 3, the SVI is created, but it is automatically shut down.

When the primary VLAN is associated with and mapped to the secondary VLAN, any configuration on the primary VLAN is propagated to the secondary VLAN SVIs. For example, if you assign an IP subnet to the primary VLAN SVI, this subnet is the IP subnet address of the entire private VLAN.
Private VLANs and Switch Stacks

Private VLANs can operate within the switch stack, and private-VLAN ports can reside on different stack members. However, some changes to the switch stack can impact private-VLAN operation:

- If a stack contains only one private-VLAN promiscuous port and the stack member that contains that port is removed from the stack, host ports in that private VLAN lose connectivity outside the private VLAN.
- If a stack master stack that contains the only private-VLAN promiscuous port in the stack fails or leaves the stack and a new stack master is elected, host ports in a private VLAN that had its promiscuous port on the old stack master lose connectivity outside of the private VLAN.
- If two stacks merge, private VLANs on the winning stack are not affected, but private-VLAN configuration on the losing switch is lost when that switch reboots.

For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”

Configuring Private VLANs

These sections contain this configuration information:

- Tasks for Configuring Private VLANs, page 16-6
- Default Private-VLAN Configuration, page 16-7
- Private-VLAN Configuration Guidelines, page 16-7
- Configuring and Associating VLANs in a Private VLAN, page 16-10
- Configuring a Layer 2 Interface as a Private-VLAN Host Port, page 16-12
- Configuring a Layer 2 Interface as a Private-VLAN Promiscuous Port, page 16-13
- Mapping Secondary VLANs to a Primary VLAN Layer 3 VLAN Interface, page 16-14

Tasks for Configuring Private VLANs

To configure a private VLAN, perform these steps:

Step 1
Set VTP mode to transparent.

Step 2
Create the primary and secondary VLANs and associate them. See the “Configuring and Associating VLANs in a Private VLAN” section on page 16-10.

Note
If the VLAN is not created already, the private-VLAN configuration process creates it.

Step 3
Configure interfaces to be isolated or community host ports, and assign VLAN membership to the host port. See the “Configuring a Layer 2 Interface as a Private-VLAN Host Port” section on page 16-12.

Step 4
Configure interfaces as promiscuous ports, and map the promiscuous ports to the primary-secondary VLAN pair. See the “Configuring a Layer 2 Interface as a Private-VLAN Promiscuous Port” section on page 16-13.
Step 5  If inter-VLAN routing will be used, configure the primary SVI, and map secondary VLANs to the primary. See the “Mapping Secondary VLANs to a Primary VLAN Layer 3 VLAN Interface” section on page 16-14.

Step 6  Verify private-VLAN configuration.

**Default Private-VLAN Configuration**

No private VLANs are configured.

**Private-VLAN Configuration Guidelines**

Guidelines for configuring private VLANs fall into these categories:

- Secondary and Primary VLAN Configuration, page 16-7
- Private-VLAN Port Configuration, page 16-9
- Limitations with Other Features, page 16-9

**Secondary and Primary VLAN Configuration**

Follow these guidelines when configuring private VLANs:

- If the switch is running VTP version 1 or 2, you must set VTP to transparent mode. After you configure a private VLAN, you should not change the VTP mode to client or server. For information about VTP, see Chapter 14, “Configuring VTP.” VTP version 3 supports private VLANs in all modes.
- With VTP version 1 or 2, after you have configured private VLANs, use the `copy running-config startup config` privileged EXEC command to save the VTP transparent mode configuration and private-VLAN configuration in the switch startup configuration file. Otherwise, if the switch resets, it defaults to VTP server mode, which does not support private VLANs. VTP version 3 does support private VLANs.
- VTP version 1 and 2 do not propagate private-VLAN configuration. You must configure private VLANs on each device where you want private-VLAN ports unless the devices are running VTP version 3.
- You cannot configure VLAN 1 or VLANs 1002 to 1005 as primary or secondary VLANs. Extended VLANs (VLAN IDs 1006 to 4094) can belong to private VLANs.
- A primary VLAN can have one isolated VLAN and multiple community VLANs associated with it. An isolated or community VLAN can have only one primary VLAN associated with it.
- Although a private VLAN contains more than one VLAN, only one Spanning Tree Protocol (STP) instance runs for the entire private VLAN. When a secondary VLAN is associated with the primary VLAN, the STP parameters of the primary VLAN are propagated to the secondary VLAN.
- You can enable DHCP snooping on private VLANs. When you enable DHCP snooping on the primary VLAN, it is propagated to the secondary VLANs. If you configure DHCP on a secondary VLAN, the configuration does not take effect if the primary VLAN is already configured.
- When you enable IP source guard on private-VLAN ports, you must enable DHCP snooping on the primary VLAN.
• We recommend that you prune the private VLANs from the trunks on devices that carry no traffic in the private VLANs.
• You can apply different quality of service (QoS) configurations to primary, isolated, and community VLANs.
• Sticky ARP
  - Sticky ARP entries are those learned on SVIs and Layer 3 interfaces. They entries do not age out.
  - The `ip sticky-arp` global configuration command is supported only on SVIs belonging to private VLANs.
  - The `ip sticky-arp` interface configuration command is only supported on
    - Layer 3 interfaces
    - SVIs belonging to normal VLANs
    - SVIs belonging to private VLANs

For more information about using the `ip sticky-arp` global configuration and the `ip sticky-arp` interface configuration commands, see the command reference for this release.
• You can configure VLAN maps on primary and secondary VLANs (see the “Configuring VLAN Maps” section on page 35-30). However, we recommend that you configure the same VLAN maps on private-VLAN primary and secondary VLANs.
• When a frame is Layer-2 forwarded within a private VLAN, the same VLAN map is applied at the ingress side and at the egress side. When a frame is routed from inside a private VLAN to an external port, the private-VLAN map is applied at the ingress side.
  - For frames going upstream from a host port to a promiscuous port, the VLAN map configured on the secondary VLAN is applied.
  - For frames going downstream from a promiscuous port to a host port, the VLAN map configured on the primary VLAN is applied.

To filter out specific IP traffic for a private VLAN, you should apply the VLAN map to both the primary and secondary VLANs.
• You can apply router ACLs only on the primary-VLAN SVIs. The ACL is applied to both primary and secondary VLAN Layer 3 traffic.
• Although private VLANs provide host isolation at Layer 2, hosts can communicate with each other at Layer 3.
• Private VLANs support these Switched Port Analyzer (SPAN) features:
  - You can configure a private-VLAN port as a SPAN source port.
  - You can use VLAN-based SPAN (VSPAN) on primary, isolated, and community VLANs or use SPAN on only one VLAN to separately monitor egress or ingress traffic.
Private-VLAN Port Configuration

Follow these guidelines when configuring private-VLAN ports:

- Use only the private-VLAN configuration commands to assign ports to primary, isolated, or community VLANs. Layer 2 access ports assigned to the VLANs that you configure as primary, isolated, or community VLANs are inactive while the VLAN is part of the private-VLAN configuration. Layer 2 trunk interfaces remain in the STP forwarding state.

- Do not configure ports that belong to a PAgP or LACP EtherChannel as private-VLAN ports. While a port is part of the private-VLAN configuration, any EtherChannel configuration for it is inactive.

- Enable Port Fast and BPDU guard on isolated and community host ports to prevent STP loops due to misconfigurations and to speed up STP convergence (see Chapter 20, “Configuring Optional Spanning-Tree Features”). When enabled, STP applies the BPDU guard feature to all Port Fast-configured Layer 2 LAN ports. Do not enable Port Fast and BPDU guard on promiscuous ports.

- If you delete a VLAN used in the private-VLAN configuration, the private-VLAN ports associated with the VLAN become inactive.

- Private-VLAN ports can be on different network devices if the devices are trunk-connected and the primary and secondary VLANs have not been removed from the trunk.

Limitations with Other Features

When configuring private VLANs, remember these limitations with other features:

In some cases, the configuration is accepted with no error messages, but the commands have no effect.

- Do not configure fallback bridging on switches with private VLANs.
- When IGMP snooping is enabled on the switch (the default), the switch or switch stack supports no more than 20 private-VLAN domains.
- Do not configure a remote SPAN (RSPAN) VLAN as a private-VLAN primary or secondary VLAN. For more information about SPAN, see Chapter 30, “Configuring SPAN and RSPAN.”
- Do not configure private-VLAN ports on interfaces configured for these other features:
  - dynamic-access port VLAN membership
  - Dynamic Trunking Protocol (DTP)
  - Port Aggregation Protocol (PAgP)
  - Link Aggregation Control Protocol (LACP)
  - Multicast VLAN Registration (MVR)
  - voice VLAN
  - Web Cache Communication Protocol (WCCP)
- You can configure IEEE 802.1x port-based authentication on a private-VLAN port, but do not configure 802.1x with port security, voice VLAN, or per-user ACL on private-VLAN ports.
- A private-VLAN host or promiscuous port cannot be a SPAN destination port. If you configure a SPAN destination port as a private-VLAN port, the port becomes inactive.
Chapter 16  Configuring Private VLANs

Configuring Private VLANs

- If you configure a static MAC address on a promiscuous port in the primary VLAN, you must add the same static address to all associated secondary VLANs. If you configure a static MAC address on a host port in a secondary VLAN, you must add the same static MAC address to the associated primary VLAN. When you delete a static MAC address from a private-VLAN port, you must remove all instances of the configured MAC address from the private VLAN.

**Note**

Dynamic MAC addresses learned in one VLAN of a private VLAN are replicated in the associated VLANs. For example, a MAC address learned in a secondary VLAN is replicated in the primary VLAN. When the original dynamic MAC address is deleted or aged out, the replicated addresses are removed from the MAC address table.

- Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs.

### Configuring and Associating VLANs in a Private VLAN

Beginning in privileged EXEC mode, follow these steps to configure a private VLAN:

**Note**

The `private-vlan` commands do not take effect until you exit VLAN configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vtp mode transparent</td>
</tr>
<tr>
<td>Step 3</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>private-vlan primary</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>private-vlan isolated</td>
</tr>
<tr>
<td>Step 8</td>
<td>exit</td>
</tr>
<tr>
<td>Step 9</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td>Step 10</td>
<td>private-vlan community</td>
</tr>
<tr>
<td>Step 11</td>
<td>exit</td>
</tr>
<tr>
<td>Step 12</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td>Step 13</td>
<td>private-vlan association [add</td>
</tr>
<tr>
<td>Step 14</td>
<td>end</td>
</tr>
</tbody>
</table>
When you associate secondary VLANs with a primary VLAN, note this syntax information:

- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs.
- The `secondary_vlan_list` parameter can contain multiple community VLAN IDs but only one isolated VLAN ID.
- Enter a `secondary_vlan_list`, or use the `add` keyword with a `secondary_vlan_list` to associate secondary VLANs with a primary VLAN.
- Use the `remove` keyword with a `secondary_vlan_list` to clear the association between secondary VLANs and a primary VLAN.
- The command does not take effect until you exit VLAN configuration mode.

This example shows how to configure VLAN 20 as a primary VLAN, VLAN 501 as an isolated VLAN, and VLANs 502 and 503 as community VLANs, to associate them in a private VLAN, and to verify the configuration:

```
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan primary
Switch(config-vlan)# exit
Switch(config)# vlan 501
Switch(config-vlan)# private-vlan isolated
Switch(config-vlan)# exit
Switch(config)# vlan 502
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config)# vlan 503
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan association 501-503
Switch(config-vlan)# end
Switch(config)# show vlan private-vlan
```

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>501</td>
<td>isolated</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>502</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>503</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>504</td>
<td>non-operational</td>
<td></td>
</tr>
</tbody>
</table>

When you associate secondary VLANs with a primary VLAN, note this syntax information:

- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs.
- The `secondary_vlan_list` parameter can contain multiple community VLAN IDs but only one isolated VLAN ID.
- Enter a `secondary_vlan_list`, or use the `add` keyword with a `secondary_vlan_list` to associate secondary VLANs with a primary VLAN.
- Use the `remove` keyword with a `secondary_vlan_list` to clear the association between secondary VLANs and a primary VLAN.
- The command does not take effect until you exit VLAN configuration mode.

This example shows how to configure VLAN 20 as a primary VLAN, VLAN 501 as an isolated VLAN, and VLANs 502 and 503 as community VLANs, to associate them in a private VLAN, and to verify the configuration:

```
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan primary
Switch(config-vlan)# exit
Switch(config)# vlan 501
Switch(config-vlan)# private-vlan isolated
Switch(config-vlan)# exit
Switch(config)# vlan 502
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config)# vlan 503
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan association 501-503
Switch(config-vlan)# end
Switch(config)# show vlan private-vlan
```

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>501</td>
<td>isolated</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>502</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>503</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>504</td>
<td>non-operational</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring a Layer 2 Interface as a Private-VLAN Host Port

Beginning in privileged EXEC mode, follow these steps to configure a Layer 2 interface as a private-VLAN host port and to associate it with primary and secondary VLANs:

**Note**

Isolated and community VLANs are both secondary VLANs.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Enter interface configuration mode for the Layer 2 interface to be configured.</td>
</tr>
<tr>
<td>Step 3: switchport mode private-vlan host</td>
<td>Configure the Layer 2 port as a private-VLAN host port.</td>
</tr>
<tr>
<td>Step 4: switchport private-vlan host-association primary_vlan_id secondary_vlan_id</td>
<td>Associate the Layer 2 port with a private VLAN.</td>
</tr>
<tr>
<td>Step 5: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6: show interfaces [interface-id] switchport</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 7: copy running-config startup config</td>
<td>(Optional) Save your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to configure an interface as a private-VLAN host port, associate it with a private-VLAN pair, and verify the configuration:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode private-vlan host
Switch(config-if)# switchport private-vlan host-association 20 501
Switch(config-if)# end
Switch# show interfaces gigabitethernet1/0/2 switchport
Name: Gi1/0/2
Switchport: Enabled
 Administrative Mode: private-vlan host
 Operational Mode: private-vlan host
 Administrative Trunking Encapsulation: negotiate
 Operational Trunking Encapsulation: native
 Negotiation of Trunking: Off
 Access Mode VLAN: 1 (default)
 Trunking Native Mode VLAN: 1 (default)
 Administrative Native VLAN tagging: enabled
 Voice VLAN: none
 Administrative private-vlan host-association: 20 501
 Administrative private-vlan mapping: none
 Administrative private-vlan trunk native VLAN: none
 Administrative private-vlan trunk Native VLAN tagging: enabled
 Administrative private-vlan trunk encapsulation: dot1q
 Administrative private-vlan trunk normal VLANs: none
 Administrative private-vlan trunk private VLANs: none
 Operational private-vlan:
 20 501

<output truncated>
```
Configuring a Layer 2 Interface as a Private-VLAN Promiscuous Port

Beginning in privileged EXEC mode, follow these steps to configure a Layer 2 interface as a private-VLAN promiscuous port and map it to primary and secondary VLANs:

**Note**

Isolated and community VLANs are both secondary VLANs.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Enter interface configuration mode for the Layer 2 interface to be configured.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switchport mode private-vlan promiscuous</td>
<td>Configure the Layer 2 port as a private-VLAN promiscuous port.</td>
</tr>
<tr>
<td><strong>Step 4</strong> switchport private-vlan mapping primary_vlan_id {add</td>
<td>remove} secondary_vlan_list</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong> show interfaces [interface-id] switchport</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td><strong>Step 7</strong> copy running-config startup config</td>
<td>(Optional) Save your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

When you configure a Layer 2 interface as a private-VLAN promiscuous port, note this syntax information:

- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs.
- Enter a `secondary_vlan_list`, or use the `add` keyword with a `secondary_vlan_list` to map the secondary VLANs to the private-VLAN promiscuous port.
- Use the `remove` keyword with a `secondary_vlan_list` to clear the mapping between secondary VLANs and the private-VLAN promiscuous port.

This example shows how to configure an interface as a private-VLAN promiscuous port and map it to a private VLAN. The interface is a member of primary VLAN 20 and secondary VLANs 501 to 503 are mapped to it.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode private-vlan promiscuous
Switch(config-if)# switchport private-vlan mapping 20 add 501-503
Switch(config-if)# end
```

Use the `show vlan private-vlan` or the `show interface status` privileged EXEC command to display primary and secondary VLANs and private-VLAN ports on the switch.
Mapping Secondary VLANs to a Primary VLAN Layer 3 VLAN Interface

If the private VLAN will be used for inter-VLAN routing, you configure an SVI for the primary VLAN and map secondary VLANs to the SVI.

Note

Isolated and community VLANs are both secondary VLANs.

Beginning in privileged EXEC mode, follow these steps to map secondary VLANs to the SVI of a primary VLAN to allow Layer 3 switching of private-VLAN traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface vlan primary_vlan_id</td>
<td>Enter interface configuration mode for the primary VLAN, and configure the VLAN as an SVI. The VLAN ID range is 2 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>Step 3: private-vlan mapping [add</td>
<td>remove] secondary_vlan_list</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show interface private-vlan mapping</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup config</td>
<td>(Optional) Save your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

Note

The private-vlan mapping interface configuration command only affects private-VLAN traffic that is Layer 3 switched.

When you map secondary VLANs to the Layer 3 VLAN interface of a primary VLAN, note this syntax information:

- The secondary_vlan_list parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs.
- Enter a secondary_vlan_list, or use the add keyword with a secondary_vlan_list to map the secondary VLANs to the primary VLAN.
- Use the remove keyword with a secondary_vlan_list to clear the mapping between secondary VLANs and the primary VLAN.

This example shows how to map the interfaces of VLANs 501 and 502 to primary VLAN 10, which permits routing of secondary VLAN ingress traffic from private VLANs 501 to 502:

```
Switch# configure terminal
Switch(config)# interface vlan 10
Switch(config-if)# private-vlan mapping 501-502
Switch(config-if)# end
Switch# show interfaces private-vlan mapping
Interface Secondary VLAN Type
--------- ------------------------------
vlан10 501 isolated
vlан10 502 community
```
Monitoring Private VLANs

Table 16-1 shows the privileged EXEC commands for monitoring private-VLAN activity.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces status</td>
<td>Displays the status of interfaces, including the VLANs to which they belong.</td>
</tr>
<tr>
<td>show vlan private-vlan [type]</td>
<td>Display the private-VLAN information for the switch.</td>
</tr>
<tr>
<td>show interface switchport</td>
<td>Display private-VLAN configuration on interfaces.</td>
</tr>
<tr>
<td>show interface private-vlan mapping</td>
<td>Display information about the private-VLAN mapping for VLAN SVIs.</td>
</tr>
</tbody>
</table>

This is an example of the output from the `show vlan private-vlan` command:

```
Switch(config)# show vlan private-vlan
Primary Secondary Type Ports
...
10 501 isolated Gi2/0/1, Gi3/0/1, Gi3/0/2
10 502 community Gi2/0/11, Gi3/0/1, Gi3/0/4
10 503 non-operational
```
Virtual private networks (VPNs) provide enterprise-scale connectivity on a shared infrastructure, often Ethernet-based, with the same security, prioritization, reliability, and manageability requirements of private networks. Tunneling is a feature designed for service providers who carry traffic of multiple customers across their networks and are required to maintain the VLAN and Layer 2 protocol configurations of each customer without impacting the traffic of other customers. The switch supports IEEE 802.1Q tunneling and Layer 2 protocol tunneling. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter contains these sections:
- Understanding IEEE 802.1Q Tunneling, page 17-1
- Configuring IEEE 802.1Q Tunneling, page 17-4
- Understanding Layer 2 Protocol Tunneling, page 17-7
- Configuring Layer 2 Protocol Tunneling, page 17-10
- Monitoring and Maintaining Tunneling Status, page 17-18

Understanding IEEE 802.1Q Tunneling

Business customers of service providers often have specific requirements for VLAN IDs and the number of VLANs to be supported. The VLAN ranges required by different customers in the same service-provider network might overlap, and traffic of customers through the infrastructure might be mixed. Assigning a unique range of VLAN IDs to each customer would restrict customer configurations and could easily exceed the VLAN limit (4096) of the IEEE 802.1Q specification.

Using the IEEE 802.1Q tunneling feature, service providers can use a single VLAN to support customers who have multiple VLANs. Customer VLAN IDs are preserved, and traffic from different customers is segregated within the service-provider network, even when they appear to be in the same VLAN. Using IEEE 802.1Q tunneling expands VLAN space by using a VLAN-in-VLAN hierarchy and retagging the tagged packets. A port configured to support IEEE 802.1Q tunneling is called a tunnel port. When you configure tunneling, you assign a tunnel port to a VLAN ID that is dedicated to tunneling. Each customer requires a separate service-provider VLAN ID, but that VLAN ID supports all of the customer’s VLANs.
Customer traffic tagged in the normal way with appropriate VLAN IDs comes from an IEEE 802.1Q trunk port on the customer device and into a tunnel port on the service-provider edge switch. The link between the customer device and the edge switch is asymmetric because one end is configured as an IEEE 802.1Q trunk port, and the other end is configured as a tunnel port. You assign the tunnel port interface to an access VLAN ID that is unique to each customer. See Figure 17-1.

Figure 17-1 IEEE 802.1Q Tunnel Ports in a Service-Provider Network

Packets coming from the customer trunk port into the tunnel port on the service-provider edge switch are normally IEEE 802.1Q-tagged with the appropriate VLAN ID. The tagged packets remain intact inside the switch and when they exit the trunk port into the service-provider network, they are encapsulated with another layer of an IEEE 802.1Q tag (called the metro tag) that contains the VLAN ID that is unique to the customer. The original customer IEEE 802.1Q tag is preserved in the encapsulated packet. Therefore, packets entering the service-provider network are double-tagged, with the outer (metro) tag containing the customer’s access VLAN ID, and the inner VLAN ID being that of the incoming traffic.

When the double-tagged packet enters another trunk port in a service-provider core switch, the outer tag is stripped as the switch processes the packet. When the packet exits another trunk port on the same core switch, the same metro tag is again added to the packet. Figure 17-2 shows the tag structures of the double-tagged packets.
When the packet enters the trunk port of the service-provider egress switch, the outer tag is again stripped as the switch internally processes the packet. However, the metro tag is not added when the packet is sent out the tunnel port on the edge switch into the customer network. The packet is sent as a normal IEEE 802.1Q-tagged frame to preserve the original VLAN numbers in the customer network.

In Figure 17-1, Customer A was assigned VLAN 30, and Customer B was assigned VLAN 40. Packets entering the edge switch tunnel ports with IEEE 802.1Q tags are double-tagged when they enter the service-provider network, with the outer tag containing VLAN ID 30 or 40, appropriately, and the inner tag containing the original VLAN number, for example, VLAN 100. Even if both Customers A and B have VLAN 100 in their networks, the traffic remains segregated within the service-provider network because the outer tag is different. Each customer controls its own VLAN numbering space, which is independent of the VLAN numbering space used by other customers and the VLAN numbering space used by the service-provider network.

At the outbound tunnel port, the original VLAN numbers on the customer’s network are recovered. It is possible to have multiple levels of tunneling and tagging, but the switch supports only one level in this release.

If traffic coming from a customer network is not tagged (native VLAN frames), these packets are bridged or routed as normal packets. All packets entering the service-provider network through a tunnel port on an edge switch are treated as untagged packets, whether they are untagged or already tagged with IEEE 802.1Q headers. The packets are encapsulated with the metro tag VLAN ID (set to the access VLAN of the tunnel port) when they are sent through the service-provider network on an IEEE 802.1Q trunk port. The priority field on the metro tag is set to the interface class of service (CoS) priority configured on the tunnel port. (The default is zero if none is configured.)

Because 802.1Q tunneling is configured on a per-port basis, it does not matter whether the switch is a standalone switch or a stack member. All configuration is done on the stack master.
Configuring IEEE 802.1Q Tunneling

These sections contain this configuration information:

- Default IEEE 802.1Q Tunneling Configuration, page 17-4
- IEEE 802.1Q Tunneling Configuration Guidelines, page 17-4
- IEEE 802.1Q Tunneling and Other Features, page 17-6
- Configuring an IEEE 802.1Q Tunneling Port, page 17-6

Default IEEE 802.1Q Tunneling Configuration

By default, IEEE 802.1Q tunneling is disabled because the default switchport mode is dynamic auto. Tagging of IEEE 802.1Q native VLAN packets on all IEEE 802.1Q trunk ports is also disabled.

IEEE 802.1Q Tunneling Configuration Guidelines

When you configure IEEE 802.1Q tunneling, you should always use an asymmetrical link between the customer device and the edge switch, with the customer device port configured as an IEEE 802.1Q trunk port and the edge switch port configured as a tunnel port.

Assign tunnel ports only to VLANs that are used for tunneling.

Configuration requirements for native VLANs and for and maximum transmission units (MTUs) are explained in these next sections.

Native VLANs

When configuring IEEE 802.1Q tunneling on an edge switch, you must use IEEE 802.1Q trunk ports for sending packets into the service-provider network. However, packets going through the core of the service-provider network can be carried through IEEE 802.1Q trunks or nontrunking links. When IEEE 802.1Q trunks are used in these core switches, the native VLANs of the IEEE 802.1Q trunks must not match any native VLAN of the nontrunking (tunneling) port on the same switch because traffic on the native VLAN would not be tagged on the IEEE 802.1Q sending trunk port.

See Figure 17-3. VLAN 40 is configured as the native VLAN for the IEEE 802.1Q trunk port from Customer X at the ingress edge switch in the service-provider network (Switch B). Switch A of Customer X sends a tagged packet on VLAN 30 to the ingress tunnel port of Switch B in the service-provider network, which belongs to access VLAN 40. Because the access VLAN of the tunnel port (VLAN 40) is the same as the native VLAN of the edge-switch trunk port (VLAN 40), the metro tag is not added to tagged packets received from the tunnel port. The packet carries only the VLAN 30 tag through the service-provider network to the trunk port of the egress-edge switch (Switch C) and is misdirected through the egress switch tunnel port to Customer Y.
These are some ways to solve this problem:

- Use the `vlan dot1q tag native` global configuration command to configure the edge switch so that all packets going out an IEEE 802.1Q trunk, including the native VLAN, are tagged. If the switch is configured to tag native VLAN packets on all IEEE 802.1Q trunks, the switch accepts untagged packets, but sends only tagged packets.

- Ensure that the native VLAN ID on the edge-switch trunk port is not within the customer VLAN range. For example, if the trunk port carries traffic of VLANs 100 to 200, assign the native VLAN a number outside that range.

![Figure 17-3 Potential Problem with IEEE 802.1Q Tunneling and Native VLANs](image)

**Figure 17-3 Potential Problem with IEEE 802.1Q Tunneling and Native VLANs**

---

**System MTU**

The default system MTU for traffic on the switch is 1500 bytes.

You can configure 10-Gigabit and Gigabit Ethernet ports to support frames larger than 1500 bytes by using the `system mtu jumbo` global configuration command.

The system jumbo MTU values do not include the IEEE 802.1Q header. Because the IEEE 802.1Q tunneling feature increases the frame size by 4 bytes when the metro tag is added, you must configure all switches in the service-provider network to be able to process maximum frames by adding 4 bytes to the system MTU and system jumbo MTU sizes.

For example, the switch supports a maximum frame size of 1496 bytes with this configuration:

The switch supports a maximum frame size of 1496 bytes with this configuration:

- The switch has a system jumbo MTU value of 1500 bytes, and the `switchport mode dot1q tunnel` interface configuration command is configured on a 10-Gigabit or Gigabit Ethernet switch port.
IEEE 802.1Q Tunneling and Other Features

Although IEEE 802.1Q tunneling works well for Layer 2 packet switching, there are incompatibilities between some Layer 2 features and Layer 3 switching.

- A tunnel port cannot be a routed port.
- IP routing is not supported on a VLAN that includes IEEE 802.1Q ports. Packets received from a tunnel port are forwarded based only on Layer 2 information. If routing is enabled on a switch virtual interface (SVI) that includes tunnel ports, untagged IP packets received from the tunnel port are recognized and routed by the switch. Customer can access the internet through its native VLAN. If this access is not needed, you should not configure SVIs on VLANs that include tunnel ports.
- Fallback bridging is not supported on tunnel ports. Because all IEEE 802.1Q-tagged packets received from a tunnel port are treated as non-IP packets, if fallback bridging is enabled on VLANs that have tunnel ports configured, IP packets would be improperly bridged across VLANs. Therefore, you must not enable fallback bridging on VLANs with tunnel ports.
- Tunnel ports do not support IP access control lists (ACLs).
- Layer 3 quality of service (QoS) ACLs and other QoS features related to Layer 3 information are not supported on tunnel ports. MAC-based QoS is supported on tunnel ports.
- EtherChannel port groups are compatible with tunnel ports as long as the IEEE 802.1Q configuration is consistent within an EtherChannel port group.
- Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), and UniDirectional Link Detection (UDLD) are supported on IEEE 802.1Q tunnel ports.
- Dynamic Trunking Protocol (DTP) is not compatible with IEEE 802.1Q tunneling because you must manually configure asymmetric links with tunnel ports and trunk ports.
- VLAN Trunking Protocol (VTP) does not work between devices that are connected by an asymmetrical link or devices that communicate through a tunnel.
- Loopback detection is supported on IEEE 802.1Q tunnel ports.
- When a port is configured as an IEEE 802.1Q tunnel port, spanning-tree bridge protocol data unit (BPDU) filtering is automatically enabled on the interface. Cisco Discovery Protocol (CDP) and the Layer Link Discovery Protocol (LLDP) are automatically disabled on the interface.

Configuring an IEEE 802.1Q Tunneling Port

Beginning in privileged EXEC mode, follow these steps to configure a port as an IEEE 802.1Q tunnel port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switchport mode dot1q-tunnel</td>
</tr>
</tbody>
</table>
Understanding Layer 2 Protocol Tunneling

Customers at different sites connected across a service-provider network need to use various Layer 2 protocols to scale their topologies to include all remote sites, as well as the local sites. STP must run properly, and every VLAN should build a proper spanning tree that includes the local site and all remote sites across the service-provider network. Cisco Discovery Protocol (CDP) must discover neighboring Cisco devices from local and remote sites. VLAN Trunking Protocol (VTP) must provide consistent VLAN configuration throughout all sites in the customer network.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td>exit</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>vlan dot1q tag native</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>show dot1q-tunnel</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>show vlan dot1q tag native</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **no switchport mode dot1q-tunnel** interface configuration command to return the port to the default state of dynamic desirable. Use the **no vlan dot1q tag native** global configuration command to disable tagging of native VLAN packets.

This example shows how to configure an interface as a tunnel port, enable tagging of native VLAN packets, and verify the configuration. In this configuration, the VLAN ID for the customer connected to Gigabit Ethernet interface 7 on stack member 1 is VLAN 22.

```
Switch(config)# interface gigabitethernet1/0/7
Switch(config-if)# switchport access vlan 22
% Access VLAN does not exist. Creating vlan 22
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# exit
Switch(config)# vlan dot1q tag native
Switch(config)# end
Switch# show dot1q-tunnel interface gigabitethernet1/0/7
Port

G1/0/1Port

Switch# show vlan dot1q tag native
dot1q native vlan tagging is enabled
```
When protocol tunneling is enabled, edge switches on the inbound side of the service-provider network encapsulate Layer 2 protocol packets with a special MAC address and send them across the service-provider network. Core switches in the network do not process these packets but forward them as normal packets. Layer 2 protocol data units (PDUs) for CDP, STP, or VTP cross the service-provider network and are delivered to customer switches on the outbound side of the service-provider network. Identical packets are received by all customer ports on the same VLANs with these results:

- Users on each of a customer’s sites can properly run STP, and every VLAN can build a correct spanning tree based on parameters from all sites and not just from the local site.
- CDP discovers and shows information about the other Cisco devices connected through the service-provider network.
- VTP provides consistent VLAN configuration throughout the customer network, propagating to all switches through the service provider.

To provide interoperability with third-party vendors, you can use the Layer 2 protocol-tunnel bypass feature. Bypass mode transparently forwards control PDUs to vendor switches that have different ways of controlling protocol tunneling. You implement bypass mode by enabling Layer 2 protocol tunneling on the egress trunk port. When Layer 2 protocol tunneling is enabled on the trunk port, the encapsulated tunnel MAC address is removed and the protocol packets have their normal MAC address.

Layer 2 protocol tunneling can be used independently or can enhance IEEE 802.1Q tunneling. If protocol tunneling is not enabled on IEEE 802.1Q tunneling ports, remote switches at the receiving end of the service-provider network do not receive the PDUs and cannot properly run STP, CDP, and VTP. When protocol tunneling is enabled, Layer 2 protocols within each customer’s network are totally separate from those running within the service-provider network. Customer switches on different sites that send traffic through the service-provider network with IEEE 802.1Q tunneling achieve complete knowledge of the customer’s VLAN. If IEEE 802.1Q tunneling is not used, you can still enable Layer 2 protocol tunneling by connecting to the customer switch through access ports and by enabling tunneling on the service-provider access port.

For example, in Figure 17-4, Customer X has four switches in the same VLAN, that are connected through the service-provider network. If the network does not tunnel PDUs, switches on the far ends of the network cannot properly run STP, CDP, and VTP. For example, STP for a VLAN on a switch in Customer X, Site 1, will build a spanning tree on the switches at that site without considering convergence parameters based on Customer X’s switch in Site 2. This could result in the topology shown in Figure 17-5.
In an SP network, you can use Layer 2 protocol tunneling to enhance the creation of EtherChannels by emulating a point-to-point network topology. When you enable protocol tunneling (PAgP or LACP) on the SP switch, remote customer switches receive the PDUs and can negotiate the automatic creation of EtherChannels.
Configuring Layer 2 Protocol Tunneling

You can enable Layer 2 protocol tunneling (by protocol) on the ports that are connected to the customer in the edge switches of the service-provider network. The service-provider edge switches connected to the customer switch perform the tunneling process. Edge-switch tunnel ports are connected to customer IEEE 802.1Q trunk ports. Edge-switch access ports are connected to customer access ports. The edge switches connected to the customer switch perform the tunneling process.

You can enable Layer 2 protocol tunneling on ports that are configured as access ports or tunnel ports. You cannot enable Layer 2 protocol tunneling on ports configured in either switchport mode dynamic auto (the default mode) or switchport mode dynamic desirable.

The switch supports Layer 2 protocol tunneling for CDP, STP, and VTP. For emulated point-to-point network topologies, it also supports PAgP, LACP, and UDLD protocols. The switch does not support Layer 2 protocol tunneling for LLDP.

**Caution**

PAgP, LACP, and UDLD protocol tunneling is only intended to emulate a point-to-point topology. An erroneous configuration that sends tunneled packets to many ports could lead to a network failure.

When the Layer 2 PDUs that entered the service-provider inbound edge switch through a Layer 2 protocol-enabled port exit through the trunk port into the service-provider network, the switch overwrites the customer PDU-destination MAC address with a well-known Cisco proprietary multicast address (01-00-0c-cd-cd-d0). If IEEE 802.1Q tunneling is enabled, packets are also double-tagged; the outer tag is the customer metro tag, and the inner tag is the customer’s VLAN tag. The core switches ignore the inner tags and forward the packet to all trunk ports in the same metro VLAN. The edge switches on the outbound side restore the proper Layer 2 protocol and MAC address information and forward the packets to all tunnel or access ports in the same metro VLAN. Therefore, the Layer 2 PDUs remain intact and are delivered across the service-provider infrastructure to the other side of the customer network.
See Figure 17-4, with Customer X and Customer Y in access VLANs 30 and 40, respectively. Asymmetric links connect the customers in Site 1 to edge switches in the service-provider network. The Layer 2 PDUs (for example, BPDUs) coming into Switch B from Customer Y in Site 1 are forwarded to the infrastructure as double-tagged packets with the well-known MAC address as the destination MAC address. These double-tagged packets have the metro VLAN tag of 40, as well as an inner VLAN tag (for example, VLAN 100). When the double-tagged packets enter Switch D, the outer VLAN tag 40 is removed, the well-known MAC address is replaced with the respective Layer 2 protocol MAC address, and the packet is sent to Customer Y on Site 2 as a single-tagged frame in VLAN 100.

You can also enable Layer 2 protocol tunneling on access ports on the edge switch connected to access or trunk ports on the customer switch. In this case, the encapsulation and decapsulation process is the same as described in the previous paragraph, except that the packets are not double-tagged in the service-provider network. The single tag is the customer-specific access VLAN tag.

In switch stacks, Layer 2 protocol tunneling configuration is distributed among all stack members. Each stack member that receives an ingress packet on a local port encapsulates or decapsulates the packet and forwards it to the appropriate destination port. On a single switch, ingress Layer 2 protocol-tunneled traffic is sent across all local ports in the same VLAN on which Layer 2 protocol tunneling is enabled. In a stack, packets received by a Layer 2 protocol-tunneled port are distributed to all ports in the stack that are configured for Layer 2 protocol tunneling and are in the same VLAN. All Layer 2 protocol tunneling configuration is handled by the stack master and distributed to all stack members.

These sections contain this configuration information:

- Default Layer 2 Protocol Tunneling Configuration, page 17-11
- Layer 2 Protocol Tunneling Configuration Guidelines, page 17-12
- Configuring Layer 2 Protocol Tunneling, page 17-13
- Configuring Layer 2 Tunneling for EtherChannels, page 17-14

## Default Layer 2 Protocol Tunneling Configuration

Table 17-1 shows the default Layer 2 protocol tunneling configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 protocol tunneling</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Shutdown threshold</td>
<td>None set.</td>
</tr>
<tr>
<td>Drop threshold</td>
<td>None set.</td>
</tr>
<tr>
<td>CoS value</td>
<td>If a CoS value is configured on the interface, that value is used to set the BPDU CoS value for Layer 2 protocol tunneling. If no CoS value is configured at the interface level, the default value for CoS marking of L2 protocol tunneling BPDUs is 5. This does not apply to data traffic.</td>
</tr>
</tbody>
</table>
Layer 2 Protocol Tunneling Configuration Guidelines

These are some configuration guidelines and operating characteristics of Layer 2 protocol tunneling:

- The switch supports tunneling of CDP, STP, including multiple STP (MSTP), and VTP. Protocol tunneling is disabled by default but can be enabled for the individual protocols on IEEE 802.1Q tunnel ports or access ports.

- The switch does not support Layer 2 protocol tunneling on ports with `switchport mode dynamic auto` or `dynamic desirable`.

- DTP is not compatible with layer 2 protocol tunneling.

- The edge switches on the outbound side of the service-provider network restore the proper Layer 2 protocol and MAC address information and forward the packets to all tunnel and access ports in the same metro VLAN.

- For interoperability with third-party vendor switches, the switch supports a Layer 2 protocol-tunnel bypass feature. Bypass mode transparently forwards control PDUs to vendor switches that have different ways of controlling protocol tunneling. When Layer 2 protocol tunneling is enabled on ingress ports on a switch, egress trunk ports forward the tunnelled packets with a special encapsulation. If you also enable Layer 2 protocol tunneling on the egress trunk port, this behavior is bypassed, and the switch forwards control PDUs without any processing or modification.

- The switch supports PAgP, LACP, and UDLD tunneling for emulated point-to-point network topologies. Protocol tunneling is disabled by default but can be enabled for the individual protocols on IEEE 802.1Q tunnel ports or on access ports.

- If you enable PAgP or LACP tunneling, we recommend that you also enable UDLD on the interface for faster link-failure detection.

- Loopback detection is not supported on Layer 2 protocol tunneling of PAgP, LACP, or UDLD packets.

- EtherChannel port groups are compatible with tunnel ports when the IEEE 802.1Q configuration is consistent within an EtherChannel port group.

- If an encapsulated PDU (with the proprietary destination MAC address) is received from a tunnel port or an access port with Layer 2 tunneling enabled, the tunnel port is shut down to prevent loops. The port also shuts down when a configured shutdown threshold for the protocol is reached. You can manually re-enable the port (by entering a `shutdown` and a `no shutdown` command sequence). If errdisable recovery is enabled, the operation is retried after a specified time interval.

- Only decapsulated PDUs are forwarded to the customer network. The spanning-tree instance running on the service-provider network does not forward BPDUs to tunnel ports. CDP packets are not forwarded from tunnel ports.

- When protocol tunneling is enabled on an interface, you can set a per-protocol, per-port, shutdown threshold for the PDUs generated by the customer network. If the limit is exceeded, the port shuts down. You can also limit BPDU rate by using QoS ACLs and policy maps on a tunnel port.

- When protocol tunneling is enabled on an interface, you can set a per-protocol, per-port, drop threshold for the PDUs generated by the customer network. If the limit is exceeded, the port drops PDUs until the rate at which it receives them is below the drop threshold.

- Because tunnelled PDUs (especially STP BPDUs) must be delivered to all remote sites so that the customer virtual network operates properly, you can give PDUs higher priority within the service-provider network than data packets received from the same tunnel port. By default, the PDUs use the same CoS value as data packets.
Configuring Layer 2 Protocol Tunneling

Beginning in privileged EXEC mode, follow these steps to configure a port for Layer 2 protocol tunneling:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface to be configured as a tunnel port. This should be the edge port in the service-provider network that connects to the customer switch. Valid interfaces can be physical interfaces and port-channel logical interfaces (port channels 1 to 64).</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode access or switchport mode dot1q-tunnel</td>
<td>Configure the interface as an access port or an IEEE 802.1Q tunnel port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>l2protocol-tunnel [cdp</td>
<td>stp</td>
</tr>
<tr>
<td>Step 5</td>
<td>l2protocol-tunnel shutdown-threshold [cdp</td>
<td>stp</td>
</tr>
<tr>
<td>Step 6</td>
<td>l2protocol-tunnel drop-threshold [cdp</td>
<td>stp</td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>errdisable recovery cause l2ptguard</td>
<td>(Optional) Configure the recovery mechanism from a Layer 2 maximum-rate error so that the interface is re-enabled and can try again. Errdisable recovery is disabled by default; when enabled, the default time interval is 300 seconds.</td>
</tr>
<tr>
<td>Step 9</td>
<td>l2protocol-tunnel cos value</td>
<td>(Optional) Configure the CoS value for all tunneled Layer 2 PDUs. The range is 0 to 7; the default is the default CoS value for the interface. If none is configured, the default is 5.</td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 11</td>
<td>show l2protocol</td>
<td>Display the Layer 2 tunnel ports on the switch, including the protocols configured, the thresholds, and the counters.</td>
</tr>
<tr>
<td>Step 12</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring Layer 2 Protocol Tunneling

Use the `no l2protocol-tunnel [cdp | stp | vtp]` interface configuration command to disable protocol tunneling for one of the Layer 2 protocols or for all three. Use the `no l2protocol-tunnel shutdown-threshold [cdp | stp | vtp]` and the `no l2protocol-tunnel drop-threshold [cdp | stp | vtp]` commands to return the shutdown and drop thresholds to the default settings.

This example shows how to configure Layer 2 protocol tunneling for CDP, STP, and VTP and to verify the configuration.

```
Switch(config)# interface gigabitethernet1/0/11
Switch(config-if)# l2protocol-tunnel cdp
Switch(config-if)# l2protocol-tunnel stp
Switch(config-if)# l2protocol-tunnel vtp
Switch(config-if)# l2protocol-tunnel shutdown-threshold 1500
Switch(config-if)# l2protocol-tunnel drop-threshold 1000
Switch(config-if)# exit
Switch(config)# l2protocol-tunnel cos 7
Switch(config)# end
Switch# show l2protocol
COS for Encapsulated Packets: 7
Port Protocol Shutdown Drop Encapsulation Decapsulation Drop
------- -------- --------- --------- ------------- ------------- -------------
Gi1/0/11 cdp 1500 1000 2288 2282 0
 stp 1500 1000 116 13 0
 vtp 1500 1000 3 67 0
 pagp ---- ---- 0 0 0
 lacp ---- ---- 0 0 0
 udld ---- ---- 0 0 0
```

Configuring Layer 2 Tunneling for EtherChannels

To configure Layer 2 point-to-point tunneling to facilitate the automatic creation of EtherChannels, you need to configure both the SP edge switch and the customer switch.

Configuring the SP Edge Switch

Beginning in privileged EXEC mode, follow these steps to configure a SP edge switch for Layer 2 protocol tunneling for EtherChannels:

```
Command | Purpose
--------- |--
Step 1 configure terminal | Enter global configuration mode.
Step 2 interface interface-id | Enter interface configuration mode, and enter the interface to be configured as a tunnel port. This should be the edge port in the SP network that connects to the customer switch. Valid interfaces are physical interfaces.
Step 3 switchport mode dot1q-tunnel | Configure the interface as an IEEE 802.1Q tunnel port.
Step 4 l2protocol-tunnel point-to-point [pagp | lacp | udld] | (Optional) Enable point-to-point protocol tunneling for the desired protocol. If no keyword is entered, tunneling is enabled for all three protocols.

Caution | To avoid a network failure, make sure that the network is a point-to-point topology before you enable tunneling for PAgP, LACP, or UDLD packets.
```
### Chapter 17  Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

#### Configuring Layer 2 Protocol Tunneling

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 5    | `l2protocol-tunnel shutdown-threshold [point-to-point [pagp | lacp | udld]] value` | (Optional) Configure the threshold for packets-per-second accepted for encapsulation. The interface is disabled if the configured threshold is exceeded. If no protocol option is specified, the threshold applies to each of the tunneled Layer 2 protocol types. The range is 1 to 4096. The default is to have no threshold configured.  
**Note**  If you also set a drop threshold on this interface, the shutdown-threshold value must be greater than or equal to the drop-threshold value. |
| 6    | `l2protocol-tunnel drop-threshold [point-to-point [pagp | lacp | udld]] value` | (Optional) Configure the threshold for packets-per-second accepted for encapsulation. The interface drops packets if the configured threshold is exceeded. If no protocol option is specified, the threshold applies to each of the tunneled Layer 2 protocol types. The range is 1 to 4096. The default is to have no threshold configured.  
**Note**  If you also set a shutdown threshold on this interface, the drop-threshold value must be less than or equal to the shutdown-threshold value. |
| 7    | `no cdp enable` | Disable CDP on the interface. |
| 8    | `spanning-tree bpdufilter enable` | Enable BPDU filtering on the interface. |
| 9    | `exit` | Return to global configuration mode. |
| 10   | `errdisable recovery cause l2ptguard` | (Optional) Configure the recovery mechanism from a Layer 2 maximum-rate error so that the interface is re-enabled and can try again. Errdisable recovery is disabled by default; when enabled, the default time interval is 300 seconds. |
| 11   | `l2protocol-tunnel cos value` | (Optional) Configure the CoS value for all tunneled Layer 2 PDUs. The range is 0 to 7; the default is the default CoS value for the interface. If none is configured, the default is 5. |
| 12   | `end` | Return to privileged EXEC mode. |
| 13   | `show l2protocol` | Display the Layer 2 tunnel ports on the switch, including the protocols configured, the thresholds, and the counters. |
| 14   | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |

Use the **no l2protocol-tunnel [point-to-point [pagp | lacp | udld]]** interface configuration command to disable point-to-point protocol tunneling for one of the Layer 2 protocols or for all three. Use the **no l2protocol-tunnel shutdown-threshold [point-to-point [pagp | lacp | udld]]** and the **no l2protocol-tunnel drop-threshold [point-to-point [pagp | lacp | udld]]** commands to return the shutdown and drop thresholds to the default settings.
Chapter 17  Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

Configuring the Customer Switch

After configuring the SP edge switch, begin in privileged EXEC mode and follow these steps to configure a customer switch for Layer 2 protocol tunneling for EtherChannels:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>switchport trunk encapsulation dot1q</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>switchport mode trunk</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>uddl enable</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>channel-group channel-group-number mode desirable</code></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>exit</code></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><code>interface port-channel port-channel number</code></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><code>shutdown</code></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><code>no shutdown</code></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td><code>show l2protocol</code></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Use the no switchport mode trunk, the no uddl enable, and the no channel group channel-group-number mode desirable interface configuration commands to return the interface to the default settings.

For EtherChannels, you need to configure both the SP edge switches and the customer switches for Layer 2 protocol tunneling. (See Figure 17-6 on page 17-10.)

This example shows how to configure the SP edge switch 1 and edge switch 2. VLANs 17, 18, 19, and 20 are the access VLANs, Fast Ethernet interfaces 1 and 2 are point-to-point tunnel ports with PAgP and UDLD enabled, the drop threshold is 1000, and Fast Ethernet interface 3 is a trunk port.

SP edge switch 1 configuration:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport access vlan 17
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# 12protocol-tunnel point-to-point pagp
Switch(config-if)# 12protocol-tunnel point-to-point udld
Switch(config-if)# 12protocol-tunnel drop-threshold point-to-point pagp 1000
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport access vlan 18
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# 12protocol-tunnel point-to-point pagp
Switch(config-if)# 12protocol-tunnel point-to-point udld
```
Chapter 17      Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling

Configuring Layer 2 Protocol Tunneling

Switch(config-if)# l2protocol-tunnel drop-threshold point-to-point pagp 1000
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport trunk encapsulation negotiate
Switch(config-if)# switchport mode trunk

SP edge switch 2 configuration:

Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport access vlan 19
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# l2protocol-tunnel point-to-point pagp
Switch(config-if)# l2protocol-tunnel point-to-point udld
Switch(config-if)# l2protocol-tunnel drop-threshold point-to-point pagp 1000
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport access vlan 20
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# l2protocol-tunnel point-to-point pagp
Switch(config-if)# l2protocol-tunnel point-to-point udld
Switch(config-if)# l2protocol-tunnel drop-threshold point-to-point pagp 1000
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport trunk encapsulation negotiate
Switch(config-if)# switchport mode trunk

This example shows how to configure the customer switch at Site 1. Fast Ethernet interfaces 1, 2, 3, and 4 are set for IEEE 802.1Q trunking, UDLD is enabled, EtherChannel group 1 is enabled, and the port channel is shut down and then enabled to activate the EtherChannel configuration.

Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# udld enable
Switch(config-if)# channel-group 1 mode desirable
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# udld enable
Switch(config-if)# channel-group 1 mode desirable
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# udld enable
Switch(config-if)# channel-group 1 mode desirable
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# udld enable
Switch(config-if)# channel-group 1 mode desirable
Switch(config-if)# exit
Switch(config)# interface port-channel 1
Switch(config-if)# shutdown
Switch(config-if)# no shutdown
Switch(config-if)# exit
Monitoring and Maintaining Tunneling Status

Table 17-2 shows the privileged EXEC commands for monitoring and maintaining IEEE 802.1Q and Layer 2 protocol tunneling.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear l2protocol-tunnel counters</td>
<td>Clear the protocol counters on Layer 2 protocol tunneling ports.</td>
</tr>
<tr>
<td>show dot1q-tunnel</td>
<td>Display IEEE 802.1Q tunnel ports on the switch.</td>
</tr>
<tr>
<td>show dot1q-tunnel interface interface-id</td>
<td>Verify if a specific interface is a tunnel port.</td>
</tr>
<tr>
<td>show l2protocol-tunnel</td>
<td>Display information about Layer 2 protocol tunneling ports.</td>
</tr>
<tr>
<td>show errdisable recovery</td>
<td>Verify if the recovery timer from a Layer 2 protocol-tunnel error disable state is enabled.</td>
</tr>
<tr>
<td>show l2protocol-tunnel interface interface-id</td>
<td>Display information about a specific Layer 2 protocol tunneling port.</td>
</tr>
<tr>
<td>show l2protocol-tunnel summary</td>
<td>Display only Layer 2 protocol summary information.</td>
</tr>
<tr>
<td>show vlan dot1q tag native</td>
<td>Display the status of native VLAN tagging on the switch.</td>
</tr>
</tbody>
</table>

For detailed information about these displays, see the command reference for this release.
Configuring STP

This chapter describes how to configure the Spanning Tree Protocol (STP) on port-based VLANs on the switch. The switch can use either the per-VLAN spanning-tree plus (PVST+) protocol based on the IEEE 802.1D standard and Cisco proprietary extensions, or the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol based on the IEEE 802.1w standard. A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same bridge ID. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For information about the Multiple Spanning Tree Protocol (MSTP) and how to map multiple VLANs to the same spanning-tree instance, see Chapter 19, “Configuring MSTP.” For information about other spanning-tree features such as Port Fast, UplinkFast, root guard, and so forth, see Chapter 20, “Configuring Optional Spanning-Tree Features.”

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding Spanning-Tree Features, page 18-1
- Configuring Spanning-Tree Features, page 18-13
- Displaying the Spanning-Tree Status, page 18-24

Understanding Spanning-Tree Features

These sections contain this conceptual information:

- STP Overview, page 18-2
- Spanning-Tree Topology and BPDUs, page 18-3
- Bridge ID, Switch Priority, and Extended System ID, page 18-4
- Spanning-Tree Interface States, page 18-5
- How a Switch or Port Becomes the Root Switch or Root Port, page 18-8
- Spanning Tree and Redundant Connectivity, page 18-8
- Spanning-Tree Address Management, page 18-9
- Accelerated Aging to Retain Connectivity, page 18-9
- Spanning-Tree Modes and Protocols, page 18-10
STP Overview

STP is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Switches might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network. Spanning-tree operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

The STP uses a spanning-tree algorithm to select one switch of a redundantly connected network as the root of the spanning tree. The algorithm calculates the best loop-free path through a switched Layer 2 network by assigning a role to each port based on the role of the port in the active topology:

- **Root**—A forwarding port elected for the spanning-tree topology
- **Designated**—A forwarding port elected for every switched LAN segment
- **Alternate**—A blocked port providing an alternate path to the root bridge in the spanning tree
- **Backup**—A blocked port in a loopback configuration

The switch that has all of its ports as the designated role or as the backup role is the root switch. The switch that has at least one of its ports in the designated role is called the designated switch.

Spanning tree forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path. Switches send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The switches do not forward these frames but use them to construct a loop-free path. BPDUs contain information about the sending switch and its ports, including switch and MAC addresses, switch priority, port priority, and path cost. Spanning tree uses this information to elect the root switch and root port for the switched network and the root port and designated port for each switched segment.

When two ports on a switch are part of a loop, the spanning-tree port priority and path cost settings control which port is put in the forwarding state and which is put in the blocking state. The spanning-tree port priority value represents the location of a port in the network topology and how well it is located to pass traffic. The path cost value represents the media speed.

**Note**

By default, the switch sends keepalive messages (to ensure the connection is up) only on interfaces that do not have small form-factor pluggable (SFP) modules. You can change the default for an interface by entering the [no] keepalive interface configuration command with no keywords.
Spanning-Tree Topology and BPDUs

The stable, active spanning-tree topology of a switched network is controlled by these elements:

- The unique bridge ID (switch priority and MAC address) associated with each VLAN on each switch. In a switch stack, all switches use the same bridge ID for a given spanning-tree instance.
- The spanning-tree path cost to the root switch.
- The port identifier (port priority and MAC address) associated with each Layer 2 interface.

When the switches in a network are powered up, each functions as the root switch. Each switch sends a configuration BPDU through all of its ports. The BPDUs communicate and compute the spanning-tree topology. Each configuration BPDU contains this information:

- The unique bridge ID of the switch that the sending switch identifies as the root switch
- The spanning-tree path cost to the root
- The bridge ID of the sending switch
- Message age
- The identifier of the sending interface
- Values for the hello, forward delay, and max-age protocol timers

When a switch receives a configuration BPDU that contains superior information (lower bridge ID, lower path cost, and so forth), it stores the information for that port. If this BPDU is received on the root port of the switch, the switch also forwards it with an updated message to all attached LANs for which it is the designated switch.

If a switch receives a configuration BPDU that contains inferior information to that currently stored for that port, it discards the BPDU. If the switch is a designated switch for the LAN from which the inferior BPDU was received, it sends that LAN a BPDU containing the up-to-date information stored for that port. In this way, inferior information is discarded, and superior information is propagated on the network.

A BPDU exchange results in these actions:

- One switch in the network is elected as the root switch (the logical center of the spanning-tree topology in a switched network). In a switch stack, one stack member is elected as the stack root switch. The stack root switch contains the outgoing root port (Switch 1), as shown in Figure 18-1 on page 18-4.

  For each VLAN, the switch with the highest switch priority (the lowest numerical priority value) is elected as the root switch. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root switch. The switch priority value occupies the most significant bits of the bridge ID, as shown in Table 18-1 on page 18-5.

- A root port is selected for each switch (except the root switch). This port provides the best path (lowest cost) when the switch forwards packets to the root switch.

When selecting the root port on a switch stack, spanning tree follows this sequence:

- Selects the lowest root bridge ID
- Selects the lowest path cost to the root switch
- Selects the lowest designated bridge ID
- Selects the lowest designated path cost
- Selects the lowest port ID

Only one outgoing port on the stack root switch is selected as the root port. The remaining switches in the stack become its designated switches (Switch 2 and Switch 3) as shown in Figure 18-1.

- The shortest distance to the root switch is calculated for each switch based on the path cost.
- A designated switch for each LAN segment is selected. The designated switch incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.

Figure 18-1  Spanning-Tree Port States in a Switch Stack

All paths that are not needed to reach the root switch from anywhere in the switched network are placed in the spanning-tree blocking mode.

**Bridge ID, Switch Priority, and Extended System ID**

The IEEE 802.1D standard requires that each switch has a unique bridge identifier (bridge ID), which controls the selection of the root switch. Because each VLAN is considered as a different logical bridge with PVST+ and rapid PVST+, the same switch must have a different bridge IDs for each configured VLAN. Each VLAN on the switch has a unique 8-byte bridge ID. The 2 most-significant bytes are used for the switch priority, and the remaining 6 bytes are derived from the switch MAC address.

The switch supports the IEEE 802.1t spanning-tree extensions, and some of the bits previously used for the switch priority are now used as the VLAN identifier. The result is that fewer MAC addresses are reserved for the switch, and a larger range of VLAN IDs can be supported, all while maintaining the...
uniqueness of the bridge ID. As shown in Table 18-1, the 2 bytes previously used for the switch priority are reallocated into a 4-bit priority value and a 12-bit extended system ID value equal to the VLAN ID.

<table>
<thead>
<tr>
<th>Switch Priority Value</th>
<th>Extended System ID (Set Equal to the VLAN ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 16</td>
<td>Bit 15</td>
</tr>
<tr>
<td>32768</td>
<td>16384</td>
</tr>
</tbody>
</table>

Spanning tree uses the extended system ID, the switch priority, and the allocated spanning-tree MAC address to make the bridge ID unique for each VLAN. Because the switch stack appears as a single switch to the rest of the network, all switches in the stack use the same bridge ID for a given spanning tree. If the stack master fails, the stack members recalculate their bridge IDs of all running spanning trees based on the new MAC address of the new stack master.

Support for the extended system ID affects how you manually configure the root switch, the secondary root switch, and the switch priority of a VLAN. For example, when you change the switch priority value, you change the probability that the switch will be elected as the root switch. Configuring a higher value decreases the probability; a lower value increases the probability. For more information, see the “Configuring the Root Switch” section on page 18-16, the “Configuring a Secondary Root Switch” section on page 18-18, and the “Configuring the Switch Priority of a VLAN” section on page 18-21.

**Spanning-Tree Interface States**

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When an interface transitions directly from nonparticipation in the spanning-tree topology to the forwarding state, it can create temporary data loops. Interfaces must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for forwarded frames that have used the old topology.

Each Layer 2 interface on a switch using spanning tree exists in one of these states:

- **Blocking**—The interface does not participate in frame forwarding.
- **Listening**—The first transitional state after the blocking state when the spanning tree decides that the interface should participate in frame forwarding.
- **Learning**—The interface prepares to participate in frame forwarding.
- **Forwarding**—The interface forwards frames.
- **Disabled**—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning-tree instance running on the port.

An interface moves through these states:

- From initialization to blocking
- From blocking to listening or to disabled
- From listening to learning or to disabled
- From learning to forwarding or to disabled
- From forwarding to disabled
When you power up the switch, spanning tree is enabled by default, and every interface in the switch, VLAN, or network goes through the blocking state and the transitory states of listening and learning. Spanning tree stabilizes each interface at the forwarding or blocking state.

When the spanning-tree algorithm places a Layer 2 interface in the forwarding state, this process occurs:

1. The interface is in the listening state while spanning tree waits for protocol information to move the interface to the blocking state.
2. While spanning tree waits the forward-delay timer to expire, it moves the interface to the learning state and resets the forward-delay timer.
3. In the learning state, the interface continues to block frame forwarding as the switch learns end-station location information for the forwarding database.
4. When the forward-delay timer expires, spanning tree moves the interface to the forwarding state, where both learning and frame forwarding are enabled.

**Blocking State**

A Layer 2 interface in the blocking state does not participate in frame forwarding. After initialization, a BPU is sent to each switch interface. A switch initially functions as the root until it exchanges BPDUs with other switches. This exchange establishes which switch in the network is the root or root switch. If there is only one switch in the network, no exchange occurs, the forward-delay timer expires, and the interface moves to the listening state. An interface always enters the blocking state after switch initialization.

An interface in the blocking state performs these functions:

- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs
Listening State

The listening state is the first state a Layer 2 interface enters after the blocking state. The interface enters this state when the spanning tree decides that the interface should participate in frame forwarding.

An interface in the listening state performs these functions:
- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Learning State

A Layer 2 interface in the learning state prepares to participate in frame forwarding. The interface enters the learning state from the listening state.

An interface in the learning state performs these functions:
- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Learns addresses
- Receives BPDUs

Forwarding State

A Layer 2 interface in the forwarding state forwards frames. The interface enters the forwarding state from the learning state.

An interface in the forwarding state performs these functions:
- Receives and forwards frames received on the interface
- Forwards frames switched from another interface
- Learns addresses
- Receives BPDUs

Disabled State

A Layer 2 interface in the disabled state does not participate in frame forwarding or in the spanning tree. An interface in the disabled state is nonoperational.

A disabled interface performs these functions:
- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Does not receive BPDUs
How a Switch or Port Becomes the Root Switch or Root Port

If all switches in a network are enabled with default spanning-tree settings, the switch with the lowest MAC address becomes the root switch. In Figure 18-3, Switch A is elected as the root switch because the switch priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, because of traffic patterns, number of forwarding interfaces, or link types, Switch A might not be the ideal root switch. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root switch, you force a spanning-tree recalculation to form a new topology with the ideal switch as the root.

Figure 18-3 Spanning-Tree Topology

When the spanning-tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to an interface that has a higher number than the root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a Gigabit Ethernet link and that another port on Switch B (a 10/100 link) is the root port. Network traffic might be more efficient over the Gigabit Ethernet link. By changing the spanning-tree port priority on the Gigabit Ethernet port to a higher priority (lower numerical value) than the root port, the Gigabit Ethernet port becomes the new root port.

Spanning Tree and Redundant Connectivity

You can create a redundant backbone with spanning tree by connecting two switch interfaces to another device or to two different devices, as shown in Figure 18-4. Spanning tree automatically disables one interface but enables it if the other one fails. If one link is high-speed and the other is low-speed, the low-speed link is always disabled. If the speeds are the same, the port priority and port ID are added together, and spanning tree disables the link with the lowest value.
Understanding Spanning-Tree Features

You can also create redundant links between switches by using EtherChannel groups. For more information, see Chapter 38, “Configuring EtherChannels and Link-State Tracking.”

Spanning-Tree Address Management

IEEE 802.1D specifies 17 multicast addresses, ranging from 0x00180C2000000 to 0x0180C2000010, to be used by different bridge protocols. These addresses are static addresses that cannot be removed.

Regardless of the spanning-tree state, each switch in the stack receives but does not forward packets destined for addresses between 0x0180C2000000 and 0x0180C2000010.

If spanning tree is enabled, the CPU on the switch or on each switch in the stack receives packets destined for 0x0180C2000000 and 0x0180C2000010. If spanning tree is disabled, the switch or each switch in the stack forwards those packets as unknown multicast addresses.

Accelerated Aging to Retain Connectivity

The default for aging dynamic addresses is 5 minutes, the default setting of the `mac address-table aging-time` global configuration command. However, a spanning-tree reconfiguration can cause many station locations to change. Because these stations could be unreachable for 5 minutes or more during a reconfiguration, the address-aging time is accelerated so that station addresses can be dropped from the address table and then relearned. The accelerated aging is the same as the forward-delay parameter value (`spanning-tree vlan vlan-id forward-time seconds` global configuration command) when the spanning tree reconfigures.

Because each VLAN is a separate spanning-tree instance, the switch accelerates aging on a per-VLAN basis. A spanning-tree reconfiguration on one VLAN can cause the dynamic addresses learned on that VLAN to be subject to accelerated aging. Dynamic addresses on other VLANs can be unaffected and remain subject to the aging interval entered for the switch.
Spanning-Tree Modes and Protocols

The switch supports these spanning-tree modes and protocols:

- **PVST+**—This spanning-tree mode is based on the IEEE 802.1D standard and Cisco proprietary extensions. It is the default spanning-tree mode used on all Ethernet port-based VLANs. The PVST+ runs on each VLAN on the switch up to the maximum supported, ensuring that each has a loop-free path through the network.

  The PVST+ provides Layer 2 load-balancing for the VLAN on which it runs. You can create different logical topologies by using the VLANs on your network to ensure that all of your links are used but that no one link is oversubscribed. Each instance of PVST+ on a VLAN has a single root switch. This root switch propagates the spanning-tree information associated with that VLAN to all other switches in the network. Because each switch has the same information about the network, this process ensures that the network topology is maintained.

- **Rapid PVST+**—This spanning-tree mode is the same as PVST+ except that it uses a rapid convergence based on the IEEE 802.1w standard. To provide rapid convergence, the rapid PVST+ immediately deletes dynamically learned MAC address entries on a per-port basis upon receiving a topology change. By contrast, PVST+ uses a short aging time for dynamically learned MAC address entries.

  The rapid PVST+ uses the same configuration as PVST+ (except where noted), and the switch needs only minimal extra configuration. The benefit of rapid PVST+ is that you can migrate a large PVST+ install base to rapid PVST+ without having to learn the complexities of the MSTP configuration and without having to reprovision your network. In rapid-PVST+ mode, each VLAN runs its own spanning-tree instance up to the maximum supported.

- **MSTP**—This spanning-tree mode is based on the IEEE 802.1s standard. You can map multiple VLANs to the same spanning-tree instance, which reduces the number of spanning-tree instances required to support a large number of VLANs. The MSTP runs on top of the RSTP (based on IEEE 802.1w), which provides for rapid convergence of the spanning tree by eliminating the forward delay and by quickly transitioning root ports and designated ports to the forwarding state. In a switch stack, the cross-stack rapid transition (CSRT) feature performs the same function as RSTP. You cannot run MSTP without RSTP or CSRT.

  The most common initial deployment of MSTP is in the backbone and distribution layers of a Layer 2 switched network. For more information, see Chapter 19, “Configuring MSTP.”

For information about the number of supported spanning-tree instances, see the next section.

Supported Spanning-Tree Instances

In PVST+ or rapid-PVST+ mode, the switch or switch stack supports up to 128 spanning-tree instances.

In MSTP mode, the switch or switch stack supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.

For information about how spanning tree interoperates with the VLAN Trunking Protocol (VTP), see the “Spanning-Tree Configuration Guidelines” section on page 18-14.
Spanning-Tree Interoperability and Backward Compatibility

Table 18-2 lists the interoperability and compatibility among the supported spanning-tree modes in a network.

<table>
<thead>
<tr>
<th></th>
<th>PVST+</th>
<th>MSTP</th>
<th>Rapid PVST+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVST+</td>
<td>Yes</td>
<td>Yes (with restrictions)</td>
<td>Yes (reverts to PVST+)</td>
</tr>
<tr>
<td>MSTP</td>
<td>Yes (with restrictions)</td>
<td>Yes</td>
<td>Yes (reverts to PVST+)</td>
</tr>
<tr>
<td>Rapid PVST+</td>
<td>Yes (reverts to PVST+)</td>
<td>Yes (reverts to PVST+)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In a mixed MSTP and PVST+ network, the common spanning-tree (CST) root must be inside the MST backbone, and a PVST+ switch cannot connect to multiple MST regions.

When a network contains switches running rapid PVST+ and switches running PVST+, we recommend that the rapid-PVST+ switches and PVST+ switches be configured for different spanning-tree instances. In the rapid-PVST+ spanning-tree instances, the root switch must be a rapid-PVST+ switch. In the PVST+ instances, the root switch must be a PVST+ switch. The PVST+ switches should be at the edge of the network.

All stack members run the same version of spanning tree (all PVST+, all rapid PVST+, or all MSTP).

STP and IEEE 802.1Q Trunks

The IEEE 802.1Q standard for VLAN trunks imposes some limitations on the spanning-tree strategy for a network. The standard requires only one spanning-tree instance for all VLANs allowed on the trunks. However, in a network of Cisco switches connected through IEEE 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks.

When you connect a Cisco switch to a non-Cisco device through an IEEE 802.1Q trunk, the Cisco switch uses PVST+ to provide spanning-tree interoperability. If rapid PVST+ is enabled, the switch uses it instead of PVST+. The switch combines the spanning-tree instance of the IEEE 802.1Q VLAN of the trunk with the spanning-tree instance of the non-Cisco IEEE 802.1Q switch.

However, all PVST+ or rapid-PVST+ information is maintained by Cisco switches separated by a cloud of non-Cisco IEEE 802.1Q switches. The non-Cisco IEEE 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

PVST+ is automatically enabled on IEEE 802.1Q trunks, and no user configuration is required. The external spanning-tree behavior on access ports is not affected by PVST+.

For more information on IEEE 802.1Q trunks, see Chapter 13, “Configuring VLANs.”
VLAN-Bridge Spanning Tree

Cisco VLAN-bridge spanning tree is used with the fallback bridging feature (bridge groups), which forwards non-IP protocols such as DECnet between two or more VLAN bridge domains or routed ports. The VLAN-bridge spanning tree allows the bridge groups to form a spanning tree on top of the individual VLAN spanning trees to prevent loops from forming if there are multiple connections among VLANs. It also prevents the individual spanning trees from the VLANs being bridged from collapsing into a single spanning tree.

To support VLAN-bridge spanning tree, some of the spanning-tree timers are increased. To use the fallback bridging feature, you must have the IP services feature set enabled on your switch. For more information, see Chapter 47, “Configuring Fallback Bridging.”

Spanning Tree and Switch Stacks

These statements are true when the switch stack is operating in PVST+ or rapid-PVST+ mode:

- A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same bridge ID for a given spanning tree. The bridge ID is derived from the MAC address of the stack master.
- When a new switch joins the stack, it sets its bridge ID to the stack-master bridge ID. If the newly added switch has the lowest ID and if the root path cost is the same among all stack members, the newly added switch becomes the stack root.
- When a stack member leaves the stack, spanning-tree reconvergence occurs within the stack (and possibly outside the stack). The remaining stack member with the lowest stack port ID becomes the stack root.
- If the stack master fails or leaves the stack, the stack members elect a new stack master, and all stack members change their bridge IDs of the spanning trees to the new master bridge ID.
- If the switch stack is the spanning-tree root and the stack master fails or leaves the stack, the stack members elect a new stack master, and a spanning-tree reconvergence occurs.
- If a neighboring switch external to the switch stack fails or is powered down, normal spanning-tree processing occurs. Spanning-tree reconvergence might occur as a result of losing a switch in the active topology.
- If a new switch external to the switch stack is added to the network, normal spanning-tree processing occurs. Spanning-tree reconvergence might occur as a result of adding a switch in the network.

For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”
Configuring Spanning-Tree Features

These sections contain this configuration information:
- Default Spanning-Tree Configuration, page 18-13
- Spanning-Tree Configuration Guidelines, page 18-14
- Changing the Spanning-Tree Mode., page 18-15 (required)
- Disabling Spanning Tree, page 18-16 (optional)
- Configuring the Root Switch, page 18-16 (optional)
- Configuring a Secondary Root Switch, page 18-18 (optional)
- Configuring Port Priority, page 18-18 (optional)
- Configuring Path Cost, page 18-20 (optional)
- Configuring the Switch Priority of a VLAN, page 18-21 (optional)
- Configuring Spanning-Tree Timers, page 18-22 (optional)

Default Spanning-Tree Configuration

Table 18-3 shows the default spanning-tree configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
</table>
| Enable state                                    | Enabled on VLAN 1.  
For more information, see the “Supported Spanning-Tree Instances” section on page 18-10. |
| Spanning-tree mode                              | PVST+. (Rapid PVST+ and MSTP are disabled.)                                     |
| Switch priority                                 | 32768.                                                                         |
| Spanning-tree port priority (configurable on a per-interface basis) | 128.                                                                          |
| Spanning-tree port cost (configurable on a per-interface basis) | 1000 Mb/s: 4.  
100 Mb/s: 19.  
10 Mb/s: 100.                                           |
| Spanning-tree VLAN port priority (configurable on a per-VLAN basis) | 128.                                                                          |
| Spanning-tree VLAN port cost (configurable on a per-VLAN basis) | 1000 Mb/s: 4.  
100 Mb/s: 19.  
10 Mb/s: 100.                                           |
| Spanning-tree timers                            | Hello time: 2 seconds.  
Forward-delay time: 15 seconds.  
Maximum-aging time: 20 seconds.  
Transmit hold count: 6 BPDUs                              |
Spanning-Tree Configuration Guidelines

Each stack member runs its own spanning tree, and the entire stack appears as a single switch to the rest of the network.

If more VLANs are defined in the VTP than there are spanning-tree instances, you can enable PVST+ or rapid PVST+ on only 128 VLANs on the switch or each switch stack. The remaining VLANs operate with spanning tree disabled. However, you can map multiple VLANs to the same spanning-tree instances by using MSTP. For more information, see Chapter 19, “Configuring MSTP.”

If 128 instances of spanning tree are already in use, you can disable spanning tree on one of the VLANs and then enable it on the VLAN where you want it to run. Use the `no spanning-tree vlan vlan-id` global configuration command to disable spanning tree on a specific VLAN, and use the `spanning-tree vlan vlan-id` global configuration command to enable spanning tree on the desired VLAN.

---

**Caution**

Switches that are not running spanning tree still forward BPDUs that they receive so that the other switches on the VLAN that have a running spanning-tree instance can break loops. Therefore, spanning tree must be running on enough switches to break all the loops in the network; for example, at least one switch on each loop in the VLAN must be running spanning tree. It is not absolutely necessary to run spanning tree on all switches in the VLAN. However, if you are running spanning tree only on a minimal set of switches, an incautious change to the network that introduces another loop into the VLAN can result in a broadcast storm.

---

**Warning**

If you have already used all available spanning-tree instances on your switch, adding another VLAN anywhere in the VTP domain creates a VLAN that is not running spanning tree on that switch. If you have the default allowed list on the trunk ports of that switch, the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that will not be broken, particularly if there are several adjacent switches that have all run out of spanning-tree instances. You can prevent this possibility by setting up allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances. Setting up allowed lists is not necessary in many cases and can make it more labor-intensive to add another VLAN to the network.

Spanning-tree commands control the configuration of VLAN spanning-tree instances. You create a spanning-tree instance when you assign an interface to a VLAN. The spanning-tree instance is removed when the last interface is moved to another VLAN. You can configure switch and port parameters before a spanning-tree instance is created; these parameters are applied when the spanning-tree instance is created.

The switch supports PVST+, rapid PVST+, and MSTP, but only one version can be active at any time. (For example, all VLANs run PVST+, all VLANs run rapid PVST+, or all VLANs run MSTP.) For information about the different spanning-tree modes and how they interoperate, see the “Spanning-Tree Interoperability and Backward Compatibility” section on page 18-11.

For configuration guidelines about UplinkFast, BackboneFast, and cross-stack UplinkFast, see the “Optional Spanning-Tree Configuration Guidelines” section on page 20-12.

---

**Caution**

Loop guard works only on point-to-point links. We recommend that each end of the link has a directly connected device that is running STP.
Changing the Spanning-Tree Mode.

The switch supports three spanning-tree modes: PVST+, rapid PVST+, or MSTP. By default, the switch runs the PVST+ protocol.

Beginning in privileged EXEC mode, follow these steps to change the spanning-tree mode. If you want to enable a mode that is different from the default mode, this procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mode { pvst</td>
</tr>
<tr>
<td></td>
<td>Configure a spanning-tree mode. All stack members run the same version of spanning-tree.</td>
</tr>
<tr>
<td></td>
<td>• Select pvst to enable PVST+ (the default setting).</td>
</tr>
<tr>
<td></td>
<td>• Select mst to enable MSTP (and RSTP). For more configuration steps, see Chapter 19, “Configuring MSTP.”</td>
</tr>
<tr>
<td></td>
<td>• Select rapid-pvst to enable rapid PVST+.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>(Recommended for rapid-PVST+ mode only) Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports, VLANs, and port channels. The VLAN ID range is 1 to 4094. The port-channel range is 1 to 64.</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree link-type point-to-point</td>
</tr>
<tr>
<td></td>
<td>(Recommended for rapid-PVST+ mode only) Specify that the link type for this port is point-to-point.</td>
</tr>
<tr>
<td></td>
<td>If you connect this port (local port) to a remote port through a point-to-point link and the local port becomes a designated port, the switch negotiates with the remote port and rapidly changes the local port to the forwarding state.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>clear spanning-tree detected-protocols</td>
</tr>
<tr>
<td></td>
<td>(Recommended for rapid-PVST+ mode only) If any port on the switch is connected to a port on a legacy IEEE 802.1D switch, restart the protocol migration process on the entire switch.</td>
</tr>
<tr>
<td></td>
<td>This step is optional if the designated switch detects that this switch is running rapid PVST+.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show spanning-tree summary</td>
</tr>
<tr>
<td></td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>show spanning-tree interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no spanning-tree mode global configuration command. To return the port to its default setting, use the no spanning-tree link-type interface configuration command.
Disabling Spanning Tree

Spanning tree is enabled by default on VLAN 1 and on all newly created VLANs up to the spanning-tree limit specified in the “Supported Spanning-Tree Instances” section on page 18-10. Disable spanning tree only if you are sure there are no loops in the network topology.

Caution

When spanning tree is disabled and loops are present in the topology, excessive traffic and indefinite packet duplication can drastically reduce network performance.

Beginning in privileged EXEC mode, follow these steps to disable spanning-tree on a per-VLAN basis. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no spanning-tree vlan vlan-id</td>
<td>For vlan-id, the range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree vlan vlan-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable spanning-tree, use the spanning-tree vlan vlan-id global configuration command.

Configuring the Root Switch

The switch maintains a separate spanning-tree instance for each active VLAN configured on it. A bridge ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For each VLAN, the switch with the lowest bridge ID becomes the root switch for that VLAN.

To configure a switch to become the root for the specified VLAN, use the spanning-tree vlan vlan-id root global configuration command to modify the switch priority from the default value (32768) to a significantly lower value. When you enter this command, the software checks the switch priority of the root switches for each VLAN. Because of the extended system ID support, the switch sets its own priority for the specified VLAN to 24576 if this value will cause this switch to become the root for the specified VLAN.

If any root switch for the specified VLAN has a switch priority lower than 24576, the switch sets its own priority for the specified VLAN to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 18-1 on page 18-5.)

Note

The spanning-tree vlan vlan-id root global configuration command fails if the value necessary to be the root switch is less than 1.

Note

If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.
Note

The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the **diameter** keyword to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the **hello** keyword to override the automatically calculated hello time.

Note

After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time through the `spanning-tree vlan vlan-id hello-time`, `spanning-tree vlan vlan-id forward-time`, and the `spanning-tree vlan vlan-id max-age` global configuration commands.

Beginning in privileged EXEC mode, follow these steps to configure a switch to become the root for the specified VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | `spanning-tree vlan vlan-id root primary` `[diameter net-diameter [hello-time seconds]]` | Configure a switch to become the root for the specified VLAN.  
  - For `vlan-id`, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.  
  - (Optional) For `diameter net-diameter`, specify the maximum number of switches between any two end stations. The range is 2 to 7.  
  - (Optional) For `hello-time seconds`, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10; the default is 2. |
| Step 3 | `end` | Return to privileged EXEC mode. |
| Step 4 | `show spanning-tree detail` | Verify your entries. |
| Step 5 | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |

To return to the default setting, use the `no spanning-tree vlan vlan-id root` global configuration command.
Configuring a Secondary Root Switch

When you configure a switch as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified VLAN if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the `spanning-tree vlan vlan-id root primary` global configuration command.

Beginning in privileged EXEC mode, follow these steps to configure a switch to become the secondary root for the specified VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id root secondary [diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td>• For <code>vlan-id</code>, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>diameter net-diameter</code>, specify the maximum number of switches between any two end stations. The range is 2 to 7.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>hello-time seconds</code>, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td></td>
<td>Use the same network diameter and hello-time values that you used when configuring the primary root switch. See the “Configuring the Root Switch” section on page 18-16.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree detail</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no spanning-tree vlan vlan-id root` global configuration command.

Configuring Port Priority

If a loop occurs, spanning tree uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.
If your switch is a member of a switch stack, you must use the `spanning-tree [vlan vlan-id] cost cost` interface configuration command instead of the `spanning-tree [vlan vlan-id] port-priority priority` interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. For more information, see the “Configuring Path Cost” section on page 18-20.

Beginning in privileged EXEC mode, follow these steps to configure the port priority of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports and port-channel logical interfaces (port-channel port-channel-number).</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>spanning-tree port-priority priority</td>
</tr>
<tr>
<td></td>
<td>Configure the port priority for an interface. For priority, the range is 0 to 240, in increments of 16; the default is 128. Valid values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected. The lower the number, the higher the priority.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>spanning-tree vlan vlan-id port-priority priority</td>
</tr>
<tr>
<td></td>
<td>Configure the port priority for a VLAN. • For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094. • For priority, the range is 0 to 240, in increments of 16; the default is 128. Valid values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected. The lower the number, the higher the priority.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show spanning-tree interface interface-id</td>
</tr>
<tr>
<td>or</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The `show spanning-tree interface interface-id` privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the `show running-config interface` privileged EXEC command to confirm the configuration.
To return to the default setting, use the `no spanning-tree [vlan vlan-id] port-priority` interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree port priorities, see the “Configuring Trunk Ports for Load Sharing” section on page 13-22.

### Configuring Path Cost

The spanning-tree path cost default value is derived from the media speed of an interface. If a loop occurs, spanning tree uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the cost of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports and port-channel logical interfaces (<code>port-channel port-channel-number</code>).</td>
</tr>
<tr>
<td><strong>Step 3</strong> spanning-tree cost cost</td>
<td>Configure the cost for an interface. If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission. For <code>cost</code>, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
</tr>
</tbody>
</table>
| **Step 4** spanning-tree vlan vlan-id cost cost | Configure the cost for a VLAN. If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.  
  - For `vlan-id`, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.  
  - For `cost`, the range is 1 to 200000000; the default value is derived from the media speed of the interface. |
| **Step 5** end | Return to privileged EXEC mode. |
| **Step 6** show spanning-tree interface interface-id or show spanning-tree vlan vlan-id | Verify your entries. |
| **Step 7** copy running-config startup-config | (Optional) Save your entries in the configuration file. |
Chapter 18      Configuring STP

Configuring Spanning-Tree Features

The `show spanning-tree interface interface-id` privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the `show running-config` privileged EXEC command to confirm the configuration.

To return to the default setting, use the `no spanning-tree [vlan vlan-id] cost` interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree path costs, see the “Configuring Trunk Ports for Load Sharing” section on page 13-22.

Configuring the Switch Priority of a VLAN

You can configure the switch priority and make it more likely that a standalone switch or a switch in the stack will be chosen as the root switch.

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan-id root primary` and the `spanning-tree vlan vlan-id root secondary` global configuration commands to modify the switch priority.

Beginning in privileged EXEC mode, follow these steps to configure the switch priority of a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>spanning-tree vlan vlan-id priority priority</code></td>
<td>Configure the switch priority of a VLAN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>vlan-id</code>, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>priority</code>, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valid priority values are 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.</td>
</tr>
<tr>
<td>3</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td><code>show spanning-tree vlan vlan-id</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no spanning-tree vlan vlan-id priority` global configuration command.
Configuring Spanning-Tree Timers

Table 18-4 describes the timers that affect the entire spanning-tree performance.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello timer</td>
<td>Controls how often the switch broadcasts hello messages to other switches.</td>
</tr>
<tr>
<td>Forward-delay timer</td>
<td>Controls how long each of the listening and learning states last before the interface begins forwarding.</td>
</tr>
<tr>
<td>Maximum-age timer</td>
<td>Controls the amount of time the switch stores protocol information received on an interface.</td>
</tr>
<tr>
<td>Transmit hold count</td>
<td>Controls the number of BPDUs that can be sent before pausing for 1 second.</td>
</tr>
</tbody>
</table>

The sections that follow provide the configuration steps.

Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.

Note

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan-id root primary` and the `spanning-tree vlan vlan-id root secondary` global configuration commands to modify the hello time.

Beginning in privileged EXEC mode, follow these steps to configure the hello time of a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>spanning-tree vlan vlan-id hello-time seconds</code></td>
<td>Configure the hello time of a VLAN. The hello time is the interval between the generation of configuration messages by the root switch. These messages mean that the switch is alive.</td>
</tr>
<tr>
<td></td>
<td>• For <code>vlan-id</code>, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For <code>seconds</code>, the range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 3 <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 <code>show spanning-tree vlan vlan-id</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no spanning-tree vlan vlan-id hello-time` global configuration command.
Configuring the Forwarding-Delay Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id forward-time seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no spanning-tree vlan vlan-id forward-time` global configuration command.

Configuring the Maximum-Aging Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id max-age seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no spanning-tree vlan vlan-id max-age` global configuration command.
Configuring the Transmit Hold-Count

You can configure the BPDU burst size by changing the transmit hold count value.

Note
Changing this parameter to a higher value can have a significant impact on CPU utilization, especially in Rapid-PVST mode. Lowering this value can slow down convergence in certain scenarios. We recommend that you maintain the default setting.

Beginning in privileged EXEC mode, follow these steps to configure the transmit hold-count. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree transmit hold-count value</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree detail</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no spanning-tree transmit hold-count value global configuration command.

Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 18-5:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td>show spanning-tree interface interface-id</td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree summary [totals]</td>
<td>Displays a summary of interface states or displays the total lines of the STP state section.</td>
</tr>
</tbody>
</table>

You can clear spanning-tree counters by using the clear spanning-tree [interface interface-id] privileged EXEC command.

For information about other keywords for the show spanning-tree privileged EXEC command, see the command reference for this release.
 CHAPTER 19

Configuring MSTP

This chapter describes how to configure the Cisco implementation of the IEEE 802.1s Multiple STP (MSTP) on the switch.

Note

The multiple spanning-tree (MST) implementation is based on the IEEE 802.1s standard.

The MSTP enables multiple VLANs to be mapped to the same spanning-tree instance, reducing the number of spanning-tree instances needed to support a large number of VLANs. The MSTP provides for multiple forwarding paths for data traffic and enables load-balancing. It improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths). The most common initial deployment of MSTP is in the backbone and distribution layers of a Layer 2 switched network. This deployment provides the highly available network required in a service-provider environment.

When the switch is in the MST mode, the Rapid Spanning Tree Protocol (RSTP), which is based on IEEE 802.1w, is automatically enabled. The RSTP provides rapid convergence of the spanning tree through explicit handshaking that eliminates the IEEE 802.1D forwarding delay and quickly transitions root ports and designated ports to the forwarding state.

Both MSTP and RSTP improve the spanning-tree operation and maintain backward compatibility with equipment that is based on the (original) IEEE 802.1D spanning tree, with existing Cisco-proprietary Multiple Instance STP (MISTP), and with existing Cisco per-VLAN spanning-tree plus (PVST+) and rapid per-VLAN spanning-tree plus (rapid PVST+). For information about PVST+ and rapid PVST+, see Chapter 18, “Configuring STP.” For information about other spanning-tree features such as Port Fast, UplinkFast, root guard, and so forth, see Chapter 20, “Configuring Optional Spanning-Tree Features.”

A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same switch ID. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

• Understanding MSTP, page 19-2
• Understanding RSTP, page 19-9
• Configuring MSTP Features, page 19-14
• Displaying the MST Configuration and Status, page 19-27
Understanding MSTP

MSTP, which uses RSTP for rapid convergence, enables VLANs to be grouped into a spanning-tree instance, with each instance having a spanning-tree topology independent of other spanning-tree instances. This architecture provides multiple forwarding paths for data traffic, enables load-balancing, and reduces the number of spanning-tree instances required to support a large number of VLANs.

These sections describe how the MSTP works:

- Multiple Spanning-Tree Regions, page 19-2
- IST, CIST, and CST, page 19-3
- Hop Count, page 19-5
- Boundary Ports, page 19-6
- IEEE 802.1s Implementation, page 19-6
- MSTP and Switch Stacks, page 19-8
- Interoperability with IEEE 802.1D STP, page 19-9

For configuration information, see the “Configuring MSTP Features” section on page 19-14.

Multiple Spanning-Tree Regions

For switches to participate in multiple spanning-tree (MST) instances, you must consistently configure the switches with the same MST configuration information. A collection of interconnected switches that have the same MST configuration comprises an MST region as shown in Figure 19-1 on page 19-4.

The MST configuration controls to which MST region each switch belongs. The configuration includes the name of the region, the revision number, and the MST VLAN-to-instance assignment map. You configure the switch for a region by using the `spanning-tree mst configuration` global configuration command, after which the switch enters the MST configuration mode. From this mode, you can map VLANs to an MST instance by using the `instance` MST configuration command, specify the region name by using the `name` MST configuration command, and set the revision number by using the `revision` MST configuration command.

A region can have one or multiple members with the same MST configuration. Each member must be capable of processing RSTP bridge protocol data units (BPDUs). There is no limit to the number of MST regions in a network, but each region can support up to 65 spanning-tree instances. Instances can be identified by any number in the range from 0 to 4094. You can assign a VLAN to only one spanning-tree instance at a time.
IST, CIST, and CST

Unlike PVST+ and rapid PVST+ in which all the spanning-tree instances are independent, the MSTP establishes and maintains two types of spanning trees:

- An internal spanning tree (IST), which is the spanning tree that runs in an MST region.

Within each MST region, the MSTP maintains multiple spanning-tree instances. Instance 0 is a special instance for a region, known as the internal spanning tree (IST). All other MST instances are numbered from 1 to 4094.

The IST is the only spanning-tree instance that sends and receives BPDUs. All of the other spanning-tree instance information is contained in M-records, which are encapsulated within MSTP BPDUs. Because the MSTP BPDU carries information for all instances, the number of BPDUs that need to be processed to support multiple spanning-tree instances is significantly reduced.

All MST instances within the same region share the same protocol timers, but each MST instance has its own topology parameters, such as root switch ID, root path cost, and so forth. By default, all VLANs are assigned to the IST.

An MST instance is local to the region; for example, MST instance 1 in region A is independent of MST instance 1 in region B, even if regions A and B are interconnected.

- A common and internal spanning tree (CIST), which is a collection of the ISTs in each MST region, and the common spanning tree (CST) that interconnects the MST regions and single spanning trees.

The spanning tree computed in a region appears as a subtree in the CST that encompasses the entire switched domain. The CIST is formed by the spanning-tree algorithm running among switches that support the IEEE 802.1w, IEEE 802.1s, and IEEE 802.1D standards. The CIST inside an MST region is the same as the CST outside a region.

For more information, see the “Operations Within an MST Region” section on page 19-3 and the “Operations Between MST Regions” section on page 19-4.

Note

The implementation of the IEEE 802.1s standard, changes some of the terminology associated with MST implementations. For a summary of these changes, see Table 18-1 on page 18-5.

Operations Within an MST Region

The IST connects all the MSTP switches in a region. When the IST converges, the root of the IST becomes the CIST regional root (called the IST master before the implementation of the IEEE 802.1s standard) as shown in Figure 19-1 on page 19-4. It is the switch within the region with the lowest switch ID and path cost to the CIST root. The CIST regional root is also the CIST root if there is only one region in the network. If the CIST root is outside the region, one of the MSTP switches at the boundary of the region is selected as the CIST regional root.

When an MSTP switch initializes, it sends BPDUs claiming itself as the root of the CIST and the CIST regional root, with both of the path costs to the CIST root and to the CIST regional root set to zero. The switch also initializes all of its MST instances and claims to be the root for all of them. If the switch receives superior MST root information (lower switch ID, lower path cost, and so forth) than currently stored for the port, it relinquishes its claim as the CIST regional root.

During initialization, a region might have many subregions, each with its own CIST regional root. As switches receive superior IST information, they leave their old subregions and join the new subregion that contains the true CIST regional root. Thus all subregions shrink, except for the one that contains the true CIST regional root.
For correct operation, all switches in the MST region must agree on the same CIST regional root. Therefore, any two switches in the region only synchronize their port roles for an MST instance if they converge to a common CIST regional root.

**Operations Between MST Regions**

If there are multiple regions or legacy IEEE 802.1D switches within the network, MSTP establishes and maintains the CST, which includes all MST regions and all legacy STP switches in the network. The MST instances combine with the IST at the boundary of the region to become the CST.

The IST connects all the MSTP switches in the region and appears as a subtree in the CIST that encompasses the entire switched domain. The root of the subtree is the CIST regional root. The MST region appears as a virtual switch to adjacent STP switches and MST regions.

Figure 19-1 shows a network with three MST regions and a legacy IEEE 802.1D switch (D). The CIST regional root for region 1 (A) is also the CIST root. The CIST regional root for region 2 (B) and the CIST regional root for region 3 (C) are the roots for their respective subtrees within the CIST. The RSTP runs in all regions.

---

**Figure 19-1** MST Regions, CIST Masters, and CST Root

Only the CST instance sends and receives BPDUs, and MST instances add their spanning-tree information into the BPDUs to interact with neighboring switches and compute the final spanning-tree topology. Because of this, the spanning-tree parameters related to BPDU transmission (for example, hello time, forward time, max-age, and max-hops) are configured only on the CST instance but affect all MST instances. Parameters related to the spanning-tree topology (for example, switch priority, port VLAN cost, and port VLAN priority) can be configured on both the CST instance and the MST instance.
MSTP switches use Version 3 RSTP BPDUs or IEEE 802.1D STP BPDUs to communicate with legacy IEEE 802.1D switches. MSTP switches use MSTP BPDUs to communicate with MSTP switches.

IEEE 802.1s Terminology

Some MST naming conventions used in Cisco’s prestandard implementation have been changed to identify some *internal* or *regional* parameters. These parameters are significant only within an MST region, as opposed to external parameters that are relevant to the whole network. Because the CIST is the only spanning-tree instance that spans the whole network, only the CIST parameters require the external rather than the internal or regional qualifiers.

- The CIST root is the root switch for the unique instance that spans the whole network, the CIST.
- The CIST external root path cost is the cost to the CIST root. This cost is left unchanged within an MST region. Remember that an MST region looks like a single switch for the CIST. The CIST external root path cost is the root path cost calculated between these virtual switches and switches that do not belong to any region.
- The CIST regional root was called the IST master in the prestandard implementation. If the CIST root is in the region, the CIST regional root is the CIST root. Otherwise, the CIST regional root is the closest switch to the CIST root in the region. The CIST regional root acts as a root switch for the IST.
- The CIST internal root path cost is the cost to the CIST regional root in a region. This cost is only relevant to the IST, instance 0.

Table 19-1 compares the IEEE standard and the Cisco prestandard terminology.

<table>
<thead>
<tr>
<th>Terminology</th>
<th>IEEE Standard</th>
<th>Cisco Prestandard</th>
<th>Cisco Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIST regional root</td>
<td>IST master</td>
<td>CIST regional root</td>
<td></td>
</tr>
<tr>
<td>CIST internal root path cost</td>
<td>IST master path cost</td>
<td>CIST internal path cost</td>
<td></td>
</tr>
<tr>
<td>CIST external root path cost</td>
<td>Root path cost</td>
<td>Root path cost</td>
<td></td>
</tr>
<tr>
<td>MSTI regional root</td>
<td>Instance root</td>
<td>Instance root</td>
<td></td>
</tr>
<tr>
<td>MSTI internal root path cost</td>
<td>Root path cost</td>
<td>Root path cost</td>
<td></td>
</tr>
</tbody>
</table>

Hop Count

The IST and MST instances do not use the message-age and maximum-age information in the configuration BPDU to compute the spanning-tree topology. Instead, they use the path cost to the root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism.

By using the `spanning-tree mst max-hops` global configuration command, you can configure the maximum hops inside the region and apply it to the IST and all MST instances in that region. The hop count achieves the same result as the message-age information (triggers a reconfiguration). The root switch of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the maximum value. When a switch receives this BPDU, it decrements the received remaining hop count by one and propagates this value as the remaining hop count in the BPDUs it generates. When the count reaches zero, the switch discards the BPDU and ages the information held for the port.
Understanding MSTP

The message-age and maximum-age information in the RSTP portion of the BPDU remain the same throughout the region, and the same values are propagated by the region designated ports at the boundary.

Boundary Ports

In the Cisco prestandard implementation, a boundary port connects an MST region to a single spanning-tree region running RSTP, to a single spanning-tree region running PVST+ or rapid PVST+, or to another MST region with a different MST configuration. A boundary port also connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

There is no definition of a boundary port in the IEEE 802.1s standard. The IEEE 802.1Q-2002 standard identifies two kinds of messages that a port can receive: internal (coming from the same region) and external. When a message is external, it is received only by the CIST. If the CIST role is root or alternate, or if the external BPDU is a topology change, it could have an impact on the MST instances. When a message is internal, the CIST part is received by the CIST, and each MST instance receives its respective M-record. The Cisco prestandard implementation treats a port that receives an external message as a boundary port. This means a port cannot receive a mix of internal and external messages.

An MST region includes both switches and LANs. A segment belongs to the region of its designated port. Therefore, a port in a different region than the designated port for a segment is a boundary port. This definition allows two ports internal to a region to share a segment with a port belonging to a different region, creating the possibility of receiving both internal and external messages on a port.

The primary change from the Cisco prestandard implementation is that a designated port is not defined as boundary, unless it is running in an STP-compatible mode.

Note

If there is a legacy STP switch on the segment, messages are always considered external.

The other change from the prestandard implementation is that the CIST regional root switch ID field is now inserted where an RSTP or legacy IEEE 802.1Q switch has the sender switch ID. The whole region performs like a single virtual switch by sending a consistent sender switch ID to neighboring switches. In this example, switch C would receive a BPDU with the same consistent sender switch ID of root, whether or not A or B is designated for the segment.

IEEE 802.1s Implementation

The Cisco implementation of the IEEE MST standard includes features required to meet the standard, as well as some of the desirable prestandard functionality that is not yet incorporated into the published standard.
Port Role Naming Change

The boundary role is no longer in the final MST standard, but this boundary concept is maintained in Cisco’s implementation. However, an MST instance port at a boundary of the region might not follow the state of the corresponding CIST port. Two cases exist now:

- The boundary port is the root port of the CIST regional root—When the CIST instance port is proposed and is in sync, it can send back an agreement and move to the forwarding state only after all the corresponding MSTI ports are in sync (and thus forwarding). The MSTI ports now have a special *master* role.

- The boundary port is not the root port of the CIST regional root—The MSTI ports follow the state and role of the CIST port. The standard provides less information, and it might be difficult to understand why an MSTI port can be alternately blocking when it receives no BPDUs (MRecords). In this case, although the boundary role no longer exists, the *show* commands identify a port as boundary in the *type* column of the output.

Interoperation Between Legacy and Standard Switches

Because automatic detection of prestandard switches can fail, you can use an interface configuration command to identify prestandard ports. A region cannot be formed between a standard and a prestandard switch, but they can interoperate by using the CIST. Only the capability of load-balancing over different instances is lost in that particular case. The CLI displays different flags depending on the port configuration when a port receives prestandard BPDUs. A syslog message also appears the first time a switch receives a prestandard BPU on a port that has not been configured for prestandard BPU transmission.

**Figure 19-2** illustrates this scenario. Assume that A is a standard switch and B a prestandard switch, both configured to be in the same region. A is the root switch for the CIST, and thus B has a root port (BX) on segment X and an alternate port (BY) on segment Y. If segment Y flaps, and the port on BY becomes the alternate before sending out a single prestandard BPU, AY cannot detect that a prestandard switch is connected to Y and continues to send standard BPDUs. The port BY is thus fixed in a boundary, and no load-balancing is possible between A and B. The same problem exists on segment X, but B might transmit topology changes.

**Figure 19-2 Standard and Prestandard Switch Interoperation**

![Diagram of standard and prestandard switch interoperation](image)

**Note**

We recommend that you minimize the interaction between standard and prestandard MST implementations.
Detecting Unidirectional Link Failure

This feature is not yet present in the IEEE MST standard, but it is included in this Cisco IOS release. The software checks the consistency of the port role and state in the received BPDUs to detect unidirectional link failures that could cause bridging loops.

When a designated port detects a conflict, it keeps its role, but reverts to discarding state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.

Figure 19-3 illustrates a unidirectional link failure that typically creates a bridging loop. Switch A is the root switch, and its BPDUs are lost on the link leading to switch B. RSTP and MST BPDUs include the role and state of the sending port. With this information, switch A can detect that switch B does not react to the superior BPDUs it sends and that switch B is the designated, not root switch. As a result, switch A blocks (or keeps blocking) its port, thus preventing the bridging loop.

MSTP and Switch Stacks

A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same switch ID for a given spanning tree. The switch ID is derived from the MAC address of the stack master.

If a switch that does not support MSTP is added to a switch stack that does support MSTP or the reverse, the switch is put into a version mismatch state. If possible, the switch is automatically upgraded or downgraded to the same version of software that is running on the switch stack.

When a new switch joins the stack, it sets its switch ID to the stack master switch ID. If the newly added switch has the lowest ID and if the root path cost is the same among all stack members, the newly added switch becomes the stack root. A topology change occurs if the newly added switch contains a better root port for the switch stack or a better designated port for the LAN connected to the stack. The newly added switch causes a topology change in the network if another switch connected to the newly added switch changes its root port or designated ports.

When a stack member leaves the stack, spanning-tree reconvergence occurs within the stack (and possibly outside the stack). The remaining stack member with the lowest stack port ID becomes the stack root.

If the stack master fails or leaves the stack, the stack members elect a new stack master, and all stack members change their switch IDs of the spanning trees to the new master switch ID.

For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”
Interoperability with IEEE 802.1D STP

A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy IEEE 802.1D switches. If this switch receives a legacy IEEE 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only IEEE 802.1D BPDDUs on that port. An MSTP switch also can detect that a port is at the boundary of a region when it receives a legacy BPDU, an MSTP BPDU (Version 3) associated with a different region, or an RSTP BPDU (Version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives IEEE 802.1D BPDDUs because it cannot detect whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch might also continue to assign a boundary role to a port when the switch to which this switch is connected has joined the region. To restart the protocol migration process (force the renegotiation with neighboring switches), use the clear spanning-tree detected-protocols privileged EXEC command.

If all the legacy switches on the link are RSTP switches, they can process MSTP BPDDUs as if they are RSTP BPDDUs. Therefore, MSTP switches send either a Version 0 configuration and TCN BPDDUs or Version 3 MSTP BPDDUs on a boundary port. A boundary port connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

Understanding RSTP

The RSTP takes advantage of point-to-point wiring and provides rapid convergence of the spanning tree. Reconfiguration of the spanning tree can occur in less than 1 second (in contrast to 50 seconds with the default settings in the IEEE 802.1D spanning tree).

These sections describe how the RSTP works:
- Port Roles and the Active Topology, page 19-9
- Rapid Convergence, page 19-10
- Synchronization of Port Roles, page 19-12
- Bridge Protocol Data Unit Format and Processing, page 19-13

For configuration information, see the “Configuring MSTP Features” section on page 19-14.

Port Roles and the Active Topology

The RSTP provides rapid convergence of the spanning tree by assigning port roles and by learning the active topology. The RSTP builds upon the IEEE 802.1D STP to select the switch with the highest switch priority (lowest numerical priority value) as the root switch as described in the “Spanning-Tree Topology and BPDDUs” section on page 18-3. Then the RSTP assigns one of these port roles to individual ports:
- Root port—Provides the best path (lowest cost) when the switch forwards packets to the root switch.
- Designated port—Connects to the designated switch, which incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
- Alternate port—Offers an alternate path toward the root switch to that provided by the current root port.
Understanding RSTP

- Backup port—Acts as a backup for the path provided by a designated port toward the leaves of the spanning tree. A backup port can exist only when two ports are connected in a loopback by a point-to-point link or when a switch has two or more connections to a shared LAN segment.
- Disabled port—Has no role within the operation of the spanning tree.

A port with the root or a designated port role is included in the active topology. A port with the alternate or backup port role is excluded from the active topology.

In a stable topology with consistent port roles throughout the network, the RSTP ensures that every root port and designated port immediately transition to the forwarding state while all alternate and backup ports are always in the discarding state (equivalent to blocking in IEEE 802.1D). The port state controls the operation of the forwarding and learning processes. Table 19-2 provides a comparison of IEEE 802.1D and RSTP port states.

Table 19-2 Port State Comparison

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>STP Port State (IEEE 802.1D)</th>
<th>RSTP Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Blocking</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Listening</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Learning</td>
<td>Learning</td>
<td>Yes</td>
</tr>
<tr>
<td>Enabled</td>
<td>Forwarding</td>
<td>Forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Disabled</td>
<td>Disabled</td>
<td>Discarding</td>
<td>No</td>
</tr>
</tbody>
</table>

To be consistent with Cisco STP implementations, this guide defines the port state as blocking instead of discarding. Designated ports start in the listening state.

Rapid Convergence

The RSTP provides for rapid recovery of connectivity following the failure of a switch, a switch port, or a LAN. It provides rapid convergence for edge ports, new root ports, and ports connected through point-to-point links as follows:

- Edge ports—If you configure a port as an edge port on an RSTP switch by using the \texttt{spanning-tree portfast} interface configuration command, the edge port immediately transitions to the forwarding state. An edge port is the same as a Port Fast-enabled port, and you should enable it only on ports that connect to a single end station.
- Root ports—If the RSTP selects a new root port, it blocks the old root port and immediately transitions the new root port to the forwarding state.
- Point-to-point links—If you connect a port to another port through a point-to-point link and the local port becomes a designated port, it negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

As shown in Figure 19-4, Switch A is connected to Switch B through a point-to-point link, and all of the ports are in the blocking state. Assume that the priority of Switch A is a smaller numerical value than the priority of Switch B. Switch A sends a proposal message (a configuration BPDU with the proposal flag set) to Switch B, proposing itself as the designated switch.

After receiving the proposal message, Switch B selects as its new root port the port from which the proposal message was received, forces all nonedge ports to the blocking state, and sends an agreement message (a BPDU with the agreement flag set) through its new root port.
After receiving Switch B’s agreement message, Switch A also immediately transitions its designated port to the forwarding state. No loops in the network are formed because Switch B blocked all of its nonedge ports and because there is a point-to-point link between Switches A and B.

When Switch C is connected to Switch B, a similar set of handshaking messages are exchanged. Switch C selects the port connected to Switch B as its root port, and both ends immediately transition to the forwarding state. With each iteration of this handshaking process, one more switch joins the active topology. As the network converges, this proposal-agreement handshaking progresses from the root toward the leaves of the spanning tree.

In a switch stack, the cross-stack rapid transition (CSRT) feature ensures that a stack member receives acknowledgments from all stack members during the proposal-agreement handshaking before moving the port to the forwarding state. CSRT is automatically enabled when the switch is in MST mode.

The switch learns the link type from the port duplex mode: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. You can override the default setting that is controlled by the duplex setting by using the `spanning-tree link-type` interface configuration command.

**Figure 19-4 Proposal and Agreement Handshaking for Rapid Convergence**

<table>
<thead>
<tr>
<th>Switch A</th>
<th>Proposal</th>
<th>Switch B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root F</td>
<td>DP</td>
<td>Designated switch F</td>
</tr>
<tr>
<td>Root F</td>
<td>RP</td>
<td>Proposal Switch C</td>
</tr>
<tr>
<td>Root F</td>
<td>DP</td>
<td>Agreement Switch C</td>
</tr>
<tr>
<td>DP = designated port</td>
<td>RP = root port</td>
<td>F = forwarding</td>
</tr>
</tbody>
</table>
Synchronization of Port Roles

When the switch receives a proposal message on one of its ports and that port is selected as the new root port, the RSTP forces all other ports to synchronize with the new root information.

The switch is synchronized with superior root information received on the root port if all other ports are synchronized. An individual port on the switch is synchronized if

- That port is in the blocking state.
- It is an edge port (a port configured to be at the edge of the network).

If a designated port is in the forwarding state and is not configured as an edge port, it transitions to the blocking state when the RSTP forces it to synchronize with new root information. In general, when the RSTP forces a port to synchronize with root information and the port does not satisfy any of the above conditions, its port state is set to blocking.

After ensuring that all of the ports are synchronized, the switch sends an agreement message to the designated switch corresponding to its root port. When the switches connected by a point-to-point link are in agreement about their port roles, the RSTP immediately transitions the port states to forwarding. The sequence of events is shown in Figure 19-5.

Figure 19-5  Sequence of Events During Rapid Convergence

<table>
<thead>
<tr>
<th>1. Proposal</th>
<th>4. Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Forward</td>
<td>6. Proposal</td>
</tr>
<tr>
<td>2. Block</td>
<td>3. Block</td>
</tr>
<tr>
<td>7. Proposal</td>
<td>10. Agreement</td>
</tr>
<tr>
<td>Root port</td>
<td>Designated port</td>
</tr>
</tbody>
</table>
Bridge Protocol Data Unit Format and Processing

The RSTP BPDU format is the same as the IEEE 802.1D BPDU format except that the protocol version is set to 2. A new 1-byte Version 1 Length field is set to zero, which means that no version 1 protocol information is present. Table 19-3 shows the RSTP flag fields.

**Table 19-3  RSTP BPDU Flags**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Topology change (TC)</td>
</tr>
<tr>
<td>1</td>
<td>Proposal</td>
</tr>
<tr>
<td>2–3:</td>
<td>Port role:</td>
</tr>
<tr>
<td>00</td>
<td>Unknown</td>
</tr>
<tr>
<td>01</td>
<td>Alternate port</td>
</tr>
<tr>
<td>10</td>
<td>Root port</td>
</tr>
<tr>
<td>11</td>
<td>Designated port</td>
</tr>
<tr>
<td>4</td>
<td>Learning</td>
</tr>
<tr>
<td>5</td>
<td>Forwarding</td>
</tr>
<tr>
<td>6</td>
<td>Agreement</td>
</tr>
<tr>
<td>7</td>
<td>Topology change acknowledgement (TCA)</td>
</tr>
</tbody>
</table>

The sending switch sets the proposal flag in the RSTP BPDU to propose itself as the designated switch on that LAN. The port role in the proposal message is always set to the designated port.

The sending switch sets the agreement flag in the RSTP BPDU to accept the previous proposal. The port role in the agreement message is always set to the root port.

The RSTP does not have a separate topology change notification (TCN) BPDU. It uses the topology change (TC) flag to show the topology changes. However, for interoperability with IEEE 802.1D switches, the RSTP switch processes and generates TCN BPDDUs.

The learning and forwarding flags are set according to the state of the sending port.

**Processing Superior BPDU Information**

If a port receives superior root information (lower switch ID, lower path cost, and so forth) than currently stored for the port, the RSTP triggers a reconfiguration. If the port is proposed and is selected as the new root port, RSTP forces all the other ports to synchronize.

If the BPDU received is an RSTP BPDU with the proposal flag set, the switch sends an agreement message after all of the other ports are synchronized. If the BPDU is an IEEE 802.1D BPDU, the switch does not set the proposal flag and starts the forward-delay timer for the port. The new root port requires twice the forward-delay time to transition to the forwarding state.

If the superior information received on the port causes the port to become a backup or alternate port, RSTP sets the port to the blocking state but does not send the agreement message. The designated port continues sending BPDDUs with the proposal flag set until the forward-delay timer expires, at which time the port transitions to the forwarding state.
Configuring MSTP Features

Processing Inferior BPDU Information

If a designated port receives an inferior BPDU (higher switch ID, higher path cost, and so forth than currently stored for the port) with a designated port role, it immediately replies with its own information.

Topology Changes

This section describes the differences between the RSTP and the IEEE 802.1D in handling spanning-tree topology changes.

- Detection—Unlike IEEE 802.1D in which any transition between the blocking and the forwarding state causes a topology change, only transitions from the blocking to the forwarding state cause a topology change with RSTP (only an increase in connectivity is considered a topology change). State changes on an edge port do not cause a topology change. When an RSTP switch detects a topology change, it deletes the learned information on all of its nonedge ports except on those from which it received the TC notification.

- Notification—Unlike IEEE 802.1D, which uses TCN BPDUs, the RSTP does not use them. However, for IEEE 802.1D interoperability, an RSTP switch processes and generates TCN BPDUs.

- Acknowledgement—When an RSTP switch receives a TCN message on a designated port from an IEEE 802.1D switch, it replies with an IEEE 802.1D configuration BPDU with the TCA bit set. However, if the TC-while timer (the same as the topology-change timer in IEEE 802.1D) is active on a root port connected to an IEEE 802.1D switch and a configuration BPDU with the TCA bit set is received, the TC-while timer is reset.

This behavior is only required to support IEEE 802.1D switches. The RSTP BPDUs never have the TCA bit set.

- Propagation—When an RSTP switch receives a TC message from another switch through a designated or root port, it propagates the change to all of its nonedge, designated ports and to the root port (excluding the port on which it is received). The switch starts the TC-while timer for all such ports and flushes the information learned on them.

- Protocol migration—For backward compatibility with IEEE 802.1D switches, RSTP selectively sends IEEE 802.1D configuration BPDUs and TCN BPDUs on a per-port basis.

When a port is initialized, the migrate-delay timer is started (specifies the minimum time during which RSTP BPDUs are sent), and RSTP BPDUs are sent. While this timer is active, the switch processes all BPDUs received on that port and ignores the protocol type.

If the switch receives an IEEE 802.1D BPDU after the port migration-delay timer has expired, it assumes that it is connected to an IEEE 802.1D switch and starts using only IEEE 802.1D BPDUs. However, if the RSTP switch is using IEEE 802.1D BPDUs on a port and receives an RSTP BPDU after the timer has expired, it restarts the timer and starts using RSTP BPDUs on that port.

Configuring MSTP Features

These sections contain this configuration information:

- Default MSTP Configuration, page 19-15
- MSTP Configuration Guidelines, page 19-15
- Specifying the MST Region Configuration and Enabling MSTP, page 19-17 (required)
- Configuring the Root Switch, page 19-18 (optional)
• Configuring a Secondary Root Switch, page 19-19 (optional)
• Configuring Port Priority, page 19-20 (optional)
• Configuring Path Cost, page 19-22 (optional)
• Configuring the Switch Priority, page 19-23 (optional)
• Configuring the Hello Time, page 19-23 (optional)
• Configuring the Forwarding-Delay Time, page 19-24 (optional)
• Configuring the Maximum-Aging Time, page 19-25 (optional)
• Configuring the Maximum-Hop Count, page 19-25 (optional)
• Specifying the Link Type to Ensure Rapid Transitions, page 19-26 (optional)
• Designating the Neighbor Type, page 19-26 (optional)
• Restarting the Protocol Migration Process, page 19-27 (optional)

Default MSTP Configuration

Table 19-4 shows the default MSTP configuration.

Table 19-4 Default MSTP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree mode</td>
<td>PVST+ (Rapid PVST+ and MSTP are disabled).</td>
</tr>
<tr>
<td>Switch priority (configurable on a per-CIST port basis)</td>
<td>32768.</td>
</tr>
<tr>
<td>Spanning-tree port priority (configurable on a per-CIST port basis)</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree port cost (configurable on a per-CIST port basis)</td>
<td>1000 Mb/s: 4.&lt;br&gt;100 Mb/s: 19.&lt;br&gt;10 Mb/s: 100.</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds.</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>15 seconds.</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds.</td>
</tr>
<tr>
<td>Maximum hop count</td>
<td>20 hops.</td>
</tr>
</tbody>
</table>

For information about the supported number of spanning-tree instances, see the “Supported Spanning-Tree Instances” section on page 18-10.

MSTP Configuration Guidelines

• When you enable MST by using the `spanning-tree mode mst` global configuration command, RSTP is automatically enabled.
• For two or more stacked switches to be in the same MST region, they must have the same VLAN-to-instance map, the same configuration revision number, and the same name.
• The switch stack supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.
PVST+, rapid PVST+, and MSTP are supported, but only one version can be active at any time. (For example, all VLANs run PVST+, all VLANs run rapid PVST+, or all VLANs run MSTP.) For more information, see the “Spanning-Tree Interoperability and Backward Compatibility” section on page 18-11. For information on the recommended trunk port configuration, see the “Interaction with Other Features” section on page 13-18.

When the switch is in MST mode, it uses the long path-cost calculation method (32 bits) to compute the path cost values. With the long path-cost calculation method, these path cost values are supported:

<table>
<thead>
<tr>
<th>Speed</th>
<th>Path Cost Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mb/s</td>
<td>2,000,000</td>
</tr>
<tr>
<td>100 Mb/s</td>
<td>200,000</td>
</tr>
<tr>
<td>1 Gb/s</td>
<td>20,000</td>
</tr>
<tr>
<td>10 Gb/s</td>
<td>2,000</td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>200</td>
</tr>
</tbody>
</table>

All stack members run the same version of spanning tree (all PVST+, rapid PVST+, or MSTP). For more information, see the “Spanning-Tree Interoperability and Backward Compatibility” section on page 18-11.

VTP propagation of the MST configuration is not supported. However, you can manually configure the MST configuration (region name, revision number, and VLAN-to-instance mapping) on each switch within the MST region by using the command-line interface (CLI) or through the SNMP support.

For load-balancing across redundant paths in the network to work, all VLAN-to-instance mapping assignments must match; otherwise, all traffic flows on a single link. You can achieve load-balancing across a switch stack by manually configuring the path cost.

All MST boundary ports must be forwarding for load-balancing between a PVST+ and an MST cloud or between a rapid-PVST+ and an MST cloud. For this to occur, the IST master of the MST cloud should also be the root of the CST. If the MST cloud consists of multiple MST regions, one of the MST regions must contain the CST root, and all of the other MST regions must have a better path to the root contained within the MST cloud than a path through the PVST+ or rapid-PVST+ cloud. You might have to manually configure the switches in the clouds.

Partitioning the network into a large number of regions is not recommended. However, if this situation is unavoidable, we recommend that you partition the switched LAN into smaller LANs interconnected by routers or non-Layer 2 devices.

For configuration guidelines about UplinkFast, BackboneFast, and cross-stack UplinkFast, see the “Optional Spanning-Tree Configuration Guidelines” section on page 20-12.
Specifying the MST Region Configuration and Enabling MSTP

For two or more switches to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can only support up to 65 spanning-tree instances. You can assign a VLAN to only one spanning-tree instance at a time.

Beginning in privileged EXEC mode, follow these steps to specify the MST region configuration and enable MSTP. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree mst config</td>
<td>Enter MST configuration mode.</td>
</tr>
<tr>
<td>Step 3 instance instance-id vlan vlan-range</td>
<td>Map VLANs to an MST instance.</td>
</tr>
<tr>
<td></td>
<td>• For instance-id, the range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For vlan vlan-range, the range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>When you map VLANs to an MST instance, the mapping is incremental, and</td>
</tr>
<tr>
<td></td>
<td>the VLANs specified in the command are added to or removed from the</td>
</tr>
<tr>
<td></td>
<td>VLANs that were previously mapped.</td>
</tr>
<tr>
<td></td>
<td>To specify a VLAN range, use a hyphen; for example, instance 1 vlan 1-63</td>
</tr>
<tr>
<td></td>
<td>maps VLANs 1 through 63 to MST instance 1.</td>
</tr>
<tr>
<td></td>
<td>To specify a VLAN series, use a comma; for example, instance 1 vlan 10,</td>
</tr>
<tr>
<td></td>
<td>20, 30 maps VLANs 10, 20, and 30 to MST instance 1.</td>
</tr>
<tr>
<td>Step 4 name name</td>
<td>Specify the configuration name. The name string has a maximum length</td>
</tr>
<tr>
<td></td>
<td>of 32 characters and is case sensitive.</td>
</tr>
<tr>
<td>Step 5 revision version</td>
<td>Specify the configuration revision number. The range is 0 to 65535.</td>
</tr>
<tr>
<td>Step 6 show pending</td>
<td>Verify your configuration by displaying the pending configuration.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Apply all changes, and return to global configuration mode.</td>
</tr>
<tr>
<td>Step 8 spanning-tree mode mst</td>
<td>Enable MSTP. RSTP is also enabled.</td>
</tr>
<tr>
<td></td>
<td>Caution: Changing spanning-tree modes can disrupt traffic because all</td>
</tr>
<tr>
<td></td>
<td>spanning-tree instances are stopped for the previous mode and restarted</td>
</tr>
<tr>
<td></td>
<td>in the new mode.</td>
</tr>
<tr>
<td></td>
<td>You cannot run both MSTP and PVST+ or both MSTP and rapid PVST+</td>
</tr>
<tr>
<td></td>
<td>at the same time.</td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 11 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return to the default MST region configuration, use the `no spanning-tree mst configuration` global configuration command. To return to the default VLAN-to-instance map, use the `no instance instance-id [vlan vlan-range]` MST configuration command. To return to the default name, use the `no name` MST configuration command. To return to the default revision number, use the `no revision` MST configuration command. To re-enable PVST+, use the `no spanning-tree mode` or the `spanning-tree mode pvst` global configuration command.

This example shows how to enter MST configuration mode, map VLANs 10 to 20 to MST instance 1, name the region `region1`, set the configuration revision to 1, display the pending configuration, apply the changes, and return to global configuration mode:

```
Switch(config)# spanning-tree mst configuration
Switch(config-mst)# instance 1 vlan 10-20
Switch(config-mst)# name region1
Switch(config-mst)# revision 1
Switch(config-mst)# show pending
Pending MST configuration
Name [region1]
Revision 1
Instance Vlans Mapped
------------- ---------------------
0 1-9,21-4094
1 10-20

Switch(config-mst)# exit
Switch(config)#
```

### Configuring the Root Switch

The switch maintains a spanning-tree instance for the group of VLANs mapped to it. A switch ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For a group of VLANs, the switch with the lowest switch ID becomes the root switch.

To configure a switch to become the root, use the `spanning-tree mst instance-id root` global configuration command to modify the switch priority from the default value (32768) to a significantly lower value so that the switch becomes the root switch for the specified spanning-tree instance. When you enter this command, the switch checks the switch priorities of the root switches. Because of the extended system ID support, the switch sets its own priority for the specified instance to 24576 if this value will cause this switch to become the root for the specified spanning-tree instance.

If any root switch for the specified instance has a switch priority lower than 24576, the switch sets its own priority to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 18-1 on page 18-5.)

If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.

The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the `diameter` keyword, which is available only for MST instance 0, to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time,
forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the `hello` keyword to override the automatically calculated hello time.

**Note**

After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time through the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and the `spanning-tree mst max-age` global configuration commands.

Beginning in privileged EXEC mode, follow these steps to configure a switch as the root switch. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>spanning-tree mst instance-id root primary</code> Configure a switch as the root switch.</td>
</tr>
<tr>
<td></td>
<td>• For <code>instance-id</code>, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>diameter net-diameter</code>, specify the maximum number of switches between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>hello-time seconds</code>, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show spanning-tree mst instance-id</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst instance-id root` global configuration command.

**Configuring a Secondary Root Switch**

When you configure a switch with the extended system ID support as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified instance if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the `spanning-tree mst instance-id root primary` global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure a switch as the secondary root switch. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst instance-id root secondary [diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td>Configure a switch as the secondary root switch.</td>
</tr>
<tr>
<td></td>
<td>- For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For diameter net-diameter, specify the maximum number of switches between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For hello-time seconds, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td></td>
<td>Use the same network diameter and hello-time values that you used when configuring the primary root switch. See the “Configuring the Root Switch” section on page 19-18.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst instance-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst instance-id root global configuration command.

### Configuring Port Priority

If a loop occurs, the MSTP uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

**Note**

If your switch is a member of a switch stack, you must use the spanning-tree mst [instance-id] cost cost interface configuration command instead of the spanning-tree mst [instance-id] port-priority priority interface configuration command to select a port to put in the forwarding state. Assign lower cost values to ports that you want selected first and higher cost values to ports that you want selected last. For more information, see the “Configuring Path Cost” section on page 19-22.
Beginning in privileged EXEC mode, follow these steps to configure the MSTP port priority of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports and port-channel logical interfaces. The port-channel range is 1 to 64.</td>
</tr>
<tr>
<td>Step 3 spanning-tree mst instance-id port-priority priority</td>
<td>Configure the port priority.</td>
</tr>
<tr>
<td></td>
<td>• For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For priority, the range is 0 to 240 in increments of 16. The default is 128. The lower the number, the higher the priority.</td>
</tr>
<tr>
<td></td>
<td>The priority values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show spanning-tree mst interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>show spanning-tree mst instance-id</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Note**

The show spanning-tree mst interface interface-id privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the show running-config interface privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree mst instance-id port-priority interface configuration command.
Configuring Path Cost

The MSTP path cost default value is derived from the media speed of an interface. If a loop occurs, the MSTP uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the MSTP cost of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 spanning-tree mst instance-id cost cost</td>
<td>Configure the cost.</td>
</tr>
<tr>
<td></td>
<td>If a loop occurs, the MSTP uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td>• For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show spanning-tree mst interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note

The show spanning-tree mst interface interface-id privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the show running-config privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree mst instance-id cost interface configuration command.
### Configuring the Switch Priority

You can configure the switch priority and make it more likely that a standalone switch or a switch in the stack will be chosen as the root switch.

**Note**

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree mst instance-id root primary` and the `spanning-tree mst instance-id root secondary` global configuration commands to modify the switch priority.

Beginning in privileged EXEC mode, follow these steps to configure the switch priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree mst instance-id priority priority</td>
<td>Configure the switch priority.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree mst instance-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst instance-id priority` global configuration command.

### Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.
Beginning in privileged EXEC mode, follow these steps to configure the hello time for all MST instances. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst hello-time seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst hello-time global configuration command.

### Configuring the Forwarding-Delay Time

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for all MST instances. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst forward-time seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst forward-time global configuration command.
### Configuring the Maximum-Aging Time

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for all MST instances. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>spanning-tree mst max-age seconds</code> Configure the maximum-aging time for all MST instances. The maximum-aging time is the number of seconds a switch waits without receiving spanning-tree configuration messages before attempting a reconfiguration. For <code>seconds</code>, the range is 6 to 40; the default is 20.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show spanning-tree mst</code> Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst max-age` global configuration command.

### Configuring the Maximum-Hop Count

Beginning in privileged EXEC mode, follow these steps to configure the maximum-hop count for all MST instances. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>spanning-tree mst max-hops hop-count</code> Specify the number of hops in a region before the BPDU is discarded, and the information held for a port is aged. For <code>hop-count</code>, the range is 1 to 255; the default is 20.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show spanning-tree mst</code> Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst max-hops` global configuration command.
Specifying the Link Type to Ensure Rapid Transitions

If you connect a port to another port through a point-to-point link and the local port becomes a designated port, the RSTP negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology as described in the “Rapid Convergence” section on page 19-10.

By default, the link type is controlled from the duplex mode of the interface: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. If you have a half-duplex link physically connected point-to-point to a single port on a remote switch running MSTP, you can override the default setting of the link type and enable rapid transitions to the forwarding state.

Beginning in privileged EXEC mode, follow these steps to override the default link-type setting. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports, VLANs, and port-channel logical interfaces. The VLAN ID range is 1 to 4094. The port-channel range is 1 to 64.</td>
</tr>
<tr>
<td>Step 3 spanning-tree link-type point-to-point</td>
<td>Specify that the link type of a port is point-to-point.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show spanning-tree mst interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the port to its default setting, use the no spanning-tree link-type interface configuration command.

Designating the Neighbor Type

A topology could contain both prestandard and IEEE 802.1s standard compliant devices. By default, ports can automatically detect prestandard devices, but they can still receive both standard and prestandard BPDUs. When there is a mismatch between a device and its neighbor, only the CIST runs on the interface.

You can choose to set a port to send only prestandard BPDUs. The prestandard flag appears in all the show commands, even if the port is in STP compatibility mode.

Beginning in privileged EXEC mode, follow these steps to override the default link-type setting. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>Step 3 spanning-tree mst pre-standard</td>
<td>Specify that the port can send only prestandard BPDUs.</td>
</tr>
</tbody>
</table>
Chapter 19 Configuring MSTP

Displaying the MST Configuration and Status

To return the port to its default setting, use the no spanning-tree mst prestandard interface configuration command.

Restarting the Protocol Migration Process

A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy IEEE 802.1D switches. If this switch receives a legacy IEEE 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only IEEE 802.1D BPDU s on that port. An MSTP switch also can detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (Version 3) associated with a different region, or an RST BPDU (Version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives IEEE 802.1D BPDU s because it cannot detect whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch also might continue to assign a boundary role to a port when the switch to which it is connected has joined the region.

To restart the protocol migration process (force the renegotiation with neighboring switches) on the switch, use the clear spanning-tree detected-protocols privileged EXEC command.

To restart the protocol migration process on a specific interface, use the clear spanning-tree detected-protocols interface interface-id privileged EXEC command.

Displaying the MST Configuration and Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 19-5:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree mst configuration</td>
<td>Displays the MST region configuration.</td>
</tr>
<tr>
<td>show spanning-tree mst configuration digest</td>
<td>Displays the MD5 digest included in the current MSTCI.</td>
</tr>
<tr>
<td>show spanning-tree mst instance-id</td>
<td>Displays MST information for the specified instance.</td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id</td>
<td>Displays MST information for the specified interface.</td>
</tr>
</tbody>
</table>

For information about other keywords for the show spanning-tree privileged EXEC command, see the command reference for this release.
Configuring Optional Spanning-Tree Features

This chapter describes how to configure optional spanning-tree features on the switch. You can configure all of these features when your switch is running the per-VLAN spanning-tree plus (PVST+). You can configure only the noted features when your switch or switch stack is running the Multiple Spanning Tree Protocol (MSTP) or the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For information on configuring the PVST+ and rapid PVST+, see Chapter 18, “Configuring STP.” For information about the Multiple Spanning Tree Protocol (MSTP) and how to map multiple VLANs to the same spanning-tree instance, see Chapter 19, “Configuring MSTP.”

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding Optional Spanning-Tree Features, page 20-1
- Configuring Optional Spanning-Tree Features, page 20-11
- Displaying the Spanning-Tree Status, page 20-19

Understanding Optional Spanning-Tree Features

These sections contain this conceptual information:

- Understanding Port Fast, page 20-2
- Understanding BPDU Guard, page 20-2
- Understanding BPDU Filtering, page 20-3
- Understanding UplinkFast, page 20-3
- Understanding Cross-Stack UplinkFast, page 20-5
- Understanding BackboneFast, page 20-7
- Understanding EtherChannel Guard, page 20-10
- Understanding Root Guard, page 20-10
- Understanding Loop Guard, page 20-11
Understanding Port Fast

Port Fast immediately brings an interface configured as an access or trunk port to the forwarding state from a blocking state, bypassing the listening and learning states. You can use Port Fast on interfaces connected to a single workstation or server, as shown in Figure 20-1, to allow those devices to immediately connect to the network, rather than waiting for the spanning tree to converge.

Interfaces connected to a blade server should not receive bridge protocol data units (BPDUs). An interface with Port Fast enabled goes through the normal cycle of spanning-tree status changes when the switch is restarted.

**Note**

Because the purpose of Port Fast is to minimize the time interfaces must wait for spanning-tree to converge, it is effective only when used on interfaces connected to end stations. If you enable Port Fast on an interface connecting to another switch, you risk creating a spanning-tree loop.

You can enable this feature by using the `spanning-tree portfast` interface configuration or the `spanning-tree portfast default` global configuration command.

### Figure 20-1  Port Fast-Enabled Interfaces

Understanding BPDU Guard

The BPDU guard feature can be globally enabled on the switch or can be enabled per port, but the feature operates with some differences.

At the global level, you enable BPDU guard on Port Fast-enabled ports by using the `spanning-tree portfast bpduguard default` global configuration command. Spanning tree shuts down ports that are in a Port Fast-operational state if any BPDU is received on them. In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port means an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state. When this happens, the switch shuts down the entire port on which the violation occurred.

To prevent the port from shutting down, you can use the `errdisable detect cause bpduguard shutdown vlan` global configuration command to shut down just the offending VLAN on the port where the violation occurred.
At the interface level, you enable BPDU guard on any port by using the `spanning-tree bpduguard enable` interface configuration command without also enabling the Port Fast feature. When the port receives a BPDU, it is put in the error-disabled state.

The BPDU guard feature provides a secure response to invalid configurations because you must manually put the interface back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

**Understanding BPDU Filtering**

The BPDU filtering feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

At the global level, you can enable BPDU filtering on Port Fast-enabled interfaces by using the `spanning-tree portfast bpdufilter default` global configuration command. This command prevents interfaces that are in a Port Fast-operational state from sending or receiving BPDUs. The interfaces still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these interfaces do not receive BPDUs. If a BPDU is received on a Port Fast-enabled interface, the interface loses its Port Fast-operational status, and BPDU filtering is disabled.

At the interface level, you can enable BPDU filtering on any interface by using the `spanning-tree bpdufilter enable` interface configuration command without also enabling the Port Fast feature. This command prevents the interface from sending or receiving BPDUs.

---

**Caution**

Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

You can enable the BPDU filtering feature for the entire switch or for an interface.

**Understanding UplinkFast**

Switches in hierarchical networks can be grouped into backbone switches, distribution switches, and access switches. Figure 20-2 shows a complex network where distribution switches and access switches each have at least one redundant link that spanning tree blocks to prevent loops.
Understanding Optional Spanning-Tree Features

Figure 20-2  Switches in a Hierarchical Network

If a switch loses connectivity, it begins using the alternate paths as soon as the spanning tree selects a new root port. By enabling UplinkFast with the `spanning-tree uplinkfast` global configuration command, you can accelerate the choice of a new root port when a link or switch fails or when the spanning tree reconfigures itself. The root port transitions to the forwarding state immediately without going through the listening and learning states, as it would with the normal spanning-tree procedures.

When the spanning tree reconfigures the new root port, other interfaces flood the network with multicast packets, one for each address that was learned on the interface. You can limit these bursts of multicast traffic by reducing the `max-update-rate` parameter (the default for this parameter is 150 packets per second). However, if you enter zero, station-learning frames are not generated, so the spanning-tree topology converges more slowly after a loss of connectivity.

**Note**

UplinkFast is most useful in wiring-closet switches at the access or edge of the network. It is not appropriate for backbone devices. This feature might not be useful for other types of applications.

UplinkFast provides fast convergence after a direct link failure and achieves load-balancing between redundant Layer 2 links using uplink groups. An uplink group is a set of Layer 2 interfaces (per VLAN), only one of which is forwarding at any given time. Specifically, an uplink group consists of the root port (which is forwarding) and a set of blocked ports, except for self-looping ports. The uplink group provides an alternate path in case the currently forwarding link fails.

Figure 20-3 shows an example topology with no link failures. Switch A, the root switch, is connected directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that is connected directly to Switch B is in a blocking state.
If Switch C detects a link failure on the currently active link L2 on the root port (a direct link failure), UplinkFast unblocks the blocked interface on Switch C and transitions it to the forwarding state without going through the listening and learning states, as shown in Figure 20-4. This change takes approximately 1 to 5 seconds.

Understanding Cross-Stack UplinkFast

The UplinkFast feature is the cross-stack UplinkFast feature. Cross-stack UplinkFast (CSUF) provides a fast spanning-tree transition (fast convergence in less than 1 second under normal network conditions) across a switch stack. During the fast transition, an alternate redundant link on the switch stack is placed in the forwarding state without causing temporary spanning-tree loops or loss of connectivity to the backbone. With this feature, you can have a redundant and resilient network in some configurations. CSUF is automatically enabled when you enable the UplinkFast feature by using the `spanning-tree uplinkfast` global configuration command.

CSUF might not provide a fast transition all the time; in these cases, the normal spanning-tree transition occurs, completing in 30 to 40 seconds. For more information, see the “Events that Cause Fast Convergence” section on page 20-7.
How CSUF Works

CSUF ensures that one link in the stack is elected as the path to the root. As shown in Figure 20-5, the stack-root port on Switch 1 provides the path to the root of the spanning tree. The alternate stack-root ports on Switches 2 and 3 can provide an alternate path to the spanning-tree root if the current stack-root switch fails or if its link to the spanning-tree root fails.

Link 1, the root link, is in the spanning-tree forwarding state. Links 2 and 3 are alternate redundant links that are in the spanning-tree blocking state. If Switch 1 fails, if its stack-root port fails, or if Link 1 fails, CSUF selects either the alternate stack-root port on Switch 2 or Switch 3 and puts it into the forwarding state in less than 1 second.

When certain link loss or spanning-tree events occur (described in the “Events that Cause Fast Convergence” section on page 20-7), the Fast Uplink Transition Protocol uses the neighbor list to send fast-transition requests to stack members.

The switch sending the fast-transition request needs to do a fast transition to the forwarding state of a port that it has chosen as the root port, and it must obtain an acknowledgement from each stack switch before performing the fast transition.
Each switch in the stack decides if the sending switch is a better choice than itself to be the stack root of this spanning-tree instance by comparing the root, cost, and bridge ID. If the sending switch is the best choice as the stack root, each switch in the stack returns an acknowledgement; otherwise, it sends a fast-transition request. The sending switch then has not received acknowledgements from all stack switches.

When acknowledgements are received from all stack switches, the Fast Uplink Transition Protocol on the sending switch immediately transitions its alternate stack-root port to the forwarding state. If acknowledgements from all stack switches are not obtained by the sending switch, the normal spanning-tree transitions (blocking, listening, learning, and forwarding) take place, and the spanning-tree topology converges at its normal rate (2 * forward-delay time + max-age time).

The Fast Uplink Transition Protocol is implemented on a per-VLAN basis and affects only one spanning-tree instance at a time.

**Events that Cause Fast Convergence**

Depending on the network event or failure, the CSUF fast convergence might or might not occur.

Fast convergence (less than 1 second under normal network conditions) occurs under these circumstances:

- The stack-root port link fails.
  - If two switches in the stack have alternate paths to the root, only one of the switches performs the fast transition.
- The failed link, which connects the stack root to the spanning-tree root, recovers.
- A network reconfiguration causes a new stack-root switch to be selected.
- A network reconfiguration causes a new port on the current stack-root switch to be chosen as the stack-root port.

**Note**
The fast transition might not occur if multiple events occur simultaneously. For example, if a stack member is powered off, and at the same time, the link connecting the stack root to the spanning-tree root comes back up, the normal spanning-tree convergence occurs.

Normal spanning-tree convergence (30 to 40 seconds) occurs under these conditions:

- The stack-root switch is powered off, or the software failed.
- The stack-root switch, which was powered off or failed, is powered on.
- A new switch, which might become the stack root, is added to the stack.

**Understanding BackboneFast**

BackboneFast detects indirect failures in the core of the backbone. BackboneFast is a complementary technology to the UplinkFast feature, which responds to failures on links directly connected to access switches. BackboneFast optimizes the maximum-age timer, which controls the amount of time the switch stores protocol information received on an interface. When a switch receives an inferior BPDU from the designated port of another switch, the BPDU is a signal that the other switch might have lost its path to the root, and BackboneFast tries to find an alternate path to the root.
BackboneFast, which is enabled by using the `spanning-tree backbonefast` global configuration command, starts when a root port or blocked interface on a switch receives inferior BPDUs from its designated switch. An inferior BPDU identifies a switch that declares itself as both the root bridge and the designated switch. When a switch receives an inferior BPDU, it means that a link to which the switch is not directly connected (an indirect link) has failed (that is, the designated switch has lost its connection to the root switch). Under spanning-tree rules, the switch ignores inferior BPDUs for the configured maximum aging time specified by the `spanning-tree vlan vlan-id max-age` global configuration command.

The switch tries to find if it has an alternate path to the root switch. If the inferior BPDU arrives on a blocked interface, the root port and other blocked interfaces on the switch become alternate paths to the root switch. (Self-looped ports are not considered alternate paths to the root switch.) If the inferior BPDU arrives on the root port, all blocked interfaces become alternate paths to the root switch. If the inferior BPDU arrives on the root port and there are no blocked interfaces, the switch assumes that it has lost connectivity to the root switch, causes the maximum aging time on the root port to expire, and becomes the root switch according to normal spanning-tree rules.

If the switch has alternate paths to the root switch, it uses these alternate paths to send a root link query (RLQ) request. The switch sends the RLQ request on all alternate paths to learn if any stack member has an alternate root to the root switch and waits for an RLQ reply from other switches in the network and in the stack.

When a stack member receives an RLQ reply from a nonstack member on a blocked interface and the reply is destined for another nonstacked switch, it forwards the reply packet, regardless of the spanning-tree interface state.

When a stack member receives an RLQ reply from a nonstack member and the response is destined for the stack, the stack member forwards the reply so that all the other stack members receive it.

If the switch discovers that it still has an alternate path to the root, it expires the maximum aging time on the interface that received the inferior BPDU. If all the alternate paths to the root switch indicate that the switch has lost connectivity to the root switch, the switch expires the maximum aging time on the interface that received the RLQ reply. If one or more alternate paths can still connect to the root switch, the switch makes all interfaces on which it received an inferior BPDU its designated ports and moves them from the blocking state (if they were in the blocking state), through the listening and learning states, and into the forwarding state.

**Figure 20-6** shows an example topology with no link failures. Switch A, the root switch, connects directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that connects directly to Switch B is in the blocking state.
If link L1 fails as shown in Figure 20-7, Switch C cannot detect this failure because it is not connected directly to link L1. However, because Switch B is directly connected to the root switch over L1, it detects the failure, elects itself the root, and begins sending BPDU to Switch C, identifying itself as the root. When Switch C receives the inferior BPDU from Switch B, Switch C assumes that an indirect failure has occurred. At that point, BackboneFast allows the blocked interface on Switch C to move immediately to the listening state without waiting for the maximum aging time for the interface to expire. BackboneFast then transitions the Layer 2 interface on Switch C to the forwarding state, providing a path from Switch B to Switch A. The root-switch election takes approximately 30 seconds, twice the Forward Delay time if the default Forward Delay time of 15 seconds is set. Figure 20-7 shows how BackboneFast reconfigures the topology to account for the failure of link L1.

If a new switch is introduced into a shared-medium topology as shown in Figure 20-8, BackboneFast is not activated because the inferior BPDU did not come from the recognized designated switch (Switch B). The new switch begins sending inferior BPDU that indicate it is the root switch. However, the other switches ignore these inferior BPDU, and the new switch learns that Switch B is the designated switch to Switch A, the root switch.
Understanding Optional Spanning-Tree Features

Chapter 20 Configuring Optional Spanning-Tree Features

Understanding EtherChannel Guard

You can use EtherChannel guard to detect an EtherChannel misconfiguration between the switch and a connected device. A misconfiguration can occur if the switch interfaces are configured in an EtherChannel, but the interfaces on the other device are not. A misconfiguration can also occur if the channel parameters are not the same at both ends of the EtherChannel. For EtherChannel configuration guidelines, see the “EtherChannel Configuration Guidelines” section on page 38-11.

If the switch detects a misconfiguration on the other device, EtherChannel guard places the switch interfaces in the error-disabled state, and displays an error message.

You can enable this feature by using the `spanning-tree etherchannel guard misconfig` global configuration command.

Understanding Root Guard

The Layer 2 network of a data center can include many connections to switches that are not owned by the data center. In such a topology, the spanning tree can reconfigure itself and select a customer switch as the root switch, as shown in Figure 20-9. You can avoid this situation by enabling root guard on data center switch interfaces that connect to switches in your customer’s network. If spanning-tree calculations cause an interface in the customer network to be selected as the root port, root guard then places the interface in the root-inconsistent (blocked) state to prevent the customer’s switch from becoming the root switch or being in the path to the root.

If a switch outside the data center network becomes the root switch, the interface is blocked (root-inconsistent state), and spanning tree selects a new root switch. The customer’s switch does not become the root switch and is not in the path to the root.

If the switch is operating in multiple spanning-tree (MST) mode, root guard forces the interface to be a designated port. If a boundary port is blocked in an internal spanning-tree (IST) instance because of root guard, the interface also is blocked in all MST instances. A boundary port is an interface that connects to a LAN, the designated switch of which is either an IEEE 802.1D switch or a switch with a different MST region configuration.

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. VLANs can be grouped and mapped to an MST instance.

You can enable this feature by using the `spanning-tree guard root` interface configuration command.

Caution

Misuse of the root-guard feature can cause a loss of connectivity.
Understanding Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is enabled on the entire switched network. Loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

You can enable this feature by using the `spanning-tree loopguard default` global configuration command.

When the switch is operating in PVST+ or rapid-PVST+ mode, loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

When the switch is operating in MST mode, BPDUs are not sent on nonboundary ports only if the interface is blocked by loop guard in all MST instances. On a boundary port, loop guard blocks the interface in all MST instances.

Configuring Optional Spanning-Tree Features

These sections contain this configuration information:

- Default Optional Spanning-Tree Configuration, page 20-12
- Optional Spanning-Tree Configuration Guidelines, page 20-12
- Enabling Port Fast, page 20-12 (optional)
- Enabling BPDU Guard, page 20-13 (optional)
- Enabling BPDU Filtering, page 20-14 (optional)
- Enabling Cross-Stack UplinkFast, page 20-16 (optional)
• Enabling BackboneFast, page 20-16 (optional)
• Enabling EtherChannel Guard, page 20-17 (optional)
• Enabling Root Guard, page 20-18 (optional)
• Enabling Loop Guard, page 20-18 (optional)

Default Optional Spanning-Tree Configuration

Table 20-1 shows the default optional spanning-tree configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Fast, BPDU filtering, BPDU guard</td>
<td>Globally disabled (unless they are individually configured per interface).</td>
</tr>
<tr>
<td>UplinkFast</td>
<td>Globally disabled. (The UplinkFast feature is the CSUF feature.)</td>
</tr>
<tr>
<td>BackboneFast</td>
<td>Globally disabled.</td>
</tr>
<tr>
<td>EtherChannel guard</td>
<td>Globally enabled.</td>
</tr>
<tr>
<td>Root guard</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>Loop guard</td>
<td>Disabled on all interfaces.</td>
</tr>
</tbody>
</table>

Optional Spanning-Tree Configuration Guidelines

You can configure PortFast, BPDU guard, BPDU filtering, EtherChannel guard, root guard, or loop guard if your switch is running PVST+, rapid PVST+, or MSTP.

You can configure the UplinkFast, the BackboneFast, or the cross-stack UplinkFast feature for rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

Enabling Port Fast

An interface with the Port Fast feature enabled is moved directly to the spanning-tree forwarding state without waiting for the standard forward-time delay.

Caution

Use Port Fast only when connecting a single end station to an access or trunk port. Enabling this feature on an interface connected to a switch or hub could prevent spanning tree from detecting and disabling loops in your network, which could cause broadcast storms and address-learning problems.

If you enable the voice VLAN feature, the Port Fast feature is automatically enabled. When you disable voice VLAN, the Port Fast feature is not automatically disabled. For more information, see Chapter 15, “Configuring Voice VLAN.”

You can enable this feature if your switch is running PVST+, rapid PVST+, or MSTP.
Beginning in privileged EXEC mode, follow these steps to enable Port Fast. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 spanning-tree portfast [trunk]</td>
<td>Enable Port Fast on an access port connected to a single workstation or server. By specifying the trunk keyword, you can enable Port Fast on a trunk port.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> To enable Port Fast on trunk ports, you must use the spanning-tree portfast trunk interface configuration command. The spanning-tree portfast command will not work on trunk ports.</td>
</tr>
<tr>
<td></td>
<td><strong>Caution</strong> Make sure that there are no loops in the network between the trunk port and the workstation or server before you enable Port Fast on a trunk port.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show spanning-tree interface interface-id portfast</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

You can use the spanning-tree portfast default global configuration command to globally enable the Port Fast feature on all nontrunking ports.

To disable the Port Fast feature, use the spanning-tree portfast disable interface configuration command.

### Enabling BPDU Guard

When you globally enable BPDU guard on ports that are Port Fast-enabled (the ports are in a Port Fast-operational state), spanning tree continues to run on the ports. They remain up unless they receive a BPDU.

In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port means an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state. When this happens, the switch shuts down the entire port on which the violation occurred.

To prevent the port from shutting down, you can use the errdisable detect cause bpduguard shutdown vlan global configuration command to shut down just the offending VLAN on the port where the violation occurred.
The BPDU guard feature provides a secure response to invalid configurations because you must manually put the port back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

⚠️ Caution
Configure Port Fast only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

You also can use the `spanning-tree bpduguard enable` interface configuration command to enable BPDU guard on any port without also enabling the Port Fast feature. When the port receives a BPDU, it is put it in the error-disabled state.

You can enable the BPDU guard feature if your switch is running PVST+, rapid PVST+, or MSTP.

Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU guard feature. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>spanning-tree portfast bpduguard default</code></td>
<td>Globally enable BPDU guard.</td>
</tr>
<tr>
<td></td>
<td>By default, BPDU guard is disabled.</td>
</tr>
<tr>
<td>Step 3: <code>interface interface-id</code></td>
<td>Specify the interface connected to an end station, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4: <code>spanning-tree portfast</code></td>
<td>Enable the Port Fast feature.</td>
</tr>
<tr>
<td>Step 5: <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6: <code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7: <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable BPDU guard, use the `no spanning-tree portfast bpduguard default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpduguard default` global configuration command by using the `spanning-tree bpduguard enable` interface configuration command.

### Enabling BPDU Filtering

When you globally enable BPDU filtering on Port Fast-enabled interfaces, it prevents interfaces that are in a Port Fast-operational state from sending or receiving BPDUs. The interfaces still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these interfaces do not receive BPDUs. If a BPDU is received on a Port Fast-enabled interface, the interface loses its Port Fast-operational status, and BPDU filtering is disabled.

⚠️ Caution
Configure Port Fast only on interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.
You can also use the `spanning-tree bpdufilter enable` interface configuration command to enable BPDU filtering on any interface without also enabling the Port Fast feature. This command prevents the interface from sending or receiving BPDUs.

**Caution**

Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

You can enable the BPDU filtering feature if your switch is running PVST+, rapid PVST+, or MSTP. Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU filtering feature. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree portfast bpdufilter default</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree portfast</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable BPDU filtering, use the `no spanning-tree portfast bpdufilter default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpdufilter default` global configuration command by using the `spanning-tree bpdufilter enable` interface configuration command.

### Enabling UplinkFast for Use with Redundant Links

UplinkFast cannot be enabled on VLANs that have been configured with a switch priority. To enable UplinkFast on a VLAN with switch priority configured, first restore the switch priority on the VLAN to the default value by using the `no spanning-tree vlan vlan-id priority` global configuration command.

**Note**

When you enable UplinkFast, it affects all VLANs on the switch or switch stack. You cannot configure UplinkFast on an individual VLAN.

You can configure the UplinkFast or the CSUF feature for rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.
Beginning in privileged EXEC mode, follow these steps to enable UplinkFast and CSUF. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For pkts-per-second, the range is 0 to 32000 packets per second; the default is 150.</td>
</tr>
<tr>
<td></td>
<td>If you set the rate to 0, station-learning frames are not generated, and the spanning-tree topology converges more slowly after a loss of connectivity.</td>
</tr>
<tr>
<td></td>
<td>When you enter this command, CSUF also is enabled on all nonstack port interfaces.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When UplinkFast is enabled, the switch priority of all VLANs is set to 49152. If you change the path cost to a value less than 3000 and you enable UplinkFast or UplinkFast is already enabled, the path cost of all interfaces and VLAN trunks is increased by 3000 (if you change the path cost to 3000 or above, the path cost is not altered). The changes to the switch priority and the path cost reduce the chance that a switch will become the root switch.

When UplinkFast is disabled, the switch priorities of all VLANs and path costs of all interfaces are set to default values if you did not modify them from their defaults.

To return the update packet rate to the default setting, use the no spanning-tree uplinkfast max-update-rate global configuration command. To disable UplinkFast, use the no spanning-tree uplinkfast command.

### Enabling Cross-Stack UplinkFast

When you enable or disable the UplinkFast feature by using the spanning-tree uplinkfast global configuration command, CSUF is automatically globally enabled or disabled on nonstack port interfaces.

For more information, see the “Enabling UplinkFast for Use with Redundant Links” section on page 20-15.

To disable UplinkFast on the switch and all its VLANs, use the no spanning-tree uplinkfast global configuration command.

### Enabling BackboneFast

You can enable BackboneFast to detect indirect link failures and to start the spanning-tree reconfiguration sooner.
If you use BackboneFast, you must enable it on all switches in the network. BackboneFast is not supported on Token Ring VLANs. This feature is supported for use with third-party switches.

You can configure the BackboneFast feature for rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

Beginning in privileged EXEC mode, follow these steps to enable BackboneFast. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree backbonefast</td>
<td>Enable BackboneFast.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the BackboneFast feature, use the `no spanning-tree backbonefast` global configuration command.

**Enabling EtherChannel Guard**

You can enable EtherChannel guard to detect an EtherChannel misconfiguration if your switch is running PVST+, rapid PVST+, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable EtherChannel guard. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree etherchannel guard misconfig</td>
<td>Enable EtherChannel guard.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the EtherChannel guard feature, use the `no spanning-tree etherchannel guard misconfig` global configuration command.

You can use the `show interfaces status err-disabled` privileged EXEC command to show which switch ports are disabled because of an EtherChannel misconfiguration. On the remote device, you can enter the `show etherchannel summary` privileged EXEC command to verify the EtherChannel configuration.

After the configuration is corrected, enter the `shutdown` and `no shutdown` interface configuration commands on the port-channel interfaces that were misconfigured.
Enabling Root Guard

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. Do not enable the root guard on interfaces to be used by the UplinkFast feature. With UplinkFast, the backup interfaces (in the blocked state) replace the root port in the case of a failure. However, if root guard is also enabled, all the backup interfaces used by the UplinkFast feature are placed in the root-inconsistent state (blocked) and are prevented from reaching the forwarding state.

Note

You cannot enable both root guard and loop guard at the same time.

You can enable this feature if your switch is running PVST+, rapid PVST+, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable root guard on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 spanning-tree guard root</td>
<td>Enable root guard on the interface. By default, root guard is disabled on all interfaces.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable root guard, use the no spanning-tree guard interface configuration command.

Enabling Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is configured on the entire switched network. Loop guard operates only on interfaces that are considered point-to-point by the spanning tree.

Note

You cannot enable both loop guard and root guard at the same time.

You can enable this feature if your switch is running PVST+, rapid PVST+, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable loop guard. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show spanning-tree active</td>
<td>Verify which interfaces are alternate or root ports.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>or show spanning-tree mst</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 20      Configuring Optional Spanning-Tree Features

Displaying the Spanning-Tree Status

To globally disable loop guard, use the `no spanning-tree loopguard default` global configuration command. You can override the setting of the `no spanning-tree loopguard default` global configuration command by using the `spanning-tree guard loop` interface configuration command.

### Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 20-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree active</code></td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td><code>show spanning-tree detail</code></td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td><code>show spanning-tree interface interface-id</code></td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td><code>show spanning-tree mst interface interface-id</code></td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td><code>show spanning-tree summary [totals]</code></td>
<td>Displays a summary of interface states or displays the total lines of the spanning-tree state section.</td>
</tr>
</tbody>
</table>

You can clear spanning-tree counters by using the `clear spanning-tree [interface interface-id]` privileged EXEC command.

For information about other keywords for the `show spanning-tree` privileged EXEC command, see the command reference for this release.
Chapter 20    Configuring Optional Spanning-Tree Features

Displaying the Spanning-Tree Status
Configuring Flex Links and the MAC Address-Table Move Update Feature

This chapter describes how to configure Flex Links, a pair of interfaces on the switch that provide a mutual backup. It also describes how to configure the MAC address-table move update feature, also referred to as the Flex Links bidirectional fast convergence feature. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

The chapter consists of these sections:

- Understanding Flex Links and the MAC Address-Table Move Update, page 21-1
- Configuring Flex Links and MAC Address-Table Move Update, page 21-7
- Monitoring Flex Links and the MAC Address-Table Move Update Information, page 21-14

Understanding Flex Links and the MAC Address-Table Move Update

This section contains this information:

- Flex Links, page 21-2
- VLAN Flex Link Load Balancing and Support, page 21-3
- Flex Link Multicast Fast Convergence, page 21-3
- MAC Address-Table Move Update, page 21-6
Flex Links

Flex Links are a pair of a Layer 2 interfaces (switch ports or port channels) where one interface is configured to act as a backup to the other. The feature provides an alternative solution to the Spanning Tree Protocol (STP). Users can disable STP and still retain basic link redundancy. Flex Links are typically configured in service provider or enterprise networks where customers do not want to run STP on the switch. If the switch is running STP, Flex Links is not necessary because STP already provides link-level redundancy or backup.

You configure Flex Links on one Layer 2 interface (the active link) by assigning another Layer 2 interface as the Flex Link or backup link. The Flex Link can be on the same switch or on another switch in the stack. When one of the links is up and forwarding traffic, the other link is in standby mode, ready to begin forwarding traffic if the other link shuts down. At any given time, only one of the interfaces is in the linkup state and forwarding traffic. If the primary link shuts down, the standby link starts forwarding traffic. When the active link comes back up, it goes into standby mode and does not forward traffic. STP is disabled on Flex Link interfaces.

In Figure 21-1, ports 1 and 2 on switch A are connected to uplink switches B and C. Because they are configured as Flex Links, only one of the interfaces is forwarding traffic; the other is in standby mode. If port 1 is the active link, it begins forwarding traffic between port 1 and switch B; the link between port 2 (the backup link) and switch C is not forwarding traffic. If port 1 goes down, port 2 comes up and starts forwarding traffic to switch C. When port 1 comes back up, it goes into standby mode and does not forward traffic; port 2 continues forwarding traffic.

You can also choose to configure a preemption mechanism, specifying the preferred port for forwarding traffic. For example, in the example in Figure 21-1, you can configure the Flex Links pair with preemption mode. In the scenario shown, when port 1 comes back up and has more bandwidth than port 2, port 1 begins forwarding traffic after 60 seconds. Port 2 becomes the standby port. You do this by entering the interface configuration `switchport backup interface preemption mode bandwidth` and `switchport backup interface preemption delay` commands.

Figure 21-1 Flex Links Configuration Example

If a primary (forwarding) link goes down, a trap notifies the network management stations. If the standby link goes down, a trap notifies the users.

Flex Links are supported only on Layer 2 ports and port channels, not on VLANs or on Layer 3 ports.
VLAN Flex Link Load Balancing and Support

VLAN Flex Link load-balancing allows users to configure a Flex Link pair so that both ports simultaneously forward the traffic for some mutually exclusive VLANs. For example, if Flex Link ports are configured for 1-100 VLANs, the traffic of the first 50 VLANs can be forwarded on one port and the rest on the other port. If one of the ports fail, the other active port forwards all the traffic. When the failed port comes back up, it resumes forwarding traffic in the preferred VLANs. This way, apart from providing the redundancy, this Flex Link pair can be used for load balancing. Also, Flex Link VLAN load-balancing does not impose any restrictions on uplink switches.

Figure 21-2 VLAN Flex Links Load Balancing Configuration Example

Flex Link Multicast Fast Convergence

Flex Link Multicast Fast Convergence reduces the multicast traffic convergence time after a Flex Link failure. This is implemented by a combination of these solutions:

- Learning the Other Flex Link Port as the mrouter Port, page 21-3
- Generating IGMP Reports, page 21-4
- Leaking IGMP Reports, page 21-4
- Configuration Examples, page 21-4

Learning the Other Flex Link Port as the mrouter Port

In a typical multicast network, there is a querier for each VLAN. A switch deployed at the edge of a network has one of its Flex Link ports receiving queries. Flex Link ports are also always forwarding at any given time.

A port that receives queries is added as an mrouter port on the switch. An mrouter port is part of all the multicast groups learned by the switch. After a changeover, queries are received by the other Flex Link port. The other Flex Link port is then learned as the mrouter port. After changeover, multicast traffic then flows through the other Flex Link port. To achieve faster convergence of traffic, both Flex Link ports are learned as mrouter ports whenever either Flex Link port is learned as the mrouter port. Both Flex Link ports are always part of multicast groups.

Though both Flex Link ports are part of the groups in normal operation mode, all traffic on the backup port is blocked. So the normal multicast data flow is not affected by the addition of the backup port as an mrouter port. When the changeover happens, the backup port is unblocked, allowing the traffic to flow. In this case, the upstream multicast data flows as soon as the backup port is unblocked.
Generating IGMP Reports

When the backup link comes up after the changeover, the upstream new distribution switch does not start forwarding multicast data, because the port on the upstream router, which is connected to the blocked Flex Link port, is not part of any multicast group. The reports for the multicast groups were not forwarded by the downstream switch because the backup link is blocked. The data does not flow on this port, until it learns the multicast groups, which occurs only after it receives reports.

The reports are sent by hosts when a general query is received, and a general query is sent within 60 seconds in normal scenarios. When the backup link starts forwarding, to achieve faster convergence of multicast data, the downstream switch immediately sends proxy reports for all the learned groups on this port without waiting for a general query.

Leaking IGMP Reports

To achieve multicast traffic convergence with minimal loss, a redundant data path must be set up before the Flex Link active link goes down. This can be achieved by leaking only IGMP report packets on the Flex Link backup link. These leaked IGMP report messages are processed by upstream distribution routers, so multicast data traffic gets forwarded to the backup interface. Because all incoming traffic on the backup interface is dropped at the ingress of the access switch, no duplicate multicast traffic is received by the host. When the Flex Link active link fails, the access switch starts accepting traffic from the backup link immediately. The only disadvantage of this scheme is that it consumes bandwidth on the link between the distribution switches and on the backup link between the distribution and access switches. This feature is disabled by default and can be configured by using the `switchport backup interface interface-id multicast fast-convergence` command.

When this feature has been enabled at changeover, the switch does not generate the proxy reports on the backup port, which became the forwarding port.

Configuration Examples

These are configuration examples for learning the other Flex Link port as the mrouter port when a Flex Link is configured on Gigabit Ethernet1/0/11 and Gigabit Ethernet1/0/12, with output for the `show interfaces switchport backup` command:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/11
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/12
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# end
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
Active Interface Backup Interface State
GigabitEthernet1/0/11 GigabitEthernet1/0/12 Active Up/Backup Standby
Preemption Mode : off
Multicast Fast Convergence : Off
Bandwidth : 100000 Kbit (Gi1/0/11), 100000 Kbit (Gi1/0/12)
Mac Address Move Update Vlan : auto
```
This output shows a querier for VLANs 1 and 401, with their queries reaching the switch through GigabitEthernet1/0/11:

```
Switch# show ip igmp snooping querier
Vlan IP Address IGMP Version Port

 1 1.1.1.1 v2 Gi1/0/11
401 41.41.41.1 v2 Gi1/0/11
```

This is output for the `show ip igmp snooping mrouter` command for VLANs 1 and 401:

```
Switch# show ip igmp snooping mrouter
Vlan ports
---- -----
 1 Gi1/0/11(dynamic), Gi1/0/12(dynamic)
401 Gi1/0/11(dynamic), Gi1/0/12(dynamic)
```

Similarly, both Flex Link ports are part of learned groups. Gigabit Ethernet2/0/11 is a receiver/host in VLAN 1, which is interested in two multicast groups:

```
Switch# show ip igmp snooping groups
Vlan Group Type Version Port List

 1 228.1.5.1 igmp v2 Gi1/0/11, Gi1/0/12, Gi2/0/11
 1 228.1.5.2 igmp v2 Gi1/0/11, Gi1/0/12, Gi2/0/11
```

When a host responds to the general query, the switch forwards this report on all the mrouter ports. In this example, when a host sends a report for the group 228.1.5.1, it is forwarded only on Gigabit Ethernet1/0/11, because the backup port Gigabit Ethernet1/0/12 is blocked. When the active link, Gigabit Ethernet1/0/11, goes down, the backup port, GigabitEthernet1/0/12, begins forwarding.

As soon as this port starts forwarding, the switch sends proxy reports for the groups 228.1.5.1 and 228.1.5.2 on behalf of the host. The upstream router learns the groups and starts forwarding multicast data. This is the default behavior of Flex Link. This behavior changes when the user configures fast convergence using the `switchport backup interface gigabitethernet 1/0/12 multicast fast-convergence` command. This example shows enabling this feature:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet 1/0/11
Switch(config-if)# switchport backup interface gigabitethernet 1/0/12 multicast fast-convergence
Switch(config-if)# exit
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
 Active Interface Backup Interface State
-------------------- ------------------- ------
 GigabitEthernet1/0/11 GigabitEthernet1/0/12 Active Up/Backup Standby
Preemption Mode : off
Multicast Fast Convergence : On
Bandwidth : 100000 Kbit (Gi1/0/11), 100000 Kbit (Gi1/0/12)
Mac Address Move Update Vlan : auto
```

This output shows a querier for VLAN 1 and 401 with their queries reaching the switch through Gigabit Ethernet 1/0/11:

```
Switch# show ip igmp snooping querier
Vlan IP Address IGMP Version Port

 1 1.1.1.1 v2 Gi1/0/11
401 41.41.41.1 v2 Gi1/0/11
```
This is output for the `show ip igmp snooping mrouter` command for VLAN 1 and 401:

```
Switch# show ip igmp snooping mrouter
Vlan ports
---- -----
1 Gi1/0/11(dynamic), Gi1/0/12(dynamic)
401 Gi1/0/11(dynamic), Gi1/0/12(dynamic)
```

Similarly, both the Flex Link ports are a part of the learned groups. Gigabit Ethernet 2/0/11 is a receiver/host in VLAN 1, which is interested in two multicast groups:

```
Switch# show ip igmp snooping groups
Vlan Group Type Version Port List
--
1 228.1.5.1 igmp v2 Gi1/0/11, Gi1/0/12, Gi2/0/11
1 228.1.5.2 igmp v2 Gi1/0/11, Gi1/0/12, Gi2/0/11
```

Whenever a host responds to the general query, the switch forwards this report on all the mrouter ports. When you turn on this feature through the command-line port, and when a report is forwarded by the switch on Gigabit Ethernet 1/0/11, it is also leaked to the backup port Gigabit Ethernet 1/0/12. The upstream router learns the groups and starts forwarding multicast data, which is dropped at the ingress because Gigabit Ethernet 1/0/12 is blocked. When the active link, Gigabit Ethernet 1/0/11, goes down, the backup port, Gigabit Ethernet 1/0/12, begins forwarding. You do not need to send any proxy reports as the multicast data is already being forwarded by the upstream router. By leaking reports to the backup port, a redundant multicast path has been set up, and the time taken for the multicast traffic convergence is very minimal.

### MAC Address-Table Move Update

The MAC address-table move update feature allows the switch to provide rapid bidirectional convergence when a primary (forwarding) link goes down and the standby link begins forwarding traffic.

In Figure 21-3, switch A is an access switch, and ports 1 and 2 on switch A are connected to uplink switches B and D through a Flex Link pair. Port 1 is forwarding traffic, and port 2 is in the backup state. Traffic from the PC to the server is forwarded from port 1 to port 3. The MAC address of the PC has been learned on port 3 of switch C. Traffic from the server to the PC is forwarded from port 3 to port 1.

If the MAC address-table move update feature is not configured and port 1 goes down, port 2 starts forwarding traffic. However, for a short time, switch C keeps forwarding traffic from the server to the PC through port 3, and the PC does not get the traffic because port 1 is down. If switch C removes the MAC address of the PC on port 3 and relearns it on port 4, traffic can then be forwarded from the server to the PC through port 2.

If the MAC address-table move update feature is configured and enabled on the switches in Figure 21-3 and port 1 goes down, port 2 starts forwarding traffic from the PC to the server. The switch sends a MAC address-table move update packet from port 2. Switch C gets this packet on port 4 and immediately learns the MAC address of the PC on port 4, which reduces the reconvergence time.

You can configure the access switch, switch A, to send MAC address-table move update messages. You can also configure the uplink switches B, C, and D to get and process the MAC address-table move update messages. When switch C gets a MAC address-table move update message from switch A, switch C learns the MAC address of the PC on port 4. Switch C updates the MAC address table, including the forwarding table entry for the PC.

Switch A does not need to wait for the MAC address-table update. The switch detects a failure on port 1 and immediately starts forwarding server traffic from port 2, the new forwarding port. This change occurs in 100 milliseconds (ms). The PC is directly connected to switch A, and the connection status does not change. Switch A does not need to update the PC entry in the MAC address table.
Configuring Flex Links and MAC Address-Table Move Update

These sections contain this information:
- Configuration Guidelines, page 21-8
- Default Configuration, page 21-8
- Configuring Flex Links, page 21-9
- Configuring VLAN Load Balancing on Flex Links, page 21-11
- Configuring the MAC Address-Table Move Update Feature, page 21-12
Configuration Guidelines

Follow these guidelines to configure Flex Links:

- You can configure up to 16 backup links.
- You can configure only one Flex Link backup link for any active link, and it must be a different interface from the active interface.
- An interface can belong to only one Flex Link pair. An interface can be a backup link for only one active link. An active link cannot belong to another Flex Link pair.
- Neither of the links can be a port that belongs to an EtherChannel. However, you can configure two port channels (EtherChannel logical interfaces) as Flex Links, and you can configure a port channel and a physical interface as Flex Links, with either the port channel or the physical interface as the active link.
- A backup link does not have to be the same type (Gigabit Ethernet or port channel) as the active link. However, you should configure both Flex Links with similar characteristics so that there are no loops or changes in behavior if the standby link begins to forward traffic.
- STP is disabled on Flex Link ports. A Flex Link port does not participate in STP, even if the VLANs present on the port are configured for STP. When STP is not enabled, be sure that there are no loops in the configured topology.

Follow these guideline to configure VLAN load balancing on the Flex Links feature:

- For Flex Link VLAN load balancing, you must choose the preferred VLANs on the backup interface.
- You cannot configure a preemption mechanism and VLAN load balancing for the same Flex Links pair.

Follow these guidelines to configure MAC address-table move update feature:

- You can enable and configure this feature on the access switch to send the MAC address-table move updates.
- You can enable and configure this feature on the uplink switches to get the MAC address-table move updates.

Default Configuration

The Flex Links are not configured, and there are no backup interfaces defined.

The preemption mode is off.

The preemption delay is 35 seconds.

The MAC address-table move update feature is not configured on the switch.
Configuring Flex Links

Beginning in privileged EXEC mode, follow these steps to configure a pair of Flex Links:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specify the interface, and enter interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 64.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switchport backup interface interface-id</td>
<td>Configure a physical Layer 2 interface (or port channel) as part of a Flex Link pair with the interface. When one link is forwarding traffic, the other interface is in standby mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> show interface [interface-id] switchport backup</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup config</td>
<td>(Optional) Save your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

To disable a Flex Link backup interface, use the **no switchport backup interface interface-id** interface configuration command.

This example shows how to configure an interface with a backup interface and to verify the configuration:

```
Switch# configure terminal
Switch(conf)# interface gigabitethernet1/0/1
Switch(conf-if)# switchport backup interface gigabitethernet1/0/2
Switch(conf-if)# end

Switch# show interface switchport backup
Switch Backup Interface Pairs:
Active Interface Backup Interface State

GigabitEthernet1/0/1 GigabitEthernet1/0/2 Active Up/Backup Standby
```

Beginning in privileged EXEC mode, follow these steps to configure a preemption scheme for a pair of Flex Links:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specify the interface, and enter interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 64.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switchport backup interface interface-id</td>
<td>Configure a physical Layer 2 interface (or port channel) as part of a Flex Links pair with the interface. When one link is forwarding traffic, the other interface is in standby mode.</td>
</tr>
</tbody>
</table>
### Configuring Flex Links and MAC Address-Table Move Update Feature

#### Command

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switchport backup interface interface-id preemption mode [forced</td>
<td>Configure a preemption mechanism and delay for a Flex Link interface pair. You can configure the preemption as:</td>
</tr>
<tr>
<td></td>
<td>bandwidth</td>
<td>• Forced—the active interface always preempts the backup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bandwidth—the interface with the higher bandwidth always acts as the active interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Off—no preemption happens from active to backup.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switchport backup interface interface-id preemption delay delay-time</td>
<td>Configure the time delay until a port preempts another port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> Setting a delay time only works with forced and bandwidth modes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show interface [interface-id] switchport backup</td>
<td>Verify the configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup config</td>
<td>(Optional) Save your entries in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

To remove a preemption scheme, use the **no switchport backup interface interface-id preemption mode** interface configuration command. To reset the delay time to the default, use the **no switchport backup interface interface-id preemption delay** interface configuration command.

This example shows how to configure the preemption mode as *forced* for a backup interface pair and to verify the configuration:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport backup interface gigabitethernet1/0/2 preemption mode forced
Switch(config-if)# switchport backup interface gigabitethernet1/0/2 preemption delay 50
Switch(config-if)# end

Switch# show interface switchport backup detail
Active Interface Backup Interface State

GigabitEthernet1/0/1 GigabitEthernet1/0/2 Active Up/Backup Standby
Interface Pair: G11/0/1, G11/0/2
Preemption Mode: forced
Preemption Delay: 50 seconds
Bandwidth: 100000 Kbit (G11/0/1), 100000 Kbit (G11/0/2)
Mac Address Move Update Vlan: auto
```
Configuring VLAN Load Balancing on Flex Links

Beginning in privileged EXEC mode, follow these steps to configure VLAN load balancing on Flex Links:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport backup interface interface-id prefer vlan vlan-range</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces [interface-id] switchport backup</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup config</td>
</tr>
</tbody>
</table>

To disable the VLAN load balancing feature, use the no switchport backup interface interface-id prefer vlan vlan-range interface configuration command.

In the following example, VLANs 1 to 50, 60, and 100 to 120 are configured on the switch:

```
Switch(config)#interface gigabitethernet 2/0/6
Switch(config-if)#switchport backup interface gigabitethernet 2/0/8 prefer vlan 60,100-120
```

When both interfaces are up, Gi2/0/8 forwards traffic for VLANs 60 and 100 to 120 and Gi2/0/6 forwards traffic for VLANs 1 to 50.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:

<table>
<thead>
<tr>
<th>Active Interface</th>
<th>Backup Interface</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet2/0/6</td>
<td>GigabitEthernet2/0/8</td>
<td>Active Up/Backup Standby</td>
</tr>
</tbody>
</table>

Vlans Preferred on Active Interface: 1-50
Vlans Preferred on Backup Interface: 60, 100-120
```

When a Flex Link interface goes down (LINK_DOWN), VLANs preferred on this interface are moved to the peer interface of the Flex Link pair. In this example, if interface Gi2/0/6 goes down, Gi2/0/8 carries all VLANs of the Flex Link pair.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:

<table>
<thead>
<tr>
<th>Active Interface</th>
<th>Backup Interface</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet2/0/6</td>
<td>GigabitEthernet2/0/8</td>
<td>Active Down/Backup Up</td>
</tr>
</tbody>
</table>

Vlans Preferred on Active Interface: 1-50
Vlans Preferred on Backup Interface: 60, 100-120
When a Flex Link interface comes up, VLANs preferred on this interface are blocked on the peer interface and moved to the forwarding state on the interface that has just come up. In this example, if interface Gi2/0/6 comes up, VLANs preferred on this interface are blocked on the peer interface Gi2/0/8 and forwarded on Gi2/0/6.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:
Active Interface        Backup Interface        State
------------------------------------------------------------------------
GigabitEthernet2/0/6    GigabitEthernet2/0/8    Active Up/Backup Standby
Vlans Preferred on Active Interface: 1-50
Vlans Preferred on Backup Interface: 60, 100-120
```

```
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
Active Interface        Backup Interface        State
------------------------------------------------------------------------
FastEthernet1/0/3       FastEthernet1/0/4       Active Down/Backup Up
Vlans Preferred on Active Interface: 1-2,5-4094
Vlans Preferred on Backup Interface: 3-4
Preemption Mode : off
Bandwidth : 10000 Kbit (Fa1/0/3), 100000 Kbit (Fa1/0/4)
Mac Address Move Update Vlan : auto
```

Configuring the MAC Address-Table Move Update Feature

This section contains this information:
- Configuring a switch to send MAC address-table move updates
- Configuring a switch to get MAC address-table move updates

Beginning in privileged EXEC mode, follow these steps to configure an access switch to send MAC address-table move updates:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the interface, and enter interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 64.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>switchport backup interface interface-id</td>
<td>Configure a physical Layer 2 interface (or port channel), as part of a Flex Link pair with the interface. The MAC address-table move update VLAN is the lowest VLAN ID on the interface.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>switchport backup interface interface-id mmu primary vlan vlan-id</td>
<td>Configure a physical Layer 2 interface (or port channel) and specify the VLAN ID on the interface, which is used for sending the MAC address-table move update. When one link is forwarding traffic, the other interface is in standby mode.</td>
</tr>
</tbody>
</table>
Chapter 21 Configuring Flex Links and the MAC Address-Table Move Update Feature

Configuring Flex Links and MAC Address-Table Move Update

Step 4
end
Return to global configuration mode.

Step 5
mac address-table move update transmit
Enable the access switch to send MAC address-table move updates to other switches in the network if the primary link goes down and the switch starts forwarding traffic through the standby link.

Step 6
end
Return to privileged EXEC mode.

Step 7
show mac address-table move update
Verify the configuration.

Step 8
copy running-config startup config
(Optional) Save your entries in the switch startup configuration file.

To disable the MAC address-table move update feature, use the no mac address-table move update transmit interface configuration command. To display the MAC address-table move update information, use the show mac address-table move update privileged EXEC command.

This example shows how to configure an access switch to send MAC address-table move update messages:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport backup interface gigabitethernet0/2 mmu primary vlan 2
Switch(config-if)# exit
Switch(config)# mac address-table move update transmit
Switch(config)# end

This example shows how to verify the configuration:

Switch# show mac address-table move update
Switch-ID : 010b.4630.1780
Dst mac-address : 0180.c200.0010
Vlans/Macs supported : 1023/8320
Default/Current settings: Rcv Off/On, Xmt Off/On
Max packets per min : Rcv 40, Xmt 60
Rcv packet count : 5
Rcv conforming packet count : 5
Rcv invalid packet count : 0
Rcv packet count this min : 0
Rcv threshold exceed count : 0
Rcv last sequence# this min : 0
Rcv last src-mac-address : 000b.462d.c502
Rcv last switch-ID : 0403.fd6a.8700
Xmt packet count : 0
Xmt packet count this min : 0
Xmt threshold exceed count : 0
Xmt pak buf unavail cnt : 0
Xmt last interface : None

Beginning in privileged EXEC mode, follow these steps to configure a switch to get and process MAC address-table move update messages:

Command | Purpose
--- | ---
Step 1 | configure terminal
Enter global configuration mode.

Step 2 | mac address-table move update receive
Enable the switch to get and process the MAC address-table move updates.
To disable the MAC address-table move update feature, use the `no mac address-table move update receive` configuration command. To display the MAC address-table move update information, use the `show mac address-table move update` privileged EXEC command.

This example shows how to configure a switch to get and process MAC address-table move update messages:

Switch# configure terminal
Switch(conf)# mac address-table move update receive
Switch(conf)# end

Monitoring Flex Links and the MAC Address-Table Move Update Information

Table 21-1 shows the privileged EXEC commands for monitoring the Flex Links configuration and the MAC address-table move update information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interface [interface-id] switchport backup</code></td>
<td>Displays the Flex Link backup interface configured for an interface or all the configured Flex Links and the state of each active and backup interface (up or standby mode).</td>
</tr>
<tr>
<td><code>show mac address-table move update</code></td>
<td>Displays the MAC address-table move update information on the switch.</td>
</tr>
</tbody>
</table>
CHAPTER 22

Configuring DHCP Features and IP Source Guard

This chapter describes how to configure DHCP snooping and option-82 data insertion, and the DHCP server port-based address allocation features on the switch. It also describes how to configure the IP source guard feature. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release, and see the “DHCP Commands” section in the Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.2.

This chapter consists of these sections:

- Understanding DHCP Features, page 22-1
- Configuring DHCP Features, page 22-8
- Displaying DHCP Snooping Information, page 22-16
- Understanding IP Source Guard, page 22-16
- Configuring IP Source Guard, page 22-18
- Displaying IP Source Guard Information, page 22-26
- Understanding DHCP Server Port-Based Address Allocation, page 22-26
- Configuring DHCP Server Port-Based Address Allocation, page 22-27
- Displaying DHCP Server Port-Based Address Allocation, page 22-30

Understanding DHCP Features

DHCP is widely used in LAN environments to dynamically assign host IP addresses from a centralized server, which significantly reduces the overhead of administration of IP addresses. DHCP also helps conserve the limited IP address space because IP addresses no longer need to be permanently assigned to hosts; only those hosts that are connected to the network consume IP addresses.

These sections contain this information:

- DHCP Server, page 22-2
- DHCP Relay Agent, page 22-2
- DHCP Snooping, page 22-2
- Option-82 Data Insertion, page 22-3
For information about the DHCP client, see the “Configuring DHCP” section of the “IP Addressing and Services” section of the Cisco IOS IP Configuration Guide, Release 12.2.

DHCP Server

The DHCP server assigns IP addresses from specified address pools on a switch or router to DHCP clients and manages them. If the DHCP server cannot give the DHCP client the requested configuration parameters from its database, it forwards the request to one or more secondary DHCP servers defined by the network administrator.

DHCP Relay Agent

A DHCP relay agent is a Layer 3 device that forwards DHCP packets between clients and servers. Relay agents forward requests and replies between clients and servers when they are not on the same physical subnet. Relay agent forwarding is different from the normal Layer 2 forwarding, in which IP datagrams are switched transparently between networks. Relay agents receive DHCP messages and generate new DHCP messages to send on output interfaces.

DHCP Snooping

DHCP snooping is a DHCP security feature that provides network security by filtering untrusted DHCP messages and by building and maintaining a DHCP snooping binding database, also referred to as a DHCP snooping binding table. For more information about this database, see the “Displaying DHCP Snooping Information” section on page 22-16.

DHCP snooping acts like a firewall between untrusted hosts and DHCP servers. You use DHCP snooping to differentiate between untrusted interfaces connected to the end user and trusted interfaces connected to the DHCP server or another switch.

Note

For DHCP snooping to function properly, all DHCP servers must be connected to the switch through trusted interfaces.

An untrusted DHCP message is a message that is received from outside the network or firewall. When you use DHCP snooping in a service-provider environment, an untrusted message is sent from a device that is not in the service-provider network, such as a customer’s switch. Messages from unknown devices are untrusted because they can be sources of traffic attacks.

The DHCP snooping binding database has the MAC address, the IP address, the lease time, the binding type, the VLAN number, and the interface information that corresponds to the local untrusted interfaces of a switch. It does not have information regarding hosts interconnected with a trusted interface.

In a service-provider network, a trusted interface is connected to a port on a device in the same network. An untrusted interface is connected to an untrusted interface in the network or to an interface on a device that is not in the network.
When a switch receives a packet on an untrusted interface and the interface belongs to a VLAN in which DHCP snooping is enabled, the switch compares the source MAC address and the DHCP client hardware address. If the addresses match (the default), the switch forwards the packet. If the addresses do not match, the switch drops the packet.

The switch drops a DHCP packet when one of these situations occurs:

- A packet from a DHCP server, such as a DHCPOFFER, DHCPACK, DHCPNAK, or DHCPLEASEQUERY packet, is received from outside the network or firewall.
- A packet is received on an untrusted interface, and the source MAC address and the DHCP client hardware address do not match.
- The switch receives a DHCPRELEASE or DHCPDECLINE broadcast message that has a MAC address in the DHCP snooping binding database, but the interface information in the binding database does not match the interface on which the message was received.
- A DHCP relay agent forwards a DHCP packet that includes a relay-agent IP address that is not 0.0.0.0, or the relay agent forwards a packet that includes option-82 information to an untrusted port.

If the switch is an aggregation switch supporting DHCP snooping and is connected to an edge switch that is inserting DHCP option-82 information, the switch drops packets with option-82 information when packets are received on an untrusted interface. If DHCP snooping is enabled and packets are received on a trusted port, the aggregation switch does not learn the DHCP snooping bindings for connected devices and cannot build a complete DHCP snooping binding database.

When an aggregation switch can be connected to an edge switch through an untrusted interface and you enter the `ip dhcp snooping information option allow-untrusted` global configuration command, the aggregation switch accepts packets with option-82 information from the edge switch. The aggregation switch learns the bindings for hosts connected through an untrusted switch interface. The DHCP security features, such as dynamic ARP inspection or IP source guard, can still be enabled on the aggregation switch while the switch receives packets with option-82 information on untrusted input interfaces to which hosts are connected. The port on the edge switch that connects to the aggregation switch must be configured as a trusted interface.

Option-82 Data Insertion

In residential, metropolitan Ethernet-access environments, DHCP can centrally manage the IP address assignments for a large number of subscribers. When the DHCP option-82 feature is enabled on the switch, a subscriber device is identified by the switch port through which it connects to the network (in addition to its MAC address). Multiple hosts on the subscriber LAN can be connected to the same port on the access switch and are uniquely identified.

Note

The DHCP option-82 feature is supported only when DHCP snooping is globally enabled and on the VLANs to which subscriber devices using this feature are assigned.
Understanding DHCP Features

Figure 22-1 is an example of a blade switch in an enclosure in which a centralized DHCP server assigns IP addresses to subscribers connected to the switch at the access layer. Because the DHCP clients and their associated DHCP server do not reside on the same IP network or subnet, a DHCP relay agent (the blade switch) is configured with a helper address to enable broadcast forwarding and to transfer DHCP messages between the clients and the server.

Figure 22-1 DHCP Relay Agent in a Metropolitan Ethernet Network

When you enable the DHCP snooping information option 82 on the switch, this sequence of events occurs:

- The Blade Server (DHCP client) generates a DHCP request and broadcasts it on the network.
- When the blade switch receives the DHCP request, it adds the option-82 information in the packet. By default, the remote-ID suboption is the switch MAC address, and the circuit-ID suboption is the port identifier, `vlan-mod-port`, from which the packet is received. You can configure the remote ID and circuit ID. For information on configuring these suboptions, see the “Enabling DHCP Snooping and Option 82” section on page 22-12.
- If the IP address of the relay agent is configured, the switch adds this IP address in the DHCP packet.
- The blade switch forwards the DHCP request that includes the option-82 field to the DHCP server.
- The DHCP server receives the packet. If the server is option-82-capable, it can use the remote ID, the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or circuit ID. Then the DHCP server echoes the option-82 field in the DHCP reply.
- The DHCP server unicasts the reply to the blade switch if the request was relayed to the server by the switch. The switch verifies that it originally inserted the option-82 data by inspecting the remote ID and possibly the circuit ID fields. The switch removes the option-82 field and forwards the packet to the switch port that connects to the DHCP client that sent the DHCP request.

In the default suboption configuration, when the described sequence of events occurs, the values in these fields in Figure 22-2 do not change:

- Circuit-ID suboption fields
 - Suboption type
 - Length of the suboption type
 - Circuit-ID type
 - Length of the circuit-ID type
• Remote-ID suboption fields
 - Suboption type
 - Length of the suboption type
 - Remote-ID type
 - Length of the remote-ID type

In the port field of the circuit ID suboption, the port numbers start at 1. For example, on a switch with Cisco dual SFP X2 converter modules in the 10-Gigabit Ethernet module slots, port 1 is the internal Gigabit Ethernet 1/0/1 port, port 2 is the internal Gigabit Ethernet1/0/2 port, and so on. Because ports 19, 20, 21, and 22 are small form-factor pluggable (SFP) modules, port 19 is the Gigabit Ethernet1/0/19 port, port 20 is the Gigabit Ethernet1/0/20 port, and so on. For the external 10/100/1000 ports, port 23 is Gigabit Ethernet 1/0/23 port, port 24 is Gigabit Ethernet 1/0/24 port, and so on.

Figure 22-2 shows the packet formats for the remote-ID suboption and the circuit-ID suboption when the default suboption configuration is used. For the circuit-ID suboption, the module number corresponds to the switch number in the stack. The switch uses the packet formats when you globally enable DHCP snooping and enter the `ip dhcp snooping information option` global configuration command.

Figure 22-3 shows the packet formats for user-configured remote-ID and circuit-ID suboptions. The switch uses these packet formats when DHCP snooping is globally enabled and when the `ip dhcp snooping information option format remote-id` global configuration command and the `ip dhcp snooping vlan information option format-type circuit-id string` interface configuration command are entered.

The values for these fields in the packets change from the default values when you configure the remote-ID and circuit-ID suboptions:

• Circuit-ID suboption fields
 - The circuit-ID type is 1.
The length values are variable, depending on the length of the string that you configure.

- Remote-ID suboption fields
 - The remote-ID type is 1.
 - The length values are variable, depending on the length of the string that you configure.

Figure 22-3 User-Configured Suboption Packet Formats

Circuit ID Suboption Frame Format (for user-configured string):

<table>
<thead>
<tr>
<th>Suboption type</th>
<th>Circuit ID type</th>
<th>Length</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N+2</td>
<td>1</td>
<td>N</td>
</tr>
</tbody>
</table>

ASCII Circuit ID string

1 byte 1 byte 1 byte 1 byte N bytes (N = 3-63)

Remote ID Suboption Frame Format (for user-configured string):

<table>
<thead>
<tr>
<th>Suboption type</th>
<th>Remote ID type</th>
<th>Length</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>N+2</td>
<td>1</td>
<td>N</td>
</tr>
</tbody>
</table>

ASCII Remote ID string or hostname

1 byte 1 byte 1 byte 1 byte N bytes (N = 1-63)

Cisco IOS DHCP Server Database

During the DHCP-based autoconfiguration process, the designated DHCP server uses the Cisco IOS DHCP server database. It has IP addresses, address bindings, and configuration parameters, such as the boot file.

An address binding is a mapping between an IP address and a MAC address of a host in the Cisco IOS DHCP server database. You can manually assign the client IP address, or the DHCP server can allocate an IP address from a DHCP address pool. For more information about manual and automatic address bindings, see the “Configuring DHCP” chapter of the *Cisco IOS IP Configuration Guide, Release 12.2*.

DHCP Snooping Binding Database

When DHCP snooping is enabled, the switch uses the DHCP snooping binding database to store information about untrusted interfaces. The database can have up to 8192 bindings.

Each database entry (binding) has an IP address, an associated MAC address, the lease time (in hexadecimal format), the interface to which the binding applies, and the VLAN to which the interface belongs. The database agent stores the bindings in a file at a configured location. At the end of each entry is a checksum that accounts for all the bytes from the start of the file through all the bytes associated with the entry. Each entry is 72 bytes, followed by a space and then the checksum value.
To keep the bindings when the switch reloads, you must use the DHCP snooping database agent. If the agent is disabled, dynamic ARP inspection or IP source guard is enabled, and the DHCP snooping binding database has dynamic bindings, the switch loses its connectivity. If the agent is disabled and only DHCP snooping is enabled, the switch does not lose its connectivity, but DHCP snooping might not prevent DHCP spoofing attacks.

When reloading, the switch reads the binding file to build the DHCP snooping binding database. The switch updates the file when the database changes.

When a switch learns of new bindings or when it loses bindings, the switch immediately updates the entries in the database. The switch also updates the entries in the binding file. The frequency at which the file is updated is based on a configurable delay, and the updates are batched. If the file is not updated in a specified time (set by the write-delay and abort-timeout values), the update stops.

This is the format of the file with bindings:

```
<initial-checksum>
TYPE DHCP-SNOOPING
VERSION 1
BEGIN
<entry-1> <checksum-1>
<entry-2> <checksum-1-2>
...
<entry-n> <checksum-1-2-..-n>
END
```

Each entry in the file is tagged with a checksum value that the switch uses to verify the entries when it reads the file. The `initial-checksum` entry on the first line distinguishes entries associated with the latest file update from entries associated with a previous file update.

This is an example of a binding file:

```
2bb4c2a1
TYPE DHCP-SNOOPING
VERSION 1
BEGIN
192.1.168.1 3 0003.47d8.c91f 2BB6488E Gi1/0/4 21ae5fbb
192.1.168.3 3 0003.44d6.c52f 2BB648EB Gi1/0/4 1bdb223f
192.1.168.2 3 0003.47d9.c8f1 2BB648AB Gi1/0/4 584a38f0
END
```

When the switch starts and the calculated checksum value equals the stored checksum value, the switch reads entries from the binding file and adds the bindings to its DHCP snooping binding database. The switch ignores an entry when one of these situations occurs:

- The switch reads the entry and the calculated checksum value does not equal the stored checksum value. The entry and the ones following it are ignored.
- An entry has an expired lease time (the switch might not remove a binding entry when the lease time expires).
- The interface in the entry no longer exists on the system.
- The interface is a routed interface or a DHCP snooping-trusted interface.
DHCP Snooping and Switch Stacks

DHCP snooping is managed on the stack master. When a new switch joins the stack, the switch receives the DHCP snooping configuration from the stack master. When a member leaves the stack, all DHCP snooping address bindings associated with the switch age out.

All snooping statistics are generated on the stack master. If a new stack master is elected, the statistics counters reset.

When a stack merge occurs, all DHCP snooping bindings in the stack master are lost if it is no longer the stack master. With a stack partition, the existing stack master is unchanged, and the bindings belonging to the partitioned switches age out. The new master of the partitioned stack begins processing the new incoming DHCP packets. For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”

Configuring DHCP Features

These sections contain this configuration information:
- Default DHCP Configuration, page 22-8
- DHCP Snooping Configuration Guidelines, page 22-9
- Configuring the DHCP Server, page 22-10
- DHCP Server and Switch Stacks, page 22-10
- Configuring the DHCP Relay Agent, page 22-11
- Specifying the Packet Forwarding Address, page 22-11
- Enabling DHCP Snooping and Option 82, page 22-12
- Enabling DHCP Snooping on Private VLANs, page 22-14
- Enabling the Cisco IOS DHCP Server Database, page 22-14
- Enabling the DHCP Snooping Binding Database Agent, page 22-15

Default DHCP Configuration

Table 22-1 shows the default DHCP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP server</td>
<td>Enabled in Cisco IOS software, requires configuration¹</td>
</tr>
<tr>
<td>DHCP relay agent</td>
<td>Enabled²</td>
</tr>
<tr>
<td>DHCP packet forwarding address</td>
<td>None configured</td>
</tr>
<tr>
<td>Checking the relay agent information</td>
<td>Enabled (invalid messages are dropped)²</td>
</tr>
<tr>
<td>DHCP relay agent forwarding policy</td>
<td>Replace the existing relay agent information³</td>
</tr>
<tr>
<td>DHCP snooping enabled globally</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping information option</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Configuring DHCP Features and IP Source Guard

Chapter 22

Configuring DHCP Features and IP Source Guard

Configuring DHCP Features

DHCP Snooping Configuration Guidelines

These are the configuration guidelines for DHCP snooping.

- You must globally enable DHCP snooping on the switch.
- DHCP snooping is not active until DHCP snooping is enabled on a VLAN.
- Before globally enabling DHCP snooping on the switch, make sure that the devices acting as the DHCP server and the DHCP relay agent are configured and enabled.
- Before configuring the DHCP snooping information option on your switch, be sure to configure the device that is acting as the DHCP server. For example, you must specify the IP addresses that the DHCP server can assign or exclude, or you must configure DHCP options for these devices.
- When configuring a large number of circuit IDs on a switch, consider the impact of lengthy character strings on the NVRAM or the flash memory. If the circuit-ID configurations, combined with other data, exceed the capacity of the NVRAM or the flash memory, an error message appears.
- Before configuring the DHCP relay agent on your switch, make sure to configure the device that is acting as the DHCP server. For example, you must specify the IP addresses that the DHCP server can assign or exclude, configure DHCP options for devices, or set up the DHCP database agent.
- If the DHCP relay agent is enabled but DHCP snooping is disabled, the DHCP option-82 data insertion feature is not supported.
- If a switch port is connected to a DHCP server, configure a port as trusted by entering the `ip dhcp snooping trust` interface configuration command.
- If a switch port is connected to a DHCP client, configure a port as untrusted by entering the `no ip dhcp snooping trust` interface configuration command.

Table 22-1 Default DHCP Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP snooping option to accept packets on untrusted input interfaces</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping limit rate</td>
<td>None configured</td>
</tr>
<tr>
<td>DHCP snooping trust</td>
<td>Untrusted</td>
</tr>
<tr>
<td>DHCP snooping VLAN</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping MAC address verification</td>
<td>Enabled</td>
</tr>
<tr>
<td>Cisco IOS DHCP server binding database</td>
<td>Enabled in Cisco IOS software, requires configuration.</td>
</tr>
<tr>
<td>Note</td>
<td>The switch gets network addresses and configuration parameters only from a device configured as a DHCP server.</td>
</tr>
<tr>
<td>DHCP snooping binding database agent</td>
<td>Enabled in Cisco IOS software, requires configuration. This feature is operational only when a destination is configured.</td>
</tr>
</tbody>
</table>

1. The switch responds to DHCP requests only if it is configured as a DHCP server.
2. The switch relays DHCP packets only if the IP address of the DHCP server is configured on the SVI of the DHCP client.
3. Use this feature when the switch is an aggregation switch that receives packets with option-82 information from an edge switch.

DHCP Snooping Configuration Guidelines

These are the configuration guidelines for DHCP snooping.

- You must globally enable DHCP snooping on the switch.
- DHCP snooping is not active until DHCP snooping is enabled on a VLAN.
- Before globally enabling DHCP snooping on the switch, make sure that the devices acting as the DHCP server and the DHCP relay agent are configured and enabled.
- Before configuring the DHCP snooping information option on your switch, be sure to configure the device that is acting as the DHCP server. For example, you must specify the IP addresses that the DHCP server can assign or exclude, or you must configure DHCP options for these devices.
- When configuring a large number of circuit IDs on a switch, consider the impact of lengthy character strings on the NVRAM or the flash memory. If the circuit-ID configurations, combined with other data, exceed the capacity of the NVRAM or the flash memory, an error message appears.
- Before configuring the DHCP relay agent on your switch, make sure to configure the device that is acting as the DHCP server. For example, you must specify the IP addresses that the DHCP server can assign or exclude, configure DHCP options for devices, or set up the DHCP database agent.
- If the DHCP relay agent is enabled but DHCP snooping is disabled, the DHCP option-82 data insertion feature is not supported.
- If a switch port is connected to a DHCP server, configure a port as trusted by entering the `ip dhcp snooping trust` interface configuration command.
- If a switch port is connected to a DHCP client, configure a port as untrusted by entering the `no ip dhcp snooping trust` interface configuration command.
Follow these guidelines when configuring the DHCP snooping binding database:

- Because both NVRAM and the flash memory have limited storage capacity, we recommend that you store the binding file on a TFTP server.

- For network-based URLs (such as TFTP and FTP), you must create an empty file at the configured URL before the switch can write bindings to the binding file at that URL. See the documentation for your TFTP server to determine whether you must first create an empty file on the server; some TFTP servers cannot be configured this way.

- To ensure that the lease time in the database is accurate, we recommend that you enable and configure NTP. For more information, see the “Configuring NTP” section on page 5-4.

- If NTP is configured, the switch writes binding changes to the binding file only when the switch system clock is synchronized with NTP.

Do not enter the `ip dhcp snooping information option allow-untrusted` command on an aggregation switch to which an untrusted device is connected. If you enter this command, an untrusted device might spoof the option-82 information.

Starting with Cisco IOS Release 12.2(37)SE, you can display DHCP snooping statistics by entering the `show ip dhcp snooping statistics` user EXEC command, and you can clear the snooping statistics counters by entering the `clear ip dhcp snooping statistics` privileged EXEC command.

Do not enable Dynamic Host Configuration Protocol (DHCP) snooping on RSPAN VLANs. If DHCP snooping is enabled on RSPAN VLANs, DHCP packets might not reach the RSPAN destination port.

Configuring the DHCP Server

The switch can act as a DHCP server. By default, the Cisco IOS DHCP server and relay agent features are enabled on your switch but are not configured. These features are not operational.

For procedures to configure the switch as a DHCP server, see the “Configuring DHCP” section of the “IP addressing and Services” section of the *Cisco IOS IP Configuration Guide, Release 12.2*.

DHCP Server and Switch Stacks

The DHCP binding database is managed on the stack master. When a new stack master is assigned, the new master downloads the saved binding database from the TFTP server. If the stack master fails, all unsaved bindings are lost. The IP addresses associated with the lost bindings are released. You should configure an automatic backup by using the `ip dhcp database url [timeout seconds] write-delay seconds` global configuration command.

When a stack merge occurs, the stack master that becomes a stack member loses all of the DHCP lease bindings. With a stack partition, the new master in the partition acts as a new DHCP server without any of the existing DHCP lease bindings.

For more information about the switch stack, see Chapter 7, “Managing Switch Stacks.”
Configuring the DHCP Relay Agent

Beginning in privileged EXEC mode, follow these steps to enable the DHCP relay agent on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>service dhcp</td>
<td>Enable the DHCP server and relay agent on your switch. By default, this feature is enabled.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the DHCP server and relay agent, use the no service dhcp global configuration command.

See the “Configuring DHCP” section of the “IP Addressing and Services” section of the Cisco IOS IP Configuration Guide, Release 12.2 for these procedures:

- Checking (validating) the relay agent information
- Configuring the relay agent forwarding policy

Specifying the Packet Forwarding Address

If the DHCP server and the DHCP clients are on different networks or subnets, you must configure the switch with the ip helper-address address interface configuration command. The general rule is to configure the command on the Layer 3 interface closest to the client. The address used in the ip helper-address command can be a specific DHCP server IP address, or it can be the network address if other DHCP servers are on the destination network segment. Using the network address enables any DHCP server to respond to requests.

Beginning in privileged EXEC mode, follow these steps to specify the packet forwarding address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface vlan vlan-id</td>
<td>Create a switch virtual interface by entering a VLAN ID, and enter interface configuration mode.</td>
</tr>
<tr>
<td>ip address ip-address subnet-mask</td>
<td>Configure the interface with an IP address and an IP subnet.</td>
</tr>
<tr>
<td>ip helper-address address</td>
<td>Specify the DHCP packet forwarding address.</td>
</tr>
<tr>
<td></td>
<td>The helper address can be a specific DHCP server address, or it can be the network address if other DHCP servers are on the destination network segment. Using the network address enables other servers to respond to DHCP requests.</td>
</tr>
<tr>
<td></td>
<td>If you have multiple servers, you can configure one helper address for each server.</td>
</tr>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>
Configuring DHCP Features

To remove the DHCP packet forwarding address, use the `no ip helper-address address` interface configuration command.

Enabling DHCP Snooping and Option 82

Beginning in privileged EXEC mode, follow these steps to enable DHCP snooping on the switch:

Command Purpose

Step 1 configure terminal
Enter global configuration mode.

Step 2 ip dhcp snooping
Enable DHCP snooping globally.

Step 3 ip dhcp snooping vlan vlan-range
Enable DHCP snooping on a VLAN or range of VLANs. The range is 1 to 4094.

You can enter a single VLAN ID identified by VLAN ID number, a series of VLAN IDs separated by commas, a range of VLAN IDs separated by hyphens, or a range of VLAN IDs separated by entering the starting and ending VLAN IDs separated by a space.

Step 4 ip dhcp snooping information option
Enable the switch to insert and remove DHCP relay information (option-82 field) in forwarded DHCP request messages to the DHCP server. This is the default setting.

Step 5 ip dhcp snooping information option format remote-id [string ASCII-string | hostname]
(Optional) Configure the remote-ID suboption.

You can configure the remote ID to be:

- String of up to 63 ASCII characters (no spaces)
- Configured hostname for the switch

Note If the hostname is longer than 63 characters, it is truncated to 63 characters in the remote-ID configuration.

The default remote ID is the switch MAC address.
Chapter 22 Configuring DHCP Features and IP Source Guard

Configuring DHCP Features

To disable DHCP snooping, use the `no ip dhcp snooping` global configuration command. To disable DHCP snooping on a VLAN or range of VLANs, use the `no ip dhcp snooping vlan vlan-range` global configuration command. To disable the insertion and removal of the option-82 field, use the `no ip dhcp snooping information option` global configuration command. To configure an aggregation switch to drop incoming DHCP snooping packets with option-82 information from an edge switch, use the `no ip dhcp snooping information option allow-untrusted` global configuration command.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td><code>ip dhcp snooping information option allow-untrusted</code></td>
<td>(Optional) If the switch is an aggregation switch connected to an edge switch, enable the switch to accept incoming DHCP snooping packets with option-82 information from the edge switch. The default setting is disabled.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>interface interface-id</code></td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>ip dhcp snooping vlan vlan information option format-type circuit-id [override] string ASCII-string</code></td>
<td>(Optional) Configure the circuit-ID suboption for the specified interface. Specify the VLAN and port identifier, using a VLAN ID in the range of 1 to 4094. The default circuit ID is the port identifier, in the format <code>vlan-mod-port</code>. You can configure the circuit ID to be a string of 3 to 63 ASCII characters (no spaces). (Optional) Use the <code>override</code> keyword when you do not want the circuit-ID suboption inserted in TLV format to define subscriber information.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>ip dhcp snooping trust</code></td>
<td>(Optional) Configure the interface as trusted or untrusted. You can use the <code>no</code> keyword to configure an interface to receive messages from an untrusted client. The default setting is untrusted.</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>ip dhcp snooping limit rate rate</code></td>
<td>(Optional) Configure the number of DHCP packets per second that an interface can receive. The range is 1 to 2048. By default, no rate limit is configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note We recommend an untrusted rate limit of not more than 100 packets per second. If you configure rate limiting for trusted interfaces, you might need to increase the rate limit if the port is a trunk port assigned to more than one VLAN with DHCP snooping.</td>
</tr>
<tr>
<td>Step 11</td>
<td><code>exit</code></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td><code>ip dhcp snooping verify mac-address</code></td>
<td>(Optional) Configure the switch to verify that the source MAC address in a DHCP packet that is received on untrusted ports matches the client hardware address in the packet. The default is to verify that the source MAC address matches the client hardware address in the packet.</td>
</tr>
<tr>
<td>Step 13</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 14</td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 15</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to enable DHCP snooping globally and on VLAN 10 and to configure a rate limit of 100 packets per second on a port:

```bash
Switch(config)# ip dhcp snooping
Switch(config)# ip dhcp snooping vlan 10
Switch(config)# ip dhcp snooping information option
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip dhcp snooping limit rate 100
```

Enabling DHCP Snooping on Private VLANs

You can enable DHCP snooping on private VLANs. If DHCP snooping is enabled, the configuration is propagated to both a primary VLAN and its associated secondary VLANs. If DHCP snooping is enabled on the primary VLAN, it is also configured on the secondary VLANs.

If DHCP snooping is already configured on the primary VLAN and you configure DHCP snooping with different settings on a secondary VLAN, the configuration for the secondary VLAN does not take effect. You must configure DHCP snooping on the primary VLAN, this message appears when you are configuring DHCP snooping on the secondary VLAN, such as VLAN 200:

```
2w5d:%DHCP_SNOOPING-4-DHCP_SNOOPING_PVLAN_WARNING:DHCP Snooping configuration may not take effect on secondary vlan 200. DHCP Snooping configuration on secondary vlan is derived from its primary vlan.
```

The `show ip dhcp snooping` privileged EXEC command output shows all VLANs, including primary and secondary private VLANs, on which DHCP snooping is enabled.

Enabling the Cisco IOS DHCP Server Database

For procedures to enable and configure the Cisco IOS DHCP server database, see the “DHCP Configuration Task List” section in the “Configuring DHCP” chapter of the *Cisco IOS IP Configuration Guide, Release 12.2.*
Enabling the DHCP Snooping Binding Database Agent

Beginning in privileged EXEC mode, follow these steps to enable and configure the DHCP snooping binding database agent on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip dhcp snooping database {flash[number]:filename</td>
</tr>
<tr>
<td></td>
<td>ftp://user:password@host/filename</td>
</tr>
<tr>
<td></td>
<td>http://[username:password[@</td>
</tr>
<tr>
<td></td>
<td>image-name.tar</td>
</tr>
<tr>
<td></td>
<td>rcp://user@host/filename</td>
</tr>
<tr>
<td></td>
<td>tftp://host/filename</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dhcp snooping database timeout seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ip dhcp snooping database write-delay seconds</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id expiry seconds</td>
</tr>
<tr>
<td></td>
<td>The vlan-id range is from 1 to 4904. The seconds range is from 1 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td>Enter this command for each entry that you add.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip dhcp snooping database [detail]</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To stop using the database agent and binding files, use the no ip dhcp snooping database global configuration command. To reset the timeout or delay values, use the ip dhcp snooping database timeout seconds or the ip dhcp snooping database write-delay seconds global configuration command.

To clear the statistics of the DHCP snooping binding database agent, use the clear ip dhcp snooping database statistics privileged EXEC command. To renew the database, use the renew ip dhcp snooping database privileged EXEC command.

To delete binding entries from the DHCP snooping binding database, use the no ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id privileged EXEC command. Enter this command for each entry that you want to delete.
Displaying DHCP Snooping Information

To display the DHCP snooping information, use one or more of the privileged EXEC commands in Table 22-2:

Table 22-2 Commands for Displaying DHCP Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip dhcp snooping</td>
<td>Displays the DHCP snooping configuration for a switch</td>
</tr>
<tr>
<td>show ip dhcp snooping binding</td>
<td>Displays only the dynamically configured bindings in the DHCP snooping binding database, also referred to as a binding table.</td>
</tr>
<tr>
<td>show ip dhcp snooping database</td>
<td>Displays the DHCP snooping binding database status and statistics.</td>
</tr>
<tr>
<td>show ip dhcp snooping statistics</td>
<td>Displays the DHCP snooping statistics in summary or detail form.</td>
</tr>
<tr>
<td>show ip source binding</td>
<td>Display the dynamically and statically configured bindings.</td>
</tr>
</tbody>
</table>

Note: If DHCP snooping is enabled and an interface changes to the down state, the switch does not delete the statically configured bindings.

Understanding IP Source Guard

IPSG is a security feature that restricts IP traffic on nonrouted, Layer 2 interfaces by filtering traffic based on the DHCP snooping binding database and on manually configured IP source bindings. You can use IP source guard to prevent traffic attacks if a host tries to use the IP address of its neighbor.

You can enable IP source guard when DHCP snooping is enabled on an untrusted interface. After IPSG is enabled on an interface, the switch blocks all IP traffic received on the interface except for DHCP packets allowed by DHCP snooping. A port access control list (ACL) is applied to the interface. The port ACL allows only IP traffic with a source IP address in the IP source binding table and denies all other traffic.

Note: The port ACL takes precedence over any router ACLs or VLAN maps that affect the same interface.

The IP source binding table bindings are learned by DHCP snooping or are manually configured (static IP source bindings). An entry in this table has an IP address, its associated MAC address, and its associated VLAN number. The switch uses the IP source binding table only when IP source guard is enabled.
IPSG is supported only on Layer 2 ports, including access and trunk ports. You can configure IPSG with source IP address filtering or with source IP and MAC address filtering.

- Source IP Address Filtering, page 22-17
- Source IP and MAC Address Filtering, page 22-17
- IP Source Guard for Static Hosts, page 22-17

Source IP Address Filtering

When IPSG is enabled with this option, IP traffic is filtered based on the source IP address. The switch forwards IP traffic when the source IP address matches an entry in the DHCP snooping binding database or a binding in the IP source binding table.

When a DHCP snooping binding or static IP source binding is added, changed, or deleted on an interface, the switch modifies the port ACL by using the IP source binding changes and re-applies the port ACL to the interface.

If you enable IPSG on an interface on which IP source bindings (dynamically learned by DHCP snooping or manually configured) are not configured, the switch creates and applies a port ACL that denies all IP traffic on the interface. If you disable IP source guard, the switch removes the port ACL from the interface.

Source IP and MAC Address Filtering

IP traffic is filtered based on the source IP and MAC addresses. The switch forwards traffic only when the source IP and MAC addresses match an entry in the IP source binding table.

When address filtering is enabled, the switch filters IP and non-IP traffic. If the source MAC address of an IP or non-IP packet matches a valid IP source binding, the switch forwards the packet. The switch drops all other types of packets except DHCP packets.

The switch uses port security to filter source MAC addresses. The interface can shut down when a port-security violation occurs.

IP Source Guard for Static Hosts

Note

Do not use IPSG for static hosts on uplink ports or trunk ports.

IPSG for static hosts extends the IPSG capability to non-DHCP and static environments. The previous IPSG used the entries created by DHCP snooping to validate the hosts connected to a switch. Any traffic received from a host without a valid DHCP binding entry is dropped. This security feature restricts IP traffic on nonrouted Layer 2 interfaces. It filters traffic based on the DHCP snooping binding database and on manually configured IP source bindings. The previous version of IPSG required a DHCP environment for IPSG to work.

IPSG for static hosts allows IPSG to work without DHCP. IPSG for static hosts relies on IP device tracking-table entries to install port ACLs. The switch creates static entries based on ARP requests or other IP packets to maintain the list of valid hosts for a given port. You can also specify the number of hosts allowed to send traffic to a given port. This is equivalent to port security at Layer 3.
Configuring IP Source Guard

- Default IP Source Guard Configuration, page 22-18
- IP Source Guard Configuration Guidelines, page 22-18
- Enabling IP Source Guard, page 22-19
- Configuring IP Source Guard for Static Hosts, page 22-21

Default IP Source Guard Configuration

By default, IP source guard is disabled.

IP Source Guard Configuration Guidelines

These are the configuration guides for IP source guard:

- You can configure static IP bindings only on nonrouted ports. If you enter the `ip source binding mac-address vlan vlan-id ip-address interface interface-id` global configuration command on a routed interface, this error message appears:

 Static IP source binding can only be configured on switch port.

- When IP source guard with source IP filtering is enabled on an interface, DHCP snooping must be enabled on the access VLAN to which the interface belongs.
If you are enabling IP source guard on a trunk interface with multiple VLANs and DHCP snooping is enabled on all the VLANs, the source IP address filter is applied on all the VLANs.

Note If IP source guard is enabled and you enable or disable DHCP snooping on a VLAN on the trunk interface, the switch might not properly filter traffic.

If you enable IP source guard with source IP and MAC address filtering, DHCP snooping and port security must be enabled on the interface. You must also enter the `ip dhcp snooping information option` global configuration command and ensure that the DHCP server supports option 82. When IP source guard is enabled with MAC address filtering, the DHCP host MAC address is not learned until the host is granted a lease. When forwarding packets from the server to the host, DHCP snooping uses option-82 data to identify the host port.

When configuring IP source guard on interfaces on which a private VLAN is configured, port security is not supported.

IP source guard is not supported on EtherChannels.

You can enable this feature when IEEE 802.1x port-based authentication is enabled.

If the number of ternary content addressable memory (TCAM) entries exceeds the maximum, the CPU usage increases.

In a switch stack, if IP source guard is configured on a stack member interface and you remove the configuration of that switch by entering the `no switch stack-member-number provision` global configuration command, the interface static bindings are removed from the binding table, but they are not removed from the running configuration. If you again provision the switch by entering the `switch stack-member-number provision` command, the binding is restored.

To remove the binding from the running configuration, you must disable IP source guard before entering the `no switch provision` command. The configuration is also removed if the switch reloads while the interface is removed from the binding table. For more information about provisioned switches, see the Chapter 7, “Managing Switch Stacks.”

Enabling IP Source Guard

Beginning in privileged EXEC mode, follow these steps to enable and configure IP source guard on an interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Configuring IP Source Guard

Command Purpose

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip verify source</td>
<td>Enable IP source guard with source IP address filtering.</td>
<td>or</td>
</tr>
<tr>
<td>ip verify source port-security</td>
<td>Enable IP source guard with source IP and MAC address filtering.</td>
<td>Note When you enable both IP Source Guard and Port Security by using the ip verify source port-security interface configuration command, there are two caveats:</td>
</tr>
</tbody>
</table>

- The DHCP server must support option 82, or the client is not assigned an IP address.
- The MAC address in the DHCP packet is not learned as a secure address. The MAC address of the DHCP client is learned as a secure address only when the switch receives non-DHCP data traffic.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip source binding</td>
<td>Add a static IP source binding.</td>
<td>mac-address vlan vlan-id ip-address interface interface-id</td>
</tr>
</tbody>
</table>

Enter this command for each static binding.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip verify source</td>
<td>Display the IP source guard configuration for all interfaces or for a specific interface.</td>
<td>[interface interface-id]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip source binding</td>
<td>Display the IP source bindings on the switch, on a specific VLAN, or on a specific interface.</td>
<td>[ip-address] [mac-address] [dhcp-snooping [static] [interface interface-id] [vlan vlan-id]]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>

To disable IP source guard with source IP address filtering, use the **no ip verify source** interface configuration command.

To delete a static IP source binding entry, use the **no ip source** global configuration command.

This example shows how to enable IP source guard with source IP and MAC filtering on VLANs 10 and 11:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip verify source port-security
Switch(config-if)# exit
Switch(config)# ip source binding 0100.0022.0010 vlan 10 10.0.0.2 interface gigabitethernet1/0/1
Switch(config)# ip source binding 0100.0230.0002 vlan 11 10.0.0.4 interface gigabitethernet1/0/1
Switch(config)# end
```
Chapter 22 Configuring DHCP Features and IP Source Guard

Configuring IP Source Guard for Static Hosts

- Configuring IP Source Guard for Static Hosts on a Layer 2 Access Port, page 22-21
- Configuring IP Source Guard for Static Hosts on a Private VLAN Host Port, page 22-24

Configuring IP Source Guard for Static Hosts on a Layer 2 Access Port

Note You must configure the ip device tracking maximum limit-number interface configuration command globally for IPSG for static hosts to work. If you only configure this command on a port without enabling IP device tracking globally or by setting an IP device tracking maximum on that interface, IPSG with static hosts rejects all the IP traffic from that interface. This requirement also applies to IPSG with static hosts on a private VLAN host port.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip device tracking</td>
<td>Turn on the IP host table, and globally enable IP device tracking.</td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 switchport mode access</td>
<td>Configure a port as access.</td>
</tr>
<tr>
<td>Step 5 switchport access vlan vlan-id</td>
<td>Configure the VLAN for this port.</td>
</tr>
<tr>
<td>Step 6 ip verify source tracking port-security</td>
<td>Enable IPSG for static hosts with MAC address filtering. Note When you enable both IP source guard and port security by using the ip verify source port-security interface configuration command:</td>
</tr>
<tr>
<td>Step 7 ip device tracking maximum number</td>
<td>Establish a maximum limit for the number of static IPs that the IP device tracking table allows on the port. The range is 1 to 10. The maximum number is 10. Note You must configure the ip device tracking maximum limit-number interface configuration command.</td>
</tr>
<tr>
<td>Step 8 switchport port-security</td>
<td>(Optional) Activate port security for this port.</td>
</tr>
<tr>
<td>Step 9 switchport port-security maximum value</td>
<td>(Optional) Establish a maximum of MAC addresses for this port.</td>
</tr>
<tr>
<td>Step 10 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode:

Step 1 configure terminal
Step 2 ip device tracking
Step 3 interface interface-id
Step 4 switchport mode access
Step 5 switchport access vlan vlan-id
Step 6 ip verify source tracking port-security
Step 7 ip device tracking maximum number
Step 8 switchport port-security
Step 9 switchport port-security maximum value
Step 10 end
Configuring IP Source Guard

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show ip verify source interface interface-id</code></td>
<td>Verify the configuration and display IPSG permit ACLs for static hosts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`show ip device track all [active</td>
<td>inactive] count`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• all active—display only the active IP or MAC binding entries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• all inactive—display only the inactive IP or MAC binding entries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• all—display the active and inactive IP or MAC binding entries</td>
</tr>
</tbody>
</table>

This example shows how to stop IPSG with static hosts on an interface.

```
Switch(config-if)# no ip verify source
Switch(config-if)# no ip device tracking max
```

This example shows how to enable IPSG with static hosts on a port.

```
Switch(config)# ip device tracking
Switch(config)# ip device tracking max 10
Switch(config-if)# ip verify source tracking port-security
```

This example shows how to enable IPSG for static hosts with IP filters on a Layer 2 access port and to verify the valid IP bindings on the interface Gi1/0/3:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip device tracking
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# ip device tracking maximum 5
Switch(config-if)# ip verify source tracking
Switch(config-if)# end
```

```
Switch# show ip verify source
Interface  Filter-type  Filter-mode  IP-address       Mac-address        Vlan
---------  -----------  -----------  ---------------  -----------------  ----
Gi1/0/3    ip trk       active       40.1.1.24                           10
Gi1/0/3    ip trk       active       40.1.1.20                           10
Gi1/0/3    ip trk       active       40.1.1.21                           10
```

This example shows how to enable IPSG for static hosts with IP-MAC filters on a Layer 2 access port, to verify the valid IP-MAC bindings on the interface Gi0/3, and to verify that the number of bindings on this interface has reached the maximum:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip device tracking
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 1
Switch(config-if)# ip device tracking maximum 5
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 5
Switch(config-if)# ip verify source tracking port-security
Switch(config-if)# end
```
Configuring IP Source Guard

Switch# show ip verify source

<table>
<thead>
<tr>
<th>Interface</th>
<th>Filter-type</th>
<th>Filter-mode</th>
<th>IP-address</th>
<th>Mac-address</th>
<th>Vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.24</td>
<td>00:00:00:00:03:04</td>
<td>1</td>
</tr>
<tr>
<td>Gi0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.20</td>
<td>00:00:00:00:03:05</td>
<td>1</td>
</tr>
<tr>
<td>Gi0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.21</td>
<td>00:00:00:00:03:06</td>
<td>1</td>
</tr>
<tr>
<td>Gi0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.22</td>
<td>00:00:00:00:03:07</td>
<td>1</td>
</tr>
<tr>
<td>Gi0/3</td>
<td>ip-mac trk</td>
<td>active</td>
<td>40.1.1.23</td>
<td>00:00:00:00:03:08</td>
<td>1</td>
</tr>
</tbody>
</table>

This example displays all IP or MAC binding entries for all interfaces. The CLI displays all active as well as inactive entries. When a host is learned on a interface, the new entry is marked as active. When the same host is disconnected from that interface and connected to a different interface, a new IP or MAC binding entry displays as active as soon as the host is detected. The old entry for this host on the previous interface is marked as INACTIVE.

Switch# show ip device tracking all

- IP Device Tracking = Enabled
- IP Device Tracking Probe Count = 3
- IP Device Tracking Probe Interval = 30

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Vlan</th>
<th>Interface</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1.8</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.9</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.10</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.1</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.2</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.12</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.13</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.14</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.15</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.16</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/2</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.17</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/2</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>

This example displays all active IP or MAC binding entries for all interfaces:

Switch# show ip device tracking all active

- IP Device Tracking = Enabled
- IP Device Tracking Probe Count = 3
- IP Device Tracking Probe Interval = 30

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Vlan</th>
<th>Interface</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1.1</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.2</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.3</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.4</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.5</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.6</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/1</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>200.1.1.7</td>
<td>0001.0600.0000</td>
<td>9</td>
<td>GigabitEthernet0/1</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>
This example displays all inactive IP or MAC binding entries for all interfaces. The host was first learned on GigabitEthernet 1/0/1 and then moved to GigabitEthernet 1/0/2. The IP or MAC binding entries learned on GigabitEthernet 1/0/1 are marked as inactive.

Switch# show ip device tracking all inactive
IP Device Tracking = Enabled
IP Device Tracking Probe Count = 3
IP Device Tracking Probe Interval = 30

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Vlan</th>
<th>Interface</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1.8</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.9</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.10</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.1</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.12</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.13</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.14</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.15</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.16</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>200.1.1.17</td>
<td>0001.0600.0000</td>
<td>8</td>
<td>GigabitEthernet1/0/1</td>
<td>INACTIVE</td>
</tr>
</tbody>
</table>

This example displays the count of all IP device tracking host entries for all interfaces:

Switch# show ip device tracking all count
Total IP Device Tracking Host entries: 5

<table>
<thead>
<tr>
<th>Interface</th>
<th>Maximum Limit</th>
<th>Number of Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/3</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Configuring IP Source Guard for Static Hosts on a Private VLAN Host Port

Note You must globally configure the `ip device tracking maximum limit-number` interface configuration command globally for IPSG for static hosts to work. If you only configure this command on a port without enabling IP device tracking globally or setting an IP device tracking maximum on that interface, IPSG with static hosts will reject all the IP traffic from that interface. This requirement also applies to IPSG with static hosts on a Layer 2 access port.

Beginning in privileged EXEC mode, follow these steps to configure IPSG for static hosts with IP filters on a Layer 2 access port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vlan vlan-id1</td>
<td>Enter VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 3 private-vlan primary</td>
<td>Establish a primary VLAN on a private VLAN port.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exit VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 5 vlan vlan-id2</td>
<td>Enter configuration VLAN mode for another VLAN.</td>
</tr>
<tr>
<td>Step 6 private-vlan isolated</td>
<td>Establish an isolated VLAN on a private VLAN port.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exit VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 8 vlan vlan-id1</td>
<td>Enter configuration VLAN mode.</td>
</tr>
<tr>
<td>Step 9 private-vlan association 201</td>
<td>Associate the VLAN on an isolated private VLAN port.</td>
</tr>
</tbody>
</table>
Configuring IP Source Guard

This example shows how to enable IPSG for static hosts with IP filters on a private VLAN host port:

Switch(config)# vlan 200
Switch(config-vlan)# private-vlan primary
Switch(config-vlan)# exit
Switch(config)# vlan 201
Switch(config-vlan)# private-vlan isolated
Switch(config-vlan)# exit
Switch(config)# vlan 200
Switch(config-vlan)# private-vlan association 201
Switch(config-vlan)# exit
Switch(config)# int gigabitethernet1/0/3
Switch(config-if)# switchport mode private-vlan host
Switch(config-if)# switchport private-vlan host-association 200 201
Switch(config-if)# ip device tracking maximum 8
Switch(config-if)# ip verify source tracking

Switch# show ip device tracking all
IP Device Tracking = Enabled
IP Device Tracking Probe Count = 3
IP Device Tracking Probe Interval = 30

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>VLAN</th>
<th>Interface</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.1.1.24</td>
<td>0000.0000.0304</td>
<td>200</td>
<td>GigabitEthernet1/0/3</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>40.1.1.20</td>
<td>0000.0000.0305</td>
<td>200</td>
<td>GigabitEthernet1/0/3</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>40.1.1.21</td>
<td>0000.0000.0306</td>
<td>200</td>
<td>GigabitEthernet1/0/3</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>40.1.1.22</td>
<td>0000.0000.0307</td>
<td>200</td>
<td>GigabitEthernet1/0/3</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>40.1.1.23</td>
<td>0000.0000.0308</td>
<td>200</td>
<td>GigabitEthernet1/0/3</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>
The output shows the five valid IP-MAC bindings that have been learned on the interface GigabitEthernet 1/0/3. For the private VLAN cases, the bindings are associated with primary VLAN ID. So, in this example, the primary VLAN ID, 200, is shown in the table.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Filter-type</th>
<th>Filter-mode</th>
<th>IP-address</th>
<th>Mac-address</th>
<th>Vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.23</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.24</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.20</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.21</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.22</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.23</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.24</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.20</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.21</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>Gi1/0/3</td>
<td>ip trk</td>
<td>active</td>
<td>40.1.1.22</td>
<td></td>
<td>201</td>
</tr>
</tbody>
</table>

The output shows that the five valid IP-MAC bindings are on both the primary and secondary VLAN.

Displaying IP Source Guard Information

To display the IP source guard information, use one or more of the privileged EXEC commands in Table 22-3:

Table 22-3 Commands for Displaying IP Source Guard Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip source binding</td>
<td>Display the IP source bindings on a switch.</td>
</tr>
<tr>
<td>show ip verify source</td>
<td>Display the IP source guard configuration on the switch.</td>
</tr>
</tbody>
</table>

Understanding DHCP Server Port-Based Address Allocation

DHCP server port-based address allocation is a feature that enables DHCP to maintain the same IP address on an Ethernet switch port regardless of the attached device client identifier or client hardware address.

When Ethernet switches are deployed in the network, they offer connectivity to the directly connected devices. In some environments, such as on a factory floor, if a device fails, the replacement device must be working immediately in the existing network. With the current DHCP implementation, there is no guarantee that DHCP would offer the same IP address to the replacement device. Control, monitoring, and other software expect a stable IP address associated with each device. If a device is replaced, the address assignment should remain stable even though the DHCP client has changed.

When configured, the DHCP server port-based address allocation feature ensures that the same IP address is always offered to the same connected port even as the client identifier or client hardware address changes in the DHCP messages received on that port. The DHCP protocol recognizes DHCP clients by the client identifier option in the DHCP packet. Clients that do not include the client identifier option are identified by the client hardware address. When you configure this feature, the port name of the interface overrides the client identifier or hardware address and the actual point of connection, the switch port, becomes the client identifier.
In all cases, by connecting the Ethernet cable to the same port, the same IP address is allocated through
DHCP to the attached device.
The DHCP server port-based address allocation feature is only supported on a Cisco IOS DHCP server
and not a third-party server.

Configuring DHCP Server Port-Based Address Allocation

This section contains this configuration information:
- Default Port-Based Address Allocation Configuration, page 22-27
- Port-Based Address Allocation Configuration Guidelines, page 22-27
- Enabling DHCP Server Port-Based Address Allocation, page 22-27

Default Port-Based Address Allocation Configuration

By default, DHCP server port-based address allocation is disabled.

Port-Based Address Allocation Configuration Guidelines

These are the configuration guidelines for DHCP port-based address allocation:
- Only one IP address can be assigned per port.
- Reserved addresses (preassigned) cannot be cleared by using the `clear ip dhcp binding` global
 configuration command.
- Preassigned addresses are automatically excluded from normal dynamic IP address assignment.
 Preassigned addresses cannot be used in host pools, but there can be multiple preassigned addresses
 per DHCP address pool.
- To restrict assignments from the DHCP pool to preconfigured reservations (unreserved addresses are
 not offered to the client and other clients are not served by the pool), you can enter the `reserved-only`
 DHCP pool configuration command.

Enabling DHCP Server Port-Based Address Allocation

Beginning in privileged EXEC mode, follow these steps to globally enable port-based address allocation
and to automatically generate a subscriber identifier on an interface.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip dhcp use subscriber-id client-id</td>
<td>Configure the DHCP server to globally use the subscriber identifier as the client identifier on all incoming DHCP messages.</td>
</tr>
</tbody>
</table>
Configuring DHCP Server Port-Based Address Allocation

Chapter 22 Configuring DHCP Features and IP Source Guard

After enabling DHCP port-based address allocation on the switch, use the `ip dhcp pool` global configuration command to preassign IP addresses and to associate them to clients. To restrict assignments from the DHCP pool to preconfigured reservations, you can enter the `reserved-only` DHCP pool configuration command. Unreserved addresses that are part of the network or on pool ranges are not offered to the client, and other clients are not served by the pool. By entering this command, users can configure a group of switches with DHCP pools that share a common IP subnet and that ignore requests from clients of other switches.

Beginning in privileged EXEC mode follow these steps to preassign an IP address and to associate it to a client identified by the interface name.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>ip dhcp subscriber-id interface-name</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ip dhcp server use subscriber-id client-id</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>show running config</code></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip dhcp pool poolname</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>`network network-number [mask</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>address ip-address client-id string [ascii]</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>reserved-only</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>show ip dhcp pool</code></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
To disable DHCP port-based address allocation, use the `no ip dhcp use subscriber-id client-id` global configuration command. To disable the automatic generation of a subscriber identifier, use the `no ip dhcp subscriber-id interface-name` global configuration command. To disable the subscriber identifier on an interface, use the `no ip dhcp server use subscriber-id client-id` interface configuration command.

To remove an IP address reservation from a DHCP pool, use the `no address ip-address client-id string` DHCP pool configuration command. To change the address pool to nonrestricted, enter the `no reserved-only` DHCP pool configuration command.

In this example, a subscriber identifier is automatically generated, and the DHCP server ignores any client identifier fields in the DHCP messages and uses the subscriber identifier instead. The subscriber identifier is based on the short name of the interface and the client preassigned IP address 10.1.1.7.

```
switch# show running config
Building configuration...
Current configuration : 4899 bytes
!
version 12.2
!
hostname switch
!
no aaa new-model
!
clock timezone EST 0
ip subnet-zero
ip dhcp relay information policy removal pad
no ip dhcp use vrf connected
ip dhcp use subscriber-id client-id
ip dhcp subscriber-id interface-name
ip dhcp excluded-address 10.1.1.1 10.1.1.3
!
ip dhcp pool dhcppool
  network 10.1.1.0 255.255.255.0
  address 10.1.1.7 client-id "Et1/0" ascii
<output truncated>
```

This example shows that the preassigned address was correctly reserved in the DHCP pool:

```
switch# show ip dhcp pool dhcppool
Pool dhcp pool:
  Utilization mark (high/low) : 100 / 0
  Subnet size (first/next) : 0 / 0
  Total addresses : 254
  Leased addresses : 0
  Excluded addresses : 4
  Pending event : none
  1 subnet is currently in the pool:
  Current index   IP address range         Leased/Excluded/Total
  10.1.1.1        10.1.1.1 - 10.1.1.254     0     / 4 / 254
  1 reserved address is currently in the pool
  Address         Client
  10.1.1.7 Et1/0
```

For more information about configuring the DHCP server port-based address allocation feature, go to Cisco.com, and enter `Cisco IOS IP Addressing Services` in the Search field to locate the Cisco IOS software documentation. You can also locate the documentation at this URL:

Displaying DHCP Server Port-Based Address Allocation

To display the DHCP server port-based address allocation information, use one or more of the privileged EXEC commands in Table 22-4:

Table 22-4 Commands for Displaying DHCP Port-Based Address Allocation Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interface interface id</code></td>
<td>Display the status and configuration of a specific interface.</td>
</tr>
<tr>
<td><code>show ip dhcp pool</code></td>
<td>Display the DHCP address pools.</td>
</tr>
<tr>
<td><code>show ip dhcp binding</code></td>
<td>Display address bindings on the Cisco IOS DHCP server.</td>
</tr>
</tbody>
</table>
Configuring Dynamic ARP Inspection

This chapter describes how to configure dynamic Address Resolution Protocol inspection (dynamic ARP inspection) on the switch. This feature helps prevent malicious attacks on the switch by not relaying invalid ARP requests and responses to other ports in the same VLAN. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:
- Understanding Dynamic ARP Inspection, page 23-1
- Configuring Dynamic ARP Inspection, page 23-5
- Displaying Dynamic ARP Inspection Information, page 23-14

Understanding Dynamic ARP Inspection

ARP provides IP communication within a Layer 2 broadcast domain by mapping an IP address to a MAC address. For example, Host B wants to send information to Host A but does not have the MAC address of Host A in its ARP cache. Host B generates a broadcast message for all hosts within the broadcast domain to obtain the MAC address associated with the IP address of Host A. All hosts within the broadcast domain receive the ARP request, and Host A responds with its MAC address. However, because ARP allows a gratuitous reply from a host even if an ARP request was not received, an ARP spoofing attack and the poisoning of ARP caches can occur. After the attack, all traffic from the device under attack flows through the attacker’s computer and then to the router, switch, or host.

A malicious user can attack hosts, switches, and routers connected to your Layer 2 network by poisoning the ARP caches of systems connected to the subnet and by intercepting traffic intended for other hosts on the subnet. Figure 23-1 shows an example of ARP cache poisoning.
Hosts A, B, and C are connected to the switch on interfaces A, B and C, all of which are on the same subnet. Their IP and MAC addresses are shown in parentheses; for example, Host A uses IP address IA and MAC address MA. When Host A needs to communicate to Host B at the IP layer, it broadcasts an ARP request for the MAC address associated with IP address IB. When the switch and Host B receive the ARP request, they populate their ARP caches with an ARP binding for a host with the IP address IA and a MAC address MA; for example, IP address IA is bound to MAC address MA. When Host B responds, the switch and Host A populate their ARP caches with a binding for a host with the IP address IB and the MAC address MB.

Host C can poison the ARP caches of the switch, Host A, and Host B by broadcasting forged ARP responses with bindings for a host with an IP address of IA (or IB) and a MAC address of MC. Hosts with poisoned ARP caches use the MAC address MC as the destination MAC address for traffic intended for IA or IB. This means that Host C intercepts that traffic. Because Host C knows the true MAC addresses associated with IA and IB, it can forward the intercepted traffic to those hosts by using the correct MAC address as the destination. Host C has inserted itself into the traffic stream from Host A to Host B, the classic man-in-the-middle attack.

Dynamic ARP inspection is a security feature that validates ARP packets in a network. It intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. This capability protects the network from certain man-in-the-middle attacks.

Dynamic ARP inspection ensures that only valid ARP requests and responses are relayed. The switch performs these activities:

- Intercepts all ARP requests and responses on untrusted ports
- Verifies that each of these intercepted packets has a valid IP-to-MAC address binding before updating the local ARP cache or before forwarding the packet to the appropriate destination
- Drops invalid ARP packets

Dynamic ARP inspection determines the validity of an ARP packet based on valid IP-to-MAC address bindings stored in a trusted database, the DHCP snooping binding database. This database is built by DHCP snooping if DHCP snooping is enabled on the VLANs and on the switch. If the ARP packet is received on a trusted interface, the switch forwards the packet without any checks. On untrusted interfaces, the switch forwards the packet only if it is valid.

You enable dynamic ARP inspection on a per-VLAN basis by using the `ip arp inspection vlan vlan-range` global configuration command. For configuration information, see the “Configuring Dynamic ARP Inspection in DHCP Environments” section on page 23-7.

In non-DHCP environments, dynamic ARP inspection can validate ARP packets against user-configured ARP access control lists (ACLs) for hosts with statically configured IP addresses. You define an ARP ACL by using the `arp access-list acl-name` global configuration command. For configuration information, see the “Configuring ARP ACLs for Non-DHCP Environments” section on page 23-8. The switch logs dropped packets. For more information about the log buffer, see the “Logging of Dropped Packets” section on page 23-5.
You can configure dynamic ARP inspection to drop ARP packets when the IP addresses in the packets are invalid or when the MAC addresses in the body of the ARP packets do not match the addresses specified in the Ethernet header. Use the `ip arp inspection validate {[src-mac] [dst-mac] [ip]}` global configuration command. For more information, see the “Performing Validation Checks” section on page 23-12.

Interface Trust States and Network Security

Dynamic ARP inspection associates a trust state with each interface on the switch. Packets arriving on trusted interfaces bypass all dynamic ARP inspection validation checks, and those arriving on untrusted interfaces undergo the dynamic ARP inspection validation process.

In a typical network configuration, you configure all switch ports connected to host ports as untrusted and configure all switch ports connected to switches as trusted. With this configuration, all ARP packets entering the network from a given switch bypass the security check. No other validation is needed at any other place in the VLAN or in the network. You configure the trust setting by using the `ip arp inspection trust` interface configuration command.

Caution

Use the trust state configuration carefully. Configuring interfaces as untrusted when they should be trusted can result in a loss of connectivity.

In [Figure 23-2](#), assume that both Switch A and Switch B are running dynamic ARP inspection on the VLAN that includes Host 1 and Host 2. If Host 1 and Host 2 acquire their IP addresses from the DHCP server connected to Switch A, only Switch A binds the IP-to-MAC address of Host 1. Therefore, if the interface between Switch A and Switch B is untrusted, the ARP packets from Host 1 are dropped by Switch B. Connectivity between Host 1 and Host 2 is lost.

Figure 23-2 ARP Packet Validation on a VLAN Enabled for Dynamic ARP Inspection

Configuring interfaces to be trusted when they are actually untrusted leaves a security hole in the network. If Switch A is not running dynamic ARP inspection, Host 1 can easily poison the ARP cache of Switch B (and Host 2, if the link between the switches is configured as trusted). This condition can occur even though Switch B is running dynamic ARP inspection.
Dynamic ARP inspection ensures that hosts (on untrusted interfaces) connected to a switch running dynamic ARP inspection do not poison the ARP caches of other hosts in the network. However, dynamic ARP inspection does not prevent hosts in other portions of the network from poisoning the caches of the hosts that are connected to a switch running dynamic ARP inspection.

In cases in which some switches in a VLAN run dynamic ARP inspection and other switches do not, configure the interfaces connecting such switches as untrusted. However, to validate the bindings of packets from nondynamic ARP inspection switches, configure the switch running dynamic ARP inspection with ARP ACLs. When you cannot determine such bindings, at Layer 3, isolate switches running dynamic ARP inspection from switches not running dynamic ARP inspection switches. For configuration information, see the “Configuring ARP ACLs for Non-DHCP Environments” section on page 23-8.

Note

Depending on the setup of the DHCP server and the network, it might not be possible to validate a given ARP packet on all switches in the VLAN.

Rate Limiting of ARP Packets

The switch CPU performs dynamic ARP inspection validation checks; therefore, the number of incoming ARP packets is rate-limited to prevent a denial-of-service attack. By default, the rate for untrusted interfaces is 15 packets per second (pps). Trusted interfaces are not rate-limited. You can change this setting by using the `ip arp inspection limit` interface configuration command.

When the rate of incoming ARP packets exceeds the configured limit, the switch places the port in the error-disabled state. The port remains in that state until you intervene. You can use the `errdisable recovery` global configuration command to enable error disable recovery so that ports automatically emerge from this state after a specified timeout period.

Note

The rate limit for an EtherChannel is applied separately to each switch in a stack. For example, if a limit of 20 pps is configured on the EtherChannel, each switch with ports in the EtherChannel can carry up to 20 pps. If any switch exceeds the limit, the entire EtherChannel is placed into the error-disabled state.

For configuration information, see the “Limiting the Rate of Incoming ARP Packets” section on page 23-10.

Relative Priority of ARP ACLs and DHCP Snooping Entries

Dynamic ARP inspection uses the DHCP snooping binding database for the list of valid IP-to-MAC address bindings.

ARP ACLs take precedence over entries in the DHCP snooping binding database. The switch uses ACLs only if you configure them by using the `ip arp inspection filter vlan` global configuration command. The switch first compares ARP packets to user-configured ARP ACLs. If the ARP ACL denies the ARP packet, the switch also denies the packet even if a valid binding exists in the database populated by DHCP snooping.
Logging of Dropped Packets

When the switch drops a packet, it places an entry in the log buffer and then generates system messages on a rate-controlled basis. After the message is generated, the switch clears the entry from the log buffer. Each log entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.

You use the `ip arp inspection log-buffer` global configuration command to configure the number of entries in the buffer and the number of entries needed in the specified interval to generate system messages. You specify the type of packets that are logged by using the `ip arp inspection vlan logging` global configuration command. For configuration information, see the “Configuring the Log Buffer” section on page 23-13.

Configuring Dynamic ARP Inspection

These sections contain this configuration information:

- Default Dynamic ARP Inspection Configuration, page 23-5
- Dynamic ARP Inspection Configuration Guidelines, page 23-6
- Configuring Dynamic ARP Inspection in DHCP Environments, page 23-7 (required in DHCP environments)
- Configuring ARP ACLs for Non-DHCP Environments, page 23-8 (required in non-DHCP environments)
- Limiting the Rate of Incoming ARP Packets, page 23-10 (optional)
- Performing Validation Checks, page 23-12 (optional)
- Configuring the Log Buffer, page 23-13 (optional)

Default Dynamic ARP Inspection Configuration

Table 23-1 shows the default dynamic ARP inspection configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic ARP inspection</td>
<td>Disabled on all VLANs.</td>
</tr>
<tr>
<td>Interface trust state</td>
<td>All interfaces are untrusted.</td>
</tr>
<tr>
<td>Rate limit of incoming ARP packets</td>
<td>The rate is 15 pps on untrusted interfaces, assuming that the network is a switched network with a host connecting to as many as 15 new hosts per second. The rate is unlimited on all trusted interfaces. The burst interval is 1 second.</td>
</tr>
<tr>
<td>ARP ACLs for non-DHCP environments</td>
<td>No ARP ACLs are defined.</td>
</tr>
<tr>
<td>Validation checks</td>
<td>No checks are performed.</td>
</tr>
</tbody>
</table>
Dynamic ARP Inspection Configuration Guidelines

These are the dynamic ARP inspection configuration guidelines:

- Dynamic ARP inspection is an ingress security feature; it does not perform any egress checking.
- Dynamic ARP inspection is not effective for hosts connected to switches that do not support dynamic ARP inspection or that do not have this feature enabled. Because man-in-the-middle attacks are limited to a single Layer 2 broadcast domain, separate the domain with dynamic ARP inspection checks from the one with no checking. This action secures the ARP caches of hosts in the domain enabled for dynamic ARP inspection.
- Dynamic ARP inspection depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses. For configuration information, see Chapter 22, “Configuring DHCP Features and IP Source Guard.” When DHCP snooping is disabled or in non-DHCP environments, use ARP ACLs to permit or to deny packets.
- Dynamic ARP inspection is supported on access ports, trunk ports, EtherChannel ports, and private VLAN ports.
- A physical port can join an EtherChannel port channel only when the trust state of the physical port and the channel port match. Otherwise, the physical port remains suspended in the port channel. A port channel inherits its trust state from the first physical port that joins the channel. Consequently, the trust state of the first physical port need not match the trust state of the channel. Conversely, when you change the trust state on the port channel, the switch configures a new trust state on all the physical ports that comprise the channel.
- The rate limit is calculated separately on each switch in a switch stack. For a cross-stack EtherChannel, this means that the actual rate limit might be higher than the configured value. For example, if you set the rate limit to 30 pps on an EtherChannel that has one port on switch 1 and one port on switch 2, each port can receive packets at 29 pps without causing the EtherChannel to become error-disabled.
- The operating rate for the port channel is cumulative across all the physical ports within the channel. For example, if you configure the port channel with an ARP rate-limit of 400 pps, all the interfaces combined on the channel receive an aggregate 400 pps. The rate of incoming ARP packets on EtherChannel ports is equal to the sum of the incoming rate of packets from all the channel members. Configure the rate limit for EtherChannel ports only after examining the rate of incoming ARP packets on the channel-port members.

Table 23-1 Default Dynamic ARP Inspection Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
</table>
| Log buffer | When dynamic ARP inspection is enabled, all denied or dropped ARP packets are logged.
The number of entries in the log is 32.
The number of system messages is limited to 5 per second.
The logging-rate interval is 1 second. |
| Per-VLAN logging | All denied or dropped ARP packets are logged. |
Configuring Dynamic ARP Inspection

The rate of incoming packets on a physical port is checked against the port-channel configuration rather than the physical-ports configuration. The rate-limit configuration on a port channel is independent of the configuration on its physical ports.

If the EtherChannel receives more ARP packets than the configured rate, the channel (including all physical ports) is placed in the error-disabled state.

- Make sure to limit the rate of ARP packets on incoming trunk ports. Configure trunk ports with higher rates to reflect their aggregation and to handle packets across multiple dynamic ARP inspection-enabled VLANs. You also can use the `ip arp inspection limit none` interface configuration command to make the rate unlimited. A high rate-limit on one VLAN can cause a denial-of-service attack to other VLANs when the software places the port in the error-disabled state.

- When you enable dynamic ARP inspection on the switch, policers that were configured to police ARP traffic are no longer effective. The result is that all ARP traffic is sent to the CPU.

Configuring Dynamic ARP Inspection in DHCP Environments

This procedure shows how to configure dynamic ARP inspection when two switches support this feature. Host 1 is connected to Switch A, and Host 2 is connected to Switch B as shown in Figure 23-2 on page 23-3. Both switches are running dynamic ARP inspection on VLAN 1 where the hosts are located. A DHCP server is connected to Switch A. Both hosts acquire their IP addresses from the same DHCP server. Therefore, Switch A has the bindings for Host 1 and Host 2, and Switch B has the binding for Host 2.

Note

Dynamic ARP inspection depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses. For configuration information, see Chapter 22, “Configuring DHCP Features and IP Source Guard.”

For information on how to configure dynamic ARP inspection when only one switch supports the feature, see the “Configuring ARP ACLs for Non-DHCP Environments” section on page 23-8.

Beginning in privileged EXEC mode, follow these steps to configure dynamic ARP inspection. You must perform this procedure on both switches. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>show cdp neighbors</code> Verify the connection between the switches.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip arp inspection vlan vlan-range</code> Enable dynamic ARP inspection on a per-VLAN basis. By default, dynamic ARP inspection is disabled on all VLANs. For <code>vlan-range</code>, specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094. Specify the same VLAN ID for both switches.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>interface interface-id</code> Specify the interface connected to the other switch, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Dynamic ARP Inspection

To disable dynamic ARP inspection, use the `no ip arp inspection vlan vlan-range` global configuration command. To return the interfaces to an untrusted state, use the `no ip arp inspection trust interface` command.

This example shows how to configure dynamic ARP inspection on Switch A in VLAN 1. You would perform a similar procedure on Switch B:

```
Switch(config)# ip arp inspection vlan 1
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip arp inspection trust
```

Configuring ARP ACLs for Non-DHCP Environments

This procedure shows how to configure dynamic ARP inspection when Switch B shown in Figure 23-2 on page 23-3 does not support dynamic ARP inspection or DHCP snooping.

If you configure port 1 on Switch A as trusted, a security hole is created because both Switch A and Host 1 could be attacked by either Switch B or Host 2. To prevent this possibility, you must configure port 1 on Switch A as untrusted. To permit ARP packets from Host 2, you must set up an ARP ACL and apply it to VLAN 1. If the IP address of Host 2 is not static (it is impossible to apply the ACL configuration on Switch A) you must separate Switch A from Switch B at Layer 3 and use a router to route packets between them.

Command Purpose

Step 5	ip arp inspection trust	Configure the connection between the switches as trusted. By default, all interfaces are untrusted. The switch does not check ARP packets that it receives from the other switch on the trusted interface. It simply forwards the packets. For untrusted interfaces, the switch intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The switch drops invalid packets and logs them in the log buffer according to the logging configuration specified with the `ip arp inspection vlan logging` global configuration command. For more information, see the “Configuring the Log Buffer” section on page 23-13.
Step 6	end	Return to privileged EXEC mode.
Step 7	show ip arp inspection interfaces	Verify the dynamic ARP inspection configuration.
Step 8	show ip arp inspection vlan vlan-range	Verify the DHCP bindings.
Step 9	show ip dhcp snooping binding	Check the dynamic ARP inspection statistics.
Step 10	copy running-config startup-config	(Optional) Save your entries in the configuration file.

To disable dynamic ARP inspection, use the `no ip arp inspection vlan vlan-range` global configuration command. To return the interfaces to an untrusted state, use the `no ip arp inspection trust` interface configuration command.

This example shows how to configure dynamic ARP inspection on Switch A in VLAN 1. You would perform a similar procedure on Switch B:
Beginning in privileged EXEC mode, follow these steps to configure an ARP ACL on Switch A. This procedure is required in non-DHCP environments.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>arp access-list acl-name</td>
</tr>
<tr>
<td></td>
<td>Define an ARP ACL, and enter ARP access-list configuration mode. By default, no ARP access lists are defined.</td>
</tr>
<tr>
<td></td>
<td>Note At the end of the ARP access list, there is an implicit deny ip any mac any command.</td>
</tr>
<tr>
<td>Step 3</td>
<td>permit ip host sender-ip mac host sender-mac [log]</td>
</tr>
<tr>
<td></td>
<td>Permit ARP packets from the specified host (Host 2).</td>
</tr>
<tr>
<td></td>
<td>• For sender-ip, enter the IP address of Host 2.</td>
</tr>
<tr>
<td></td>
<td>• For sender-mac, enter the MAC address of Host 2.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Specify log to log a packet in the log buffer when it matches the access control entry (ACE). Matches are logged if you also configure the matchlog keyword in the ip arp inspection vlan logging global configuration command. For more information, see the “Configuring the Log Buffer” section on page 23-13.</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip arp inspection filter arp-acl-name vlan vlan-range [static]</td>
</tr>
<tr>
<td></td>
<td>Apply the ARP ACL to the VLAN. By default, no defined ARP ACLs are applied to any VLAN.</td>
</tr>
<tr>
<td></td>
<td>• For arp-acl-name, specify the name of the ACL created in Step 2.</td>
</tr>
<tr>
<td></td>
<td>• For vlan-range, specify the VLAN that the switches and hosts are in. You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Specify static to treat implicit denies in the ARP ACL as explicit denies and to drop packets that do not match any previous clauses in the ACL. DHCP bindings are not used.</td>
</tr>
<tr>
<td></td>
<td>If you do not specify this keyword, it means that there is no explicit deny in the ACL that denies the packet, and DHCP bindings determine whether a packet is permitted or denied if the packet does not match any clauses in the ACL.</td>
</tr>
<tr>
<td></td>
<td>ARP packets containing only IP-to-MAC address bindings are compared against the ACL. Packets are permitted only if the access list permits them.</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the Switch A interface that is connected to Switch B, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Dynamic ARP Inspection

To remove the ARP ACL, use the `no arp access-list` global configuration command. To remove the ARP ACL attached to a VLAN, use the `no ip arp inspection filter arp-acl-name vlan vlan-range` global configuration command.

This example shows how to configure an ARP ACL called `host2` on Switch A, to permit ARP packets from Host 2 (IP address 1.1.1.1 and MAC address 0001.0001.0001), to apply the ACL to VLAN 1, and to configure port 1 on Switch A as untrusted:

```
Switch(config)# arp access-list host2
Switch(config-arp-acl)# permit ip host 1.1.1.1 mac host 1.1.1
Switch(config-arp-acl)# exit
Switch(config)# ip arp inspection filter host2 vlan 1
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no ip arp inspection trust
```

Limiting the Rate of Incoming ARP Packets

The switch CPU performs dynamic ARP inspection validation checks; therefore, the number of incoming ARP packets is rate-limited to prevent a denial-of-service attack.

When the rate of incoming ARP packets exceeds the configured limit, the switch places the port in the error-disabled state. The port remains in that state until you enable error-disabled recovery so that ports automatically emerge from this state after a specified timeout period.

Note: Unless you configure a rate limit on an interface, changing the trust state of the interface also changes its rate limit to the default value for that trust state. After you configure the rate limit, the interface retains the rate limit even when its trust state is changed. If you enter the `no ip arp inspection limit` interface configuration command, the interface reverts to its default rate limit.
For configuration guidelines for rate limiting trunk ports and EtherChannel ports, see the “Dynamic ARP Inspection Configuration Guidelines” section on page 23-6.

Beginning in privileged EXEC mode, follow these steps to limit the rate of incoming ARP packets. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>
| Step 3 | ip arp inspection limit { rate pps [burst interval seconds] | none } | Limit the rate of incoming ARP requests and responses on the interface. The default rate is 15 pps on untrusted interfaces and unlimited on trusted interfaces. The burst interval is 1 second. The keywords have these meanings:
 • For rate pps, specify an upper limit for the number of incoming packets processed per second. The range is 0 to 2048 pps.
 • (Optional) For burst interval seconds, specify the consecutive interval in seconds, over which the interface is monitored for a high rate of ARP packets. The range is 1 to 15.
 • For rate none, specify no upper limit for the rate of incoming ARP packets that can be processed. |
| Step 4 | exit | Return to global configuration mode. |
| Step 5 | errdisable detect cause arp-inspection and errdisable recovery cause arp-inspection and errdisable recovery interval interval | (Optional) Enable error recovery from the dynamic ARP inspection error-disabled state, and configure the dynamic ARP inspection recovery mechanism variables
 By default, recovery is disabled, and the recovery interval is 300 seconds.
 For interval interval, specify the time in seconds to recover from the error-disabled state. The range is 30 to 86400. |
| Step 6 | exit | Return to privileged EXEC mode. |
| Step 7 | show ip arp inspection interfaces show errdisable recovery | Verify your settings. |
| Step 8 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default rate-limit configuration, use the no ip arp inspection limit interface configuration command. To disable error recovery for dynamic ARP inspection, use the no errdisable recovery cause arp-inspection global configuration command.
Performing Validation Checks

Dynamic ARP inspection intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. You can configure the switch to perform additional checks on the destination MAC address, the sender and target IP addresses, and the source MAC address.

Beginning in privileged EXEC mode, follow these steps to perform specific checks on incoming ARP packets. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip arp inspection validate [[src-mac] [dst-mac] [ip]]</td>
</tr>
</tbody>
</table>

The keywords have these meanings:

- For **src-mac**, check the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.
- For **dst-mac**, check the destination MAC address in the Ethernet header against the target MAC address in the ARP body. This check is performed for ARP responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.
- For **ip**, check the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses. Sender IP addresses are checked in all ARP requests and responses, and target IP addresses are checked only in ARP responses.

You must specify at least one of the keywords. Each command overrides the configuration of the previous command; that is, if a command enables **src** and **dst mac** validations, and a second command enables IP validation only, the **src** and **dst mac** validations are disabled as a result of the second command.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>exit</th>
<th>Return to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>show ip arp inspection vlan vlan-range</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable checking, use the **no ip arp inspection validate [src-mac] [dst-mac] [ip]** global configuration command. To display statistics for forwarded, dropped, and MAC and IP validation failure packets, use the **show ip arp inspection statistics** privileged EXEC command.
Chapter 23 Configuring Dynamic ARP Inspection

Configuring the Log Buffer

When the switch drops a packet, it places an entry in the log buffer and then generates system messages on a rate-controlled basis. After the message is generated, the switch clears the entry from the log buffer. Each log entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.

A log-buffer entry can represent more than one packet. For example, if an interface receives many packets on the same VLAN with the same ARP parameters, the switch combines the packets as one entry in the log buffer and generates a single system message for the entry.

If the log buffer overflows, it means that a log event does not fit into the log buffer, and the display for the `show ip arp inspection log` privileged EXEC command is affected. A `--` in the display appears in place of all data except the packet count and the time. No other statistics are provided for the entry. If you see this entry in the display, increase the number of entries in the log buffer or increase the logging rate.

The log buffer configuration applies to each stack member in a switch stack. Each stack member has the specified `logs number entries` and generates system messages at the configured rate. For example, if the interval (rate) is one entry per second, up to five system messages are generated per second in a five-member switch stack.

Beginning in privileged EXEC mode, follow these steps to configure the log buffer. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`ip arp inspection log-buffer {entries number</td>
<td>logs number interval seconds}`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>entries number</code>, specify the number of entries to be logged in the buffer. The range is 0 to 1024.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>logs number interval seconds</code>, specify the number of entries to generate system messages in the specified interval. For <code>logs number</code>, the range is 0 to 1024. A 0 value means that the entry is placed in the log buffer, but a system message is not generated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For <code>interval seconds</code>, the range is 0 to 86400 seconds (1 day). A 0 value means that a system message is immediately generated (and the log buffer is always empty).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An interval setting of 0 overrides a log setting of 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <code>logs</code> and <code>interval</code> settings interact. If the <code>logs number X</code> is greater than <code>interval seconds Y</code>, X divided by Y (X/Y) system messages are sent every second. Otherwise, one system message is sent every Y divided by X (Y/X) seconds.</td>
</tr>
</tbody>
</table>
Chapter 23 Configuring Dynamic ARP Inspection

Displaying Dynamic ARP Inspection Information

To display dynamic ARP inspection information, use the privileged EXEC commands in Table 23-2:

| Table 23-2 Commands for Displaying Dynamic ARP Inspection Information |
|-----------------------------|---|
| Command | Description |
| show arp access-list [acl-name] | Displays detailed information about ARP ACLs. |
| show ip arp inspection interfaces [interface-id] | Displays the trust state and the rate limit of ARP packets for the specified interface or all interfaces. |
| show ip arp inspection vlan vlan-range | Displays the configuration and the operating state of dynamic ARP inspection for the specified VLAN. If no VLANs are specified or if a range is specified, displays information only for VLANs with dynamic ARP inspection enabled (active). |

To return to the default log buffer settings, use the no ip arp inspection log-buffer {entries | logs} global configuration command. To return to the default VLAN log settings, use the no ip arp inspection vlan vlan-range logging {acl-match | dhcp-bindings} global configuration command. To clear the log buffer, use the clear ip arp inspection log privileged EXEC command.
To clear or display dynamic ARP inspection statistics, use the privileged EXEC commands in Table 23-3:

Table 23-3 Commands for Clearing or Displaying Dynamic ARP Inspection Statistics

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip arp inspection statistics</td>
<td>Clears dynamic ARP inspection statistics.</td>
</tr>
<tr>
<td>show ip arp inspection statistics [vlan vlan-range]</td>
<td>Displays statistics for forwarded, dropped, MAC validation failure, IP validation failure, ACL permitted and denied, and DHCP permitted and denied packets for the specified VLAN. If no VLANs are specified or if a range is specified, displays information only for VLANs with dynamic ARP inspection enabled (active).</td>
</tr>
</tbody>
</table>

For the `show ip arp inspection statistics` command, the switch increments the number of forwarded packets for each ARP request and response packet on a trusted dynamic ARP inspection port. The switch increments the number of ACL or DHCP permitted packets for each packet that is denied by source MAC, destination MAC, or IP validation checks, and the switch increments the appropriate failure count.

To clear or display dynamic ARP inspection logging information, use the privileged EXEC commands in Table 23-4:

Table 23-4 Commands for Clearing or Displaying Dynamic ARP Inspection Logging Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip arp inspection log</td>
<td>Clears the dynamic ARP inspection log buffer.</td>
</tr>
<tr>
<td>show ip arp inspection log</td>
<td>Displays the configuration and contents of the dynamic ARP inspection log buffer.</td>
</tr>
</tbody>
</table>

For more information about these commands, see the command reference for this release.
CHAPTER 24

Configuring IGMP Snooping and MVR

This chapter describes how to configure Internet Group Management Protocol (IGMP) snooping on the switch, including an application of local IGMP snooping, Multicast VLAN Registration (MVR). It also includes procedures for controlling multicast group membership by using IGMP filtering and procedures for configuring the IGMP throttling action. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For IP Version 6 (IPv6) traffic, Multicast Listener Discovery (MLD) snooping performs the same function as IGMP snooping for IPv4 traffic. For information about MLD snooping, see Chapter 25, “Configuring IPv6 MLD Snooping.”

Note
For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the “IP Multicast Routing Commands” section in the Cisco IOS IP Command Reference, Volume 3 of 3:Multicast, Release 12.2.

This chapter consists of these sections:

- Understanding IGMP Snooping, page 24-2
- Configuring IGMP Snooping, page 24-7
- Displaying IGMP Snooping Information, page 24-16
- Understanding Multicast VLAN Registration, page 24-18
- Configuring MVR, page 24-20
- Displaying MVR Information, page 24-24
- Configuring IGMP Filtering and Throttling, page 24-24
- Displaying IGMP Filtering and Throttling Configuration, page 24-29

Note
You can either manage IP multicast group addresses through features such as IGMP snooping and MVR, or you can use static IP addresses.
Understanding IGMP Snooping

Layer 2 switches can use IGMP snooping to constrain the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. As the name implies, IGMP snooping requires the LAN switch to snoop on the IGMP transmissions between the host and the router and to keep track of multicast groups and member ports. When the switch receives an IGMP report from a host for a particular multicast group, the switch adds the host port number to the forwarding table entry; when it receives an IGMP Leave Group message from a host, it removes the host port from the table entry. It also periodically deletes entries if it does not receive IGMP membership reports from the multicast clients.

Note

For more information on IP multicast and IGMP, see RFC 1112 and RFC 2236.

The multicast router (which could be a switch with the IP services feature set on the stack master) sends out periodic general queries to all VLANs. All hosts interested in this multicast traffic send join requests and are added to the forwarding table entry. The switch creates one entry per VLAN in the IGMP snooping IP multicast forwarding table for each group from which it receives an IGMP join request.

The switch supports IP multicast group-based bridging, rather than MAC-addressed based groups. With multicast MAC address-based groups, if an IP address being configured translates (aliases) to a previously configured MAC address or to any reserved multicast MAC addresses (in the range 224.0.0.xxx), the command fails. Because the switch uses IP multicast groups, there are no address aliasing issues.

The IP multicast groups learned through IGMP snooping are dynamic. However, you can statically configure multicast groups by using the `ip igmp snooping vlan vlan-id static ip_address interface interface-id` global configuration command. If you specify group membership for a multicast group address statically, your setting supersedes any automatic manipulation by IGMP snooping. Multicast group membership lists can consist of both user-defined and IGMP snooping-learned settings.

You can configure an IGMP snooping querier to support IGMP snooping in subnets without multicast interfaces because the multicast traffic does not need to be routed. For more information about the IGMP snooping querier, see the “Configuring the IGMP Snooping Querier” section on page 24-14.

If a port spanning-tree, a port group, or a VLAN ID change occurs, the IGMP snooping-learned multicast groups from this port on the VLAN are deleted.

These sections describe IGMP snooping characteristics:

- IGMP Versions, page 24-3
- Joining a Multicast Group, page 24-3
- Leaving a Multicast Group, page 24-5
- Immediate Leave, page 24-6
- IGMP Configurable-Leave Timer, page 24-6
- IGMP Report Suppression, page 24-6
- IGMP Snooping and Switch Stacks, page 24-7
Chapter 24 Configuring IGMP Snooping and MVR

Understanding IGMP Snooping

IGMP Versions

The switch supports IGMP Version 1, IGMP Version 2, and IGMP Version 3. These versions are interoperable on the switch. For example, if IGMP snooping is enabled on an IGMPv2 switch and the switch receives an IGMPv3 report from a host, the switch can forward the IGMPv3 report to the multicast router.

Note
The switch supports IGMPv3 snooping based only on the destination multicast MAC address. It does not support snooping based on the source MAC address or on proxy reports.

An IGMPv3 switch supports Basic IGMPv3 Snooping Support (BISS), which includes support for the snooping features on IGMPv1 and IGMPv2 switches and for IGMPv3 membership report messages. BISS constrains the flooding of multicast traffic when your network includes IGMPv3 hosts. It constrains traffic to approximately the same set of ports as the IGMP snooping feature on IGMPv2 or IGMPv1 hosts.

Note
IGMPv3 join and leave messages are not supported on switches running IGMP filtering or MVR.

An IGMPv3 switch can receive messages from and forward messages to a device running the Source Specific Multicast (SSM) feature.

Joining a Multicast Group

When a blade server connected to the switch wants to join an IP multicast group and it is an IGMP Version 2 client, it sends an unsolicited IGMP join message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query from the router, it forwards the query to all ports in the VLAN. IGMP Version 1 or Version 2 blade servers wanting to join the multicast group respond by sending a join message to the switch. The switch CPU creates a multicast forwarding-table entry for the group if it is not already present. The CPU also adds the interface where the join message was received to the forwarding-table entry. The blade server associated with that interface receives multicast traffic for that multicast group. See Figure 24-1.
Router A sends a general query to the switch, which forwards the query to ports 3, 5, and 7, which are all members of the same VLAN. Blade Server 1 wants to join multicast group 224.1.2.3 and multicasts an IGMP membership report (IGMP join message) to the group. The switch CPU uses the information in the IGMP report to set up a forwarding-table entry, as shown in Table 24-1, that includes the port numbers of Blade Server 1 and the router.

Table 24-1 IGMP Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1.2.3</td>
<td>IGMP</td>
<td>19, 1</td>
</tr>
</tbody>
</table>

The switch hardware can distinguish IGMP information packets from other packets for the multicast group. The information in the table tells the switching engine to send frames addressed to the 224.1.2.3 multicast IP address that are not IGMP packets to the router and to the host that has joined the group.

If another blade server (for example, Blade Server 4) sends an unsolicited IGMP join message for the same group (Figure 24-2), the CPU receives that message and adds the port number of Blade Server 4 to the forwarding table as shown in Table 24-2. Note that because the forwarding table directs IGMP messages only to the CPU, the message is not flooded to other ports on the switch. Any known multicast traffic is forwarded to the group and not to the CPU.
Understanding IGMP Snooping

Leaving a Multicast Group

The router sends periodic multicast general queries, and the switch forwards these queries through all ports in the VLAN. Interested blade servers respond to the queries. If at least one blade server in the VLAN wishes to receive multicast traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group traffic only to those blade servers listed in the forwarding table for that IP multicast group maintained by IGMP snooping.

When blade servers want to leave a multicast group, they can silently leave, or they can send a leave message. When the switch receives a leave message from a blade server, it sends a group-specific query to learn if any other devices connected to that interface are interested in traffic for the specific multicast group. The switch then updates the forwarding table for that MAC group so that only those blade servers interested in receiving multicast traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes the group for the VLAN from its IGMP cache.
Immediate Leave

Immediate Leave is only supported on IGMP Version 2 hosts.

The switch uses IGMP snooping Immediate Leave to remove from the forwarding table an interface that sends a leave message without the switch sending group-specific queries to the interface. The VLAN interface is pruned from the multicast tree for the multicast group specified in the original leave message. Immediate Leave ensures optimal bandwidth management for all blade servers on a switched network, even when multiple multicast groups are simultaneously in use.

Note

You should only use the Immediate Leave feature on VLANs where a single blade server is connected to each port. If Immediate Leave is enabled in VLANs where more than one blade server is connected to a port, some blade servers might inadvertently be dropped.

For configuration steps, see the “Enabling IGMP Immediate Leave” section on page 24-11.

IGMP Configurable-Leave Timer

You can configure the time that the switch waits after sending a group-specific query to determine if hosts are still interested in a specific multicast group. The IGMP leave response time can be configured from 100 to 5000 milliseconds. The timer can be set either globally or on a per-VLAN basis. The VLAN configuration of the leave time overrides the global configuration.

For configuration steps, see the “Configuring the IGMP Leave Timer” section on page 24-12.

IGMP Report Suppression

Note

IGMP report suppression is supported only when the multicast query has IGMPv1 and IGMPv2 reports. This feature is not supported when the query includes IGMPv3 reports.

The switch uses IGMP report suppression to forward only one IGMP report per multicast router query to multicast devices. When IGMP router suppression is enabled (the default), the switch sends the first IGMP report from all blade servers for a group to all the multicast routers. The switch does not send the remaining IGMP reports for the group to the multicast routers. This feature prevents duplicate reports from being sent to the multicast devices.

If the multicast router query includes requests only for IGMPv1 and IGMPv2 reports, the switch forwards only the first IGMPv1 or IGMPv2 report from all blade servers for a group to all the multicast routers.

If the multicast router query also includes requests for IGMPv3 reports, the switch forwards all IGMPv1, IGMPv2, and IGMPv3 reports for a group to the multicast devices.

If you disable IGMP report suppression, all IGMP reports are forwarded to the multicast routers. For configuration steps, see the “Disabling IGMP Report Suppression” section on page 24-16.
IGMP Snooping and Switch Stacks

IGMP snooping functions across the switch stack; that is, IGMP control information from one switch is distributed to all switches in the stack. (See Chapter 7, “Managing Switch Stacks,” for more information about switch stacks.) Regardless of the stack member through which IGMP multicast data enters the stack, the data reaches the hosts that have registered for that group.

If a switch in the stack fails or is removed from the stack, only the members of the multicast group that are on that switch will not receive the multicast data. All other members of a multicast group on other switches in the stack continue to receive multicast data streams. However, multicast groups that are common for both Layer 2 and Layer 3 (IP multicast routing) might take longer to converge if the stack master is removed.

Configuring IGMP Snooping

IGMP snooping allows switches to examine IGMP packets and make forwarding decisions based on their content. These sections contain this configuration information:

- Default IGMP Snooping Configuration, page 24-7
- Enabling or Disabling IGMP Snooping, page 24-8
- Setting the Snooping Method, page 24-9
- Configuring a Multicast Router Port, page 24-10
- Configuring a Blade Server Static to Join a Group, page 24-10
- Enabling IGMP Immediate Leave, page 24-11
- Configuring the IGMP Leave Timer, page 24-12
- Configuring TCN-Related Commands, page 24-12
- Configuring the IGMP Snooping Querier, page 24-14
- Disabling IGMP Report Suppression, page 24-16

Default IGMP Snooping Configuration

Table 24-3 shows the default IGMP snooping configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enabled globally and per VLAN</td>
</tr>
<tr>
<td>Multicast routers</td>
<td>None configured</td>
</tr>
<tr>
<td>Multicast router learning (snooping) method</td>
<td>PIM-DVMRP</td>
</tr>
<tr>
<td>IGMP snooping Immediate Leave</td>
<td>Disabled</td>
</tr>
<tr>
<td>Static groups</td>
<td>None configured</td>
</tr>
<tr>
<td>TCN1 flood query count</td>
<td>2</td>
</tr>
<tr>
<td>TCN query solicitation</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Enabling or Disabling IGMP Snooping

By default, IGMP snooping is globally enabled on the switch. When globally enabled or disabled, it is also enabled or disabled in all existing VLAN interfaces. IGMP snooping is by default enabled on all VLANs, but can be enabled and disabled on a per-VLAN basis.

Global IGMP snooping overrides the VLAN IGMP snooping. If global snooping is disabled, you cannot enable VLAN snooping. If global snooping is enabled, you can enable or disable VLAN snooping.

Beginning in privileged EXEC mode, follow these steps to globally enable IGMP snooping on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To globally disable IGMP snooping on all VLAN interfaces, use the `no ip igmp snooping` global configuration command.

Beginning in privileged EXEC mode, follow these steps to enable IGMP snooping on a VLAN interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping vlan <code>vlan-id</code></td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable IGMP snooping on a VLAN interface, use the `no ip igmp snooping vlan `vlan-id` global configuration command for the specified VLAN number.
Setting the Snooping Method

Multicast-capable router ports are added to the forwarding table for every Layer 2 multicast entry. The switch learns of such ports through one of these methods:

- Snooping on IGMP queries, Protocol-Independent Multicast (PIM) packets, and Distance Vector Multicast Routing Protocol (DVMRP) packets
- Listening to Cisco Group Management Protocol (CGMP) packets from other routers
- Statically connecting to a multicast router port with the **ip igmp snooping mrouter** global configuration command

You can configure the switch either to snoop on IGMP queries and PIM/DVMRP packets or to listen to CGMP self-join or proxy-join packets. By default, the switch snoops on PIM/DVMRP packets on all VLANs. To learn of multicast router ports through only CGMP packets, use the **ip igmp snooping vlan vlan-id mrouter learn cgmp** global configuration command. When this command is entered, the router listens to only CGMP self-join and CGMP proxy-join packets and to no other CGMP packets. To learn of multicast router ports through only PIM-DVMRP packets, use the **ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp** global configuration command.

Note

If you want to use CGMP as the learning method and no multicast routers in the VLAN are CGMP proxy-enabled, you must enter the **ip cgmp router-only** command to dynamically access the router. For more information, see Chapter 45, “Configuring IP Multicast Routing.”

Beginning in privileged EXEC mode, follow these steps to alter the method in which a VLAN interface dynamically accesses a multicast router:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | ip igmp snooping vlan vlan-id mrouter learn {cgmp | pim-dvmrp} | Enable IGMP snooping on a VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094. Specify the multicast router learning method:
 - cgmp—Listen for CGMP packets. This method is useful for reducing control traffic.
 - pim-dvmrp—Snoop on IGMP queries and PIM-DVMRP packets. This is the default. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | show ip igmp snooping | Verify the configuration. |
| Step 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default learning method, use the **no ip igmp snooping vlan vlan-id mrouter learn cgmp** global configuration command.

This example shows how to configure IGMP snooping to use CGMP packets as the learning method:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 mrouter learn cgmp
Switch(config)# end
```
Configuring a Multicast Router Port

To add a multicast router port (add a static connection to a multicast router), use the `ip igmp snooping` `vlan mrouter` global configuration command on the switch.

Note

Static connections to multicast routers are supported only on switch ports.

Beginning in privileged EXEC mode, follow these steps to enable a static connection to a multicast router:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | `ip igmp snooping vlan vlan-id mrouter interface interface-id` | Specify the multicast router VLAN ID and the interface to the multicast router.
- The VLAN ID range is 1 to 1001 and 1006 to 4094.
- The interface can be a physical interface or a port channel.
 The port-channel range is 1 to 64. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | `show ip igmp snooping mrouter [vlan vlan-id]` | Verify that IGMP snooping is enabled on the VLAN interface. |
| Step 5 | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |

To remove a multicast router port from the VLAN, use the `no ip igmp snooping vlan vlan-id mrouter interface interface-id` global configuration command.

This example shows how to enable a static connection to a multicast router:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 200 mrouter interface gigabitethernet0/2
Switch(config)# end
```

Configuring a Blade Server Statically to Join a Group

Blade servers that are connected to Layer 2 ports normally join multicast groups dynamically. You can also statically configure a Layer 2 port, to which a blade server is connected, so that the port joins a multicast group.
Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | ip igmp snooping vlan vlan-id static ip_address interface interface-id | Statically configure a Layer 2 port as a member of a multicast group:
 * vlan-id is the multicast group VLAN ID. The range is 1 to 1001 and 1006 to 4094.
 * ip-address is the group IP address.
 * interface-id is the member port. It can be a physical interface or a port channel (1 to 64). |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | show ip igmp snooping groups | Verify the member port and the IP address. |
| Step 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove the Layer 2 port from the multicast group, use the no ip igmp snooping vlan vlan-id static mac-address interface interface-id global configuration command.

This example shows how to statically configure a blade server on a port:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 105 static 224.2.4.12 interface gigabitethernet1/0/1
Switch(config)# end
```

Enabling IGMP Immediate Leave

When you enable IGMP Immediate Leave, the switch immediately removes a port when it detects an IGMP Version 2 leave message on that port. You should only use the Immediate-Leave feature when there is a single receiver present on every port in the VLAN.

Note

Immediate Leave is supported only on IGMP Version 2 blade servers.

Beginning in privileged EXEC mode, follow these steps to enable IGMP Immediate Leave:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping vlan vlan-id immediate-leave</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To disable IGMP Immediate Leave on a VLAN, use the `no ip igmp snooping vlan vlan-id immediate-leave` global configuration command.

This example shows how to enable IGMP Immediate Leave on VLAN 130:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 130 immediate-leave
Switch(config)# end
```

Configuring the IGMP Leave Timer

Follows these guidelines when configuring the IGMP leave timer:

- You can configure the leave time globally or on a per-VLAN basis.
- Configuring the leave time on a VLAN overrides the global setting.
- The default leave time is 1000 milliseconds.
- The IGMP configurable leave time is only supported on hosts running IGMP Version 2.
- The actual leave latency in the network is usually the configured leave time. However, the leave time might vary around the configured time, depending on real-time CPU load conditions, network delays and the amount of traffic sent through the interface.

Beginning in privileged EXEC mode, follow these steps to enable the IGMP configurable-leave timer:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping last-member-query-interval time</td>
</tr>
<tr>
<td></td>
<td>Configure the IGMP leave timer globally. The range is 100 to 32768 milliseconds. The default is 1000 seconds.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp snooping vlan vlan-id last-member-query-interval time</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configure the IGMP leave time on the VLAN interface. The range is 100 to 32768 milliseconds.</td>
</tr>
<tr>
<td></td>
<td>Note Configuring the leave time on a VLAN overrides the globally configured timer.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip igmp snooping</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display the configured IGMP leave time.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To globally reset the IGMP leave timer to the default setting, use the `no ip igmp snooping last-member-query-interval` global configuration command.

To remove the configured IGMP leave-time setting from the specified VLAN, use the `no ip igmp snooping vlan vlan-id last-member-query-interval` global configuration command.

Configuring TCN-Related Commands

These sections describe how to control flooded multicast traffic during a TCN event:

- Controlling the Multicast Flooding Time After a TCN Event, page 24-13
- Recovering from Flood Mode, page 24-13
- Disabling Multicast Flooding During a TCN Event, page 24-14
Controlling the Multicast Flooding Time After a TCN Event

You can control the time that multicast traffic is flooded after a TCN event by using the `ip igmp snooping tcn flood query count` global configuration command. This command configures the number of general queries for which multicast data traffic is flooded after a TCN event. Some examples of TCN events are when the client changed its location and the receiver is on same port that was blocked but is now forwarding, and when a port went down without sending a leave message.

If you set the TCN flood query count to 1 by using the `ip igmp snooping tcn flood query count` command, the flooding stops after receiving 1 general query. If you set the count to 7, the flooding until 7 general queries are received. Groups are relearned based on the general queries received during the TCN event.

Beginning in privileged EXEC mode, follow these steps to configure the TCN flood query count:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping tcn flood query count count</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default flooding query count, use the `no ip igmp snooping tcn flood query count` global configuration command.

Recovering from Flood Mode

When a topology change occurs, the spanning-tree root sends a special IGMP leave message (also known as global leave) with the group multicast address 0.0.0.0. However, when you enable the `ip igmp snooping tcn query solicit` global configuration command, the switch sends the global leave message whether or not it is the spanning-tree root. When the router receives this special leave, it immediately sends general queries, which expedite the process of recovering from the flood mode during the TCN event. Leaves are always sent if the switch is the spanning-tree root regardless of this configuration command. By default, query solicitation is disabled.

Beginning in privileged EXEC mode, follow these steps to enable the switch to send the global leave message whether or not it is the spanning-tree root:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping tcn query solicit</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To return to the default query solicitation, use the `no ip igmp snooping tcn query solicit` global configuration command.

Disabling Multicast Flooding During a TCN Event

When the switch receives a TCN, multicast traffic is flooded to all the ports until 2 general queries are received. If the switch has many ports with attached hosts that are subscribed to different multicast groups, this flooding might exceed the capacity of the link and cause packet loss. You can use the `ip igmp snooping tcn flood` interface configuration command to control this behavior.

Beginning in privileged EXEC mode, follow these steps to disable multicast flooding on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>no ip igmp snooping tcn flood Disable the flooding of multicast traffic during a spanning-tree TCN event. By default, multicast flooding is enabled on an interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip igmp snooping Verify the TCN settings.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable multicast flooding on an interface, use the `ip igmp snooping tcn flood` interface configuration command.

Configuring the IGMP Snooping Querier

Follow these guidelines when configuring the IGMP snooping querier:

- Configure the VLAN in global configuration mode.
- Configure an IP address on the VLAN interface. When enabled, the IGMP snooping querier uses the IP address as the query source address.
- If there is no IP address configured on the VLAN interface, the IGMP snooping querier tries to use the configured global IP address for the IGMP querier. If there is no global IP address specified, the IGMP querier tries to use the VLAN switch virtual interface (SVI) IP address (if one exists). If there is no SVI IP address, the switch uses the first available IP address configured on the switch. The first IP address available appears in the output of the `show ip interface` privileged EXEC command. The IGMP snooping querier does not generate an IGMP general query if it cannot find an available IP address on the switch.
- The IGMP snooping querier supports IGMP Versions 1 and 2.
- When administratively enabled, the IGMP snooping querier moves to the nonquerier state if it detects the presence of a multicast router in the network.
When it is administratively enabled, the IGMP snooping querier moves to the operationally disabled state under these conditions:

- IGMP snooping is disabled in the VLAN.
- PIM is enabled on the SVI of the corresponding VLAN.

Beginning in privileged EXEC mode, follow these steps to enable the IGMP snooping querier feature in a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping querier</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp snooping querier address ip_address</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip igmp snooping querier query-interval interval-count</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip igmp snooping querier tcn query [count count</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip igmp snooping querier timer expiry timeout</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip igmp snooping querier version version</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Step 9</td>
<td>show ip igmp snooping vlan vlan-id</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Displaying IGMP Snooping Information

This example shows how to set the IGMP snooping querier feature to Version 2:

```
Switch# configure terminal
Switch(config)# no ip igmp snooping querier version 2
Switch(config)# end
```

Disabling IGMP Report Suppression

Note

IGMP report suppression is supported only when the multicast query has IGMPv1 and IGMPv2 reports. This feature is not supported when the query includes IGMPv3 reports.

IGMP report suppression is enabled by default. When it is enabled, the switch forwards only one IGMP report per multicast router query. When report suppression is disabled, all IGMP reports are forwarded to the multicast routers.

Beginning in privileged EXEC mode, follow these steps to disable IGMP report suppression:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no ip igmp snooping report-suppression</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To re-enable IGMP report suppression, use the `ip igmp snooping report-suppression` global configuration command.

Displaying IGMP Snooping Information

You can display IGMP snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display MAC address multicast entries for a VLAN configured for IGMP snooping.
To display IGMP snooping information, use one or more of the privileged EXEC commands in Table 24-4.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping [vlan vlan-id]</td>
<td>Display the snooping configuration information for all VLANs on the switch or for a specified VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>
| **show ip igmp snooping groups [count |dynamic [count] | user [count]]** | Display multicast table information for the switch or about a specific parameter:
 - `count`—Display the total number of entries for the specified command options instead of the actual entries.
 - `dynamic`—Display entries learned through IGMP snooping.
 - `user`—Display only the user-configured multicast entries. |
| **show ip igmp snooping groups vlan vlan-id [ip_address | count | dynamic [count] | user[count]]** | Display multicast table information for a multicast VLAN or about a specific parameter for the VLAN:
 - `vlan-id`—The VLAN ID range is 1 to 1001 and 1006 to 4094.
 - `count`—Display the total number of entries for the specified command options instead of the actual entries.
 - `dynamic`—Display entries learned through IGMP snooping.
 - `ip_address`—Display characteristics of the multicast group with the specified group IP address.
 - `user`—Display only the user-configured multicast entries. |
| **show ip igmp snooping mrouter [vlan vlan-id]** | Display information on dynamically learned and manually configured multicast router interfaces.
 Note When you enable IGMP snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces. (Optional) Enter `vlan vlan-id` to display information for a single VLAN. |
| **show ip igmp snooping querier [vlan vlan-id]** | Display information about the IP address and receiving port for the most-recently received IGMP query messages in the VLAN. (Optional) Enter `vlan vlan-id` to display information for a single VLAN. |
| **show ip igmp snooping querier [vlan vlan-id] detail** | Display information about the IP address and receiving port of the most-recently received IGMP query message in the VLAN and the configuration and operational state of the IGMP snooping querier in the VLAN. |

For more information about the keywords and options in these commands, see the command reference for this release.
Understanding Multicast VLAN Registration

Multicast VLAN Registration (MVR) is designed for applications using wide-scale deployment of multicast traffic across an Ethernet ring-based service-provider network (for example, the broadcast of multiple television channels over a service-provider network). MVR allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the network-wide multicast VLAN. It allows the single multicast VLAN to be shared in the network while subscribers remain in separate VLANs. MVR provides the ability to continuously send multicast streams in the multicast VLAN, but to isolate the streams from the subscriber VLANs for bandwidth and security reasons.

MVR assumes that subscriber ports subscribe and unsubscribe (join and leave) these multicast streams by sending out IGMP join and leave messages. These messages can originate from an IGMP Version-2-compatible blade server with an Ethernet connection. Although MVR operates on the underlying mechanism of IGMP snooping, the two features operate independently of each other. One can be enabled or disabled without affecting the behavior of the other feature. However, if IGMP snooping and MVR are both enabled, MVR reacts only to join and leave messages from multicast groups configured under MVR. Join and leave messages from all other multicast groups are managed by IGMP snooping.

The switch CPU identifies the MVR IP multicast streams and their associated IP multicast group in the switch forwarding table, intercepts the IGMP messages, and modifies the forwarding table to include or remove the subscriber as a receiver of the multicast stream, even though the receivers might be in a different VLAN from the source. This forwarding behavior selectively allows traffic to cross between different VLANs.

You can set the switch for compatible or dynamic mode of MVR operation:

- In compatible mode, multicast data received by MVR blade servers is forwarded to all MVR data ports, regardless of MVR blade server membership on those ports. The multicast data is forwarded only to those receiver ports that MVR blade servers have joined, either by IGMP reports or by MVR static configuration. IGMP reports received from MVR blade servers are never forwarded from MVR data ports that were configured in the blade server.
- In dynamic mode, multicast data received by MVR blade servers on the switch is forwarded from only those MVR data and client ports that the MVR blade servers have joined, either by IGMP reports or by MVR static configuration. Any IGMP reports received from MVR blade servers are also forwarded from all the MVR data ports in the blade server. This eliminates using unnecessary bandwidth on MVR data port links, which occurs when the blade server runs in compatible mode.

Only Layer 2 ports take part in MVR. You must configure ports as MVR receiver ports. Only one MVR multicast VLAN per switch or switch stack is supported.

Receiver ports and source ports can be on different switches in a switch stack. Multicast data sent on the multicast VLAN is forwarded to all MVR receiver ports across the stack. When a new switch is added to a stack, by default it has no receiver ports.

If a switch fails or is removed from the stack, only those receiver ports belonging to that switch will not receive the multicast data. All other receiver ports on other switches continue to receive the multicast data.
Using MVR in a Multicast Television Application

In a multicast television application, a server connected to a blade switch can receive the multicast stream. Multiple devices can be connected to one subscriber port, which is a switch port configured as an MVR receiver port. Figure 24-3 is an example configuration. DHCP assigns an IP address to the server. When a subscriber on the server selects a channel, the server sends an IGMP report to the blade switch to join the appropriate multicast. If the IGMP report matches one of the configured IP multicast group addresses, the switch CPU modifies the hardware address table to include this receiver port and VLAN as a forwarding destination of the specified multicast stream when it is received from the multicast VLAN. Uplink ports that send and receive multicast data to and from the multicast VLAN are called MVR source ports.

Figure 24-3 Multicast VLAN Registration Example

When the subscriber changes channels or stops the multicast stream, the server sends an IGMP leave message for the multicast stream. The switch CPU sends a MAC-based general query through the receiver port VLAN. If there is another device in the VLAN still subscribing to this group, that device must respond within the maximum response time specified in the query. If the CPU does not receive a response, it eliminates the receiver ports as a forwarding destination for this group.

Without Immediate Leave, when the switch receives an IGMP leave message from a subscriber on a receiver port, it sends out an IGMP query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP query is not sent from the receiver port on which the
IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency. Enable the Immediate-Leave feature only on receiver ports to which a single receiver device is connected.

MVR eliminates the need to duplicate multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is only sent around the VLAN trunk once—only on the multicast VLAN. The IGMP leave and join messages are in the VLAN to which the subscriber port is assigned. These messages dynamically register for streams of multicast traffic in the multicast VLAN on the Layer 3 device. The access layer blade switch modifies the forwarding behavior to allow the traffic to be forwarded from the multicast VLAN to the subscriber port in a different VLAN, selectively allowing traffic to cross between two VLANs.

IGMP reports are sent to the same IP multicast group address as the multicast data. The blade switch CPU must capture all IGMP join and leave messages from receiver ports and forward them to the multicast VLAN of the source (uplink) port, based on the MVR mode.

Configuring MVR

These sections contain this configuration information:

- Default MVR Configuration, page 24-20
- MVR Configuration Guidelines and Limitations, page 24-21
- Configuring MVR Global Parameters, page 24-21
- Configuring MVR Interfaces, page 24-22

Default MVR Configuration

Table 24-5 shows the default MVR configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR</td>
<td>Disabled globally and per interface</td>
</tr>
<tr>
<td>Multicast addresses</td>
<td>None configured</td>
</tr>
<tr>
<td>Query response time</td>
<td>0.5 second</td>
</tr>
<tr>
<td>Multicast VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Mode</td>
<td>Compatible</td>
</tr>
<tr>
<td>Interface (per port) default</td>
<td>Neither a receiver nor a source port</td>
</tr>
<tr>
<td>Immediate Leave</td>
<td>Disabled on all ports</td>
</tr>
</tbody>
</table>

Table 24-5 Default MVR Configuration
MVR Configuration Guidelines and Limitations

Follow these guidelines when configuring MVR:

- Receiver ports can only be access ports; they cannot be trunk ports. Receiver ports on a switch can be in different VLANs, but should not belong to the multicast VLAN.
- The maximum number of multicast entries (MVR group addresses) that can be configured on a switch (that is, the maximum number of television channels that can be received) is 256.
- Because MVR on the switch uses IP multicast addresses instead of MAC multicast addresses, aliased IP multicast addresses are allowed on the switch. However, if the switch is interoperating with Catalyst 3550 or Catalyst 3500 XL switches, you should not configure IP addresses that alias between themselves or with the reserved IP multicast addresses (in the range 224.0.0.xxx).
- Do not configure MVR on private VLAN ports.
- MVR is not supported when multicast routing is enabled on a switch. If you enable multicast routing and a multicast routing protocol while MVR is enabled, MVR is disabled, and you receive a warning message. If you try to enable MVR while multicast routing and a multicast routing protocol are enabled, the operation to enable MVR is cancelled, and you receive an error message.
- MVR can coexist with IGMP snooping on a switch.
- MVR data received on an MVR receiver port is not forwarded to MVR source ports.
- MVR does not support IGMPv3 messages.

Configuring MVR Global Parameters

You do not need to set the optional MVR parameters if you choose to use the default settings. If you do want to change the default parameters (except for the MVR VLAN), you must first enable MVR.

Note

For complete syntax and usage information for the commands used in this section, see the command reference for this release.

Beginning in privileged EXEC mode, follow these steps to configure MVR parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>mvr</td>
<td>Enable MVR on the switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>mvr group ip-address [count]</td>
<td>Configure an IP multicast address on the switch or use the count parameter to configure a contiguous series of MVR group addresses (the range for count is 1 to 256; the default is 1). Any multicast data sent to this address is sent to all source ports on the switch and all receiver ports that have elected to receive data on that multicast address. Each multicast address would correspond to one television channel.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>mvr querytime value</td>
<td>(Optional) Define the maximum time to wait for IGMP report memberships on a receiver port before removing the port from multicast group membership. The value is in units of tenths of a second. The range is 1 to 100, and the default is 5 tenths or one-half second.</td>
</tr>
</tbody>
</table>
Chapter 24 Configuring IGMP Snooping and MVR

Configuring MVR

Configuring MVR

To return the switch to its default settings, use the no mvr [mode | group ip-address | querytime | vlan] global configuration commands.

This example shows how to enable MVR, configure the group address, set the query time to 1 second (10 tenths), specify the MVR multicast VLAN as VLAN 22, and set the MVR mode as dynamic:

\[
\begin{align*}
\text{Switch(config)} & \# \text{ mvr} \\
\text{Switch(config)} & \# \text{ mvr group 228.1.23.4} \\
\text{Switch(config)} & \# \text{ mvr querytime 10} \\
\text{Switch(config)} & \# \text{ mvr vlan 22} \\
\text{Switch(config)} & \# \text{ mvr mode dynamic} \\
\text{Switch(config)} & \# \text{ end}
\end{align*}
\]

You can use the show mvr members privileged EXEC command to verify the MVR multicast group addresses on the switch.

Configuring MVR Interfaces

Beginning in privileged EXEC mode, follow these steps to configure Layer 2 MVR interfaces:

\[
\begin{align*}
\text{Step 1} & \quad \text{configure terminal} \\
& \quad \text{Enter global configuration mode.} \\
\text{Step 2} & \quad \text{mvr} \\
& \quad \text{Enable MVR on the switch.} \\
\text{Step 3} & \quad \text{interface interface-id} \\
& \quad \text{Specify the Layer 2 port to configure, and enter interface configuration mode.}
\end{align*}
\]
Step 4

Command: `mvr type {source | receiver}

Configure an MVR port as one of these:

- **source**—Configure uplink ports that receive and send multicast data as source ports. Subscribers cannot be directly connected to source ports. All source ports on a switch belong to the single multicast VLAN.
- **receiver**—Configure a port as a receiver port if it is a subscriber port and should only receive multicast data. It does not receive data unless it becomes a member of the multicast group, either statically or by using IGMP leave and join messages. Receiver ports cannot belong to the multicast VLAN.

The default configuration is as a non-MVR port. If you attempt to configure a non-MVR port with MVR characteristics, the operation fails.

Step 5

Command: `mvr vlan vlan-id group [ip-address]

(Optional) Statically configure a port to receive multicast traffic sent to the multicast VLAN and the IP multicast address. A port statically configured as a member of a group remains a member of the group until statically removed.

Note: In compatible mode, this command applies to only receiver ports. In dynamic mode, it applies to receiver ports and source ports.

Receiver ports can also dynamically join multicast groups by using IGMP join and leave messages.

Step 6

Command: `mvr immediate

(Optional) Enable the Immediate-Leave feature of MVR on the port.

Note: This command applies to only receiver ports and should only be enabled on receiver ports to which a single receiver device is connected.

Step 7

Command: `end

Return to privileged EXEC mode.

Step 8

Command: `show mvr

Command: `show mvr interface

Command: `show mvr members

Verify the configuration.

Step 9

Command: `copy running-config startup-config

(Optional) Save your entries in the configuration file.

To return the interface to its default settings, use the **no mvr [type | immediate | vlan vlan-id | group** interface configuration commands.

This example shows how to configure a port as a receiver port, statically configure the port to receive multicast traffic sent to the multicast group address, configure Immediate Leave on the port, and verify the results.

```
Switch(config)# mvr
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# mvr type receiver
Switch(config-if)# mvr vlan 22 group 228.1.23.4
Switch(config-if)# mvr immediate
Switch(config-if)# end
Switch# show mvr interface
Port   Type       Status     Immediate Leave
-----   -----      ---------     ---------------
G1/0/2  RECEIVER   ACTIVE/DOWN ENABLED
```
Chapter 24 Configuring IGMP Snooping and MVR

Displaying MVR Information

You can display MVR information for the switch or for a specified interface. Beginning in privileged EXEC mode, use the commands in Table 24-6 to display MVR configuration:

Table 24-6 Commands for Displaying MVR Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mvr</code></td>
<td>Displays MVR status and values for the switch—whether MVR is enabled or disabled, the multicast VLAN, the maximum (256) and current (0 through 256) number of multicast groups, the query response time, and the MVR mode.</td>
</tr>
</tbody>
</table>
| `show mvr interface [interface-id] [members [vlan vlan-id]]` | Displays all MVR interfaces and their MVR configurations. When a specific interface is entered, displays this information:
 * Type—Receiver or Source
 * Status—One of these:
 - Active means the port is part of a VLAN.
 - Up/Down means that the port is forwarding or nonforwarding.
 - Inactive means that the port is not part of any VLAN.
 * Immediate Leave—Enabled or Disabled
 If the `members` keyword is entered, displays all multicast group members on this port or, if a VLAN identification is entered, all multicast group members on the VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094. |
| `show mvr members [ip-address]` | Displays all receiver and source ports that are members of any IP multicast group or the specified IP multicast group IP address. |

Configuring IGMP Filtering and Throttling

In some environments, for example, metropolitan or multiple-dwelling unit (MDU) installations, you might want to control the set of multicast groups to which a user on a switch port can belong. You can control the distribution of multicast services, such as IP/TV, based on some type of subscription or service plan. You might also want to limit the number of multicast groups to which a user on a switch port can belong.

With the IGMP filtering feature, you can filter multicast joins on a per-port basis by configuring IP multicast profiles and associating them with individual switch ports. An IGMP profile can contain one or more multicast groups and specifies whether access to the group is permitted or denied. If an IGMP profile denying access to a multicast group is applied to a switch port, the IGMP join report requesting the stream of IP multicast traffic is dropped, and the port is not allowed to receive IP multicast traffic from that group. If the filtering action permits access to the multicast group, the IGMP report from the port is forwarded for normal processing. You can also set the maximum number of IGMP groups that a Layer 2 interface can join.

IGMP filtering controls only group-specific query and membership reports, including join and leave reports. It does not control general IGMP queries. IGMP filtering has no relationship with the function that directs the forwarding of IP multicast traffic. The filtering feature operates in the same manner whether CGMP or MVR is used to forward the multicast traffic.
IGMP filtering is applicable only to the dynamic learning of IP multicast group addresses, not static configuration.

With the IGMP throttling feature, you can set the maximum number of IGMP groups that a Layer 2 interface can join. If the maximum number of IGMP groups is set, the IGMP snooping forwarding table contains the maximum number of entries, and the interface receives an IGMP join report, you can configure an interface to drop the IGMP report or to replace the randomly selected multicast entry with the received IGMP report.

Note

IGMPv3 join and leave messages are not supported on switches running IGMP filtering.

These sections contain this configuration information:

- Default IGMP Filtering and Throttling Configuration, page 24-25
- Configuring IGMP Profiles, page 24-25 (optional)
- Applying IGMP Profiles, page 24-27 (optional)
- Setting the Maximum Number of IGMP Groups, page 24-27 (optional)
- Configuring the IGMP Throttling Action, page 24-28 (optional)

Default IGMP Filtering and Throttling Configuration

Table 24-7 shows the default IGMP filtering configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP filters</td>
<td>None applied</td>
</tr>
<tr>
<td>IGMP maximum number of IGMP groups</td>
<td>No maximum set</td>
</tr>
<tr>
<td>IGMP profiles</td>
<td>None defined</td>
</tr>
<tr>
<td>IGMP profile action</td>
<td>Deny the range addresses</td>
</tr>
</tbody>
</table>

When the maximum number of groups is in forwarding table, the default IGMP throttling action is to deny the IGMP report. For configuration guidelines, see the “Configuring the IGMP Throttling Action” section on page 24-28.

Configuring IGMP Profiles

To configure an IGMP profile, use the `ip igmp profile` global configuration command with a profile number to create an IGMP profile and to enter IGMP profile configuration mode. From this mode, you can specify the parameters of the IGMP profile to be used for filtering IGMP join requests from a port. When you are in IGMP profile configuration mode, you can create the profile by using these commands:

- **deny**: Specifies that matching addresses are denied; this is the default.
- **exit**: Exits from igmp-profile configuration mode.
- **no**: Negates a command or returns to its defaults.
• **permit**: Specifies that matching addresses are permitted.
• **range**: Specifies a range of IP addresses for the profile. You can enter a single IP address or a range with a start and an end address.

The default is for the switch to have no IGMP profiles configured. When a profile is configured, if neither the **permit** nor **deny** keyword is included, the default is to deny access to the range of IP addresses.

Beginning in privileged EXEC mode, follow these steps to create an IGMP profile:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp profile profile number</td>
</tr>
<tr>
<td>Step 3</td>
<td>**permit</td>
</tr>
<tr>
<td>Step 4</td>
<td>range ip multicast address</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip igmp profile profile number</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete a profile, use the **no ip igmp profile** *profile number* global configuration command.

To delete an IP multicast address or range of IP multicast addresses, use the **no range ip multicast address** IGMP profile configuration command.

This example shows how to create IGMP profile 4 allowing access to the single IP multicast address and how to verify the configuration. If the action was to deny (the default), it would not appear in the **show ip igmp profile** output display.

```
Switch(config)# ip igmp profile 4
Switch(config-igmp-profile)# permit
Switch(config-igmp-profile)# range 229.9.9.0
Switch(config-igmp-profile)# end
Switch# show ip igmp profile 4
IGMP Profile 4
  permit
  range 229.9.9.0 229.9.9.0
```
Applying IGMP Profiles

To control access as defined in an IGMP profile, use the `ip igmp filter` interface configuration command to apply the profile to the appropriate interfaces. You can apply IGMP profiles only to Layer 2 access ports; you cannot apply IGMP profiles to routed ports or SVIs. You cannot apply profiles to ports that belong to an EtherChannel port group. You can apply a profile to multiple interfaces, but each interface can have only one profile applied to it.

Beginning in privileged EXEC mode, follow these steps to apply an IGMP profile to a switch port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the physical interface, and enter interface configuration mode. The interface must be a Layer 2 port that does not belong to an EtherChannel port group.</td>
</tr>
<tr>
<td>Step 3: ip igmp filter profile number</td>
<td>Apply the specified IGMP profile to the interface. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show running-config interface interface-id</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a profile from an interface, use the `no ip igmp filter profile number` interface configuration command.

This example shows how to apply IGMP profile 4 to a port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip igmp filter 4
Switch(config-if)# end
```

Setting the Maximum Number of IGMP Groups

You can set the maximum number of IGMP groups that a Layer 2 interface can join by using the `ip igmp max-groups` interface configuration command. Use the `no` form of this command to set the maximum back to the default, which is no limit.

This restriction can be applied to Layer 2 ports only; you cannot set a maximum number of IGMP groups on routed ports or SVIs. You also can use this command on a logical EtherChannel interface but cannot use it on ports that belong to an EtherChannel port group.

Beginning in privileged EXEC mode, follow these steps to set the maximum number of IGMP groups in the forwarding table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode. The interface can be a Layer 2 port that does not belong to an EtherChannel group or a EtherChannel interface.</td>
</tr>
</tbody>
</table>
Configuring IGMP Filtering and Throttling

To remove the maximum group limitation and return to the default of no maximum, use the `no ip igmp max-groups` interface configuration command.

This example shows how to limit to 25 the number of IGMP groups that a port can join.

```bash
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip igmp max-groups 25
Switch(config-if)# end
```

Configuring the IGMP Throttling Action

After you set the maximum number of IGMP groups that a Layer 2 interface can join, you can configure an interface to replace the existing group with the new group for which the IGMP report was received by using the `ip igmp max-groups action replace` interface configuration command. Use the `no` form of this command to return to the default, which is to drop the IGMP join report.

Follow these guidelines when configuring the IGMP throttling action:

- This restriction can be applied only to Layer 2 ports. You can use this command on a logical EtherChannel interface but cannot use it on ports that belong to an EtherChannel port group.
- When the maximum group limitation is set to the default (no maximum), entering the `ip igmp max-groups action {deny | replace}` command has no effect.
- If you configure the throttling action and set the maximum group limitation after an interface has added multicast entries to the forwarding table, the forwarding-table entries are either aged out or removed, depending on the throttling action.
 - If you configure the throttling action as `deny`, the entries that were previously in the forwarding table are not removed but are aged out. After these entries are aged out and the maximum number of entries is in the forwarding table, the switch drops the next IGMP report received on the interface.
 - If you configure the throttling action as `replace`, the entries that were previously in the forwarding table are removed. When the maximum number of entries is in the forwarding table, the switch replaces a randomly selected entry with the received IGMP report.

To prevent the switch from removing the forwarding-table entries, you can configure the IGMP throttling action before an interface adds entries to the forwarding table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>ip igmp max-groups number</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config interface interface-id</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to configure the throttling action when the maximum number of entries is in the forwarding table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the physical interface to be configured, and enter interface configuration mode. The interface can be a Layer 2 port that does not belong to an EtherChannel group or an EtherChannel interface. The interface cannot be a trunk port.</td>
</tr>
</tbody>
</table>
| ip igmp max-groups action { deny | replace } | When an interface receives an IGMP report and the maximum number of entries is in the forwarding table, specify the action that the interface takes:
 • deny—Drop the report.
 • replace—Replace the existing group with the new group for which the IGMP report was received. |
| end | Return to privileged EXEC mode. |
| show running-config interface interface-id | Verify the configuration. |
| copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default action of dropping the report, use the `no ip igmp max-groups action` interface configuration command.

Displaying IGMP Filtering and Throttling Configuration

You can display IGMP profile characteristics, and you can display the IGMP profile and maximum group configuration for all interfaces on the switch or for a specified interface. You can also display the IGMP throttling configuration for all interfaces on the switch or for a specified interface.

Use the privileged EXEC commands in Table 24-8 to display IGMP filtering and throttling configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp profile [profile number]</td>
<td>Displays the specified IGMP profile or all the IGMP profiles defined on the switch.</td>
</tr>
<tr>
<td>show running-config [interface interface-id]</td>
<td>Displays the configuration of the specified interface or the configuration of all interfaces on the switch, including (if configured) the maximum number of IGMP groups to which an interface can belong and the IGMP profile applied to the interface.</td>
</tr>
</tbody>
</table>
Chapter 24 Configuring IGMP Snooping and MVR

Displaying IGMP Filtering and Throttling Configuration
Configuring IPv6 MLD Snooping

You can use Multicast Listener Discovery (MLD) snooping to enable efficient distribution of IP Version 6 (IPv6) multicast data to clients and routers in a switched network on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
To use IPv6, you must configure the dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch. You select the template by entering the `sdm prefer dual-ipv4-and-ipv6 {default | routing | vlan}` global configuration command.

For related information, see these chapters:
- For more information about SDM templates, see Chapter 8, “Configuring SDM Templates.”
- For information about IPv6 on the switch, see Chapter 40, “Configuring IPv6 Host Functions and Unicast Routing.”

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release or the Cisco IOS documentation referenced in the procedures.

This chapter includes these sections:
- “Understanding MLD Snooping” section on page 25-1
- “Configuring IPv6 MLD Snooping” section on page 25-5
- “Displaying MLD Snooping Information” section on page 25-12

Understanding MLD Snooping

In IP Version 4 (IPv4), Layer 2 switches can use Internet Group Management Protocol (IGMP) snooping to limit the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. In IPv6, MLD snooping performs a similar function. With MLD snooping, IPv6 multicast data is selectively forwarded to a list of ports that want to receive the data, instead of being flooded to all ports in a VLAN. This list is constructed by snooping IPv6 multicast control packets.

MLD is a protocol used by IPv6 multicast routers to discover the presence of multicast listeners (nodes wishing to receive IPv6 multicast packets) on the links that are directly attached to the routers and to discover which multicast packets are of interest to neighboring nodes. MLD is derived from IGMP; MLD...
Chapter 25 Configuring IPv6 MLD Snooping

Understanding MLD Snooping

Version 1 (MLDv1) is equivalent to IGMPv2, and MLD Version 2 (MLDv2) is equivalent to IGMPv3. MLD is a subprotocol of Internet Control Message Protocol Version 6 (ICMPv6), and MLD messages are a subset of ICMPv6 messages, identified in IPv6 packets by a preceding Next Header value of 58.

The switch supports two versions of MLD snooping:

- MLDv1 snooping detects MLDv1 control packets and sets up traffic bridging based on IPv6 destination multicast addresses.
- MLDv2 basic snooping (MBSS) uses MLDv2 control packets to set up traffic forwarding based on IPv6 destination multicast addresses.

The switch can snoop on both MLDv1 and MLDv2 protocol packets and bridge IPv6 multicast data based on destination IPv6 multicast addresses.

Note

The switch does not support MLDv2 enhanced snooping (MESS), which sets up IPv6 source and destination multicast address-based forwarding.

MLD snooping can be enabled or disabled globally or per VLAN. When MLD snooping is enabled, a per-VLAN IPv6 multicast MAC address table is constructed in software and a per-VLAN IPv6 multicast address table is constructed in software and hardware. The switch then performs IPv6 multicast-address based bridging in hardware.

According to IPv6 multicast standards, the switch derives the MAC multicast address by performing a logical-OR of the four low-order octets of the switch MAC address with the MAC address of 33:33:00:00:00:00. For example, the IPv6 MAC address of FF02:DEAD:BEEF:1:3 maps to the Ethernet MAC address of 33:33:00:01:00:03.

A multicast packet is unmatched when the destination IPv6 address does not match the destination MAC address. The switch forwards the unmatched packet in hardware based the MAC address table. If the destination MAC address is not in the MAC address table, the switch floods the packet to all ports in the same VLAN as the receiving port.

These sections describe some parameters of IPv6 MLD snooping:

- MLD Messages, page 25-2
- MLD Queries, page 25-3
- Multicast Client Aging Robustness, page 25-3
- Multicast Router Discovery, page 25-4
- MLD Reports, page 25-4
- MLD Done Messages and Immediate-Leave, page 25-4
- Topology Change Notification Processing, page 25-5
- MLD Snooping in Switch Stacks, page 25-5

MLD Messages

MLDv1 supports three types of messages:

- Listener Queries are the equivalent of IGMPv2 queries and are either General Queries or Multicast-Address-Specific Queries (MASQs).
- Multicast Listener Reports are the equivalent of IGMPv2 reports
- Multicast Listener Done messages are the equivalent of IGMPv2 leave messages.
MLDv2 supports MLDv2 queries and reports, as well as MLDv1 Report and Done messages. Message timers and state transitions resulting from messages being sent or received are the same as those of IGMPv2 messages. MLD messages that do not have valid link-local IPv6 source addresses are ignored by MLD routers and switches.

MLD Queries

The switch sends out MLD queries, constructs an IPv6 multicast address database, and generates MLD group-specific and MLD group-and-source-specific queries in response to MLD Done messages. The switch also supports report suppression, report proxying, Immediate-Leave functionality, and static IPv6 multicast MAC-address configuration.

When MLD snooping is disabled, all MLD queries are flooded in the ingress VLAN.

When MLD snooping is enabled, received MLD queries are flooded in the ingress VLAN, and a copy of the query is sent to the CPU for processing. From the received query, MLD snooping builds the IPv6 multicast address database. It detects multicast router ports, maintains timers, sets report response time, learns the querier IP source address for the VLAN, learns the querier port in the VLAN, and maintains multicast-address aging.

Note

When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

When a group exists in the MLD snooping database, the switch responds to a group-specific query by sending an MLDv1 report. When the group is unknown, the group-specific query is flooded to the ingress VLAN.

When a host wants to leave a multicast group, it can send out an MLD Done message (equivalent to IGMP Leave message). When the switch receives an MLDv1 Done message, if Immediate-Leave is not enabled, the switch sends an MASQ to the port from which the message was received to determine if other devices connected to the port should remain in the multicast group.

Multicast Client Aging Robustness

You can configure port membership removal from addresses based on the number of queries. A port is removed from membership to an address only when there are no reports to the address on the port for the configured number of queries. The default number is 2.

Multicast Router Discovery

Like IGMP snooping, MLD snooping performs multicast router discovery, with these characteristics:

- Ports configured by a user never age out.
- Dynamic port learning results from MLDv1 snooping queries and IPv6 PIMv2 packets.
- If there are multiple routers on the same Layer 2 interface, MLD snooping tracks a single multicast router on the port (the router that most recently sent a router control packet).
Dynamic multicast router port aging is based on a default timer of 5 minutes; the multicast router is deleted from the router port list if no control packet is received on the port for 5 minutes.

IPv6 multicast router discovery only takes place when MLD snooping is enabled on the switch.

Received IPv6 multicast router control packets are always flooded to the ingress VLAN, whether or not MLD snooping is enabled on the switch.

After the discovery of the first IPv6 multicast router port, unknown IPv6 multicast data is forwarded only to the discovered router ports (before that time, all IPv6 multicast data is flooded to the ingress VLAN).

MLD Reports

The processing of MLDv1 join messages is essentially the same as with IGMPv2. When no IPv6 multicast routers are detected in a VLAN, reports are not processed or forwarded from the switch. When IPv6 multicast routers are detected and an MLDv1 report is received, an IPv6 multicast group address and an IPv6 multicast MAC address are entered in the VLAN MLD database. Then all IPv6 multicast traffic to the group within the VLAN is forwarded using this address. When MLD snooping is disabled, reports are flooded in the ingress VLAN.

When MLD snooping is enabled, MLD report suppression, called listener message suppression, is automatically enabled. With report suppression, the switch forwards the first MLDv1 report received by a group to IPv6 multicast routers; subsequent reports for the group are not sent to the routers. When MLD snooping is disabled, report suppression is disabled, and all MLDv1 reports are flooded to the ingress VLAN.

The switch also supports MLDv1 proxy reporting. When an MLDv1 MASQ is received, the switch responds with MLDv1 reports for the address on which the query arrived if the group exists in the switch on another port and if the port on which the query arrived is not the last member port for the address.

MLD Done Messages and Immediate-Leave

When the Immediate-Leave feature is enabled and a host sends an MLDv1 Done message (equivalent to an IGMP leave message), the port on which the Done message was received is immediately deleted from the group. You enable Immediate-Leave on VLANs and (as with IGMP snooping), you should only use the feature on VLANs where a single host is connected to the port. If the port was the last member of a group, the group is also deleted, and the leave information is forwarded to the detected IPv6 multicast routers.

When Immediate Leave is not enabled in a VLAN (which would be the case when there are multiple clients for a group on the same port) and a Done message is received on a port, an MASQ is generated on that port. The user can control when a port membership is removed for an existing address in terms of the number of MASQs. A port is removed from membership to an address when there are no MLDv1 reports to the address on the port for the configured number of queries.

The number of MASQs generated is configured by using the `ipv6 mld snooping last-listener-query count` global configuration command. The default number is 2.

The MASQ is sent to the IPv6 multicast address for which the Done message was sent. If there are no reports sent to the IPv6 multicast address specified in the MASQ during the switch maximum response time, the port on which the MASQ was sent is deleted from the IPv6 multicast address database. The maximum response time is the time configured by using the `ipv6 mld snooping`
last-listener-query-interval global configuration command. If the deleted port is the last member of the multicast address, the multicast address is also deleted, and the switch sends the address leave information to all detected multicast routers.

Topology Change Notification Processing

When topology change notification (TCN) solicitation is enabled by using the `ipv6 mld snooping tcn query solicit` global configuration command, MLDv1 snooping sets the VLAN to flood all IPv6 multicast traffic with a configured number of MLDv1 queries before it begins sending multicast data only to selected ports. You set this value by using the `ipv6 mld snooping tcn flood query count` global configuration command. The default is to send two queries. The switch also generates MLDv1 global Done messages with valid link-local IPv6 source addresses when the switch becomes the STP root in the VLAN or when it is configured by the user. This is same as done in IGMP snooping.

MLD Snooping in Switch Stacks

The MLD IPv6 group and MAC address databases are maintained on all switches in the stack, regardless of which switch learns of an IPv6 multicast group. Report suppression and proxy reporting are done stack-wide. During the maximum response time, only one received report for a group is forwarded to the multicast routers, regardless of which switch the report arrives on.

The election of a new stack master does not affect the learning or bridging of IPv6 multicast data; bridging of IPv6 multicast data does not stop during a stack master re-election. When a new switch is added to the stack, it synchronizes the learned IPv6 multicast information from the stack master. Until the synchronization is complete, data ingressing on the newly added switch is treated as unknown multicast data.

Configuring IPv6 MLD Snooping

These sections describe how to configure IPv6 MLD snooping:

- Default MLD Snooping Configuration, page 25-6
- MLD Snooping Configuration Guidelines, page 25-6
- Enabling or Disabling MLD Snooping, page 25-7
- Configuring a Static Multicast Group, page 25-8
- Configuring a Multicast Router Port, page 25-9
- Enabling MLD Immediate Leave, page 25-9
- Configuring MLD Snooping Queries, page 25-10
- Disabling MLD Listener Message Suppression, page 25-11

Default MLD Snooping Configuration

Table 25-1 shows the default MLD snooping configuration.
Table 25-1 Default MLD Snooping Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD snooping (Global)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>MLD snooping (per VLAN)</td>
<td>Enabled. MLD snooping must be globally enabled for VLAN MLD snooping to take place.</td>
</tr>
<tr>
<td>IPv6 Multicast addresses</td>
<td>None configured.</td>
</tr>
<tr>
<td>IPv6 Multicast router ports</td>
<td>None configured.</td>
</tr>
<tr>
<td>MLD snooping Immediate Leave</td>
<td>Disabled.</td>
</tr>
<tr>
<td>MLD snooping robustness variable</td>
<td>Global: 2; Per VLAN: 0.</td>
</tr>
<tr>
<td>Last listener query count</td>
<td>Global: 2; Per VLAN: 0.</td>
</tr>
<tr>
<td>Last listener query interval</td>
<td>Global: 1000 (1 second); VLAN: 0.</td>
</tr>
<tr>
<td>TCN query solicit</td>
<td>Disabled.</td>
</tr>
<tr>
<td>TCN query count</td>
<td>2.</td>
</tr>
<tr>
<td>MLD listener suppression</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

MLD Snooping Configuration Guidelines

When configuring MLD snooping, consider these guidelines:

- You can configure MLD snooping characteristics at any time, but you must globally enable MLD snooping by using the `ipv6 mld snooping` global configuration command for the configuration to take effect.
- When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.
- MLD snooping and IGMP snooping act independently of each other. You can enable both features at the same time on the switch.
- The maximum number of multicast entries allowed on the switch or switch stack is determined by the configured SDM template.
- The maximum number of address entries allowed for the switch or switch stack is 1000.
Enabling or Disabling MLD Snooping

By default, IPv6 MLD snooping is globally disabled on the switch and enabled on all VLANs. When MLD snooping is globally disabled, it is also disabled on all VLANs. When you globally enable MLD snooping, the VLAN configuration overrides the global configuration. That is, MLD snooping is enabled only on VLAN interfaces in the default state (enabled).

You can enable and disable MLD snooping on a per-VLAN basis or for a range of VLANs, but if you globally disable MLD snooping, it is disabled in all VLANs. If global snooping is enabled, you can enable or disable VLAN snooping.

Beginning in privileged EXEC mode, follow these steps to globally enable MLD snooping on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ipv6 mld snooping</td>
<td>Globally enable MLD snooping on the switch.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To globally disable MLD snooping on the switch, use the `no ipv6 mld snooping` global configuration command.

Beginning in privileged EXEC mode, follow these steps to enable MLD snooping on a VLAN.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ipv6 mld snooping</td>
<td>Globally enable MLD snooping on the switch.</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan vlan-id</td>
<td>Enable MLD snooping on the VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>Note</td>
<td>MLD snooping must be globally enabled for VLAN snooping to be enabled.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable MLD snooping on a VLAN interface, use the `no ipv6 mld snooping vlan vlan-id` global configuration command for the specified VLAN number.
Chapter 25 Configuring IPv6 MLD Snooping

Configuring a Static Multicast Group

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure an IPv6 multicast address and member ports for a VLAN.

Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 mld snooping vlan vlan-id static ipv6_multicast_address interface interface-id</td>
</tr>
</tbody>
</table>

Step 2: Statically configure a multicast group with a Layer 2 port as a member of a multicast group:

- `vlan-id` is the multicast group VLAN ID. The VLAN ID range is 1 to 1001 and 1006 to 4094.
- `ipv6_multicast_address` is the 128-bit group IPv6 address. The address must be in the form specified in RFC 2373.
- `interface-id` is the member port. It can be a physical interface or a port channel (1 to 72).

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ipv6 mld snooping multicast-address user or show ipv6 mld snooping multicast-address vlan vlan-id user</td>
</tr>
</tbody>
</table>

Step 4: Verify the static member port and the IPv6 address.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

(Optional) Save your entries in the configuration file.

To remove a Layer 2 port from the multicast group, use the `no ipv6 mld snooping vlan vlan-id static mac-address interface interface-id` global configuration command. If all member ports are removed from a group, the group is deleted.

This example shows how to statically configure an IPv6 multicast group:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 2 static FF12::3 interface gigabitethernet1/0/1
Switch(config)# end
```

Configuring a Multicast Router Port

Although MLD snooping learns about router ports through MLD queries and PIMv6 queries, you can also use the command-line interface (CLI) to add a multicast router port to a VLAN. To add a multicast router port (add a static connection to a multicast router), use the `ipv6 mld snooping vlan mrouter` global configuration command on the switch.

Note: Static connections to multicast routers are supported only on switch ports.

Beginning in privileged EXEC mode, follow these steps to add a multicast router port to a VLAN:
To remove a multicast router port from the VLAN, use the `no ipv6 mld snooping vlan vlan-id mrouter interface interface-id` global configuration command.

This example shows how to add a multicast router port to VLAN 200:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 200 mrouter interface gigabitethernet1/0/2
Switch(config)# exit
```

Enabling MLD Immediate Leave

When you enable MLDv1 Immediate Leave, the switch immediately removes a port from a multicast group when it detects an MLD Done message on that port. You should only use the Immediate-Leave feature when there is a single receiver present on every port in the VLAN. When there are multiple clients for a multicast group on the same port, you should not enable Immediate-Leave in a VLAN.

Beginning in privileged EXEC mode, follow these steps to enable MLDv1 Immediate Leave:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>ipv6 mld snooping vlan vlan-id immediate-leave</code></td>
<td>Enable MLD Immediate Leave on the VLAN interface.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping vlan vlan-id</code></td>
<td>Verify that Immediate Leave is enabled on the VLAN interface.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable MLD Immediate Leave on a VLAN, use the `no ipv6 mld snooping vlan vlan-id immediate-leave` global configuration command.

This example shows how to enable MLD Immediate Leave on VLAN 130:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 130 immediate-leave
Switch(config)# exit
```
Configuring MLD Snooping Queries

When Immediate Leave is not enabled and a port receives an MLD Done message, the switch generates MASQs on the port and sends them to the IPv6 multicast address for which the Done message was sent. You can optionally configure the number of MASQs that are sent and the length of time the switch waits for a response before deleting the port from the multicast group.

Beginning in privileged EXEC mode, follow these steps to configure MLD snooping query characteristics for the switch or for a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ipv6 mld snooping robustness-variable value</td>
<td>(Optional) Set the number of queries that are sent before switch will deletes a listener (port) that does not respond to a general query. The range is 1 to 3; the default is 2.</td>
</tr>
<tr>
<td>Step 3 ipv6 mld snooping vlan vlan-id robustness-variable value</td>
<td>(Optional) Set the robustness variable on a VLAN basis, which determines the number of general queries that MLD snooping sends before aging out a multicast address when there is no MLD report response. The range is 1 to 3; the default is 0. When set to 0, the number used is the global robustness variable value.</td>
</tr>
<tr>
<td>Step 4 ipv6 mld snooping last-listener-query-count count</td>
<td>(Optional) Set the number of MASQs that the switch sends before aging out an MLD client. The range is 1 to 7; the default is 2. The queries are sent 1 second apart.</td>
</tr>
<tr>
<td>Step 5 ipv6 mld snooping vlan vlan-id last-listener-query-count count</td>
<td>(Optional) Set the last-listener query count on a VLAN basis. This value overrides the value configured globally. The range is 1 to 7; the default is 0. When set to 0, the global count value is used. Queries are sent 1 second apart.</td>
</tr>
<tr>
<td>Step 6 ipv6 mld snooping last-listener-query-interval interval</td>
<td>(Optional) Set the maximum response time that the switch waits after sending out a MASQ before deleting a port from the multicast group. The range is 100 to 32,768 thousands of a second. The default is 1000 (1 second).</td>
</tr>
<tr>
<td>Step 7 ipv6 mld snooping vlan vlan-id last-listener-query-interval interval</td>
<td>(Optional) Set the last-listener query interval on a VLAN basis. This value overrides the value configured globally. The range is 0 to 32,768 thousands of a second. The default is 0. When set to 0, the global last-listener query interval is used.</td>
</tr>
<tr>
<td>Step 8 ipv6 mld snooping tcn query solicit</td>
<td>(Optional) Enable topology change notification (TCN) solicitation, which means that VLANs flood all IPv6 multicast traffic for the configured number of queries before sending multicast data to only those ports requesting to receive it. The default is for TCN to be disabled.</td>
</tr>
<tr>
<td>Step 9 ipv6 mld snooping tcn flood query count count</td>
<td>(Optional) When TCN is enabled, specify the number of TCN queries to be sent. The range is from 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 10 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 11 show ipv6 mld snooping querier [vlan vlan-id]</td>
<td>(Optional) Verify that the MLD snooping querier information for the switch or for the VLAN.</td>
</tr>
<tr>
<td>Step 12 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to set the MLD snooping global robustness variable to 3:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping robustness-variable 3
Switch(config)# exit
```

This example shows how to set the MLD snooping last-listener query count for a VLAN to 3:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 200 last-listener-query-count 3
Switch(config)# exit
```

This example shows how to set the MLD snooping last-listener query interval (maximum response time) to 2000 (2 seconds):

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping last-listener-query-interval 2000
Switch(config)# exit
```

Disabling MLD Listener Message Suppression

MLD snooping listener message suppression is enabled by default. When it is enabled, the switch forwards only one MLD report per multicast router query. When message suppression is disabled, multiple MLD reports could be forwarded to the multicast routers.

Beginning in privileged EXEC mode, follow these steps to disable MLD listener message suppression:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no ipv6 mld snooping listener-message-suppression</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ipv6 mld snooping</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To re-enable MLD message suppression, use the `ipv6 mld snooping listener-message-suppression` global configuration command.

Displaying MLD Snooping Information

You can display MLD snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display MAC address multicast entries for a VLAN configured for MLD snooping.

To display MLD snooping information, use one or more of the privileged EXEC commands in Table 25-2.
Table 25-2 Commands for Displaying MLD Snooping Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 mld snooping [vlan vlan-id]</code></td>
<td>Display the MLD snooping configuration information for all VLANs on the switch or for a specified VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping mrouter [vlan vlan-id]</code></td>
<td>Display information on dynamically learned and manually configured multicast router interfaces. When you enable MLD snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping querier [vlan vlan-id]</code></td>
<td>Display information about the IPv6 address and incoming port for the most-recently received MLD query messages in the VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>`show ipv6 mld snooping multicast-address [vlan vlan-id] [count</td>
<td>dynamic</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping multicast-address vlan vlan-id [ipv6-multicast-address]</code></td>
<td>Display MLD snooping for the specified VLAN and IPv6 multicast address.</td>
</tr>
</tbody>
</table>
This chapter describes how to configure the port-based traffic control features on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:
- Configuring Storm Control, page 26-1
- Configuring Protected Ports, page 26-6
- Configuring Port Blocking, page 26-7
- Configuring Port Security, page 26-8
- Displaying Port-Based Traffic Control Settings, page 26-19

Configuring Storm Control

These sections contain this conceptual and configuration information:
- Understanding Storm Control, page 26-1
- Default Storm Control Configuration, page 26-3
- Configuring Storm Control and Threshold Levels, page 26-3

Understanding Storm Control

Storm control prevents traffic on a LAN from being disrupted by a broadcast, multicast, or unicast storm on one of the physical interfaces. A LAN storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. Errors in the protocol-stack implementation, mistakes in network configurations, or users issuing a denial-of-service attack can cause a storm.

Storm control (or traffic suppression) monitors packets passing from an interface to the switching bus and determines if the packet is unicast, multicast, or broadcast. The switch counts the number of packets of a specified type received within the 1-second time interval and compares the measurement with a predefined suppression-level threshold.
Storm control uses one of these methods to measure traffic activity:

- Bandwidth as a percentage of the total available bandwidth of the port that can be used by the broadcast, multicast, or unicast traffic
- Traffic rate in packets per second at which broadcast, multicast, or unicast packets are received
- Traffic rate in packets per second and for small frames. This feature is enabled globally. The threshold for small frames is configured for each interface. (Cisco IOS Release 12.2(44)SE or later)

With each method, the port blocks traffic when the rising threshold is reached. The port remains blocked until the traffic rate drops below the falling threshold (if one is specified) and then resumes normal forwarding. If the falling suppression level is not specified, the switch blocks all traffic until the traffic rate drops below the rising suppression level. In general, the higher the level, the less effective the protection against broadcast storms.

Note

When the storm control threshold for multicast traffic is reached, all multicast traffic except control traffic, such as bridge protocol data unit (BDPU) and Cisco Discovery Protocol (CDP) frames, are blocked. However, the switch does not differentiate between routing updates, such as OSPF, and regular multicast data traffic, so both types of traffic are blocked.

The graph in Figure 26-1 shows broadcast traffic patterns on an interface over a given period of time. The example can also be applied to multicast and unicast traffic. In this example, the broadcast traffic being forwarded exceeded the configured threshold between time intervals T1 and T2 and between T4 and T5. When the amount of specified traffic exceeds the threshold, all traffic of that kind is dropped for the next time period. Therefore, broadcast traffic is blocked during the intervals following T2 and T5. At the next time interval (for example, T3), if broadcast traffic does not exceed the threshold, it is again forwarded.

Figure 26-1 Broadcast Storm Control Example

![Graph showing broadcast storm control example](image)

The combination of the storm-control suppression level and the 1-second time interval controls the way the storm control algorithm works. A higher threshold allows more packets to pass through. A threshold value of 100 percent means that no limit is placed on the traffic. A value of 0.0 means that all broadcast, multicast, or unicast traffic on that port is blocked.

Note

Because packets do not arrive at uniform intervals, the 1-second time interval during which traffic activity is measured can affect the behavior of storm control.
You use the `storm-control` interface configuration commands to set the threshold value for each traffic type.

Default Storm Control Configuration

By default, unicast, broadcast, and multicast storm control are disabled on the switch interfaces; that is, the suppression level is 100 percent.

Configuring Storm Control and Threshold Levels

You configure storm control on a port and enter the threshold level that you want to be used for a particular type of traffic.

However, because of hardware limitations and the way in which packets of different sizes are counted, threshold percentages are approximations. Depending on the sizes of the packets making up the incoming traffic, the actual enforced threshold might differ from the configured level by several percentage points.

Note

Storm control is supported on physical interfaces. You can also configure storm control on an EtherChannel. When storm control is configured on an EtherChannel, the storm control settings propagate to the EtherChannel physical interfaces.

Beginning in privileged EXEC mode, follow these steps to storm control and threshold levels:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>interface interface-id</code></td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Command

Step 3

```markdown
storm-control { broadcast | multicast | unicast } level { level [level-low] | bps bps [bps-low] | pps pps [pps-low] }
```

Configure broadcast, multicast, or unicast storm control. By default, storm control is disabled.

The keywords have these meanings:

- For `level`, specify the rising threshold level for broadcast, multicast, or unicast traffic as a percentage (up to two decimal places) of the bandwidth. The port blocks traffic when the rising threshold is reached. The range is 0.00 to 100.00.
- (Optional) For `level-low`, specify the falling threshold level as a percentage (up to two decimal places) of the bandwidth. This value must be less than or equal to the rising suppression value. The port forwards traffic when traffic drops below this level. If you do not configure a falling suppression level, it is set to the rising suppression level. The range is 0.00 to 100.00.

If you set the threshold to the maximum value (100 percent), no limit is placed on the traffic. If you set the threshold to 0.0, all broadcast, multicast, and unicast traffic on that port is blocked.

- For `bps bps`, specify the rising threshold level for broadcast, multicast, or unicast traffic in bits per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.
- (Optional) For `bps-low`, specify the falling threshold level in bits per second (up to one decimal place). It can be less than or equal to the rising threshold level. The port forwards traffic when traffic drops below this level. The range is 0.0 to 10000000000.0.

- For `pps pps`, specify the rising threshold level for broadcast, multicast, or unicast traffic in packets per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.
- (Optional) For `pps-low`, specify the falling threshold level in packets per second (up to one decimal place). It can be less than or equal to the rising threshold level. The port forwards traffic when traffic drops below this level. The range is **0.0 to 10000000000.0**.

For BPS and PPS settings, you can use metric suffixes such as k, m, and g for large number thresholds.

Purpose

Step 4

```markdown
storm-control action { shutdown | trap }
```

Specify the action to be taken when a storm is detected. The default is to filter out the traffic and not to send traps.

- Select the `shutdown` keyword to error-disable the port during a storm.
- Select the `trap` keyword to generate an SNMP trap when a storm is detected.

Step 5

```markdown
end
```

Return to privileged EXEC mode.
To disable storm control, use the **no storm-control {broadcast | multicast | unicast} level** interface configuration command.

This example shows how to enable unicast storm control on a port with an 87-percent rising suppression level and a 65-percent falling suppression level:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# storm-control unicast level 87 65
```

This example shows how to enable broadcast address storm control on a port to a level of 20 percent. When the broadcast traffic exceeds the configured level of 20 percent of the total available bandwidth of the port within the traffic-storm-control interval, the switch drops all broadcast traffic until the end of the traffic-storm-control interval:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# storm-control broadcast level 20
```

Configuring Small-Frame Arrival Rate

Incoming VLAN-tagged packets smaller than 67 bytes are considered *small frames*. They are forwarded by the switch, but they do not cause the switch storm-control counters to increment. In Cisco IOS Release 12.2(44)SE and later, you can configure a port to be error disabled if small frames arrive at a specified rate (threshold).

You globally enable the small-frame rate-arrival feature on the switch and then configure the small-frame threshold for packets on each interface. Packets smaller than the minimum size and arriving at a specified rate (the threshold) are dropped since the port is error disabled.

If the **errdisable recovery cause small-frame** global configuration command is entered, the port is re-enabled after a specified time. (You specify the recovery time by using **errdisable recovery** global configuration command.)

Beginning in privileged EXEC mode, follow these steps to configure the threshold level for each interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 errdisable detect cause small-frame</td>
<td>Enable the small-frame rate-arrival feature on the switch.</td>
</tr>
<tr>
<td>Step 3 errdisable recovery interval interval</td>
<td>(Optional) Specify the time to recover from the specified error-disabled state.</td>
</tr>
<tr>
<td>Step 4 errdisable recovery cause small-frame</td>
<td>(Optional) Configure the recovery time for error-disabled ports to be automatically re-enabled after they are error disabled by the arrival of small frames</td>
</tr>
</tbody>
</table>
Chapter 26 Configuring Port-Based Traffic Control

Configuring Protected Ports

Some applications require that no traffic be forwarded at Layer 2 between ports on the same switch so that one neighbor does not see the traffic generated by another neighbor. In such an environment, the use of protected ports ensures that there is no exchange of unicast, broadcast, or multicast traffic between these ports on the switch.

Protected ports have these features:

- A protected port does not forward any traffic (unicast, multicast, or broadcast) to any other port that is also a protected port. Data traffic cannot be forwarded between protected ports at Layer 2; only control traffic, such as PIM packets, is forwarded because these packets are processed by the CPU and forwarded in software. All data traffic passing between protected ports must be forwarded through a Layer 3 device.
- Forwarding behavior between a protected port and a nonprotected port proceeds as usual.

Because a switch stack represents a single logical switch, Layer 2 traffic is not forwarded between any protected ports in the switch stack, whether they are on the same or different switches in the stack.

These sections contain this configuration information:

- Default Protected Port Configuration, page 26-6
- Protected Port Configuration Guidelines, page 26-7
- Configuring a Protected Port, page 26-7

Default Protected Port Configuration

The default is to have no protected ports defined.
Protected Port Configuration Guidelines

You can configure protected ports on a physical interface (for example, Gigabit Ethernet port 1) or an EtherChannel group (for example, port-channel 5). When you enable protected ports for a port channel, it is enabled for all ports in the port-channel group.

Do not configure a private-VLAN port as a protected port. Do not configure a protected port as a private-VLAN port. A private-VLAN isolated port does not forward traffic to other isolated ports or community ports. For more information about private VLANs, see Chapter 16, “Configuring Private VLANs.”

Configuring a Protected Port

Beginning in privileged EXEC mode, follow these steps to define a port as a protected port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>switchport protected</td>
<td>Configure the interface to be a protected port.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show interfaces interface-id switchport</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable protected port, use the no switchport protected interface configuration command.

This example shows how to configure a port as a protected port:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport protected
Switch(config-if)# end

Configuring Port Blocking

By default, the switch floods packets with unknown destination MAC addresses out of all ports. If unknown unicast and multicast traffic is forwarded to a protected port, there could be security issues. To prevent unknown unicast or multicast traffic from being forwarded from one port to another, you can block a port (protected or nonprotected) from flooding unknown unicast or multicast packets to other ports.

With multicast traffic, the port blocking feature blocks only pure Layer 2 packets. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

These sections contain this configuration information:
- Default Port Blocking Configuration, page 26-8
- Blocking Flooded Traffic on an Interface, page 26-8
Default Port Blocking Configuration

The default is to not block flooding of unknown multicast and unicast traffic out of a port, but to flood these packets to all ports.

Blocking Flooded Traffic on an Interface

Note
The interface can be a physical interface or an EtherChannel group. When you block multicast or unicast traffic for a port channel, it is blocked on all ports in the port-channel group.

Beginning in privileged EXEC mode, follow these steps to disable the flooding of unicast packets and Layer 2 multicast packets out of an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switchport block multicast</td>
<td>Block unknown multicast forwarding out of the port.</td>
</tr>
<tr>
<td>Step 4 switchport block unicast</td>
<td>Block unknown unicast forwarding out of the port.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show interfaces interface-id switchport</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the interface to the default condition where no traffic is blocked and normal forwarding occurs on the port, use the no switchport block {multicast | unicast} interface configuration commands.

This example shows how to block unicast and Layer 2 multicast flooding on a port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport block multicast
Switch(config-if)# switchport block unicast
Switch(config-if)# end
```

Configuring Port Security

You can use the port security feature to restrict input to an uplink interface by limiting and identifying MAC addresses of the stations allowed to access the uplink port. When you assign secure MAC addresses to a secure port, the port does not forward packets with source addresses outside the group of defined addresses. If you limit the number of secure MAC addresses to one and assign a single secure MAC address, the workstation attached to that port is assured the full bandwidth of the port.
If a uplink port is configured as a secure port and the maximum number of secure MAC addresses is reached, when the MAC address of a station attempting to access the port is different from any of the identified secure MAC addresses, a security violation occurs. Also, if a station with a secure MAC address configured or learned on one secure port attempts to access another secure port, a violation is flagged.

These sections contain this conceptual and configuration information:

- Understanding Port Security, page 26-9
- Default Port Security Configuration, page 26-11
- Port Security Configuration Guidelines, page 26-11
- Enabling and Configuring Port Security, page 26-13
- Enabling and Configuring Port Security Aging, page 26-17
- Port Security and Switch Stacks, page 26-18
- Port Security and Private VLANs, page 26-18

Understanding Port Security

These sections contain this conceptual information:

- Secure MAC Addresses, page 26-9
- Security Violations, page 26-10

Secure MAC Addresses

You configure the maximum number of secure addresses allowed on an uplink port by using the `switchport port-security maximum value` interface configuration command.

Note

If you try to set the maximum value to a number less than the number of secure addresses already configured on an interface, the command is rejected.

The switch supports these types of secure MAC addresses:

- Static secure MAC addresses—These are manually configured by using the `switchport port-security mac-address mac-address` interface configuration command, stored in the address table, and added to the switch running configuration.
- Dynamic secure MAC addresses—These are dynamically configured, stored only in the address table, and removed when the switch restarts.
- Sticky secure MAC addresses—These can be dynamically learned or manually configured, stored in the address table, and added to the running configuration. If these addresses are saved in the configuration file, when the switch restarts, the interface does not need to dynamically reconfigure them.

You can configure an interface to convert the dynamic MAC addresses to sticky secure MAC addresses and to add them to the running configuration by enabling `sticky learning`. To enable sticky learning, enter the `switchport port-security mac-address sticky` interface configuration command. When you enter this command, the interface converts all the dynamic secure MAC addresses, including those that were dynamically learned before sticky learning was enabled, to sticky secure MAC addresses. All sticky secure MAC addresses are added to the running configuration.
The sticky secure MAC addresses do not automatically become part of the configuration file, which is the startup configuration used each time the switch restarts. If you save the sticky secure MAC addresses in the configuration file, when the switch restarts, the interface does not need to relearn these addresses. If you do not save the sticky secure addresses, they are lost.

If sticky learning is disabled, the sticky secure MAC addresses are converted to dynamic secure addresses and are removed from the running configuration.

The maximum number of secure MAC addresses that you can configure on a switch or switch stack is set by the maximum number of available MAC addresses allowed in the system. This number is determined by the active Switch Database Management (SDM) template. See Chapter 8, “Configuring SDM Templates.” This number is the total of available MAC addresses, including those used for other Layer 2 functions and any other secure MAC addresses configured on interfaces.

Security Violations

It is a security violation when one of these situations occurs:

- The maximum number of secure MAC addresses have been added to the address table, and a station whose MAC address is not in the address table attempts to access the interface.
- An address learned or configured on one secure interface is seen on another secure interface in the same VLAN.

You can configure the interface for one of three violation modes, based on the action to be taken if a violation occurs:

- **protect**—when the number of secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.

 Note: We do not recommend configuring the protect violation mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.

- **restrict**—when the number of secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. In this mode, you are notified that a security violation has occurred. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.

- **shutdown**—a port security violation causes the interface to become error-disabled and to shut down immediately, and the port LED turns off. When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shutdown` interface configuration commands. This is the default mode.

- **shutdown vlan**—Use to set the security violation mode per-VLAN. In this mode, the VLAN is error disabled instead of the entire port when a violation occurs.
Table 26-1 shows the violation mode and the actions taken when you configure an interface for port security.

Table 26-1 Security Violation Mode Actions

<table>
<thead>
<tr>
<th>Violation Mode</th>
<th>Traffic is forwarded</th>
<th>Sends SNMP trap</th>
<th>Sends syslog message</th>
<th>Displays error message</th>
<th>Violation counter increments</th>
<th>Shuts down port</th>
</tr>
</thead>
<tbody>
<tr>
<td>protect</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>restrict</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>shutdown</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>shutdown vlan</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No³</td>
</tr>
</tbody>
</table>

1. Packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses.
2. The switch returns an error message if you manually configure an address that would cause a security violation.
3. Shuts down only the VLAN on which the violation occurred.

Default Port Security Configuration

Table 26-2 shows the default port security configuration for an interface.

Table 26-2 Default Port Security Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port security</td>
<td>Disabled on a port.</td>
</tr>
<tr>
<td>Sticky address learning</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Maximum number of secure MAC addresses per port</td>
<td>1.</td>
</tr>
<tr>
<td>Violation mode</td>
<td>Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded.</td>
</tr>
<tr>
<td>Port security aging</td>
<td>Disabled. Aging time is 0. Static aging is disabled. Type is absolute.</td>
</tr>
</tbody>
</table>

Port Security Configuration Guidelines

Follow these guidelines when configuring port security:
- Port security can only be configured on static access ports or trunk ports. A secure port cannot be a dynamic access port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot belong to a Gigabit EtherChannel port group.

Note Voice VLAN is only supported on access ports and not on trunk ports, even though the configuration is allowed.
A secure port cannot be a private-VLAN port.

When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the phone.

When a trunk port configured with port security and assigned to an access VLAN for data traffic and to a voice VLAN for voice traffic, entering the `switchport voice` and `switchport priority extend` interface configuration commands has no effect.

When a connected device uses the same MAC address to request an IP address for the access VLAN and then an IP address for the voice VLAN, only the access VLAN is assigned an IP address.

When you enter a maximum secure address value for an interface, and the new value is greater than the previous value, the new value overwrites the previously configured value. If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.

The switch does not support port security aging of sticky secure MAC addresses.

Table 26-3 summarizes port security compatibility with other port-based features.

<table>
<thead>
<tr>
<th>Type of Port or Feature on Port</th>
<th>Compatible with Port Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTP port</td>
<td>No</td>
</tr>
<tr>
<td>Trunk port</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic-access port</td>
<td>No</td>
</tr>
<tr>
<td>Routed port</td>
<td>No</td>
</tr>
<tr>
<td>SPAN source port</td>
<td>No</td>
</tr>
<tr>
<td>SPAN destination port</td>
<td>No</td>
</tr>
<tr>
<td>EtherChannel</td>
<td>No</td>
</tr>
<tr>
<td>Tunneling port</td>
<td>Yes</td>
</tr>
<tr>
<td>Protected port</td>
<td>Yes</td>
</tr>
<tr>
<td>IEEE 802.1x port</td>
<td>Yes</td>
</tr>
<tr>
<td>Voice VLAN port</td>
<td>Yes</td>
</tr>
<tr>
<td>Private VLAN port</td>
<td>No</td>
</tr>
<tr>
<td>IP source guard</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic Address Resolution Protocol (ARP) inspection</td>
<td>Yes</td>
</tr>
<tr>
<td>Flex Links</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. DTP = Dynamic Trunking Protocol
2. A port configured with the `switchport mode dynamic` interface configuration command.
3. A VLAN Query Protocol (VQP) port configured with the `switchport access vlan dynamic` interface configuration command.
4. You must set the maximum allowed secure addresses on the port to two plus the maximum number of secure addresses allowed on the access VLAN.
Enabling and Configuring Port Security

Beginning in privileged EXEC mode, follow these steps to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switchport mode { access</td>
<td>trunk }</td>
</tr>
<tr>
<td>Step 4 switchport voice vlan vlan-id</td>
<td>Enable voice VLAN on a port. vlan-id—Specify the VLAN to be used for voice traffic.</td>
</tr>
<tr>
<td>Step 5 switchport port-security</td>
<td>Enable port security on the interface.</td>
</tr>
<tr>
<td>Step 6 switchport port-security [maximum value { vlan { vlan-list</td>
<td>{ access</td>
</tr>
</tbody>
</table>

Enter one of these options after you enter the `vlan` keyword:

- `vlan-list`—On a trunk port, you can set a per-VLAN maximum value on a range of VLANs separated by a hyphen or a series of VLANs separated by commas. For nonspecified VLANs, the per-VLAN maximum value is used.
- `access`—On an access port, specify the VLAN as an access VLAN.
- `voice`—On an access port, specify the VLAN as a voice VLAN.

Note The `voice` keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN. If an interface is configured for voice VLAN, configure a maximum of two secure MAC addresses.
Step 7

switchport port-security violation
 { protect | restrict | shutdown | shutdown vlan }

(Optional) Set the violation mode, the action to be taken when a security violation is detected, as one of these:

- **protect**—When the number of port secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.

Note We do not recommend configuring the protect mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.

- **restrict**—When the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.

- **shutdown**—The interface is error-disabled when a violation occurs, and the port LED turns off. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.

- **shutdown vlan**—Use to set the security violation mode per VLAN. In this mode, the VLAN is error disabled instead of the entire port when a violation occurs.

Note When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command. You can manually re-enable it by entering the `shutdown` and `no shutdown` interface configuration commands or by using the `clear errdisable interface vlan` privileged EXEC command.
Step 8

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `switchport port-security [mac-address mac-address [vlan {vlan-id} | {access | voice}]]` | (Optional) Enter a secure MAC address for the interface. You can use this command to enter the maximum number of secure MAC addresses. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned. **Note** If you enable sticky learning after you enter this command, the secure addresses that were dynamically learned are converted to sticky secure MAC addresses and are added to the running configuration. (Optional) `vlan`—set a per-VLAN maximum value. Enter one of these options after you enter the `vlan` keyword:
 - `vlan-id`—On a trunk port, you can specify the VLAN ID and the MAC address. If you do not specify a VLAN ID, the native VLAN is used.
 - `access`—On an access port, specify the VLAN as an access VLAN.
 - `voice`—On an access port, specify the VLAN as a voice VLAN. **Note** The `voice` keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN. If an interface is configured for voice VLAN, configure a maximum of two secure MAC addresses. |

Step 9

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport port-security mac-address sticky</code></td>
<td>(Optional) Enable sticky learning on the interface.</td>
</tr>
</tbody>
</table>

Step 10

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `switchport port-security mac-address sticky [mac-address | vlan {vlan-id} | {access | voice}]]` | (Optional) Enter a sticky secure MAC address, repeating the command as many times as necessary. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned, are converted to sticky secure MAC addresses, and are added to the running configuration. **Note** If you do not enable sticky learning before this command is entered, an error message appears, and you cannot enter a sticky secure MAC address. (Optional) `vlan`—set a per-VLAN maximum value. Enter one of these options after you enter the `vlan` keyword:
 - `vlan-id`—On a trunk port, you can specify the VLAN ID and the MAC address. If you do not specify a VLAN ID, the native VLAN is used.
 - `access`—On an access port, specify the VLAN as an access VLAN.
 - `voice`—On an access port, specify the VLAN as a voice VLAN. **Note** The `voice` keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN. |

Step 11

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 12

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show port-security</code></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

Step 13

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return the interface to the default condition as not a secure port, use the `no switchport port-security` interface configuration command. If you enter this command when sticky learning is enabled, the sticky secure addresses remain part of the running configuration but are removed from the address table. All addresses are now dynamically learned.

To return the interface to the default number of secure MAC addresses, use the `no switchport port-security maximum value` interface configuration command. To return the violation mode to the default condition (shutdown mode), use the `no switchport port-security violation {protocol | restrict}` interface configuration command.

To disable sticky learning on an interface, use the `no switchport port-security mac-address sticky` interface configuration command. The interface converts the sticky secure MAC addresses to dynamic secure addresses. However, if you have previously saved the configuration with the sticky MAC addresses, you should save the configuration again after entering the `no switchport port-security mac-address sticky` command, or the sticky addresses will be restored if the switch reboots.

Use the `clear port-security {all | configured | dynamic | sticky}` privileged EXEC command to delete from the MAC address table all secure addresses or all secure addresses of a specific type (configured, dynamic, or sticky) on the switch or on an interface.

To delete a specific secure MAC address from the address table, use the `no switchport port-security mac-address mac-address` interface configuration command. To delete all dynamic secure addresses on an interface from the address table, enter the `no switchport port-security` interface configuration command followed by the `switchport port-security` command (to re-enable port security on the interface). If you use the `no switchport port-security mac-address sticky` interface configuration command to convert sticky secure MAC addresses to dynamic secure MAC addresses before entering the `no switchport port-security` command, all secure addresses on the interface except those that were manually configured are deleted.

You must specifically delete configured secure MAC addresses from the address table by using the `no switchport port-security mac-address mac-address` interface configuration command.

This example shows how to enable port security on a port and to set the maximum number of secure addresses to 50. The violation mode is the default, no static secure MAC addresses are configured, and sticky learning is enabled.

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 50
Switch(config-if)# switchport port-security mac-address sticky
```

This example shows how to configure a static secure MAC address on VLAN 3 on a port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode trunk
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security mac-address 0000.02000.0004 vlan 3
```

This example shows how to enable sticky port security on a port, to manually configure MAC addresses for data VLAN and voice VLAN, and to set the total maximum number of secure addresses to 20 (10 for data VLAN and 10 for voice VLAN).

```
Switch(config)# interface tengigabitethernet1/0/1
Switch(config-if)# switchport access vlan 21
Switch(config-if)# switchport mode access
Switch(config-if)# switchport voice vlan 22
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 20
Switch(config-if)# switchport port-security violation restrict
Switch(config-if)# switchport port-security mac-address sticky
Switch(config-if)# switchport port-security mac-address sticky 0000.0000.0002
```
Enabling and Configuring Port Security Aging

You can use port security aging to set the aging time for all secure addresses on a port. Two types of aging are supported per port:

- Absolute—The secure addresses on the port are deleted after the specified aging time.
- Inactivity—The secure addresses on the port are deleted only if the secure addresses are inactive for the specified aging time.

Use this feature to remove and add devices on a secure port without manually deleting the existing secure MAC addresses and to still limit the number of secure addresses on a port. You can enable or disable the aging of secure addresses on a per-port basis.

Beginning in privileged EXEC mode, follow these steps to configure port security aging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 3** | switchport port-security aging {static | time time | type {absolute | inactivity}} Enable or disable static aging for the secure port, or set the aging time or type. **Note** The switch does not support port security aging of sticky secure addresses. Enter **static** to enable aging for statically configured secure addresses on this port. For **time**, specify the aging time for this port. The valid range is from 0 to 1440 minutes. For **type**, select one of these keywords:
 - **absolute**—Sets the aging type as absolute aging. All the secure addresses on this port age out exactly after the time (minutes) specified lapses and are removed from the secure address list.
 - **inactivity**—Sets the aging type as inactivity aging. The secure addresses on this port age out only if there is no data traffic from the secure source addresses for the specified time period. |
| **Step 4** | end Return to privileged EXEC mode. |
| **Step 5** | show port-security [interface interface-id] [address] Verify your entries. |
| **Step 6** | copy running-config startup-config (Optional) Save your entries in the configuration file. |
To disable port security aging for all secure addresses on a port, use the `no switchport port-security aging time` interface configuration command. To disable aging for only statically configured secure addresses, use the `no switchport port-security aging static` interface configuration command.

This example shows how to set the aging time as 2 hours for the secure addresses on a port:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport port-security aging time 120
```

This example shows how to set the aging time as 2 minutes for the inactivity aging type with aging enabled for the configured secure addresses on the interface:

```
Switch(config-if)# switchport port-security aging time 2
Switch(config-if)# switchport port-security aging type inactivity
Switch(config-if)# switchport port-security aging static
```

You can verify the previous commands by entering the `show port-security interface interface-id` privileged EXEC command.

Port Security and Switch Stacks

When a switch joins a stack, the new switch will get the configured secure addresses. All dynamic secure addresses are downloaded by the new stack member from the other stack members.

When a switch (either the stack master or a stack member) leaves the stack, the remaining stack members are notified, and the secure MAC addresses configured or learned by that switch are deleted from the secure MAC address table. For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”

Port Security and Private VLANs

Port security allows an administrator to limit the number of MAC addresses learned on a port or to define which MAC addresses can be learned on a port.

Beginning in privileged EXEC mode, follow these steps to configure port security on a PVLAN host and promiscuous ports:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>interface interface-id</code></td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>`switchport mode private-vlan {host</td>
<td>promiscuous}`</td>
</tr>
<tr>
<td>4</td>
<td><code>switchport port-security</code></td>
<td>Enable port security on the interface.</td>
</tr>
<tr>
<td>5</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td><code>show port-security [interface interface-id] [address]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to configure port security on a PVLAN host and promiscuous ports:

```plaintext
Switch(config)# interface gigabitethernet 1/0/8
Switch(config-if)# switchport private-vlan mapping 2061 2201-2206,3101
Switch(config-if)# switchport mode private-vlan promiscuous
Switch(config-if)# switchport port-security maximum 288
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security violation restrict
```

Note

Ports that have both port security and private VLANs configured can be labeled secure PVLAN ports. When a secure address is learned on a secure PVLAN port, the same secure address cannot be learned on another secure PVLAN port belonging to the same primary VLAN. However, an address learned on unsecure PVLAN port can be learned on a secure PVLAN port belonging to same primary VLAN.

Secure addresses that are learned on host port get automatically replicated on associated primary VLANs, and similarly, secure addresses learned on promiscuous ports automatically get replicated on all associated secondary VLANs. Static addresses (using mac-address-table static command) cannot be user configured on a secure port.

Displaying Port-Based Traffic Control Settings

The `show interfaces interface-id switchport` privileged EXEC command displays (among other characteristics) the interface traffic suppression and control configuration. The `show storm-control` and `show port-security` privileged EXEC commands display those storm control and port security settings.

To display traffic control information, use one or more of the privileged EXEC commands in Table 26-4.

Table 26-4 Commands for Displaying Traffic Control Status and Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces [interface-id] switchport</td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td>show storm-control [interface-id] [broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td>show port-security [interface interface-id]</td>
<td>Displays port security settings for the switch or for the specified interface, including the maximum allowed number of secure MAC addresses for each interface, the number of secure MAC addresses on the interface, the number of security violations that have occurred, and the violation mode.</td>
</tr>
<tr>
<td>show port-security [interface interface-id] address</td>
<td>Displays all secure MAC addresses configured on all switch interfaces or on a specified interface with aging information for each address.</td>
</tr>
<tr>
<td>show port-security interface interface-id vlan</td>
<td>Displays the number of secure MAC addresses configured per VLAN on the specified interface.</td>
</tr>
</tbody>
</table>
Displaying Port-Based Traffic Control Settings
Configuring CDP

This chapter describes how to configure Cisco Discovery Protocol (CDP) on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the “System Management Commands” section in the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2.

This chapter consists of these sections:

- Understanding CDP, page 27-1
- Configuring CDP, page 27-2
- Monitoring and Maintaining CDP, page 27-5

Understanding CDP

CDP is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.

Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

On the switch, CDP enables SNMP management applications to display a graphical view of the network.
For a switch and connected endpoint devices running Cisco Medianet

- CDP identifies connected endpoints that communicate directly with the switch.
- To prevent duplicate reports of neighboring devices, only one wired switch reports the location information.
- The wired switch and the endpoints both send and receive location information.

The switch supports CDP Version 2.

CDP and Switch Stacks

A switch stack appears as a single switch in the network. Therefore, CDP discovers the switch stack, not the individual stack members. The switch stack sends CDP messages to neighboring network devices when there are changes to the switch stack membership, such as stack members being added or removed.

Configuring CDP

These sections contain this configuration information:

- Default CDP Configuration, page 27-2
- Configuring the CDP Characteristics, page 27-2
- Disabling and Enabling CDP, page 27-3
- Disabling and Enabling CDP on an Interface, page 27-4

Default CDP Configuration

Table 27-1 shows the default CDP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP global state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP timer (packet update frequency)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>CDP holdtime (before discarding)</td>
<td>180 seconds</td>
</tr>
<tr>
<td>CDP Version-2 advertisements</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Configuring the CDP Characteristics

You can configure the frequency of CDP updates, the amount of time to hold the information before discarding it, and whether or not to send Version-2 advertisements.
Beginning in privileged EXEC mode, follow these steps to configure the CDP timer, holdtime, and advertisement type.

Note Steps 2 through 4 are all optional and can be performed in any order.

Configuring CDP

Beginning in privileged EXEC mode, follow these steps to configure the CDP timer, holdtime, and advertisement type.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>cdp timer seconds</td>
<td>(Optional) Set the transmission frequency of CDP updates in seconds. The range is 5 to 254; the default is 60 seconds.</td>
</tr>
<tr>
<td>3</td>
<td>cdp holdtime seconds</td>
<td>(Optional) Specify the amount of time a receiving device should hold the information sent by your device before discarding it. The range is 10 to 255 seconds; the default is 180 seconds.</td>
</tr>
<tr>
<td>4</td>
<td>cdp advertise-v2</td>
<td>(Optional) Configure CDP to send Version-2 advertisements. This is the default state.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show cdp</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no form of the CDP commands to return to the default settings.

This example shows how to configure CDP characteristics.

```
Switch# configure terminal
Switch(config)# cdp timer 50
Switch(config)# cdp holdtime 120
Switch(config)# cdp advertise-v2
Switch(config)# end
```

For additional CDP show commands, see the “Monitoring and Maintaining CDP” section on page 27-5.

Disabling and Enabling CDP

CDP is enabled by default.

Beginning in privileged EXEC mode, follow these steps to disable the CDP device discovery capability:

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>no cdp run</td>
<td>Disable CDP.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Disabling and enabling CDP is a way to control the visibility of devices on a network. By disabling CDP, devices can avoid broadcasting information about their presence, which can be useful in environments where network traffic needs to be limited or monitored.
Beginning in privileged EXEC mode, follow these steps to enable CDP when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 cdp run</td>
<td>Enable CDP after disabling it.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

This example shows how to enable CDP if it has been disabled.

Switch# configure terminal
Switch(config)# cdp run
Switch(config)# end

Disabling and Enabling CDP on an Interface

CDP is enabled by default on all supported interfaces to send and to receive CDP information.

Beginning in privileged EXEC mode, follow these steps to disable CDP on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface on which you are disabling CDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 no cdp enable</td>
<td>Disable CDP on the interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to enable CDP on a port when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface on which you are enabling CDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 cdp enable</td>
<td>Enable CDP on the interface after disabling it.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable CDP on a port when it has been disabled.

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# cdp enable
Switch(config-if)# end
Monitoring and Maintaining CDP

To monitor and maintain CDP on your device, use one or more of the privileged EXEC commands in Table 27-2.

Table 27-2 Commands for Displaying CDP Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear cdp counters</td>
<td>Reset the traffic counters to zero.</td>
</tr>
<tr>
<td>clear cdp table</td>
<td>Delete the CDP table of information about neighbors.</td>
</tr>
<tr>
<td>show cdp</td>
<td>Display global information, such as frequency of transmissions and the holdtime for packets being sent.</td>
</tr>
<tr>
<td>show cdp entry entry-name [protocol</td>
<td>version]</td>
</tr>
<tr>
<td>show cdp interface [interface-id]</td>
<td>Display information about interfaces where CDP is enabled. You can limit the display to the interface about which you want information.</td>
</tr>
<tr>
<td>show cdp neighbors [interface-id] [detail]</td>
<td>Display information about neighbors, including device type, interface type and number, holdtime settings, capabilities, platform, and port ID. You can limit the display to neighbors of a specific interface or expand the display to provide more detailed information.</td>
</tr>
<tr>
<td>show cdp traffic</td>
<td>Display CDP counters, including the number of packets sent and received and checksum errors.</td>
</tr>
</tbody>
</table>
Configuring LLDP, LLDP-MED, and Wired Location Service

This chapter describes how to configure the Link Layer Discovery Protocol (LLDP), LLDP Media Endpoint Discovery (LLDP-MED) and wired location service on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the “System Management Commands” section in the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2.

• Understanding LLDP, LLDP-MED, and Wired Location Service, page 28-1
• Configuring LLDP, LLDP-MED, and Wired Location Service, page 28-4
• Monitoring and Maintaining LLDP, LLDP-MED, and Wired Location Service, page 28-10

Understanding LLDP, LLDP-MED, and Wired Location Service

LLDP

The Cisco Discovery Protocol (CDP) is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches). CDP allows network management applications to automatically discover and learn about other Cisco devices connected to the network.

To support non-Cisco devices and to allow for interoperability between other devices, the switch supports the IEEE 802.1AB Link Layer Discovery Protocol (LLDP). LLDP is a neighbor discovery protocol that is used for network devices to advertise information about themselves to other devices on the network. This protocol runs over the data-link layer, which allows two systems running different network layer protocols to learn about each other.

LLDP supports a set of attributes that it uses to discover neighbor devices. These attributes contain type, length, and value descriptions and are referred to as TLVs. LLDP supported devices can use TLVs to receive and send information to their neighbors. This protocol can advertise details such as configuration information, device capabilities, and device identity.
The switch supports these basic management TLVs. These are mandatory LLDP TLVs.

- Port description TLV
- System name TLV
- System description TLV
- System capabilities TLV
- Management address TLV

These organizationally specific LLDP TLVs are also advertised to support LLDP-MED.

- Port VLAN ID TLV ((IEEE 802.1 organizationally specific TLVs)
- MAC/PHY configuration/status TLV(IEEE 802.3 organizationally specific TLVs)

Note

A switch stack appears as a single switch in the network. Therefore, LLDP discovers the switch stack, not the individual stack members.

When you configure LLDP or CDP location information on a per-port basis, remote devices can send Cisco Medianet location information to the switch. For information, go to http://www.cisco.com/en/US/docs/ios/netmgmt/configuration/guide/nm_cdp_discover.html.

LLDP-MED

LLDP for Media Endpoint Devices (LLDP-MED) is an extension to LLDP that operates between endpoint devices such as IP phones and network devices such as switches. It specifically provides support for voice over IP (VoIP) applications and provides additional TLVs for capabilities discovery, network policy, Power over Ethernet, inventory management and location information. By default, all LLDP-MED TLVs are enabled.

LLDP-MED supports these TLVs:

- **LLDP-MED capabilities TLV**
 Allows LLDP-MED endpoints to determine the capabilities that the connected device supports and has enabled.

- **Network policy TLV**
 Allows both network connectivity devices and endpoints to advertise VLAN configurations and associated Layer 2 and Layer 3 attributes for the specific application on that port. For example, the switch can notify a phone of the VLAN number that it should use. The phone can connect to any switch, obtain its VLAN number, and then start communicating with the call control.

 By defining a network-policy profile TLV, you can create a profile for voice and voice-signalling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode. These profile attributes are then maintained centrally on the switch and propagated to the phone.

- **Power management TLV**
 Enables advanced power management between LLDP-MED endpoint and network connectivity devices. Allows switches and phones to convey power information, such as how the device is powered, power priority, and how much power the device needs.
Inventory management TLV

Allows an endpoint to send detailed inventory information about itself to the switch, including information such as hardware revision, firmware version, software version, serial number, manufacturer name, model name, and asset ID TLV.

Location TLV

Provides location information from the switch to the endpoint device. The location TLV can send this information:

- Civic location information
 Provides the civic address information and postal information. Examples of civic location information are street address, road name, and postal community name information.
- ELIN location information
 Provides the location information of a caller. The location is determined by the Emergency location identifier number (ELIN), which is a phone number that routes an emergency call to the local public safety answering point (PSAP) and which the PSAP can use to call back the emergency caller.

Wired Location Service

The switch uses the wired location service feature to send location and attachment tracking information for its connected devices to a Cisco Mobility Services Engine (MSE). The tracked device can be a wireless endpoint, a wired endpoint, or a wired switch or controller. The switch notifies the MSE of device link up and link down events through the Network Mobility Services Protocol (NMSP) location and attachment notifications.

The MSE starts the NMSP connection to the switch, which opens a server port. When the MSE connects to the switch there are a set of message exchanges to establish version compatibility and service exchange information followed by location information synchronization. After connection, the switch periodically sends location and attachment notifications to the MSE. Any link up or link down events detected during an interval are aggregated and sent at the end of the interval.

When the switch determines the presence or absence of a device on a link-up or link-down event, it obtains the client-specific information such as the MAC address, IP address, and username. If the client is LLDP-MED- or CDP-capable, the switch obtains the serial number and UDI through the LLDP-MED location TLV or CDP.

Depending on the device capabilities, the switch obtains this client information at link up:

- Slot and port specified in port connection
- MAC address specified in the client MAC address
- IP address specified in port connection
- 802.1X username if applicable
- Device category is specified as a wired station
- State is specified as new
- Serial number, UDI
- Model number
- Time in seconds since the switch detected the association
Depending on the device capabilities, the switch obtains this client information at link down:

- Slot and port that was disconnected
- MAC address
- IP address
- 802.1X username if applicable
- Device category is specified as a *wired station*
- State is specified as *delete*
- Serial number, UDI
- Time in seconds since the switch detected the disassociation

When the switch shuts down, it sends an attachment notification with the state *delete* and the IP address before closing the NMSP connection to the MSE. The MSE interprets this notification as disassociation for all the wired clients associated with the switch.

If you change a location address on the switch, the switch sends an NMSP location notification message that identifies the affected ports and the changed address information.

Configuring LLDP, LLDP-MED, and Wired Location Service

- Default LLDP Configuration, page 28-4
- Configuration Guidelines, page 28-5
- Enabling LLDP, page 28-5
- Configuring LLDP Characteristics, page 28-6
- Configuring LLDP-MED TLVs, page 28-6
- Configuring Network-Policy TLV, page 28-7
- Configuring Location TLV and Wired Location Service, page 28-9

Default LLDP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP global state</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP holdtime (before discarding)</td>
<td>120 seconds</td>
</tr>
<tr>
<td>LLDP timer (packet update frequency)</td>
<td>30 seconds</td>
</tr>
<tr>
<td>LLDP reinitialization delay</td>
<td>2 seconds</td>
</tr>
<tr>
<td>LLDP tlv-select</td>
<td>Disabled to send and receive all TLVs</td>
</tr>
<tr>
<td>LLDP interface state</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP receive</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP transmit</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP med-tlv-select</td>
<td>Disabled to send all LLDP-MED TLVs</td>
</tr>
</tbody>
</table>
Chapter 28 Configuring LLDP, LLDP-MED, and Wired Location Service

Configuration Guidelines

- If the interface is configured as a tunnel port, LLDP is automatically disabled.
- If you first configure a network-policy profile on an interface, you cannot apply the `switchport voice vlan` command on the interface. If the `switchport voice vlan vlan-id` is already configured on an interface, you can apply a network-policy profile on the interface. This way the interface has the voice or voice-signaling VLAN network-policy profile applied on the interface.
- You cannot configure static secure MAC addresses on an interface that has a network-policy profile.
- You cannot configure a network-policy profile on a private-VLAN port.
- For wired location to function, you must first enter the `ip device tracking` global configuration command.

Enabling LLDP

Beginning in privileged EXEC mode, follow these steps to enable LLDP:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>lldp run</code></td>
<td>Enable LLDP globally on the switch.</td>
</tr>
<tr>
<td>3</td>
<td><code>interface interface-id</code></td>
<td>Specify the interface on which you are enabling LLDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td><code>lldp transmit</code></td>
<td>Enable the interface to send LLDP packets.</td>
</tr>
<tr>
<td>5</td>
<td><code>lldp receive</code></td>
<td>Enable the interface to receive LLDP packets.</td>
</tr>
<tr>
<td>6</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td><code>show lldp</code></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>8</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable LLDP, use the `no lldp run` global configuration command. To disable LLDP on an interface, use the `no lldp transmit` and the `no lldp receive` interface configuration commands.

This example shows how to globally enable LLDP:

```
Switch# configure terminal
Switch(config)# lldp run
Switch(config)# end
```

This example shows how to enable LLDP on an interface:

```
Switch# configure terminal
Switch(config)# interface interface_id
Switch(config-if)# lldp transmit
Switch(config-if)# lldp receive
Switch(config-if)# end
```
Configuring LLDP Characteristics

You can configure the frequency of LLDP updates, the amount of time to hold the information before discarding it, and the initialization delay time. You can also select the LLDP and LLDP-MED TLVs to send and receive.

Beginning in privileged EXEC mode, follow these steps to configure the LLDP characteristics.

Note

Steps 2 through 5 are optional and can be performed in any order.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>lldp holdtime seconds</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the amount of time a receiving device should hold the information from your device before discarding it. The range is 0 to 65535 seconds; the default is 120 seconds.</td>
</tr>
<tr>
<td>Step 3</td>
<td>lldp reinit delay</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the delay time in seconds for LLDP to initialize on an interface. The range is 2 to 5 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td>Step 4</td>
<td>lldp timer rate</td>
</tr>
<tr>
<td></td>
<td>(Optional) Set the sending frequency of LLDP updates in seconds. The range is 5 to 65534 seconds; the default is 30 seconds.</td>
</tr>
<tr>
<td>Step 5</td>
<td>lldp tlv-select</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the LLDP TLVs to send or receive.</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the interface on which you are enabling LLDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>lldp med-tlv-select</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the LLDP-MED TLVs to send or receive.</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>show lldp</td>
</tr>
<tr>
<td></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the **no** form of each of the LLDP commands to return to the default setting.

This example shows how to configure LLDP characteristics.

```
Switch# configure terminal
Switch(config)# lldp holdtime 120
Switch(config)# lldp reinit 2
Switch(config)# lldp timer 30
Switch(config)# end
```

Configuring LLDP-MED TLVs

By default, the switch only sends LLDP packets until it receives LLDP-MED packets from the end device. It then sends LLDP packets with MED TLVs, as well. When the LLDP-MED entry has been aged out, it again only sends LLDP packets.
By using the `lldp` interface configuration command, you can configure the interface not to send the TLVs listed in Table 28-2.

Table 28-2 LLDP-MED TLVs

<table>
<thead>
<tr>
<th>LLDP-MED TLV</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inventory-management</td>
<td>LLDP-MED inventory management TLV</td>
</tr>
<tr>
<td>location</td>
<td>LLDP-MED location TLV</td>
</tr>
<tr>
<td>network-policy</td>
<td>LLDP-MED network policy TLV</td>
</tr>
<tr>
<td>power-management</td>
<td>LLDP-MED power management TLV</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to enable a TLV on an interface:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>interface interface-id</code></td>
<td>Specify the interface on which you are configuring an LLDP-MED TLV, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>lldp med-tlv-select tlv</code></td>
<td>Specify the TLV to enable.</td>
</tr>
<tr>
<td></td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable a TLV on an interface:

```
Switch# configure terminal
Switch(config)# interface interface_id
Switch(config-if)# lldp med-tlv-select inventory-management
Switch(config-if)# end
```

Configuring Network-Policy TLV

Beginning in privileged EXEC mode, follow these steps to create a network-policy profile, configure the policy attributes, and apply it to an interface:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>network-policy profile profile number</code></td>
<td>Specify the network-policy profile number, and enter network-policy configuration mode. The range is 1 to 4294967295.</td>
</tr>
</tbody>
</table>
Configuring LLDP, LLDP-MED, and Wired Location Service

Step 3

Configure the policy attributes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **(voice | voice-signaling)** vlan [vlan-id | Configure the native VLAN for voice traffic.
|cos cvalue | dscp dvalue) | vlan-id—(Optional) Specify the VLAN for voice traffic. The range is 1 to 4094.
| | cos cvalue—(Optional) Specify the Layer 2 priority class of service (CoS) for the configured VLAN. The range is 0 to 7; the default is 5.
| | dscp dvalue—(Optional) Specify the differentiated services code point (DSCP) value for the configured VLAN. The range is 0 to 46; the default is 0.
| | dot1p—(Optional) Configure the telephone to use IEEE 802.1p priority tagging and use VLAN 0 (the native VLAN).
| | none—(Optional) Do not instruct the IP telephone about the voice VLAN. The telephone uses the configuration from the telephone key pad.
| | untagged—(Optional) Configure the telephone to send untagged voice traffic. This is the default for the telephone.

Step 4

Return to global configuration mode.

- **exit**

Step 5

Specify the interface on which you are configuring a network-policy profile, and enter interface configuration mode.

- **interface interface-id**

Step 6

Specify the network-policy profile number.

- **network-policy profile number**

Step 7

Specify the network-policy TLV.

- **lldp med-tlv-select network-policy**

Step 8

Return to privileged EXEC mode.

- **end**

Step 9

Verify the configuration.

- **show network-policy profile**

Step 10

(Optional) Save your entries in the configuration file.

- **copy running-config startup-config**

Use the **no** form of each command to return to the default setting.

This example shows how to configure VLAN 100 for voice application with CoS and to enable the network-policy profile and network-policy TLV on an interface:

```
Switch# configure terminal
Switch(config)# network-policy 1
Switch(config-network-policy)# voice vlan 100 cos 4
Switch(config)# exit
Switch# configure terminal
Switch(config-if)# interface_id
Switch(config-if)# network-policy profile 1
Switch(config-if)# lldp med-tlv-select network-policy
```

This example shows how to configure the voice application type for the native VLAN with priority tagging:

```
Switch(config-network-policy)# voice vlan dot1p cos 4
Switch(config-network-policy)# voice vlan dot1p dscp 34
```
Configuring Location TLV and Wired Location Service

Beginning in privileged EXEC mode, follow these steps to configure location information for an endpoint and to apply it to an interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** | **location** Specify the location information for an endpoint.
 - **admin-tag**—Specify an administrative tag or site information.
 - **civic-location**—Specify civic location information.
 - **elin-location**—Specify emergency location information (ELIN).
 - **identifier id**—Specify the ID for the civic location.
 - **string**—Specify the site or location information in alphanumeric format. |
| **Step 3** | **exit** Return to global configuration mode. |
| **Step 4** | **interface interface-id** Specify the interface on which you are configuring the location information, and enter interface configuration mode. |
| **Step 5** | **location** Enter location information for an interface:
 - **additional-location-information**—Specify additional information for a location or place.
 - **civic-location-id**—Specify global civic location information for an interface.
 - **elin-location-id**—Specify emergency location information for an interface.
 - **id**—Specify the ID for the civic location or the ELIN location. The ID range is 1 to 4095.
 - **word**—Specify a word or phrase with additional location information. |
| **Step 6** | **end** Return to privileged EXEC mode. |
| **Step 7** | **show location** Verify the configuration. |
| **Step 8** | **copy running-config startup-config** (Optional) Save your entries in the configuration file. |

Use the `no` form of each command to return to the default setting.

This example shows how to configure civic location information on the switch:

```bash
Switch(config)# location civic-location identifier 1
Switch(config-civic)# number 3550
Switch(config-civic)# primary-road-name "Cisco Way"
Switch(config-civic)# city "San Jose"
Switch(config-civic)# state CA
Switch(config-civic)# building 19
Switch(config-civic)# room C6
Switch(config-civic)# county "Santa Clara"
Switch(config-civic)# country US
Switch(config-civic)# end
```
Beginning in privileged EXEC mode, follow these steps to enable wired location service on the switch.

Note

Your switch must be running the cryptographic (encrypted) software image to enable the `nmsp` global configuration commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>nmsp enable</td>
</tr>
<tr>
<td>Step 3</td>
<td>nmsp notification interval {attachment</td>
</tr>
<tr>
<td></td>
<td>location} interval-seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show network-policy profile</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to enable NMSP on a switch and to set the location notification time to 10 seconds:

```
Switch(config)# nmsp enable
Switch
```

Monitoring and Maintaining LLDP, LLDP-MED, and Wired Location Service

To monitor and maintain LLDP, LLDP-MED, and wired location service on your device, perform one or more of these tasks, beginning in privileged EXEC mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear lldp counters</td>
<td>Reset the traffic counters to zero.</td>
</tr>
<tr>
<td>clear lldp table</td>
<td>Delete the LLDP neighbor information table.</td>
</tr>
<tr>
<td>clear nmsp statistics</td>
<td>Clear the NMSP statistic counters.</td>
</tr>
<tr>
<td>show lldp</td>
<td>Display global information, such as frequency of transmissions, the holdtime for packets being sent, and the delay time before LLDP initializes on an interface.</td>
</tr>
<tr>
<td>show lldp entry entry-name</td>
<td>Display information about a specific neighbor. You can enter an asterisk (*) to display all neighbors, or you can enter the neighbor name.</td>
</tr>
<tr>
<td>show lldp interface [interface-id]</td>
<td>Display information about interfaces with LLDP enabled. You can limit the display to a specific interface.</td>
</tr>
</tbody>
</table>
Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show lldp neighbors [interface-id] [detail]</code></td>
<td>Display information about neighbors, including device type, interface type and number, holdtime settings, capabilities, and port ID. You can limit the display to neighbors of a specific interface or expand the display for more detailed information.</td>
</tr>
<tr>
<td><code>show lldp traffic</code></td>
<td>Display LLDP counters, including the number of packets sent and received, number of packets discarded, and number of unrecognized TLVs.</td>
</tr>
<tr>
<td><code>show location</code></td>
<td>Display the location information for an endpoint.</td>
</tr>
<tr>
<td><code>show network-policy profile</code></td>
<td>Display the configured network-policy profiles.</td>
</tr>
<tr>
<td><code>show nmsp</code></td>
<td>Display the NMSP information.</td>
</tr>
</tbody>
</table>
Configuring UDLD

This chapter describes how to configure the UniDirectional Link Detection (UDLD) protocol on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding UDLD, page 29-1
- Configuring UDLD, page 29-3
- Displaying UDLD Status, page 29-7

Understanding UDLD

UDLD is a Layer 2 protocol that enables devices connected through fiber-optic or twisted-pair Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. All connected devices must support UDLD for the protocol to successfully identify and disable unidirectional links. When UDLD detects a unidirectional link, it disables the affected port and alerts you. Unidirectional links can cause a variety of problems, including spanning-tree topology loops.

Modes of Operation

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD can detect unidirectional links due to misconnected ports on fiber-optic connections. In aggressive mode, UDLD can also detect unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and to misconnected ports on fiber-optic links.

In normal and aggressive modes, UDLD works with the Layer 1 mechanisms to learn the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting down misconnected ports. When you enable both autonegotiation and UDLD, the Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic sent by a local device is received by its neighbor but traffic from the neighbor is not received by the local device.
In normal mode, UDLD detects a unidirectional link when fiber strands in a fiber-optic port are disconnected and the Layer 1 mechanisms do not detect this misconnection. If the ports are connected correctly but the traffic is one way, UDLD does not detect the unidirectional link because the Layer 1 mechanism, which is supposed to detect this condition, does not do so. In this case, the logical link is considered undetermined, and UDLD does not disable the port.

When UDLD is in normal mode, if one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up because the Layer 1 mechanisms detects a physical problem with the link. In this case, UDLD does not take any action and the logical link is considered undetermined.

In aggressive mode, UDLD detects a unidirectional link by using the previous detection methods. UDLD in aggressive mode can also detect a unidirectional link on a point-to-point link on which no failure between the two devices is allowed. It can also detect a unidirectional link when one of these problems exists:

- On fiber-optic or twisted-pair links, one of the ports cannot send or receive traffic.
- On fiber-optic or twisted-pair links, one of the ports is down while the other is up.
- One of the fiber strands in the cable is disconnected.

In these cases, UDLD disables the affected port.

In a point-to-point link, UDLD hello packets can be considered as a heart beat whose presence guarantees the health of the link. Conversely, the loss of the heart beat means that the link must be shut down if it is not possible to re-establish a bidirectional link.

If both fiber strands in a cable are working normally from a Layer 1 perspective, UDLD in aggressive mode detects whether those fiber strands are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation because autonegotiation operates at Layer 1.

Methods to Detect Unidirectional Links

UDLD operates by using two mechanisms:

- **Neighbor database maintenance**

 UDLD learns about other UDLD-capable neighbors by periodically sending a hello packet (also called an advertisement or probe) on every active port to keep each device informed about its neighbors.

 When the switch receives a hello message, it caches the information until the age time (hold time or time-to-live) expires. If the switch receives a new hello message before an older cache entry ages, the switch replaces the older entry with the new one.

 Whenever a port is disabled and UDLD is running, whenever UDLD is disabled on a port, or whenever the switch is reset, UDLD clears all existing cache entries for the ports affected by the configuration change. UDLD sends at least one message to inform the neighbors to flush the part of their caches affected by the status change. The message is intended to keep the caches synchronized.

- **Event-driven detection and echoing**

 UDLD relies on echoing as its detection mechanism. Whenever a UDLD device learns about a new neighbor or receives a resynchronization request from an out-of-sync neighbor, it restarts the detection window on its side of the connection and sends echo messages in reply. Because this behavior is the same on all UDLD neighbors, the sender of the echoes expects to receive an echo in reply.
If the detection window ends and no valid reply message is received, the link might shut down, depending on the UDLD mode. When UDLD is in normal mode, the link might be considered undetermined and might not be shut down. When UDLD is in aggressive mode, the link is considered unidirectional, and the port is disabled.

If UDLD in normal mode is in the advertisement or in the detection phase and all the neighbor cache entries are aged out, UDLD restarts the link-up sequence to resynchronize with any potentially out-of-sync neighbors.

If you enable aggressive mode when all the neighbors of a port have aged out either in the advertisement or in the detection phase, UDLD restarts the link-up sequence to resynchronize with any potentially out-of-sync neighbor. UDLD shuts down the port if, after the fast train of messages, the link state is still undetermined.

Figure 29-1 shows an example of a unidirectional link condition.

Figure 29-1 UDLD Detection of a Unidirectional Link

Switch A

Switch B successfully receives traffic from Switch A on this port.

However, Switch A does not receive traffic from Switch B on the same port. If UDLD is in aggressive mode, it detects the problem and disables the port. If UDLD is in normal mode, the logical link is considered undetermined, and UDLD does not disable the interface.

Configuring UDLD

These sections contain this configuration information:

- Default UDLD Configuration, page 29-4
- Configuration Guidelines, page 29-4
- Enabling UDLD Globally, page 29-5
- Enabling UDLD on an Interface, page 29-6
- Resetting an Interface Disabled by UDLD, page 29-6
Default UDLD Configuration

Table 29-1 shows the default UDLD configuration.

Table 29-1 Default UDLD Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD per-port enable state for fiber-optic media</td>
<td>Disabled on all Ethernet fiber-optic ports</td>
</tr>
<tr>
<td>UDLD per-port enable state for twisted-pair (copper) media</td>
<td>Disabled on all Ethernet 10/100 and 1000BASE-TX ports</td>
</tr>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Configuration Guidelines

These are the UDLD configuration guidelines:

- UDLD is not supported on ATM ports.
- A UDLD-capable port cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another switch.
- When configuring the mode (normal or aggressive), make sure that the same mode is configured on both sides of the link.

⚠️ Caution

Loop guard works only on point-to-point links. We recommend that each end of the link has a directly connected device that is running STP.
Enabling UDLD Globally

Beginning in privileged EXEC mode, follow these steps to enable UDLD in the aggressive or normal mode and to set the configurable message timer on all fiber-optic ports on the switch and all members in the switch stack:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>udld {aggressive</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show udlld</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable UDLD globally, use the no udlld enable global configuration command to disable normal mode UDLD on all fiber-optic ports. Use the no udlld aggressive global configuration command to disable aggressive mode UDLD on all fiber-optic ports.
Enabling UDLD on an Interface

Beginning in privileged EXEC mode, follow these steps either to enable UDLD in the aggressive or normal mode or to disable UDLD on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the port to be enabled for UDLD, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: udld port [aggressive]</td>
<td>UDLD is disabled by default.</td>
</tr>
<tr>
<td></td>
<td>Note When a switch joins a switch stack, it retains its interface-specific UDLD settings.</td>
</tr>
<tr>
<td></td>
<td>• udld port—Enables UDLD in normal mode on the specified port.</td>
</tr>
<tr>
<td></td>
<td>• udld port aggressive—Enables UDLD in aggressive mode on the specified port.</td>
</tr>
<tr>
<td></td>
<td>Note Use the no udld port interface configuration command to disable UDLD on a specified fiber-optic port.</td>
</tr>
<tr>
<td></td>
<td>For more information about aggressive and normal modes, see the “Modes of Operation” section on page 29-1.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show udld interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Resetting an Interface Disabled by UDLD

Beginning in privileged EXEC mode, follow these steps to reset all ports disabled by UDLD:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: udld reset</td>
<td>Reset all ports disabled by UDLD.</td>
</tr>
<tr>
<td>Step 2: show udld</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

You can also bring up the port by using these commands:

- The shutdown interface configuration command followed by the no shutdown interface configuration command restarts the disabled port.
- The no udld {aggressive | enable} global configuration command followed by the udld {aggressive | enable} global configuration command re-enables the disabled ports.
- The no udld port interface configuration command followed by the udld port [aggressive] interface configuration command re-enables the disabled fiber-optic port.
- The errdisable recovery cause udld global configuration command enables the timer to automatically recover from the UDLD error-disabled state, and the errdisable recovery interval interval global configuration command specifies the time to recover from the UDLD error-disabled state.
Displaying UDLD Status

To display the UDLD status for the specified port or for all ports, use the `show udld [interface-id]` privileged EXEC command.

For detailed information about the fields in the command output, see the command reference for this release.
Configuring SPAN and RSPAN

This chapter describes how to configure Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding SPAN and RSPAN, page 30-1
- Understanding Flow-Based SPAN, page 30-10
- Configuring SPAN and RSPAN, page 30-11
- Configuring FSPAN and FRSPAN, page 30-24
- Displaying SPAN and RSPAN Status, page 30-29

Understanding SPAN and RSPAN

You can analyze network traffic passing through ports or VLANs by using SPAN or RSPAN to send a copy of the traffic to another port on the switch or on another switch that has been connected to a network analyzer or other monitoring or security device. SPAN copies (or mirrors) traffic received or sent (or both) on source ports or source VLANs to a destination port for analysis. SPAN does not affect the switching of network traffic on the source ports or VLANs. You must dedicate the destination port for SPAN use. Except for traffic that is required for the SPAN or RSPAN session, destination ports do not receive or forward traffic.

Only traffic that enters or leaves source ports or traffic that enters or leaves source VLANs can be monitored by using SPAN; traffic routed to a source VLAN cannot be monitored. For example, if incoming traffic is being monitored, traffic that gets routed from another VLAN to the source VLAN cannot be monitored; however, traffic that is received on the source VLAN and routed to another VLAN can be monitored.

You can use the SPAN or RSPAN destination port to inject traffic from a network security device. For example, if you connect a Cisco Intrusion Detection System (IDS) sensor appliance to a destination port, the IDS device can send TCP reset packets to close down the TCP session of a suspected attacker.
These sections contain this conceptual information:

- Local SPAN, page 30-2
- Remote SPAN, page 30-3
- SPAN and RSPAN Concepts and Terminology, page 30-4
- SPAN and RSPAN Interaction with Other Features, page 30-9
- SPAN and RSPAN and Switch Stacks, page 30-10

Local SPAN

Local SPAN supports a SPAN session entirely within one switch; all source ports or source VLANs and destination ports are in the same switch or switch stack. Local SPAN copies traffic from one or more source ports in any VLAN or from one or more VLANs to a destination port for analysis. For example, in Figure 30-1, all traffic on port 5 (the source port) is mirrored to port 10 (the destination port). A network analyzer on port 10 receives all network traffic from port 5 without being physically attached to port 5.

Figure 30-1 Example of Local SPAN Configuration on a Single Switch

![Figure 30-1](image)

Figure 30-2 is an example of a local SPAN in a switch stack, where the source and destination ports reside on different stack members.
Remote SPAN

RSPAN supports source ports, source VLANs, and destination ports on different switches (or different switch stacks), enabling remote monitoring of multiple switches across your network. Figure 30-3 shows source ports on Switch A and Switch B. The traffic for each RSPAN session is carried over a user-specified RSPAN VLAN that is dedicated for that RSPAN session in all participating switches. The RSPAN traffic from the source ports or VLANs is copied into the RSPAN VLAN and forwarded over trunk ports carrying the RSPAN VLAN to a destination session monitoring the RSPAN VLAN. Each RSPAN source switch must have either ports or VLANs as RSPAN sources. The destination is always a physical port, as shown on Switch C in the figure.
SPAN and RSPAN Concepts and Terminology

This section describes concepts and terminology associated with SPAN and RSPAN configuration.

SPAN Sessions

SPAN sessions (local or remote) allow you to monitor traffic on one or more ports, or one or more VLANs, and send the monitored traffic to one or more destination ports.

A local SPAN session is an association of a destination port with source ports or source VLANs, all on a single network device. Local SPAN does not have separate source and destination sessions. Local SPAN sessions gather a set of ingress and egress packets specified by the user and form them into a stream of SPAN data, which is directed to the destination port.

RSPAN consists of at least one RSPAN source session, an RSPAN VLAN, and at least one RSPAN destination session. You separately configure RSPAN source sessions and RSPAN destination sessions on different network devices. To configure an RSPAN source session on a device, you associate a set of source ports or source VLANs with an RSPAN VLAN. The output of this session is the stream of SPAN packets that are sent to the RSPAN VLAN. To configure an RSPAN destination session on another device, you associate the destination port with the RSPAN VLAN. The destination session collects all RSPAN VLAN traffic and sends it out the RSPAN destination port.
An RSPAN source session is very similar to a local SPAN session, except for where the packet stream is directed. In an RSPAN source session, SPAN packets are relabeled with the RSPAN VLAN ID and directed over normal trunk ports to the destination switch.

An RSPAN destination session takes all packets received on the RSPAN VLAN, strips off the VLAN tagging, and presents them on the destination port. Its purpose is to present a copy of all RSPAN VLAN packets (except Layer 2 control packets) to the user for analysis.

There can be more than one source session and more than one destination session active in the same RSPAN VLAN. There can also be intermediate switches separating the RSPAN source and destination sessions. These switches need not be capable of running RSPAN, but they must respond to the requirements of the RSPAN VLAN (see the “RSPAN VLAN” section on page 30-9).

Traffic monitoring in a SPAN session has these restrictions:

- Sources can be ports or VLANs, but you cannot mix source ports and source VLANs in the same session.
- The switch supports up to two local SPAN or RSPAN source sessions.
 - You can run both a local SPAN and an RSPAN source session in the same switch or switch stack. The switch or switch stack supports a total of 66 source and RSPAN destination sessions.
 - You can configure two separate SPAN or RSPAN source sessions with separate or overlapping sets of SPAN source ports and VLANs. Both switched and routed ports can be configured as SPAN sources and destinations.
- You can have multiple destination ports in a SPAN session, but no more than 64 destination ports per switch stack.
- SPAN sessions do not interfere with the normal operation of the switch. However, an oversubscribed SPAN destination, for example, a 10-Mb/s port monitoring a 100-Mb/s port, can result in dropped or lost packets.
- When SPAN or RSPAN is enabled, each packet being monitored is sent twice, once as normal traffic and once as a monitored packet. Therefore monitoring a large number of ports or VLANs could potentially generate large amounts of network traffic.
- You can configure SPAN sessions on disabled ports; however, a SPAN session does not become active unless you enable the destination port and at least one source port or VLAN for that session.
- The switch does not support a combination of local SPAN and RSPAN in a single session.
 - An RSPAN source session cannot have a local destination port.
 - An RSPAN destination session cannot have a local source port.
 - An RSPAN destination session and an RSPAN source session that are using the same RSPAN VLAN cannot run on the same switch or switch stack.

Monitored Traffic

SPAN sessions can monitor these traffic types:

- Receive (Rx) SPAN—The goal of receive (or ingress) SPAN is to monitor as much as possible all the packets received by the source interface or VLAN before any modification or processing is performed by the switch. A copy of each packet received by the source is sent to the destination port for that SPAN session.

 Packets that are modified because of routing or quality of service (QoS)—for example, modified Differentiated Services Code Point (DSCP)—are copied before modification.
Features that can cause a packet to be dropped during receive processing have no effect on ingress SPAN; the destination port receives a copy of the packet even if the actual incoming packet is dropped. These features include IP standard and extended input access control lists (ACLs), ingress QoS policing, VLAN ACLs, and egress QoS policing.

- **Transmit (Tx) SPAN** — The goal of transmit (or egress) SPAN is to monitor as much as possible all the packets sent by the source interface after all modification and processing is performed by the switch. A copy of each packet sent by the source is sent to the destination port for that SPAN session. The copy is provided after the packet is modified.

 Packets that are modified because of routing—for example, with modified time-to-live (TTL), MAC-address, or QoS values—are duplicated (with the modifications) at the destination port.

 Features that can cause a packet to be dropped during transmit processing also affect the duplicated copy for SPAN. These features include IP standard and extended output ACLs and egress QoS policing.

- **Both** — In a SPAN session, you can also monitor a port or VLAN for both received and sent packets. This is the default.

The default configuration for local SPAN session ports is to send all packets untagged. SPAN also does not normally monitor bridge protocol data unit (BPDU) packets and Layer 2 protocols, such as Cisco Discovery Protocol (CDP), VLAN Trunk Protocol (VTP), Dynamic Trunking Protocol (DTP), Spanning Tree Protocol (STP), and Port Aggregation Protocol (PAgP). However, when you enter the **encapsulation replicate** keywords when configuring a destination port, these changes occur:

- Packets are sent on the destination port with the same encapsulation—untagged or IEEE 802.1Q—that they had on the source port.
- Packets of all types, including BPDU and Layer 2 protocol packets, are monitored.

Therefore, a local SPAN session with encapsulation replicate enabled can have a mixture of untagged and IEEE 802.1Q tagged packets appear on the destination port.

Switch congestion can cause packets to be dropped at ingress source ports, egress source ports, or SPAN destination ports. In general, these characteristics are independent of one another. For example:

- A packet might be forwarded normally but dropped from monitoring due to an oversubscribed SPAN destination port.
- An ingress packet might be dropped from normal forwarding, but still appear on the SPAN destination port.
- An egress packet dropped because of switch congestion is also dropped from egress SPAN.

In some SPAN configurations, multiple copies of the same source packet are sent to the SPAN destination port. For example, a bidirectional (both Rx and Tx) SPAN session is configured for the Rx monitor on port A and Tx monitor on port B. If a packet enters the switch through port A and is switched to port B, both incoming and outgoing packets are sent to the destination port. Both packets are the same (unless a Layer-3 rewrite occurs, in which case the packets are different because of the packet modification).

Source Ports

A source port (also called a **monitored port**) is a switched or routed port that you monitor for network traffic analysis. In a local SPAN session or RSPAN source session, you can monitor source ports or VLANs for traffic in one or both directions. The switch supports any number of source ports (up to the maximum number of available ports on the switch) and any number of source VLANs (up to the maximum number of VLANs supported). However, the switch supports a maximum of two sessions (local or RSPAN) with source ports or VLANs. You cannot mix ports and VLANs in a single session.
A source port has these characteristics:

- It can be monitored in multiple SPAN sessions.
- Each source port can be configured with a direction (ingress, egress, or both) to monitor.
- It can be any port type (for example, EtherChannel, Gigabit Ethernet, and so forth).
- For EtherChannel sources, you can monitor traffic for the entire EtherChannel or individually on a physical port as it participates in the port channel.
- It can be an access port, trunk port, routed port, or voice VLAN port.
- It cannot be a destination port.
- Source ports can be in the same or different VLANs.
- You can monitor multiple source ports in a single session.

Source VLANs

VLAN-based SPAN (VSPAN) is the monitoring of the network traffic in one or more VLANs. The SPAN or RSPAN source interface in VSPAN is a VLAN ID, and traffic is monitored on all the ports for that VLAN.

VSPAN has these characteristics:

- All active ports in the source VLAN are included as source ports and can be monitored in either or both directions.
- On a given port, only traffic on the monitored VLAN is sent to the destination port.
- If a destination port belongs to a source VLAN, it is excluded from the source list and is not monitored.
- If ports are added to or removed from the source VLANs, the traffic on the source VLAN received by those ports is added to or removed from the sources being monitored.
- You cannot use filter VLANs in the same session with VLAN sources.
- You can monitor only Ethernet VLANs.

VLAN Filtering

When you monitor a trunk port as a source port, by default, all VLANs active on the trunk are monitored. You can limit SPAN traffic monitoring on trunk source ports to specific VLANs by using VLAN filtering.

- VLAN filtering applies only to trunk ports or to voice VLAN ports.
- VLAN filtering applies only to port-based sessions and is not allowed in sessions with VLAN sources.
- When a VLAN filter list is specified, only those VLANs in the list are monitored on trunk ports or on voice VLAN access ports.
- SPAN traffic coming from other port types is not affected by VLAN filtering; that is, all VLANs are allowed on other ports.
- VLAN filtering affects only traffic forwarded to the destination SPAN port and does not affect the switching of normal traffic.
Destination Port

Each local SPAN session or RSPAN destination session must have a destination port (also called a *monitoring port*) that receives a copy of traffic from the source ports or VLANs and sends the SPAN packets to the user, usually a network analyzer.

A destination port has these characteristics:

- For a local SPAN session, the destination port must reside on the same switch or switch stack as the source port. For an RSPAN session, it is located on the switch containing the RSPAN destination session. There is no destination port on a switch or switch stack running only an RSPAN source session.
- When a port is configured as a SPAN destination port, the configuration overwrites the original port configuration. When the SPAN destination configuration is removed, the port reverts to its previous configuration. If a configuration change is made to the port while it is acting as a SPAN destination port, the change does not take effect until the SPAN destination configuration had been removed.
- If the port was in an EtherChannel group, it is removed from the group while it is a destination port. If it was a routed port, it is no longer a routed port.
- It can be any Ethernet physical port.
- It cannot be a secure port.
- It cannot be a source port.
- It cannot be an EtherChannel group or a VLAN.
- It can participate in only one SPAN session at a time (a destination port in one SPAN session cannot be a destination port for a second SPAN session).
- When it is active, incoming traffic is disabled. The port does not transmit any traffic except that required for the SPAN session. Incoming traffic is never learned or forwarded on a destination port.
- If ingress traffic forwarding is enabled for a network security device, the destination port forwards traffic at Layer 2.
- It does not participate in any of the Layer 2 protocols (STP, VTP, CDP, DTP, PagP).
- A destination port that belongs to a source VLAN of any SPAN session is excluded from the source list and is not monitored.
- The maximum number of destination ports in a switch or switch stack is 64.

Local SPAN and RSPAN destination ports behave differently regarding VLAN tagging and encapsulation:

- For local SPAN, if the *encapsulation replicate* keywords are specified for the destination port, these packets appear with the original encapsulation (untagged or IEEE 802.1Q). If these keywords are not specified, packets appear in the untagged format. Therefore, the output of a local SPAN session with *encapsulation replicate* enabled can contain a mixture of untagged or IEEE 802.1Q-tagged packets.
- For RSPAN, the original VLAN ID is lost because it is overwritten by the RSPAN VLAN identification. Therefore, all packets appear on the destination port as untagged.
RSPAN VLAN

The RSPAN VLAN carries SPAN traffic between RSPAN source and destination sessions. It has these special characteristics:

- All traffic in the RSPAN VLAN is always flooded.
- No MAC address learning occurs on the RSPAN VLAN.
- RSPAN VLAN traffic only flows on trunk ports.
- RSPAN VLANs must be configured in VLAN configuration mode by using the `remote-span VLAN` configuration mode command.
- STP can run on RSPAN VLAN trunks but not on SPAN destination ports.
- An RSPAN VLAN cannot be a private-VLAN primary or secondary VLAN.

For VLANs 1 to 1005 that are visible to VLAN Trunking Protocol (VTP), the VLAN ID and its associated RSPAN characteristic are propagated by VTP. If you assign an RSPAN VLAN ID in the extended VLAN range (1006 to 4094), you must manually configure all intermediate switches.

It is normal to have multiple RSPAN VLANs in a network at the same time with each RSPAN VLAN defining a network-wide RSPAN session. That is, multiple RSPAN source sessions anywhere in the network can contribute packets to the RSPAN session. It is also possible to have multiple RSPAN destination sessions throughout the network, monitoring the same RSPAN VLAN and presenting traffic to the user. The RSPAN VLAN ID separates the sessions.

SPAN and RSPAN Interaction with Other Features

SPAN interacts with these features:

- Routing—SPAN does not monitor routed traffic. VSPAN only monitors traffic that enters or exits the switch, not traffic that is routed between VLANs. For example, if a VLAN is being Rx-monitored and the switch routes traffic from another VLAN to the monitored VLAN, that traffic is not monitored and not received on the SPAN destination port.
- STP—A destination port does not participate in STP while its SPAN or RSPAN session is active. The destination port can participate in STP after the SPAN or RSPAN session is disabled. On a source port, SPAN does not affect the STP status. STP can be active on trunk ports carrying an RSPAN VLAN.
- CDP—A SPAN destination port does not participate in CDP while the SPAN session is active. After the SPAN session is disabled, the port again participates in CDP.
- VTP—you can use VTP to prune an RSPAN VLAN between switches.
- VLAN and trunking—you can modify VLAN membership or trunk settings for source or destination ports at any time. However, changes in VLAN membership or trunk settings for a destination port do not take effect until you remove the SPAN destination configuration. Changes in VLAN membership or trunk settings for a source port immediately take effect, and the respective SPAN sessions automatically adjust accordingly.
- EtherChannel—you can configure an EtherChannel group as a source port but not as a SPAN destination port. When a group is configured as a SPAN source, the entire group is monitored.

If a physical port is added to a monitored EtherChannel group, the new port is added to the SPAN source port list. If a port is removed from a monitored EtherChannel group, it is automatically removed from the source port list.
A physical port that belongs to an EtherChannel group can be configured as a SPAN source port and still be a part of the EtherChannel. In this case, data from the physical port is monitored as it participates in the EtherChannel. However, if a physical port that belongs to an EtherChannel group is configured as a SPAN destination, it is removed from the group. After the port is removed from the SPAN session, it rejoins the EtherChannel group. Ports removed from an EtherChannel group remain members of the group, but they are in the inactive or suspended state.

If a physical port that belongs to an EtherChannel group is a destination port and the EtherChannel group is a source, the port is removed from the EtherChannel group and from the list of monitored ports.

- Multicast traffic can be monitored. For egress and ingress port monitoring, only a single unedited packet is sent to the SPAN destination port. It does not reflect the number of times the multicast packet is sent.
- A private-VLAN port cannot be a SPAN destination port.
- A secure port cannot be a SPAN destination port.

For SPAN sessions, do not enable port security on ports with monitored egress when ingress forwarding is enabled on the destination port. For RSPAN source sessions, do not enable port security on any ports with monitored egress.

- An IEEE 802.1x port can be a SPAN source port. You can enable IEEE 802.1x on a port that is a SPAN destination port; however, IEEE 802.1x is disabled until the port is removed as a SPAN destination.

For SPAN sessions, do not enable IEEE 802.1x on ports with monitored egress when ingress forwarding is enabled on the destination port. For RSPAN source sessions, do not enable IEEE 802.1x on any ports that are egress monitored.

SPAN and RSPAN and Switch Stacks

Because the stack of switches is treated as one logical switch, local SPAN source ports and destination ports can be in different switches in the stack. Therefore, the addition or deletion of switches in the stack can affect a local SPAN session, as well as an RSPAN source or destination session. An active session can become inactive when a switch is removed from the stack or an inactive session can become active when a switch is added to the stack.

For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”

Understanding Flow-Based SPAN

You can control the type of network traffic to be monitored in SPAN or RSPAN sessions by using flow-based SPAN (FSPAN) or flow-based RSPAN (FRSPAN), which apply access control lists (ACLs) to the monitored traffic on the source ports. The FSPAN ACLs can be configured to filter IPv4, IPv6, and non-IP monitored traffic.

You apply an ACL to a SPAN session through the interface. It is applied to all the traffic that is monitored on all interfaces in the SPAN session. The packets that are permitted by this ACL are copied to the SPAN destination port. No other packets are copied to the SPAN destination port.

The original traffic continues to be forwarded, and any port, VLAN, and router ACLs attached are applied. The FSPAN ACL does not have any effect on the forwarding decisions. Similarly, the port, VLAN, and router ACLs do not have any effect on the traffic monitoring. If a security input ACL denies a packet and it is not forwarded, the packet is still copied to the SPAN destination ports if the FSPAN
ACL permits it. But if the security output ACL denies a packet and it is not sent, it is not copied to the SPAN destination ports. However, if the security output ACL permits the packet to go out, it is only copied to the SPAN destination ports if the FSPAN ACL permits it. This is also true for an RSPAN session.

You can attach three types of FSPAN ACLs to the SPAN session:

- IPv4 FSPAN ACL— filters only IPv4 packets.
- IPv6 FSPAN ACL— filters only IPv6 packets.
- MAC FSPAN ACL— filters only non-IP packets.

The security ACLs have higher priority than the FSPAN ACLs on a switch. If FSPAN ACLs are applied, and you later add more security ACLs that cannot fit in the hardware memory, the FSPAN ACLs that you applied are removed from memory to allow space for the security ACLs. A system message notifies you of this action, which is called unloading. When there is again space for the FSPAN ACLs to reside in memory, they are added to the hardware memory on the switch. A system message notifies you of this action, which is called reloading. The IPv4, IPv6 and MAC FSPAN ACLs can be unloaded or reloaded independently.

If a VLAN-based FSPAN session configured on a stack cannot fit in the hardware memory on one or more switches, it is treated as unloaded on those switches, and traffic meant for the FSPAN ACL and sourcing on that switch is not copied to the SPAN destination ports. The FSPAN ACL continues to be correctly applied, and traffic is copied to the SPAN destination ports on the switches where the FSPAN ACL fits in the hardware memory.

When an empty FSPAN ACL is attached, some hardware functions copy all traffic to the SPAN destination ports for that ACL. If sufficient hardware resources are not available, even an empty FSPAN ACL can be unloaded.

IPv4 and MAC FSPAN ACLs are supported on all feature sets. IPv6 FSPAN ACLs are supported only in the advanced IP services feature set.

For information on configuring the switch for FSPAN and FRSPAN, see the “Configuring FSPAN and FRSPAN” section on page 30-24.

Configuring SPAN and RSPAN

These sections contain this configuration information:

- Default SPAN and RSPAN Configuration, page 30-11
- Configuring Local SPAN, page 30-12
- Configuring RSPAN, page 30-17

Default SPAN and RSPAN Configuration

Table 30-1 shows the default SPAN and RSPAN configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN state (SPAN and RSPAN)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Source port traffic to monitor</td>
<td>Both received and sent traffic (both).</td>
</tr>
</tbody>
</table>
Configuring SPAN and RSPAN

Chapter 30 Configuring SPAN and RSPAN

Configuring SPAN and RSPAN

Configuring Local SPAN

These sections contain this configuration information:

- SPAN Configuration Guidelines, page 30-12
- Creating a Local SPAN Session, page 30-13
- Creating a Local SPAN Session and Configuring Incoming Traffic, page 30-15
- Specifying VLANs to Filter, page 30-16

SPAN Configuration Guidelines

Follow these guidelines when configuring SPAN:

- On each switch stack, you can configure a maximum of 2 source sessions and 64 RSPAN destination sessions. A source session is either a local SPAN session or an RSPAN source session.
- For SPAN sources, you can monitor traffic for a single port or VLAN or a series or range of ports or VLANs for each session. You cannot mix source ports and source VLANs within a single SPAN session.
- The destination port cannot be a source port; a source port cannot be a destination port.
- You cannot have two SPAN sessions using the same destination port.
- When you configure a switch port as a SPAN destination port, it is no longer a normal switch port; only monitored traffic passes through the SPAN destination port.
- Entering SPAN configuration commands does not remove previously configured SPAN parameters. You must enter the no monitor session {session_number | all | local | remote} global configuration command to delete configured SPAN parameters.
- For local SPAN, outgoing packets through the SPAN destination port carry the original encapsulation headers—untagged or IEEE 802.1Q—if the encapsulation replicate keywords are specified. If the keywords are not specified, the packets are sent in native form. For RSPAN destination ports, outgoing packets are not tagged.
- You can configure a disabled port to be a source or destination port, but the SPAN function does not start until the destination port and at least one source port or source VLAN are enabled.
- You can limit SPAN traffic to specific VLANs by using the filter vlan keyword. If a trunk port is being monitored, only traffic on the VLANs specified with this keyword is monitored. By default, all VLANs are monitored on a trunk port.
- You cannot mix source VLANs and filter VLANs within a single SPAN session.

Table 30-1 Default SPAN and RSPAN Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encapsulation type (destination port)</td>
<td>Native form (untagged packets).</td>
</tr>
<tr>
<td>Ingress forwarding (destination port)</td>
<td>Disabled</td>
</tr>
<tr>
<td>VLAN filtering</td>
<td>On a trunk interface used as a source port, all VLANs are monitored.</td>
</tr>
<tr>
<td>RSPAN VLANs</td>
<td>None configured.</td>
</tr>
</tbody>
</table>
Creating a Local SPAN Session

Beginning in privileged EXEC mode, follow these steps to create a SPAN session and specify the source (monitored) ports or VLANs and the destination (monitoring) ports:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | no monitor session {session_number | all | local | remote} | Remove any existing SPAN configuration for the session. For session_number, the range is 1 to 66.
Specify all to remove all SPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions. |

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | monitor session session_number source {interface interface-id | vlan vlan-id} [, | -] [both | rx | tx] | Specify the SPAN session and the source port (monitored port). For session_number, the range is 1 to 66.
For interface-id, specify the source port or source VLAN to monitor.

- For source interface-id, specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number). Valid port-channel numbers are 1 to 64.
- For vlan-id, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).

Note A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.

(Optional) [, | -] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.

(Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the SPAN monitors both sent and received traffic.

- both—Monitor both received and sent traffic. This is the default.
- rx—Monitor received traffic.
- tx—Monitor sent traffic.

Note You can use the `monitor session session_number source` command multiple times to configure multiple source ports.
Chapter 30 Configuring SPAN and RSPAN

To delete a SPAN session, use the `no monitor session session_number` global configuration command. To remove a source or destination port or VLAN from the SPAN session, use the `no monitor session session_number source {interface interface-id | vlan vlan-id}` global configuration command or the `no monitor session session_number destination interface interface-id` global configuration command. For destination interfaces, the encapsulation options are ignored with the `no` form of the command.

This example shows how to set up SPAN session 1 for monitoring source port traffic to a destination port. First, any existing SPAN configuration for session 1 is deleted, and then bidirectional traffic is mirrored from source Gigabit Ethernet port 1 to destination Gigabit Ethernet port 2, retaining the encapsulation method.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# monitor session 1 destination interface gigabitethernet1/0/2
encapsulation replicate
Switch(config)# end
```

This example shows how to remove port 1 as a SPAN source for SPAN session 1:

```
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# end
```

This example shows how to disable received traffic monitoring on port 1, which was configured for bidirectional monitoring:

```
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1 rx
```

The monitoring of traffic received on port 1 is disabled, but traffic sent from this port continues to be monitored.
This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination Gigabit Ethernet port 2. The configuration is then modified to also monitor all traffic on all ports belonging to VLAN 10.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2
Switch(config)# monitor session 2 source vlan 10
Switch(config)# end
```

Creating a Local SPAN Session and Configuring Incoming Traffic

Beginning in privileged EXEC mode, follow these steps to create a SPAN session, to specify the source ports or VLANs and the destination ports, and to enable incoming traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance).

For details about the keywords not related to incoming traffic, see the “Creating a Local SPAN Session” section on page 30-13.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source {interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session session_number destination {interface interface-id [,</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dot1q vlan vlan-id—Accept incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.</td>
</tr>
<tr>
<td></td>
<td>• untagged vlan vlan-id or vlan vlan-id—Accept incoming packets with untagged encapsulation type with the specified VLAN as the default VLAN.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
</tbody>
</table>
Chapter 30 Configuring SPAN and RSPAN

Configuring SPAN and RSPAN

To delete a SPAN session, use the `no monitor session session_number` global configuration command. To remove a source or destination port or VLAN from the SPAN session, use the `no monitor session session_number source {interface interface-id | vlan vlan-id}` global configuration command or the `no monitor session session_number destination interface interface-id` global configuration command. For destination interfaces, the encapsulation and ingress options are ignored with the `no` form of the command.

This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on Gigabit Ethernet source port 1, and send it to destination Gigabit Ethernet port 2 with the same egress encapsulation type as the source port, and to enable ingress forwarding with IEEE 802.1Q encapsulation and VLAN 6 as the default ingress VLAN.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source gigabitethernet1/0/1 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation replicate ingress dot1q vlan 6
Switch(config)# end
```

Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to limit SPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>Command</td>
</tr>
<tr>
<td>show monitor [session session_number]</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Command</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save the configuration in the configuration file.</td>
</tr>
</tbody>
</table>

To delete a SPAN session, use the `no monitor session session_number` global configuration command. To remove a source or destination port or VLAN from the SPAN session, use the `no monitor session session_number source {interface interface-id | vlan vlan-id}` global configuration command or the `no monitor session session_number destination interface interface-id` global configuration command. For destination interfaces, the encapsulation and ingress options are ignored with the `no` form of the command.

This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on Gigabit Ethernet source port 1, and send it to destination Gigabit Ethernet port 2 with the same egress encapsulation type as the source port, and to enable ingress forwarding with IEEE 802.1Q encapsulation and VLAN 6 as the default ingress VLAN.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source gigabitethernet1/0/1 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation replicate ingress dot1q vlan 6
Switch(config)# end
```

Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to limit SPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command</td>
</tr>
<tr>
<td>no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>For <code>session_number</code>, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>Specify all to remove all SPAN sessions, local to remove all local</td>
</tr>
<tr>
<td></td>
<td>sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Command</td>
</tr>
<tr>
<td>monitor session session_number source</td>
<td>Specify the characteristics of the source port (monitored port) and</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>SPAN session.</td>
</tr>
<tr>
<td></td>
<td>For <code>session_number</code>, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>For <code>interface-id</code>, specify the source port to monitor. The interface</td>
</tr>
<tr>
<td></td>
<td>specified must already be configured as a trunk port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Command</td>
</tr>
<tr>
<td>monitor session session_number filter vlan</td>
<td>Limit the SPAN source traffic to specific VLANs.</td>
</tr>
<tr>
<td>vlan-id [,</td>
<td>-]</td>
</tr>
<tr>
<td></td>
<td>For <code>vlan-id</code>, the range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use a comma (,) to specify a series of VLANs, or use a</td>
</tr>
<tr>
<td></td>
<td>hyphen (-) to specify a range of VLANs. Enter a space before and after</td>
</tr>
<tr>
<td></td>
<td>the comma; enter a space before and after the hyphen.</td>
</tr>
</tbody>
</table>
Chapter 30 Configuring SPAN and RSPAN

Configuring SPAN and RSPAN

- **Step 5**: Command: `monitor session session_number destination {interface interface-id [, | -]} [encapsulation replicate]`
 Purpose: Specify the SPAN session and the destination port (monitoring port). For `session_number`, specify the session number entered in Step 3. For `interface-id`, specify the destination port. The destination interface must be a physical port; it cannot be an EtherChannel, and it cannot be a VLAN.
 (Optional) `[!, |-]` Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.
 (Optional) Enter `encapsulation replicate` to specify that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).

- **Step 6**: Command: `end`
 Purpose: Return to privileged EXEC mode.

- **Step 7**: Command: `show monitor [session session_number]`
 Command: `show running-config`
 Purpose: Verify the configuration.

- **Step 8**: Command: `copy running-config startup-config`
 Purpose: (Optional) Save the configuration in the configuration file.

To monitor all VLANs on the trunk port, use the `no monitor session session_number filter` global configuration command.

This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor traffic received on Gigabit Ethernet trunk port 2, and send traffic for only VLANs 1 through 5 and VLAN 9 to destination Gigabit Ethernet port 1.

Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/1
Switch(config)# end

Configuring RSPAN

These sections contain this configuration information:

- RSPAN Configuration Guidelines, page 30-18
- Configuring a VLAN as an RSPAN VLAN, page 30-18
- Creating an RSPAN Source Session, page 30-19
- Specifying VLANs to Filter, page 30-21
- Creating an RSPAN Destination Session, page 30-22
- Creating an RSPAN Destination Session and Configuring Incoming Traffic, page 30-23
RSPAN Configuration Guidelines

Follow these guidelines when configuring RSPAN:

- All the items in the “SPAN Configuration Guidelines” section on page 30-12 apply to RSPAN.
- As RSPAN VLANs have special properties, you should reserve a few VLANs across your network for use as RSPAN VLANs; do not assign access ports to these VLANs.
- You can apply an output ACL to RSPAN traffic to selectively filter or monitor specific packets. Specify these ACLs on the RSPAN VLAN in the RSPAN source switches.
- For RSPAN configuration, you can distribute the source ports and the destination ports across multiple switches in your network.
- RSPAN does not support BPDU packet monitoring or other Layer 2 switch protocols.
- The RSPAN VLAN is configured only on trunk ports and not on access ports. To avoid unwanted traffic in RSPAN VLANs, make sure that the VLAN remote-span feature is supported in all the participating switches.
- Access ports (including voice VLAN ports) on the RSPAN VLAN are put in the inactive state.
- RSPAN VLANs are included as sources for port-based RSPAN sessions when source trunk ports have active RSPAN VLANs. RSPAN VLANs can also be sources in SPAN sessions. However, since the switch does not monitor spanned traffic, it does not support egress spanning of packets on any RSPAN VLAN identified as the destination of an RSPAN source session on the switch.
- You can configure any VLAN as an RSPAN VLAN as long as these conditions are met:
 - The same RSPAN VLAN is used for an RSPAN session in all the switches.
 - All participating switches support RSPAN.
- We recommend that you configure an RSPAN VLAN before you configure an RSPAN source or a destination session.
- If you enable VTP and VTP pruning, RSPAN traffic is pruned in the trunks to prevent the unwanted flooding of RSPAN traffic across the network for VLAN IDs that are lower than 1005.

Configuring a VLAN as an RSPAN VLAN

First create a new VLAN to be the RSPAN VLAN for the RSPAN session. You must create the RSPAN VLAN in all switches that will participate in RSPAN. If the RSPAN VLAN-ID is in the normal range (lower than 1005) and VTP is enabled in the network, you can create the RSPAN VLAN in one switch, and VTP propagates it to the other switches in the VTP domain. For extended-range VLANs (greater than 1005), you must configure RSPAN VLAN on both source and destination switches and any intermediate switches.

Use VTP pruning to get an efficient flow of RSPAN traffic, or manually delete the RSPAN VLAN from all trunks that do not need to carry the RSPAN traffic.
Beginning in privileged EXEC mode, follow these steps to create an RSPAN VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>vlan vlan-id</td>
<td>Enter a VLAN ID to create a VLAN, or enter the VLAN ID of an existing VLAN, and enter VLAN configuration mode. The range is 2 to 1001 and 1006 to 4094. The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 through 1005 (reserved for Token Ring and FDDI VLANs).</td>
</tr>
<tr>
<td>3</td>
<td>remote-span</td>
<td>Configure the VLAN as an RSPAN VLAN.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save the configuration in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the remote SPAN characteristic from a VLAN and convert it back to a normal VLAN, use the `no remote-span` VLAN configuration command.

This example shows how to create RSPAN VLAN 901.

```
Switch(config)# vlan 901
Switch(config-vlan)# remote span
Switch(config-vlan)# end
```

Creating an RSPAN Source Session

Beginning in privileged EXEC mode, follow these steps to start an RSPAN source session and to specify the monitored source and the destination RSPAN VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>no monitor session {session_number</td>
<td>all</td>
</tr>
</tbody>
</table>
Configuring SPAN and RSPAN

Chapter 30 Configuring SPAN and RSPAN

To delete a SPAN session, use the **no monitor session session_number** global configuration command.

To remove a source port or VLAN from the SPAN session, use the **no monitor session session_number source [interface interface-id | vlan vlan-id] [,]** global configuration command. To remove the RSPAN VLAN from the session, use the **no monitor session session_number destination remote vlan vlan-id** command.

This example shows how to remove any existing RSPAN configuration for session 1, configure RSPAN session 1 to monitor multiple source interfaces, and configure the destination as RSPAN VLAN 901.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1 tx
Switch(config)# monitor session 1 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 1 source interface port-channel 2
Switch(config)# monitor session 1 destination remote vlan 901
Switch(config)# end
```
Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to configure the RSPAN source session to limit RSPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td>3</td>
<td>monitor session session_number source interface interface-id</td>
<td>Specify the characteristics of the source port (monitored port) and SPAN session. For session_number, the range is 1 to 66. For interface-id, specify the source port to monitor. The interface specified must already be configured as a trunk port.</td>
</tr>
<tr>
<td>4</td>
<td>monitor session session_number filter vlan vlan-id [,</td>
<td>-]</td>
</tr>
<tr>
<td>5</td>
<td>monitor session session_number destination remote vlan vlan-id</td>
<td>Specify the RSPAN session and the destination remote VLAN (RSPAN VLAN). For session_number, enter the session number specified in step 3. For vlan-id, specify the RSPAN VLAN to carry the monitored traffic to the destination port.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td>show monitor [session session_number] show running-config</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save the configuration in the configuration file.</td>
</tr>
</tbody>
</table>

To monitor all VLANs on the trunk port, use the no monitor session session_number filter vlan global configuration command.

This example shows how to remove any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor traffic received on trunk port 2, and send traffic for only VLANs 1 through 5 and 9 to destination RSPAN VLAN 902.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination remote vlan 902
Switch(config)# end
```
Creating an RSPAN Destination Session

You configure the RSPAN destination session on a different switch or switch stack; that is, not the switch or switch stack on which the source session was configured.

Beginning in privileged EXEC mode, follow these steps to define the RSPAN VLAN on that switch, to create an RSPAN destination session, and to specify the source RSPAN VLAN and the destination port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>remote-span</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td>Step 6</td>
<td>monitor session session_number source remote vlan vlan-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>monitor session session_number destination interface interface-id</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Step 9</td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td>Step 10</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete a SPAN session, use the no monitor session session_number global configuration command. To remove a destination port from the SPAN session, use the no monitor session session_number destination interface interface-id global configuration command. To remove the RSPAN VLAN from the session, use the no monitor session session_number source remote vlan vlan-id.
This example shows how to configure VLAN 901 as the source remote VLAN and port 1 as the destination interface:

```
Switch(config)# monitor session 1 source remote vlan 901
Switch(config)# monitor session 1 destination interface gigabitethernet2/0/1
Switch(config)# end
```

Creating an RSPAN Destination Session and Configuring Incoming Traffic

Beginning in privileged EXEC mode, follow these steps to create an RSPAN destination session, to specify the source RSPAN VLAN and the destination port, and to enable incoming traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance).

For details about the keywords not related to incoming traffic, see the “Creating an RSPAN Destination Session” section on page 30-22. This procedure assumes that the RSPAN VLAN has already been configured.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source remote vlan vlan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session session_number destination {interface interface-id [,</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring FSPAN and FRSPAN

These sections contain this configuration information:

- Configuration Guidelines, page 30-24
- Configuring an FSPAN Session, page 30-25
- Configuring an FRSPAN Session, page 30-27

Configuration Guidelines

Follow these guidelines when configuring FSPAN or FRSPAN:

- You can attach ACLs to only one SPAN or RSPAN session at a time.
- When no FSPAN ACLs are attached, FSPAN is disabled, and all traffic is copied to the SPAN destination ports.
- When at least one FSPAN ACL is attached, FSPAN is enabled.
 - When you attach an empty FSPAN ACL to a SPAN session, it does not filter packets, and all traffic is monitored.
 - When you attach at least one FSPAN ACL that is not empty to a SPAN session, and you have not attached one or more of the other FSPAN ACLs (for instance, you have attached an IPv4 ACL that is not empty, and have not attached IPv6 and MAC ACLs), FSPAN blocks the traffic that would have been filtered by the unattached ACLs. Therefore, this traffic is not monitored.
- Port-based FSPAN sessions can be configured on a stack that includes Catalyst 3750 switches as long as the session only includes Catalyst 3750-E ports as source ports. If the session has any Catalyst 3750 ports as source ports, the FSPAN ACL command is rejected. If the session has FSPAN ACL configured, any commands including Catalyst 3750 ports as source ports are rejected. The Catalyst 3750 ports can be added as destination ports in an FSPAN session.

To delete an RSPAN session, use the `no monitor session session_number` global configuration command. To remove a destination port from the RSPAN session, use the `no monitor session session_number destination interface interface-id` global configuration command. The ingress options are ignored with the `no` form of the command.

This example shows how to configure VLAN 901 as the source remote VLAN in RSPAN session 2, to configure Gigabit Ethernet source port 2 as the destination interface, and to enable forwarding of incoming traffic on the interface with VLAN 6 as the default receiving VLAN.

```
Switch(config)# monitor session 2 source remote vlan 901
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 ingress vlan 6
Switch(config)# end
```
VLAN-based FSPAN sessions cannot be configured on a stack that includes Catalyst 3750 switches.

FSPAN ACLs cannot be applied to per-port-per-VLAN sessions. You can configure per-port-per-VLAN sessions by first configuring a port-based session and then configuring specific VLANs to the session. For example:

```
Switch (config)# monitor session session_number source interface interface-id
Switch (config)# monitor session session_number filter vlan vlan-id
Switch (config)# monitor session session_number filter ip access-group
                              (access-list-number | name)
```

Note Both the `filter vlan` and `filter ip access-group` commands cannot be configured at the same time. Configuring one results in rejection of the other.

- EtherChannels are not supported in an FSPAN session.
- FSPAN ACLs with TCP flags or the `log` keyword are not supported.
- If you configure an IPv6 FSPAN ACL when the switch is running the advanced IP services feature set but later run a different feature set, after rebooting the switch, the switch might lose the IPv6 FSPAN ACL configuration.
- IPv6 FSPAN ACLs are supported only on IPv6-enabled SDM templates. If you configure an IPv6 FSPAN ACL when running an IPv6 enabled SDM template, but later configure a non-IPv6 SDM template and reboot the switch, you lose the IPv6 FSPAN ACL configuration.

Configuring an FSPAN Session

Beginning in privileged EXEC mode, follow these steps to create a SPAN session, specify the source (monitored) ports or VLANs and the destination (monitoring) ports, and configure FSPAN for the session:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>no monitor session</code></td>
<td>Remove any existing SPAN configuration for the session.</td>
</tr>
<tr>
<td></td>
<td>`{session_number</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specify all to remove all SPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3** monitor session session_number source (interface interface-id | vlan vlan-id) [, | -] [both | rx | tx] | Specify the SPAN session and the source port (monitored port).
 - For *session_number*, the range is 1 to 66.
 - For *interface-id*, specify the source port or the source VLAN to monitor.
 - For source *interface-id*, specify the source port to monitor. Only physical interfaces are valid.
 - For *vlan-id*, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).
 Note A single session can include multiple sources (ports or VLANs) defined in a series of commands, but you cannot combine source ports and source VLANs in one session.
 - (Optional) [, | -] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.
 - (Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the SPAN monitors both sent and received traffic.
 - *both*—Monitor both sent and received traffic. This is the default.
 - *rx*—Monitor received traffic.
 - *tx*—Monitor sent traffic.
 Note You can use the `monitor session session_number source` command multiple times to configure multiple source ports. |
| **Step 4** monitor session session_number destination (interface interface-id [, | -] [encapsulation replicate]) | Specify the SPAN session and the destination port (monitoring port).
 For *session_number*, specify the session number entered in Step 3.
 Note For local SPAN, you must use the same session number for the source and destination interfaces.
 - For *interface-id*, specify the destination port. The destination interface must be a physical port; it cannot be an EtherChannel, and it cannot be a VLAN.
 - (Optional) [, | -] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.
 - (Optional) Enter `encapsulation replicate` to specify that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).
 Note You can use `monitor session session_number destination` command multiple times to configure multiple destination ports. |
Configuring an FRSPAN Session

Beginning in privileged EXEC mode, follow these steps to start an RSPAN source session, specify the monitored source and the destination RSPAN VLAN, and configure FRSPAN for the session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no monitor session</td>
<td>Remove any existing RSPAN configuration for the session.</td>
</tr>
<tr>
<td></td>
<td>For session_number, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>Specify all to remove all RSPAN sessions, local to remove all local</td>
</tr>
<tr>
<td></td>
<td>sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
</tbody>
</table>
Configuring FSPAN and FRSPAN

Step 3
```
monitor session session_number source
    [interface interface-id | vlan vlan-id] [both | rx | tx]
```
Specify the RSPAN session and the source port (monitored port).

For `session_number`, the range is 1 to 66.

Enter a source port or source VLAN for the RSPAN session:
- For `interface-id`, specify the source port to monitor. Only physical interfaces are valid.
- For `vlan-id`, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).

A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.

(Optional) Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.

(Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic.
- `both`—Monitor both received and sent traffic.
- `rx`—Monitor received traffic.
- `tx`—Monitor sent traffic.

Step 4
```
monitor session session_number destination remote vlan vlan-id
```
Specify the RSPAN session and the destination RSPAN VLAN.

For `session_number`, enter the number defined in Step 3.

For `vlan-id`, specify the source RSPAN VLAN to monitor.

Step 5
```
vlan vlan-id
```
Enter the VLAN sub-mode. For `vlan-id`, specify the source RSPAN VLAN to monitor.

Step 6
```
remote-span
```
Indicate that the VLAN you specified in Step 5 is part of the RSPAN VLAN.

Step 7
```
exit
```
Return to global configuration mode.

Step 8
```
monitor session session_number filter {ip | ipv6 | mac} access-group
    {access-list-number | name}
```
Specify the RSPAN session, the types of packets to filter, and the ACLs to use in an FRSPAN session.

For `session_number`, specify the session number entered in Step 3.

For `access-list-number`, specify the ACL number that you want to use to filter traffic.

For `name`, specify the ACL name that you want to use to filter traffic.

Step 9
```
end
```
Return to privileged EXEC mode.

Step 10
```
show monitor [session session_number]
show running-config
```
Verify the configuration.

Step 11
```
copy running-config startup-config
```
(Optional) Save the configuration in the configuration file.
Displaying SPAN and RSPAN Status

To display the current SPAN or RSPAN configuration, use the **show monitor** user EXEC command. You can also use the **show running-config** privileged EXEC command to display configured SPAN or RSPAN sessions.
Displaying SPAN and RSPAN Status
Configuring RMON

This chapter describes how to configure Remote Network Monitoring (RMON) on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

RMON is a standard monitoring specification that defines a set of statistics and functions that can be exchanged between RMON-compliant console systems and network probes. RMON provides you with comprehensive network-fault diagnosis, planning, and performance-tuning information.

Note

For complete syntax and usage information for the commands used in this chapter, see the “System Management Commands” section in the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 from the Cisco.com page under Documentation > Cisco IOS Software > 12.2 Mainline > Command References.

This chapter consists of these sections:

- Understanding RMON, page 31-1
- Configuring RMON, page 31-3
- Displaying RMON Status, page 31-6

Understanding RMON

RMON is an Internet Engineering Task Force (IETF) standard monitoring specification that allows various network agents and console systems to exchange network monitoring data. You can use the RMON feature with the Simple Network Management Protocol (SNMP) agent in the switch to monitor all the traffic flowing among switches on all connected LAN segments as shown in Figure 31-1.
Chapter 31 Configuring RMON

Understanding RMON

Figure 31-1 Remote Monitoring Example

The switch supports these RMON groups (defined in RFC 1757):

- Statistics (RMON group 1)—Collects Ethernet statistics (including Fast Ethernet and Gigabit Ethernet statistics, depending on the switch type and supported interfaces) on an interface.
- History (RMON group 2)—Collects a history group of statistics on Ethernet ports (including Fast Ethernet and Gigabit Ethernet statistics, depending on the switch type and supported interfaces) for a specified polling interval.
- Alarm (RMON group 3)—Monitors a specific management information base (MIB) object for a specified interval, triggers an alarm at a specified value (rising threshold), and resets the alarm at another value (falling threshold). Alarms can be used with events; the alarm triggers an event, which can generate a log entry or an SNMP trap.
- Event (RMON group 9)—Specifies the action to take when an event is triggered by an alarm. The action can be to generate a log entry or an SNMP trap.

Because switches supported by this software release use hardware counters for RMON data processing, the monitoring is more efficient, and little processing power is required.

Note 64-bit counters are not supported for RMON alarms.
Configuring RMON

These sections contain this configuration information:

- Default RMON Configuration, page 31-3
- Configuring RMON Alarms and Events, page 31-3 (required)
- Collecting Group History Statistics on an Interface, page 31-5 (optional)
- Collecting Group Ethernet Statistics on an Interface, page 31-6 (optional)

Default RMON Configuration

RMON is disabled by default; no alarms or events are configured.

Configuring RMON Alarms and Events

You can configure your switch for RMON by using the command-line interface (CLI) or an SNMP-compatible network management station. We recommend that you use a generic RMON console application on the network management station (NMS) to take advantage of the RMON network management capabilities. You must also configure SNMP on the switch to access RMON MIB objects. For more information, see Chapter 33, “Configuring SNMP.”

Note

64-bit counters are not supported for RMON alarms.
Beginning in privileged EXEC mode, follow these steps to enable RMON alarms and events. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>rmon alarm number variable interval [absolute</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>rmon event number [description string] [log] [owner string] [trap community]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To disable an alarm, use the `no rmon alarm number` global configuration command on each alarm you configured. You cannot disable at once all the alarms that you configured. To disable an event, use the `no rmon event number` global configuration command. To learn more about alarms and events and how they interact with each other, see RFC 1757.

You can set an alarm on any MIB object. The following example configures RMON alarm number 10 by using the `rmon alarm` command. The alarm monitors the MIB variable `ifEntry.20.1` once every 20 seconds until the alarm is disabled and checks the change in the variable’s rise or fall. If the `ifEntry.20.1` value shows a MIB counter increase of 15 or more, such as from 100000 to 100015, the alarm is triggered. The alarm in turn triggers event number 1, which is configured with the `rmon event` command. Possible events can include a log entry or an SNMP trap. If the `ifEntry.20.1` value changes by 0, the alarm is reset and can be triggered again.

```shell
Switch(config)# rmon alarm 10 ifEntry.20.1 20 delta rising-threshold 15 1 falling-threshold 0 owner jjohnson
```

The following example creates RMON event number 1 by using the `rmon event` command. The event is defined as `High ifOutErrors` and generates a log entry when the event is triggered by the alarm. The user `jjones` owns the row that is created in the event table by this command. This example also generates an SNMP trap when the event is triggered.

```shell
Switch(config)# rmon event 1 log trap eventtrap description "High ifOutErrors" owner jjones
```

Collecting Group History Statistics on an Interface

You must first configure RMON alarms and events to display collection information.

Beginning in privileged EXEC mode, follow these steps to collect group history statistics on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the interface on which to collect history, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>rmon collection history index [buckets bucket-number] [interval seconds] [owner ownername]</td>
<td>Enable history collection for the specified number of buckets and time period.</td>
</tr>
<tr>
<td></td>
<td>• For <code>index</code>, identify the RMON group of statistics The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>buckets bucket-number</code>, specify the maximum number of buckets desired for the RMON collection history group of statistics. The range is 1 to 65535. The default is 50 buckets.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>interval seconds</code>, specify the number of seconds in each polling cycle. The range is 1 to 3600. The default is 1800 seconds.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>owner ownername</code>, enter the name of the owner of the RMON group of statistics.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>
Displaying RMON Status

Chapter 31 Configuring RMON

Displaying RMON Status

To display the RMON status, use one or more of the privileged EXEC commands in Table 31-1:

Table 31-1 Commands for Displaying RMON Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show rmon</td>
<td>Displays general RMON statistics.</td>
</tr>
<tr>
<td>show rmon alarms</td>
<td>Displays the RMON alarm table.</td>
</tr>
<tr>
<td>show rmon events</td>
<td>Displays the RMON event table.</td>
</tr>
</tbody>
</table>

Collecting Group Ethernet Statistics on an Interface

Beginning in privileged EXEC mode, follow these steps to collect group Ethernet statistics on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the interface on which to collect statistics, and enter interface configuration mode.</td>
</tr>
<tr>
<td>rmon collection stats index [owner ownername]</td>
<td>Enable RMON statistic collection on the interface.</td>
</tr>
<tr>
<td></td>
<td>- For index, specify the RMON group of statistics. The range is from 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For owner ownername, enter the name of the owner of the RMON group of statistics.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>show rmon statistics</td>
<td>Display the contents of the switch statistics table.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the collection of group Ethernet statistics, use the no rmon collection stats index interface configuration command.

This example shows how to collect RMON statistics for the owner root:

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# rmon collection stats 2 owner root

To disable history collection, use the no rmon collection history index interface configuration command.
Table 31-1 Commands for Displaying RMON Status (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show rmon history</td>
<td>Displays the RMON history table.</td>
</tr>
<tr>
<td>show rmon statistics</td>
<td>Displays the RMON statistics table.</td>
</tr>
</tbody>
</table>

For information about the fields in these displays, see the “System Management Commands” section in the *Cisco IOS Configuration Fundamentals Command Reference, Release 12.2* from the Cisco.com page under Documentation > Cisco IOS Software > 12.2 Mainline > Command References.
Displaying RMON Status

Chapter 31 Configuring RMON

Cisco Catalyst Switch Module 3110 and 3012 for IBM BladeCenter Software Configuration Guide

OL-12189-05
Configuring System Message Logging

This chapter describes how to configure system message logging on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 from the Cisco.com page under Documentation > Cisco IOS Software > 12.2 Mainline > Command References.

This chapter consists of these sections:
- Understanding System Message Logging, page 32-1
- Configuring System Message Logging, page 32-2
- Displaying the Logging Configuration, page 32-14

Caution
Logging messages to the console at a high rate can cause high CPU utilization and adversely affect how the switch operates.

Understanding System Message Logging

By default, a switch sends the output from system messages and debug privileged EXEC commands to a logging process. Stack members can trigger system messages. A stack member that generates a system message appends its hostname in the form of hostname-n, where n is a switch number from 1 to 9, and redirects the output to the logging process on the stack master. Though the stack master is a stack member, it does not append its hostname to system messages. The logging process controls the distribution of logging messages to various destinations, such as the logging buffer, terminal lines, or a UNIX syslog server, depending on your configuration. The process also sends messages to the console.

Note
The syslog format is compatible with 4.3 BSD UNIX.

When the logging process is disabled, messages are sent only to the console. The messages are sent as they are generated, so message and debug output are interspersed with prompts or output from other commands. Messages appear on the active consoles after the process that generated them has finished.
You can set the severity level of the messages to control the type of messages displayed on the consoles and each of the destinations. You can time-stamp log messages or set the syslog source address to enhance real-time debugging and management. For information on possible messages, see the system message guide for this release.

You can access logged system messages by using the switch command-line interface (CLI) or by saving them to a properly configured syslog server. The switch software saves syslog messages in an internal buffer on a standalone switch, and in the case of a switch stack, on the stack master. If a standalone switch or the stack master fails, the log is lost unless you had saved it to flash memory.

You can remotely monitor system messages by viewing the logs on a syslog server or by accessing the switch through Telnet, through the console port, or through the Ethernet management port. In a switch stack, all stack member consoles provide the same console output.

Configuring System Message Logging

These sections contain this configuration information:

- **System Log Message Format**, page 32-2
- **Default System Message Logging Configuration**, page 32-4
- **Disabling Message Logging**, page 32-4 (optional)
- **Setting the Message Display Destination Device**, page 32-5 (optional)
- **Synchronizing Log Messages**, page 32-6 (optional)
- **Enabling and Disabling Time Stamps on Log Messages**, page 32-8 (optional)
- **Enabling and Disabling Sequence Numbers in Log Messages**, page 32-8 (optional)
- **Defining the Message Severity Level**, page 32-9 (optional)
- **Limiting Syslog Messages Sent to the History Table and to SNMP**, page 32-10 (optional)
- **Enabling the Configuration-Change Logger**, page 32-11 (optional)
- **Configuring UNIX Syslog Servers**, page 32-12 (optional)

System Log Message Format

System log messages can contain up to 80 characters and a percent sign (%), which follows the optional sequence number or time-stamp information, if configured. Messages appear in this format:

```
seq no:timestamp: %facility-severity-MNEMONIC:description (hostname-n)
```

The part of the message preceding the percent sign depends on the setting of the `service sequence-numbers`, `service timestamps log datatime`, `service timestamps log datatime [localtime] [msec] [show-timezone]`, or `service timestamps log uptime` global configuration command.
Table 32-1 describes the elements of syslog messages.

Table 32-1 System Log Message Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq no:</td>
<td>Stamps log messages with a sequence number only if the service sequence-numbers global configuration command is configured. For more information, see the “Enabling and Disabling Sequence Numbers in Log Messages” section on page 32-8.</td>
</tr>
<tr>
<td>timestamp formats:</td>
<td>Date and time of the message or event. This information appears only if the service timestamps log [datetime</td>
</tr>
<tr>
<td>mm/dd hh:mm:ss</td>
<td>or hh:mm:ss (short uptime) or d h (long uptime)</td>
</tr>
<tr>
<td>facility</td>
<td>The facility to which the message refers (for example, SNMP, SYS, and so forth). For a list of supported facilities, see Table 32-4 on page 32-14.</td>
</tr>
<tr>
<td>severity</td>
<td>Single-digit code from 0 to 7 that is the severity of the message. For a description of the severity levels, see Table 32-3 on page 32-10.</td>
</tr>
<tr>
<td>MNEMONIC</td>
<td>Text string that uniquely describes the message.</td>
</tr>
<tr>
<td>description</td>
<td>Text string containing detailed information about the event being reported.</td>
</tr>
<tr>
<td>hostname-n</td>
<td>Hostname of a stack member and its switch number in the stack. Though the stack master is a stack member, it does not append its hostname to system messages.</td>
</tr>
</tbody>
</table>

This example shows a partial switch system message for a stack master and a stack member (hostname Switch-2):

```
00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/2, changed state to up
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet1/0/1, changed state to down
*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
18:47:02: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
*Mar 1 18:48:50.483 UTC: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up (Switch-2)
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet2/0/1, changed state to up (Switch-2)
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet2/0/2, changed state to up (Switch-2)
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down (Switch-2)
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet2/0/1, changed state to down 2 (Switch-2)
```
Default System Message Logging Configuration

Table 32-2 shows the default system message logging configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>System message logging to the console</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Console severity</td>
<td>Debugging (and numerically lower levels; see Table 32-3 on page 32-10).</td>
</tr>
<tr>
<td>Logging file configuration</td>
<td>No filename specified.</td>
</tr>
<tr>
<td>Logging buffer size</td>
<td>4096 bytes.</td>
</tr>
<tr>
<td>Logging history size</td>
<td>1 message.</td>
</tr>
<tr>
<td>Time stamps</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Synchronous logging</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Logging server</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Syslog server IP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>Server facility</td>
<td>Local7 (see Table 32-4 on page 32-14).</td>
</tr>
<tr>
<td>Server severity</td>
<td>Informational (and numerically lower levels; see Table 32-3 on page 32-10).</td>
</tr>
</tbody>
</table>

Disabling Message Logging

Message logging is enabled by default. It must be enabled to send messages to any destination other than the console. When enabled, log messages are sent to a logging process, which logs messages to designated locations asynchronously to the processes that generated the messages.

Beginning in privileged EXEC mode, follow these steps to disable message logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>no logging console</td>
<td>Disable message logging.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>show logging</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Disabling the logging process can slow down the switch because a process must wait until the messages are written to the console before continuing. When the logging process is disabled, messages appear on the console as soon as they are produced, often appearing in the middle of command output.
The **logging synchronous** global configuration command also affects the display of messages to the console. When this command is enabled, messages appear only after you press Return. For more information, see the “Synchronizing Log Messages” section on page 32-6.

To re-enable message logging after it has been disabled, use the **logging on** global configuration command.

Setting the Message Display Destination Device

If message logging is enabled, you can send messages to specific locations in addition to the console. Beginning in privileged EXEC mode, use one or more of the following commands to specify the locations that receive messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>logging buffered [size]</td>
</tr>
<tr>
<td>Step 3</td>
<td>logging host</td>
</tr>
</tbody>
</table>
| **Step 4** | logging file flash:filename [max-file-size [min-file-size]] [severity-level-number | type] | Store log messages in a file in flash memory on a standalone switch or, in the case of a switch stack, on the stack master.
 - For filename, enter the log message filename.
 - (Optional) For max-file-size, specify the maximum logging file size. The range is 4096 to 2147483647. The default is 4096 bytes.
 - (Optional) For min-file-size, specify the minimum logging file size. The range is 1024 to 2147483647. The default is 2048 bytes.
 - (Optional) For severity-level-number | type, specify either the logging severity level or the logging type. The severity range is 0 to 7. For a list of logging type keywords, see Table 32-3 on page 32-10. By default, the log file receives debugging messages and numerically lower levels. |
| **Step 5** | end | Return to privileged EXEC mode. |
Configuring System Message Logging

The `logging buffered` global configuration command copies logging messages to an internal buffer. The buffer is circular, so newer messages overwrite older messages after the buffer is full. To display the messages that are logged in the buffer, use the `show logging` privileged EXEC command. The first message displayed is the oldest message in the buffer. To clear the contents of the buffer, use the `clear logging` privileged EXEC command.

Use the `logging event power-inline-status` interface configuration command to enable and to disable logging of Power over Ethernet (PoE) events on specific PoE-capable ports. Logging on these ports is enabled by default.

To disable logging to the console, use the `no logging console` global configuration command. To disable logging to a file, use the `no logging file [severity-level-number | type]` global configuration command.

Synchronizing Log Messages

You can synchronize unsolicited messages and `debug` privileged EXEC command output with solicited device output and prompts for a specific console port line or virtual terminal line. You can identify the types of messages to be output asynchronously based on the level of severity. You can also configure the maximum number of buffers for storing asynchronous messages for the terminal after which messages are dropped.

When synchronous logging of unsolicited messages and `debug` command output is enabled, unsolicited device output appears on the console or printed after solicited device output appears or is printed. Unsolicited messages and `debug` command output appears on the console after the prompt for user input is returned. Therefore, unsolicited messages and `debug` command output are not interspersed with solicited device output and prompts. After the unsolicited messages appear, the console again displays the user prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 <code>terminal monitor</code></td>
<td>Log messages to a nonconsole terminal during the current session.</td>
</tr>
<tr>
<td></td>
<td>Terminal parameter-setting commands are set locally and do not remain in effect after the session has ended. You must perform this step for each session to see the debugging messages.</td>
</tr>
<tr>
<td>Step 7 <code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to configure synchronous logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 line [console</td>
<td>vty] line-number [ending-line-number]</td>
</tr>
<tr>
<td></td>
<td>• Use the console keyword for configurations that occur through the switch console port or the Ethernet management port.</td>
</tr>
<tr>
<td></td>
<td>• Use the line vty line-number command to specify which vty lines are to have synchronous logging enabled. You use a vty connection for configurations that occur through a Telnet session. The range of line numbers is from 0 to 15.</td>
</tr>
<tr>
<td></td>
<td>You can change the setting of all 16 vty lines at once by entering:</td>
</tr>
<tr>
<td></td>
<td>line vty 0 15</td>
</tr>
<tr>
<td></td>
<td>Or you can change the setting of the single vty line being used for your current connection. For example, to change the setting for vty line 2, enter:</td>
</tr>
<tr>
<td></td>
<td>line vty 2</td>
</tr>
<tr>
<td></td>
<td>When you enter this command, the mode changes to line configuration.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For level severity-level, specify the message severity level. Messages with a severity level equal to or higher than this value are printed asynchronously. Low numbers mean greater severity and high numbers mean lesser severity. The default is 2.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Specifying level all means that all messages are printed asynchronously regardless of the severity level.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For limit number-of-buffers, specify the number of buffers to be queued for the terminal after which new messages are dropped. The range is 0 to 2147483647. The default is 20.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable synchronization of unsolicited messages and debug output, use the no logging synchronous [level severity-level | all] [limit number-of-buffers] line configuration command.
Enabling and Disabling Time Stamps on Log Messages

By default, log messages are not time-stamped.

Beginning in privileged EXEC mode, follow these steps to enable time-stamping of log messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 service timestamps log uptime</td>
<td>Enable log time stamps. The first command enables time stamps on log messages, showing the time since the system was rebooted.</td>
</tr>
<tr>
<td>or</td>
<td>The second command enables time stamps on log messages. Depending on the options selected, the time stamp can include the date, time in milliseconds relative to the local time-zone, and the time zone name.</td>
</tr>
<tr>
<td>service timestamps log datetime [msec] [localtime] [show-timezone]</td>
<td></td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable time stamps for both debug and log messages, use the no service timestamps global configuration command.

This example shows part of a logging display with the service timestamps log datetime global configuration command enabled:

*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) (Switch-2)

This example shows part of a logging display with the service timestamps log uptime global configuration command enabled:

00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up

Enabling and Disabling Sequence Numbers in Log Messages

Because there is a chance that more than one log message can have the same time stamp, you can display messages with sequence numbers so that you can unambiguously see a single message. By default, sequence numbers in log messages are not displayed.

Beginning in privileged EXEC mode, follow these steps to enable sequence numbers in log messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 service sequence-numbers</td>
<td>Enable sequence numbers.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To disable sequence numbers, use the no service sequence-numbers global configuration command.

This example shows part of a logging display with sequence numbers enabled:

```
000019: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) (Switch-2)
```

Defining the Message Severity Level

You can limit messages displayed to the selected device by specifying the severity level of the message, which are described in Table 32-3.

Beginning in privileged EXEC mode, follow these steps to define the message severity level. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>logging console level</td>
<td>Limit messages logged to the console. By default, the console receives debugging messages and numerically lower levels (see Table 32-3 on page 32-10).</td>
</tr>
<tr>
<td>Step 3</td>
<td>logging monitor level</td>
<td>Limit messages logged to the terminal lines. By default, the terminal receives debugging messages and numerically lower levels (see Table 32-3 on page 32-10).</td>
</tr>
<tr>
<td>Step 4</td>
<td>logging trap level</td>
<td>Limit messages logged to the syslog servers. By default, syslog servers receive informational messages and numerically lower levels (see Table 32-3 on page 32-10). For complete syslog server configuration steps, see the “Configuring UNIX Syslog Servers” section on page 32-12.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>or show logging</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

- **Note**: Specifying a *level* causes messages at that level and numerically lower levels to appear at the destination.

To disable logging to the console, use the no logging console global configuration command. To disable logging to a terminal other than the console, use the no logging monitor global configuration command. To disable logging to syslog servers, use the no logging trap global configuration command.
Table 32-3 describes the level keywords. It also lists the corresponding UNIX syslog definitions from the most severe level to the least severe level.

<table>
<thead>
<tr>
<th>Level Keyword</th>
<th>Level</th>
<th>Description</th>
<th>Syslog Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergencies</td>
<td>0</td>
<td>System unstable</td>
<td>LOG_EMERG</td>
</tr>
<tr>
<td>alerts</td>
<td>1</td>
<td>Immediate action needed</td>
<td>LOG_ALERT</td>
</tr>
<tr>
<td>critical</td>
<td>2</td>
<td>Critical conditions</td>
<td>LOG_CRIT</td>
</tr>
<tr>
<td>errors</td>
<td>3</td>
<td>Error conditions</td>
<td>LOG_ERR</td>
</tr>
<tr>
<td>warnings</td>
<td>4</td>
<td>Warning conditions</td>
<td>LOG_WARNING</td>
</tr>
<tr>
<td>notifications</td>
<td>5</td>
<td>Normal but significant condition</td>
<td>LOG_NOTICE</td>
</tr>
<tr>
<td>informational</td>
<td>6</td>
<td>Informational messages only</td>
<td>LOG_INFO</td>
</tr>
<tr>
<td>debugging</td>
<td>7</td>
<td>Debugging messages</td>
<td>LOG_DEBUG</td>
</tr>
</tbody>
</table>

The software generates four other categories of messages:

- Error messages about software or hardware malfunctions, displayed at levels **warnings** through **emergencies**. These types of messages mean that the functionality of the switch is affected. For information on how to recover from these malfunctions, see the system message guide for this release.
- Output from the **debug** commands, displayed at the **debugging** level. Debug commands are typically used only by the Technical Assistance Center.
- Interface up or down transitions and system restart messages, displayed at the **notifications** level. This message is only for information; switch functionality is not affected.
- Reload requests and low-process stack messages, displayed at the **informational** level. This message is only for information; switch functionality is not affected.

Limiting Syslog Messages Sent to the History Table and to SNMP

If you enabled syslog message traps to be sent to an SNMP network management station by using the **snmp-server enable trap** global configuration command, you can change the level of messages sent and stored in the switch history table. You also can change the number of messages that are stored in the history table.

Messages are stored in the history table because SNMP traps are not guaranteed to reach their destination. By default, one message of the level **warning** and numerically lower levels (see Table 32-3 on page 32-10) are stored in the history table even if syslog traps are not enabled.
Beginning in privileged EXEC mode, follow these steps to change the level and history table size defaults. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>logging history level</td>
</tr>
<tr>
<td></td>
<td>See Table 32-3 on page 32-10 for a list of level keywords.</td>
</tr>
<tr>
<td></td>
<td>By default, warnings, errors, critical, alerts, and emergencies messages are sent.</td>
</tr>
<tr>
<td>Step 3</td>
<td>logging history size number</td>
</tr>
<tr>
<td></td>
<td>The default is to store one message. The range is 0 to 500 messages.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

When the history table is full (it contains the maximum number of message entries specified with the **logging history size** global configuration command), the oldest message entry is deleted from the table to allow the new message entry to be stored.

To return the logging of syslog messages to the default level, use the **no logging history** global configuration command. To return the number of messages in the history table to the default value, use the **no logging history size** global configuration command.

Enabling the Configuration-Change Logger

You can enable a configuration logger to keep track of configuration changes made with the command-line interface (CLI). When you enter the **logging enable** configuration-change logger configuration command, the log records the session, the user, and the command that was entered to change the configuration. You can configure the size of the configuration log from 1 to 1000 entries (the default is 100). You can clear the log at any time by entering the **no logging enable** command followed by the **logging enable** command to disable and re-enable logging.

Use the **show archive log config [all | number [end-number] | user username [session number] number [end-number] | statistics] [provisioning]** privileged EXEC command to display the complete configuration log or the log for specified parameters.

The default is that configuration logging is disabled.

For information about the commands, see the *Cisco IOS Configuration Fundamentals and Network Management Command Reference, Release 12.3 T* at this URL:

Beginning in privileged EXEC mode, follow these steps to enable configuration logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 archive</td>
<td>Enter archive configuration mode.</td>
</tr>
<tr>
<td>Step 3 log config</td>
<td>Enter configuration-change logger configuration mode.</td>
</tr>
<tr>
<td>Step 4 logging enable</td>
<td>Enable configuration change logging.</td>
</tr>
<tr>
<td>Step 5 logging size entries</td>
<td>(Optional) Configure the number of entries retained in the configuration log. The range is from 1 to 1000. The default is 100. Note When the configuration log is full, the oldest log entry is removed each time a new entry is entered.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show archive log config</td>
<td>Verify your entries by viewing the configuration log.</td>
</tr>
</tbody>
</table>

This example shows how to enable the configuration-change logger and to set the number of entries in the log to 500.

Switch(config)# archive
Switch(config-archive)# log config
Switch(config-archive-log-cfg)# logging enable
Switch(config-archive-log-cfg)# logging size 500
Switch(config-archive-log-cfg)# end

This is an example of output for the configuration log:

Switch# show archive log config all
idx sess user@line Logged command
38 12 unknown user@vty3 | no aaa authorization config-commands
39 12 unknown user@vty3 | no aaa authorization network default group radius
40 12 unknown user@vty3 | no aaa accounting dot1x default start-stop group
41 13 unknown user@vty3 | no aaa accounting system default
42 14 temi@vty4 | interface GigabitEthernet4/0/1
43 14 temi@vty4 | switchport mode trunk
44 14 temi@vty4 | exit
45 16 temi@vty5 | interface GigabitEthernet5/0/1
46 16 temi@vty5 | switchport mode trunk
47 16 temi@vty5 | exit

Configuring UNIX Syslog Servers

The next sections describe how to configure the UNIX server syslog daemon and how to define the UNIX system logging facility.
Configuring System Message Logging

Logging Messages to a UNIX Syslog Daemon

Before you can send system log messages to a UNIX syslog server, you must configure the syslog daemon on a UNIX server. This procedure is optional.

Log in as root, and perform these steps:

Note

Some recent versions of UNIX syslog daemons no longer accept by default syslog packets from the network. If this is the case with your system, use the UNIX `man syslogd` command to decide what options must be added to or removed from the syslog command line to enable logging of remote syslog messages.

Step 1
Add a line such as the following to the file `/etc/syslog.conf`:

```plaintext
local7.debug /usr/adm/logs/cisco.log
```

The `local7` keyword specifies the logging facility to be used; see Table 32-4 on page 32-14 for information on the facilities. The `debug` keyword specifies the syslog level; see Table 32-3 on page 32-10 for information on the severity levels. The syslog daemon sends messages at this level or at a more severe level to the file specified in the next field. The file must already exist, and the syslog daemon must have permission to write to it.

Step 2
Create the log file by entering these commands at the UNIX shell prompt:

```plaintext
$ touch /var/log/cisco.log
$ chmod 666 /var/log/cisco.log
```

Step 3
Make sure the syslog daemon reads the new changes:

```plaintext
$ kill -HUP `cat /etc/syslog.pid`
```

For more information, see the `man syslog.conf` and `man syslogd` commands on your UNIX system.

Configuring the UNIX System Logging Facility

When sending system log messages to an external device, you can cause the switch to identify its messages as originating from any of the UNIX syslog facilities.

Beginning in privileged EXEC mode, follow these steps to configure UNIX system facility message logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 logging <code>host</code></td>
<td>Log messages to a UNIX syslog server host by entering its IP address. To build a list of syslog servers that receive logging messages, enter this command more than once.</td>
</tr>
<tr>
<td>Step 3 logging <code>trap level</code></td>
<td>Limit messages logged to the syslog servers. Be default, syslog servers receive informational messages and lower. See Table 32-3 on page 32-10 for <code>level</code> keywords.</td>
</tr>
</tbody>
</table>
Displaying the Logging Configuration

To remove a syslog server, use the `no logging host` global configuration command, and specify the syslog server IP address. To disable logging to syslog servers, enter the `no logging trap` global configuration command.

Table 32-4 lists the UNIX system facilities supported by the software. For more information about these facilities, consult the operator’s manual for your UNIX operating system.

Table 32-4 Logging Facility-Type Keywords

<table>
<thead>
<tr>
<th>Facility Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Authorization system</td>
</tr>
<tr>
<td>cron</td>
<td>Cron facility</td>
</tr>
<tr>
<td>daemon</td>
<td>System daemon</td>
</tr>
<tr>
<td>kern</td>
<td>Kernel</td>
</tr>
<tr>
<td>local0-7</td>
<td>Locally defined messages</td>
</tr>
<tr>
<td>lpr</td>
<td>Line printer system</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
</tr>
<tr>
<td>syslog</td>
<td>System use</td>
</tr>
<tr>
<td>user</td>
<td>User process</td>
</tr>
<tr>
<td>uucp</td>
<td>UNIX-to-UNIX copy system</td>
</tr>
</tbody>
</table>

To display the logging configuration and the contents of the log buffer, use the `show logging` privileged EXEC command. For information about the fields in this display, see the *Cisco IOS Configuration Fundamentals Command Reference, Release 12. 12.2* from the Cisco.com page under **Documentation > Cisco IOS Software > 12.2 Mainline > Command References.**
Configuring SNMP

This chapter describes how to configure the Simple Network Management Protocol (SNMP) on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the Cisco IOS Network Management Command Reference, Release 12.4 from the Cisco.com page at this URL: http://www.cisco.com/en/US/docs/ios/netmgmt/command/reference/nm_book.html

This chapter consists of these sections:

- Understanding SNMP, page 33-1
- Configuring SNMP, page 33-6
- Displaying SNMP Status, page 33-19

Understanding SNMP

SNMP is an application-layer protocol that provides a message format for communication between managers and agents. The SNMP system consists of an SNMP manager, an SNMP agent, and a MIB. The SNMP manager can be part of a network management system (NMS) such as CiscoWorks. The agent and MIB reside on the switch. To configure SNMP on the switch, you define the relationship between the manager and the agent.

The SNMP agent contains MIB variables whose values the SNMP manager can request or change. A manager can get a value from an agent or store a value into the agent. The agent gathers data from the MIB, the repository for information about device parameters and network data. The agent can also respond to a manager’s requests to get or set data.

An agent can send unsolicited traps to the manager. Traps are messages alerting the SNMP manager to a condition on the network. Traps can mean improper user authentication, restarts, link status (up or down), MAC address tracking, closing of a TCP connection, loss of connection to a neighbor, or other significant events.

The stack master handles the SNMP requests and traps for the whole switch stack. The stack master transparently manages any requests or traps that are related to all stack members. When a new stack master is elected, the new master continues to handle SNMP requests and traps as configured on the previous stack master, assuming that IP connectivity to the SNMP management stations is still in place after the new master has taken control.

For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”
SNMP Versions

This software release supports these SNMP versions:

- SNMPv1—The Simple Network Management Protocol, a Full Internet Standard, defined in RFC 1157.
- SNMPv2C replaces the Party-based Administrative and Security Framework of SNMPv2Classic with the community-string-based Administrative Framework of SNMPv2C while retaining the bulk retrieval and improved error handling of SNMPv2Classic. It has these features:
 - SNMPv2C—The community-string-based Administrative Framework for SNMPv2, an Experimental Internet Protocol defined in RFC 1901.
- SNMPv3—Version 3 of the SNMP is an interoperable standards-based protocol defined in RFCs 2273 to 2275. SNMPv3 provides secure access to devices by authenticating and encrypting packets over the network and includes these security features:
 - Message integrity—ensuring that a packet was not tampered with in transit
 - Authentication—determining that the message is from a valid source
 - Encryption—mixing the contents of a package to prevent it from being read by an unauthorized source.

Note: To select encryption, enter the priv keyword. This keyword is available only when the cryptographic (encrypted) universal software image is installed.

Both SNMPv1 and SNMPv2C use a community-based form of security. The community of managers able to access the agent’s MIB is defined by an IP address access control list and password.

SNMPv2C includes a bulk retrieval mechanism and more detailed error message reporting to management stations. The bulk retrieval mechanism retrieves tables and large quantities of information, minimizing the number of round-trips required. The SNMPv2C improved error-handling includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes in SNMPv2C report the error type.

SNMPv3 provides for both security models and security levels. A security model is an authentication strategy set up for a user and the group within which the user resides. A security level is the permitted level of security within a security model. A combination of the security level and the security model determine which security mechanism is used when handling an SNMP packet. Available security models are SNMPv1, SNMPv2C, and SNMPv3.
Table 33-1 identifies the characteristics of the different combinations of security models and levels.

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>SNMPv2C</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authNoPriv</td>
<td>Message Digest 5 (MD5) or Secure Hash Algorithm (SHA)</td>
<td>No</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authPriv</td>
<td>MD5 or SHA</td>
<td>Data Encryption Standard (DES) or Advanced Encryption Standard (AES)</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Allows specifying the User-based Security Model (USM) with these encryption algorithms: DES 56-bit encryption in addition to authentication based on the CBC-DES (DES-56) standard. 3DES 168-bit encryption AES 128-bit, 192-bit, or 256-bit encryption</td>
</tr>
</tbody>
</table>

You must configure the SNMP agent to use the SNMP version supported by the management station. Because an agent can communicate with multiple managers, you can configure the software to support communications using SNMPv1, SNMPv2C, or SNMPv3.

SNMP Manager Functions

The SNMP manager uses information in the MIB to perform the operations described in Table 33-2.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get-request</td>
<td>Retrieves a value from a specific variable.</td>
</tr>
<tr>
<td>get-next-request</td>
<td>Retrieves a value from a variable within a table.¹</td>
</tr>
<tr>
<td>get-bulk-request²</td>
<td>Retrieves large blocks of data, such as multiple rows in a table, that would otherwise require the transmission of many small blocks of data.</td>
</tr>
<tr>
<td>get-response</td>
<td>Replies to a get-request, get-next-request, and set-request sent by an NMS.</td>
</tr>
<tr>
<td>set-request</td>
<td>Stores a value in a specific variable.</td>
</tr>
<tr>
<td>trap</td>
<td>An unsolicited message sent by an SNMP agent to an SNMP manager when some event has occurred.</td>
</tr>
</tbody>
</table>

¹ With this operation, an SNMP manager does not need to know the exact variable name. A sequential search is performed to find the needed variable from within a table.

² The get-bulk command only works with SNMPv2 or later.
SNMP Agent Functions

The SNMP agent responds to SNMP manager requests as follows:

- **Get a MIB variable**—The SNMP agent begins this function in response to a request from the NMS. The agent retrieves the value of the requested MIB variable and responds to the NMS with that value.
- **Set a MIB variable**—The SNMP agent begins this function in response to a message from the NMS. The SNMP agent changes the value of the MIB variable to the value requested by the NMS.

The SNMP agent also sends unsolicited trap messages to notify an NMS that a significant event has occurred on the agent. Examples of trap conditions include, but are not limited to, when a port or module goes up or down, when spanning-tree topology changes occur, and when authentication failures occur.

SNMP Community Strings

SNMP community strings authenticate access to MIB objects and function as embedded passwords. In order for the NMS to access the switch, the community string definitions on the NMS must match at least one of the three community string definitions on the switch.

A community string can have one of these attributes:

- **Read-only (RO)**—Gives read access to authorized management stations to all objects in the MIB except the community strings, but does not allow write access
- **Read-write (RW)**—Gives read and write access to authorized management stations to all objects in the MIB, but does not allow access to the community strings

Using SNMP to Access MIB Variables

An example of an NMS is the CiscoWorks network management software. CiscoWorks 2000 software uses the switch MIB variables to set device variables and to poll devices on the network for specific information. The results of a poll can be displayed as a graph and analyzed to troubleshoot internetworking problems, increase network performance, verify the configuration of devices, monitor traffic loads, and more.

As shown in Figure 33-1, the SNMP agent gathers data from the MIB. The agent can send traps, or notification of certain events, to the SNMP manager, which receives and processes the traps. Traps alert the SNMP manager to a condition on the network such as improper user authentication, restarts, link status (up or down), MAC address tracking, and so forth. The SNMP agent also responds to MIB-related queries sent by the SNMP manager in get-request, get-next-request, and set-request format.

For information on supported MIBs and how to access them, see Appendix A, “Supported MIBs.”
SNMP Notifications

SNMP allows the switch to send notifications to SNMP managers when particular events occur. SNMP notifications can be sent as traps or inform requests. In command syntax, unless there is an option in the command to select either traps or informs, the keyword traps refers to either traps or informs, or both. Use the `snmp-server host` command to specify whether to send SNMP notifications as traps or informs.

Note
SNMPv1 does not support informs.

Traps are unreliable because the receiver does not send an acknowledgment when it receives a trap, and the sender cannot determine if the trap was received. When an SNMP manager receives an inform request, it acknowledges the message with an SNMP response protocol data unit (PDU). If the sender does not receive a response, the inform request can be sent again. Because they can be re-sent, informs are more likely than traps to reach their intended destination.

The characteristics that make informs more reliable than traps also consume more resources in the switch and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request is held in memory until a response is received or the request times out. Traps are sent only once, but an inform might be re-sent or retried several times. The retries increase traffic and contribute to a higher overhead on the network. Therefore, traps and informs require a trade-off between reliability and resources. If it is important that the SNMP manager receive every notification, use inform requests. If traffic on the network or memory in the switch is a concern and notification is not required, use traps.

SNMP ifIndex MIB Object Values

In an NMS, the IF-MIB generates and assigns an interface index (ifIndex) object value that is a unique number greater than zero to identify a physical or a logical interface. When the switch reboots or the switch software is upgraded, the switch uses this same value for the interface. For example, if the switch assigns a port 2 an ifIndex value of 10003, this value is the same after the switch reboots.

The switch uses one of the values in Table 33-3 to assign an ifIndex value to an interface:

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>ifIndex Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVI1</td>
<td>1–4999</td>
</tr>
<tr>
<td>EtherChannel</td>
<td>5000–5012</td>
</tr>
<tr>
<td>Loopback</td>
<td>5013–5077</td>
</tr>
<tr>
<td>Tunnel</td>
<td>5078–5142</td>
</tr>
<tr>
<td>Physical (such as Gigabit Ethernet or SFP-module interfaces)</td>
<td>10000–14500</td>
</tr>
<tr>
<td>Null</td>
<td>14501</td>
</tr>
</tbody>
</table>

1. SVI = switch virtual interface
2. SFP = small form-factor pluggable

Note
The switch might not use sequential values within a range.
Configuring SNMP

These sections contain this configuration information:

- Default SNMP Configuration, page 33-6
- SNMP Configuration Guidelines, page 33-6
- Disabling the SNMP Agent, page 33-7
- Configuring Community Strings, page 33-8
- Configuring SNMP Groups and Users, page 33-9
- Configuring SNMP Notifications, page 33-12
- Setting the Agent Contact and Location Information, page 33-16
- Limiting TFTP Servers Used Through SNMP, page 33-17
- SNMP Examples, page 33-18

Default SNMP Configuration

Table 33-4 shows the default SNMP configuration.

Table 33-4 Default SNMP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP agent</td>
<td>Disabled(^1).</td>
</tr>
<tr>
<td>SNMP trap receiver</td>
<td>None configured.</td>
</tr>
<tr>
<td>SNMP traps</td>
<td>None enabled except the trap for TCP connections (tty).</td>
</tr>
<tr>
<td>SNMP version</td>
<td>If no version keyword is present, the default is Version 1.</td>
</tr>
<tr>
<td>SNMPv3 authentication</td>
<td>If no keyword is entered, the default is the noauth (noAuthNoPriv) security level.</td>
</tr>
<tr>
<td>SNMP notification type</td>
<td>If no type is specified, all notifications are sent.</td>
</tr>
</tbody>
</table>

1. This is the default when the switch starts and the startup configuration does not have any `snmp-server` global configuration commands.

SNMP Configuration Guidelines

If the switch starts and the switch startup configuration has at least one `snmp-server` global configuration command, the SNMP agent is enabled.

An SNMP group is a table that maps SNMP users to SNMP views. An SNMP user is a member of an SNMP group. An SNMP host is the recipient of an SNMP trap operation. An SNMP engine ID is a name for the local or remote SNMP engine.
When configuring SNMP, follow these guidelines:

- When configuring an SNMP group, do not specify a notify view. The `snmp-server host` global configuration command autogenerates a notify view for the user and then adds it to the group associated with that user. Modifying the group's notify view affects all users associated with that group. See the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 for information about when you should configure notify views.

- To configure a remote user, specify the IP address or port number for the remote SNMP agent of the device where the user resides.

- Before you configure remote users for a particular agent, configure the SNMP engine ID, using the `snmp-server engineID` global configuration with the `remote` option. The remote agent's SNMP engine ID and user password are used to compute the authentication and privacy digests. If you do not configure the remote engine ID first, the configuration command fails.

- When configuring SNMP informs, you need to configure the SNMP engine ID for the remote agent in the SNMP database before you can send proxy requests or informs to it.

- If a local user is not associated with a remote host, the switch does not send informs for the `auth` (authNoPriv) and the `priv` (authPriv) authentication levels.

- Changing the value of the SNMP engine ID has important side effects. A user's password (entered on the command line) is converted to an MD5 or SHA security digest based on the password and the local engine ID. The command-line password is then destroyed, as required by RFC 2274. Because of this deletion, if the value of the engine ID changes, the security digests of SNMPv3 users become invalid, and you need to reconfigure SNMP users by using the `snmp-server user` global configuration command. Similar restrictions require the reconfiguration of community strings when the engine ID changes.

Disabling the SNMP Agent

Beginning in privileged EXEC mode, follow these steps to disable the SNMP agent:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>no snmp-server</td>
<td>Disable the SNMP agent operation.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The `no snmp-server` global configuration command disables all running versions (Version 1, Version 2C, and Version 3) on the device. No specific Cisco IOS command exists to enable SNMP. The first `snmp-server` global configuration command that you enter enables all versions of SNMP.
Configuring Community Strings

You use the SNMP community string to define the relationship between the SNMP manager and the agent. The community string acts like a password to permit access to the agent on the switch. Optionally, you can specify one or more of these characteristics associated with the string:

- An access list of IP addresses of the SNMP managers that are permitted to use the community string to gain access to the agent
- A MIB view, which defines the subset of all MIB objects accessible to the given community
- Read and write or read-only permission for the MIB objects accessible to the community

Beginning in privileged EXEC mode, follow these steps to configure a community string on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server community string [view view-name] [ro</td>
</tr>
<tr>
<td></td>
<td>Configure the community string.</td>
</tr>
<tr>
<td></td>
<td>- For string, specify a string that acts like a password and permits access to the SNMP protocol. You can configure one or more community strings of any length.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For view, specify the view record accessible to the community.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) Specify either read-only (ro) if you want authorized management stations to retrieve MIB objects, or specify read-write (rw) if you want authorized management stations to retrieve and modify MIB objects. By default, the community string permits read-only access to all objects.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For access-list-number, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number [deny</td>
</tr>
<tr>
<td></td>
<td>(Optional) If you specified an IP standard access list number in Step 2, then create the list, repeating the command as many times as necessary.</td>
</tr>
<tr>
<td></td>
<td>- For access-list-number, enter the access list number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td>- The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>- For source, enter the IP address of the SNMP managers that are permitted to use the community string to gain access to the agent.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Note

To disable access for an SNMP community, set the community string for that community to the null string (do not enter a value for the community string).

To remove a specific community string, use the `no snmp-server community string` global configuration command.

This example shows how to assign the string `comaccess` to SNMP, to allow read-only access, and to specify that IP access list 4 can use the community string to gain access to the switch SNMP agent:

```
Switch(config)# snmp-server community comaccess ro 4
```

Configuring SNMP Groups and Users

You can specify an identification name (engine ID) for the local or remote SNMP server engine on the switch. You can configure an SNMP server group that maps SNMP users to SNMP views, and you can add new users to the SNMP group.

Beginning in privileged EXEC mode, follow these steps to configure SNMP on the switch:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server engineID {local engineid-string</td>
<td>Configure a name for either the local or remote copy of SNMP.</td>
</tr>
</tbody>
</table>
| | | | - The `engineid-string` is a 24-character ID string with the name of the copy of SNMP. You need not specify the entire 24-character engine ID if it has trailing zeros. Specify only the portion of the engine ID up to the point where only zeros remain in the value. For example, to configure an engine ID of 123400000000000000000000, you can enter this: `snmp-server engineID local 1234`
| | | | - If you select `remote`, specify the `ip-address` of the device that contains the remote copy of SNMP and the optional User Datagram Protocol (UDP) port on the remote device. The default is 162. |
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `snmp-server group groupname \{v1 | v2c | v3\ \{auth | noauth | priv\} \[read readview\] \[write writeview\] \[notify notifyview\] \[access access-list\] | Configure a new SNMP group on the remote device.
 - For `groupname`, specify the name of the group.
 - Specify a security model:
 - `v1` is the least secure of the possible security models.
 - `v2c` is the second least secure model. It allows transmission of informs and integers twice the normal width.
 - `v3`, the most secure, requires you to select an authentication level:
 - `auth`—Enables the Message Digest 5 (MD5) and the Secure Hash Algorithm (SHA) packet authentication.
 - `noauth`—Enables the noAuthNoPriv security level. This is the default if no keyword is specified.
 - `priv`—Enables Data Encryption Standard (DES) packet encryption (also called `privacy`).
 - (Optional) Enter `read readview` with a string (not to exceed 64 characters) that is the name of the view in which you can only view the contents of the agent.
 - (Optional) Enter `write writeview` with a string (not to exceed 64 characters) that is the name of the view in which you enter data and configure the contents of the agent.
 - (Optional) Enter `notify notifyview` with a string (not to exceed 64 characters) that is the name of the view in which you specify a notify, inform, or trap.
 - (Optional) Enter `access access-list` with a string (not to exceed 64 characters) that is the name of the access list. |

Note

The `priv` keyword is available only when the cryptographic universal software image is installed.
Command

| Step 4 | snmp-server user username groupname
	{remote host [udp-port port]}	v1 [access access-list]	v2c [access access-list]	v3 [encrypted] [access access-list] [auth {md5	sha} auth-password]}	[priv {des	3des	aes {128	192	256}}] priv-password)
	Purpose									
	Add a new user for an SNMP group.									
	• The *username* is the name of the user on the host that connects to the agent.									
	• The *groupname* is the name of the group to which the user is associated.									
	• Enter remote to specify a remote SNMP entity to which the user belongs and the hostname or IP address of that entity with the optional UDP port number. The default is 162.									
	• Enter the SNMP version number (v1, v2c, or v3). If you enter v3, you have these additional options:									
	• encrypted specifies that the password appears in encrypted format. This keyword is available only when the v3 keyword is specified.									
	• auth is an authentication level setting session that can be either the HMAC-MD5-96 (md5) or the HMAC-SHA-96 (sha) authentication level and requires a password string auth-password (not to exceed 64 characters).									
	• If you enter v3 and the switch is running the cryptographic software image, you can also configure a private (priv) encryption algorithm and password string priv-password (not to exceed 64 characters).									
	• priv specifies the User-based Security Model (USM).									
	• des specifies the use of the 56-bit DES algorithm.									
	• 3des specifies the use of the 168-bit DES algorithm.									
	• aes specifies the use of the DES algorithm. You must select either 128-bit, 192-bit, or 256-bit encryption.									
	• (Optional) Enter access access-list with a string (not to exceed 64 characters) that is the name of the access list.									

Step 5	end
	Purpose
	Return to privileged EXEC mode.

Step 6	show running-config		
	Purpose		
	Verify your entries.		
	Note To display SNMPv3 information about auth	noauth	priv mode configuration, you must enter the show snmp user privileged command.

| Step 7 | copy running-config startup-config |
| | (Optional) Save your entries in the configuration file. |
Configuring SNMP

Configuring SNMP Notifications

A trap manager is a management station that receives and processes traps. Traps are system alerts that the switch generates when certain events occur. By default, no trap manager is defined, and no traps are sent. Switches running this Cisco IOS release can have an unlimited number of trap managers.

Note

Many commands use the word traps in the command syntax. Unless there is an option in the command to select either traps or informs, the keyword traps refers to traps, informs, or both. Use the `snmp-server host` global configuration command to specify whether to send SNMP notifications as traps or informs.

Table 33-5 describes the supported switch traps (notification types). You can enable any or all of these traps and configure a trap manager to receive them.

<table>
<thead>
<tr>
<th>Notification Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgp</td>
<td>Generates Border Gateway Protocol (BGP) state change traps. This option is only available when the IP services feature set is enabled.</td>
</tr>
<tr>
<td>bridge</td>
<td>Generates STP bridge MIB traps.</td>
</tr>
<tr>
<td>cluster</td>
<td>Generates a trap when the cluster configuration changes.</td>
</tr>
<tr>
<td>config</td>
<td>Generates a trap for SNMP configuration changes.</td>
</tr>
<tr>
<td>copy-config</td>
<td>Generates a trap for SNMP copy configuration changes.</td>
</tr>
<tr>
<td>cpu-threshold</td>
<td>Allow CPU-related traps.</td>
</tr>
<tr>
<td>entity</td>
<td>Generates a trap for SNMP entity changes.</td>
</tr>
<tr>
<td>envmon</td>
<td>Generates environmental monitor traps. You can enable any or all of these environmental traps: fan, shutdown, status, supply, temperature.</td>
</tr>
<tr>
<td>flash</td>
<td>Generates SNMP FLASH notifications. In a switch stack, you can optionally enable notification for flash insertion or removal, which would cause a trap to be issued whenever a switch in the stack is removed or inserted (physical removal, power cycle, or reload).</td>
</tr>
<tr>
<td>fru-ctrl</td>
<td>Generates entity field-replaceable unit (FRU) control traps. In the switch stack, this trap refers to the insertion or removal of a switch in the stack.</td>
</tr>
<tr>
<td>hsrp</td>
<td>Generates a trap for Hot Standby Router Protocol (HSRP) changes.</td>
</tr>
<tr>
<td>ipmulticast</td>
<td>Generates a trap for IP multicast routing changes.</td>
</tr>
<tr>
<td>mac-notification</td>
<td>Generates a trap for MAC address notifications.</td>
</tr>
<tr>
<td>msdp</td>
<td>Generates a trap for Multicast Source Discovery Protocol (MSDP) changes.</td>
</tr>
<tr>
<td>ospf</td>
<td>Generates a trap for Open Shortest Path First (OSPF) changes. You can enable any or all of these traps: Cisco specific, errors, link-state advertisement, rate limit, retransmit, and state changes.</td>
</tr>
<tr>
<td>pim</td>
<td>Generates a trap for Protocol-Independent Multicast (PIM) changes. You can enable any or all of these traps: invalid PIM messages, neighbor changes, and rendezvous point (RP)-mapping changes.</td>
</tr>
</tbody>
</table>
Table 33-5 Switch Notification Types (continued)

<table>
<thead>
<tr>
<th>Notification Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-security</td>
<td>Generates SNMP port security traps. You can also set a maximum trap rate per second. The range is from 0 to 1000; the default is 0, which means that there is no rate limit.</td>
</tr>
<tr>
<td></td>
<td>Note When you configure a trap by using the notification type <code>port-security</code>, configure the port security trap first, and then configure the port security trap rate:</td>
</tr>
<tr>
<td></td>
<td>- <code>snmp-server enable traps port-security</code></td>
</tr>
<tr>
<td></td>
<td>- <code>snmp-server enable traps port-security trap-rate rate</code></td>
</tr>
<tr>
<td>rtr</td>
<td>Generates a trap for the SNMP Response Time Reporter (RTR).</td>
</tr>
<tr>
<td>snmp</td>
<td>Generates a trap for SNMP-type notifications for authentication, cold start, warm start, link up or link down.</td>
</tr>
<tr>
<td>storm-control</td>
<td>Generates a trap for SNMP storm-control. You can also set a maximum trap rate per minute. The range is from 0 to 1000; the default is 0 (no limit is imposed; a trap is sent at every occurrence).</td>
</tr>
<tr>
<td>stpx</td>
<td>Generates SNMP STP Extended MIB traps.</td>
</tr>
<tr>
<td>syslog</td>
<td>Generates SNMP syslog traps.</td>
</tr>
<tr>
<td>tty</td>
<td>Generates a trap for TCP connections. This trap is enabled by default.</td>
</tr>
<tr>
<td>vlan-membership</td>
<td>Generates a trap for SNMP VLAN membership changes.</td>
</tr>
<tr>
<td>vlancreate</td>
<td>Generates SNMP VLAN created traps.</td>
</tr>
<tr>
<td>vlandelete</td>
<td>Generates SNMP VLAN deleted traps.</td>
</tr>
<tr>
<td>vtp</td>
<td>Generates a trap for VLAN Trunking Protocol (VTP) changes.</td>
</tr>
</tbody>
</table>

Note To enable the sending of SNMP inform notifications, use the `snmp-server enable traps` global configuration command combined with the `snmp-server host host-addr informs` global configuration command.

You can use the `snmp-server host` global configuration command to a specific host to receive the notification types listed in Table 33-5.
Beginning in privileged EXEC mode, follow these steps to configure the switch to send traps or informs to a host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server engineID remote ip-address engine-id-string Specify the engine ID for the remote host.</td>
</tr>
<tr>
<td>Step 3</td>
<td>snmp-server user username groupname {remote host [udp-port port]} {v1 [access access-list]</td>
</tr>
<tr>
<td>Step 4</td>
<td>snmp-server group groupname {v1</td>
</tr>
<tr>
<td>Step 5</td>
<td>snmp-server host host-addr [informs</td>
</tr>
<tr>
<td>Step 6</td>
<td>snmp-server enable traps notification-types Enable the switch to send traps or informs and specify the type of notifications to be sent. For a list of notification types, see Table 33-5 on page 33-12, or enter snmp-server enable traps ? To enable multiple types of traps, you must enter a separate snmp-server enable traps command for each trap type. Note When you configure a trap by using the notification type port-security, configure the port security trap first, and then configure the port security trap rate: • snmp-server enable traps port-security • snmp-server enable traps port-security trap-rate rate</td>
</tr>
</tbody>
</table>
Configuring SNMP

The `snmp-server host` command specifies which hosts receive the notifications. The `snmp-server enable trap` command globally enables the mechanism for the specified notification (for traps and informs). To enable a host to receive an inform, you must configure an `snmp-server host informs` command for the host and globally enable informs by using the `snmp-server enable traps` command.

To remove the specified host from receiving traps, use the `no snmp-server host host` global configuration command. The `no snmp-server host` command with no keywords disables traps, but not informs, to the host. To disable informs, use the `no snmp-server host informs` global configuration command. To disable a specific trap type, use the `no snmp-server enable traps notification-types` global configuration command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 7**
 snmp-server trap-source *interface-id* | (Optional) Specify the source interface, which provides the IP address for the trap message. This command also sets the source IP address for informs. |
| **Step 8**
 snmp-server queue-length *length* | (Optional) Establish the message queue length for each trap host. The range is 1 to 1000; the default is 10. |
| **Step 9**
 snmp-server trap-timeout *seconds* | (Optional) Define how often to resend trap messages. The range is 1 to 1000; the default is 30 seconds. |
| **Step 10**
 end | Return to privileged EXEC mode. |
| **Step 11**
 show running-config | Verify your entries. |
 Note To display SNMPv3 information about auth | noauth | priv mode configuration, you must enter the *show snmp user* privileged command. |
| **Step 12**
 copy running-config startup-config | (Optional) Save your entries in the configuration file. |
Setting the CPU Threshold Notification Types and Values

Beginning in privileged EXEC mode, follow these steps to set the CPU threshold notification types and values:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | process cpu threshold type {total | process | interrupt} rising percentage interval seconds [falling fall-percentage interval seconds] | Set the CPU threshold notification types and values:
 - **total**—set the notification type to total CPU utilization.
 - **process**—set the notification type to CPU process utilization.
 - **interrupt**—set the notification type to CPU interrupt utilization.
 - **rising percentage**—the percentage (1 to 100) of CPU resources that, when exceeded for the configured interval, sends a CPU threshold notification.
 - **interval seconds**—the duration of the CPU threshold violation in seconds (5 to 86400) that, when met, sends a CPU threshold notification.
 - **falling fall-percentage**—the percentage (1 to 100) of CPU resources that, when usage falls below this level for the configured interval, sends a CPU threshold notification. This value must be equal to or less than the **rising percentage** value. If not specified, the **falling fall-percentage** value is the same as the **rising percentage** value. |
| **Step 3** | end | Return to privileged EXEC mode. |
| **Step 4** | show running-config | Verify your entries. |
| **Step 5** | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

Setting the Agent Contact and Location Information

Beginning in privileged EXEC mode, follow these steps to set the system contact and location of the SNMP agent so that these descriptions can be accessed through the configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | snmp-server contact text | Set the system contact string.
 For example:
 `snmp-server contact Dial System Operator at beeper 21555`. |
| **Step 3** | snmp-server location text | Set the system location string.
 For example:
 `snmp-server location Building 3/Room 222` |
| **Step 4** | end | Return to privileged EXEC mode. |
Limiting TFTP Servers Used Through SNMP

Beginning in privileged EXEC mode, follow these steps to limit the TFTP servers used for saving and loading configuration files through SNMP to the servers specified in an access list:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server tftp-server-list</td>
<td>Limit TFTP servers used for configuration file copies through SNMP to the servers in the access list.</td>
</tr>
<tr>
<td></td>
<td>access-list-number</td>
<td>For <code>access-list-number</code>, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number</td>
<td>Create a standard access list, repeating the command as many times as necessary.</td>
</tr>
<tr>
<td></td>
<td><code>deny</code></td>
<td>source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td><code>permit</code></td>
<td>source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
SNMP Examples

This example shows how to enable all versions of SNMP. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string `public`. This configuration does not cause the switch to send any traps.

```
Switch(config)# snmp-server community public
```

This example shows how to permit any SNMP manager to access all objects with read-only permission using the community string `public`. The switch also sends VTP traps to the hosts 192.180.1.111 and 192.180.1.33 using SNMPv1 and to the host 192.180.1.27 using SNMPv2C. The community string `public` is sent with the traps.

```
Switch(config)# snmp-server community public
Switch(config)# snmp-server enable traps vtp
Switch(config)# snmp-server host 192.180.1.27 version 2c public
Switch(config)# snmp-server host 192.180.1.111 version 1 public
Switch(config)# snmp-server host 192.180.1.33 public
```

This example shows how to allow read-only access for all objects to members of access list 4 that use the `comaccess` community string. No other SNMP managers have access to any objects. SNMP Authentication Failure traps are sent by SNMPv2C to the host `cisco.com` using the community string `public`.

```
Switch(config)# snmp-server community comaccess ro 4
Switch(config)# snmp-server enable traps snmp authentication
Switch(config)# snmp-server host cisco.com version 2c public
```

This example shows how to send Entity MIB traps to the host `cisco.com`. The community string is restricted. The first line enables the switch to send Entity MIB traps in addition to any traps previously enabled. The second line specifies the destination of these traps and overwrites any previous `snmp-server host` commands for the host `cisco.com`.

```
Switch(config)# snmp-server enable traps entity
Switch(config)# snmp-server host cisco.com restricted entity
```

This example shows how to enable the switch to send all traps to the host `myhost.cisco.com` using the community string `public`:

```
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server host myhost.cisco.com public
```

This example shows how to associate a user with a remote host and to send auth (authNoPriv) authentication-level informs when the user enters global configuration mode:

```
Switch(config)# snmp-server engineID remote 192.180.1.27 00000063000100a1c0b4011b
Switch(config)# snmp-server group authgroup v3 auth
Switch(config)# snmp-server user authuser authgroup remote 192.180.1.27 v3 auth md5 mypassword
Switch(config)# snmp-server user authuser authgroup v3 auth md5 mypassword
Switch(config)# snmp-server host 192.180.1.27 informs version 3 auth authuser config
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server inform retries 0
```
Displaying SNMP Status

To display SNMP input and output statistics, including the number of illegal community string entries, errors, and requested variables, use the `show snmp` privileged EXEC command. You also can use the other privileged EXEC commands in Table 33-6 to display SNMP information. For information about the fields in the displays, see the Cisco IOS Configuration Fundamentals Command Reference.

Table 33-6 Commands for Displaying SNMP Information

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show snmp</code></td>
<td>Displays SNMP statistics.</td>
</tr>
<tr>
<td>`show snmp engineID [local</td>
<td>remote]`</td>
</tr>
<tr>
<td><code>show snmp group</code></td>
<td>Displays information on each SNMP group on the network.</td>
</tr>
<tr>
<td><code>show snmp pending</code></td>
<td>Displays information on pending SNMP requests.</td>
</tr>
<tr>
<td><code>show snmp sessions</code></td>
<td>Displays information on the current SNMP sessions.</td>
</tr>
<tr>
<td><code>show snmp user</code></td>
<td>Displays information on each SNMP user name in the SNMP users table.</td>
</tr>
<tr>
<td>Note</td>
<td>You must use this command to display SNMPv3 configuration information for auth</td>
</tr>
</tbody>
</table>
Configuring Embedded Event Manager

Embedded Event Manager (EEM) is a distributed and customized approach to event detection and recovery within a Cisco IOS device. EEM offers the ability to monitor events and take informational, corrective, or any other EEM action when the monitored events occur or when a threshold is reached. An EEM policy defines an event and the actions to be taken when that event occurs.

This chapter describes how to use the embedded event manager (EEM) to monitor and manage the switch and how to configure it. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the Cisco IOS Network Management Command Reference. For the complete EEM document set, see these documents in the Cisco IOS Network Management Configuration Guide:

- Embedded Event Manager Overview
- Writing Embedded Event Manager Policies Using the Cisco IOS CLI
- Writing Embedded Event Manager Policies Using Tcl

Beginning with Cisco IOS Release 12.2(55)SE, the EEM feature is supported on the IP base feature set.

This chapter consists of these sections:

- Understanding Embedded Event Manager, page 34-1
- Configuring Embedded Event Manager, page 34-6
- Displaying Embedded Event Manager Information, page 34-8

Understanding Embedded Event Manager

EEM monitors key system events and then acts on them through a set policy. This policy is a programmed script that you can use to customize a script to invoke an action based on a given set of events occurring. The script generates actions such as generating custom syslog or Simple Network Management Protocol (SNMP) traps, invoking CLI commands, forcing a failover, and so forth. The event management capabilities of EEM are useful because not all event management can be managed from the switch and
because some problems compromise communication between the switch and the external network management device. Network availability is improved if automatic recovery actions are performed without rebooting the switch.

Figure 34-1 shows the relationship between the EEM server, the core event publishers (event detectors), and the event subscribers (policies). The event publishers screen events and when there is a match on an event specification that is provided by the event subscriber. Event detectors notify the EEM server when an event occurs. The EEM policies then implement recovery based on the current state of the system and the actions specified in the policy for the given event.

Figure 34-1 Embedded Event Manager Core Event Detectors

![Diagram of EEM Core Event Detectors]

See the *EEM Configuration for Cisco Integrated Services Router Platforms Guide* for examples of EEM deployment.

These sections contain this conceptual information:

- Event Detectors, page 34-3
- Embedded Event Manager Actions, page 34-4
- Embedded Event Manager Policies, page 34-4
- Embedded Event Manager Environment Variables, page 34-5
- EEM 3.2, page 34-5
Event Detectors

EEM software programs known as event detectors determine when an EEM event occurs. Event detectors are separate systems that provide an interface between the agent being monitored, for example SNMP, and the EEM polices where an action can be implemented. Event detectors are generated only by the master switch. CLI and routing processes also run only from the master switch.

Note

The stack member switch does not generate events and does not support memory threshold notifications or IOSWdSysmon event detectors.

EEM allows these event detectors:

- Application-specific event detector— Allows any EEM policy to publish an event.
- IOS CLI event detector— Generates policies based on the commands entered through the CLI.
- Generic Online Diagnostics (GOLD) event detector— Publishes an event when a GOLD failure event is detected on a specified card and subcard.
- Counter event detector— Publishes an event when a named counter crosses a specified threshold.
- Interface counter event detector— Publishes an event when a generic Cisco IOS interface counter for a specified interface crosses a defined threshold. A threshold can be specified as an absolute value or an incremental value. For example, if the incremental value is set to 50 an event would be published when the interface counter increases by 50. This detector also publishes an event about an interface based on the rate of change for the entry and exit values.
- None event detector— Publishes an event when the event manager run CLI command executes an EEM policy. EEM schedules and runs policies on the basis on an event specification within the policy itself. An EEM policy must be manually identified and registered before the event manager run command executes.
- Online insertion and removal event detector— Publishes an event when a hardware insertion or removal (OIR) event occurs.
- Remote procedure call (RPC) event detector—Invokes EEM policies from outside the switch over an encrypted connecting using Secure Shell (SSH) and uses Simple Object Access Protocol (SOAP) data encoding for exchanging XML-based messages. It also runs EEM policies and then gets the output in a SOAP XML-formatted reply.
- SNMP event detector— Allows a standard SNMP MIB object to be monitored and an event to be generated when
 - The object matches specified values or crosses specified thresholds.
 - The SNMP delta value, the difference between the monitored Object Identifier (OID) value at the beginning the period and the actual OID value when the event is published, matches a specified value.
- SNMP notification event detector—Intercepts SNMP trap and inform messages received by the switch. The event is generated when an incoming message matches a specified value or crosses a defined threshold.
- Syslog event detector— Allows for screening syslog messages for a regular expression pattern match. The selected messages can be further qualified, requiring that a specific number of occurrences be logged within a specified time. A match on a specified event criteria triggers a configured policy action.
Understanding Embedded Event Manager

- **Timer event detector**— Publishes events for
 - An absolute-time-of-day timer publishes an event when a specified absolute date and time occurs.
 - A countdown timer publishes an event when a timer counts down to zero.
 - A watchdog timer publishes an event when a timer counts down to zero. The timer automatically resets itself to its initial value and starts to count down again.
 - A CRON timer publishes an event by using a UNIX standard CRON specification to define when the event is to be published. A CRON timer never publishes events more than once per minute.
- **Watchdog event detector (IOSWDSysMon)**—Publishes an event only on the master switch when
 - CPU utilization for a Cisco IOS process crosses a threshold.
 - Memory utilization for a Cisco IOS process crosses a threshold.

Two events can be monitored at the same time, and the event publishing criteria requires that one or both events cross their specified thresholds.

Embedded Event Manager Actions

These actions occur in response to an event:
- Modifying a named counter.
- Publishing an application-specific event.
- Generating an SNMP trap.
- Generating prioritized syslog messages.
- Reloading the Cisco IOS software.
- Reloading the switch stack.
- Reloading the master switch in the event of a master switchover. If this occurs, a new master switch is elected.

Embedded Event Manager Policies

EEM can monitor events and provide information, or take corrective action when the monitored events occur or a threshold is reached. An EEM policy is an entity that defines an event and the actions to be taken when that event occurs.

There are two types of EEM policies: an applet or a script. An applet is a simple policy that is defined within the CLI configuration. It is a concise method for defining event screening criteria and the actions to be taken when that event occurs. Scripts are defined on the networking device by using an ASCII editor. The script, which can be a bytecode (.tbc) and text (.tcl) script, is then copied to the networking device and registered with EEM. You can also register multiple events in a .tcl file.

You use EEM to write and implement your own policies using the EEM policy tool command language (TCL) script. When you configure a TCL script on the master switch and the file is automatically sent to the member switches. The user-defined TCL scripts must be available in the member switches so that if the master switch changes, the TCL scripts policies continue to work.
Cisco enhancements to TCL in the form of keyword extensions facilitate the development of EEM policies. These keywords identify the detected event, the subsequent action, utility information, counter values, and system information.

For complete information on configuring EEM policies and scripts, see the Cisco IOS Network Management Configuration Guide, Release 12.4T.

Embedded Event Manager Environment Variables

EEM uses environment variables in EEM policies. These variables are defined in a EEM policy tool command language (TCL) script by running a CLI command and the `event manager environment` command.

User-defined variables

- Defined by the user for a user-defined policy.
- Cisco-defined variables
 - Defined by Cisco for a specific sample policy.
- Cisco built-in variables (available in EEM applets)
 - Defined by Cisco and can be read-only or read-write. The read-only variables are set by the system before an applet starts to execute. The single read-write variable, `exit_status`, allows you to set the exit status for policies triggered from synchronous events.

Cisco-defined environment variables and Cisco system-defined environment variables might apply to one specific event detector or to all event detectors. Environment variables that are user-defined or defined by Cisco in a sample policy are set by using the `event manager environment` global configuration command. You must defined the variables in the EEM policy before you register the policy.

For information about the environmental variables that EEM supports, see the Cisco IOS Network Management Configuration Guide, Release 12.4T.

EEM 3.2

EEM 3.2 is supported in Cisco IOS Release 12.2(52)SE and later and introduces these event detectors:

- Neighbor Discovery—Neighbor Discovery event detector provides the ability to publish a policy to respond to automatic neighbor detection when:
 - a Cisco Discovery Protocol (CDP) cache entry is added, deleted, or updated.
 - a Link Layer Discovery Protocol (LLDP) cache entry is added, deleted or updated.
 - an interface link status changes.
 - an interface line status changes.

- Identity—Identity event detector generates an event when AAA authorization and authentication is successful, when failure occurs, or after normal user traffic on the port is allowed to flow.

- Mac-Address-Table—Mac-Address-Table event detector generates an event when a MAC address is learned in the MAC address table.
Note

The Mac-Address-Table event detector is supported only on switch platforms and can be used only on Layer 2 interfaces where MAC addresses are learned. Layer 3 interfaces do not learn addresses, and routers do not usually support the MAC address-table infrastructure needed to notify EEM of a learned MAC address.

EEM 3.2 also introduces CLI commands to support the applets to work with the new event detectors. For further details about EEM 3.2 features, see the Embedded Event Manager 3.2 document.

Configuring Embedded Event Manager

These sections contain this configuration information:

- Registering and Defining an Embedded Event Manager Applet, page 34-6
- Registering and Defining an Embedded Event Manager TCL Script, page 34-7

For complete information about configuring embedded event manager, see the Cisco IOS Network Management Configuration Guide, Release 12.4T.

Registering and Defining an Embedded Event Manager Applet

Beginning in privileged EXEC mode, perform this task to register an applet with EEM and to define the EEM applet using the event applet and action applet configuration commands.

Note

Only one event applet command is allowed in an EEM applet. Multiple action applet commands are permitted. If you do not specify the no event and no action commands, the applet is removed when you exit configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 event manager applet applet-name</td>
<td>Register the applet with EEM and enter applet configuration mode.</td>
</tr>
<tr>
<td>Step 3 event snmp oid oid-value get-type</td>
<td>Specify the event criteria that causes the EEM applet to run. (Optional)</td>
</tr>
<tr>
<td>{exact</td>
<td>next} entry-op {eq</td>
</tr>
<tr>
<td>[or</td>
<td>and)] [exit-op {eq</td>
</tr>
</tbody>
</table>
Chapter 34 Configuring Embedded Event Manager

Configuring Embedded Event Manager

This example shows the output for EEM when one of the fields specified by an SNMP object ID crosses a defined threshold:

Switch(config-applet)# event snmp oid 1.3.6.1.4.1.9.9.48.1.1.1.6.1 get-type exact entry-op lt entry-val 5120000 poll-interval 10

These examples show actions that are taken in response to an EEM event:

Switch(config-applet)# action 1.0 syslog priority critical msg "Memory exhausted; current available memory is \$_snmp_oid_val bytes"
Switch (config-applet)# action 2.0 force-switchover

Registering and Defining an Embedded Event Manager TCL Script

Beginning in privileged EXEC mode, perform this task to register a TCL script with EEM and to define the TCL script and policy commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>show event manager environment [all</td>
</tr>
<tr>
<td></td>
<td>variable-name]</td>
</tr>
<tr>
<td></td>
<td>(Optional) The all keyword displays the EEM environment variables.</td>
</tr>
<tr>
<td></td>
<td>(Optional) The variable-name argument displays information about the specified environment variable.</td>
</tr>
<tr>
<td>Step 3</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 4</td>
<td>event manager environment variable-name string</td>
</tr>
<tr>
<td>Step 5</td>
<td>event manager policy policy-file-name [type system] [trap]</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
</tbody>
</table>

This example shows the sample output for the show event manager environment command:

Switch# show event manager environment all
No. Name Value
1 _cron_entry 0-59/2 0-23/1 * * 0-6
2 _show_cmd show ver
3 _syslog_pattern .*UPDOWN.*Ethernet1/0.*
To display information about EEM, including EEM registered policies and EEM history data, see the *Cisco IOS Network Management Command Reference*.
Configuring Network Security with ACLs

This chapter describes how to configure network security on the switch by using access control lists (ACLs). Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Information in this chapter about IP ACLs is specific to IP Version 4 (IPv4). For information about IPv6 ACLs, see Chapter 36, “Configuring IPv6 ACLs.”

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release, see the “Configuring IP Services” section in the “IP Addressing and Services” chapter of the Cisco IOS IP Configuration Guide, Release 12.2, and the Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.2.

The switch also supports Cisco TrustSec Security Group Tag (SCT) Exchange Protocol (SXP). This feature supports security group access control lists (SGACLs), which define ACL policies for a group of devices instead of an IP address. The SXP control protocol allows tagging packets with SCTs without a hardware upgrade, and runs between access layer devices at the Cisco TrustSec domain edge and distribution layer devices within the Cisco TrustSec domain. The blade switches operate as access layer switches in the Cisco TrustSec network.

For more information about Cisco TrustSec, see the “Cisco TrustSec Switch Configuration Guide” at this URL:

The sections on SXP define the capabilities supported on the blade switches.

This chapter consists of these sections:

- Understanding ACLs, page 35-2
- Configuring IPv4 ACLs, page 35-7
- Creating Named MAC Extended ACLs, page 35-28
- Configuring VLAN Maps, page 35-30
- Using VLAN Maps with Router ACLs, page 35-36
- Displaying IPv4 ACL Configuration, page 35-40
Understanding ACLs

Packet filtering can help limit network traffic and restrict network use by certain users or devices. ACLs filter traffic as it passes through a router or switch and permit or deny packets crossing specified interfaces or VLANs. An ACL is a sequential collection of permit and deny conditions that apply to packets. When a packet is received on an interface, the switch compares the fields in the packet against any applied ACLs to verify that the packet has the required permissions to be forwarded, based on the criteria specified in the access lists. One by one, it tests packets against the conditions in an access list. The first match decides whether the switch accepts or rejects the packets. Because the switch stops testing after the first match, the order of conditions in the list is critical. If no conditions match, the switch rejects the packet. If there are no restrictions, the switch forwards the packet; otherwise, the switch drops the packet. The switch can use ACLs on all packets it forwards, including packets bridged within a VLAN.

You configure access lists on a router or Layer 3 switch to provide basic security for your network. If you do not configure ACLs, all packets passing through the switch could be allowed onto all parts of the network. You can use ACLs to control which hosts can access different parts of a network or to decide which types of traffic are forwarded or blocked at router interfaces. For example, you can allow e-mail traffic to be forwarded but not Telnet traffic. ACLs can be configured to block inbound traffic, outbound traffic, or both.

An ACL contains an ordered list of access control entries (ACEs). Each ACE specifies permit or deny and a set of conditions the packet must satisfy in order to match the ACE. The meaning of permit or deny depends on the context in which the ACL is used.

The switch supports IP ACLs and Ethernet (MAC) ACLs:
- IP ACLs filter IPv4 traffic, including TCP, User Datagram Protocol (UDP), Internet Group Management Protocol (IGMP), and Internet Control Message Protocol (ICMP).
- Ethernet ACLs filter non-IP traffic.

This switch also supports quality of service (QoS) classification ACLs. For more information, see the “Classification Based on QoS ACLs” section on page 35-6.

These sections contain this conceptual information:
- Supported ACLs, page 35-2
- Handling Fragmented and Unfragmented Traffic, page 35-5
- ACLs and Switch Stacks, page 35-6

Supported ACLs

The switch supports three applications of ACLs to filter traffic:
- Port ACLs access-control traffic entering a Layer 2 interface. The switch does not support port ACLs in the outbound direction. You can apply only one IP access list and one MAC access list to a Layer 2 interface. For more information, see the “Port ACLs” section on page 35-3.
- Router ACLs access-control routed traffic between VLANs and are applied to Layer 3 interfaces in a specific direction (inbound or outbound). For more information, see the “Router ACLs” section on page 35-4.
- VLAN ACLs or VLAN maps access-control all packets (bridged and routed). You can use VLAN maps to filter traffic between devices in the same VLAN. VLAN maps are configured to provide access control based on Layer 3 addresses for IPv4. Unsupported protocols are access-controlled through MAC addresses using Ethernet ACEs. After a VLAN map is applied to a VLAN, all packets
(routed or bridged) entering the VLAN are checked against the VLAN map. Packets can either enter the VLAN through a switch port or through a routed port after being routed. For more information, see the “VLAN Maps” section on page 35-5.

You can use input port ACLs, router ACLs, and VLAN maps on the same switch. However, a port ACL takes precedence over a router ACL or VLAN map.

- When both an input port ACL and a VLAN map are applied, incoming packets received on ports with a port ACL applied are filtered by the port ACL. Other packets are filtered by the VLAN map.
- When an input router ACL and input port ACL exist in a switch virtual interface (SVI), incoming packets received on ports to which a port ACL is applied are filtered by the port ACL. Incoming routed IP packets received on other ports are filtered by the router ACL. Other packets are not filtered.
- When an output router ACL and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IP packets are filtered by the router ACL. Other packets are not filtered.
- When a VLAN map, input router ACL, and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are only filtered by the port ACL. Outgoing routed IP packets are filtered by both the VLAN map and the router ACL. Other packets are filtered only by the VLAN map.
- When an input router ACL, and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are only filtered by the port ACL. Outgoing routed IP packets are filtered by both the VLAN map and the router ACL. Other packets are filtered only by the VLAN map.

If IEEE 802.1Q tunneling is configured on an interface, any IEEE 802.1Q encapsulated IP packets received on the tunnel port can be filtered by MAC ACLs, but not by IP ACLs. This is because the switch does not recognize the protocol inside the IEEE 802.1Q header. This restriction applies to router ACLs, port ACLs, and VLAN maps. For more information about IEEE 802.1Q tunneling, see Chapter 17, “Configuring IEEE 802.1Q and Layer 2 Protocol Tunneling”

Port ACLs

Port ACLs are ACLs that are applied to Layer 2 interfaces on a switch. Port ACLs are supported only on physical interfaces and not on EtherChannel interfaces and can be applied only on interfaces in the inbound direction. These access lists are supported:

- Standard IP access lists using source addresses
- Extended IP access lists using source and destination addresses and optional protocol type information
- MAC extended access lists using source and destination MAC addresses and optional protocol type information

The switch examines ACLs associated with all inbound features configured on a given interface and permits or denies packet forwarding based on how the packet matches the entries in the ACL. In this way, ACLs control access to a network or to part of a network. Figure 35-1 is an example of using port ACLs to control access to a network when all servers are in the same VLAN. ACLs applied at the Layer 2 input would allow Blade Server A to access the Human Resources network, but prevent Blade Server B from accessing the same network. Port ACLs can only be applied to Layer 2 interfaces in the inbound direction.
Understanding ACLs

When you apply a port ACL to a trunk port, the ACL filters traffic on all VLANs present on the trunk port. When you apply a port ACL to a port with voice VLAN, the ACL filters traffic on both data and voice VLANs.

With port ACLs, you can filter IP traffic by using IP access lists and non-IP traffic by using MAC addresses. You can filter both IP and non-IP traffic on the same Layer 2 interface by applying both an IP access list and a MAC access list to the interface.

Note

You cannot apply more than one IP access list and one MAC access list to a Layer 2 interface. If an IP access list or MAC access list is already configured on a Layer 2 interface and you apply a new IP access list or MAC access list to the interface, the new ACL replaces the previously configured one.

Router ACLs

You can apply router ACLs on switch virtual interfaces (SVIs), which are Layer 3 interfaces to VLANs; on physical Layer 3 interfaces; and on Layer 3 EtherChannel interfaces. You apply router ACLs on interfaces for specific directions (inbound or outbound). You can apply one router ACL in each direction on an interface.

One ACL can be used with multiple features for a given interface, and one feature can use multiple ACLs. When a single router ACL is used by multiple features, it is examined multiple times.

The switch supports these access lists for IPv4 traffic:

- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses and optional protocol type information for matching operations.
As with port ACLs, the switch examines ACLs associated with features configured on a given interface. However, router ACLs are supported in both directions. As packets enter the switch on an interface, ACLs associated with all inbound features configured on that interface are examined. After packets are routed and before they are forwarded to the next hop, all ACLs associated with outbound features configured on the egress interface are examined.

ACLs permit or deny packet forwarding based on how the packet matches the entries in the ACL, and can be used to control access to a network or to part of a network. In Figure 35-1, ACLs applied at the router input allow Host A to access the Human Resources network, but prevent Host B from accessing the same network.

VLAN Maps

Use VLAN ACLs or VLAN maps to access-control all traffic. You can apply VLAN maps to all packets that are routed into or out of a VLAN or are bridged within a VLAN in the switch or switch stack.

Use VLAN maps for security packet filtering. VLAN maps are not defined by direction (input or output).

You can configure VLAN maps to match Layer 3 addresses for IPv4 traffic.

All non-IP protocols are access-controlled through MAC addresses and Ethertype using MAC VLAN maps. (IP traffic is not access controlled by MAC VLAN maps.) You can enforce VLAN maps only on packets going through the switch; you cannot enforce VLAN maps on traffic between hosts on a hub or on another switch connected to this switch.

With VLAN maps, forwarding of packets is permitted or denied, based on the action specified in the map. Figure 35-2 shows how a VLAN map is applied to prevent a specific type of traffic from Host A in VLAN 10 from being forwarded. You can apply only one VLAN map to a VLAN.

Handling Fragmented and Unfragmented Traffic

IP packets can be fragmented as they cross the network. When this happens, only the fragment containing the beginning of the packet contains the Layer 4 information, such as TCP or UDP port numbers, ICMP type and code, and so on. All other fragments are missing this information.

Some ACEs do not check Layer 4 information and therefore can be applied to all packet fragments. ACEs that do test Layer 4 information cannot be applied in the standard manner to most of the fragments in a fragmented IP packet. When the fragment contains no Layer 4 information and the ACE tests some Layer 4 information, the matching rules are modified:

- Permit ACEs that check the Layer 3 information in the fragment (including protocol type, such as TCP, UDP, and so on) are considered to match the fragment regardless of what the missing Layer 4 information might have been.
• Deny ACEs that check Layer 4 information never match a fragment unless the fragment contains Layer 4 information.

Consider access list 102, configured with these commands, applied to three fragmented packets:

```
Switch(config)# access-list 102 permit tcp any host 10.1.1.1 eq smtp
Switch(config)# access-list 102 deny tcp any host 10.1.1.2 eq telnet
Switch(config)# access-list 102 permit tcp any host 10.1.1.2
Switch(config)# access-list 102 deny tcp any any
```

Note

In the first and second ACEs in the examples, the `eq` keyword after the destination address means to test for the TCP-destination-port well-known numbers equalling Simple Mail Transfer Protocol (SMTP) and Telnet, respectively.

• Packet A is a TCP packet from host 10.2.2.2., port 65000, going to host 10.1.1.1 on the SMTP port. If this packet is fragmented, the first fragment matches the first ACE (a permit) as if it were a complete packet because all Layer 4 information is present. The remaining fragments also match the first ACE, even though they do not contain the SMTP port information, because the first ACE only checks Layer 3 information when applied to fragments. The information in this example is that the packet is TCP and that the destination is 10.1.1.1.

• Packet B is from host 10.2.2.2, port 65001, going to host 10.1.1.2 on the Telnet port. If this packet is fragmented, the first fragment matches the second ACE (a deny) because all Layer 3 and Layer 4 information is present. The remaining fragments in the packet do not match the second ACE because they are missing Layer 4 information. Instead, they match the third ACE (a permit).

Because the first fragment was denied, host 10.1.1.2 cannot reassemble a complete packet, so packet B is effectively denied. However, the later fragments that are permitted will consume bandwidth on the network and resources of host 10.1.1.2 as it tries to reassemble the packet.

• Fragmented packet C is from host 10.2.2.2, port 65001, going to host 10.1.1.3, port ftp. If this packet is fragmented, the first fragment matches the fourth ACE (a deny). All other fragments also match the fourth ACE because that ACE does not check any Layer 4 information and because Layer 3 information in all fragments shows that they are being sent to host 10.1.1.3, and the earlier permit ACEs were checking different hosts.

ACLs and Switch Stacks

ACL support is the same for a switch stack as for a standalone switch. ACL configuration information is propagated to all switches in the stack. All switches in the stack, including the stack master, process the information and program their hardware. (For more information about switch stacks, see Chapter 7, “Configuring the Switch Stack.”)

The stack master performs these ACL functions:

• It processes the ACL configuration and propagates the information to all stack members.

• It distributes the ACL information to any switch that joins the stack.

• If packets must be forwarded by software for any reason (for example, not enough hardware resources), the master switch forwards the packets only after applying ACLs on the packets.

• It programs its hardware with the ACL information it processes.
Stack members perform these ACL functions:
- They receive the ACL information from the master switch and program their hardware.
- They act as standby switches, ready to take over the role of the stack master if the existing master were to fail and they were to be elected as the new stack master.

When a stack master fails and a new stack master is elected, the newly elected master reparses the backed up running configuration. (See Chapter 7, “Configuring the Switch Stack.”) The ACL configuration that is part of the running configuration is also reparsed during this step. The new stack master distributes the ACL information to all switches in the stack.

Configuring IPv4 ACLs

Configuring IPv4 ACLs on the switch is the same as configuring IPv4 ACLs on other Cisco switches and routers. The process is briefly described here. For more detailed information on configuring ACLs, see the “Configuring IP Services” section in the “IP Addressing and Services” chapter of the *Cisco IOS IP Configuration Guide, Release 12.2*. For detailed information about the commands, see the *Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.2*.

The switch does not support these Cisco IOS router ACL-related features:
- Non-IP protocol ACLs (see Table 35-1 on page 35-8) or bridge-group ACLs
- IP accounting
- Inbound and outbound rate limiting (except with QoS ACLs)
- Reflexive ACLs or dynamic ACLs
- ACL logging for port ACLs and VLAN maps

These are the steps to use IP ACLs on the switch:

Step 1 Create an ACL by specifying an access list number or name and the access conditions.

Step 2 Apply the ACL to interfaces or terminal lines. You can also apply standard and extended IP ACLs to VLAN maps.

These sections contain this configuration information:
- Creating Standard and Extended IPv4 ACLs, page 35-8
- Applying an IPv4 ACL to a Terminal Line, page 35-19
- Applying an IPv4 ACL to an Interface, page 35-20
- Hardware and Software Treatment of IP ACLs, page 35-22
- Troubleshooting ACLs, page 35-22
- IPv4 ACL Configuration Examples, page 35-23
Creating Standard and Extended IPv4 ACLs

This section describes IP ACLs. An ACL is a sequential collection of permit and deny conditions. One by one, the switch tests packets against the conditions in an access list. The first match determines whether the switch accepts or rejects the packet. Because the switch stops testing after the first match, the order of the conditions is critical. If no conditions match, the switch denies the packet.

The software supports these types of ACLs or access lists for IPv4:

- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses for matching operations and optional protocol-type information for finer granularity of control.

These sections describe access lists and how to create them:

- Access List Numbers, page 35-8
- ACL Logging, page 35-9
- Creating a Numbered Standard ACL, page 35-10
- Creating a Numbered Extended ACL, page 35-11
- Resequencing ACEs in an ACL, page 35-15
- Creating Named Standard and Extended ACLs, page 35-15
- Using Time Ranges with ACLs, page 35-17
- Including Comments in ACLs, page 35-19

Access List Numbers

The number you use to denote your ACL shows the type of access list that you are creating. Table 35-1 lists the access-list number and corresponding access list type and shows whether or not they are supported in the switch. The switch supports IPv4 standard and extended access lists, numbers 1 to 199 and 1300 to 2699.

<table>
<thead>
<tr>
<th>Access List Number</th>
<th>Type</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–99</td>
<td>IP standard access list</td>
<td>Yes</td>
</tr>
<tr>
<td>100–199</td>
<td>IP extended access list</td>
<td>Yes</td>
</tr>
<tr>
<td>200–299</td>
<td>Protocol type-code access list</td>
<td>No</td>
</tr>
<tr>
<td>300–399</td>
<td>DECnet access list</td>
<td>No</td>
</tr>
<tr>
<td>400–499</td>
<td>XNS standard access list</td>
<td>No</td>
</tr>
<tr>
<td>500–599</td>
<td>XNS extended access list</td>
<td>No</td>
</tr>
<tr>
<td>600–699</td>
<td>AppleTalk access list</td>
<td>No</td>
</tr>
<tr>
<td>700–799</td>
<td>48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>800–899</td>
<td>IPX standard access list</td>
<td>No</td>
</tr>
<tr>
<td>900–999</td>
<td>IPX extended access list</td>
<td>No</td>
</tr>
<tr>
<td>1000–1099</td>
<td>IPX SAP access list</td>
<td>No</td>
</tr>
<tr>
<td>1100–1199</td>
<td>Extended 48-bit MAC address access list</td>
<td>No</td>
</tr>
</tbody>
</table>
Configuring IPv4 ACLs

Note

In addition to numbered standard and extended ACLs, you can also create standard and extended named IP ACLs by using the supported numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

ACL Logging

The switch software can provide logging messages about packets permitted or denied by a standard IP access list. That is, any packet that matches the ACL causes an informational logging message about the packet to be sent to the console. The level of messages logged to the console is controlled by the logging console commands controlling the syslog messages.

Note

Because routing is done in hardware and logging is done in software, if a large number of packets match a *permit* or *deny* ACE containing a *log* keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

The first packet that triggers the ACL causes a logging message right away, and subsequent packets are collected over 5-minute intervals before they appear or logged. The logging message includes the access list number, whether the packet was permitted or denied, the source IP address of the packet, and the number of packets from that source permitted or denied in the prior 5-minute interval.
Creating a Numbered Standard ACL

Beginning in privileged EXEC mode, follow these steps to create a numbered standard ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show access-lists [number</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no access-list access-list-number global configuration command to delete the entire ACL. You cannot delete individual ACEs from numbered access lists.

Note

When creating an ACL, remember that, by default, the end of the ACL contains an implicit deny statement for all packets that it did not find a match for before reaching the end. With standard access lists, if you omit the mask from an associated IP host address ACL specification, 0.0.0.0 is assumed to be the mask.

This example shows how to create a standard ACL to deny access to IP host 171.69.198.102, permit access to any others, and display the results.

```
Switch (config)# access-list 2 deny host 171.69.198.102
Switch (config)# access-list 2 permit any
Switch(config)# end
Switch# show access-lists
Standard IP access list 2
   10 deny 171.69.198.102
   20 permit any
```
The switch always rewrites the order of standard access lists so that entries with host matches and entries with matches having a don’t care mask of 0.0.0.0 are moved to the top of the list, above any entries with non-zero don’t care masks. Therefore, in show command output and in the configuration file, the ACEs do not necessarily appear in the order in which they were entered.

After creating a numbered standard IPv4 ACL, you can apply it to terminal lines (see the “Applying an IPv4 ACL to a Terminal Line” section on page 35-19), to interfaces (see the “Applying an IPv4 ACL to an Interface” section on page 35-20), or to VLANs (see the “Configuring VLAN Maps” section on page 35-30).

Creating a Numbered Extended ACL

Although standard ACLs use only source addresses for matching, you can use extended ACL source and destination addresses for matching operations and optional protocol type information for finer granularity of control. When you are creating ACEs in numbered extended access lists, remember that after you create the ACL, any additions are placed at the end of the list. You cannot reorder the list or selectively add or remove ACEs from a numbered list.

Some protocols also have specific parameters and keywords that apply to that protocol. These IP protocols are supported (protocol keywords are in parentheses in bold):

- Authentication Header Protocol (ahp)
- Enhanced Interior Gateway Routing Protocol (eigrp)
- Encapsulation Security Payload (esp)
- generic routing encapsulation (gre)
- Internet Control Message Protocol (icmp)
- Internet Group Management Protocol (igmp)
- any Interior Protocol (ip)
- IP in IP tunneling (ipinip)
- KA9Q NOS-compatible IP over IP tunneling (nos)
- Open Shortest Path First routing (ospf)
- Payload Compression Protocol (pcp)
- Protocol-Independent Multicast (pim)
- Transmission Control Protocol (tcp)
- User Datagram Protocol (udp)

ICMP echo-reply cannot be filtered. All other ICMP codes or types can be filtered.

For more details on the specific keywords for each protocol, see these command references:

- Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.2
- Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.2

The switch does not support dynamic or reflexive access lists. It also does not support filtering based on the type of service (ToS) minimize-monetary-cost bit.

Supported parameters can be grouped into these categories: TCP, UDP, ICMP, IGMP, or other IP.
Beginning in privileged EXEC mode, follow these steps to create an extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>access-list access-list-number</td>
<td>Define an extended IPv4 access list and the access conditions.</td>
</tr>
<tr>
<td>{deny</td>
<td>permit} protocol</td>
</tr>
<tr>
<td>source source-wildcard</td>
<td>Enter deny or permit to specify whether to deny or permit the packet if conditions are matched.</td>
</tr>
<tr>
<td>destination destination-wildcard</td>
<td>For protocol, enter the name or number of an IP protocol: ahp, eigrp, esp, gre, icmp, igmp, igrp, ip, ipinip, nos, ospf, pcp, pim, tcp, or udp, or an integer in the range 0 to 255 representing an IP protocol number. To match any Internet protocol (including ICMP, TCP, and UDP), use the keyword ip.</td>
</tr>
<tr>
<td>[precedence precedence] [tos]</td>
<td>The source is the number of the network or host from which the packet is sent.</td>
</tr>
<tr>
<td>[fragments] [log] [log-input]</td>
<td>The destination-wildcard applies wildcard bits to the destination.</td>
</tr>
<tr>
<td>[time-range time-range-name]</td>
<td>Source, source-wildcard, destination, and destination-wildcard can be specified as:</td>
</tr>
<tr>
<td>[dscp dscp]</td>
<td>• The 32-bit quantity in dotted-decimal format.</td>
</tr>
<tr>
<td>Note</td>
<td>• The keyword any for 0.0.0.0 255.255.255.255 (any host).</td>
</tr>
<tr>
<td>If you enter a dscp value,</td>
<td>• The keyword host for a single host 0.0.0.0.</td>
</tr>
<tr>
<td>you cannot enter tos or</td>
<td>The other keywords are optional and have these meanings:</td>
</tr>
<tr>
<td>precedence. You can enter</td>
<td>• precedence—Enter to match packets with a precedence level specified as a number from 0 to 7 or by name: routine (0), priority (1), immediate (2), flash (3), flash-override (4), critical (5), internet (6), network (7).</td>
</tr>
<tr>
<td>both a tos and a precedence</td>
<td>• fragments—Enter to check non-initial fragments.</td>
</tr>
<tr>
<td>value with no dscp.</td>
<td>• tos—Enter to match by type of service level, specified by a number from 0 to 15 or a name: normal (0), max-reliability (2), max-throughput (4), min-delay (8).</td>
</tr>
<tr>
<td></td>
<td>• log—Enter to create an informational logging message to be sent to the console about the packet that matches the entry or log-input to include the input interface in the log entry.</td>
</tr>
<tr>
<td></td>
<td>• time-range—For an explanation of this keyword, see the “Using Time Ranges with ACLs” section on page 35-17.</td>
</tr>
<tr>
<td></td>
<td>• dscp—Enter to match packets with the DSCP value specified by a number from 0 to 63, or use the question mark (?) to see a list of available values.</td>
</tr>
</tbody>
</table>
Command Syntax

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`access-list access-list-number {deny</td>
<td>permit} protocol [precedence precedence] [tos tos] [fragments] [log] [log-input] [time-range time-range-name] [dscp dscp]`</td>
</tr>
<tr>
<td>`access-list access-list-number {deny</td>
<td>permit} protocol host source host destination [precedence precedence] [tos tos] [fragments] [log] [log-input] [time-range time-range-name] [dscp dscp]`</td>
</tr>
<tr>
<td>`access-list access-list-number {deny</td>
<td>permit} tcp source source-wildcard [operator port] destination destination-wildcard [operator port] established [precedence precedence] [tos tos] [fragments] [log] [log-input] [time-range time-range-name] [dscp dscp] [flag]`</td>
</tr>
<tr>
<td>`access-list access-list-number {deny</td>
<td>permit} udp source source-wildcard [operator port] destination destination-wildcard [operator port] [precedence precedence] [tos tos] [fragments] [log] [log-input] [time-range time-range-name] [dscp dscp]`</td>
</tr>
</tbody>
</table>
Chapter 35 Configuring Network Security with ACLs

Configuring IPv4 ACLs

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d</td>
<td>access-list access-list-number [deny</td>
<td>permit] icmp source source-wildcard destination destination-wildcard [icmp-type</td>
</tr>
<tr>
<td>2e</td>
<td>access-list access-list-number [deny</td>
<td>permit] igmp source source-wildcard destination destination-wildcard [igmp-type] [precedence precedence] [tos tos] [fragments] [log] [log-input] [time-range time-range-name] [dscp dscp]</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no access-list access-list-number global configuration command to delete the entire access list. You cannot delete individual ACEs from numbered access lists.

This example shows how to create and display an extended access list to deny Telnet access from any host in network 171.69.198.0 to any host in network 172.20.52.0 and to permit any others. (The eq keyword after the destination address means to test for the TCP destination port number equaling Telnet.)

Switch(config)# access-list 102 deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
Switch(config)# access-list 102 permit tcp any any
Switch(config)# end
Switch# show access-lists
Extended IP access list 102
 10 deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
 20 permit tcp any any

After an ACL is created, any additions (possibly entered from the terminal) are placed at the end of the list. You cannot selectively add or remove access list entries from a numbered access list.

Note When you are creating an ACL, remember that, by default, the end of the access list contains an implicit deny statement for all packets if it did not find a match before reaching the end.
After creating a numbered extended ACL, you can apply it to terminal lines (see the “Applying an IPv4 ACL to a Terminal Line” section on page 35-19), to interfaces (see the “Applying an IPv4 ACL to an Interface” section on page 35-20), or to VLANs (see the “Configuring VLAN Maps” section on page 35-30).

Resequencing ACEs in an ACL

Sequence numbers for the entries in an access list are automatically generated when you create a new ACL. You can use the `ip access-list resequence` global configuration command to edit the sequence numbers in an ACL and change the order in which ACEs are applied. For example, if you add a new ACE to an ACL, it is placed at the bottom of the list. By changing the sequence number, you can move the ACE to a different position in the ACL.

Creating Named Standard and Extended ACLs

You can identify IPv4 ACLs with an alphanumeric string (a name) rather than a number. You can use named ACLs to configure more IPv4 access lists in a router than if you were to use numbered access lists. If you identify your access list with a name rather than a number, the mode and command syntax are slightly different. However, not all commands that use IP access lists accept a named access list.

Note

The name you give to a standard or extended ACL can also be a number in the supported range of access list numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

Consider these guidelines and limitations before configuring named ACLs:

- Not all commands that accept a numbered ACL accept a named ACL. ACLs for packet filters and route filters on interfaces can use a name. VLAN maps also accept a name.
- A standard ACL and an extended ACL cannot have the same name.
- Numbered ACLs are also available, as described in the “Creating Standard and Extended IPv4 ACLs” section on page 35-8.
- You can use standard and extended ACLs (named or numbered) in VLAN maps.
- With IPv4 QoS ACLs, if you enter the `class-map [match-all | match-any] class-map-name` global configuration command, you can enter these `match` commands:
 - `match access-group acl-name`

 Note
 The ACL must be an extended named ACL.

 - `match input-interface interface-id-list`
 - `match ip dscp dscp-list`
 - `match ip precedence ip-precedence-list`

 You cannot enter the `match access-group acl-index` command.
Beginning in privileged EXEC mode, follow these steps to create a standard ACL using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip access-list standard name</td>
<td>Define a standard IPv4 access list using a name, and enter access-list configuration mode. The name can be a number from 1 to 99.</td>
</tr>
<tr>
<td>Step 3 deny [source [source-wildcard]</td>
<td>host source</td>
</tr>
<tr>
<td></td>
<td>• host source—A source and source wildcard of source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• any—A source and source wildcard of 0.0.0.0 255.255.255.255.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a named standard ACL, use the **no ip access-list standard name** global configuration command.

Beginning in privileged EXEC mode, follow these steps to create an extended ACL using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip access-list extended name</td>
<td>Define an extended IPv4 access list using a name, and enter access-list configuration mode. The name can be a number from 100 to 199.</td>
</tr>
<tr>
<td>Step 3 {deny</td>
<td>permit} protocol [source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td>See the “Creating a Numbered Extended ACL” section on page 35-11 for definitions of protocols and other keywords.</td>
</tr>
<tr>
<td></td>
<td>• host source—A source and source wildcard of source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• host destination—A destination and destination wildcard of destination 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• any—A source and source wildcard or destination and destination wildcard of 0.0.0.0 255.255.255.255.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a named extended ACL, use the **no ip access-list extended name** global configuration command.
When you are creating standard extended ACLs, remember that, by default, the end of the ACL contains an implicit deny statement for everything if it did not find a match before reaching the end. For standard ACLs, if you omit the mask from an associated IP host address access list specification, 0.0.0.0 is assumed to be the mask.

After you create an ACL, any additions are placed at the end of the list. You cannot selectively add ACL entries to a specific ACL. However, you can use no permit and no deny access-list configuration mode commands to remove entries from a named ACL. This example shows how you can delete individual ACEs from the named access list border-list:

```
Switch(config)# ip access-list extended border-list
Switch(config-ext-nacl)# no permit ip host 10.1.1.3 any
```

Being able to selectively remove lines from a named ACL is one reason you might use named ACLs instead of numbered ACLs.

After creating a named ACL, you can apply it to interfaces (see the “Applying an IPv4 ACL to an Interface” section on page 35-20) or to VLANs (see the “Configuring VLAN Maps” section on page 35-30).

Using Time Ranges with ACLs

You can selectively apply extended ACLs based on the time of day and the week by using the time-range global configuration command. First, define a time-range name and set the times and the dates or the days of the week in the time range. Then enter the time-range name when applying an ACL to set restrictions to the access list. You can use the time range to define when the permit or deny statements in the ACL are in effect, for example, during a specified time period or on specified days of the week. The time-range keyword and argument are referenced in the named and numbered extended ACL task tables in the previous sections, the “Creating Standard and Extended IPv4 ACLs” section on page 35-8, and the “Creating Named Standard and Extended ACLs” section on page 35-15.

These are some of the many possible benefits of using time ranges:

- You have more control over permitting or denying a user access to resources, such as an application (identified by an IP address/mask pair and a port number).
- You can control logging messages. ACL entries can be set to log traffic only at certain times of the day. Therefore, you can simply deny access without needing to analyze many logs generated during peak hours.

Time-based access lists trigger CPU activity because the new configuration of the access list must be merged with other features and the combined configuration loaded into the hardware memory. For this reason, you should be careful not to have several access lists configured to take affect in close succession (within a small number of minutes of each other.)

The time range relies on the switch system clock; therefore, you need a reliable clock source. We recommend that you use Network Time Protocol (NTP) to synchronize the switch clock. For more information, see the “Managing the System Time and Date” section on page 5-1.
Beginning in privileged EXEC mode, follow these steps to configure a time-range parameter for an ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>time-range time-range-name</td>
<td>Assign a meaningful name (for example, workhours) to the time range to be created, and enter time-range configuration mode. The name cannot contain a space or quotation mark and must begin with a letter.</td>
</tr>
<tr>
<td>absolute [start time date] [end time date]</td>
<td>Specify when the function it will be applied to is operational.</td>
</tr>
<tr>
<td>or periodic day-of-the-week hh:mm to [day-of-the-week] hh:mm</td>
<td>Specify when the function it will be applied to is operational.</td>
</tr>
<tr>
<td>or periodic {weekdays</td>
<td>weekend</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show time-range</td>
<td>Verify the time-range configuration.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Repeat the steps if you have multiple items that you want in effect at different times.

To remove a configured time-range limitation, use the **no time-range time-range-name** global configuration command.

This example shows how to configure time ranges for workhours and to configure January 1, 2006, as a company holiday and to verify your configuration.

```
Switch(config)# time-range workhours
Switch(config-time-range)# periodic weekdays 8:00 to 12:00
Switch(config-time-range)# periodic weekdays 13:00 to 17:00
Switch(config-time-range)# exit
Switch(config)# time-range new_year_day_2006
Switch(config-time-range)# absolute start 00:00 1 Jan 2006 end 23:59 1 Jan 2006
Switch(config-time-range)# end
Switch# show time-range
  time-range entry: new_year_day_2003 (inactive)
    absolute start 00:00 01 January 2006 end 23:59 01 January 2006
  time-range entry: workhours (inactive)
    periodic weekdays 8:00 to 12:00
    periodic weekdays 13:00 to 17:00
```

To apply a time range, enter the time-range name in an extended ACL that can implement time ranges. This example shows how to create and verify extended access list 188 that denies TCP traffic from any source to any destination during the defined holiday times and permits all TCP traffic during work hours.

```
Switch(config)# access-list 188 deny tcp any any time-range new_year_day_2006
Switch(config)# access-list 188 permit tcp any any time-range workhours
Switch(config)# end
Switch# show access-lists
Extended IP access list 188
  10 deny tcp any any time-range new_year_day_2006 (inactive)
  20 permit tcp any any time-range workhours (inactive)
```
This example uses named ACLs to permit and deny the same traffic.

```
Switch(config)# ip access-list extended deny_access
Switch(config-ext-nacl)# deny tcp any any time-range new_year_day_2006
Switch(config)# ip access-list extended may_access
Switch(config-ext-nacl)# permit tcp any any time-range workhours
Switch(config-ext-nacl)# end
Switch(config-ext-nacl)# show ip access-lists
Extended IP access list lpip_default
  10 permit ip any any
Extended IP access list deny_access
  10 deny tcp any any time-range new_year_day_2006 (inactive)
Extended IP access list may_access
  10 permit tcp any any time-range workhours (inactive)
```

Including Comments in ACLs

You can use the `remark` keyword to include comments (remarks) about entries in any IP standard or extended ACL. The remarks make the ACL easier for you to understand and scan. Each remark line is limited to 100 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put the remark so that it is clear which remark describes which permit or deny statement. For example, it would be confusing to have some remarks before the associated permit or deny statements and some remarks after the associated statements.

To include a comment for IP numbered standard or extended ACLs, use the `access-list number remark` command. To remove the remark, use the `no` form of this command.

In this example, the server that belongs to Jones is allowed access, and the workstation that belongs to Smith is not allowed access:

```
Switch(config)# access-list 1 remark Permit only Jones server through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith server through
Switch(config)# access-list 1 deny 171.69.3.13
```

For an entry in a named IP ACL, use the `remark` access-list configuration command. To remove the remark, use the `no` form of this command.

In this example, the Jones subnet is not allowed to use outbound Telnet:

```
Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp host 171.69.2.88 any eq telnet
```

Applying an IPv4 ACL to a Terminal Line

You can use numbered ACLs to control access to one or more terminal lines. You cannot apply named ACLs to lines. You must set identical restrictions on all the virtual terminal lines because a user can attempt to connect to any of them.

For procedures for applying ACLs to interfaces, see the “Applying an IPv4 ACL to an Interface” section on page 35-20. For applying ACLs to VLANs, see the “Configuring VLAN Maps” section on page 35-30.
Chapter 35 Configuring Network Security with ACLs

Configuring IPv4 ACLs

Beginning in privileged EXEC mode, follow these steps to restrict incoming and outgoing connections between a virtual terminal line and the addresses in an ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 line [console</td>
<td>vty] line-number</td>
</tr>
<tr>
<td>Step 3 access-class access-list-number {in</td>
<td>out}</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove an ACL from a terminal line, use the **no access-class access-list-number {in | out}** line configuration command.

Applying an IPv4 ACL to an Interface

This section describes how to apply IPv4 ACLs to network interfaces. Note these guidelines:

- Apply an ACL only to inbound Layer 2 interfaces. Apply an ACL to *either* outbound or inbound Layer 3 interfaces.
- When controlling access to an interface, you can use a named or numbered ACL.
- If you apply an ACL to a Layer 2 interface that is a member of a VLAN, the Layer 2 (port) ACL takes precedence over an input Layer 3 ACL applied to the VLAN interface or a VLAN map applied to the VLAN. Incoming packets received on the Layer 2 port are always filtered by the port ACL.
- If you apply an ACL to a Layer 3 interface and routing is not enabled on the switch, the ACL only filters packets that are intended for the CPU, such as SNMP, Telnet, or web traffic. You do not have to enable routing to apply ACLs to Layer 2 interfaces.
- When private VLANs are configured, you can apply router ACLs only on the primary-VLAN SVIs. The ACL is applied to both primary and secondary VLAN Layer 3 traffic.

Note
By default, the router sends Internet Control Message Protocol (ICMP) unreachable messages when a packet is denied by an access group. These access-group denied packets are not dropped in hardware but are bridged to the switch CPU so that it can generate the ICMP-unreachable message.
Beginning in privileged EXEC mode, follow these steps to control access to an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Identify a specific interface for configuration, and enter interface</td>
</tr>
<tr>
<td></td>
<td>configuration mode.</td>
</tr>
<tr>
<td></td>
<td>The interface can be a Layer 2 interface (port ACL), or a Layer 3</td>
</tr>
<tr>
<td></td>
<td>interface (router ACL).</td>
</tr>
<tr>
<td>Step 3 ip access-group [access-list-number</td>
<td>Control access to the specified interface.</td>
</tr>
<tr>
<td>name] {in</td>
<td>out}</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the specified access group, use the no ip access-group [access-list-number | name] {in | out} interface configuration command.

This example shows how to apply access list 2 to a port to filter packets entering the port:

```
Switch(config)# interface gigabitethernet1/0/1
Router(config-if)# ip access-group 2 in
```

When you apply the ip access-group interface configuration command to a Layer 3 interface (an SVI, a Layer 3 EtherChannel, or a routed port), the interface must have been configured with an IP address. Layer 3 access groups filter packets that are routed or are received by Layer 3 processes on the CPU. They do not affect packets bridged within a VLAN.

For inbound ACLs, after receiving a packet, the switch checks the packet against the ACL. If the ACL permits the packet, the switch continues to process the packet. If the ACL rejects the packet, the switch discards the packet.

For outbound ACLs, after receiving and routing a packet to a controlled interface, the switch checks the packet against the ACL. If the ACL permits the packet, the switch sends the packet. If the ACL rejects the packet, the switch discards the packet.

By default, the input interface sends ICMP Unreachable messages whenever a packet is discarded, regardless of whether the packet was discarded because of an ACL on the input interface or because of an ACL on the output interface. ICMP Unreachables are normally limited to no more than one every one-half second per input interface, but this can be changed by using the ip icmp rate-limit unreachable global configuration command.

When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied to the interface and permits all packets. Remember this behavior if you use undefined ACLs for network security.
Chapter 35 Configuring Network Security with ACLs

Hardware and Software Treatment of IP ACLs

ACL processing is primarily accomplished in hardware, but requires forwarding of some traffic flows to the CPU for software processing. If the hardware reaches its capacity to store ACL configurations, packets are sent to the CPU for forwarding. The forwarding rate for software-forwarded traffic is substantially less than for hardware-forwarded traffic.

Note

If an ACL configuration cannot be implemented in hardware due to an out-of-resource condition on a switch or stack member, then only the traffic in that VLAN arriving on that switch is affected (forwarded in software). Software forwarding of packets might adversely impact the performance of the switch or switch stack, depending on the number of CPU cycles that this consumes.

For router ACLs, other factors can cause packets to be sent to the CPU:

• Using the log keyword
• Generating ICMP unreachable messages

When traffic flows are both logged and forwarded, forwarding is done by hardware, but logging must be done by software. Because of the difference in packet handling capacity between hardware and software, if the sum of all flows being logged (both permitted flows and denied flows) is of great enough bandwidth, not all of the packets that are forwarded can be logged.

If router ACL configuration cannot be applied in hardware, packets arriving in a VLAN that must be routed are routed in software, but are bridged in hardware. If ACLs cause large numbers of packets to be sent to the CPU, the switch performance can be negatively affected.

When you enter the show ip access-lists privileged EXEC command, the match count displayed does not account for packets that are access controlled in hardware. Use the show access-lists hardware counters privileged EXEC command to obtain some basic hardware ACL statistics for switched and routed packets.

Router ACLs function as follows:

• The hardware controls permit and deny actions of standard and extended ACLs (input and output) for security access control.
• If log has not been specified, the flows that match a deny statement in a security ACL are dropped by the hardware if ip unreachables is disabled. The flows matching a permit statement are switched in hardware.
• Adding the log keyword to an ACE in a router ACL causes a copy of the packet to be sent to the CPU for logging only. If the ACE is a permit statement, the packet is still switched and routed in hardware.

Troubleshooting ACLs

If this ACL manager message appears and [chars] is the access-list name,

ACLMGR-2-NOVMR: Cannot generate hardware representation of access list [chars]

The switch has insufficient resources to create a hardware representation of the ACL. The resources include hardware memory and label space but not CPU memory. A lack of available logical operation units or specialized hardware resources causes this problem. Logical operation units are needed for a TCP flag match or a test other than eq (ne, gt, lt, or range) on TCP, UDP, or SCTP port numbers.
Use one of these workarounds:

- Modify the ACL configuration to use fewer resources.
- Rename the ACL with a name or number that alphanumerically precedes the ACL names or numbers.

To determine the specialized hardware resources, enter the `show platform layer4 acl map` privileged EXEC command. If the switch does not have available resources, the output shows that index 0 to index 15 are not available.

For more information about configuring ACLs with insufficient resources, see CSCsq63926 in the Bug Toolkit.

For example, if you apply this ACL to an interface:

```plaintext
permit tcp source source-wildcard destination destination-wildcard range 5 60
permit tcp source source-wildcard destination destination-wildcard range 15 160
permit tcp source source-wildcard destination destination-wildcard range 115 1660
permit tcp source source-wildcard destination destination-wildcard
```

And if this message appears:

`ACLMGR-2-NOVRM: Cannot generate hardware representation of access list [chars]`

The flag-related operators are not available. To avoid this issue,

- Move the fourth ACE before the first ACE by using `ip access-list resequence` global configuration command:

```plaintext
permit tcp source source-wildcard destination destination-wildcard range 5 60
permit tcp source source-wildcard destination destination-wildcard range 15 160
permit tcp source source-wildcard destination destination-wildcard range 115 1660
permit tcp source source-wildcard destination destination-wildcard
```

or

- Rename the ACL with a name or number that alphanumerically precedes the other ACLs (for example, rename ACL 79 to ACL 1).

You can now apply the first ACE in the ACL to the interface. The switch allocates the ACE to available mapping bits in the Opselect index and then allocates flag-related operators to use the same bits in the hardware memory.

IPv4 ACL Configuration Examples

This section provides examples of configuring and applying IPv4 ACLs. For detailed information about compiling ACLs, see the *Cisco IOS Security Configuration Guide, Release 12.2* and to the Configuring IP Services” section in the “IP Addressing and Services” chapter of the *Cisco IOS IP Configuration Guide, Release 12.2*.

Figure 35-3 shows a small networked office environment with routed Port 2 connected to blade server A, containing benefits and other information that all employees can access, and routed Port 1 connected to blade server B, containing confidential payroll data. All users can access blade server A, but Blade server B has restricted access.

Use router ACLs to do this in one of two ways:

- Create a standard ACL, and filter traffic coming to the server from port 1.
- Create an extended ACL, and filter traffic coming from the server into port 1.
This example uses a standard ACL to filter traffic coming into blade server B from a port, permitting traffic only from Accounting’s source addresses 172.20.128.64 to 172.20.128.95. The ACL is applied to traffic coming out of routed Port 1 from the specified source address.

```
Switch(config)# access-list 6 permit 172.20.128.64 0.0.0.31
Switch(config)# end
Switch# show access-lists
Standard IP access list 6
10 permit 172.20.128.64, wildcard bits 0.0.0.31
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 6 out
```

This example uses an extended ACL to filter traffic coming from blade server B into a port, permitting traffic from any source address (in this case Server B) to only the Accounting destination addresses 172.20.128.64 to 172.20.128.95. The ACL is applied to traffic going into routed Port 1, permitting it to go only to the specified destination addresses. Note that with extended ACLs, you must enter the protocol (IP) before the source and destination information.

```
Switch(config)# access-list 106 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# end
Switch# show access-lists
Extended IP access list 106
10 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 106 in
```
Numbered ACLs

In this example, network 36.0.0.0 is a Class A network whose second octet specifies a subnet; that is, its subnet mask is 255.255.0.0. The third and fourth octets of a network 36.0.0.0 address specify a particular host. Using access list 2, the switch accepts one address on subnet 48 and reject all others on that subnet. The last line of the list shows that the switch accepts addresses on all other network 36.0.0.0 subnets. The ACL is applied to packets entering a port.

```
Switch(config)# access-list 2 permit 36.48.0.3
Switch(config)# access-list 2 deny 36.48.0.0 0.0.255.255
Switch(config)# access-list 2 permit 36.0.0.0 0.255.255.255
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group 2 in
```

Extended ACLs

In this example, the first line permits any incoming TCP connections with destination ports greater than 1023. The second line permits incoming TCP connections to the Simple Mail Transfer Protocol (SMTP) port of host 128.88.1.2. The third line permits incoming ICMP messages for error feedback.

```
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 gt 1023
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# access-list 102 permit icmp any any
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group 102 in
```

For another example of using an extended ACL, suppose that you have a network connected to the Internet, and you want any host on the network to be able to form TCP connections to any host on the Internet. However, you do not want IP hosts to be able to form TCP connections to hosts on your network, except to the mail (SMTP) port of a dedicated mail host.

SMTP uses TCP port 25 on one end of the connection and a random port number on the other end. The same port numbers are used throughout the life of the connection. Mail packets coming in from the Internet have a destination port of 25. Outbound packets have the port numbers reversed. Because the secure system of the network always accepts mail connections on port 25, the incoming and outgoing services are separately controlled. The ACL must be configured as an input ACL on the outbound interface and an output ACL on the inbound interface.

```
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 eq 23
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 eq 25
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 102 in
```

In this example, the network is a Class B network with the address 128.88.0.0, and the mail host address is 128.88.1.2. The **established** keyword is used only for the TCP to show an established connection. A match occurs if the TCP datagram has the ACK or RST bits set, which show that the packet belongs to an existing connection. Gigabit Ethernet interface 1 on stack member 1 is the interface that connects the router to the Internet.

```
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 established
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 102 in
```
Chapter 35 Configuring Network Security with ACLs

Named ACLs

This example creates a standard ACL named internet_filter and an extended ACL named marketing_group. The internet_filter ACL allows all traffic from the source address 1.2.3.4.

```
Switch(config)# ip access-list standard Internet_filter
Switch(config-ext-nacl)# permit 1.2.3.4
Switch(config-ext-nacl)# exit
```

The marketing_group ACL allows any TCP Telnet traffic to the destination address and wildcard 171.69.0.0 0.0.255.255 and denies any other TCP traffic. It permits any other IP traffic. It permits ICMP traffic, denies UDP traffic from any source to the destination address range 171.69.0.0 through 179.69.255.255 with a destination port less than 1024, denies any other IP traffic, and provides a log of the result.

```
Switch(config)# ip access-list extended marketing_group
Switch(config-ext-nacl)# permit tcp any 171.69.0.0 0.0.255.255 eq telnet
Switch(config-ext-nacl)# deny tcp any any
Switch(config-ext-nacl)# permit icmp any any
Switch(config-ext-nacl)# deny udp any 171.69.0.0 0.0.255.255 lt 1024
Switch(config-ext-nacl)# deny ip any any log
Switch(config-ext-nacl)# exit
```

The Internet_filter ACL is applied to outgoing traffic and the marketing_group ACL is applied to incoming traffic on a Layer 3 port.

```
Switch(config)# interface gigabitethernet3/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 2.0.5.1 255.255.255.0
Switch(config-if)# ip access-group Internet_filter out
Switch(config-if)# ip access-group marketing_group in
```

Time Range Applied to an IP ACL

This example denies HTTP traffic on IP on Monday through Friday between the hours of 8:00 a.m. and 6:00 p.m (18:00). The example allows UDP traffic only on Saturday and Sunday from noon to 8:00 p.m. (20:00).

```
Switch(config)# time-range no-http
Switch(config)# periodic weekdays 8:00 to 18:00
!
Switch(config)# time-range udp-yes
Switch(config)# periodic weekend 12:00 to 20:00
!
Switch(config)# ip access-list extended strict
Switch(config-ext-nacl)# deny tcp any any eq www time-range no-http
Switch(config-ext-nacl)# permit udp any any time-range udp-yes
!
Switch(config-ext-nacl)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group strict in
```
Commented IP ACL Entries

In this example of a numbered ACL, the server that belongs to Jones is allowed access, and the workstation that belongs to Smith is not allowed access:

Switch(config)# access-list 1 remark Permit only Jones server through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith server through
Switch(config)# access-list 1 deny 171.69.3.13

In this example of a numbered ACL, the Winter and Smith servers are not allowed to browse the web:

Switch(config)# access-list 100 remark Do not allow Winter to browse the web
Switch(config)# access-list 100 deny host 171.69.3.85 any eq www
Switch(config)# access-list 100 remark Do not allow Smith to browse the web
Switch(config)# access-list 100 deny host 171.69.3.13 any eq www

In this example of a named ACL, the Jones subnet is not allowed access:

Switch(config)# ip access-list standard prevention
Switch(config-std-nacl)# remark Do not allow Jones subnet through
Switch(config-std-nacl)# deny 171.69.0.0 0.0.255.255

In this example of a named ACL, the Jones subnet is not allowed to use outbound Telnet:

Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp 171.69.0.0 0.0.255.255 any eq telnet

ACL Logging

Two variations of logging are supported on router ACLs. The `log` keyword sends an informational logging message to the console about the packet that matches the entry; the `log-input` keyword includes the input interface in the log entry.

In this example, standard named access list `stan1` denies traffic from 10.1.1.0 0.0.0.255, allows traffic from all other sources, and includes the `log` keyword.

Switch(config)# ip access-list standard stan1
Switch(config-std-nacl)# deny 10.1.1.0 0.0.0.255 log
Switch(config-std-nacl)# permit any log
Switch(config-std-nacl)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group stan1 in
Switch(config-if)# end
Switch# show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
 Console logging: level debugging, 37 messages logged
 Monitor logging: level debugging, 0 messages logged
 Buffer logging: level debugging, 37 messages logged
 File logging: disabled
 Trap logging: level debugging, 39 message lines logged

Log Buffer (4096 bytes):

```
00:00:48: NTP: authentication delay calculation problems
<output truncated>
00:09:34:%SEC-6-IPACCESSLOGS:list stan1 permitted 0.0.0.0 1 packet
00:09:59:%SEC-6-IPACCESSLOGS:list stan1 denied 10.1.1.15 1 packet
00:10:11:%SEC-6-IPACCESSLOGS:list stan1 permitted 0.0.0.0 1 packet
```

Cisco Catalyst Switch Module 3110 and 3012 for IBM BladeCenter Software Configuration Guide
Creating Named MAC Extended ACLs

You can filter non-IPv4 traffic on a VLAN or on a Layer 2 interface by using MAC addresses and named MAC extended ACLs. The procedure is similar to that of configuring other extended named ACLs.

Note You cannot apply named MAC extended ACLs to Layer 3 interfaces.

For more information about the supported non-IP protocols in the `mac access-list extended` command, see the command reference for this release.

Note Though visible in the command-line help strings, `appletalk` is not supported as a matching condition for the `deny` and `permit` MAC access-list configuration mode commands.

Beginning in privileged EXEC mode, follow these steps to create a named MAC extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>mac access-list extended name</code></td>
<td>Define an extended MAC access list using a name.</td>
</tr>
</tbody>
</table>
Chapter 35 Configuring Network Security with ACLs

Creating Named MAC Extended ACLs

Use the **no mac access-list extended** name global configuration command to delete the entire ACL. You can also delete individual ACEs from named MAC extended ACLs.

This example shows how to create and display an access list named *mac1*, denying only EtherType DECnet Phase IV traffic, but permitting all other types of traffic.

```console
Switch(config)# mac access-list extended mac1
Switch(config-ext-macl)# deny any any decnet-iv
Switch(config-ext-macl)# permit any
Switch(config-ext-macl)# end
Switch# show access-lists
Extended MAC access list mac1
  10 deny any any decnet-iv
  20 permit any
```

Applying a MAC ACL to a Layer 2 Interface

After you create a MAC ACL, you can apply it to a Layer 2 interface to filter non-IP traffic coming in that interface. When you apply the MAC ACL, consider these guidelines:

- If you apply an ACL to a Layer 2 interface that is a member of a VLAN, the Layer 2 (port) ACL takes precedence over an input Layer 3 ACL applied to the VLAN interface or a VLAN map applied to the VLAN. Incoming packets received on the Layer 2 port are always filtered by the port ACL.
- You can apply no more than one IP access list and one MAC access list to the same Layer 2 interface. The IP access list filters only IP packets, and the MAC access list filters non-IP packets.
A Layer 2 interface can have only one MAC access list. If you apply a MAC access list to a Layer 2 interface that has a MAC ACL configured, the new ACL replaces the previously configured one.

Beginning in privileged EXEC mode, follow these steps to apply a MAC access list to control access to a Layer 2 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Identify a specific interface, and enter interface configuration mode. The interface must be a physical Layer 2 interface (port ACL).</td>
</tr>
<tr>
<td>Step 3 mac access-group {name} {in}</td>
<td>Control access to the specified interface by using the MAC access list. Port ACLs are supported only in the inbound direction.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show mac access-group [interface interface-id]</td>
<td>Display the MAC access list applied to the interface or all Layer 2 interfaces.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the specified access group, use the no mac access-group {name} interface configuration command.

This example shows how to apply MAC access list mac1 to a port to filter packets entering the port:

Switch(config)# interface gigabitethernet1/0/2
Router(config-if)# mac access-group mac1 in

Note
The mac access-group interface configuration command is only valid when applied to a physical Layer 2 interface. You cannot use the command on EtherChannel port channels.

After receiving a packet, the switch checks it against the inbound ACL. If the ACL permits it, the switch continues to process the packet. If the ACL rejects the packet, the switch discards it. When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied and permits all packets. Remember this behavior if you use undefined ACLs for network security.

Configuring VLAN Maps

This section describes how to configure VLAN maps, which is the only way to control filtering within a VLAN. VLAN maps have no direction. To filter traffic in a specific direction by using a VLAN map, you need to include an ACL with specific source or destination addresses. If there is a match clause for that type of packet (IP or MAC) in the VLAN map, the default action is to drop the packet if the packet does not match any of the entries within the map. If there is no match clause for that type of packet, the default is to forward the packet.

For complete syntax and usage information for the commands used in this section, see the command reference for this release.
To create a VLAN map and apply it to one or more VLANs, perform these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Create the standard or extended IPv4 ACLs or named MAC extended ACLs that you want to apply to the VLAN. See the “Creating Standard and Extended IPv4 ACLs” section on page 35-8 and the “Creating a VLAN Map” section on page 35-32.</td>
</tr>
<tr>
<td>2</td>
<td>Enter the <code>vlan access-map</code> global configuration command to create a VLAN ACL map entry.</td>
</tr>
<tr>
<td>3</td>
<td>In access-map configuration mode, optionally enter an <code>action—forward</code> (the default) or <code>drop</code>—and enter the <code>match</code> command to specify an IP packet or a non-IP packet (with only a known MAC address) and to match the packet against one or more ACLs (standard or extended).</td>
</tr>
<tr>
<td></td>
<td>Note If the VLAN map is configured with a match clause for a type of packet (IP or MAC) and the map action is drop, all packets that match the type are dropped. If the VLAN map has no match clause, and the configured action is drop, all IP and Layer 2 packets are dropped.</td>
</tr>
<tr>
<td>4</td>
<td>Use the <code>vlan filter</code> global configuration command to apply a VLAN map to one or more VLANs.</td>
</tr>
</tbody>
</table>

These sections contain this configuration information:
- VLAN Map Configuration Guidelines, page 35-31
- Creating a VLAN Map, page 35-32
- Applying a VLAN Map to a VLAN, page 35-35
- Using VLAN Maps in Your Network, page 35-35

VLAN Map Configuration Guidelines

Follow these guidelines when configuring VLAN maps:
- If there is no ACL configured to deny traffic on an interface and no VLAN map is configured, all traffic is permitted.
- Each VLAN map consists of a series of entries. The order of entries in an VLAN map is important. A packet that comes into the switch is tested against the first entry in the VLAN map. If it matches, the action specified for that part of the VLAN map is taken. If there is no match, the packet is tested against the next entry in the map.
- If the VLAN map has at least one match clause for the type of packet (IP or MAC) and the packet does not match any of these match clauses, the default is to drop the packet. If there is no match clause for that type of packet in the VLAN map, the default is to forward the packet.
- The system might take longer to boot up if you have configured a very large number of ACLs.
- Logging is not supported for VLAN maps.
- When a switch has an IP access list or MAC access list applied to a Layer 2 interface, and you apply a VLAN map to a VLAN that the port belongs to, the port ACL takes precedence over the VLAN map.
- If VLAN map configuration cannot be applied in hardware, all packets in that VLAN must be bridged and routed by software.
- You can configure VLAN maps on primary and secondary VLANs. However, we recommend that you configure the same VLAN maps on private-VLAN primary and secondary VLANs.
Chapter 35 Configuring Network Security with ACLs

Configuring VLAN Maps

When a frame is Layer-2 forwarded within a private VLAN, the same VLAN map is applied at the ingress side and at the egress side. When a frame is routed from inside a private VLAN to an external port, the private-VLAN map is applied at the ingress side.

- For frames going upstream from a host port to a promiscuous port, the VLAN map configured on the secondary VLAN is applied.
- For frames going downstream from a promiscuous port to a host port, the VLAN map configured on the primary VLAN is applied.

To filter out specific IP traffic for a private VLAN, you should apply the VLAN map to both the primary and secondary VLANs. For more information about private VLANs, see Chapter 16, “Configuring Private VLANs.”

For configuration examples, see the “Using VLAN Maps in Your Network” section on page 35-35.

For information about using both router ACLs and VLAN maps, see the “VLAN Maps and Router ACL Configuration Guidelines” section on page 35-37.

Creating a VLAN Map

Each VLAN map consists of an ordered series of entries. Beginning in privileged EXEC mode, follow these steps to create, add to, or delete a VLAN map entry:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vlan access-map name [number]</td>
<td>Create a VLAN map, and give it a name and (optionally) a number. The number is the sequence number of the entry within the map. When you create VLAN maps with the same name, numbers are assigned sequentially in increments of 10. When modifying or deleting maps, you can enter the number of the map entry that you want to modify or delete. Entering this command changes to access-map configuration mode.</td>
</tr>
<tr>
<td>Step 3 action {drop</td>
<td>forward}</td>
</tr>
<tr>
<td>Step 4 match {ip</td>
<td>mac} address {name</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no vlan access-map name global configuration command to delete a map. Use the no vlan access-map name number global configuration command to delete a single sequence entry from within the map.

Use the no action access-map configuration command to enforce the default action, which is to forward. VLAN maps do not use the specific permit or deny keywords. To deny a packet by using VLAN maps, create an ACL that would match the packet, and set the action to drop. A permit in the ACL counts as a match. A deny in the ACL means no match.
Examples of ACLs and VLAN Maps

These examples show how to create ACLs and VLAN maps that for specific purposes.

Example 1

This example shows how to create an ACL and a VLAN map to deny a packet. In the first map, any packets that match the ip1 ACL (TCP packets) would be dropped. You first create the ip1 ACL to permit any TCP packet and no other packets. Because there is a match clause for IP packets in the VLAN map, the default action is to drop any IP packet that does not match any of the match clauses.

Switch(config)# ip access-list extended ip1
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 10
Switch(config-access-map)# match ip address ip1
Switch(config-access-map)# action drop

This example shows how to create a VLAN map to permit a packet. ACL ip2 permits UDP packets and any packets that match the ip2 ACL are forwarded. In this map, any IP packets that did not match any of the previous ACLs (that is, packets that are not TCP packets or UDP packets) would get dropped.

Switch(config)# ip access-list extended ip2
Switch(config-ext-nacl)# permit udp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 20
Switch(config-access-map)# match ip address ip2
Switch(config-access-map)# action forward

Example 2

In this example, the VLAN map has a default action of drop for IP packets and a default action of forward for MAC packets. Used with standard ACL 101 and extended named access lists igmp-match and tcp-match, the map will have the following results:

- Forward all UDP packets
- Drop all IGMP packets
- Forward all TCP packets
- Drop all other IP packets
- Forward all non-IP packets

Switch(config)# access-list 101 permit udp any any
Switch(config)# ip access-list extended igmp-match
Switch(config-ext-nacl)# permit igmp any any
Switch(config)# ip access-list extended tcp-match
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-ip-default 10
Switch(config-access-map)# match ip address 101
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-ip-default 20
Switch(config-access-map)# match ip address igmp-match
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-ip-default 30
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward
Example 3

In this example, the VLAN map has a default action of drop for MAC packets and a default action of forward for IP packets. Used with MAC extended access lists **good-hosts** and **good-protocols**, the map will have the following results:

- Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211
- Forward MAC packets with decnet-iv or vines-ip protocols
- Drop all other non-IP packets
- Forward all IP packets

```switch(config)# mac access-list extended good-hosts
Switch(config-ext-macl)# permit host 0000.0c00.0111 any
Switch(config-ext-macl)# permit host 0000.0c00.0211 any
Switch(config)# mac access-list extended good-protocols
Switch(config-ext-macl)# permit any any decnet-ip
Switch(config-ext-macl)# permit any any vines-ip
Switch(config)# vlan access-map drop-mac-default 10
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-mac-default 20
Switch(config-access-map)# match mac address good-protocols
Switch(config-access-map)# action forward```

Example 4

In this example, the VLAN map has a default action of drop for all packets (IP and non-IP). Used with access lists **tcp-match** and **good-hosts** from Examples 2 and 3, the map will have the following results:

- Forward all TCP packets
- Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211
- Drop all other IP packets
- Drop all other MAC packets

```switch(config)# vlan access-map drop-all-default 10
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-all-default 20
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward```
Applying a VLAN Map to a VLAN

Beginning in privileged EXEC mode, follow these steps to apply a VLAN map to one or more VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan filter mapname vlan-list list</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the VLAN map, use the `no vlan filter mapname vlan-list list` global configuration command.

This example shows how to apply VLAN map 1 to VLANs 20 through 22:

```
Switch(config)# vlan filter map 1 vlan-list 20-22
```

Using VLAN Maps in Your Network

These sections describes how to deny access to a server on another VLAN (see the “Denying Access to a Server on Another VLAN” section on page 35-35).

Denying Access to a Server on Another VLAN

You can restrict access to a server on another VLAN. For example, server 10.1.1.100 in VLAN 10 needs to have access denied to these hosts (see Figure 35-4):

- Hosts in subnet 10.1.2.0/8 in VLAN 20 should not have access.
- Hosts 10.1.1.4 and 10.1.1.8 in VLAN 10 should not have access.

![Figure 35-4 Deny Access to a Server on Another VLAN](image-url)
This example shows how to deny access to a server on another VLAN by creating the VLAN map SERVER 1 that denies access to hosts in subnet 10.1.2.0, host 10.1.1.4, and host 10.1.1.8 and permits other IP traffic. The final step is to apply the map SERVER1 to VLAN 10.

Step 1
Define the IP ACL that will match the correct packets.

```
Switch(config)# ip access-list extended SERVER1_ACL
Switch(config-ext-nacl)# permit ip 10.1.2.0 0.0.0.255 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.4 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.8 host 10.1.1.100
Switch(config-ext-nacl)# exit
```

Step 2
Define a VLAN map using this ACL that will drop IP packets that match SERVER1_ACL and forward IP packets that do not match the ACL.

```
Switch(config)# vlan access-map SERVER1_MAP
Switch(config-access-map)# match ip address SERVER1_ACL
Switch(config-access-map)# action drop
Switch(config)# vlan access-map SERVER1_MAP 20
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
```

Step 3
Apply the VLAN map to VLAN 10.

```
Switch(config)# vlan filter SERVER1_MAP vlan-list 10.
```

Using VLAN Maps with Router ACLs

To access control both bridged and routed traffic, you can use VLAN maps only or a combination of router ACLs and VLAN maps. You can define router ACLs on both input and output routed VLAN interfaces, and you can define a VLAN map to access control the bridged traffic.

If a packet flow matches a VLAN-map deny clause in the ACL, regardless of the router ACL configuration, the packet flow is denied.

Note

When you use router ACLs with VLAN maps, packets that require logging on the router ACLs are not logged if they are denied by a VLAN map.

If the VLAN map has a match clause for the type of packet (IP or MAC) and the packet does not match the type, the default is to drop the packet. If there is no match clause in the VLAN map, and no action specified, the packet is forwarded if it does not match any VLAN map entry.

These sections contain information about using VLAN maps with router ACLs:

- VLAN Maps and Router ACL Configuration Guidelines, page 35-37
- Examples of Router ACLs and VLAN Maps Applied to VLANs, page 35-37
VLAN Maps and Router ACL Configuration Guidelines

These guidelines are for configurations where you need to have a router ACL and a VLAN map on the same VLAN. These guidelines do not apply to configurations where you are mapping router ACLs and VLAN maps on different VLANs.

The switch hardware provides one lookup for security ACLs for each direction (input and output); therefore, you must merge a router ACL and a VLAN map when they are configured on the same VLAN. Merging the router ACL with the VLAN map might significantly increase the number of ACEs.

If you must configure a router ACL and a VLAN map on the same VLAN, use these guidelines for both router ACL and VLAN map configuration:

- You can configure only one VLAN map and one router ACL in each direction (input/output) on a VLAN interface.
- Whenever possible, try to write the ACL with all entries having a single action except for the final, default action of the other type. That is, write the ACL using one of these two forms:

  ```
  permit...
  permit...
  permit...
  deny ip any any
  or
  deny...
  deny...
  deny...
  permit ip any any
  ```

- To define multiple actions in an ACL (permit, deny), group each action type together to reduce the number of entries.
- Avoid including Layer 4 information in an ACL; adding this information complicates the merging process. The best merge results are obtained if the ACLs are filtered based on IP addresses (source and destination) and not on the full flow (source IP address, destination IP address, protocol, and protocol ports). It is also helpful to use "don’t care" bits in the IP address, whenever possible.

If you need to specify the full-flow mode and the ACL contains both IP ACEs and TCP/UDP/ICMP ACEs with Layer 4 information, put the Layer 4 ACEs at the end of the list. This gives priority to the filtering of traffic based on IP addresses.

Examples of Router ACLs and VLAN Maps Applied to VLANs

This section gives examples of applying router ACLs and VLAN maps to a VLAN for switched, bridged, routed, and multicast packets. Although the following illustrations show packets being forwarded to their destination, each time the packet’s path crosses a line indicating a VLAN map or an ACL, it is also possible that the packet might be dropped, rather than forwarded.

ACLs and Switched Packets

Figure 35-5 shows how an ACL is applied on packets that are switched within a VLAN. Packets switched within the VLAN without being routed or forwarded by fallback bridging are only subject to the VLAN map of the input VLAN.
ACLs and Bridged Packets

Figure 35-6 shows how an ACL is applied on fallback-bridged packets. For bridged packets, only Layer 2 ACLs are applied to the input VLAN. Only non-IP, non-ARP packets can be fallback-bridged.
ACLs and Routed Packets

Figure 35-7 shows how ACLs are applied on routed packets. For routed packets, the ACLs are applied in this order:

1. VLAN map for input VLAN
2. Input router ACL
3. Output router ACL
4. VLAN map for output VLAN

ACLs and Multicast Packets

Figure 35-8 shows how ACLs are applied on packets that are replicated for IP multicasting. A multicast packet being routed has two different kinds of filters applied: one for destinations that are other ports in the input VLAN and another for each of the destinations that are in other VLANs to which the packet has been routed. The packet might be routed to more than one output VLAN, in which case a different router output ACL and VLAN map would apply for each destination VLAN.

The final result is that the packet might be permitted in some of the output VLANs and not in others. A copy of the packet is forwarded to those destinations where it is permitted. However, if the input VLAN map (VLAN 10 map in Figure 35-8) drops the packet, no destination receives a copy of the packet.
Displaying IPv4 ACL Configuration

You can display the ACLs that are configured on the switch, and you can display the ACLs that have been applied to interfaces and VLANs.

When you use the `ip access-group` interface configuration command to apply ACLs to a Layer 2 interface, you can display the access groups on the interface. You can also display the MAC ACLs applied to a Layer 2 interface. You can use the privileged EXEC commands as described in Table 35-2 to display this information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td>`show ip access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td><code>show ip interface interface-id</code></td>
<td>Display detailed configuration and status of an interface. If IP is enabled on the interface and ACLs have been applied by using the <code>ip access-group</code> interface configuration command, the access groups are included in the display.</td>
</tr>
<tr>
<td><code>show running-config [interface interface-id]</code></td>
<td>Displays the contents of the configuration file for the switch or the specified interface, including all configured MAC and IP access lists and which access groups are applied to an interface.</td>
</tr>
<tr>
<td><code>show mac access-group [interface interface-id]</code></td>
<td>Displays MAC access lists applied to all Layer 2 interfaces or the specified Layer 2 interface.</td>
</tr>
</tbody>
</table>
You can also display information about VLAN access maps or VLAN filters. Use the privileged EXEC commands in Table 35-3 to display VLAN map information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlan access-map [mapname]</td>
<td>Show information about all VLAN access maps or the specified access map.</td>
</tr>
<tr>
<td>show vlan filter [access-map name</td>
<td>vlan vlan-id]</td>
</tr>
</tbody>
</table>
36

Configuring IPv6 ACLs

You can filter IP Version 6 (IPv6) traffic by creating IPv6 access control lists (ACLs) and applying them to interfaces as you would create and apply IP Version 4 (IPv4) named ACLs. You can also create and apply input router ACLs to filter Layer 3 management traffic when the switch is running the IP services or IP base feature set. This chapter includes information about configuring IPv6 ACLs on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

To use IPv6, you must configure the dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch. You select the template by entering the `sdm prefer dual-ipv4-and-ipv6 {default | vlan}` global configuration command.

For related information, see these chapters:

- For more information about SDM templates, see Chapter 8, “Configuring SDM Templates.”
- For information about IPv6 on the switch, see Chapter 40, “Configuring IPv6 Host Functions and Unicast Routing.”
- For information about ACLs on the switch, see Chapter 35, “Configuring Network Security with ACLs.”

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release or the Cisco IOS documentation referenced in the procedures.

This chapter contains these sections:

- Understanding IPv6 ACLs, page 36-2
- Configuring IPv6 ACLs, page 36-4
- Displaying IPv6 ACLs, page 36-9

Understanding IPv6 ACLs

A switch supports these IPv6 ACLs:

- IPv6 router ACLs are supported on outbound or inbound traffic on Layer 3 interfaces, which can be routed ports, switch virtual interfaces (SVIs), or Layer 3 EtherChannels. IPv6 router ACLs apply only to IPv6 packets that are routed.
- IPv6 port ACLs are supported only on inbound traffic on Layer 2 interfaces. IPv6 port ACLs are applied to all IPv6 packets entering the interface.
Understanding IPv6 ACLs

A switch running the IP services or IP base feature set supports only input router IPv6 ACLs. It does not support port ACLs or output IPv6 router ACLs.

Note

If you configure unsupported IPv6 ACLs, an error message appears, and the configuration does not take effect.

If you create or apply an output router ACL or an input port ACL on a switch running the IP base or IP services features set, the ACL is added to the switch configuration but does not take effect; an error message appears. If you want to use the output router ACL or input port ACL, save the switch configuration and enable the IP services feature set, which supports the ACL.

The switch does not support VLAN ACLs (VLAN maps) for IPv6 traffic.

Note

For more information about ACL support on the switch, see Chapter 35, “Configuring Network Security with ACLs.”

You can apply both IPv4 and IPv6 ACLs to an interface.

As with IPv4 ACLs, IPv6 port ACLs take precedence over router ACLs:

- When an input router ACL and input port ACL are in an SVI, packets received on ports to which a port ACL is applied are filtered by the port ACL. Routed IP packets received on other ports are filtered by the router ACL. Other packets are not filtered.

- When an output router ACL and input port ACL exist in an SVI, packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IPv6 packets are filtered by the router ACL. Other packets are not filtered.

Note

If any port ACL (IPv4, IPv6, or MAC) is applied to an interface, that port ACL is used to filter packets, and any router ACLs attached to the SVI of the port VLAN are ignored.

Supported ACL Features

IPv6 ACLs on the switch have these characteristics:

- Fragmented frames (the `fragments` keyword as in IPv4) are supported.

- The same statistics supported in IPv4 are supported for IPv6 ACLs.

- If the switch runs out of hardware memory, packets associated with the ACL are forwarded to the CPU, and the ACLs are applied in software.

- Routed or bridged packets with hop-by-hop options have IPv6 ACLs applied in software.

- Logging is supported for router ACLs, but not for port ACLs.

- The switch supports IPv6 address-matching for a full range of prefix lengths.

IPv6 ACL Limitations

With IPv4, you can configure standard and extended numbered IP ACLs, named IP ACLs, and MAC ACLs. IPv6 supports only named ACLs.

The switch supports most Cisco IOS-supported IPv6 ACLs with these exceptions:
The switch does not support matching on these keywords: flowlabel, routing header, and undetermined-transport.

The switch does not support reflexive ACLs (the reflect keyword).

This release supports only port ACLs and router ACLs for IPv6; it does not support VLAN ACLs (VLAN maps).

The switch does not apply MAC-based ACLs on IPv6 frames.

You cannot apply IPv6 port ACLs to Layer 2 EtherChannels.

The switch does not support output port ACLs.

Output router ACLs and input port ACLs for IPv6 are supported only when the switch is running the IP services feature set. Switches running the IP base feature set support only input router ACLs for IPv6 management traffic.

When configuring an ACL, there is no restriction on keywords entered in the ACL, whether or not they are supported on the platform. When you apply the ACL to an interface that requires hardware forwarding (physical ports or SVIs), the switch determines whether or not the ACL can be supported on the interface. If not, ACL attachment is rejected.

If an ACL is applied to an interface and you attempt to add an access control entry (ACE) with an unsupported keyword, the switch rejects the ACE addition to the ACL.

IPv6 ACLs and Switch Stacks

The stack master supports IPv6 ACLs in hardware and distributes the IPv6 ACLs to the stack members.

Note

For full IPv6 functionality in a switch stack, all stack members must be running the IP services feature set. Switches running the IP services or IP base feature set support only input router IPv6 ACLs for IPv6 management traffic.

If a new switch takes over as stack master, it distributes the ACL configuration to all stack members. The member switches sync up the configuration distributed by the new stack master and flush out entries that are not required.

When an ACL is modified, attached to, or detached from an interface, the stack master distributes the change to all stack members.

Configuring IPv6 ACLs

Before configuring IPv6 ACLs, you must select one of the dual IPv4 and IPv6 SDM templates.

To filter IPv6 traffic, you perform these steps:

Step 1 Create an IPv6 ACL, and enter IPv6 access list configuration mode.

Step 2 Configure the IPv6 ACL to block (deny) or pass (permit) traffic.

Step 3 Apply the IPv6 ACL to an interface. For router ACLs, you must also configure an IPv6 address on the Layer 3 interface to which the ACL is applied.
These sections describe how to configure and apply IPv6 ACLs:

- Default IPv6 ACL Configuration, page 36-5
- Interaction with Other Features and Switches, page 36-5
- Creating IPv6 ACLs, page 36-5
- Applying an IPv6 ACL to an Interface, page 36-8

Default IPv6 ACL Configuration

No IPv6 ACLs are configured or applied.

Interaction with Other Features and Switches

Configuring IPv6 ACLs causes these interactions with other features or switch characteristics:

- If an IPv6 router ACL is configured to deny a packet, the packet is not routed. A copy of the packet is sent to the Internet Control Message Protocol (ICMP) queue to generate an ICMP unreachable message for the frame.
- If a bridged frame is to be dropped due to a port ACL, the frame is not bridged.
- You can create both IPv4 and IPv6 ACLs on a switch or switch stack, and you can apply both IPv4 and IPv6 ACLs to the same interface. Each ACL must have a unique name; an error message appears if you try to use a name that is already configured.

 You use different commands to create IPv4 and IPv6 ACLs and to attach them to the same Layer 2 or Layer 3 interface. If you use the wrong command to attach an ACL (for example, an IPv4 command to attach an IPv6 ACL), you receive an error message.
- You cannot use MAC ACLs to filter IPv6 frames. MAC ACLs can filter only non-IP frames.
- If the hardware memory is full, any additional configured ACLs packets are forwarded to the CPU, and the ACLs are applied in software.

Creating IPv6 ACLs

Beginning in privileged EXEC mode, follow these steps to create an IPv6 ACL:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 access-list access-list-name</td>
<td>Define an IPv6 access list using a name, and enter IPv6 access-list configuration mode.</td>
</tr>
</tbody>
</table>
Step 3a

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `{deny | permit} protocol (source-ipv6-prefix|prefix-length | any | host source-ipv6-address) [operator [port-number]] (destination-ipv6-prefix|prefix-length | any | host destination-ipv6-address) [operator [port-number]] [dscp value] [fragments] [log] [log-input] [routing] [sequence value] [time-range name]` | Enter *deny* or *permit* to specify whether to deny or permit the packet if conditions are matched. These are the conditions:
- For *protocol*, enter the name or number of an Internet protocol: **ahp**, **esp**, **icmp**, **ipv6**, **pcp**, **stp**, **tcp**, or **udp**, or an integer in the range 0 to 255 representing an IPv6 protocol number.
- The *source-ipv6-prefix|prefix-length* or *destination-ipv6-prefix|prefix-length* is the source or destination IPv6 network or class of networks for which to set deny or permit conditions, specified in hexadecimal and using 16-bit values between colons (see RFC 2373).
- Enter *any* as an abbreviation for the IPv6 prefix ::/0.
- For *host source-ipv6-address* or *destination-ipv6-address*, enter the source or destination IPv6 host address for which to set deny or permit conditions, specified in hexadecimal using 16-bit values between colons.
- For *destination-ipv6-prefix|prefix-length*, the port number is a decimal number from 0 to 65535 or the name of a TCP or UDP port. You can use TCP port names only when filtering TCP. You can use UDP port names only when filtering UDP.
- For *port-number*, specify an operand that compares the source or destination ports of the specified protocol. Operands are `lt` (less than), `gt` (greater than), `eq` (equal), `neq` (not equal), and `range`. If the operator follows the *source-ipv6-prefix|prefix-length* argument, it must match the source port. If the operator follows the *destination-ipv6-prefix|prefix-length* argument, it must match the destination port.
- Enter *dscp value* to match a differentiated services code point value against the traffic class value in the Traffic Class field of each IPv6 packet header. The range is from 0 to 63.
- Enter *fragments* to check noninitial fragments. This keyword is visible only if the protocol is **ipv6**.
- Enter *log* to cause a logging message to be sent to the console about the packet that matches the entry. Enter *log-input* to include the input interface in the log entry. Logging is supported only for router ACLs.
- Enter *routing* to specify that IPv6 packets be routed.
- Enter *sequence value* to specify the sequence number for the access list statement. The range is from 1 to 4294967295.
- Enter *time-range name* to specify the time range that applies to the deny or permit statement. |
Command Line Syntax

Step 3b

tcp

-

Step 3c

udp

-

Step 3d

icmp

-

Purpose

(Optional) Define a TCP access list and the access conditions.

Enter `tcp` for Transmission Control Protocol. The parameters are the same as those described in Step 3a, with these additional optional parameters:

- `ack`—Acknowledgment bit set.
- `established`—An established connection. A match occurs if the TCP datagram has the ACK or RST bits set.
- `fin`—Finished bit set; no more data from sender.
- `neq`—Port number.
- `psh`—Push function bit set.
- `range`—Port number range.
- `rst`—Reset bit set.
- `syn`—Synchronize bit set.
- `urg`—Urgent pointer bit set.

(Optional) Define a UDP access list and the access conditions.

Enter `udp` for the User Datagram Protocol. The UDP parameters are the same as those described for TCP, but the `[operator [port]]` port number or name must be a UDP port number or name, and the `established` parameter is not valid for UDP.

(Optional) Define an ICMP access list and the access conditions.

Enter `icmp` for Internet Control Message Protocol. The ICMP parameters are the same as those described for most IP protocols in Step 3a, with the addition of the ICMP message type and code parameters. These optional keywords have these meanings:

- `icmp-type`—Filter by ICMP message type. The range is from 0 to 255.
- `icmp-code`—Filter ICMP packets that are filtered by the ICMP message code type. The range is from 0 to 255.
- `icmp-message`—Enter to filter ICMP packets by the ICMP message type name or the ICMP message type and code name. To see a list of ICMP message type names and code names, use the ? key or see command reference for this release.

Return to privileged EXEC mode.

Verify the access list configuration.

(Optional) Save your entries in the configuration file.
Use the `no {deny | permit}` IPv6 access-list configuration commands with keywords to remove the deny or permit conditions from the specified access list.

This example configures the IPv6 access list named CISCO. The first deny entry in the list denies all packets that have a destination TCP port number greater than 5000. The second deny entry denies packets that have a source UDP port number less than 5000. The second deny also logs all matches to the console. The first permit entry in the list permits all ICMP packets. The second permit entry in the list permits all other traffic. The second permit entry is necessary because an implicit deny-all condition is at the end of each IPv6 access list.

```
Switch(config)# ipv6 access-list CISCO
Switch(config-ipv6-acl)# deny tcp any any gt 5000
Switch(config-ipv6-acl)# deny ::/0 lt 5000 ::/0 log
Switch(config-ipv6-acl)# permit icmp any any
Switch(config-ipv6-acl)# permit any any
```

Applying an IPv6 ACL to an Interface

This section describes how to apply IPv6 ACLs to network interfaces. If the switch is running the IP services feature set, you can apply an ACL to outbound or inbound traffic on Layer 3 interfaces or to inbound traffic on Layer 2 interfaces. If the switch is running the IP services or IP base feature set, you can apply ACLs only to inbound management traffic on Layer 3 interfaces.

Beginning in privileged EXEC mode, follow these steps to control access to an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Identify a Layer 2 interface (for port ACLs) or Layer 3 interface (for router ACLs) on which to apply an access list, and enter interface configuration mode. Note: Switches running the IP services or IP base feature set do not support port ACLs.</td>
</tr>
<tr>
<td><code>no switchport</code></td>
<td>If applying a router ACL, change the interface from Layer 2 mode (the default) to Layer 3 mode.</td>
</tr>
<tr>
<td><code>ipv6 address ipv6-address</code></td>
<td>Configure an IPv6 address on a Layer 3 interface. Note: This command is not required on Layer 2 interfaces or if the interface has already been configured with an explicit IPv6 address.</td>
</tr>
<tr>
<td>`ipv6 traffic-filter access-list-name {in</td>
<td>out}`</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify the access list configuration.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ipv6 traffic-filter access-list-name` interface configuration command to remove an access list from an interface.
This example shows how to apply the access list Cisco to outbound traffic on a Layer 3 interface:

```
Switch(config)# interface gigabitethernet 1/0/3
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter CISCO out
```

Displaying IPv6 ACLs

You can display information about all configured access lists, all IPv6 access lists, or a specific access list by using either or both of the privileged EXEC commands in Table 36-2.

Table 36-1 Commands for Displaying IPv6 Access List Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show access-lists</td>
<td>Display all access lists configured on the switch.</td>
</tr>
<tr>
<td>show ipv6 access-list [name]</td>
<td>Display all configured IPv6 access lists or the access list specified by name.</td>
</tr>
</tbody>
</table>

This is an example of the output from the `show access-lists` privileged EXEC command. The output shows all access lists that are configured on the switch or switch stack.

```
Switch# show access-lists
Extended IP access list hello
  10 permit ip any any
IPv6 access list ipv6
  permit ipv6 any any any sequence 10
```

This is an example of the output from the `show ipv6 access-list` privileged EXEC command. The output shows only IPv6 input and output access lists configured on the switch or switch stack.

```
Switch# show ipv6 access-list
IPv6 access list inbound
  permit tcp any any eq bgp (8 matches) sequence 10
  permit tcp any any eq telnet (15 matches) sequence 20
  permit udp any any sequence 30

IPv6 access list outbound
  deny udp any any sequence 10
  deny tcp any any eq telnet sequence 20
```
Chapter 36 Configuring IPv6 ACLs

Displaying IPv6 ACLs
This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-QoS) commands or by using standard QoS commands on the switch. With QoS, you can provide preferential treatment to certain types of traffic at the expense of others. Without QoS, the switch offers best-effort service to each packet, regardless of the packet contents or size. It sends the packets without any assurance of reliability, delay bounds, or throughput. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Cisco IOS release 12.2(52)SE and later supports QoS for both IPv4 and IPv6 traffic when a dual IPv4 and IPv6 SDM template is configured.

You can configure QoS on physical ports and on switch virtual interfaces (SVIs). Other than to apply policy maps, you configure the QoS settings, such as classification, queueing, and scheduling, the same way on physical ports and SVIs. When configuring QoS on a physical port, you apply a nonhierarchical policy map. When configuring QoS on an SVI, you apply a nonhierarchical or a hierarchical policy map.

For complete syntax and usage information for the commands used in this chapter, see the command reference this release.

This chapter consists of these sections:
- Understanding QoS, page 37-2
- Configuring Auto-QoS, page 37-21
- Displaying Auto-QoS Information, page 37-35
- Configuring Standard QoS, page 37-35
- Displaying Standard QoS Information, page 37-92
The switch supports some of the modular QoS CLI (MQC) commands. For more information about the MQC commands, see the Cisco IOS Modular Quality of Service Command-Line Interface Overview document.

Understanding QoS

Typically, networks operate on a best-effort delivery basis, which means that all traffic has equal priority and an equal chance of being delivered in a timely manner. When congestion occurs, all traffic has an equal chance of being dropped.

When you configure the QoS feature, you can select specific network traffic, prioritize it according to its relative importance, and use congestion-management and congestion-avoidance techniques to provide preferential treatment. Implementing QoS in your network makes network performance more predictable and bandwidth utilization more effective.

The QoS implementation is based on the Differentiated Services (Diff-Serv) architecture, an emerging standard from the Internet Engineering Task Force (IETF). This architecture specifies that each packet is classified upon entry into the network.

The classification is carried in the IP packet header, using 6 bits from the deprecated IP type of service (ToS) field to carry the classification (class) information. Classification can also be carried in the Layer 2 frame. These special bits in the Layer 2 frame or a Layer 3 packet are described here and shown in Figure 37-1:

- **Prioritization bits in Layer 2 frames:**
 - Layer 2 802.1Q frame headers have a 2-byte Tag Control Information field that carries the CoS value in the three most-significant bits, which are called the User Priority bits. On ports configured as Layer 2 802.1Q trunks, all traffic is in 802.1Q frames except for traffic in the native VLAN.
 - Other frame types cannot carry Layer 2 CoS values.
 - Layer 2 CoS values range from 0 for low priority to 7 for high priority.

- **Prioritization bits in Layer 3 packets:**
 - Layer 3 IP packets can carry either an IP precedence value or a Differentiated Services Code Point (DSCP) value. QoS supports the use of either value because DSCP values are backward-compatible with IP precedence values.
 - IP precedence values range from 0 to 7.
 - DSCP values range from 0 to 63.

Note

Beginning with Cisco IOS Release 12.2(52)SE, you can use the dual IPv4 and IPv6 SDM templates to enable IPv6 QoS globally on the switch or switch stack. You must reload the switch after configuring the dual IPv4 and IPv6 templates. For more information, see Chapter 8, “Configuring SDM Templates.”
Understanding QoS

All switches and routers that access the Internet rely on the class information to provide the same forwarding treatment to packets with the same class information and different treatment to packets with different class information. The class information in the packet can be assigned by end hosts or by switches or routers along the way, based on a configured policy, detailed examination of the packet, or both. Detailed examination of the packet is expected to happen closer to the edge of the network so that the core switches and routers are not overloaded with this task.

Switches and routers along the path can use the class information to limit the amount of resources allocated per traffic class. The behavior of an individual device when handling traffic in the DiffServ architecture is called per-hop behavior. If all devices along a path provide a consistent per-hop behavior, you can construct an end-to-end QoS solution.

Implementing QoS in your network can be a simple or complex task and depends on the QoS features offered by your internetworking devices, the traffic types and patterns in your network, and the granularity of control that you need over incoming and outgoing traffic.
Basic QoS Model

To implement QoS, the switch must distinguish packets or flow from one another (classify), assign a label to indicate the given quality of service as the packets move through the switch, make the packets comply with the configured resource usage limits (police and mark), and provide different treatment (queue and schedule) in all situations where resource contention exists. The switch also needs to ensure that traffic sent from it meets a specific traffic profile (shape).

Figure 37-2 shows the basic QoS model. Actions at the ingress port include classifying traffic, policing, marking, queueing, and scheduling:

- Classifying a distinct path for a packet by associating it with a QoS label. The switch maps the CoS or DSCP in the packet to a QoS label to distinguish one kind of traffic from another. The QoS label that is generated identifies all future QoS actions to be performed on this packet. For more information, see the “Classification” section on page 37-5.

- Policing determines whether a packet is in or out of profile by comparing the rate of the incoming traffic to the configured policer. The policer limits the bandwidth consumed by a flow of traffic. The result is passed to the marker. For more information, see the “Policing and Marking” section on page 37-9.

- Marking evaluates the policer and configuration information for the action to be taken when a packet is out of profile and determines what to do with the packet (pass through a packet without modification, mark down the QoS label in the packet, or drop the packet). For more information, see the “Policing and Marking” section on page 37-9.

- Queueing evaluates the QoS label and the corresponding DSCP or CoS value to select into which of the two ingress queues to place a packet. Queueing is enhanced with the weighted tail-drop (WTD) algorithm, a congestion-avoidance mechanism. If the threshold is exceeded, the packet is dropped. For more information, see the “Queueing and Scheduling Overview” section on page 37-14.

- Scheduling services the queues based on their configured shaped round robin (SRR) weights. One of the ingress queues is the priority queue, and SRR services it for its configured share before servicing the other queue. For more information, see the “SRR Shaping and Sharing” section on page 37-15.

Actions at the egress port include queueing and scheduling:

- Queueing evaluates the QoS packet label and the corresponding DSCP or CoS value before selecting which of the four egress queues to use. Because congestion can occur when multiple ingress ports simultaneously send data to an egress port, WTD differentiates traffic classes and subjects the packets to different thresholds based on the QoS label. If the threshold is exceeded, the packet is dropped. For more information, see the “Queueing and Scheduling Overview” section on page 37-14.

- Scheduling services the four egress queues based on their configured SRR shared or shaped weights. One of the queues (queue 1) can be the expedited queue, which is serviced until empty before the other queues are serviced.
Figure 37-2 Basic QoS Model

Classification
Inspect packet and determine the QoS label based on ACLs or the configuration.

Generate QoS label

Policing
Compare the incoming traffic rate with the configured policer and determine if the packet is in profile or out of profile.

In profile or out of profile

Mark
Based on whether the packet is in or out of profile and the configured parameters, determine whether to pass through, mark down, or drop the packet.

Based on the QoS label, determine into which of the ingress queues to place the packet. Then service the queues according to the configured weights.

Queueing and scheduling

Classification

Classification is the process of distinguishing one kind of traffic from another by examining the fields in the packet. Classification is enabled only if QoS is globally enabled on the switch. By default, QoS is globally disabled, so no classification occurs.

During classification, the switch performs a lookup and assigns a QoS label to the packet. The QoS label identifies all QoS actions to be performed on the packet and from which queue the packet is sent.

The QoS label is based on the DSCP or the CoS value in the packet and decides the queueing and scheduling actions to perform on the packet. The label is mapped according to the trust setting and the packet type as shown in Figure 37-3 on page 37-7.

You specify which fields in the frame or packet that you want to use to classify incoming traffic. For non-IP traffic, you have these classification options as shown in Figure 37-3:

- Trust the CoS value in the incoming frame (configure the port to trust CoS). Then use the configurable CoS-to-DSCP map to generate a DSCP value for the packet. Layer 2 802.1Q frame headers carry the CoS value in the 3 most-significant bits of the Tag Control Information field. CoS values range from 0 for low priority to 7 for high priority.
- Trust the DSCP or trust IP precedence value in the incoming frame. These configurations are meaningless for non-IP traffic. If you configure a port with either of these options and non-IP traffic is received, the switch assigns a CoS value and generates an internal DSCP value from the CoS-to-DSCP map. The switch uses the internal DSCP value to generate a CoS value representing the priority of the traffic.
- Perform the classification based on a configured Layer 2 MAC access control list (ACL), which can examine the MAC source address, the MAC destination address, and other fields. If no ACL is configured, the packet is assigned 0 as the DSCP and CoS values, which means best-effort traffic. Otherwise, the policy-map action specifies a DSCP or CoS value to assign to the incoming frame.
Understanding QoS

For IP traffic, you have these classification options as shown in Figure 37-3:

- Trust the DSCP value in the incoming packet (configure the port to trust DSCP), and assign the same DSCP value to the packet. The IETF defines the 6 most-significant bits of the 1-byte ToS field as the DSCP. The priority represented by a particular DSCP value is configurable. DSCP values range from 0 to 63.

- For ports that are on the boundary between two QoS administrative domains, you can modify the DSCP to another value by using the configurable DSCP-to-DSCP-mutation map.

Beginning with Cisco IOS Release 12.2(52)SE, there is an option to classify IP traffic based on IPv6 DSCP.

- Trust the IP precedence value in the incoming packet (configure the port to trust IP precedence), and generate a DSCP value for the packet by using the configurable IP-precedence-to-DSCP map. The IP Version 4 specification defines the 3 most-significant bits of the 1-byte ToS field as the IP precedence. IP precedence values range from 0 for low priority to 7 for high priority.

Beginning with Cisco IOS Release 12.2(52)SE, there is an option to classify IP traffic based on IPv6 IP precedence.

- Trust the CoS value (if present) in the incoming packet, and generate a DSCP value for the packet by using the CoS-to-DSCP map. If the CoS value is not present, use the default port CoS value.

- Override the configured CoS of incoming packets, and apply the default port CoS value to them. For IPv6 packets, the DSCP value is rewritten by using the CoS-to-DSCP map and by using the default CoS of the port. In Cisco IOS Release 12.2(52)SE and later, you can do this for both IPv4 and IPv6 traffic.

- Perform the classification based on a configured IP standard or an extended ACL, which examines various fields in the IP header. If no ACL is configured, the packet is assigned 0 as the DSCP and CoS values, which means best-effort traffic. Otherwise, the policy-map action specifies a DSCP or CoS value to assign to the incoming frame.

For information on the maps described in this section, see the “Mapping Tables” section on page 37-13. For configuration information on port trust states, see the “Configuring Classification Using Port Trust States” section on page 37-42.

After classification, the packet is sent to the policing, marking, and the ingress queueing and scheduling stages.
Figure 37-3 Classification Flowchart

Start

Read ingress interface configuration for classification.

Trust CoS (IP and non-IP traffic).

Trust DSCP (IP traffic).

IP and non-IP traffic

Trust IP precedence (non-IP traffic).

Generate the DSCP based on IP precedence in packet. Use the IP-precedence-to-DSCP map. Use the DSCP value to generate the QoS label.

Generate DSCP from CoS-to-DSCP map. Use the DSCP value to generate the QoS label.

Use CoS from frame.

Assign default port CoS.

Check if packet came with CoS label (tag).

Yes

No

Done

Assign default DSCP (0).

Generate the DSCP by using the CoS-to-DSCP map.

Assign the default port CoS and generate a DSCP from the CoS-to-DSCP map.

Generate the DSCP based on IP precedence in packet. Use the IP-precedence-to-DSCP map. Use the DSCP value to generate the QoS label.

Are there any (more) QoS ACLs configured for this interface?

No

Yes

Read next ACL. Is there a match with a "permit" action?

Assign the DSCP or CoS as specified by ACL action to generate the QoS label.

Yes

Done

No

Use the CoS value to generate the QoS label.

Assign the default DSCP (0).

Done

Check if packet came with CoS label (tag).

Yes

No

Assign DSCP identical to DSCP in packet.

(Optional) Modify the DSCP by using the DSCP-to-DSCP-mutation map. Use the DSCP value to generate the QoS label.

Read next ACL. Is there a match with a "permit" action?

Assign the default port CoS and generate a DSCP from the CoS-to-DSCP map.

Start
Classification Based on QoS ACLs

You can use IP standard, IP extended, or Layer 2 MAC ACLs to define a group of packets with the same characteristics (class). Beginning with Cisco IOS Release 12.2(52)SE, you can classify IP traffic based on IPv6 ACLs. In the QoS context, the permit and deny actions in the access control entries (ACEs) have different meanings than with security ACLs:

- If a match with a permit action is encountered (first-match principle), the specified QoS-related action is taken.
- If a match with a deny action is encountered, the ACL being processed is skipped, and the next ACL is processed.
- If no match with a permit action is encountered and all the ACEs have been examined, no QoS processing occurs on the packet, and the switch offers best-effort service to the packet.
- If multiple ACLs are configured on a port, the lookup stops after the packet matches the first ACL with a permit action, and QoS processing begins.

Note

When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

After a traffic class has been defined with the ACL, you can attach a policy to it. A policy might contain multiple classes with actions specified for each one of them. A policy might include commands to classify the class as a particular aggregate (for example, assign a DSCP) or rate-limit the class. This policy is then attached to a particular port on which it becomes effective.

You implement IP ACLs to classify IP traffic by using the `access-list` global configuration command; you implement Layer 2 MAC ACLs to classify non-IP traffic by using the `mac access-list extended` global configuration command. For configuration information, see the “Configuring a QoS Policy” section on page 37-48.

Classification Based on Class Maps and Policy Maps

A class map is a mechanism that you use to name a specific traffic flow (or class) and to isolate it from all other traffic. The class map defines the criteria used to match against a specific traffic flow to further classify it. The criteria can include matching the access group defined by the ACL or matching a specific list of DSCP or IP precedence values. If you have more than one type of traffic that you want to classify, you can create another class map and use a different name. After a packet is matched against the class-map criteria, you further classify it through the use of a policy map.

A policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; or specifying the traffic bandwidth limitations and the action to take when the traffic is out of profile. Before a policy map can be effective, you must attach it to a port.

You create a class map by using the `class-map` global configuration command or the `class` policy-map configuration command. You should use the `class-map` command when the map is shared among many ports. When you enter the `class-map` command, the switch enters the class-map configuration mode. In this mode, you define the match criterion for the traffic by using the `match` class-map configuration command.

You can configure a default class by using the `class class-default` policy-map configuration command. Unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as default traffic.
You create and name a policy map by using the `policy-map` global configuration command. When you enter this command, the switch enters the policy-map configuration mode. In this mode, you specify the actions to take on a specific traffic class by using the `class`, `trust`, or `set` policy-map configuration and policy-map class configuration commands.

The policy map can contain the `police` and `police aggregate` policy-map class configuration commands, which define the policer, the bandwidth limitations of the traffic, and the action to take if the limits are exceeded.

To enable the policy map, you attach it to a port by using the `service-policy` interface configuration command.

You can apply a nonhierarchical policy map to a physical port or an SVI. However, a hierarchical policy map can only be applied to an SVI. A hierarchical policy map contains two levels. The first level, the VLAN level, specifies the actions to be taken against a traffic flow on the SVI. The second level, the interface level, specifies the actions to be taken against the traffic on the physical ports that belong to the SVI. The interface-level actions are specified in the interface-level policy map.

For more information, see the “Policing and Marking” section on page 37-9. For configuration information, see the “Configuring a QoS Policy” section on page 37-48.

Policing and Marking

After a packet is classified and has a DSCP-based or CoS-based QoS label assigned to it, the policing and marking process can begin as shown in Figure 37-4.

Policing involves creating a policer that specifies the bandwidth limits for the traffic. Packets that exceed the limits are out of profile or nonconforming. Each policer decides on a packet-by-packet basis whether the packet is in or out of profile and specifies the actions on the packet. These actions, carried out by the marker, include passing through the packet without modification, dropping the packet, or modifying (marking down) the assigned DSCP of the packet and allowing the packet to pass through. The configurable policed-DSCP map provides the packet with a new DSCP-based QoS label. For information on the policed-DSCP map, see the “Mapping Tables” section on page 37-13. Marked-down packets use the same queues as the original QoS label to prevent packets in a flow from getting out of order.

Note

All traffic, regardless of whether it is bridged or routed, is subjected to a policer, if one is configured. As a result, bridged packets might be dropped or might have their DSCP or CoS fields modified when they are policed and marked.

You can configure policing (either individual or aggregate policers) on a physical port or an SVI. For more information about configuring policing on physical ports, see the “Policing on Physical Ports” section on page 37-10. When configuring policy maps on an SVI, you can create a hierarchical policy map and define an individual policer only in the secondary interface-level policy map. For more information, see the “Policing on SVIs” section on page 37-11.

After you configure the policy map and policing actions, attach the policy to an ingress port or SVI by using the `service-policy` interface configuration command. For configuration information, see the “Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps” section on page 37-59, the “Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps” section on page 37-63, and the “Classifying, Policing, and Marking Traffic by Using Aggregate Policers” section on page 37-72.
Understanding QoS

Policing on Physical Ports

In policy maps on physical ports, you can create these types of policers:

- **Individual**—QoS applies the bandwidth limits specified in the policer separately to each matched traffic class. You configure this type of policer within a policy map by using the `police policy-map` class configuration command.

- **Aggregate**—QoS applies the bandwidth limits specified in an aggregate policer cumulatively to all matched traffic flows. You configure this type of policer by specifying the aggregate policer name within a policy map by using the `police aggregate` policy-map class configuration command. You specify the bandwidth limits of the policer by using the `mls qos aggregate-policer` global configuration command. In this way, the aggregate policer is shared by multiple classes of traffic within a policy map.

Note
You can configure only individual policers on an SVI.

Policing uses a token-bucket algorithm. As each frame is received by the switch, a token is added to the bucket. The bucket has a hole in it and leaks at a rate that you specify as the average traffic rate in bits per second. Each time a token is added to the bucket, the switch verifies that there is enough room in the bucket. If there is not enough room, the packet is marked as nonconforming, and the specified policer action is taken (dropped or marked down).

How quickly the bucket fills is a function of the bucket depth (burst-byte), the rate at which the tokens are removed (rate-bps), and the duration of the burst above the average rate. The size of the bucket imposes an upper limit on the burst length and limits the number of frames that can be transmitted back-to-back. If the burst is short, the bucket does not overflow, and no action is taken against the traffic flow. However, if a burst is long and at a higher rate, the bucket overflows, and the policing actions are taken against the frames in that burst.

You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the `burst-byte` option of the `police policy-map` class configuration command or the `mls qos aggregate-policer` global configuration command. You configure how fast (the average rate) that the tokens are removed from the bucket by using the `rate-bps` option of the `police policy-map` class configuration command or the `mls qos aggregate-policer` global configuration command.

Figure 37-4 shows the policing and marking process when these types of policy maps are configured:

- A nonhierarchical policy map on a physical port.
- The interface level of a hierarchical policy map attached to an SVI. The physical ports are specified in this secondary policy map.
Policing on SVIs

Note Before configuring a hierarchical policy map with individual policers on an SVI, you must enable VLAN-based QoS on the physical ports that belong to the SVI. Though a policy map is attached to the SVI, the individual policers only affect traffic on the physical ports specified in the secondary interface level of the hierarchical policy map.

A hierarchical policy map has two levels. The first level, the VLAN level, specifies the actions to be taken against a traffic flow on an SVI. The second level, the interface level, specifies the actions to be taken against the traffic on the physical ports that belong to the SVI and are specified in the interface-level policy map.
When configuring policing on an SVI, you can create and configure a hierarchical policy map with these two levels:

- **VLAN level**—Create this primary level by configuring class maps and classes that specify the port trust state or set a new DSCP or IP precedence value in the packet. The VLAN-level policy map applies only to the VLAN in an SVI and does not support policers.

- **Interface level**—Create this secondary level by configuring class maps and classes that specify the individual policers on physical ports that belong to the SVI. The interface-level policy map only supports individual policers and does not support aggregate policers. You can configure different interface-level policy maps for each class defined in the VLAN-level policy map.

See the “Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps” section on page 37-63 for an example of a hierarchical policy map.

Figure 37-5 shows the policing and marking process when hierarchical policy maps on an SVI.

Figure 37-5 Policing and Marking Flowchart on SVIs
Chapter 37 Configuring QoS

Understanding QoS

Mapping Tables

During QoS processing, the switch represents the priority of all traffic (including non-IP traffic) with an
QoS label based on the DSCP or CoS value from the classification stage:

- During classification, QoS uses configurable mapping tables to derive a corresponding DSCP or
 CoS value from a received CoS, DSCP, or IP precedence value. These maps include the
 CoS-to-DSCP map and the IP-precedence-to-DSCP map. You configure these maps by using the
 mls qos map cos-dscp and the mls qos map ip-prec-dscp global configuration commands.

 On an ingress port configured in the DSCP-trusted state, if the DSCP values are different between
 the QoS domains, you can apply the configurable DSCP-to-DSCP-mutation map to the port that is
 on the boundary between the two QoS domains. You configure this map by using the mls qos map
dscp-mutation global configuration command.

- During policing, QoS can assign another DSCP value to an IP or a non-IP packet (if the packet is
 out of profile and the policer specifies a marked-down value). This configurable map is called the
 policed-DSCP map. You configure this map by using the mls qos map policed-dscp global
 configuration command.

- Before the traffic reaches the scheduling stage, QoS stores the packet in an ingress and an egress
 queue according to the QoS label. The QoS label is based on the DSCP or the CoS value in the packet
 and selects the queue through the DSCP input and output queue threshold maps or through the CoS
 input and output queue threshold maps. In addition to an ingress or an egress queue, the QOS label
 also identifies the WTD threshold value. You configure these maps by using the mls qos srr-queue
 {input | output} dscp-map and the mls qos srr-queue {input | output} cos-map global
 configuration commands.

 The CoS-to-DSCP, DSCP-to-CoS, and the IP-precedence-to-DSCP maps have default values that might
 or might not be appropriate for your network.

 The default DSCP-to-DSCP-mutation map and the default policed-DSCP map are null maps; they map
 an incoming DSCP value to the same DSCP value. The DSCP-to-DSCP-mutation map is the only map
 you apply to a specific port. All other maps apply to the entire switch.

 For configuration information, see the “Configuring DSCP Maps” section on page 37-74.

 For information about the DSCP and CoS input queue threshold maps, see the “Queueing and
 Scheduling on Ingress Queues” section on page 37-16. For information about the DSCP and CoS output
 queue threshold maps, see the “Queueing and Scheduling on Egress Queues” section on page 37-18.
Queueing and Scheduling Overview

The switch has queues at specific points to help prevent congestion as shown in Figure 37-6.

Figure 37-6 Ingress and Egress Queue Location

Because the total inbound bandwidth of all ports can exceed the bandwidth of the stack or internal ring, ingress queues are located after the packet is classified, policed, and marked and before packets are forwarded into the switch fabric. Because multiple ingress ports can simultaneously send packets to an egress port and cause congestion, outbound queues are located after the stack or internal ring.

Weighted Tail Drop

Both the ingress and egress queues use an enhanced version of the tail-drop congestion-avoidance mechanism called weighted tail drop (WTD). WTD is implemented on queues to manage the queue lengths and to provide drop precedences for different traffic classifications.

As a frame is enqueued to a particular queue, WTD uses the frame’s assigned QoS label to subject it to different thresholds. If the threshold is exceeded for that QoS label (the space available in the destination queue is less than the size of the frame), the switch drops the frame.

Each queue has three threshold values. The QOS label is determines which of the three threshold values is subjected to the frame. Of the three thresholds, two are configurable (explicit) and one is not (implicit). Figure 37-7 shows an example of WTD operating on a queue whose size is 1000 frames. Three drop percentages are configured: 40 percent (400 frames), 60 percent (600 frames), and 100 percent (1000 frames). These percentages mean that up to 400 frames can be queued at the 40-percent threshold, up to 600 frames at the 60-percent threshold, and up to 1000 frames at the 100-percent threshold.

In this example, CoS values 6 and 7 have a greater importance than the other CoS values, and they are assigned to the 100-percent drop threshold (queue-full state). CoS values 4 and 5 are assigned to the 60-percent threshold, and CoS values 0 to 3 are assigned to the 40-percent threshold.

Suppose the queue is already filled with 600 frames, and a new frame arrives. It contains CoS values 4 and 5 and is subjected to the 60-percent threshold. If this frame is added to the queue, the threshold will be exceeded, so the switch drops it.
Understanding QoS

Figure 37-7 WTD and Queue Operation

For more information, see the “Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds” section on page 37-81, the “Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set” section on page 37-85, and the “Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID” section on page 37-87.

SRR Shaping and Sharing

Both the ingress and egress queues are serviced by SRR, which controls the rate at which packets are sent. On the ingress queues, SRR sends packets to the stack or internal ring. On the egress queues, SRR sends packets to the egress port.

You can configure SRR on egress queues for sharing or for shaping. However, for ingress queues, sharing is the default mode, and it is the only mode supported.

In shaped mode, the egress queues are guaranteed a percentage of the bandwidth, and they are rate-limited to that amount. Shaped traffic does not use more than the allocated bandwidth even if the link is idle. Shaping provides a more even flow of traffic over time and reduces the peaks and valleys of bursty traffic. With shaping, the absolute value of each weight is used to compute the bandwidth available for the queues.

In shared mode, the queues share the bandwidth among them according to the configured weights. The bandwidth is guaranteed at this level but not limited to it. For example, if a queue is empty and no longer requires a share of the link, the remaining queues can expand into the unused bandwidth and share it among them. With sharing, the ratio of the weights controls the frequency of dequeuing; the absolute values are meaningless. Shaping and sharing is configured per interface. Each interface can be uniquely configured.

For more information, see the “Allocating Bandwidth Between the Ingress Queues” section on page 37-82, the “Configuring SRR Shaped Weights on Egress Queues” section on page 37-89, and the “Configuring SRR Shared Weights on Egress Queues” section on page 37-90.
Queueing and Scheduling on Ingress Queues

Figure 37-8 shows the queueing and scheduling flowchart for ingress ports.

![Queueing and Scheduling Flowchart for Ingress Ports](image)

Note

SRR services the priority queue for its configured share before servicing the other queue.

The switch supports two configurable ingress queues, which are serviced by SRR in shared mode only. Table 37-1 describes the queues.

Table 37-1 Ingress Queue Types

<table>
<thead>
<tr>
<th>Queue Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>User traffic that is considered to be normal priority. You can configure three different thresholds to differentiate among the flows. You can use the mls qos srr-queue input threshold, the mls qos srr-queue input dscp-map, and the mls qos srr-queue input cos-map global configuration commands.</td>
</tr>
<tr>
<td>Expedite</td>
<td>High-priority user traffic such as differentiated services (DF) expedited forwarding or voice traffic. You can configure the bandwidth required for this traffic as a percentage of the total traffic or total stack traffic by using the mls qos srr-queue input priority-queue global configuration command. The expedite queue has guaranteed bandwidth.</td>
</tr>
</tbody>
</table>

1. The switch uses two nonconfigurable queues for traffic that is essential for proper network and stack operation.
You assign each packet that flows through the switch to a queue and to a threshold. Specifically, you map DSCP or CoS values to an ingress queue and map DSCP or CoS values to a threshold ID. You use the `mls qos srr-queue input dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}` or the `mls qos srr-queue input cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}` global configuration command. You can display the DSCP input queue threshold map and the CoS input queue threshold map by using the `show mls qos maps` privileged EXEC command.

WTD Thresholds

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit) threshold preset to the queue-full state. You assign the two explicit WTD threshold percentages for threshold ID 1 and ID 2 to the ingress queues by using the `mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2` global configuration command. Each threshold value is a percentage of the total number of allocated buffers for the queue. The drop threshold for threshold ID 3 is preset to the queue-full state, and you cannot modify it. For more information about how WTD works, see the “Weighted Tail Drop” section on page 37-14.

Buffer and Bandwidth Allocation

You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the two queues by using the `mls qos srr-queue input buffers percentage1 percentage2` global configuration command. The buffer allocation together with the bandwidth allocation control how much data can be buffered and sent before packets are dropped. You allocate bandwidth as a percentage by using the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command. The ratio of the weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

Priority Queueing

You can configure one ingress queue as the priority queue by using the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. The priority queue should be used for traffic (such as voice) that requires guaranteed delivery because this queue is guaranteed part of the bandwidth regardless of the load on the stack or internal ring.

SRR services the priority queue for its configured weight as specified by the `bandwidth` keyword in the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped. For configuration information, see the “Configuring Ingress Queue Characteristics” section on page 37-80.
Queueing and Scheduling on Egress Queues

Figure 37-9 shows the queueing and scheduling flowchart for egress ports.

Note
If the expedite queue is enabled, SRR services it until it is empty before servicing the other three queues.

Figure 37-9 Queueing and Scheduling Flowchart for Egress Ports

1. Receive packet from the stack ring.
2. Read QoS label (DSCP or CoS value).
3. Determine egress queue number and threshold based on the label.
4. Are thresholds being exceeded?
 - Yes: Drop packet.
 - No: Queue the packet. Service the queue according to the SRR weights.
5. Rewrite DSCP and/or CoS value as appropriate.
6. Send the packet out the port.

Each port supports four egress queues, one of which (queue 1) can be the egress expedite queue. These queues are assigned to a queue-set. All traffic exiting the switch flows through one of these four queues and is subjected to a threshold based on the QoS label assigned to the packet.
Figure 37-10 shows the egress queue buffer. The buffer space is divided between the common pool and the reserved pool. The switch uses a buffer allocation scheme to reserve a minimum amount of buffers for each egress queue, to prevent any queue or port from consuming all the buffers and depriving other queues, and to control whether to grant buffer space to a requesting queue. The switch detects whether the target queue has not consumed more buffers than its reserved amount (under-limit), whether it has consumed all of its maximum buffers (over limit), and whether the common pool is empty (no free buffers) or not empty (free buffers). If the queue is not over-limit, the switch can allocate buffer space from the reserved pool or from the common pool (if it is not empty). If there are no free buffers in the common pool or if the queue is over-limit, the switch drops the frame.

Figure 37-10 Egress Queue Buffer Allocation

![Egress Queue Buffer Allocation Diagram](image)

Buffer and Memory Allocation

You guarantee the availability of buffers, set drop thresholds, and configure the maximum memory allocation for a queue-set by using the `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold` global configuration command. Each threshold value is a percentage of the queue’s allocated memory, which you specify by using the `mls qos queue-set output qset-id buffers allocation1 ... allocation4` global configuration command. The sum of all the allocated buffers represents the reserved pool, and the remaining buffers are part of the common pool.

Through buffer allocation, you can ensure that high-priority traffic is buffered. For example, if the buffer space is 400, you can allocate 70 percent of it to queue 1 and 10 percent to queues 2 through 4. Queue 1 then has 280 buffers allocated to it, and queues 2 through 4 each have 40 buffers allocated to them.

You can guarantee that the allocated buffers are reserved for a specific queue in a queue-set. For example, if there are 100 buffers for a queue, you can reserve 50 percent (50 buffers). The switch returns the remaining 50 buffers to the common pool. You also can enable a queue in the full condition to obtain more buffers than are reserved for it by setting a maximum threshold. The switch can allocate the needed buffers from the common pool if the common pool is not empty.
WTD Thresholds

You can assign each packet that flows through the switch to a queue and to a threshold. Specifically, you map DSCP or CoS values to an egress queue and map DSCP or CoS values to a threshold ID. You use the `mls qos srr-queue output dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}` or the `mls qos srr-queue output cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}` global configuration command. You can display the DSCP output queue threshold map and the CoS output queue threshold map by using the `show mls qos maps` privileged EXEC command.

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit) threshold preset to the queue-full state. You assign the two WTD threshold percentages for threshold ID 1 and ID 2. The drop threshold for threshold ID 3 is preset to the queue-full state, and you cannot modify it. You map a port to queue-set by using the `queue-set qset-id` interface configuration command. Modify the queue-set configuration to change the WTD threshold percentages. For more information about how WTD works, see the “Weighted Tail Drop” section on page 37-14.

Shaped or Shared Mode

SRR services each queue-set in shared or shaped mode. You map a port to a queue-set by using the `queue-set qset-id` interface configuration command. You assign shared or shaped weights to the port by using the `srr-queue bandwidth share weight1 weight2 weight3 weight4` or the `srr-queue bandwidth shape weight1 weight2 weight3 weight4` interface configuration command. For an explanation of the differences between shaping and sharing, see the “SRR Shaping and Sharing” section on page 37-15.

The buffer allocation together with the SRR weight ratios control how much data can be buffered and sent before packets are dropped. The weight ratio is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

All four queues participate in the SRR unless the expedite queue is enabled, in which case the first bandwidth weight is ignored and is not used in the ratio calculation. The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced. You enable the expedite queue by using the `priority-queue out` interface configuration command.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped. For configuration information, see the “Configuring Egress Queue Characteristics” section on page 37-84.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Packet Modification

A packet is classified, policed, and queued to provide QoS. Packet modifications can occur during this process:

- For IP and non-IP packets, classification involves assigning a QoS label to a packet based on the DSCP or CoS of the received packet. However, the packet is not modified at this stage; only an indication of the assigned DSCP or CoS value is carried along. The reason for this is that QoS classification and forwarding lookups occur in parallel, and it is possible that the packet is forwarded with its original DSCP to the CPU where it is again processed through software.
During policing, IP and non-IP packets can have another DSCP assigned to them (if they are out of profile and the policer specifies a markdown DSCP). Once again, the DSCP in the packet is not modified, but an indication of the marked-down value is carried along. For IP packets, the packet modification occurs at a later stage; for non-IP packets the DSCP is converted to CoS and used for queueing and scheduling decisions.

Depending on the QoS label assigned to a frame and the mutation chosen, the DSCP and CoS values of the frame are rewritten. If you do not configure the mutation map and if you configure the port to trust the DSCP of the incoming frame, the DSCP value in the frame is not changed, but the CoS is rewritten according to the DSCP-to-CoS map. If you configure the port to trust the CoS of the incoming frame and it is an IP packet, the CoS value in the frame is not changed, but the DSCP might be changed according to the CoS-to-DSCP map.

The input mutation causes the DSCP to be rewritten depending on the new value of DSCP chosen. The set action in a policy map also causes the DSCP to be rewritten.

Configuring Auto-QoS

You can use the auto-QoS feature to simplify the deployment of QoS features. Auto-QoS determines the network design and enables QoS configurations so that the switch can prioritize different traffic flows. It uses the ingress and egress queues instead of using the default (disabled) QoS behavior. The switch offers best-effort service to each packet, regardless of the packet contents or size, and sends it from a single queue.

When you enable auto-QoS, it automatically classifies traffic based on the traffic type and ingress packet label. The switch uses the classification results to choose the appropriate egress queue.

Beginning with Cisco IOS Release 12.2(52)SE, auto-QoS supports IPv4 and IPv6 traffic when you configure the dual IPv4 and IPv6 SDM template with the `sdm prefer dual ipv4-and-ipv6` global configuration command.

You use auto-QoS commands to identify ports connected to these Cisco devices:

- Cisco IP Phones
- Devices running the Cisco SoftPhone application
- Cisco TelePresence
- Cisco IP Camera

You also use the commands to identify ports that receive trusted traffic through an uplink. Auto-QoS then performs these functions:

- Detects the presence or absence of auto-QoS devices through conditional trusted interfaces.
- Configures QoS classification
- Configures egress queues

These sections contain this configuration information:

- Detects the presence or absence of Cisco IP Phones
- Configures QoS classification
- Configures egress queues
These sections contain this configuration information:

- Generated Auto-QoS Configuration, page 37-22
- Effects of Auto-QoS on the Configuration, page 37-32
- Auto-QoS Configuration Guidelines, page 37-32
- Enabling Auto-QoS, page 37-33
- Troubleshooting Auto QoS Commands, page 37-34

Generated Auto-QoS Configuration

By default, auto-QoS is disabled on all ports. Packets are not modified—the CoS, DSCP and IP precedence values in the packet are not changed.

When you enable the auto-QoS feature on the first port of the interface:

- Ingress packet label is used to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.
- QoS is globally enabled (`mls qos` global configuration command), and other global configuration commands are automatically generated. (See Table 37-5.)
- Switch enables the trusted boundary feature and uses the Cisco Discovery Protocol (CDP) to detect the presence of a supported device.
- Policing is used to determine whether a packet is in or out of profile and specifies the action on the packet.

VOIP Device Specifics

- When you enter the `auto qos voip cisco-phone` command on a port at the network edge connected to a Cisco IP Phone, the switch enables the trusted boundary feature. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the switch changes the DSCP value to 0. When there is no Cisco IP Phone, the ingress classification is set to not trust the QoS label in the packet. The policing is applied to the traffic matching the policy-map classification before the switch enables the trust boundary feature.

- When you enter the `auto qos voip cisco-softphone` interface configuration command on a port at the network edge that is connected to a device running the Cisco SoftPhone, the switch uses policing to determine whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the switch changes the DSCP value to 0.

- When you enter the `auto qos voip trust` interface configuration command on a port connected to the network interior, the switch trusts the CoS value for nonrouted ports or the DSCP value for routed ports in ingress packets (the assumption is that traffic has already been classified by other edge devices).
The switch configures ingress and egress queues on the port according to the settings in Table 37-3 and Table 37-4.

Table 37-2 Traffic Types, Packet Labels, and Queues

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>DSCP</th>
<th>CoS</th>
<th>CoS-to-Ingress Queue Map</th>
<th>CoS-to-Egress Queue Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP1 Data Traffic</td>
<td>46</td>
<td>5</td>
<td>4, 5 (queue 2)</td>
<td>4, 5 (queue 1)</td>
</tr>
<tr>
<td>VoIP Control Traffic</td>
<td>24, 26</td>
<td>3</td>
<td>2, 3, 6, 7 (queue 2)</td>
<td>2, 3, 6, 7 (queue 2)</td>
</tr>
<tr>
<td>Routing Protocol Traffic</td>
<td>48</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STP BPDU Traffic</td>
<td>56</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Time Video Traffic</td>
<td>34</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Other Traffic</td>
<td>–</td>
<td>–</td>
<td>0, 1, 2, 3, 6, 7 (queue 1)</td>
<td>2 (queue 3) 0, 1 (queue 4)</td>
</tr>
</tbody>
</table>

1. VoIP = voice over IP

Table 37-3 Auto-QoS Configuration for the Ingress Queues

<table>
<thead>
<tr>
<th>Ingress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR shared</td>
<td>1</td>
<td>0, 1, 2, 3, 6, 7</td>
<td>70 percent</td>
<td>90 percent</td>
</tr>
<tr>
<td>Priority</td>
<td>2</td>
<td>4, 5</td>
<td>30 percent</td>
<td>10 percent</td>
</tr>
</tbody>
</table>

Table 37-4 Auto-QoS Configuration for the Egress Queues

<table>
<thead>
<tr>
<th>Egress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size for Gigabit-Capable Ports</th>
<th>Queue (Buffer) Size for 10/100 Ethernet Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>1</td>
<td>4, 5</td>
<td>up to 100 percent</td>
<td>25 percent</td>
<td>15 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>2</td>
<td>2, 3, 6, 7</td>
<td>10 percent</td>
<td>25 percent</td>
<td>25 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>3</td>
<td>0</td>
<td>60 percent</td>
<td>25 percent</td>
<td>40 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>4</td>
<td>1</td>
<td>20 percent</td>
<td>25 percent</td>
<td>20 percent</td>
</tr>
</tbody>
</table>

For information about the trusted boundary feature, see the “Configuring a Trusted Boundary to Ensure Port Security” section on page 39-42.

When you enable auto-QoS by using the `auto qos voip cisco-phone`, the `auto qos voip cisco-softphone`, or the `auto qos voip trust` interface configuration command, the switch automatically generates a QoS configuration based on the traffic type and ingress packet label and applies the commands listed in Table 37-5 to the port.
Enhanced Auto-QoS for Video, Trust, and Classification

In Cisco IOS Release 12.2(55)SE, auto-QoS is enhanced to support video. Automatic configurations are generated that classify and trust traffic from Cisco TelePresence systems and Cisco IP cameras.

When you configure the `auto qos {video | classify | trust} enhanced` commands on a switch port, this behavior occurs:

- **Auto qos voip** generated commands that you configured on the interface before Cisco IOS Release 12.2(55)SE migrate to the enhanced commands.
- Global values change with the migration of enhanced commands. For a complete list of the generated commands that are applied to the running configuration see Table 37-5.

Auto-QoS Configuration Migration

Auto-QoS configuration migration from legacy auto-QoS to enhanced auto-QoS occurs when:

- A switch is booted with a 12.2(55)SE image and QoS is not enabled. Any video or voice trust configuration on the interface automatically generates enhanced auto-QoS commands.
- A switch is enabled with QoS, these guidelines take effect:
 - If you configure the interface for conditional trust on a voice device, only the legacy auto-QoS VoIP configuration is generated.
 - If you configure the interface for conditional trust on a video device, the enhanced auto-QoS configuration is generated.
 - If you configure the interface with classification or conditional trust based on the new interface auto-QoS commands, enhanced auto-QoS configuration is generated.
- Auto-QoS migration happens after a new device is connected when the `auto qos srnd4` global configuration command is enabled.

Note

If an interface previously configured with legacy auto-QoS migrates to enhanced auto-QoS, voice commands and configuration are updated to match the new global QoS commands.

Auto-QoS configuration migration from enhanced auto-QoS to legacy auto-QoS can occur only when you disable all existing auto-QoS configurations from the interface.
Global Auto-QoS Configuration

| Description | Automatically Generated Command \{voip\} | Enhanced Automatically Generated Command \{Video|Trust|Classify\} |
|-------------|---|---|
| The switch automatically enables standard QoS and configures the CoS-to-DSCP map (maps CoS values in incoming packets to a DSCP value). | Switch(config)# mls qos Switch(config)# mls qos map cos-dscp 0 8 16 26 46 48 56 | Switch(config)# mls qos Switch(config)# mls qos map cos-dscp 0 8 16 24 46 48 56 |
| The switch automatically maps CoS values to an ingress queue and to a threshold ID. | Switch(config)# no mls qos srr-queue input cos-map Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 2 1 Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 3 0 Switch(config)# mls qos srr-queue input cos-map queue 2 threshold 1 2 Switch(config)# mls qos srr-queue input cos-map queue 2 threshold 2 4 6 7 Switch(config)# mls qos srr-queue input cos-map queue 2 threshold 3 5 | Switch(config)# no mls qos srr-queue input cos-map Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 2 3 Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 3 6 7 Switch(config)# mls qos srr-queue input cos-map queue 2 threshold 1 4 |
| The switch automatically maps CoS values to an egress queue and to a threshold ID. | Switch(config)# no mls qos srr-queue output cos-map Switch(config)# mls qos srr-queue output cos-map queue 1 threshold 3 5 Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 3 3 6 7 Switch(config)# mls qos srr-queue output cos-map queue 3 threshold 3 2 4 Switch(config)# mls qos srr-queue output cos-map queue 4 threshold 2 1 Switch(config)# mls qos srr-queue output cos-map queue 4 threshold 3 0 | Switch(config)# no mls qos srr-queue output cos-map Switch(config)# mls qos srr-queue output cos-map queue 1 threshold 3 4 5 Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 3 6 7 Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 2 3 Switch(config)# mls qos srr-queue output cos-map queue 3 threshold 3 0 |
| | | Switch(config)# mls qos srr-queue output cos-map queue 4 threshold 3 1 |
Configuring Auto-QoS

The switch automatically maps DSCP values to an ingress queue and to a threshold ID.

| Description | Automatically Generated Command {voip} | Enhanced Automatically Generated Command {Video|Trust|Classify} |
|-------------|--|---|
| The switch automatically maps DSCP values to an ingress queue and to a threshold ID. | Switch(config)# no mls qos srr-queue input dscp-map Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 9 10 11 12 13 14 15 Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 3 0 1 2 3 4 5 6 7 Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 3 32 Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 1 16 17 18 19 20 21 22 23 Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 2 33 34 35 36 37 38 39 48 Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 2 49 50 51 52 53 54 55 56 Switch(config)# mls qos srr-queue input dscp-map queue 2 threshold 3 57 58 59 60 61 62 63 | Switch(config)# no mls qos srr-queue input dscp-map Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 24 Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 3 48 49 50 51 52 53 54 55 56 Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 3 57 58 59 60 61 62 63 |

Table 37-5 Generated Auto-QoS Configuration (continued)
The switch automatically maps DSCP values to an egress queue and to a threshold ID.

Table 37-5 Generated Auto-QoS Configuration (continued)

| Description | Automatically Generated Command {voip} | Enhanced Automatically Generated Command {Video|Trust|Classify} |
|-------------|--|--|
| The switch automatically maps DSCP values to an egress queue and to a threshold ID. |
| Switch(config)# no mls qos srr-queue output dscp-map |
| Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 3 40 41 42 43 44 45 46 47 |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 3 24 25 26 27 28 29 30 31 |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 3 48 49 50 51 52 53 54 55 |
| Switch(config)# mls qos srr-queue output dscp-map queue 3 threshold 3 56 57 58 59 60 61 62 63 |
| Switch(config)# mls qos srr-queue output dscp-map queue 3 threshold 3 16 17 18 19 20 21 22 23 |
| Switch(config)# mls qos srr-queue output dscp-map queue 3 threshold 3 32 33 34 35 36 37 38 39 |
| Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 3 1 2 3 4 5 6 7 |
| Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 3 2 9 10 11 12 13 14 15 |
| Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 3 0 1 2 3 4 5 6 7 |
| Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 3 32 33 40 41 42 43 44 45 46 47 |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 1 16 17 18 19 20 21 22 23 |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 1 26 27 28 29 30 31 34 35 36 37 38 39 |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 2 24 49 50 51 52 53 54 55 56 |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 3 57 58 59 60 61 62 63 |
| Switch(config)# mls qos srr-queue output dscp-map queue 3 threshold 3 0 1 2 3 4 5 6 7 |
| Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 1 8 9 11 13 15 |
| Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 2 10 12 14 |
Table 37-5 Generated Auto-QoS Configuration (continued)

| Description | Automatically Generated Command {voip} | Enhanced Automatically Generated Command {Video|Trust|Classify} |
|-------------|--|--|
| The switch automatically sets up the ingress queues, with queue 2 as the priority queue and queue 1 in shared mode. The switch also configures the bandwidth and buffer size for the ingress queues. | Switch(config)# no mls qos srr-queue input priority-queue 1 Switch(config)# no mls qos srr-queue input priority-queue 2 Switch(config)# mls qos srr-queue input bandwidth 90 10 Switch(config)# mls qos srr-queue input threshold 1 8 16 Switch(config)# mls qos srr-queue input threshold 2 34 66 Switch(config)# mls qos srr-queue input buffers 67 33 | Switch(config)# mls qos srr-queue input priority-queue 2 bandwidth 30 |
| The switch automatically configures the egress queue buffer sizes. It configures the bandwidth and the SRR mode (shaped or shared) on the egress queues mapped to the port. | Switch(config)# mls qos queue-set output 1 threshold 1 138 138 92 138 Switch(config)# mls qos queue-set output 1 threshold 2 138 138 92 400 Switch(config)# mls qos queue-set output 1 threshold 3 36 77 100 318 Switch(config)# mls qos queue-set output 1 threshold 4 20 50 67 400 Switch(config)# mls qos queue-set output 2 threshold 1 149 149 100 149 Switch(config)# mls qos queue-set output 2 threshold 2 118 118 100 235 Switch(config)# mls qos queue-set output 2 threshold 3 41 68 100 272 Switch(config)# mls qos queue-set output 2 threshold 4 42 72 100 242 Switch(config)# mls qos queue-set output 1 buffers 10 10 26 54 Switch(config)# mls qos queue-set output 2 buffers 16 6 17 61 Switch(config-if)# priority-queue out Switch(config-if)# srr-queue bandwidth share 10 10 60 20 | Switch(config)# mls qos queue-set output 1 threshold 1 100 100 50 200 Switch(config)# mls qos queue-set output 1 threshold 2 125 125 100 400 Switch(config)# mls qos queue-set output 1 threshold 3 100 100 100 400 Switch(config)# mls qos queue-set output 1 threshold 4 140 140 100 200 |

Auto-QoS Generated Configuration For VoIP Devices

If you entered the `auto qos voip cisco-phone` command, the switch automatically enables the trusted boundary feature, which uses the CDP to detect the presence or absence of a Cisco IP Phone.

```bash
Switch(config-if)# mls qos trust device cisco-phone
```

If you entered the `auto qos voip cisco-softphone` command, the switch automatically creates class maps and policy maps.

```bash
Switch(config)# mls qos map policed-dscp 24 26 46 to 0
Switch(config)# class-map match-all AutoQoS-VoIP-RTP-Trust
Switch(config-cmap)# d match ip dscp ef
Switch(config)# class-map match-all AutoQoS-VoIP-Control-Trust
Switch(config-cmap)# match ip dscp cs3 af31
Switch(config)# policy-map AutoQoS-Police-SoftPhone
Switch(config-pmap)# class AutoQoS-VoIP-RTP-Trust
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 320000 8000 exceed-action policed-dscp-transmit
```
After creating the class maps and policy maps, the switch automatically applies the policy map called `AutoQoS-Police-SoftPhone` to an ingress interface on which auto-QoS with the Cisco SoftPhone feature is enabled.

```
Switch(config-if)# service-policy input AutoQoS-Police-SoftPhone
```

If you entered the `auto qos voip cisco-phone` command, the switch automatically creates class maps and policy maps.

```
Switch(config-if)# mls qos trust device cisco-phone
```

If you entered the `auto qos voip cisco-softphone` command, the switch automatically creates class maps and policy maps.

```
Switch(config)# mls qos map policed-dscp 24 26 46 to 0
Switch(config)# class-map match-all AutoQoS-VoIP-RTP-Trust
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AutoQoS-VoIP-Control-Trust
Switch(config-cmap)# match ip dscp cs3 af31
Switch(config)# policy-map AutoQoS-Police-CiscoPhone
Switch(config-pmap)# class AutoQoS-VoIP-RTP-Trust
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 320000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap)# class AutoQoS-VoIP-Control-Trust
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 320000 8000 exceed-action policed-dscp-transmit
```

After creating the class maps and policy maps, the switch automatically applies the policy map called `AutoQoS-Police-SoftPhone` to an ingress interface on which auto-QoS with the Cisco SoftPhone feature is enabled.

```
Switch(config-if)# service-policy input AutoQoS-Police-SoftPhone
```

Auto-QoS Generated Configuration For Enhanced Video, Trust, and Classify Devices

If you entered these enhanced auto-QoS commands, the switch automatically configures the CoS-to-DSCP map (maps CoS values in incoming packets to a DSCP value).

- `auto qos video cts`
- `auto qos video ip-camera`
- `auto qos trust`
- `auto qos trust cos`
- `auto qos trust dscp`

```
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
```

Note
No class maps and policy maps are configured.
If you entered the `auto qos classify` command, the switch automatically creates class maps and policy maps.

```plaintext
Switch(config)# mls qos map policed-dscp 0 10 18 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-MULTIENHANCED-CONF
Switch(config)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config)# class-map match-all AUTOQOS_TRANSACTION_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-TRANSACTIONAL-DATA
Switch(config)# class-map match-all AUTOQOS_BULK_DATA_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-BULK-DATA
Switch(config)# policy-map AUTOQOS-SRND4-CLASSIFY-POLICY
Switch(config-pmap)# class AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af11
Switch(config-pmap)# class AUTOQOS_TRANSACTION_CLASS
Switch(config-pmap-c)# set dscp af21
Switch(config-pmap)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap)# class AUTOQOS_SIGNALING_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
:
Switch(config-if)# service-policy input AUTOQOS-SRND4-CLASSIFY-POLICY
```

If you entered the `auto qos classify police` command, the switch automatically creates class maps and policy maps.

```plaintext
Switch(config)# mls qos map policed-dscp 0 10 18 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-MULTIENHANCED-CONF
Switch(config)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config)# class-map match-all AUTOQOS_TRANSACTION_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-TRANSACTIONAL-DATA
Switch(config)# class-map match-all AUTOQOS_BULK_DATA_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-BULK-DATA
Switch(config)# class-map match-all AUTOQOS_SIGNALING_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SIGNALING
Switch(config)# policy-map AUTOQOS-SRND4-CLASSIFY-POLICY
Switch(config-pmap)# class AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af11
Switch(config-pmap)# class AUTOQOS_TRANSACTION_CLASS
Switch(config-pmap-c)# set dscp af21
Switch(config-pmap)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap)# class AUTOQOS_SIGNALING_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
:
Switch(config-if)# service-policy input AUTOQOS-SRND4-CLASSIFY-POLICY
```
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action drop
Switch(config-pmap)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit ;
Switch(config-if)# service-policy input AUTOQOS-SRND4-CLASSIFY-POLICE-POLICY

This is the enhanced configuration for the auto qos voip cisco-phone command:

Switch(config)# mls qos map policed-dscp 0 10 18 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_VOIP_DATA_CLASS
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config)# class-map match-all AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-cmap)# match ip dscp cs3
Switch(config)# policy-map AUTOQOS-SRND4-CISCOPHONE-POLICY
Switch(config-pmap)# class AUTOQOS_VOIP_DATA_CLASS
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 128000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit ;
Switch(config-if)# service-policy input AUTOQOS-SRND4-CISCOPHONE-POLICY

This is the enhanced configuration for the auto qos voip cisco-softphone command:

Switch(config)# mls qos map policed-dscp 0 10 18 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-MULTIENHANCED-CONF
Switch(config)# class-map match-all AUTOQOS_VOIP_DATA_CLASS
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config)# class-map match-all AUTOQOS_TRANSACTIONAL-DATA
Switch(config-cmap)# match access-group name AUTOQOS-ACL-TRANSACTIONAL-DATA
Switch(config)# class-map match-all AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-cmap)# match ip dscp cs3
Switch(config)# class-map match-all AUTOQOS_SIGNALING_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SIGNALING
Switch(config)# class-map match-all AUTOQOS_BULK_DATA_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-BULK-DATA
Switch(config)# class-map match-all AUTOQOS_SCAVANGER_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SCAVANGER
Switch(config)# policy-map AUTOQOS-SRND4-SOFTPHONE-POLICY
Switch(config-pmap)# class AUTOQOS_VOIP_DATA_CLASS
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 128000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap-c)# police 5000000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af11
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_TRANSACTION_CLASS
Switch(config-pmap-c)# set dscp af21
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap-c)# police 10000000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_SIGNALING_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default

Effects of Auto-QoS on the Configuration

When auto-QoS is enabled, the `auto qos` interface configuration commands and the generated global configuration are added to the running configuration.

The switch applies the auto-QoS-generated commands as if the commands were entered from the CLI. An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the switch without saving the current configuration to memory. If the generated commands are not applied, the previous running configuration is restored.

Auto-QoS Configuration Guidelines

Before configuring auto-QoS, you should be aware of this information:

- After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes `AutoQoS` in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use this new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map to the interface.

- To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. If necessary, you can fine-tune the QoS configuration, but we recommend that you do so only after the auto-QoS configuration is completed. For more information, see the “Effects of Auto-QoS on the Configuration” section on page 8.

- You can enable auto-QoS on static, dynamic-access, voice VLAN access, and trunk ports.

- By default, the CDP is enabled on all ports. For auto-QoS to function properly, do not disable CDP.
Auto-QoS VoIP Considerations

- Auto-QoS configures the switch for VoIP with Cisco IP Phones on nonrouted and routed ports. Auto-QoS also configures the switch for VoIP with devices running the Cisco SoftPhone application.

Note When a device running Cisco SoftPhone is connected to a nonrouted or routed port, the switch supports only one Cisco SoftPhone application per port.

- When enabling auto-QoS with a Cisco IP Phone on a routed port, you must assign a static IP address to the IP phone.
- This release supports only Cisco IP SoftPhone Version 1.3(3) or later.
- Connected devices must use Cisco Call Manager Version 4 or later.

Auto-QoS Enhanced Considerations

- The **auto qos srnd4** global configuration command is generated as a result of enhanced auto-QoS configuration.
- If the legacy **auto qos voip** commands are executed on the switch and the **mls qos** command is disabled, the enhanced auto-QoS configuration is generated. Otherwise, legacy auto-QoS commands are executed.

Enabling Auto-QoS

For optimum QoS performance, enable auto-QoS on all the devices in your network.

Beginning in privileged EXEC mode, follow these steps to enable auto-QoS devices within a QoS domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>auto qos voip</td>
</tr>
<tr>
<td>or</td>
<td>cisco-phone</td>
</tr>
<tr>
<td>or</td>
<td>cisco-softphone</td>
</tr>
<tr>
<td>or</td>
<td>trust</td>
</tr>
</tbody>
</table>
Chapter 37 Configuring QoS

Configuring Auto-QoS

Troubleshooting Auto QoS Commands

To display the QoS commands that are automatically generated when auto-QoS is enabled or disabled, enter the `debug auto qos` privileged EXEC command before you enable auto-QoS. For more information, see the `debug autoqos` command in the command reference for this release.

To disable auto-QoS on a port, use the `no` form of the `auto qos` command interface configuration command, such as `no auto qos voip`. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the `no auto qos voip` command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

You can use the `no mls qos` global configuration command to disable the auto-QoS-generated global configuration commands. With QoS disabled, there is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`auto qos video {cts</td>
<td>ip-camera}`</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>`auto qos trust {cos</td>
<td>dscp}`</td>
</tr>
<tr>
<td><code>Step 4</code></td>
<td><code>exit</code></td>
</tr>
<tr>
<td><code>Step 5</code></td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td><code>Step 6</code></td>
<td><code>auto qos trust</code></td>
</tr>
<tr>
<td><code>Step 7</code></td>
<td><code>end</code></td>
</tr>
<tr>
<td><code>Step 8</code></td>
<td><code>show auto qos interface interface-id</code></td>
</tr>
</tbody>
</table>

This command displays the auto-QoS command on the interface on which auto-QoS was enabled. You can use the `show running-config` privileged EXEC command to display the auto-QoS configuration and the user modifications.
Displaying Auto-QoS Information

To display the initial auto-QoS configuration, use the `show auto qos [interface [interface-id]]` privileged EXEC command. To display any user changes to that configuration, use the `show running-config` privileged EXEC command. You can compare the `show auto qos` and the `show running-config` command output to identify the user-defined QoS settings.

To display information about the QoS configuration that might be affected by auto-QoS, use one of these commands:

- `show mls qos`
- `show mls qos maps cos-dscp`
- `show mls qos interface [interface-id] [buffers | queueing]`
- `show mls qos maps [cos-dscp | cos-input-q | cos-output-q | dscp-cos | dscp-input-q | dscp-output-q]`
- `show mls qos input-queue`
- `show running-config`

For more information about these commands, see the command reference for this release.

Configuring Standard QoS

Before configuring standard QoS, you must have a thorough understanding of these items:

- The types of applications used and the traffic patterns on your network.
- Traffic characteristics and needs of your network. Is the traffic bursty? Do you need to reserve bandwidth for voice and video streams?
- Bandwidth requirements and speed of the network.
- Location of congestion points in the network.

These sections contain this configuration information:

- Default Standard QoS Configuration, page 37-36
- Standard QoS Configuration Guidelines, page 37-38
- Enabling QoS Globally, page 37-41 (required)
- Enabling VLAN-Based QoS on Physical Ports, page 37-41 (optional)
- Configuring Classification Using Port Trust States, page 37-42 (required)
- Configuring a QoS Policy, page 37-48 (required)
- Configuring DSCP Maps, page 37-74 (optional, unless you need to use the DSCP-to-DSCP-mutation map or the policed-DSCP map)
- Configuring Ingress Queue Characteristics, page 37-80 (optional)
- Configuring Egress Queue Characteristics, page 37-84 (optional)
Default Standard QoS Configuration

QoS is disabled. There is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

When QoS is enabled with the `mls qos` global configuration command and all other QoS settings are at their defaults, traffic is classified as best effort (the DSCP and CoS value is set to 0) without any policing. No policy maps are configured. The default port trust state on all ports is untrusted. The default ingress and egress queue settings are described in the “Default Ingress Queue Configuration” section on page 37-36 and the “Default Egress Queue Configuration” section on page 37-37.

Default Ingress Queue Configuration

Table 37-6 shows the default ingress queue configuration when QoS is enabled.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer allocation</td>
<td>90 percent</td>
<td>10 percent</td>
</tr>
<tr>
<td>Bandwidth allocation</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Priority queue bandwidth</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>WTD drop threshold 1</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD drop threshold 2</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
</tbody>
</table>

1. The bandwidth is equally shared between the queues. SRR sends packets in shared mode only.
2. Queue 2 is the priority queue. SRR services the priority queue for its configured share before servicing the other queue.

Table 37-7 shows the default CoS input queue threshold map when QoS is enabled.

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Queue ID-Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>1-1</td>
</tr>
<tr>
<td>5</td>
<td>2-1</td>
</tr>
<tr>
<td>6, 7</td>
<td>1-1</td>
</tr>
</tbody>
</table>

Table 37-8 shows the default DSCP input queue threshold map when QoS is enabled.

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Queue ID-Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–39</td>
<td>1-1</td>
</tr>
<tr>
<td>40–47</td>
<td>2-1</td>
</tr>
<tr>
<td>48–63</td>
<td>1-1</td>
</tr>
</tbody>
</table>
Default Egress Queue Configuration

Table 37-9 shows the default egress queue configuration for each queue-set when QoS is enabled. All ports are mapped to queue-set 1. The port bandwidth limit is set to 100 percent and rate unlimited.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
<th>Queue 3</th>
<th>Queue 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer allocation</td>
<td>25 percent</td>
<td>25 percent</td>
<td>25 percent</td>
<td>25 percent</td>
</tr>
<tr>
<td>WTD drop threshold 1</td>
<td>100 percent</td>
<td>200 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD drop threshold 2</td>
<td>100 percent</td>
<td>200 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>Reserved threshold</td>
<td>50 percent</td>
<td>50 percent</td>
<td>50 percent</td>
<td>50 percent</td>
</tr>
<tr>
<td>Maximum threshold</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
</tr>
<tr>
<td>SRR shaped weights (absolute)</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SRR shared weights</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

1. A shaped weight of zero means that this queue is operating in shared mode.
2. One quarter of the bandwidth is allocated to each queue.

Table 37-10 shows the default CoS output queue threshold map when QoS is enabled.

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>2–1</td>
</tr>
<tr>
<td>2, 3</td>
<td>3–1</td>
</tr>
<tr>
<td>4</td>
<td>4–1</td>
</tr>
<tr>
<td>5</td>
<td>1–1</td>
</tr>
<tr>
<td>6, 7</td>
<td>4–1</td>
</tr>
</tbody>
</table>

Table 37-11 shows the default DSCP output queue threshold map when QoS is enabled.

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–15</td>
<td>2–1</td>
</tr>
<tr>
<td>16–31</td>
<td>3–1</td>
</tr>
<tr>
<td>32–39</td>
<td>4–1</td>
</tr>
<tr>
<td>40–47</td>
<td>1–1</td>
</tr>
<tr>
<td>48–63</td>
<td>4–1</td>
</tr>
</tbody>
</table>
Default Mapping Table Configuration

The default CoS-to-DSCP map is shown in Table 37-12 on page 37-74.
The default IP-precedence-to-DSCP map is shown in Table 37-13 on page 37-75.
The default DSCP-to-CoS map is shown in Table 37-14 on page 37-77.
The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.
The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value.

Standard QoS Configuration Guidelines

Before beginning the QoS configuration, you should be aware of this information in these sections:

- “QoS ACL Guidelines” section on page 37-38
- “IPv6 QoS ACL Guidelines” section on page 37-38
- “Applying QoS on Interfaces” section on page 37-39
- “Configuring IPv6 QoS on Switch Stacks” section on page 37-39
- “Policing Guidelines” section on page 37-40
- “General QoS Guidelines” section on page 37-40

QoS ACL Guidelines

These are the guidelines with for configuring QoS with access control lists (ACLs):

- It is not possible to match IP fragments against configured IP extended ACLs to enforce QoS. IP fragments are sent as best-effort. IP fragments are denoted by fields in the IP header.
- Only one ACL per class map and only one match class-map configuration command per class map are supported. The ACL can have multiple ACEs, which match fields against the contents of the packet.
- A trust statement in a policy map requires multiple hardware entries per ACL line. If an input service policy map contains a trust statement in an ACL, the access list might be too large to fit into the available QoS hardware memory, and an error can occur when you apply the policy map to a port. Whenever possible, you should minimize the number of lines is a QoS ACL.

IPv6 QoS ACL Guidelines

See Chapter 36, “Configuring IPv6 ACLs.”
Applying QoS on Interfaces

These are the guidelines with for configuring QoS on physical ports. This section also applies to SVIs (Layer 3 interfaces):

- You can configure QoS on physical ports and SVIs. When configuring QoS on physical ports, you create and apply nonhierarchical policy maps. When configuring QoS on SVIs, you can create and apply nonhierarchical and hierarchical policy maps.
- Incoming traffic is classified, policed, and marked down (if configured) regardless of whether the traffic is bridged, routed, or sent to the CPU. It is possible for bridged frames to be dropped or to have their DSCP and CoS values modified.
- Follow these guidelines when configuring policy maps on physical ports or SVIs:
 - You cannot apply the same policy map to a physical port and to an SVI.
 - If VLAN-based QoS is configured on a physical port, the switch removes all the port-based policy maps on the port. The traffic on this physical port is now affected by the policy map attached to the SVI to which the physical port belongs.
 - In a hierarchical policy map attached to an SVI, you can only configure an individual policer at the interface level on a physical port to specify the bandwidth limits for the traffic on the port. The ingress port must be configured as a trunk or as a static-access port. You cannot configure policers at the VLAN level of the hierarchical policy map.
 - The switch does not support aggregate policers in hierarchical policy maps.
 - After the hierarchical policy map is attached to an SVI, the interface-level policy map cannot be modified or removed from the hierarchical policy map. A new interface-level policy map also cannot be added to the hierarchical policy map. If you want these changes to occur, the hierarchical policy map must first be removed from the SVI. You also cannot add or remove a class map specified in the hierarchical policy map.

Configuring IPv6 QoS on Switch Stacks

Beginning with Cisco IOS Release 12.2(52)SE, you can enable IPv6 QoS on a switch or a switch stack. If the stack includes only Cisco 3560E and Cisco 3750E switches, the QoS configuration applies to all traffic. These are the guidelines for IPv6 QoS in a stack that includes one or more Cisco Catalyst 3750 switches:

- Any switch can be the stack master.
- You can attach policies with IPv6 ACLs only on Cisco 3560E and 3750E switch interfaces.
- You can modify an attached policy to include an IPv6 ACL only on Cisco 3560E and Cisco 3750E switch interfaces.
- A policy that includes the `match protocol IPv6` classification applies only on Cisco 3560E and Cisco 3750E switch interfaces.
- A QoS policy with both IPv4 and IPv6 classification can be attached to an SVI on a mixed switch stack, but the policy applies to only IPv4 traffic entering Cisco 3750 switch interfaces, and to both IPv4 and IPv6 traffic on Cisco 3750E switch interfaces.
- IPv6 trust is supported on both Cisco 3750 and Cisco 3750E switches.
QoS policies that include IPv6-specific classification (such as an IPv6 ACL or the `match protocol ipv6` command) are supported on Cisco 3750E interfaces and on any SVI when a Cisco 3750E switch is part of the stack.

QoS policies that include common IPv4 and IPv6 classifications are supported on all Cisco 3750E interfaces in the stack. Only IPv4 classification is supported on other switches in the stack.

Policing Guidelines

These are the policing guidelines:

- The port ASIC device, which controls more than one physical port, supports 256 policers (255 user-configurable policers plus 1 policer reserved for system internal use). The maximum number of user-configurable policers supported per port is 63. For example, you could configure 32 policers on a Gigabit Ethernet port and 7 policers on a 10-Gigabit Ethernet port, or you could configure 64 policers on a Gigabit Ethernet port and 4 policers on a 10-Gigabit Ethernet port. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port; there is no guarantee that a port will be assigned to any policer.
- Only one policer is applied to a packet on an ingress port. Only the average rate and committed burst parameters are configurable.
- You can create an aggregate policer that is shared by multiple traffic classes within the same nonhierarchical policy map. However, you cannot use the aggregate policer across different policy maps.
- On a port configured for QoS, all traffic received through the port is classified, policed, and marked according to the policy map attached to the port. On a trunk port configured for QoS, traffic in all VLANs received through the port is classified, policed, and marked according to the policy map attached to the port.
- If you have EtherChannel ports configured on your switch, you must configure QoS classification, policing, mapping, and queuing on the individual physical ports that comprise the EtherChannel. You must decide whether the QoS configuration should match on all ports in the EtherChannel.
- If you need to modify a policy map of an existing QoS policy, first remove the policy map from all interfaces, and then modify or copy the policy map. After you finish the modification, apply the modified policy map to the interfaces. If you do not first remove the policy map from all interfaces, high CPU usage can occur, which, in turn, can cause the console to pause for a very long time.

General QoS Guidelines

These are general QoS guidelines:

- Control traffic (such as spanning-tree bridge protocol data units [BPDUs] and routing update packets) received by the switch are subject to all ingress QoS processing.
- You are likely to lose data when you change queue settings; therefore, try to make changes when traffic is at a minimum.
- A switch that is running the IP services feature set supports QoS DSCP and IP precedence matching in policy-based routing (PBR) route maps with these limitations:
 - You cannot apply QoS DSCP mutation maps and PBR route maps to the same interface.
 - You cannot configure DSCP transparency and PBR DSCP route maps on the same switch.

Enabling QoS Globally

By default, QoS is disabled on the switch. Cisco IOS Release 12.2(52)SE and later supports IPv6 QoS. To enable IPv6 QoS on the switch, you must first configure the dual-IP SDM template and reload the switch. This template enables both IPv4 and IPv6 QoS configuration.

Beginning in privileged EXEC mode, follow these steps to enable QoS. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos</td>
</tr>
<tr>
<td></td>
<td>Enable QoS globally.</td>
</tr>
<tr>
<td></td>
<td>QoS runs with the default settings described in the “Default Standard QoS Configuration” section on page 37-36, the “Queueing and Scheduling on Ingress Queues” section on page 37-16, and the “Queueing and Scheduling on Egress Queues” section on page 37-18.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable QoS, use the **no mls qos** global configuration command.

Enabling VLAN-Based QoS on Physical Ports

By default, VLAN-based QoS is disabled on all physical switch ports. The switch applies QoS, including class maps and policy maps, only on a physical-port basis. In Cisco IOS Release 12.2(25)SE or later, you can enable VLAN-based QoS on a switch port.

Beginning in privileged EXEC mode, follow these steps to enable VLAN-based QoS. This procedure is required on physical ports that are specified in the interface level of a hierarchical policy map on an SVI.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the physical port, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>mls qos vlan-based</td>
</tr>
<tr>
<td></td>
<td>Enable VLAN-based QoS on the port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Verify if VLAN-based QoS is enabled on the physical port.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the **no mls qos vlan-based** interface configuration command to disable VLAN-based QoS on the physical port.
Configuring Classification Using Port Trust States

These sections describe how to classify incoming traffic by using port trust states. Depending on your network configuration, you must perform one or more of these tasks or one or more of the tasks in the “Configuring a QoS Policy” section on page 37-48:

- Configuring the Trust State on Ports within the QoS Domain, page 37-42
- Configuring the CoS Value for an Interface, page 37-43
- Configuring a Trusted Boundary to Ensure Port Security, page 37-44
- Enabling DSCP Transparency Mode, page 37-45
- Configuring the DSCP Trust State on a Port Bordering Another QoS Domain, page 37-46

Configuring the Trust State on Ports within the QoS Domain

Packets entering a QoS domain are classified at the edge of the QoS domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the QoS domain. Figure 37-11 shows a sample network topology.
Beginning in privileged EXEC mode, follow these steps to configure the port to trust the classification of the traffic that it receives:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the port to be trusted, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
</tbody>
</table>
| 3 | mls qos trust [cos | dscp | ip-precedence] | Configure the port trust state. By default, the port is not trusted. If no keyword is specified, the default is dscp. The keywords have these meanings:
- **cos**—Classifies an ingress packet by using the packet CoS value. For an untagged packet, the port default CoS value is used. The default port CoS value is 0.
- **dscp**—Classifies an ingress packet by using the packet DSCP value. For a non-IP packet, the packet CoS value is used if the packet is tagged; for an untagged packet, the default port CoS is used. Internally, the switch maps the CoS value to a DSCP value by using the CoS-to-DSCP map.
- **ip-precedence**—Classifies an ingress packet by using the packet IP-precedence value. For a non-IP packet, the packet CoS value is used if the packet is tagged; for an untagged packet, the default port CoS is used. Internally, the switch maps the CoS value to a DSCP value by using the CoS-to-DSCP map. |
| 4 | end | Return to privileged EXEC mode. |
| 5 | show mls qos interface | Verify your entries. |
| 6 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return a port to its untrusted state, use the **no mls qos trust** interface configuration command.

For information on how to change the default CoS value, see the “Configuring the CoS Value for an Interface” section on page 37-43. For information on how to configure the CoS-to-DSCP map, see the “Configuring the CoS-to-DSCP Map” section on page 37-74.

Configuring the CoS Value for an Interface

QoS assigns the CoS value specified with the **mls qos cos** interface configuration command to untagged frames received on trusted and untrusted ports.
Beginning in privileged EXEC mode, follow these steps to define the default CoS value of a port or to assign the default CoS to all incoming packets on the port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code></td>
<td>Specify the port to be configured, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>Step 3</td>
<td>`mls qos cos {default-cos</td>
<td>override}`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For default-cos, specify a default CoS value to be assigned to a port. If the packet is untagged, the default CoS value becomes the packet CoS value. The CoS range is 0 to 7. The default is 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the override keyword to override the previously configured trust state of the incoming packet and to apply the default port CoS value to the port on all incoming packets. By default, CoS override is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use the override keyword when all incoming packets on specified ports deserve higher or lower priority than packets entering from other ports.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Even if a port was previously set to trust DSCP, CoS, or IP precedence, this command overrides the previously configured trust state, and all the incoming CoS values are assigned the default CoS value configured with this command. If an incoming packet is tagged, the CoS value of the packet is modified with the default CoS of the port at the ingress port.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show mls qos interface</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no mls qos cos {default-cos | override}` interface configuration command.

Configuring a Trusted Boundary to Ensure Port Security

In a typical network, you connect a Cisco IP Phone to a switch port, as shown in Figure 37-11 on page 37-42, and cascade devices that generate data packets from the back of the telephone. The Cisco IP Phone guarantees the voice quality through a shared data link by marking the CoS level of the voice packets as high priority (CoS = 5) and by marking the data packets as low priority (CoS = 0). Traffic sent from the telephone to the switch is typically marked with a tag that uses the 802.1Q header. The header contains the VLAN information and the class of service (CoS) 3-bit field, which is the priority of the packet.

For most Cisco IP Phone configurations, the traffic sent from the telephone to the switch should be trusted to ensure that voice traffic is properly prioritized over other types of traffic in the network. By using the `mls qos trust cos` interface configuration command, you configure the switch port to which the telephone is connected to trust the CoS labels of all traffic received on that port. Use the `mls qos trust dscp` interface configuration command to configure a routed port to which the telephone is connected to trust the DSCP labels of all traffic received on that port.
With the trusted setting, you also can use the trusted boundary feature to prevent misuse of a high-priority queue if a user bypasses the telephone and connects the PC directly to the switch. Without trusted boundary, the CoS labels generated by the PC are trusted by the switch (because of the trusted CoS setting). By contrast, trusted boundary uses CDP to detect the presence of a Cisco IP Phone (such as the Cisco IP Phone 7910, 7935, 7940, and 7960) on a switch port. If the telephone is not detected, the trusted boundary feature disables the trusted setting on the switch port and prevents misuse of a high-priority queue. Note that the trusted boundary feature is not effective if the PC and Cisco IP Phone are connected to a hub that is connected to the switch.

In some situations, you can prevent a PC connected to the Cisco IP Phone from taking advantage of a high-priority data queue. You can use the `switchport priority extend cos` interface configuration command to configure the telephone through the switch CLI to override the priority of the traffic received from the PC.

Beginning in privileged EXEC mode, follow these steps to enable trusted boundary on a port:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>cdp run</code></td>
<td>Enable CDP globally. By default, CDP is enabled.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface interface-id</code></td>
<td>Specify the port connected to the Cisco IP Phone, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>cdp enable</code></td>
<td>Enable CDP on the port. By default, CDP is enabled.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>mls qos trust cos</code></td>
<td>Configure the switch port to trust the CoS value in traffic received from the Cisco IP Phone.</td>
</tr>
<tr>
<td></td>
<td><code>mls qos trust dscp</code></td>
<td>Configure the routed port to trust the DSCP value in traffic received from the Cisco IP Phone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, the port is not trusted.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>mls qos trust device cisco-phone</code></td>
<td>Specify that the Cisco IP Phone is a trusted device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You cannot enable both trusted boundary and auto-QoS (<code>auto qos voip</code> interface configuration command) at the same time; they are mutually exclusive.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>show mls qos interface</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the trusted boundary feature, use the `no mls qos trust device` interface configuration command.

Enabling DSCP Transparency Mode

The switch supports the DSCP transparency feature. It affects only the DSCP field of a packet at egress. By default, DSCP transparency is disabled. The switch modifies the DSCP field in an incoming packet, and the DSCP field in the outgoing packet is based on the quality of service (QoS) configuration, including the port trust setting, policing and marking, and the DSCP-to-DSCP mutation map.
If DSCP transparency is enabled by using the `no mls qos rewrite ip dscp` command, the switch does not modify the DSCP field in the incoming packet, and the DSCP field in the outgoing packet is the same as that in the incoming packet.

Note

Enabling DSCP transparency does not affect the port trust settings on IEEE 802.1Q tunneling ports.

Regardless of the DSCP transparency configuration, the switch modifies the internal DSCP value of the packet, which the switch uses to generate a class of service (CoS) value that represents the priority of the traffic. The switch also uses the internal DSCP value to select an egress queue and threshold.

Beginning in privileged EXEC mode, follow these steps to enable DSCP transparency on a switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos</td>
</tr>
<tr>
<td>Step 3</td>
<td>no mls qos rewrite ip dscp</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface [interface-id]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To configure the switch to modify the DSCP value based on the trust setting or on an ACL by disabling DSCP transparency, use the `mls qos rewrite ip dscp` global configuration command.

If you disable QoS by using the `no mls qos` global configuration command, the CoS and DSCP values are not changed (the default QoS setting).

If you enter the `no mls qos rewrite ip dscp` global configuration command to enable DSCP transparency and then enter the `mls qos trust [cos | dscp]` interface configuration command, DSCP transparency is still enabled.

Configuring the DSCP Trust State on a Port Bordering Another QoS Domain

If you are administering two separate QoS domains between which you want to implement QoS features for IP traffic, you can configure the switch ports bordering the domains to a DSCP-trusted state as shown in Figure 37-12. Then the receiving port accepts the DSCP-trusted value and avoids the classification stage of QoS. If the two domains use different DSCP values, you can configure the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition in the other domain.
Figure 37-12 DSCP-Trusted State on a Port Bordering Another QoS Domain

Beginning in privileged EXEC mode, follow these steps to configure the DSCP-trusted state on a port and modify the DSCP-to-DSCP-mutation map. To ensure a consistent mapping strategy across both QoS domains, you must perform this procedure on the ports in both domains:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 mls qos map dscp-mutation dscp-mutation-name in-dscp to out-dscp | Modify the DSCP-to-DSCP-mutation map. The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.
 - For dscp-mutation-name, enter the mutation map name. You can create more than one map by specifying a new name.
 - For in-dscp, enter up to eight DSCP values separated by spaces. Then enter the to keyword.
 - For out-dscp, enter a single DSCP value. The DSCP range is 0 to 63. |
| Step 3 interface interface-id | Specify the port to be trusted, and enter interface configuration mode. Valid interfaces include physical ports. |
| Step 4 mls qos trust dscp | Configure the ingress port as a DSCP-trusted port. By default, the port is not trusted. |
| Step 5 mls qos dscp-mutation dscp-mutation-name | Apply the map to the specified ingress DSCP-trusted port. For dscp-mutation-name, specify the mutation map name created in Step 2.
 You can configure multiple DSCP-to-DSCP-mutation maps on an ingress port. |
| Step 6 end | Return to privileged EXEC mode. |
| Step 7 show mls qos maps dscp-mutation | Verify your entries. |
| Step 8 copy running-config startup-config | (Optional) Save your entries in the configuration file. |
To return a port to its non-trusted state, use the **no mls qos trust** interface configuration command. To return to the default DSCP-to-DSCP-mutation map values, use the **no mls qos map dscp-mutation dscp-mutation-name** global configuration command.

This example shows how to configure a port to the DSCP-trusted state and to modify the DSCP-to-DSCP-mutation map (named *gi1/0/2-mutation*) so that incoming DSCP values 10 to 13 are mapped to DSCP 30:

```
Switch(config)# mls qos map dscp-mutation gigabitethernet1/0/2-mutation 10 11 12 13 to 30
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation gigabitethernet1/0/2-mutation
Switch(config-if)# end
```

Configuring a QoS Policy

Configuring a QoS policy typically requires classifying traffic into classes, configuring policies applied to those traffic classes, and attaching policies to ports.

For background information, see the “Classification” section on page 37-5 and the “Policing and Marking” section on page 37-9. For configuration guidelines, see the “Standard QoS Configuration Guidelines” section on page 37-38.

These sections describe how to classify, police, and mark traffic. Depending on your network configuration, you must perform one or more of these tasks:

- Classifying Traffic by Using ACLs, page 37-49
- Classifying Traffic by Using Class Maps, page 37-54
- Classifying Traffic by Using Class Maps and Filtering IPv6 Traffic, page 37-57
- Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps, page 37-63
- Classifying, Policing, and Marking Traffic by Using Aggregate Policers, page 37-72
Classifying Traffic by Using ACLs

You can classify IP traffic by using IP standard or IP extended ACLs; in Cisco IOS Release 12.2(52)SE and later, you can use IPv6 ACLs. You can classify non-IP traffic by using Layer 2 MAC ACLs.

Beginning in privileged EXEC mode, follow these steps to create an IP standard ACL for IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show access-lists</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete an access list, use the no access-list access-list-number global configuration command.

This example shows how to allow access for only those hosts on the three specified networks. The wildcard bits apply to the host portions of the network addresses. Any host with a source address that does not match the access list statements is rejected.

```
Switch(config)# access-list 1 permit 192.5.255.0 0.0.0.255
Switch(config)# access-list 1 permit 128.88.0.0 0.0.255.255
Switch(config)# access-list 1 permit 36.0.0.0 0.0.0.255
! (Note: all other access implicitly denied)
```
Beginning in privileged EXEC mode, follow these steps to create an IP extended ACL for IP traffic:

Command	**Purpose**
configure terminal | Enter global configuration mode.

Step 2

```
access-list access-list-number [deny | permit] protocol source source-wildcard destination destination-wildcard
```

Create an IP extended ACL, repeating the command as many times as necessary.

- For `access-list-number`, enter the access list number. The range is 100 to 199 and 2000 to 2699.
- Use the `permit` keyword to permit a certain type of traffic if the conditions are matched. Use the `deny` keyword to deny a certain type of traffic if conditions are matched.
- For `protocol`, enter the name or number of an IP protocol. Use the question mark (?) to see a list of available protocol keywords.
- For `source`, enter the network or host from which the packet is being sent. You specify this by using dotted decimal notation, by using the `any` keyword as an abbreviation for `source 0.0.0.0 source-wildcard 255.255.255.255`, or by using the `host` keyword for `source 0.0.0.0`.
- For `source-wildcard`, enter the wildcard bits by placing ones in the bit positions that you want to ignore. You specify the wildcard by using dotted decimal notation, by using the `any` keyword as an abbreviation for `source 0.0.0.0 source-wildcard 255.255.255.255`, or by using the `host` keyword for `source 0.0.0.0`.
- For `destination`, enter the network or host to which the packet is being sent. You have the same options for specifying the `destination` and `destination-wildcard` as those described by `source` and `source-wildcard`.

Note When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

Step 3

```
end
```

Return to privileged EXEC mode.

Step 4

```
show access-lists
```

Verify your entries.

Step 5

```
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.

To delete an access list, use the `no access-list access-list-number` global configuration command.

This example shows how to create an ACL that permits IP traffic from any source to any destination that has the DSCP value set to 32:

```
Switch(config)# access-list 100 permit ip any any dscp 32
```

This example shows how to create an ACL that permits IP traffic from a source host at 10.1.1.1 to a destination host at 10.1.1.2 with a precedence value of 5:

```
Switch(config)# access-list 100 permit ip host 10.1.1.1 host 10.1.1.2 precedence 5
```

This example shows how to create an ACL that permits PIM traffic from any source to a destination group address of 224.0.0.2 with a DSCP set to 32:

```
Switch(config)# access-list 102 permit pim any 224.0.0.2 dscp 32
```
Beginning in privileged EXEC mode, follow these steps to create an IPv6 ACL for IP traffic:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 access-list</td>
<td>Create an IPv6 ACL, and enter IPv6 access-list configuration mode.</td>
</tr>
<tr>
<td></td>
<td>access-list-name</td>
<td>Access list names cannot contain a space or quotation mark or begin with a numeric.</td>
</tr>
</tbody>
</table>
Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>deny</code></td>
<td>Enter <code>deny</code> or <code>permit</code> to specify whether to deny or permit the packet if conditions are matched. These are the conditions:</td>
</tr>
<tr>
<td><code>permit</code></td>
<td></td>
</tr>
<tr>
<td><code>protocol</code></td>
<td>• For <code>protocol</code>, enter the name or number of an Internet protocol: <code>ahp</code>, <code>esp</code>, <code>icmp</code>, <code>ipv6</code>, <code>pcp</code>, <code>stcp</code>, <code>tcp</code>, or <code>udp</code>, or an integer in the range 0 to 255 representing an IPv6 protocol number.</td>
</tr>
<tr>
<td>`{source-ipv6-prefix/prefix-length</td>
<td>any</td>
</tr>
<tr>
<td><code>[operator [port-number]]</code></td>
<td>• The <code>source-ipv6-prefix/prefix-length</code> or <code>destination-ipv6-prefix/prefix-length</code> is the source or destination IPv6 network or class of networks for which to set deny or permit conditions, specified in hexadecimal and using 16-bit values between colons (see RFC 2373).</td>
</tr>
<tr>
<td>`{destination-ipv6-prefix/ prefix-length</td>
<td>any</td>
</tr>
<tr>
<td><code>[operator [port-number]]</code></td>
<td>• For <code>host source-ipv6-address</code> or <code>destination-ipv6-address</code>, enter the source or destination IPv6 host address for which to set deny or permit conditions, specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td><code>[dscp value] [fragments] [log] [log-input] [routing] [sequence value] [time-range name]</code></td>
<td>• (Optional) For <code>operator</code>, specify an operand that compares the source or destination ports of the specified protocol. Operands are <code>lt</code> (less than), <code>gt</code> (greater than), <code>eq</code> (equal), <code>neq</code> (not equal), and <code>range</code>.</td>
</tr>
<tr>
<td>If the operator follows the <code>source-ipv6-prefix/prefix-length</code> argument, it must match the source port. If the operator follows the <code>destination-ipv6-prefix/prefix-length</code> argument, it must match the destination port.</td>
<td></td>
</tr>
<tr>
<td><code>[port-number]</code></td>
<td>• (Optional) The <code>port-number</code> is a decimal number from 0 to 65535 or the name of a TCP or UDP port. You can use TCP port names only when filtering TCP. You can use UDP port names only when filtering UDP.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) The <code>port-number</code> is a decimal number from 0 to 65535 or the name of a TCP or UDP port. You can use TCP port names only when filtering TCP. You can use UDP port names only when filtering UDP.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Enter <code>dscp value</code> to match a differentiated services code point value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Enter <code>fragments</code> to check noninitial fragments. This keyword is visible only if the protocol is <code>ipv6</code>.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Enter <code>log</code> to cause a logging message to be sent to the console about the packet that matches the entry. Enter <code>log-input</code> to include the input interface in the log entry. Logging is supported only for router ACLs.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Enter <code>routing</code> to specify that IPv6 packets be routed.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Enter <code>sequence value</code> to specify the sequence number for the access list statement. The acceptable range is from 1 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Enter <code>time-range name</code> to specify the time range that applies to the deny or permit statement.</td>
</tr>
</tbody>
</table>
Configuring Standard QoS

To delete an access list, use the `no ipv6 access-list access-list-number` global configuration command.

This example shows how to create an ACL that permits IPv6 traffic from any source to any destination that has the DSCP value set to 32:

```plaintext
Switch(config)# ipv6 access-list 100 permit ip any any dscp 32
```

This example shows how to create an ACL that permits IPv6 traffic from a source host at 10.1.1.1 to a destination host at 10.1.1.2 with a precedence value of 5:

```plaintext
Switch(config)# ipv6 access-list ipv6_Name_ACL permit ip host 10::1 host 10.1.1.2 precedence 5
```

Beginning in privileged EXEC mode, follow these steps to create a Layer 2 MAC ACL for non-IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>mac access-list extended name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>`{permit</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
</tbody>
</table>

Note: When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.
To delete an access list, use the `no mac access-list extended access-list-name` global configuration command.

This example shows how to create a Layer 2 MAC ACL with two permit statements. The first statement allows traffic from the host with MAC address 0001.0000.0001 to the host with MAC address 0002.0000.0001. The second statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 to the host with MAC address 0002.0000.0002.

```
Switch(config)# mac access-list extended maclist1
Switch(config-ext-macl)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-macl)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
! (Note: all other access implicitly denied)
```

Classifying Traffic by Using Class Maps

You use the `class-map` global configuration command to name and to isolate a specific traffic flow (or class) from all other traffic. The class map defines the criteria to use to match against a specific traffic flow to further classify it. Match statements can include criteria such as an ACL, IP precedence values, or DSCP values. The match criterion is defined with one match statement entered within the class-map configuration mode.

Note

You can also create class-maps during policy map creation by using the `class` policy-map configuration command. For more information, see the “Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps” section on page 37-59 and the “Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps” section on page 37-63.
Beginning in privileged EXEC mode, follow these steps to create a class map and to define the match criterion to classify traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td>or access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td>or ipv6 access-list access-list-name {deny</td>
</tr>
<tr>
<td></td>
<td>{source-ipv6-prefix/prefix-length</td>
</tr>
<tr>
<td></td>
<td>[operator [port-number]]</td>
</tr>
<tr>
<td></td>
<td>{destination-ipv6-prefix/prefix-length</td>
</tr>
<tr>
<td></td>
<td>[operator [port-number]]</td>
</tr>
<tr>
<td></td>
<td>[dscp value] [fragments] [log] [log-input]</td>
</tr>
<tr>
<td></td>
<td>[routing] [sequence value] [time-range name]</td>
</tr>
<tr>
<td></td>
<td>or mac access-list extended name {permit</td>
</tr>
<tr>
<td>Step 3</td>
<td>class-map [match-all</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | Note Because only one **match** command per class map is supported, the **match-all** and **match-any** keywords function the same. See the “Creating Named Standard and Extended ACLs” section on page 35-15 for limitations when using the **match-all** and the **match-any** keywords.
Chapter 37 Configuring QoS

Configuring Standard QoS

To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class-map [match-all | match-any] class-map-name` global configuration command. To remove a match criterion, use the `no match {access-group acl-index-or-name | ip dscp | ip precedence ip-precedence-list}` class-map configuration command.

Note This command is available only when the dual IPv4 and IPv6 SDM template is configured.

You can use the `match protocol [ip | ipv6]` command with the `match ip dscp` or `match precedence` commands, but not with the `match access-group` command.

For more information about the `match protocol` command, see the *Cisco IOS Quality of Service Solutions Command Reference*.

Step 4

```
match protocol [ip | ipv6]
```

(Optional) Specify the IP protocol to which the class map applies.

- Use the argument `ip` to specify IPv4 traffic, and `ipv6` to specify IPv6 traffic.
- When you use the `match protocol` command, only the `match-all` keyword is supported for the class-map command.

Note This command is available only when the dual IPv4 and IPv6 SDM template is configured.

Step 5

```
match {access-group acl-index-or-name | ip dscp dscp-list | ip precedence ip-precedence-list}
```

Define the match criterion to classify traffic.

- By default, no match criterion is defined.
- Only one match criterion per class map is supported, and only one ACL per class map is supported.
 - For `access-group acl-index-or-name`, specify the number or name of the ACL created in Step 2.
 - To filter IPv6 traffic with the `match access-group` command, create an IPv6 ACL, as described in Step 2.
 - For `ip dscp dscp-list`, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space. The range is 0 to 63.
 - For `ip precedence ip-precedence-list`, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7.

Step 6

```
end
```

Return to privileged EXEC mode.

Step 7

```
show class-map
```

Verify your entries.

Step 8

```
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.

To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class-map [match-all | match-any] class-map-name` global configuration command. To remove a match criterion, use the `no match {access-group acl-index-or-name | ip dscp | ip precedence}` class-map configuration command.

This example shows how to configure the class map called `class1`. The `class1` has one match criterion, which is access list 103. It permits traffic from any host to any destination that matches a DSCP value of 10.

```
Switch(config)# access-list 103 permit ip any any dscp 10
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# end
Switch#
```
This example shows how to create a class map called `class2`, which matches incoming traffic with DSCP values of 10, 11, and 12.

```conf
Switch(config)# class-map class2
Switch(config-cmap)# match ip dscp 10 11 12
Switch(config-cmap)# end
Switch#
```

This example shows how to create a class map called `class3`, which matches incoming traffic with IP-precedence values of 5, 6, and 7:

```conf
Switch(config)# class-map class3
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# end
Switch#
```

Classifying Traffic by Using Class Maps and Filtering IPv6 Traffic

In Cisco IOS Release 12.2(52)SE and later, the switch supports both IPv4 and IPv6 QoS when the dual IPv4 and IPv6 SDM template is configured. When the dual IP SDM template is configured, the `match ip dscp` and `match ip precedence` classifications match both IPv4 and IPv6 traffic. The `match protocol` command allows you to create a secondary match classification that filters traffic by IP version (IPv4 or IPv6).

To apply the primary match criteria to only IPv4 traffic, use the `match protocol` command with the `ip` keyword. To apply the primary match criteria to only IPv6 traffic, use the `match protocol` command with the `ipv6` keyword. For more information about the `match protocol` command, see the *Cisco IOS Quality of Service Solutions Command Reference*.

Beginning in privileged EXEC mode, follow these steps to create a class map, define the match criterion to classify traffic, and filter IPv6 traffic:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>class-map [match-all] class-map-name</td>
<td>Create a class map, and enter class-map configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, no class maps are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When you use the <code>match protocol</code> command, only the <code>match-all</code> keyword is supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>class-map-name</code>, specify the name of the class map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If neither the <code>match-all</code> or <code>match-any</code> keyword is specified, the default is match-all.</td>
</tr>
<tr>
<td>Step 3</td>
<td>match protocol [ip</td>
<td>ipv6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the argument <code>ip</code> to specify IPv4 traffic and <code>ipv6</code> to specify IPv6 traffic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• When you use the <code>match protocol</code> command, only the <code>match-all</code> keyword is supported for the class-map command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note This command is available only when the dual IPv4 and IPv6 SDM template is configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information about the <code>match protocol</code> command, see the Cisco IOS Quality of Service Solutions Command Reference.</td>
</tr>
</tbody>
</table>
Configuring QoS

Chapter 37 Configuring QoS

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| match \{ip dscp dscp-list | ip precedence ip-precedence-list\} | Define the match criterion to classify traffic. By default, no match criterion is defined.
| | • For ip dscp dscp-list, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space. The range is 0 to 63.
| | • For ip precedence ip-precedence-list, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7. |

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show class-map</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete an existing policy map, use the no policy-map policy-map-name global configuration command. To delete an existing class map, use the no class-map [match-all | match-any] class-map-name global configuration command. To remove a match criterion, use the no match {access-group acl-index-or-name | ip dscp | ip precedence} class-map configuration command.

This example shows how to configure a class map to match IP DSCP and IPv6:

```
Switch(config)# class-map cm-1
Switch(config-cmap)# match ip dscp 10
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# class-map cm-2
Switch(config-cmap)# match ip dscp 20
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# policy-map pml
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface Gi0/1
Switch(config-if)# service-policy input pml
```

This example shows how to configure a class map that applies to both IPv4 and IPv6 traffic:

```
Switch(config)# ip access-list 101 permit ip any any
Switch(config)# ipv6 access-list 101 permit ip6 any any
Switch(config)# class-map cm-1
Switch(config-cmap)# match access-group 101
Switch(config-cmap)# exit
Switch(config)# class-map cm-2
Switch(config-cmap)# match access-group name ipv6-any
Switch(config-cmap)# exit
Switch(config)# Policy-map pml
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
```
Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps

You can configure a nonhierarchical policy map on a physical port that specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; and specifying the traffic bandwidth limitations for each matched traffic class (policer) and the action to take when the traffic is out of profile (marking).

A policy map also has these characteristics:

- A policy map can contain multiple class statements, each with different match criteria and policers.
- A policy map can contain a predefined default traffic class explicitly placed at the end of the map.
- A separate policy-map class can exist for each type of traffic received through a port.

Follow these guidelines when configuring policy maps on physical ports:

- You can attach only one policy map per ingress port.
- If you configure the IP-precedence-to-DSCP map by using the `mls qos map ip-prec-dscp dscp1...dscp8` global configuration command, the settings only affect packets on ingress interfaces that are configured to trust the IP precedence value. In a policy map, if you set the packet IP precedence value to a new value by using the `set ip precedence new-precedence` policy-map class configuration command, the egress DSCP value is not affected by the IP-precedence-to-DSCP map. If you want the egress DSCP value to be different than the ingress value, use the `set dscp new-dscp` policy-map class configuration command.
- If you enter or have used the `set ip dscp` command, the switch changes this command to `set dscp` in its configuration.
- You can use the `set ip precedence` or the `set precedence` policy-map class configuration command to change the packet IP precedence value. This setting appears as `set ip precedence` in the switch configuration.
- You can configure a separate second-level policy map for each class defined for the port. The second-level policy map specifies the police action to take for each traffic class. For information on configuring a hierarchical policy map, see Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps, page 37-63.
- When you configure a default traffic class by using the `class class-default` policy-map configuration command, unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as the default traffic class (`class-default`).

```plaintext
Switch(config)# interface G0/1
Switch(config-if)# switch mode access
Switch(config-if)# service-policy input pm1
```
Configuring Standard QoS

Beginning in privileged EXEC mode, follow these steps to create a nonhierarchical policy map:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>class-map {match-all [match-any]} class-map-name</td>
<td>Creates a class map, and enter class-map configuration mode. By default, no class maps are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Use the match-all keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Use the match-any keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For class-map-name, specify the name of the class map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If neither the match-all or match-any keyword is specified, the default is match-all.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>Because only one match command per class map is supported, the match-all and match-any keywords function the same. See the “Creating Named Standard and Extended ACLs” section on page 35-15 for limitations when using the match-all and the match-any keywords.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>policy-map policy-map-name</td>
<td>Creates a policy map by entering the policy map name, and enter policy-map configuration mode. By default, no policy maps are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default behavior of a policy map is to set the DSCP to 0 if the packet is an IP packet and to set the CoS to 0 if the packet is tagged. No policing is performed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>class [class-map-name</td>
<td>class-default]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a traffic class has already been defined by using the class-map global configuration command, specify its name for class-map-name in this command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A class-default traffic class is pre-defined and can be added to any policy. It is always placed at the end of a policy map. With an implied match any included in the class-default class, all packets that have not already matched the other traffic classes will match class-default.</td>
</tr>
</tbody>
</table>
Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**trust [cos</td>
<td>dscp</td>
</tr>
</tbody>
</table>

Note
This command is mutually exclusive with the **set** command within the same policy map. If you enter the **trust** command, go to Step 6.

By default, the port is not trusted. If no keyword is specified when the command is entered, the default is **dscp**.

The keywords have these meanings:

- **cos**—QoS derives the DSCP value by using the received or default port CoS value and the CoS-to-DSCP map.
- **dscp**—QoS derives the DSCP value by using the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.
- **ip-precedence**—QoS derives the DSCP value by using the IP precedence value from the ingress packet and the IP-precedence-to-DSCP map. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.

For more information, see the “Configuring the CoS-to-DSCP Map” section on page 37-74.

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**set {dscp new-dscp</td>
<td>ip precedence new-precedence}**</td>
</tr>
</tbody>
</table>

- For **dscp new-dscp**, enter a new DSCP value to be assigned to the classified traffic. The range is 0 to 63.
- For **ip precedence new-precedence**, enter a new IP-precedence value to be assigned to the classified traffic. The range is 0 to 7.

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**police rate-bps burst-byte [exceed-action {drop</td>
<td>policed-dscp-transmit}]**</td>
</tr>
</tbody>
</table>

By default, no policer is defined. For information on the number of policers supported, see the “Standard QoS Configuration Guidelines” section on page 37-38.

- For **rate-bps**, specify average traffic rate in bits per second (b/s). The range is 8000 to 10000000000.
- For **burst-byte**, specify the normal burst size in bytes. The range is 8000 to 1000000.
- (Optional) Specify the action to take when the rates are exceeded. Use the **exceed-action drop** keywords to drop the packet. Use the **exceed-action policed-dscp-transmit** keywords to mark down the DSCP value (by using the policed-DSCP map) and to send the packet. For more information, see the “Configuring the Policed-DSCP Map” section on page 37-76.
Configuring Standard QoS

Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>exit</td>
<td>Returns to policy map configuration mode.</td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>10</td>
<td>interface interface-id</td>
<td>Specifies the port to attach to the policy map, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>11</td>
<td>service-policy input policy-map-name</td>
<td>Specifies the policy-map name, and apply it to an ingress port. Only one policy map per ingress port is supported.</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td>show policy-map [policy-map-name [class class-map-name]]</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>14</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class class-map-name` policy-map configuration command. To return to the untrusted state, use the `no trust policy-map configuration` command. To remove an assigned DSCP or IP precedence value, use the `no set {dscp new-dscp | ip precedence new-precedence}` policy-map configuration command. To remove an existing policer, use the `no police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]` policy-map configuration command. To remove the policy map and port association, use the `no service-policy input policy-map-name interface configuration` command.

This example shows how to create a policy map and attach it to an ingress port. In the configuration, the IP standard ACL permits traffic from network 10.1.0.0. For traffic matching this classification, the DSCP value in the incoming packet is trusted. If the matched traffic exceeds an average traffic rate of 48000 b/s and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent:

```bash
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# policy-map flow1t
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police 1000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config-if)# service-policy input flow1t
```

This example shows how to create a Layer 2 MAC ACL with two permit statements and attach it to an ingress port. The first permit statement allows traffic from the host with MAC address 0001.0000.0001 destined for the host with MAC address 0002.0000.0001. The second permit statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 destined for the host with MAC address 0002.0000.0002.

```bash
Switch(config)# mac access-list extended maclist1
Switch(config-ext-mac)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0 xns-idp
Switch(config-ext-mac)# exit
Switch(config)# mac access-list extended maclist2
Switch(config-ext-mac)# permit 0001.0000.0003 0.0.0 0002.0000.0003 0.0.0 aarp
```
Switch(config-ext-mac)# exit
Switch(config)# class-map macclass1
Switch(config-cmap)# match access-group maclist1
Switch(config-cmap)# exit
Switch(config)# policy-map macpolicy1
Switch(config-pmap)# class macclass1
Switch(config-pmap-c)# set dscp 63
Switch(config-pmap-c)# exit
Switch(config-pmap)# class macclass2 maclist2
Switch(config-pmap-c)# set dscp 45
Switch(config-pmap-c)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# service-policy input macpolicy1

This example shows how to create a class map that applies to both IPv4 and IPv6 traffic:

Switch(config)# ip access-list 101 permit ip any any
Switch(config)# ipv6 access-list ipv6-any permit ip any any
Switch(config)# class-map cm-1
Switch(config-cmap)# match access-group 101
Switch(config-cmap)# exit
Switch(config)# class-map cm-2
Switch(config-cmap)# match access-group name ipv6-any
Switch(config-cmap)# exit
Switch(config)# policy-map pml
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class-default
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config)# interface G0/1
Switch(config-if)# switch mode access
Switch(config-if)# service-policy input pml

Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps

You can configure hierarchical policy maps on SVIs, but not on other types of interfaces. Hierarchical policing combines the VLAN- and interface-level policy maps to create a single policy map.

On an SVI, the VLAN-level policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values or setting a specific DSCP or IP precedence value in the traffic class. Use the interface-level policy map to specify the physical ports that are affected by individual policers.

Beginning with Cisco IOS Release 12.2(52)SE, you can configure hierarchical policy maps that filter IPv4 and IPv6 traffic.

Follow these guidelines when configuring hierarchical policy maps:

- Before configuring a hierarchical policy map, you must enable VLAN-based QoS on the physical ports that are to be specified at the interface level of the policy map.
- You can attach only one policy map per ingress port or SVI.
- A policy map can contain multiple class statements, each with different match criteria and actions.
• A separate policy-map class can exist for each type of traffic received on the SVI.

• If you configure the IP-precedence-to-DSCP map by using the `mls qos map ip-prec-dscp dscp1...dscp8` global configuration command, the settings only affect packets on ingress interfaces that are configured to trust the IP precedence value. In a policy map, if you set the packet IP precedence value to a new value by using the `set ip precedence new-precedence` policy-map class configuration command, the egress DSCP value is not affected by the IP-precedence-to-DSCP map. If you want the egress DSCP value to be different than the ingress value, use the `set dscp new-dscp` policy-map class configuration command.

• If you enter or have used the `set ip dscp` command, the switch changes this command to `set dscp` in its configuration. If you enter the `set ip dscp` command, this setting appears as `set dscp` in the switch configuration.

• You can use the `set ip precedence` or the `set precedence` policy-map class configuration command to change the packet IP precedence value. This setting appears as `set ip precedence` in the switch configuration.

• If VLAN-based QoS is enabled, the hierarchical policy map supersedes the previously configured port-based policy map.

• The hierarchical policy map is attached to the SVI and affects all traffic in the VLAN. The actions specified in the VLAN-level policy map affect the traffic belonging to the SVI. The police action on the port-level policy map affects the ingress traffic on the affected physical interfaces.

• When configuring a hierarchical policy map on trunk ports, the VLAN ranges must not overlap. If the ranges overlap, the actions specified in the policy map affect the incoming and outgoing traffic on the overlapped VLANs.

• Aggregate policers are not supported in hierarchical policy maps.

• When VLAN-based QoS is enabled, the switch supports VLAN-based features, such as the VLAN map.

• You can configure a hierarchical policy map only on the primary VLAN of a private VLAN.
• When you enable VLAN-based QoS and configure a hierarchical policy map in a switch stack, these automatic actions occur when the stack configuration changes:
 - When a new stack master is selected, the stack master re-enables and reconfigures these features on all applicable interfaces on the stack master.
 - When a stack member is added, the stack master re-enables and reconfigures these features on all applicable ports on the stack member.
 - When you merge switch stacks, the new stack master re-enables and reconfigures these features on the switches in the new stack.
 - When the switch stack divides into two or more switch stacks, the stack master in each switch stack re-enables and reconfigures these features on all applicable interfaces on the stack members, including the stack master.

• When you configure a default traffic class by using the class class-default policy-map configuration command, unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as default traffic class (class-default).

Beginning in privileged EXEC mode, follow these steps to create a hierarchical policy map:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>class-map [match-all</td>
<td>Creates a VLAN-level class map, and enter class-map configuration mode. For information about creating a class map, see the “Classifying Traffic by Using Class Maps” section on page 37-54.</td>
</tr>
<tr>
<td></td>
<td>[match-any] class-map-name</td>
<td>By default, no class maps are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Use the match-all keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Use the match-any keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For class-map-name, specify the name of the class map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If neither the match-all or match-any keyword is specified, the default is match-all.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Because only one match command per class map is supported, the match-all and match-any keywords function the same. See the “Creating Named Standard and Extended ACLs” section on page 35-15 for limitations when using the match-all and the match-any keywords.</td>
</tr>
</tbody>
</table>
Chapter 37 Configuring QoS

Configuring Standard QoS

Step 3

match \{access-group acl-index-or-name \| ip dscp dscp-list \| ip precedence ip-precedence-list\}

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defines the match criterion to classify traffic. By default, no match criterion is defined. Only one match criterion per class map is supported, and only one ACL per class map is supported.</td>
<td></td>
</tr>
<tr>
<td>- For access-group acl-index-or-name, specify the number or name of the ACL.</td>
<td></td>
</tr>
<tr>
<td>- For ip dscp dscp-list, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space. The range is 0 to 63.</td>
<td></td>
</tr>
<tr>
<td>- For ip precedence ip-precedence-list, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7.</td>
<td></td>
</tr>
</tbody>
</table>

Step 4

match protocol [ip | ipv6]

(Optional) Specifies the IP protocol to which the class map applies.

- Use the argument *ip* to specify IPv4 traffic, and *ipv6* to specify IPv6 traffic.
- When you use the **match protocol** command, only the **match-all** keyword is supported for the first level class map.

Note This command is available only when the dual IPv4 and IPv6 SDM template is configured.

You can use the **match protocol** command with the **match ip dscp** or **match precedence** commands, but not with the **match access-group** command.

For more information about the **match protocol** command, see the *Cisco IOS Quality of Service Solutions Command Reference*.

Step 5

exit

Returns to class-map configuration mode.

Step 6

exit

Returns to global configuration mode.
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 7 | class-map [match-all | match-any] class-map-name | Creates an interface-level class map, and enter class-map configuration mode.
By default, no class maps are defined.
- (Optional) Use the `match-all` keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.
- (Optional) Use the `match-any` keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.
- For `class-map-name`, specify the name of the class map.
If neither the `match-all` or `match-any` keyword is specified, the default is `match-all`.
Note Because only one `match` command per class map is supported, the `match-all` and `match-any` keywords function the same. See the “Creating Named Standard and Extended ACLs” section on page 35-15 for limitations when using the `match-all` and the `match-any` keywords. |
| Step 8 | match input-interface interface-id-list | Specifies the physical ports on which the interface-level class map acts.
You can specify up to six ports as follows:
- A single port (counts as one entry)
- A list of ports separated by a space (each port counts as an entry)
- A range of ports separated by a hyphen (counts as two entries)
This command can only be used in the child-level policy map and must be the only match condition in the child-level policy map. |
| Step 9 | exit | Returns to class-map configuration mode. |
| Step 10 | exit | Returns to global configuration mode. |
| Step 11 | policy-map policy-map-name | Creates an interface-level policy map by entering the policy-map name, and enter policy-map configuration mode.
By default, no policy maps are defined, and no policing is performed. |
| Step 12 | class-map class-map-name | Defines an interface-level traffic classification, and enter policy-map configuration mode.
By default, no policy-map class-maps are defined.
If a traffic class has already been defined by using the `class-map` global configuration command, specify its name for `class-map-name` in this command. |
<table>
<thead>
<tr>
<th>Step 13</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 13</td>
<td>police rate-bps burst-byte [exceed-action drop</td>
<td>Defines an individual policer for the classified traffic. By default, no policer is defined. For information on the number of policers supported, see the “Standard QoS Configuration Guidelines” section on page 37-38.</td>
</tr>
<tr>
<td></td>
<td>policed-dscp-transmit]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For rate-bps, specify average traffic rate in bits per second (b/s). The range is 8000 to 10000000000.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For burst-byte, specify the normal burst size in bytes. The range is 8000 to 1000000.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Specify the action to take when the rates are exceeded. Use the exceed-action drop keywords to drop the packet. Use the exceed-action policed-dscp-transmit keywords to mark down the DSCP value (by using the policed-DSCP map) and to send the packet. For more information, see the “Configuring the Policed-DSCP Map” section on page 37-76.</td>
</tr>
<tr>
<td>Step 14</td>
<td>exit</td>
<td>Returns to policy-map configuration mode.</td>
</tr>
<tr>
<td>Step 15</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 16</td>
<td>policy-map policy-map-name</td>
<td>Creates a VLAN-level policy map by entering the policy-map name, and enter policy-map configuration mode. By default, no policy maps are defined. The default behavior of a policy map is to set the DSCP to 0 if the packet is an IP packet and to set the CoS to 0 if the packet is tagged. No policing is performed.</td>
</tr>
<tr>
<td>Step 17</td>
<td>class [class-map-name</td>
<td>Defines a VLAN-level traffic classification, and enter policy-map class configuration mode. By default, no policy-map class-maps are defined. If a traffic class has already been defined by using the class-map global configuration command, specify its name for class-map-name in this command. A class-default traffic class is pre-defined and can be added to any policy. It is always placed at the end of a policy map. With an implied match any included in the class-default class, all packets that have not already matched the other traffic classes will match class-default.</td>
</tr>
</tbody>
</table>
Chapter 37 Configuring QoS

Configuring Standard QoS

Step 18

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>trust [cos</td>
<td>dscp</td>
</tr>
</tbody>
</table>

Note This command is mutually exclusive with the set command within the same policy map. If you enter the trust command, omit Step 18.

By default, the port is not trusted. If no keyword is specified when the command is entered, the default is dscp.

The keywords have these meanings:

- **cos**—QoS derives the DSCP value by using the received or default port CoS value and the CoS-to-DSCP map.
- **dscp**—QoS derives the DSCP value by using the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.
- **ip-precedence**—QoS derives the DSCP value by using the IP precedence value from the ingress packet and the IP-precedence-to-DSCP map. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.

For more information, see the “Configuring the CoS-to-DSCP Map” section on page 37-74.

Step 19

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>set {dscp new-dscp</td>
<td>ip precedence new-precedence]</td>
</tr>
</tbody>
</table>

- For **dscp new-dscp**, enter a new DSCP value to be assigned to the classified traffic. The range is 0 to 63.
- For **ip precedence new-precedence**, enter a new IP-precedence value to be assigned to the classified traffic. The range is 0 to 7.

Step 20

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-policy policy-map-name</td>
<td>Specifies the interface-level policy-map name (from Step 10) and associate it with the VLAN-level policy map.</td>
</tr>
</tbody>
</table>

If the VLAN-level policy map specifies more than one class, each class can have a different service-policy policy-map-name command.

Step 21

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Returns to policy-map configuration mode.</td>
</tr>
</tbody>
</table>

Step 22

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Step 23

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface interface-id</td>
<td>Specifies the SVI to which to attach the hierarchical policy map, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Standard QoS

Step 24

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>service-policy input policy-map-name</code></td>
<td>Specifies the VLAN-level policy-map name, and apply it to the SVI. Repeats the previous step and this command to apply the policy map to other SVIs. If the hierarchical VLAN-level policy map has more than one interface-level policy map, all class maps must be configured to the same VLAN-level policy map specified in the <code>service-policy policy-map-name</code> command.</td>
</tr>
</tbody>
</table>

Step 25

- `end`
 Returns to privileged EXEC mode.

Step 26

- `show policy-map [policy-map-name [class class-map-name]]`
 Verifies your entries.
- `show mls qos vlan-based`

Step 27

- `copy running-config startup-config`
 (Optional) Saves your entries in the configuration file.

To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class class-map-name` policy-map configuration command.

To return to the untrusted state in a policy map, use the `no trust` policy-map configuration command. To remove an assigned DSCP or IP precedence value, use the `no set {dscp new-dscp | ip precedence new-precedence}` policy-map configuration command.

To remove an existing policer in an interface-level policy map, use the `no police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]` policy-map configuration command. To remove the hierarchical policy map and port associations, use the `no service-policy input policy-map-name` interface configuration command.

This example shows how to create a hierarchical policy map:

```
Switch> enable
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# access-list 101 permit ip any any
Switch(config)# class-map cm-1
Switch(config-cmap)# match access 101
Switch(config-cmap)# exit
Switch(config)# exit
Switch#
```

This example shows how to attach the new map to an SVI:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# class-map cm-interface-1
Switch(config-cmap)# match input gigabitethernet3/0/1 - gigabitethernet3/0/2
Switch(config-cmap)# exit
Switch(config)# policy-map port-plcmap
Switch(config-pmap)# class cm-interface-1
Switch(config-pmap-c)# police 900000 9000 exc policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# policy-map vlan-plcmap
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 7
Switch(config-pmap-c)# service-policy port-plcmap-1
```
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# service-policy port-plcmap-1
Switch(config-pmap)# exit
Switch(config-pmap)# class cm-3
Switch(config-pmap-c)# set dscp 20
Switch(config-pmap-c)# service-policy port-plcmap-2
Switch(config-pmap)# exit
Switch(config-pmap)# class cm-4
Switch(config-pmap-c)# trust dscp
Switch(config-pmap)# exit
Switch(config)# interface vlan 10
Switch(config-if)# service input vlan-plcmap
Switch(config-if)# exit
Switch(config)# exit
Switch#

This example shows how to configure a class map to match IP DSCP and IPv6:

Switch(config)# class-map cm-1
Switch(config-cmap)# match ip dscp 10
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# class-map cm-2
Switch(config-cmap)# match ip dscp 20
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# policy-map pm1
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface G1/0/1
Switch(config-if)# policy-map input pm1

This example shows how to configure default traffic class to a policy map:

Switch# configure terminal
Switch(config)# class-map cm-3
Switch(config-cmap)# match ip dscp 30
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# class-map cm-4
Switch(config-cmap)# match ip dscp 40
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# policy-map pm3
Switch(config-pmap)# class class-default
Switch(config-pmap)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-3
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-4
Switch(config-pmap-c)# trust cos
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
This example shows how the default traffic class is automatically placed at the end of policy-map pm3 even though class-default was configured first:

```
Switch# show policy-map pm3
Policy Map pm3
 Class cm-3
   set dscp 4
 Class cm-4
   trust cos
 Class class-default
   police 8000 80000 exceed-action drop
Switch#
```

Classifying, Policing, and Marking Traffic by Using Aggregate Policers

By using an aggregate policer, you can create a policer that is shared by multiple traffic classes within the same policy map. However, you cannot use the aggregate policer across different policy maps or ports.

You can configure aggregate policers only in nonhierarchical policy maps on physical ports.

Beginning in privileged EXEC mode, follow these steps to create an aggregate policer:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>mls qos aggregate-policer aggregate-policer-name rate-bps burst-byte exceed-action {drop</td>
<td>policed-dscp-transmit}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For aggregate-policer-name, specify the name of the aggregate policer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For rate-bps, specify average traffic rate in bits per second (b/s). The range is 8000 to 10000000000.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For burst-byte, specify the normal burst size in bytes. The range is 8000 to 1000000.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Specify the action to take when the rates are exceeded. Use the exceed-action drop keywords to drop the packet. Use the exceed-action policed-dscp-transmit keywords to mark down the DSCP value (by using the policed-DSCP map) and to send the packet. For more information, see the “Configuring the Policed-DSCP Map” section on page 37-76.</td>
</tr>
<tr>
<td>3</td>
<td>class-map [match-all</td>
<td>match-any] class-map-name</td>
</tr>
<tr>
<td>4</td>
<td>policy-map policy-map-name</td>
<td>Creates a policy map by entering the policy map name, and enter policy-map configuration mode. For more information, see the “Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps” section on page 37-59.</td>
</tr>
</tbody>
</table>
To remove the specified aggregate policer from a policy map, use the `no police aggregate aggregate-policer-name` policy map configuration mode. To delete an aggregate policer and its parameters, use the `no mls qos aggregate-policer aggregate-policer-name` global configuration command.

This example shows how to create an aggregate policer and attach it to multiple classes within a policy map. In the configuration, the IP ACLs permit traffic from network 10.1.0.0 and from host 11.3.1.1. For traffic coming from network 10.1.0.0, the DSCP in the incoming packets is trusted. For traffic coming from host 11.3.1.1, the DSCP in the packet is changed to 56. The traffic rate from the 10.1.0.0 network and from host 11.3.1.1 is policed. If the traffic exceeds an average rate of 48000 b/s and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent. The policy map is attached to an ingress port.

```
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# access-list 2 permit 11.3.1.1
Switch(config)# mls qos aggregate-police transmit1 48000 8000 exceed-action policed-dscp-transmit
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# class-map ipclass2
Switch(config-cmap)# match access-group 2
Switch(config-cmap)# exit
Switch(config)# policy-map aggflow1
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config)# policy-map aggflow2
Switch(config-pmap-c)# class ipclass2
Switch(config-pmap-c)# set dscp 56
Switch(config-pmap-c)# police aggregate transmit1
Switch(config-pmap-c)# exit
```
Switch(config-pmap)# class class-default
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# service-policy input aggflow1
Switch(config-if)# exit

Configuring DSCP Maps

These sections contain this configuration information:

- Configuring the CoS-to-DSCP Map, page 37-74 (optional)
- Configuring the IP-Precedence-to-DSCP Map, page 37-75 (optional)
- Configuring the Policed-DSCP Map, page 37-76 (optional, unless the null settings in the map are not appropriate)
- Configuring the DSCP-to-CoS Map, page 37-77 (optional)
- Configuring the DSCP-to-DSCP-Mutation Map, page 37-78 (optional, unless the null settings in the map are not appropriate)

All the maps, except the DSCP-to-DSCP-mutation map, are globally defined and are applied to all ports.

Configuring the CoS-to-DSCP Map

You use the CoS-to-DSCP map to map CoS values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 37-12 shows the default CoS-to-DSCP map.

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.
Beginning in privileged EXEC mode, follow these steps to modify the CoS-to-DSCP map. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>mls qos map cos-dscp dscp1...dscp8</td>
<td>Modify the CoS-to-DSCP map. For dscp1...dscp8, enter eight DSCP values that correspond to CoS values 0 to 7. Separate each DSCP value with a space. The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show mls qos maps cos-dscp</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos cos-dscp global configuration command.

This example shows how to modify and display the CoS-to-DSCP map:

```
Switch(config)# mls qos map cos-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps cos-dscp

Cos-dscp map:
  cos: 0 1 2 3 4 5 6 7
  --------------------------------
  dscp: 10 15 20 25 30 35 40 45
```

Configuring the IP-Precedence-to-DSCP Map

You use the IP-precedence-to-DSCP map to map IP precedence values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 37-13 shows the default IP-precedence-to-DSCP map:

<table>
<thead>
<tr>
<th>IP Precedence Value</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.
Beginning in privileged EXEC mode, follow these steps to modify the IP-precedence-to-DSCP map. This procedure is optional.

Configuring Standard QoS

Command	**Purpose**
Step 1 | configure terminal
Enter global configuration mode.
Step 2 | mls qos map ip-prec-dscp
Modify the IP-precedence-to-DSCP map.
For `dscp1...dscp8`, enter eight DSCP values that correspond to the IP precedence values 0 to 7. Separate each DSCP value with a space.
The DSCP range is 0 to 63.
Step 3 | end
Return to privileged EXEC mode.
Step 4 | show mls qos maps ip-prec-dscp
Verify your entries.
Step 5 | copy running-config startup-config
(Optional) Save your entries in the configuration file.

To return to the default map, use the `no mls qos ip-prec-dscp` global configuration command.

This example shows how to modify and display the IP-precedence-to-DSCP map:

```
Switch(config)# mls qos map ip-prec-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps ip-prec-dscp

IpPrecedence-dscp map:
     ipprec:  0  1  2  3  4  5  6  7
-------------------------
dscp:   10 15 20 25 30 35 40 45
```

Configuring the Policed-DSCP Map

You use the policed-DSCP map to mark down a DSCP value to a new value as the result of a policing and marking action.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value.

Beginning in privileged EXEC mode, follow these steps to modify the policed-DSCP map. This procedure is optional.

Command	Purpose
Step 1 | configure terminal
Enter global configuration mode.
Step 2 | mls qos map policed-dscp `dscp-list to mark-down-dscp`
Modify the policed-DSCP map.
- For `dscp-list`, enter up to eight DSCP values separated by spaces. Then enter the `to` keyword.
- For `mark-down-dscp`, enter the corresponding policed (marked down) DSCP value.
Step 3 | end
Return to privileged EXEC mode.
Step 4 | show mls qos maps policed-dscp
Verify your entries.
Step 5 | copy running-config startup-config
(Optional) Save your entries in the configuration file.

Cisco Catalyst Switch Module 3110 and 3012 for IBM BladeCenter Software Configuration Guide

OL-12189-05

37-76
To return to the default map, use the **no mls qos policed-dscp** global configuration command.

This example shows how to map DSCP 50 to 57 to a marked-down DSCP value of 0:

Switch(config)# mls qos map policed-dscp 50 51 52 53 54 55 56 57 to 0
Switch(config)# end
Switch# show mls qos maps policed-dscp

Policed-dscp map:

<table>
<thead>
<tr>
<th>d1 :</th>
<th>d2 0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 :</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
</tr>
<tr>
<td>1 :</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>2 :</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>3 :</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>4 :</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>5 :</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>58</td>
</tr>
<tr>
<td>6 :</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

In this policed-DSCP map, the marked-down DSCP values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the marked-down value. For example, an original DSCP value of 53 corresponds to a marked-down DSCP value of 0.

Configuring the DSCP-to-CoS Map

You use the DSCP-to-CoS map to generate a CoS value, which is used to select one of the four egress queues.

Table 37-14 shows the default DSCP-to-CoS map.

<table>
<thead>
<tr>
<th>Table 37-14 Default DSCP-to-CoS Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP Value</td>
</tr>
<tr>
<td>0–7</td>
</tr>
<tr>
<td>8–15</td>
</tr>
<tr>
<td>16–23</td>
</tr>
<tr>
<td>24–31</td>
</tr>
<tr>
<td>32–39</td>
</tr>
<tr>
<td>40–47</td>
</tr>
<tr>
<td>48–55</td>
</tr>
<tr>
<td>56–63</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.
Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-CoS map. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map dscp-cos dscp-list to cos</td>
</tr>
<tr>
<td></td>
<td>• For dscp-list, enter up to eight DSCP values separated by spaces. Then enter the to keyword.</td>
</tr>
<tr>
<td></td>
<td>• For cos, enter the CoS value to which the DSCP values correspond.</td>
</tr>
<tr>
<td></td>
<td>The DSCP range is 0 to 63; the CoS range is 0 to 7.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps dscp-to-cos</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the **no mls qos dscp-cos** global configuration command.

This example shows how to map DSCP values 0, 8, 16, 24, 32, 40, 48, and 50 to CoS value 0 and to display the map:

```
Switch(config)# mls qos map dscp-cos 0 8 16 24 32 40 48 50 to 0
Switch(config)# end
Switch# show mls qos maps dscp-to-cos
Dscp-cos map:
  d1 : d2 0 1 2 3 4 5 6 7 8 9
  ---------------------------------------
  0 : 00 00 00 00 00 00 00 00 00 01
  1 : 01 01 01 01 01 00 02 02 02 02
  2 : 02 02 02 02 03 03 03 03 03 03
  3 : 03 03 00 04 04 04 04 04 04 04
  4 : 00 05 05 05 05 05 05 05 05 05
  5 : 00 06 06 06 06 07 07 07 07 07
  6 : 07 07 07 07
```

Note

In the above DSCP-to-CoS map, the CoS values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the DSCP; the d2 row specifies the least-significant digit of the DSCP. The intersection of the d1 and d2 values provides the CoS value. For example, in the DSCP-to-CoS map, a DSCP value of 08 corresponds to a CoS value of 0.

Configuring the DSCP-to-DSCP-Mutation Map

If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate one set of DSCP values to match the definition of another domain. You apply the DSCP-to-DSCP-mutation map to the receiving port (ingress mutation) at the boundary of a QoS administrative domain.

With ingress mutation, the new DSCP value overwrites the one in the packet, and QoS treats the packet with this new value. The switch sends the packet out the port with the new DSCP value.

You can configure multiple DSCP-to-DSCP-mutation maps on an ingress port. The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.
Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-DSCP-mutation map. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos map dscp-mutation</td>
<td>Modify the DSCP-to-DSCP-mutation map.</td>
</tr>
<tr>
<td>dscp-mutation-name in-dscp to out-dscp</td>
<td></td>
</tr>
<tr>
<td>• For dscp-mutation-name, enter the mutation map name. You can create more than one map by specifying a new name.</td>
<td></td>
</tr>
<tr>
<td>• For in-dscp, enter up to eight DSCP values separated by spaces. Then enter the to keyword.</td>
<td></td>
</tr>
<tr>
<td>• For out-dscp, enter a single DSCP value.</td>
<td></td>
</tr>
<tr>
<td>The DSCP range is 0 to 63.</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface interface-id</td>
<td>Specify the port to which to attach the map, and enter interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos trust dscp</td>
<td>Configure the ingress port as a DSCP-trusted port. By default, the port is not trusted.</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos dscp-mutation</td>
<td>Apply the map to the specified ingress DSCP-trusted port.</td>
</tr>
<tr>
<td>dscp-mutation-name</td>
<td>For dscp-mutation-name, enter the mutation map name specified in Step 2.</td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mls qos maps dscp-mutation</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

Step 8

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default map, use the **no mls qos dscp-mutation dscp-mutation-name** global configuration command.

This example shows how to define the DSCP-to-DSCP-mutation map. All the entries that are not explicitly configured are not modified (remains as specified in the null map):

```
Switch(config)# mls qos map dscp-mutation mutation1 1 2 3 4 5 6 7 to 0
Switch(config)# mls qos map dscp-mutation mutation1 8 9 10 11 12 13 to 10
Switch(config)# mls qos map dscp-mutation mutation1 20 21 22 to 20
Switch(config)# mls qos map dscp-mutation mutation1 30 31 32 33 34 to 30
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation mutation1
Switch(config-if)# end
Switch# show mls qos maps dscp-mutation
Dscp-dscp mutation map:
mutation:
  d1 : d2 0 1 2 3 4 5 6 7 8 9
  -----------------------------
  0 : 00 00 00 00 00 00 00 00 10 10
  1 : 10 10 10 10 14 15 16 17 18 19
  2 : 20 20 20 23 24 25 26 27 28 29
  3 : 30 30 30 30 35 36 37 38 39
  4 : 40 41 42 43 44 45 46 47 48 49
  5 : 50 51 52 53 54 55 56 57 58 59
  6 : 60 61 62 63
```
Note

In the above DSCP-to-DSCP-mutation map, the mutated values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the mutated value. For example, a DSCP value of 12 corresponds to a mutated value of 10.

Configuring Ingress Queue Characteristics

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next sections. You will need to make decisions about these characteristics:

- Which packets are assigned (by DSCP or CoS value) to each queue?
- What drop percentage thresholds apply to each queue, and which CoS or DSCP values map to each threshold?
- How much of the available buffer space is allocated between the queues?
- How much of the available bandwidth is allocated between the queues?
- Is there traffic (such as voice) that should be given high priority?

These sections contain this configuration information:

- Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds, page 37-81 (optional)
- Allocating Buffer Space Between the Ingress Queues, page 37-82 (optional)
- Allocating Bandwidth Between the Ingress Queues, page 37-82 (optional)
- Configuring the Ingress Priority Queue, page 37-83 (optional)
Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds

You can prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues and adjusting the queue thresholds so that packets with lower priorities are dropped.

Beginning in privileged EXEC mode, follow these steps to map DSCP or CoS values to an ingress queue and to set WTD thresholds. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos srr-queue input dscp-map queue queue-id threshold threshold-id dscp1...dscp8</td>
</tr>
<tr>
<td>or</td>
<td>mls qos srr-queue input cos-map queue queue-id threshold threshold-id cos1...cos8</td>
</tr>
<tr>
<td></td>
<td>Map DSCP or CoS values to an ingress queue and to a threshold ID. By default, DSCP values 0–39 and 48–63 are mapped to queue 1 and threshold 1. DSCP values 40–47 are mapped to queue 2 and threshold 1. By default, CoS values 0–4, 6, and 7 are mapped to queue 1 and threshold 1. CoS value 5 is mapped to queue 2 and threshold 1.</td>
</tr>
<tr>
<td></td>
<td>• For queue-id, the range is 1 to 2.</td>
</tr>
<tr>
<td></td>
<td>• For threshold-id, the range is 1 to 3. The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state.</td>
</tr>
<tr>
<td></td>
<td>• For dscp1...dscp8, enter up to eight values, and separate each value with a space. The range is 0 to 63.</td>
</tr>
<tr>
<td></td>
<td>• For cos1...cos8, enter up to eight values, and separate each value with a space. The range is 0 to 7.</td>
</tr>
<tr>
<td>Step 3</td>
<td>mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2</td>
</tr>
<tr>
<td></td>
<td>Assign the two WTD threshold percentages for (threshold 1 and 2) to an ingress queue. The default, both thresholds are set to 100 percent.</td>
</tr>
<tr>
<td></td>
<td>• For queue-id, the range is 1 to 2.</td>
</tr>
<tr>
<td></td>
<td>• For threshold-percentage1 threshold-percentage2, the range is 1 to 100. Separate each value with a space.</td>
</tr>
<tr>
<td></td>
<td>Each threshold value is a percentage of the total number of queue descriptors allocated for the queue.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos maps</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>The DSCP input queue threshold map appears as a matrix. The d1 column specifies the most-significant digit of the DSCP number; the d2 row specifies the least-significant digit in the DSCP number. The intersection of the d1 and the d2 values provides the queue ID and threshold ID; for example, queue 2 and threshold 1 (02-01).</td>
</tr>
<tr>
<td></td>
<td>The CoS input queue threshold map shows the CoS value in the top row and the corresponding queue ID and threshold ID in the second row; for example, queue 2 and threshold 2 (2-2).</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default CoS input queue threshold map or the default DSCP input queue threshold map, use the **no mls qos srr-queue input cos-map** or the **no mls qos srr-queue input dscp-map** global configuration command. To return to the default WTD threshold percentages, use the **no mls qos srr-queue input threshold queue-id** global configuration command.
This example shows how to map DSCP values 0 to 6 to ingress queue 1 and to threshold 1 with a drop threshold of 50 percent. It maps DSCP values 20 to 26 to ingress queue 1 and to threshold 2 with a drop threshold of 70 percent:

```
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 1 0 1 2 3 4 5 6
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 20 21 22 23 24 25 26
Switch(config)# mls qos srr-queue input threshold 1 50 70
```

In this example, the DSCP values (0 to 6) are assigned the WTD threshold of 50 percent and will be dropped sooner than the DSCP values (20 to 26) assigned to the WTD threshold of 70 percent.

Allocating Buffer Space Between the Ingress Queues

You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the two queues. The buffer and the bandwidth allocation control how much data can be buffered before packets are dropped.

Beginning in privileged EXEC mode, follow these steps to allocate the buffers between the ingress queues. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos srr-queue input buffers percentage1 percentage2</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos interface buffer or show mls qos input-queue</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no mls qos srr-queue input buffers` global configuration command.

This example shows how to allocate 60 percent of the buffer space to ingress queue 1 and 40 percent of the buffer space to ingress queue 2:

```
Switch(config)# mls qos srr-queue input buffers 60 40
```

Allocating Bandwidth Between the Ingress Queues

You need to specify how much of the available bandwidth is allocated between the ingress queues. The ratio of the weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue. The bandwidth and the buffer allocation control how much data can be buffered before packets are dropped. On ingress queues, SRR operates only in shared mode.
Beginning in privileged EXEC mode, follow these steps to allocate bandwidth between the ingress queues. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos srr-queue input bandwidth weight1 weight2</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos interface queueing</td>
</tr>
<tr>
<td>or</td>
<td>show mls qos input-queue</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no mls qos srr-queue input bandwidth global configuration command.

This example shows how to assign the ingress bandwidth to the queues. Priority queueing is disabled, and the shared bandwidth ratio allocated to queue 1 is 25/(25+75) and to queue 2 is 75/(25+75):

Switch(config)# mls qos srr-queue input priority-queue 2 bandwidth 0
Switch(config)# mls qos srr-queue input bandwidth 25 75

Configuring the Ingress Priority Queue

You should use the priority queue only for traffic that needs to be expedited (for example, voice traffic, which needs minimum delay and jitter).

The priority queue is guaranteed part of the bandwidth to reduce the delay and jitter under heavy network traffic on an oversubscribed ring (when there is more traffic than the backplane can carry, and the queues are full and dropping frames).

SRR services the priority queue for its configured weight as specified by the bandwidth keyword in the mls qos srr-queue input priority-queue queue-id bandwidth weight global configuration command. Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the mls qos srr-queue input bandwidth weight1 weight2 global configuration command.
Chapter 37 Configuring QoS

Configuring Standard QoS

Beginning in privileged EXEC mode, follow these steps to configure the priority queue. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | mls qos srr-queue input priority-queue queue-id bandwidth weight Assign a queue as the priority queue and guarantee bandwidth on the stack or internal ring if the ring is congested. By default, the priority queue is queue 2, and 10 percent of the bandwidth is allocated to it.
 1. For queue-id, the range is 1 to 2.
 2. For bandwidth weight, assign the bandwidth percentage of the stack or internal ring. The range is 0 to 40. The amount of bandwidth that can be guaranteed is restricted because a large value affects the entire ring and can degrade the switch or stack performance. |
| Step 3 | end Return to privileged EXEC mode. |
| Step 4 | show mls qos interface queueing or show mls qos input-queue Verify your entries. |
| Step 5 | copy running-config startup-config (Optional) Save your entries in the configuration file. |

To return to the default setting, use the no mls qos srr-queue input priority-queue queue-id global configuration command. To disable priority queuing, set the bandwidth weight to 0, for example, mls qos srr-queue input priority-queue queue-id bandwidth 0.

This example shows how to assign the ingress bandwidths to the queues. Queue 1 is the priority queue with 10 percent of the bandwidth allocated to it. The bandwidth ratios allocated to queues 1 and 2 is 4/(4+4). SRR services queue 1 (the priority queue) first for its configured 10 percent bandwidth. Then SRR equally shares the remaining 90 percent of the bandwidth between queues 1 and 2 by allocating 45 percent to each queue:

Switch(config)# mls qos srr-queue input priority-queue 1 bandwidth 10
Switch(config)# mls qos srr-queue input bandwidth 4 4

Configuring Egress Queue Characteristics

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next sections. You will need to make decisions about these characteristics:

- Which packets are mapped by DSCP or CoS value to each queue and threshold ID?
- What drop percentage thresholds apply to the queue-set (four egress queues per port), and how much reserved and maximum memory is needed for the traffic type?
- How much of the fixed buffer space is allocated to the queue-set?
- Does the bandwidth of the port need to be rate limited?
- How often should the egress queues be serviced and which technique (shaped, shared, or both) should be used?
These sections contain this configuration information:

- **Configuration Guidelines**, page 37-85
- **Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set**, page 37-85 (optional)
- **Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID**, page 37-87 (optional)
- **Configuring SRR Shaped Weights on Egress Queues**, page 37-89 (optional)
- **Configuring SRR Shared Weights on Egress Queues**, page 37-90 (optional)
- **Configuring the Egress Expedite Queue**, page 37-91 (optional)
- **Limiting the Bandwidth on an Egress Interface**, page 37-91 (optional)

Configuration Guidelines

Follow these guidelines when the expedite queue is enabled or the egress queues are serviced based on their SRR weights:

- If the egress expedite queue is enabled, it overrides the SRR shaped and shared weights for queue 1.
- If the egress expedite queue is disabled and the SRR shaped and shared weights are configured, the shaped mode overrides the shared mode for queue 1, and SRR services this queue in shaped mode.
- If the egress expedite queue is disabled and the SRR shaped weights are not configured, SRR services this queue in shared mode.

Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set

You can guarantee the availability of buffers, set WTD thresholds, and configure the maximum allocation for a queue-set by using the `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold` global configuration command.

Each threshold value is a percentage of the queue’s allocated memory, which you specify by using the `mls qos queue-set output qset-id buffers allocation1 ... allocation4` global configuration command. The queues use WTD to support distinct drop percentages for different traffic classes.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.
Beginning in privileged EXEC mode, follow these steps to configure the memory allocation and to drop thresholds for a queue-set. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Allocate buffers to a queue-set.</td>
</tr>
<tr>
<td>mls qos queue-set output qset-id buffers allocation1 ... allocation4</td>
<td>By default, all allocation values are equally mapped among the four queues (25, 25, 25, 25). Each queue has 1/4 of the buffer space.</td>
</tr>
<tr>
<td></td>
<td>• For qset-id, enter the ID of the queue-set. The range is 1 to 2. Each port belongs to a queue-set, which defines all the characteristics of the four egress queues per port.</td>
</tr>
<tr>
<td></td>
<td>• For allocation1 ... allocation4, specify four percentages, one for each queue in the queue-set. For allocation1, allocation3, and allocation4, the range is 0 to 99. For allocation2, the range is 1 to 100 (including the CPU buffer).</td>
</tr>
<tr>
<td>Step 3</td>
<td>Allocate buffers according to the importance of the traffic; for example, give a large percentage of the buffer to the queue with the highest-priority traffic.</td>
</tr>
<tr>
<td>mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold</td>
<td>Configure the WTD thresholds, guarantee the availability of buffers, and configure the maximum memory allocation for the queue-set (four egress queues per port).</td>
</tr>
<tr>
<td></td>
<td>By default, the WTD thresholds for queues 1, 3, and 4 are set to 100 percent. The thresholds for queue 2 are set to 200 percent. The reserved thresholds for queues 1, 2, 3, and 4 are set to 50 percent. The maximum thresholds for all queues are set to 400 percent.</td>
</tr>
<tr>
<td></td>
<td>• For qset-id, enter the ID of the queue-set specified in Step 2. The range is 1 to 2.</td>
</tr>
<tr>
<td></td>
<td>• For queue-id, enter the specific queue in the queue-set on which the command is performed. The range is 1 to 4.</td>
</tr>
<tr>
<td></td>
<td>• For drop-threshold1 drop-threshold2, specify the two WTD thresholds expressed as a percentage of the queue’s allocated memory. The range is 1 to 3200 percent.</td>
</tr>
<tr>
<td></td>
<td>• For reserved-threshold, enter the amount of memory to be guaranteed (reserved) for the queue expressed as a percentage of the allocated memory. The range is 1 to 100 percent.</td>
</tr>
<tr>
<td></td>
<td>• For maximum-threshold, enable a queue in the full condition to obtain more buffers than are reserved for it. This is the maximum memory the queue can have before the packets are dropped if the common pool is not empty. The range is 1 to 3200 percent.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specify the port of the outbound traffic, and enter interface configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Map the port to a queue-set.</td>
</tr>
<tr>
<td>queue-set qset-id</td>
<td>For qset-id, enter the ID of the queue-set specified in Step 2. The range is 1 to 2. The default is 1.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Standard QoS

To return to the default setting

Use the `no mls qos queue-set output qset-id buffers` global configuration command. To return to the default WTD threshold percentages, use the `no mls qos queue-set output qset-id threshold [queue-id]` global configuration command.

This example shows how to map a port to queue-set 2. It allocates 40 percent of the buffer space to egress queue 1 and 20 percent to egress queues 2, 3, and 4. It configures the drop thresholds for queue 2 to 40 and 60 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory that this queue can have before packets are dropped:

```plaintext
Switch(config)# mls qos queue-set output 2 buffers 40 20 20 20
Switch(config)# mls qos queue-set output 2 threshold 2 40 60 100 200
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# queue-set 2
```

Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID

You can prioritize traffic by placing packets with particular DSCPs or costs of service into certain queues and adjusting the queue thresholds so that packets with lower priorities are dropped.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td><code>show mls qos interface [interface-id]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>buffers</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to map DSCP or CoS values to an egress queue and to a threshold ID. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos srr-queue output dscp-map queue queue-id threshold threshold-id dscp1...dscp8</td>
</tr>
<tr>
<td>or</td>
<td>mls qos srr-queue output cos-map queue queue-id threshold threshold-id cos1...cos8</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default DSCP output queue threshold map or the default CoS output queue threshold map, use the no mls qos srr-queue output dscp-map or the no mls qos srr-queue output cos-map global configuration command.

This example shows how to map DSCP values 10 and 11 to egress queue 1 and to threshold 2:

Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 2 10 11
Configuring Standard QoS

Configuring SRR Shaped Weights on Egress Queues

You can specify how much of the available bandwidth is allocated to each queue. The ratio of the weights is the ratio of frequency in which the SRR scheduler sends packets from each queue.

You can configure the egress queues for shaped or shared weights, or both. Use shaping to smooth bursty traffic or to provide a smoother output over time. For information about shaped weights, see the “SRR Shaping and Sharing” section on page 37-15. For information about shared weights, see the “Configuring SRR Shared Weights on Egress Queues” section on page 37-90.

Beginning in privileged EXEC mode, follow these steps to assign the shaped weights and to enable bandwidth shaping on the four egress queues mapped to a port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>srr-queue bandwidth shape weight1 weight2 weight3 weight4</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface interface-id queueing</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no srr-queue bandwidth shape interface configuration command.

This example shows how to configure bandwidth shaping on queue 1. Because the weight ratios for queues 2, 3, and 4 are set to 0, these queues operate in shared mode. The bandwidth weight for queue 1 is 1/8, which is 12.5 percent:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth shape 8 0 0 0
```
Configuring SRR Shared Weights on Egress Queues

In shared mode, the queues share the bandwidth among them according to the configured weights. The bandwidth is guaranteed at this level but not limited to it. For example, if a queue empties and does not require a share of the link, the remaining queues can expand into the unused bandwidth and share it among them. With sharing, the ratio of the weights controls the frequency of dequeuing; the absolute values are meaningless.

Note
The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to assign the shared weights and to enable bandwidth sharing on the four egress queues mapped to a port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>srr-queue bandwidth share weight1 weight2 weight3 weight4</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface interface-id queueing</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no srr-queue bandwidth share interface configuration command.

This example shows how to configure the weight ratio of the SRR scheduler running on an egress port. Four queues are used, and the bandwidth ratio allocated for each queue in shared mode is 1/(1+2+3+4), 2/(1+2+3+4), 3/(1+2+3+4), and 4/(1+2+3+4), which is 10 percent, 20 percent, 30 percent, and 40 percent for queues 1, 2, 3, and 4. This means that queue 4 has four times the bandwidth of queue 1, twice the bandwidth of queue 2, and one-and-a-third times the bandwidth of queue 3.

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth share 1 2 3 4
Configuring the Egress Expedite Queue

You can ensure that certain packets have priority over all others by queuing them in the egress expedite queue. SRR services this queue until it is empty before servicing the other queues.

Beginning in privileged EXEC mode, follow these steps to enable the egress expedite queue. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mls qos</td>
<td>Enable QoS on a switch.</td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specify the egress port, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 priority-queue out</td>
<td>Enable the egress expedite queue, which is disabled by default.</td>
</tr>
<tr>
<td></td>
<td>When you configure this command, the SRR weight and queue size ratios</td>
</tr>
<tr>
<td></td>
<td>are affected because there is one fewer queue participating in SRR.</td>
</tr>
<tr>
<td></td>
<td>This means that weight1 in the srr-queue bandwidth shape or the srr-queue</td>
</tr>
<tr>
<td></td>
<td>bandwidth share command is ignored (not used in the ratio calculation).</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the egress expedite queue, use the no priority-queue out interface configuration command.

This example shows how to enable the egress expedite queue when the SRR weights are configured. The egress expedite queue overrides the configured SRR weights.

```plaintext
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# srr-queue bandwidth shape 25 0 0 0
Switch(config-if)# srr-queue bandwidth share 30 20 25 25
Switch(config-if)# priority-queue out
Switch(config-if)# end
```

Limiting the Bandwidth on an Egress Interface

You can limit the bandwidth on an egress port. For example, if a customer pays only for a small percentage of a high-speed link, you can limit the bandwidth to that amount.

Note: The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.
Beginning in privileged EXEC mode, follow these steps to limit the bandwidth on an egress port. This procedure is optional.

To return to the default setting, use the `no srr-queue bandwidth limit` interface configuration command.

This example shows how to limit the bandwidth on a port to 80 percent:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth limit 80
```

When you configure this command to 80 percent, the port is idle 20 percent of the time. The line rate drops to 80 percent of the connected speed, which is 800 Mb/s. These values are not exact because the hardware adjusts the line rate in increments of six.

Displaying Standard QoS Information

Beginning with Cisco IOS Release 12.2(52)SE, the commands listed in Table 37-15 apply to both IPv4 and IPv6 traffic when the dual IPv4 and IPv6 SDM templates are used.

To display standard QoS information, use one or more of the privileged EXEC commands in Table 37-15:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show class-map [class-map-name]</code></td>
<td>Display QoS class maps, which define the match criteria to classify traffic.</td>
</tr>
<tr>
<td><code>show mls qos</code></td>
<td>Display global QoS configuration information.</td>
</tr>
<tr>
<td><code>show mls qos aggregate-policer [aggregate-policer-name]</code></td>
<td>Display the aggregate policer configuration.</td>
</tr>
<tr>
<td><code>show mls qos input-queue</code></td>
<td>Display QoS settings for the ingress queues.</td>
</tr>
<tr>
<td>`show mls qos interface [interface-id] [buffers</td>
<td>policers</td>
</tr>
</tbody>
</table>
Table 37-15 Commands for Displaying Standard QoS Information (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mls qos maps</code> [cos-dscp</td>
<td>cos-input-q</td>
</tr>
<tr>
<td><code>show mls qos queue-set</code> [qset-id]</td>
<td>Display QoS settings for the egress queues.</td>
</tr>
<tr>
<td><code>show mls qos vlan</code> vlan-id</td>
<td>Display the policy maps attached to the specified SVI.</td>
</tr>
<tr>
<td><code>show policy-map</code> [policy-map-name [class class-map-name]]</td>
<td>Display QoS policy maps, which define classification criteria for incoming traffic. Note Do not use the <code>show policy-map interface</code> privileged EXEC command to display classification information for incoming traffic. The <code>control-plane</code> and <code>interface</code> keywords are not supported, and the statistics shown in the display should be ignored.</td>
</tr>
<tr>
<td>`show running-config</td>
<td>include rewrite`</td>
</tr>
</tbody>
</table>
Configuring EtherChannels and Link-State Tracking

This chapter describes how to configure EtherChannels on Layer 2 and Layer 3 ports on the switch. EtherChannel provides fault-tolerant high-speed links between switches, routers, and servers. You can use it to increase the bandwidth between the wiring closets and the data center, and you can deploy it anywhere in the network where bottlenecks are likely to occur. EtherChannel provides automatic recovery for the loss of a link by redistributing the load across the remaining links. If a link fails, EtherChannel redirects traffic from the failed link to the remaining links in the channel without intervention. This chapter also describes how to configure link-state tracking. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding EtherChannels, page 38-1
- Configuring EtherChannels, page 38-10
- Displaying EtherChannel, PAgP, and LACP Status, page 38-23
- Understanding Link-State Tracking, page 38-23
- Configuring Link-State Tracking, page 38-25

Understanding EtherChannels

These sections describe how EtherChannels work:

- EtherChannel Overview, page 38-2
- Port-Channel Interfaces, page 38-4
- Port Aggregation Protocol, page 38-5
- Link Aggregation Control Protocol, page 38-6
- EtherChannel On Mode, page 38-7
- Load-Balancing and Forwarding Methods, page 38-8
- EtherChannel and Switch Stacks, page 38-9
EtherChannel Overview

An EtherChannel consists of individual Gigabit Ethernet links bundled into a single logical link as shown in Figure 38-1.

The EtherChannel provides full-duplex bandwidth up to 8 Gb/s (Gigabit EtherChannel) or 80 Gb/s (10-Gigabit EtherChannel) between your switch and another switch or host.

Each EtherChannel can consist of up to eight compatibly configured Ethernet ports. All ports in each EtherChannel must be configured as either Layer 2 or Layer 3 ports. The number of EtherChannels is limited to 64. For more information, see the “EtherChannel Configuration Guidelines” section on page 38-11. The EtherChannel Layer 3 ports are made up of routed ports. Routed ports are physical ports configured to be in Layer 3 mode by using the `no switchport` interface configuration command. For more information, see the Chapter 11, “Configuring Interface Characteristics.”

You can configure an EtherChannel in one of these modes: Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), or On. Configure both ends of the EtherChannel in the same mode:

- When you configure one end of an EtherChannel in either PAgP or LACP mode, the system negotiates with the other end of the channel to determine which ports should become active. If the remote port cannot negotiate an EtherChannel, the local port is put into an independent state and continues to carry data traffic as would any other single link. The port configuration does not change, but the port does not participate in the EtherChannel.
- When you configure an EtherChannel in the on mode, no negotiations take place. The switch forces all compatible ports to become active in the EtherChannel. The other end of the channel (on the other switch) must also be configured in the on mode; otherwise, packet loss can occur.

You can create an EtherChannel on a standalone switch, on a single switch in the stack, or on multiple switches in the stack (known as cross-stack EtherChannel). See Figure 38-2 and Figure 38-3.

If a link within an EtherChannel fails, traffic previously carried over that failed link moves to the remaining links within the EtherChannel. If traps are enabled on the switch, a trap is sent for a failure that identifies the switch, the EtherChannel, and the failed link. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link of the EtherChannel.
Chapter 38 Configuring EtherChannels and Link-State Tracking

Understanding EtherChannels

Figure 38-2 Single-Switch EtherChannel

Figure 38-3 Cross-Stack EtherChannel
Port-Channel Interfaces

When you create an EtherChannel, a port-channel logical interface is involved:

- With Layer 2 ports, use the `channel-group` interface configuration command to dynamically create the port-channel logical interface.

 You also can use the `interface port-channel port-channel-number` global configuration command to manually create the port-channel logical interface, but then you must use the `channel-group channel-group-number` command to bind the logical interface to a physical port. The `channel-group-number` can be the same as the `port-channel-number`, or you can use a new number. If you use a new number, the `channel-group` command dynamically creates a new port channel.

- With Layer 3 ports, you should manually create the logical interface by using the `interface port-channel` global configuration command followed by the `no switchport` interface configuration command. Then you manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command.

For both Layer 2 and Layer 3 ports, the `channel-group` command binds the physical port and the logical interface together as shown in Figure 38-4.

Each EtherChannel has a port-channel logical interface numbered from 1 to 64. This port-channel interface number corresponds to the one specified with the `channel-group` interface configuration command.

Figure 38-4 Relationship of Physical Ports, Logical Port Channels, and Channel Groups

After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical ports assigned to the port-channel interface. Configuration changes applied to the physical port affect only the port where you apply the configuration. To change the parameters of all ports in an EtherChannel, apply configuration commands to the port-channel interface, for example, spanning-tree commands or commands to configure a Layer 2 EtherChannel as a trunk.
Port Aggregation Protocol

The Port Aggregation Protocol (PAgP) is a Cisco-proprietary protocol that can be run only on Cisco switches and on those switches licensed by vendors to support PAgP. PAgP facilitates the automatic creation of EtherChannels by exchanging PAgP packets between Ethernet ports. You can use PAgP only in single-switch EtherChannel configurations; PAgP cannot be enabled on cross-stack EtherChannels. For more information, see the “EtherChannel Configuration Guidelines” section on page 38-11.

By using PAgP, the switch or switch stack learns the identity of partners capable of supporting PAgP and the capabilities of each port. It then dynamically groups similarly configured ports (on a single switch in the stack) into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, PAgP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, PAgP adds the group to the spanning tree as a single switch port.

PAgP Modes

Table 38-1 shows the user-configurable EtherChannel PAgP modes for the channel-group interface configuration command.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Places a port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This setting minimizes the transmission of PAgP packets. This mode is not supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
<tr>
<td>desirable</td>
<td>Places a port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This mode is not supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
</tbody>
</table>

Switch ports exchange PAgP packets only with partner ports configured in the auto or desirable modes. Ports configured in the on mode do not exchange PAgP packets.

Both the auto and desirable modes enable ports to negotiate with partner ports to form an EtherChannel based on criteria such as port speed and, for Layer 2 EtherChannels, trunking state and VLAN numbers. Ports can form an EtherChannel when they are in different PAgP modes as long as the modes are compatible. For example:

- A port in the desirable mode can form an EtherChannel with another port that is in the desirable or auto mode.

- A port in the auto mode can form an EtherChannel with another port in the desirable mode.

A port in the auto mode cannot form an EtherChannel with another port that is also in the auto mode because neither port starts PAgP negotiation.

If your switch is connected to a partner that is PAgP-capable, you can configure the switch port for nonsilent operation by using the non-silent keyword. If you do not specify non-silent with the auto or desirable mode, silent mode is assumed.
Use the silent mode when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port connected to a silent partner prevents that switch port from ever becoming operational. However, the silent setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.

PAgP Interaction with Virtual Switches and Dual-Active Detection

A virtual switch can be two or more Catalyst 6500 core switches connected by virtual switch links (VSLs) that carry control and data traffic between them. One of the switches is in active mode. The others are in standby mode. For redundancy, remote switches are connected to the virtual switch by remote satellite links (RSLs).

If the VSL between two switches fails, one switch does not know the status of the other. Both switches could change to the active mode, causing a *dual-active situation* in the network with duplicate configurations (including duplicate IP addresses and bridge identifiers). The network might go down.

To prevent a dual-active situation, the core switches send PAgP protocol data units (PDUs) through the RSLs to the remote switches. The PAgP PDUs identify the active switch, and the remote switches forward the PDUs to core switches so that the core switches are in sync. If the active switch fails or resets, the standby switch takes over as the active switch. If the VSL goes down, one core switch knows the status of the other and does not change state.

PAgP Interaction with Other Features

The Dynamic Trunking Protocol (DTP) and the Cisco Discovery Protocol (CDP) send and receive packets over the physical ports in the EtherChannel. Trunk ports send and receive PAgP protocol data units (PDUs) on the lowest numbered VLAN.

In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel. For Layer 3 EtherChannels, the MAC address is allocated by the stack master as soon as the interface is created (through the `interface port-channel` global configuration command).

PAgP sends and receives PAgP PDUs only from ports that are up and have PAgP enabled for the auto or desirable mode.

Link Aggregation Control Protocol

The LACP is defined in IEEE 802.3ad and enables Cisco switches to manage Ethernet channels between switches that conform to the IEEE 802.3ad protocol. LACP facilitates the automatic creation of EtherChannels by exchanging LACP packets between Ethernet ports.

By using LACP, the switch or switch stack learns the identity of partners capable of supporting LACP and the capabilities of each port. It then dynamically groups similarly configured ports into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, LACP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, LACP adds the group to the spanning tree as a single switch port.
LACP Modes

Table 38-2 shows the user-configurable EtherChannel LACP modes for the channel-group interface configuration command.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Places a port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.</td>
</tr>
<tr>
<td>passive</td>
<td>Places a port into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation. This setting minimizes the transmission of LACP packets.</td>
</tr>
</tbody>
</table>

Both the active and passive LACP modes enable ports to negotiate with partner ports to an EtherChannel based on criteria such as port speed and, for Layer 2 EtherChannels, trunking state and VLAN numbers.

Ports can form an EtherChannel when they are in different LACP modes as long as the modes are compatible. For example:

- A port in the active mode can form an EtherChannel with another port that is in the active or passive mode.
- A port in the passive mode cannot form an EtherChannel with another port that is also in the passive mode because neither port starts LACP negotiation.

LACP Interaction with Other Features

The DTP and the CDP send and receive packets over the physical ports in the EtherChannel. Trunk ports send and receive LACP PDUs on the lowest numbered VLAN.

In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel. For Layer 3 EtherChannels, the MAC address is allocated by the stack master as soon as the interface is created through the interface port-channel global configuration command.

LACP sends and receives LACP PDUs only from ports that are up and have LACP enabled for the active or passive mode.

EtherChannel On Mode

EtherChannel on mode can be used to manually configure an EtherChannel. The on mode forces a port to join an EtherChannel without negotiations. The on mode can be useful if the remote device does not support PAgP or LACP. In the on mode, a usable EtherChannel exists only when the switches at both ends of the link are configured in the on mode.

Ports that are configured in the on mode in the same channel group must have compatible port characteristics, such as speed and duplex. Ports that are not compatible are suspended, even though they are configured in the on mode.
Understanding EtherChannels

Caution

You should use care when using the on mode. This is a manual configuration, and ports on both ends of the EtherChannel must have the same configuration. If the group is misconfigured, packet loss or spanning-tree loops can occur.

Load-Balancing and Forwarding Methods

EtherChannel balances the traffic load across the links in a channel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel. EtherChannel load-balancing can use MAC addresses or IP addresses, source or destination addresses, or both source and destination addresses. The selected mode applies to all EtherChannels configured on the switch. You configure the load-balancing and forwarding method by using the port-channel load-balance global configuration command.

With source-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the source-MAC address of the incoming packet. Therefore, to provide load-balancing, packets from different hosts use different ports in the channel, but packets from the same host use the same port in the channel.

With destination-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the destination host’s MAC address of the incoming packet. Therefore, packets to the same destination are forwarded over the same port, and packets to a different destination are sent on a different port in the channel.

With source-and-destination MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on both the source and destination MAC addresses. This forwarding method, a combination source-MAC and destination-MAC address forwarding methods of load distribution, can be used if it is not clear whether source-MAC or destination-MAC address forwarding is better suited on a particular switch. With source-and-destination MAC-address forwarding, packets sent from host A to host B, host A to host C, and host C to host B could all use different ports in the channel.

With source-IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on the source-IP address of the incoming packet. Therefore, to provide load-balancing, packets from different IP addresses use different ports in the channel, but packets from the same IP address use the same port in the channel.

With destination-IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on the destination-IP address of the incoming packet. Therefore, to provide load-balancing, packets from the same IP source address sent to different IP destination addresses could be sent on different ports in the channel. But packets sent from different source IP addresses to the same destination IP address are always sent on the same port in the channel.

With source-and-destination IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on both the source and destination IP addresses of the incoming packet. This forwarding method, a combination of source-IP and destination-IP address-based forwarding, can be used if it is not clear whether source-IP or destination-IP address-based forwarding is better suited on a particular switch. In this method, packets sent from the IP address A to IP address B, from IP address A to IP address C, and from IP address C to IP address B could all use different ports in the channel.

Different load-balancing methods have different advantages, and the choice of a particular load-balancing method should be based on the position of the switch in the network and the kind of traffic that needs to be load-distributed. In Figure 38-5, an EtherChannel of sixteen blade servers communicates with a router. Because the router is a single-MAC-address device, source-based
forwarding on the switch EtherChannel ensures that the switch uses all available bandwidth to the router. The router is configured for destination-based forwarding because the large number of workstations ensures that the traffic is evenly distributed from the router EtherChannel.

Use the option that provides the greatest variety in your configuration. For example, if the traffic on a channel is going only to a single MAC address, using the destination-MAC address always chooses the same link in the channel. Using source addresses or IP addresses might result in better load-balancing.

Figure 38-5 Load Distribution and Forwarding Methods

EtherChannel and Switch Stacks

If a stack member that has ports participating in an EtherChannel fails or leaves the stack, the stack master removes the failed stack member switch ports from the EtherChannel. The remaining ports of the EtherChannel, if any, continue to provide connectivity.

When a switch is added to an existing stack, the new switch receives the running configuration from the stack master and updates itself with the EtherChannel-related stack configuration. The stack member also receives the operational information (the list of ports that are up and are members of a channel).

When two stacks merge that have EtherChannels configured between them, self-looped ports result. Spanning tree detects this condition and acts accordingly. Any PAgP or LACP configuration on a winning switch stack is not affected, but the PAgP or LACP configuration on the losing switch stack is lost after the stack reboots.
With PAgP, if the stack master fails or leaves the stack, a new stack master is elected. A spanning-tree reconvergence is not triggered unless there is a change in the EtherChannel bandwidth. The new stack master synchronizes the configuration of the stack members to that of the stack master. The PAgP configuration is not affected after a stack master change unless the EtherChannel has ports residing on the old stack master.

With LACP, the system-id uses the stack MAC address from the stack master, and if the stack master changes, the LACP system-id can change. If the LACP system-id changes, the entire EtherChannel will flap, and there will be an STP reconvergence. Use the stack-mac persistent timer command to control whether or not the stack MAC address changes during a master failover.

For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”

Configuring EtherChannels

These sections contain this configuration information:

- Default EtherChannel Configuration, page 38-10
- EtherChannel Configuration Guidelines, page 38-11
- Configuring Layer 2 EtherChannels, page 38-12 (required)
- Configuring Layer 3 EtherChannels, page 38-15 (required)
- Configuring EtherChannel Load-Balancing, page 38-18 (optional)
- Configuring the PAgP Learn Method and Priority, page 38-19 (optional)
- Configuring LACP Hot-Standby Ports, page 38-20 (optional)

Note

Make sure that the ports are correctly configured. For more information, see the “EtherChannel Configuration Guidelines” section on page 38-11.

Note

After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical ports assigned to the port-channel interface, and configuration changes applied to the physical port affect only the port where you apply the configuration.

Default EtherChannel Configuration

Table 38-3 shows the default EtherChannel configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel groups</td>
<td>None assigned.</td>
</tr>
<tr>
<td>Port-channel logical interface</td>
<td>None defined.</td>
</tr>
<tr>
<td>PAgP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>PAgP learn method</td>
<td>Aggregate-port learning on all ports.</td>
</tr>
<tr>
<td>PAgP priority</td>
<td>128 on all ports.</td>
</tr>
</tbody>
</table>
EtherChannel Configuration Guidelines

If improperly configured, some EtherChannel ports are automatically disabled to avoid network loops and other problems. Follow these guidelines to avoid configuration problems:

- Do not try to configure more than 48 EtherChannels on the switch.
- Configure a PAgP EtherChannel with up to eight Ethernet ports of the same type.
- Configure a LACP EtherChannel with up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.
- Configure all ports in an EtherChannel to operate at the same speeds and duplex modes.
- Enable all ports in an EtherChannel. A port in an EtherChannel that is disabled by using the `shutdown` interface configuration command is treated as a link failure, and its traffic is transferred to one of the remaining ports in the EtherChannel.
- When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, you must also make the changes to all ports in the group:
 - Allowed-VLAN list
 - Spanning-tree path cost for each VLAN
 - Spanning-tree port priority for each VLAN
 - Spanning-tree Port Fast setting
- Do not configure a port to be a member of more than one EtherChannel group.
- Do not configure an EtherChannel in both the PAgP and LACP modes. EtherChannel groups running PAgP and LACP can coexist on the same switch or on different switches in the stack. Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate.
- Do not configure a Switched Port Analyzer (SPAN) destination port as part of an EtherChannel.
- Do not configure a secure port as part of an EtherChannel or the reverse.
- Do not configure a private-VLAN port as part of an EtherChannel.
- Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x on an EtherChannel port, an error message appears, and IEEE 802.1x is not enabled.
• If EtherChannels are configured on switch interfaces, remove the EtherChannel configuration from the interfaces before globally enabling IEEE 802.1x on a switch by using the `dot1x system-auth-control` global configuration command.

• Do not enable link-state tracking on individual interfaces that will be part of a downstream Etherchannel interface.

• For Layer 2 EtherChannels:
 - Assign all ports in the EtherChannel to the same VLAN, or configure them as trunks. Ports with different native VLANs cannot form an EtherChannel.
 - If you configure an EtherChannel from trunk ports, verify that the trunking mode is the same on all the trunks. Inconsistent trunk modes on EtherChannel ports can have unexpected results.
 - An EtherChannel supports the same allowed range of VLANs on all the ports in a trunking Layer 2 EtherChannel. If the allowed range of VLANs is not the same, the ports do not form an EtherChannel even when PAgP is set to the `auto` or `desirable` mode.
 - Ports with different spanning-tree path costs can form an EtherChannel if they are otherwise compatibly configured. Setting different spanning-tree path costs does not, by itself, make ports incompatible for the formation of an EtherChannel.

• For Layer 3 EtherChannels, assign the Layer 3 address to the port-channel logical interface, not to the physical ports in the channel.

• For cross-stack EtherChannel configurations, ensure that all ports targeted for the EtherChannel are either configured for LACP or are manually configured to be in the channel group using the `channel-group channel-group-number mode` on interface configuration command. The PAgP protocol is not supported on cross-stack EtherChannels.

• If cross-stack EtherChannel is configured and the switch stack partitions, loops and forwarding misbehaviors can occur.

Configuring Layer 2 EtherChannels

You configure Layer 2 EtherChannels by assigning ports to a channel group with the `channel-group` interface configuration command. This command automatically creates the port-channel logical interface.

If you enabled PAgP on a port in the `auto` or `desirable` mode, you must reconfigure it for either the `on` mode or the LACP mode before adding this port to a cross-stack EtherChannel. PAgP does not support cross-stack EtherChannels.
Beginning in privileged EXEC mode, follow these steps to assign a Layer 2 Ethernet port to a Layer 2 EtherChannel. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specify a physical port, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Valid interfaces include physical ports.</td>
</tr>
<tr>
<td></td>
<td>For a PAgP EtherChannel, you can configure up to eight ports of the same type and speed for the same group.</td>
</tr>
<tr>
<td></td>
<td>For a LACP EtherChannel, you can configure up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>`switchport mode {access</td>
<td>trunk}`</td>
</tr>
<tr>
<td><code>switchport access vlan vlan-id</code></td>
<td>If you configure the port as a static-access port, assign it to only one VLAN. The range is 1 to 4094.</td>
</tr>
</tbody>
</table>
To remove a port from the EtherChannel group, use the **no channel-group** interface configuration command.
This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two ports as static-access ports in VLAN 10 to channel 5 with the PAgP mode desirable:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode desirable non-silent
Switch(config-if-range)# end
```

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two ports as static-access ports in VLAN 10 to channel 5 with the LACP mode active:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# end
```

This example shows how to configure a cross-stack EtherChannel. It uses LACP passive mode and assigns two ports on stack member 2 and one port on stack member 3 as static-access ports in VLAN 10 to channel 5:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# channel-group 5 mode active
Switch(config-if)# exit
```

Configuring Layer 3 EtherChannels

To configure Layer 3 EtherChannels, you create the port-channel logical interface and then put the Ethernet ports into the port-channel as described in the next two sections.

Creating Port-Channel Logical Interfaces

When configuring Layer 3 EtherChannels, you should first manually create the port-channel logical interface by using the `interface port-channel` global configuration command. Then you put the logical interface into the channel group by using the `channel-group` interface configuration command.

Note

To move an IP address from a physical port to an EtherChannel, you must delete the IP address from the physical port before configuring it on the port-channel interface.
Chapter 38 Configuring EtherChannels and Link-State Tracking

Configuring EtherChannels

Beginning in privileged EXEC mode, follow these steps to create a port-channel interface for a Layer 3 EtherChannel. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface port-channel port-channel-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>no switchport</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip address ip-address mask</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show etherchannel channel-group-number detail</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the port-channel, use the no interface port-channel port-channel-number global configuration command.

This example shows how to create the logical port channel 5 and assign 172.10.20.10 as its IP address:

```
Switch# configure terminal
Switch(config)# interface port-channel 5
Switch(config-if)# no switchport
Switch(config-if)# ip address 172.10.20.10 255.255.255.0
Switch(config-if)# end
```

Configuring the Physical Interfaces

Beginning in privileged EXEC mode, follow these steps to assign an Ethernet port to a Layer 3 EtherChannel. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>no ip address</td>
</tr>
<tr>
<td>Step 4</td>
<td>no switchport</td>
</tr>
</tbody>
</table>
Step 5

```
channel-group channel-group-number mode
{auto [non-silent] | desirable [non-silent] | on} |
{active | passive}
```

Assign the port to a channel group, and specify the PAgP or the LACP mode.

For `channel-group-number`, the range is 1 to 64. This number must be the same as the `port-channel-number` (logical port) configured in the “Creating Port-Channel Logical Interfaces” section on page 38-15.

For `mode`, select one of these keywords:

- **auto**—Enables PAgP only if a PAgP device is detected. It places the port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This keyword is not supported when EtherChannel members are from different switches in the switch stack.

- **desirable**—Unconditionally enables PAgP. It places the port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This keyword is not supported when EtherChannel members are from different switches in the switch stack.

- **on**—Forces the port to channel without PAgP or LACP. In the `on` mode, an EtherChannel exists only when a port group in the `on` mode is connected to another port group in the `on` mode.

- **non-silent**—(Optional) If your switch is connected to a partner that is PAgP capable, configure the switch port for nonsilent operation when the port is in the `auto` or `desirable` mode. If you do not specify `non-silent`, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.

- **active**—Enables LACP only if a LACP device is detected. It places the port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.

- **passive**—Enables LACP on the port and places it into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation.

For information on compatible modes for the switch and its partner, see the “PAgP Modes” section on page 38-5 and the “LACP Modes” section on page 38-7.

Step 6

```
end
```

Return to privileged EXEC mode.

Step 7

```
show running-config
```

Verify your entries.

Step 8

```
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.
This example shows how to configure an EtherChannel. It assigns two ports to channel 5 with the LACP mode active:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# no ip address
Switch(config-if-range)# no switchport
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# end
```

This example shows how to configure a cross-stack EtherChannel. It assigns two ports on stack member 2 and one port on stack member 3 to channel 7 using LACP active mode:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# no ip address
Switch(config-if-range)# no switchport
Switch(config-if-range)# channel-group 7 mode active
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# no ip address
Switch(config-if)# no switchport
Switch(config-if)# channel-group 7 mode active
Switch(config-if)# exit
```

Configuring EtherChannel Load-Balancing

This section describes how to configure EtherChannel load-balancing by using source-based or destination-based forwarding methods. For more information, see the “Load-Balancing and Forwarding Methods” section on page 38-8.

Beginning in privileged EXEC mode, follow these steps to configure EtherChannel load-balancing. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>port-channel load-balance {dst-ip</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring EtherChannels and Link-State Tracking

Chapter 38 Configuring EtherChannels and Link-State Tracking

Configuring EtherChannels

To return EtherChannel load-balancing to the default configuration, use the `no port-channel load-balance` global configuration command.

Configuring the PAgP Learn Method and Priority

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate (logical) ports. The learn method must be configured the same at both ends of the link.

When a device and its partner are both aggregate-port learners, they learn the address on the logical port-channel. The device sends packets to the source by using any of the ports in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.

PAgP cannot automatically detect when the partner device is a physical learner and when the local device is an aggregate-port learner. Therefore, you must manually set the learning method on the local device to learn addresses by physical ports. You also must set the load-distribution method to source-based distribution, so that any given source MAC address is always sent on the same physical port.

You also can configure a single port within the group for all transmissions and use other ports for hot standby. The unused ports in the group can be swapped into operation in just a few seconds if the selected single port loses hardware-signal detection. You can configure which port is always selected for packet transmission by changing its priority with the `pagp port-priority` interface configuration command. The higher the priority, the more likely that the port will be selected.

Note

The switch supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the CLI. The `pagp learn-method` command and the `pagp port-priority` command have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner of the switch is a physical learner (such as a Catalyst 1900 series switch), we recommend that you configure the switch as a physical-port learner by using the `pagp learn-method physical-port` interface configuration command. Set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command. The switch then sends packets to the Catalyst 1900 switch using the same port in the EtherChannel from which it learned the source address. Only use the `pagp learn-method` command in this situation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show etherchannel load-balance</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return EtherChannel load-balancing to the default configuration, use the `no port-channel load-balance` global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure your switch as a PAgP physical-port learner and to adjust the priority so that the same port in the bundle is selected for sending packets. This procedure is optional.

Command Purpose

Step 1

`configure terminal`

Enter global configuration mode.

Step 2

`interface interface-id`

Specify the port for transmission, and enter interface configuration mode.

Step 3

`pagp learn-method physical-port`

Select the PAgP learning method.

By default, **aggregation-port learning** is selected, which means the switch sends packets to the source by using any of the ports in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.

Select **physical-port** to connect with another switch that is a physical learner. Make sure to configure the **port-channel load-balance** global configuration command to **src-mac** as described in the “Configuring EtherChannel Load-Balancing” section on page 38-18.

The learning method must be configured the same at both ends of the link.

Step 4

`pagp port-priority priority`

Assign a priority so that the selected port is chosen for packet transmission.

For **priority**, the range is 0 to 255. The default is 128. The higher the priority, the more likely that the port will be used for PAgP transmission.

Step 5

`end`

Return to privileged EXEC mode.

Step 6

`show running-config`

or

`show pagp channel-group-number internal`

Verify your entries.

Step 7

`copy running-config startup-config`

(Optional) Save your entries in the configuration file.

To return the priority to its default setting, use the **no pagp port-priority** interface configuration command. To return the learning method to its default setting, use the **no pagp learn-method** interface configuration command.

Configuring LACP Hot-Standby Ports

When enabled, LACP tries to configure the maximum number of LACP-compatible ports in a channel, up to a maximum of 16 ports. Only eight LACP links can be active at one time. The software places any additional links in a hot-standby mode. If one of the active links becomes inactive, a link that is in the hot-standby mode becomes active in its place.
If you configure more than eight links for an EtherChannel group, the software automatically decides which of the hot-standby ports to make active based on the LACP priority. To every link between systems that operate LACP, the software assigns a unique priority made up of these elements (in priority order):

- LACP system priority
- System ID (the switch MAC address)
- LACP port priority
- Port number

In priority comparisons, numerically lower values have higher priority. The priority decides which ports should be put in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating.

Determining which ports are active and which are hot standby is a two-step procedure. First the system with a numerically lower system priority and system-id is placed in charge of the decision. Next, that system decides which ports are active and which are hot standby, based on its values for port priority and port number. The port-priority and port-number values for the other system are not used.

You can change the default values of the LACP system priority and the LACP port priority to affect how the software selects active and standby links. For more information, see the “Configuring the LACP System Priority” section on page 38-21 and the “Configuring the LACP Port Priority” section on page 38-22.

Configuring the LACP System Priority

You can configure the system priority for all the EtherChannels that are enabled for LACP by using the `lacp system-priority` global configuration command. You cannot configure a system priority for each LACP-configured channel. By changing this value from the default, you can affect how the software selects active and standby links.

You can use the `show etherchannel summary` privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag).

Beginning in privileged EXEC mode, follow these steps to configure the LACP system priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command/Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>lacp system-priority <code>priority</code></td>
<td>Configure the LACP system priority. For <code>priority</code>, the range is 1 to 65535. The default is 32768. The lower the value, the higher the system priority.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or show lacp sys-id</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the LACP system priority to the default value, use the `no lacp system-priority` global configuration command.
Configuring the LACP Port Priority

By default, all ports use the same port priority. If the local system has a lower value for the system priority and the system ID than the remote system, you can affect which of the hot-standby links become active first by changing the port priority of LACP EtherChannel ports to a lower value than the default. The hot-standby ports that have lower port numbers become active in the channel first. You can use the show etherchannel summary privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag).

Note
If LACP is not able to aggregate all the ports that are compatible (for example, the remote system might have more restrictive hardware limitations), all the ports that cannot be actively included in the EtherChannel are put in the hot-standby state and are used only if one of the channeled ports fails.

Beginning in privileged EXEC mode, follow these steps to configure the LACP port priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>lacp port-priority priority</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>or</td>
<td>show lacp [channel-group-number] internal</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the LACP port priority to the default value, use the **no lacp port-priority** interface configuration command.
Displaying EtherChannel, PAgP, and LACP Status

To display EtherChannel, PAgP, and LACP status information, use the privileged EXEC commands described in Table 38-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show etherchannel</td>
<td>Displays EtherChannel information in a brief, detailed, and one-line summary form. Also displays the load-balance or frame-distribution scheme, port, port-channel, and protocol information.</td>
</tr>
<tr>
<td>show pagp</td>
<td>Displays PAgP information such as traffic information, the internal PAgP configuration, and neighbor information.</td>
</tr>
<tr>
<td>show lacp</td>
<td>Displays LACP information such as traffic information, the internal LACP configuration, and neighbor information.</td>
</tr>
</tbody>
</table>

You can clear PAgP channel-group information and traffic counters by using the clear pagp {channel-group-number counters | counters} privileged EXEC command.

You can clear LACP channel-group information and traffic counters by using the clear lacp {channel-group-number counters | counters} privileged EXEC command.

For detailed information about the fields in the displays, see the command reference for this release.

Understanding Link-State Tracking

Link-state tracking, also known as trunk failover, is a feature that binds the link state of multiple interfaces. Link-state tracking provides redundancy in the network when used with server network interface card (NIC) adapter teaming. When the server network adapters are configured in a primary or secondary relationship known as teaming and the link is lost on the primary interface, connectivity transparently changes to the secondary interface.

Figure 38-6 on page 38-24 shows a network configured with link-state tracking. To enable link-state tracking, create a link-state group, and specify the interfaces that are assigned to the link-state group. An interface can be an aggregation of ports (an EtherChannel), a single physical port in access or trunk mode, or a routed port. In a link-state group, these interfaces are bundled together. The downstream interfaces are bound to the upstream interfaces. Interfaces connected to servers are referred to as downstream interfaces, and interfaces connected to distribution switches and network devices are referred to as upstream interfaces.
The configuration in Figure 38-6 ensures that when server NIC adapter teaming is used, the traffic flow continues uninterrupted when the uplink connection to a distribution switch is lost.

- The blade switches in the enclosure are connected to distribution switch 1 and distribution switch 2 through port channels.
- Link-state group 1 is the primary link from all the blade servers in the enclosure (blade server 1 through blade server n) to distribution switch 1 through port channel 1.
- Link-state group 2 is the secondary (backup) links from all the blade servers to distribution switch 2 through port channel 2.

The blade servers can choose which Ethernet server interfaces are active. To balance the network traffic flow, some Ethernet interfaces in link-state group 1 and some Ethernet interfaces in link-state group 2 are active. For example, when half of the Ethernet server interfaces connected to blade switch 1 are active and the remaining interfaces connected to blade server 2 are active, the traffic flow can be divided as follows:

- Traffic from half of the active Ethernet interfaces flows through blade switch 1 to distribution switch 1.
- Traffic from the remaining active Ethernet interfaces flows through blade switch 2 to distribution switch 2.
In a link-state group, the upstream ports can become unavailable or lose connectivity because the distribution switch or router fails, the cables are disconnected, or the link is lost. These are the interactions between the downstream and upstream interfaces when link-state tracking is enabled:

- If any of the upstream interfaces are in the link-up state, the downstream interfaces can change to or remain in the link-up state.
- If all of the upstream interfaces become unavailable, link-state tracking automatically puts the downstream interfaces in the error-disabled state. Connectivity to and from the servers is automatically changed from the primary server interface to the secondary server interface.

As an example of a connectivity change from link-state group 1 to link-state group 2, when the primary link from blade switch 1 to distribution switch 1 is lost, blade server 1 connects through its secondary Ethernet server interface to blade switch 2 in link-state group 2.

- If the link-state group is configured, link-state tracking is disabled, and the upstream interfaces lose connectivity, the link states of the downstream interfaces remain unchanged. The server does not recognize that upstream connectivity has been lost and does not failover to the secondary interface.

You can recover a downstream interface link-down condition by removing the failed downstream port from the link-state group. To recover from multiple downstream interfaces, disable the link-state group.

Configuring Link-State Tracking

These sections describe how to configure link-state tracking ports:

- Default Link-State Tracking Configuration, page 38-25
- Link-State Tracking Configuration Guidelines, page 38-25
- Configuring Link-State Tracking, page 38-26
- Displaying Link-State Tracking Status, page 38-27

Default Link-State Tracking Configuration

There are no link-state groups defined, and link-state tracking is not enabled for any group.

Link-State Tracking Configuration Guidelines

Follow these guidelines to avoid configuration problems:

- An interface that is defined as an upstream interface cannot also be defined as a downstream interface in the same or a different link-state group. The reverse is also true.
- An interface cannot be a member of more than one link-state group.
- Do not configure a cross-connect interface (gigabitethernet\(n/0/17\) or gigabitethernet\(n/0/18\), where \(n\) is the stack member number from 1 to 9) as a member of a link-state group.
• Do not enable link-state tracking on individual interfaces that will be part of a downstream Etherchannel interface.

• Only interfaces gigabitethernet\(n/0/1\) through gigabitethernet\(n/0/16\), where \(n\) is the stack member number from 1 to 9, can be configured as downstream ports in a specific link-state group.

• Only these interfaces can be configured as upstream ports in a specific link-state group:
 - Gigabitethernet\(n/0/19\) through gigabitethernet\(n/0/26\), where \(n\) is the stack member number from 1 to 9
 - Tengigabitethernet\(n/0/1\) through tengigabitethernet\(n/0/2\), where \(n\) is the stack member number from 1 to 9

Configuring Link-State Tracking

Beginning in privileged EXEC mode, follow these steps to configure a link-state group and to assign an interface to a group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>link state track number</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>link state group number [upstream</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to create a link-state group and to configure the interface:

```
Switch# configure terminal
Switch(config)# link state track 1
Switch(config)# interface port-channel 1
Switch(config-if)# link state group 1 upstream
Switch(config-if)# end
```

Note If the interfaces are part of an EtherChannel, you must specify the port channel name as part of the link-state group, not the individual port members.

To disable a link-state group, use the *no link state track* *number* global configuration command.
Displaying Link-State Tracking Status

Use the `show link state group` command to display the link-state group information. Enter this command without keywords to display information about all link-state groups. Enter the group number to display information specific to the group. Enter the detail keyword to display detailed information about the group.

This is an example of output from the `show link state group 1` command:

```
Switch> show link state group 1

Link State Group: 1      Status: Enabled, Down
```

This is an example of output from the `show link state group detail` command:

```
Switch> show link state group detail
(Up):Interface up   (Dwn):Interface Down   (Dis):Interface disabled

Link State Group: 1      Status: Enabled, Up
Upstream Interfaces   : Po1(Up)
Downstream Interfaces : Gi0/3(Up) Gi0/4(Up)
(Up):Interface up   (Dwn):Interface Down   (Dis):Interface disabled
```

For detailed information about the fields in the display, see the command reference for this release.
This chapter describes how to configure IP Version 4 (IPv4) unicast routing on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack. A switch stack operates and appears as a single router to the rest of the routers in the network.

Basic routing functions, including static routing and the Routing Information Protocol (RIP), are available with both the IP base feature set and the IP services feature set. To use advanced routing features and other routing protocols, you must have the IP services feature set enabled on the standalone switch or on the stack master.

If the switch or switch stack is running the IP services feature set, you can also enable IP Version 6 (IPv6) unicast routing and configure interfaces to forward IPv6 traffic in addition to IPv4 traffic. For information about configuring IPv6 on the switch, see Chapter 40, “Configuring IPv6 Host Functions and Unicast Routing.”

For more detailed IP unicast configuration information, see the Cisco IOS IP Configuration Guide, Release 12.2 from the Cisco.com page under Documentation > Cisco IOS Software > 12.2 Mainline > Configuration Guides. For complete syntax and usage information for the commands used in this chapter, see these command references from the Cisco.com page under Documentation > Cisco IOS Software > 12.2 Mainline > Command References:

- Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.2
- Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.2

This chapter consists of these sections:

- Understanding IP Routing, page 39-3
- Steps for Configuring Routing, page 39-6
- Configuring IP Addressing, page 39-6
- Enabling IP Unicast Routing, page 39-20
- Configuring RIP, page 39-21
- Configuring OSPF, page 39-31
- Configuring EIGRP, page 39-42
- Configuring BGP, page 39-49
- Configuring ISO CLNS Routing, page 39-71
- Configuring Multi-VRF CE, page 39-82
- Configuring Protocol-Independent Features, page 39-97
Understanding IP Routing

In some network environments, VLANs are associated with individual networks or subnetworks. In an IP network, each subnetwork is mapped to an individual VLAN. Configuring VLANs helps control the size of the broadcast domain and keeps local traffic local. However, network devices in different VLANs cannot communicate with one another without a Layer 3 device (router) to route traffic between the VLAN, referred to as inter-VLAN routing. You configure one or more routers to route traffic to the appropriate destination VLAN.

Figure 39-1 shows a basic routing topology. Switch A is in VLAN 10, and Switch B is in VLAN 20. The router has an interface in each VLAN.

When Host A in VLAN 10 needs to communicate with Host B in VLAN 10, it sends a packet addressed to that host. Switch A forwards the packet directly to Host B without sending it to the router.

When Host A sends a packet to Host C in VLAN 20, Switch A forwards the packet to the router, which receives the traffic on the VLAN 10 interface. The router surveys the routing table, finds the correct outgoing interface, and forwards the packet on the VLAN 20 interface to Switch B. Switch B receives the packet and forwards it to Host C.

This section contains information on these routing topics:
- Types of Routing, page 39-3
- IP Routing and Switch Stacks, page 39-4

Types of Routing

Routers and Layer 3 switches can route packets in these ways:
- By using default routing
- By using preprogrammed static routes for the traffic
• By dynamically calculating routes by using a routing protocol

Default routing refers to sending traffic with a destination unknown to the router to a default outlet or destination.

Static unicast routing forwards packets from predetermined ports through a single path into and out of a network. Static routing is secure and uses little bandwidth, but it does not automatically respond to changes in the network, such as link failures. Therefore, network changes might result in unreachable destinations. As networks grow, static routing becomes a labor-intensive liability.

Routers use these dynamic routing protocols to dynamically calculate the best route for forwarding traffic:

• Routers that use distance-vector protocols maintain routing tables with distance values of networked resources and periodically pass these tables to their neighbors. Distance-vector protocols use one or a series of metrics for calculating the best routes.

• Routers using link-state protocols maintain a complex database of network topology based on the exchange of link-state advertisements (LSAs) between routers. LSAs are triggered by an event in the network, which speeds up the convergence time or time required to respond to these changes. Link-state protocols respond quickly to topology changes but require greater bandwidth and more resources than distance-vector protocols.

Distance-vector protocols supported by the switch use Routing Information Protocol (RIP), a single-distance metric (cost) that determines the best path, and Border Gateway Protocol (BGP), which adds a path vector mechanism. The switch also supports the Open Shortest Path First (OSPF) link-state protocol and Enhanced IGRP (EIGRP), which adds some link-state routing features to traditional Interior Gateway Routing Protocol (IGRP) to improve efficiency.

Note

On a switch or switch stack, the supported protocols are determined by the software running on the switch or stack master. If the switch or stack master is running the IP base feature set, only default routing, static routing and RIP are supported. All other routing protocols require the IP services feature set.

IP Routing and Switch Stacks

A switch stack appears to the network as a single router, regardless of which switch in the stack is connected to a routing peer. For additional information about switch stack operation, see Chapter 7, “Managing Switch Stacks.”

The stack master performs these functions:

• It initializes and configures the routing protocols.

• It sends routing protocol messages and updates to other routers.

• It processes routing protocol messages and updates received from peer routers.

• It generates, maintains, and distributes the distributed Cisco Express Forwarding (dCEF) database to all stack members. The routes are programmed on all switches in the stack bases on this database.

• The MAC address of the stack master is used as the router MAC address for the whole stack, and all outside devices use this address to send IP packets to the stack.

• All IP packets that require software forwarding or processing go through the CPU of the stack master.
Stack members perform these functions:

- They act as routing standby switches, ready to take over in case they are elected as the new stack master if the stack master fails.
- They program the routes into hardware. The routes programmed by the stack members are the same that are downloaded by the stack master as part of the dCEF database.

If a stack master fails, the stack detects that the stack master is down and elects one of the stack members to be the new stack master. During this period, except for a momentary interruption, the hardware continues to forward packets with no active protocols.

However, even though the switch stack maintains the hardware identification after a failure, the routing protocols on the router neighbors might flap during the brief interruption before the stack master restarts. Routing protocols such as OSPF and EIGRP need to recognize neighbor transitions. The router uses two levels of nonstop forwarding (NSF) to detect a change-over, to continue forwarding network traffic, and to recover route information from peer devices:

- NSF-aware routers tolerate neighboring router failures. After the neighbor router restarts, an NSF-aware router supplies information about its state and route adjacencies on request.
- NSF-capable routers support NSF. When they detect a stack master change, they rebuild routing information from NSF-aware or NSF-capable neighbors and do not wait for a restart.

The switch stack supports NSF-capable routing for OSPF and EIGRP. For more information, see the "OSPF NSF Capability" section on page 39-35 and the "EIGRP NSF Capability" section on page 39-45.

Upon election, the new stack master performs these functions:

- It starts generating, receiving, and processing routing updates.
- It builds routing tables, generates the CEF database, and distributes it to stack members.
- It uses its MAC address as the router MAC address. To notify its network peers of the new MAC address, it periodically (every few seconds for 5 minutes) sends a gratuitous ARP reply with the new router MAC address.

Note

If you configure the persistent MAC address feature on the stack and the stack master changes, the stack MAC address does not change for the configured time period. If the previous stack master rejoins the stack as a member switch during that time period, the stack MAC address remains the MAC address of the previous stack master. See the "Enabling Persistent MAC Address" section on page 7-22.

- It attempts to determine the reachability of every proxy ARP entry by sending an ARP request to the proxy ARP IP address and receiving an ARP reply. For each reachable proxy ARP IP address, it generates a gratuitous ARP reply with the new router MAC address. This process is repeated for 5 minutes after a new stack master election.

Note

When a stack master is running the IP services feature set, the stack can run all supported protocols, including Open Shortest Path First (OSPF), Enhanced IGRP (EIGRP), and Border Gateway Protocol (BGP). If the stack master fails and the new elected stack master is running the IP base feature set, these protocols no longer run on the stack.

Caution

Partitioning on the switch stack into two or more stacks might lead to undesirable behavior in the network.
Steps for Configuring Routing

By default, IP routing is disabled on the switch, and you must enable it before routing can take place. For detailed IP routing configuration information, see the Cisco IOS IP Configuration Guide, Release 12.2 from the Cisco.com page under Documentation > Cisco IOS Software > 12.2 Mainline > Configuration Guides.

In the following procedures, the specified interface must be one of these Layer 3 interfaces:

- A routed port: a physical port configured as a Layer 3 port by using the no switchport interface configuration command.
- A switch virtual interface (SVI): a VLAN interface created by using the interface vlan vlan_id global configuration command and by default a Layer 3 interface.
- An EtherChannel port channel in Layer 3 mode: a port-channel logical interface created by using the interface port-channel port-channel-number global configuration command and binding the Ethernet interface into the channel group. For more information, see the “Configuring Layer 3 EtherChannels” section on page 38-15.

Note

The switch does not support tunnel interfaces for unicast routed traffic.

All Layer 3 interfaces on which routing will occur must have IP addresses assigned to them. See the “Assigning IP Addresses to Network Interfaces” section on page 39-8.

A Layer 3 switch can have an IP address assigned to each routed port and SVI. The number of routed ports and SVIs that you can configure is not limited by software. However, the interrelationship between this number and the number and volume of features being implemented might have an impact on CPU utilization because of hardware limitations. To optimize system memory for routing, use the sdm prefer routing global configuration command.

Configuring routing consists of several main procedures:

- To support VLAN interfaces, create and configure VLANs on the switch or switch stack, and assign VLAN membership to Layer 2 interfaces. For more information, see Chapter 13, “Configuring VLANs.”
- Configure Layer 3 interfaces.
- Enable IP routing on the switch.
- Assign IP addresses to the Layer 3 interfaces.
- Enable selected routing protocols on the switch.
- Configure routing protocol parameters (optional).

Configuring IP Addressing

A required task for configuring IP routing is to assign IP addresses to Layer 3 network interfaces to enable the interfaces and to allow communication with the hosts on those interfaces that use IP. These sections describe how to configure various IP addressing features. Assigning IP addresses to the interface is required; the other procedures are optional.

- Default Addressing Configuration, page 39-7
- Assigning IP Addresses to Network Interfaces, page 39-8
Default Addressing Configuration

Table 39-2 shows the default addressing configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>None defined.</td>
</tr>
<tr>
<td>IP broadcast address</td>
<td>255.255.255.255 (all ones).</td>
</tr>
<tr>
<td>IP classless routing</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IP default gateway</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP directed broadcast</td>
<td>Disabled (all IP directed broadcasts are dropped).</td>
</tr>
<tr>
<td>IP forward-protocol</td>
<td>If a helper address is defined or User Datagram Protocol (UDP) flooding is configured, UDP forwarding is enabled on default ports. Any-local-broadcast: Disabled. Spanning Tree Protocol (STP): Disabled. Turbo-flood: Disabled.</td>
</tr>
<tr>
<td>IP helper address</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP host</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IRDP</td>
<td>Disabled. Defaults when enabled:</td>
</tr>
<tr>
<td></td>
<td>• Broadcast IRDP advertisements.</td>
</tr>
<tr>
<td></td>
<td>• Maximum interval between advertisements: 600 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Minimum interval between advertisements: 0.75 times maximum interval</td>
</tr>
<tr>
<td></td>
<td>• Preference: 0.</td>
</tr>
<tr>
<td>IP proxy ARP</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IP routing</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP subnet-zero</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
Assigning IP Addresses to Network Interfaces

An IP address identifies a location to which IP packets can be sent. Some IP addresses are reserved for special uses and cannot be used for host, subnet, or network addresses. RFC 1166, “Internet Numbers,” contains the official description of IP addresses.

An interface can have one primary IP address. A mask identifies the bits that denote the network number in an IP address. When you use the mask to subnet a network, the mask is referred to as a subnet mask. To receive an assigned network number, contact your Internet service provider.

Beginning in privileged EXEC mode, follow these steps to assign an IP address and a network mask to a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 no switchport</td>
<td>Remove the interface from Layer 2 configuration mode (if it is a physical interface).</td>
</tr>
<tr>
<td>Step 4 ip address ip-address subnet-mask</td>
<td>Configure the IP address and IP subnet mask.</td>
</tr>
<tr>
<td>Step 5 no shutdown</td>
<td>Enable the interface.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show interfaces [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8 show ip interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 9 show running-config interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 10 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use of Subnet Zero

We strongly discourage subnetting with a subnet address of zero because of the problems that can arise if a network and a subnet have the same addresses. For example, if network 131.108.0.0 is subnetted as 255.255.255.0, subnet zero would be written as 131.108.0.0, which is the same as the network address.

You can use the all ones subnet (131.108.255.0) and, even though we discourage this practice, you can enable the subnet zero if you need the entire subnet space for your IP address.

Beginning in privileged EXEC mode, follow these steps to enable subnet zero:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip subnet-zero</td>
<td>Enable the use of subnet zero for interface addresses and routing updates.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no ip subnet-zero global configuration command to restore the default and to disable the use of subnet zero.
Classless Routing

By default, classless routing is enabled when the switch is configured to route. With classless routing, if a router receives packets for a subnet of a network with no default route, the router forwards the packet to the best supernet route. A supernet is contiguous blocks of Class C address spaces simulating a single, larger address space and is designed to relieve the pressure on the rapidly depleting Class B address space.

In Figure 39-2, classless routing is enabled. When the host sends a packet to 120.20.4.1, instead of discarding the packet, the router forwards it to the best supernet route. If you disable classless routing and a router receives packets destined for a subnet of a network with no network default route, the router discards the packet.

In Figure 39-3, the router in network 128.20.0.0 is connected to subnets 128.20.1.0, 128.20.2.0, and 128.20.3.0. If the host sends a packet to 120.20.4.1, because there is no network default route, the router discards the packet.
To prevent the switch from forwarding packets destined for unrecognized subnets to the best supernet route possible, you can disable classless routing behavior.

Beginning in privileged EXEC mode, follow these steps to disable classless routing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no ip classless</td>
<td>Disable classless routing behavior.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To restore the default so that the switch forwards packets destined for a subnet of a network without a network default route to the best possible supernet route, use the `ip classless` global configuration command.

Configuring Address Resolution Methods

You can control interface-specific handling of IP by using address resolution. A device using IP can have both a local address or a MAC address, which uniquely defines the device on its local segment or LAN, and a network address, which identifies the network to which the device belongs.

Note

In a switch stack, network communication uses a single MAC address and the IP address of the stack.

The local address or the MAC address is known as a data-link address because it is contained in the data-link layer (Layer 2) section of the packet header and is read by data-link (Layer 2) devices. To communicate with an Ethernet device, the software must learn the MAC address of the device. The process of learning the MAC address from an IP address is called *address resolution*. The process of learning the IP address from the MAC address is called *reverse address resolution*.
The switch uses these types of address resolution:

- **Address Resolution Protocol (ARP)** associates IP address with MAC addresses. Using an IP address as input, ARP learns the associated MAC address and then stores the IP address/MAC address association in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network. Encapsulation of IP datagrams and ARP requests or replies on IEEE 802 networks other than Ethernet is specified by the Subnetwork Access Protocol (SNAP).

- **Proxy ARP** helps hosts with no routing tables learn the MAC addresses of hosts on other networks or subnets. If the switch (router) receives an ARP request for a host that is not on the same interface as the ARP request sender, and if the router has all of its routes to the host through other interfaces, it generates a proxy ARP packet giving its own local data-link address. The host that sent the ARP request then sends its packets to the router, which forwards them to the intended host.

The switch also uses the Reverse Address Resolution Protocol (RARP), which functions the same as ARP does, except that the RARP packets request an IP address instead of a local MAC address. Using RARP requires a RARP server on the same network segment as the router interface. Use the `ip rarp-server address` interface configuration command to identify the server.

For more information on RARP, see the *Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2* under **Documentation > Cisco IOS Software > 12.2 Mainline > Configuration Guides** from the Cisco.com page.

You can perform these tasks to configure address resolution:

- **Define a Static ARP Cache**, page 39-11
- **Set ARP Encapsulation**, page 39-12
- **Enable Proxy ARP**, page 39-13

Define a Static ARP Cache

ARP and other address resolution protocols provide dynamic mapping between IP addresses and MAC addresses. Because most hosts support dynamic address resolution, you usually do not need to specify static ARP cache entries. If you must define a static ARP entry, you can do so globally, which installs a permanent entry in the ARP cache that the switch uses to translate IP addresses into MAC addresses. You can also specify that the switch respond to ARP requests as if it were the owner of the specified IP address. If you do not want the ARP entry to be permanent, you can specify a timeout period for the ARP entry.

Beginning in privileged EXEC mode, follow these steps to provide static mapping between IP addresses and MAC addresses:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>arp ip-address hardware-address type</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring IP Addressing

To remove an entry from the ARP cache, use the `no arp ip-address hardware-address type` global configuration command. To remove all nonstatic entries from the ARP cache, use the `clear arp-cache` privileged EXEC command.

Set ARP Encapsulation

By default, Ethernet ARP encapsulation (represented by the `arpa` keyword) is enabled on an IP interface. You can change the encapsulation method to SNAP if required by your network.

Beginning in privileged EXEC mode, follow these steps to specify the ARP encapsulation type:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>`arp {arpa</td>
<td>snap}`</td>
</tr>
<tr>
<td></td>
<td>• <code>arpa</code>—Address Resolution Protocol</td>
</tr>
<tr>
<td></td>
<td>• <code>snap</code>—Subnetwork Address Protocol</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id]</code></td>
<td>Verify ARP encapsulation configuration on all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable an encapsulation type, use the `no arp arpa` or `no arp snap` interface configuration command.
Enable Proxy ARP

By default, the switch uses proxy ARP to help hosts learn MAC addresses of hosts on other networks or subnets.

Beginning in privileged EXEC mode, follow these steps to enable proxy ARP if it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3: ip proxy-arp</td>
<td>Enable proxy ARP on the interface.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show ip interface [interface-id]</td>
<td>Verify the configuration on the interface or all interfaces.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable proxy ARP on the interface, use the `no ip proxy-arp` interface configuration command.

Routing Assistance When IP Routing is Disabled

These mechanisms allow the switch to learn about routes to other networks when it does not have IP routing enabled:

- Proxy ARP, page 39-13
- Default Gateway, page 39-13
- ICMP Router Discovery Protocol (IRDP), page 39-14

Proxy ARP

Proxy ARP, the most common method for learning about other routes, enables an Ethernet host with no routing information to communicate with hosts on other networks or subnets. The host assumes that all hosts are on the same local Ethernet and that they can use ARP to learn their MAC addresses. If a switch receives an ARP request for a host that is not on the same network as the sender, the switch evaluates whether it has the best route to that host. If it does, it sends an ARP reply packet with its own Ethernet MAC address. The host that sent the request then sends the packet to the switch, which forwards it to the intended host. Proxy ARP treats all networks as if they are local and performs ARP requests for every IP address.

Proxy ARP is enabled by default. To enable it after it has been disabled, see the “Enable Proxy ARP” section on page 39-13. Proxy ARP works as long as other routers support it.

Default Gateway

Another method for locating routes is to define a default router or default gateway. All nonlocal packets are sent to this router, which either routes them appropriately or returns an IP Control Message Protocol (ICMP) redirect message, identifying the local router that the host should use. The switch caches the redirect messages and forwards each packet as efficiently as possible. This method cannot detect when the default router has failed or is unavailable.
Beginning in privileged EXEC mode, follow these steps to define a default gateway (router) when IP routing is disabled:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip default-gateway ip-address</td>
<td>Set up a default gateway (router).</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show ip redirects</td>
<td>Display the address of the default gateway router to verify the setting.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no ip default-gateway global configuration command to disable this function.

ICMP Router Discovery Protocol (IRDP)

Router discovery allows the switch to dynamically learn about routes to other networks by using ICMP Router Discovery Protocol (IRDP). Hosts use IRDP to locate routers. When operating as a client, the switch generates router discovery packets. When operating as a host, the switch receives router discovery packets. The switch can also receive Routing Information Protocol (RIP) routing updates and use this information to infer locations of routers. The switch does not actually store the routing tables sent by routing devices; it merely keeps track of which systems are sending the data. The advantage of using IRDP is that it allows each router to specify both a priority and the time after which a device is assumed to be down if no more packets are received.

Each device discovered becomes a candidate for the default router, and a new highest-priority router is selected when a higher priority router is discovered, when the current default router is declared down, or when a TCP connection is about to time out because of excessive retransmissions.

The only required task for IRDP routing on an interface is to enable IRDP processing on that interface. When enabled, the default parameters apply. You can change any of these parameters.

Beginning in privileged EXEC mode, follow these steps to enable and configure IRDP on an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>3</td>
<td>ip irdp</td>
<td>Enable IRDP processing on the interface.</td>
</tr>
<tr>
<td>4</td>
<td>ip irdp multicast</td>
<td>(Optional) Send IRDP advertisements to the multicast address (224.0.0.1) instead of IP broadcasts. Note This command allows for compatibility with Sun Microsystems Solaris, which requires IRDP packets to be sent out as multicasts. Many implementations cannot receive these multicasts; ensure end-host ability before using this command.</td>
</tr>
<tr>
<td>5</td>
<td>ip irdp holdtime seconds</td>
<td>(Optional) Set the IRDP period for which advertisements are valid. The default is three times the maxadvertinterval value. It must be greater than maxadvertinterval and cannot be greater than 9000 seconds. If you change the maxadvertinterval value, this value also changes.</td>
</tr>
</tbody>
</table>
Chapter 39 Configuring IP Unicast Routing

Configuring IP Addressing

If you change the `maxadvertinterval` value, the `holdtime` and `minadvertinterval` values also change. It is important that you first change the `maxadvertinterval` value, before manually changing either the `holdtime` or `minadvertinterval` values.

Use the `no ip irdp` interface configuration command to disable IRDP routing.

Configuring Broadcast Packet Handling

After configuring an IP interface address, you can enable routing and configure one or more routing protocols, or you can configure the way the switch responds to network broadcasts. A broadcast is a data packet destined for all hosts on a physical network. The switch supports these kinds of broadcasting:

- A directed broadcast packet sent to a specific network or series of networks. A directed broadcast address includes the network or subnet fields.
- A flooded broadcast packet sent to every network.

You can also limit broadcast, unicast, and multicast traffic on Layer 2 interfaces by using the `storm-control` interface configuration command to set traffic suppression levels. For more information, see Chapter 26, “Configuring Port-Based Traffic Control.”

Routers provide some protection from broadcast storms by limiting the extent to the local cable. Bridges (including intelligent bridges), because they are Layer 2 devices, forward broadcasts to all network segments, thus propagating broadcast storms. The best solution to the broadcast storm problem is to use a single broadcast address scheme on a network. In most IP implementations, you can set the broadcast address. Many implementations, including the one in the switch, support several addressing schemes for forwarding broadcast messages.

Perform the tasks in these sections to enable these schemes:

- [Enabling Directed Broadcast-to-Physical Broadcast Translation](#)
- [Forwarding UDP Broadcast Packets and Protocols](#)
- [Establishing an IP Broadcast Address](#)
- [Flooding IP Broadcasts](#)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip irdp maxadvertinterval seconds</code></td>
<td>(Optional) Set the IRDP maximum interval between advertisements. The default is 600 seconds.</td>
</tr>
<tr>
<td><code>ip irdp minadvertinterval seconds</code></td>
<td>(Optional) Set the IRDP minimum interval between advertisements. The default is 0.75 times the <code>maxadvertinterval</code>. If you change the <code>maxadvertinterval</code>, this value changes to the new default (0.75 of <code>maxadvertinterval</code>).</td>
</tr>
<tr>
<td><code>ip irdp preference number</code></td>
<td>(Optional) Set a device IRDP preference level. The allowed range is -2^{31} to 2^{31}. The default is 0. A higher value increases the router preference level.</td>
</tr>
<tr>
<td><code>ip irdp address address [number]</code></td>
<td>(Optional) Specify an IRDP address and preference to proxy-advertise.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show ip irdp</code></td>
<td>Verify settings by displaying IRDP values.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Enabling Directed Broadcast-to-Physical Broadcast Translation

By default, IP directed broadcasts are dropped; they are not forwarded. Dropping IP-directed broadcasts makes routers less susceptible to denial-of-service attacks.

You can enable forwarding of IP-directed broadcasts on an interface when the broadcast becomes a physical (MAC-layer) broadcast. Only those protocols configured by using the `ip forward-protocol` global configuration command are forwarded.

You can specify an access control list (ACL) to control which broadcasts are forwarded. When an ACL is specified, only those IP packets permitted by the ACL can be translated from directed broadcasts to physical broadcasts. For more information on access lists, see Chapter 35, “Configuring Network Security with ACLs.”

Beginning in privileged EXEC mode, follow these steps to enable forwarding of IP-directed broadcasts on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>Step 3: <code>ip directed-broadcast [access-list-number]</code></td>
<td>Enable directed broadcast-to-physical broadcast translation on the interface. You can include an ACL to control which broadcasts are forwarded. When an access list, only IP packets permitted by the access list can be translated. Note The <code>ip directed-broadcast</code> interface configuration command can be configured on a VPN routing/forwarding (VRF) interface and is VRF-aware. Directed broadcast traffic is routed only within the VRF.</td>
</tr>
<tr>
<td>Step 4: <code>exit</code></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5: `ip forward-protocol {udp [port]</td>
<td>nd</td>
</tr>
<tr>
<td>Step 6: <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7: <code>show ip interface [interface-id]</code> or <code>show running-config</code></td>
<td>Verify the configuration on the interface or all interfaces.</td>
</tr>
<tr>
<td>Step 8: <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ip directed-broadcast` interface configuration command to disable translation of directed broadcasts to physical broadcasts. Use the `no ip forward-protocol` global configuration command to remove a protocol or a port.
Forwarding UDP Broadcast Packets and Protocols

User Datagram Protocol (UDP) is an IP host-to-host layer protocol. UDP provides a connectionless session between two end systems and does not acknowledge received datagrams. Network hosts can use UDP broadcasts to find address, configuration, and name information. If such a host is on a network segment that does not include a server, UDP broadcasts might not be forwarded. However, you can configure an interface on a router to forward certain broadcast classes to a helper address. You can use more than one helper address per interface.

You can specify a UDP destination port to control which UDP services are forwarded. You can specify multiple UDP protocols. You can also specify the Network Disk Protocol (NDP), which is used by older diskless Sun workstations and the network security protocol SDNS.

By default, both UDP and NDP forwarding are enabled if a helper address has been defined for an interface. The description for the `ip forward-protocol` interface configuration command in the *Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.2* lists the ports that are forwarded by default if you do not specify any UDP ports.

If you do not specify any UDP ports when you configure the forwarding of UDP broadcasts, you are configuring the router to act as a BOOTP forwarding agent. BOOTP packets carry DHCP information.

Beginning in privileged EXEC mode, follow these steps to enable forwarding of UDP broadcast packets on an interface and to specify the destination address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip helper-address address</td>
<td>Enable forwarding and specify the destination address for forwarding UDP broadcast packets, including BOOTP.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5 ip forward-protocol {udp [port]</td>
<td>nd</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show ip interface [interface-id]</td>
<td>Verify the configuration on the interface or all interfaces.</td>
</tr>
<tr>
<td>or show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ip helper-address` interface configuration command to disable the forwarding of broadcast packets to specific addresses. Use the `no ip forward-protocol` global configuration command to remove a protocol or port.

Establishing an IP Broadcast Address

The IP broadcast address (and the default) is an address consisting of all ones (255.255.255.255). However, the switch can be configured to generate any form of IP broadcast address.
Beginning in privileged EXEC mode, follow these steps to set the IP broadcast address on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>ip broadcast-address ip-address</td>
<td>Enter a broadcast address different from the default, for example 128.1.255.255.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td>Verify the broadcast address on the interface or all interfaces.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To restore the default IP broadcast address, use the no ip broadcast-address interface configuration command.

Flooding IP Broadcasts

You can allow IP broadcasts to be flooded throughout your internetwork in a controlled fashion by using the database created by the bridging STP. Using this feature also prevents loops. To support this capability, you must configure bridging on each interface that is to participate in the flooding. If bridging is not configured on an interface, it still can receive broadcasts. However, the interface never forwards broadcasts it receives, and the router never uses that interface to send broadcasts received on a different interface.

Packets that are forwarded to a single network address using the IP helper-address mechanism can be flooded. Only one copy of the packet is sent on each network segment.

To be considered for flooding, packets must meet these criteria. (Note that these are the same conditions to be met for packet forwarding when using IP helper addresses.)

- The packet must be a MAC-level broadcast.
- The packet must be an IP-level broadcast.
- The packet must be a TFTP, DNS, Time, NetBIOS, Network Disk, or BOOTP packet, or a UDP specified by the ip forward-protocol udp global configuration command.
- The time-to-live (TTL) value of the packet must be at least 2.

A flooded UDP datagram is given the destination address specified with the ip broadcast-address interface configuration command on the output interface. The destination address can be set to any address. Thus, the destination address might change as the datagram propagates through the network. The source address never changed. The TTL value decrements.

When a flooded UDP datagram is sent on an interface (and the destination address is possibly changed), the datagram is processed by the normal IP output routines and is, therefore, subject to ACLs, if they are present on the output interface.
Beginning in privileged EXEC mode, follow these steps to use the bridging spanning-tree database to flood UDP datagrams:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip forward-protocol spanning-tree</td>
<td>Use the bridging spanning-tree database to flood UDP datagrams.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no ip forward-protocol spanning-tree global configuration command to disable the flooding of IP broadcasts.

In the switch, the majority of packets are forwarded in hardware; most packets do not go through the switch CPU. For those packets that do go to the CPU, you can speed up spanning tree-based UDP flooding by a factor of about four to five times by using turbo-flooding. This feature is supported over Ethernet interfaces configured for ARP encapsulation.

Beginning in privileged EXEC mode, follow these steps to increase spanning-tree-based flooding:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip forward-protocol turbo-flood</td>
<td>Use the spanning-tree database to speed up flooding of UDP datagrams.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this feature, use the no ip forward-protocol turbo-flood global configuration command.

Monitoring and Maintaining IP Addressing

When the contents of a particular cache, table, or database have become or are suspected to be invalid, you can remove all its contents by using the clear privileged EXEC commands. Table 39-3 lists the commands for clearing contents.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear arp-cache</td>
<td>Clear the IP ARP cache and the fast-switching cache.</td>
</tr>
<tr>
<td>clear host {name</td>
<td>*}</td>
</tr>
<tr>
<td>clear ip route {network [mask]</td>
<td>*}</td>
</tr>
</tbody>
</table>
You can display specific statistics, such as the contents of IP routing tables, caches, and databases; the reachability of nodes; and the routing path that packets are taking through the network. Table 39-4 lists the privileged EXEC commands for displaying IP statistics.

Table 39-3 Commands to Display Caches, Tables, and Databases

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show arp</td>
<td>Display the entries in the ARP table.</td>
</tr>
<tr>
<td>show hosts</td>
<td>Display the default domain name, style of lookup service, name-server hosts, and the cached list of hostnames and addresses.</td>
</tr>
<tr>
<td>show ip aliases</td>
<td>Display IP addresses mapped to TCP ports (aliases).</td>
</tr>
<tr>
<td>show ip arp</td>
<td>Display the IP ARP cache.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td>Display the IP status of interfaces.</td>
</tr>
<tr>
<td>show ip irdp</td>
<td>Display IRDP values.</td>
</tr>
<tr>
<td>show ip masks address</td>
<td>Display the masks used for network addresses and the number of subnets using each mask.</td>
</tr>
<tr>
<td>show ip redirects</td>
<td>Display the address of a default gateway.</td>
</tr>
<tr>
<td>show ip route [address [mask]]</td>
<td>Display the current state of the routing table.</td>
</tr>
<tr>
<td>show ip route summary</td>
<td>Display the current state of the routing table in summary form.</td>
</tr>
</tbody>
</table>

Enabling IP Unicast Routing

By default, the switch is in Layer 2 switching mode, and IP routing is disabled. To use the Layer 3 capabilities of the switch, you must enable IP routing.

Beginning in privileged EXEC mode, follow these steps to enable IP routing:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip routing</td>
<td>Enable IP routing.</td>
</tr>
<tr>
<td>3</td>
<td>router ip_routing_protocol</td>
<td>Specify an IP routing protocol. This step might include other commands, such as specifying the networks to route with the network (RIP) router configuration command. For information on specific protocols, see sections later in this chapter and to the Cisco IOS IP Configuration Guide, Release 12.2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The IP base feature set supports only RIP as a routing protocol.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ip routing` global configuration command to disable routing.
This example shows how to enable IP routing by using RIP as the routing protocol:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# router rip
Switch(config-router)# network 10.0.0.0
Switch(config-router)# end
```

You can now set parameters for the selected routing protocols as described in these sections:

- Configuring RIP, page 39-21
- Configuring OSPF, page 39-31
- Configuring EIGRP, page 39-42
- Configuring BGP, page 39-49
- Configuring Unicast Reverse Path Forwarding, page 39-97
- Configuring Protocol-Independent Features, page 39-97 (optional)

Configuring RIP

The Routing Information Protocol (RIP) is an interior gateway protocol (IGP) for use in small, homogeneous networks. It is a distance-vector routing protocol that uses broadcast User Datagram Protocol (UDP) data packets to exchange routing information. You can find detailed information about RIP in *IP Routing Fundamentals*, published by Cisco Press.

Note

RIP is the only routing protocol supported by the IP base feature set; other routing protocols require the switch or the stack master to be running the IP services feature set.

Using RIP, the switch sends routing information updates (advertisements) every 30 seconds. If a router does not receive an update from another router for 180 seconds or more, it marks the routes served by that router as unusable. If there is still no update after 240 seconds, the router removes all routing table entries for that router.

RIP uses hop counts to rate the value of different routes. The hop count is the number of routers that can be traversed in a route. The hop count range is 0 to 15. A directly connected network has a hop count of zero; a network with a hop count of 16 is unreachable. The small range makes RIP unsuitable for large networks.

If the router has a default network path, RIP advertises a route that links the router to the pseudonetwork 0.0.0.0. The 0.0.0.0 network does not exist. It is treated by RIP as a network to implement the default routing feature. The switch advertises the default network if a default was learned by RIP or if the router has a gateway of last resort and RIP is configured with a default metric. RIP sends updates to the interfaces in specified networks. If an interface’s network is not specified, it is not advertised in any RIP update.

These sections contain this configuration information:

- Default RIP Configuration, page 39-22
- Configuring Basic RIP Parameters, page 39-22
- Configuring RIP Authentication, page 39-24
- Configuring Summary Addresses and Split Horizon, page 39-24
Default RIP Configuration

Table 39-5 shows the default RIP configuration.

Table 39-4 Default RIP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto summary</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Built-in; automatic metric translations.</td>
</tr>
<tr>
<td>IP RIP authentication key-chain</td>
<td>No authentication. Authentication mode: clear text.</td>
</tr>
<tr>
<td>IP RIP receive version</td>
<td>According to the version router configuration command.</td>
</tr>
<tr>
<td>IP RIP send version</td>
<td>According to the version router configuration command.</td>
</tr>
<tr>
<td>IP RIP triggered</td>
<td>According to the version router configuration command.</td>
</tr>
<tr>
<td>IP split horizon</td>
<td>Varies with media.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>None defined.</td>
</tr>
<tr>
<td>Network</td>
<td>None specified.</td>
</tr>
<tr>
<td>Offset list</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Output delay</td>
<td>0 milliseconds.</td>
</tr>
<tr>
<td>Timers basic</td>
<td>• Update: 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Invalid: 180 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Hold-down: 180 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Flush: 240 seconds.</td>
</tr>
<tr>
<td>Validate-update-source</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Version</td>
<td>Receives RIP Version 1 and 2 packets; sends Version 1 packets.</td>
</tr>
</tbody>
</table>

Configuring Basic RIP Parameters

To configure RIP, you enable RIP routing for a network and optionally configure other parameters. RIP configuration commands are ignored on the switch until you configure the network number.

Beginning in privileged EXEC mode, follow these steps to enable and configure RIP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip routing</td>
<td>Enable IP routing. (Required only if IP routing is disabled.)</td>
</tr>
<tr>
<td>Step 3 router rip</td>
<td>Enable a RIP routing process, and enter router configuration mode.</td>
</tr>
</tbody>
</table>
Configuring RIP

Step 4
```
network network number
```
Purpose
Associate a network with a RIP routing process. You can specify multiple `network` commands. RIP routing updates are sent and received through interfaces only on these networks.

Note
You must configure a network number for RIP commands to take effect.

Step 5
```
neighbor ip-address
```
(Optional) Define a neighboring router with which to exchange routing information. This step allows routing updates from RIP (normally a broadcast protocol) to reach nonbroadcast networks.

Step 6
```
offset list [access-list number | name] (in | out) offset [type number]
```
(Optional) Apply an offset list to routing metrics to increase incoming and outgoing metrics to routes learned through RIP. You can limit the offset list with an access list or an interface.

Step 7
```
timers basic update invalid holddown flush
```
(Optional) Adjust routing protocol timers. Valid ranges for all timers are 0 to 4294967295 seconds.
- `update`—The time between sending routing updates. The default is 30 seconds.
- `invalid`—The time after which a route is declared invalid. The default is 180 seconds.
- `holddown`—The time until a route is removed from the routing table. The default is 180 seconds.
- `flush`—The amount of time for which routing updates are postponed. The default is 240 seconds.

Step 8
```
version { 1 | 2 }
```
(Optional) Configure the switch to receive and send only RIP Version 1 or RIP Version 2 packets. By default, the switch receives Version 1 and Version 2 but sends only Version 1. You can also use the interface commands `ip rip { send | receive } version 1 | 2 | 1 2` to control what versions are used for sending and receiving on interfaces.

Step 9
```
no auto summary
```
(Optional) Disable automatic summarization. By default, the switch summarizes subprefixes when crossing classful network boundaries. Disable summarization (only RIP Version 2) to advertise subnet and host routing information to classful network boundaries.

Step 10
```
no validate-update-source
```
(Optional) Disable validation of the source IP address of incoming RIP routing updates. By default, the switch validates the source IP address of incoming RIP routing updates and discards the update if the source address is not valid. Under normal circumstances, we do not recommend that you disable this feature. However, if you have a router that is off-network and you want to receive its updates, you can use this command.

Step 11
```
output-delay delay
```
(Optional) Add interpacket delay for RIP updates sent. By default, packets in a multiple-packet RIP update have no delay time added between packets. If you are sending packets to a lower-speed device, you can add an interpacket delay in the range of 8 to 50 milliseconds.

Step 12
```
end
```
Return to privileged EXEC mode.
Configuring RIP

To turn off the RIP routing process, use the `no router rip` global configuration command.

To display the parameters and current state of the active routing protocol process, use the `show ip protocols` privileged EXEC command. To display summary address entries in the RIP database, use the `show ip rip database` privileged EXEC command.

Configuring RIP Authentication

RIP Version 1 does not support authentication. If you are sending and receiving RIP Version 2 packets, you can enable RIP authentication on an interface. The key chain specifies the set of keys that can be used on the interface. If a key chain is not configured, no authentication is performed, not even the default. Therefore, you must also perform the tasks in the “Managing Authentication Keys” section on page 39-111.

The switch supports these modes of authentication on interfaces for which RIP authentication is enabled: plain text and MD5. The default is plain text.

Beginning in privileged EXEC mode, follow these steps to configure RIP authentication on an interface:

```
Step 1  configure terminal
Step 2  interface interface-id
Step 3  ip rip authentication key-chain name-of-chain
Step 4  ip rip authentication mode [text | md5]
Step 5  end
Step 6  show running-config interface [interface-id]
Step 7  copy running-config startup-config
```

To restore clear text authentication, use the `no ip rip authentication mode` interface configuration command. To prevent authentication, use the `no ip rip authentication key-chain` interface configuration command.

Configuring Summary Addresses and Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature usually optimizes communication among multiple routers, especially when links are broken.
Note

In general, we do not recommend disabling split horizon unless you are certain that your application requires it to properly advertise routes.

If you want to configure an interface running RIP to advertise a summarized local IP address pool on a network access server for dial-up clients, use the `ip summary-address rip` interface configuration command.

Beginning in privileged EXEC mode, follow these steps to set an interface to advertise a summarized local IP address and to disable split horizon on the interface:

```
Switch(config)# router rip
Switch(config-router)# interface gigabitethernet1/0/2
Switch(config-if)# ip address 10.1.5.1 255.255.255.0
Switch(config-if)# ip summary-address rip 10.2.0.0 255.255.0.0
Switch(config-if)# no ip split-horizon
Switch(config-if)# exit
Switch(config)# router rip
Switch(config-router)# network 10.0.0.0
Switch(config-router)# neighbor 2.2.2.2 peer-group mygroup
Switch(config-router)# end
```

Command	Purpose
configure terminal | Enter global configuration mode.
interface interface-id | Enter interface configuration mode, and specify the Layer 3 interface to configure.
ip address ip-address subnet-mask | Configure the IP address and the IP subnet.
ip summary-address rip ip address ip-network mask | Configure the IP address to be summarized and the IP network mask.
no ip split horizon | Disable split horizon on the interface.
end | Return to privileged EXEC mode.
show ip interface interface-id | Verify your entries.
copy running-config startup-config | (Optional) Save your entries in the configuration file.

To disable IP summarization, use the `no ip summary-address rip` router configuration command.

In this example, the major net is 10.0.0.0. The summary address of 10.2.0.0 overrides the autosummary address of 10.0.0.0 so that 10.2.0.0 is advertised from interface Gigabit Ethernet port 2, and 10.0.0.0 is not advertised. In the example, if the interface is still in Layer 2 mode (the default), you must enter the `no switchport` interface configuration command before entering the `ip address` interface configuration command.

Note

If split horizon is enabled, neither autosummary nor interface summary addresses (those configured with the `ip summary-address rip` router configuration command) are advertised.
Configuring Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature can optimize communication among multiple routers, especially when links are broken.

Note
In general, we do not recommend disabling split horizon unless you are certain that your application requires it to properly advertise routes.

Beginning in privileged EXEC mode, follow these steps to disable split horizon on the interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip address ip-address subnet-mask</td>
</tr>
<tr>
<td></td>
<td>Configure the IP address and the IP subnet.</td>
</tr>
<tr>
<td>Step 4</td>
<td>no ip split-horizon</td>
</tr>
<tr>
<td></td>
<td>Disable split horizon on the interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To enable the split horizon mechanism, use the `ip split-horizon` interface configuration command.

Configuring OSPF

This section briefly describes how to configure Open Shortest Path First (OSPF). For a complete description of the OSPF commands, see the “OSPF Commands” chapter of the *Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2*.

Note
OSPF classifies different media into broadcast, nonbroadcast, and point-to-point networks. The switch supports broadcast (Ethernet, Token Ring, and FDDI) and point-to-point networks (Ethernet interfaces configured as point-to-point links).

OSPF is an Interior Gateway Protocol (IGP) designed expressly for IP networks, supporting IP subnetting and tagging of externally derived routing information. OSPF also allows packet authentication and uses IP multicast when sending and receiving packets.

The Cisco implementation conforms to the OSPF Version 2 specifications with these key features:

- Definition of stub areas is supported.
- Routes learned through any IP routing protocol can be redistributed into another IP routing protocol.
- At the intradomain level, OSPF can import routes learned through EIGRP and RIP. OSPF routes can also be exported into RIP.
Plain text and MD5 authentication among neighboring routers within an area is supported.
Configurable routing interface parameters include interface output cost, retransmission interval, interface transmit delay, router priority, router dead and hello intervals, and authentication key.
Virtual links are supported.
Not-so-stubby-areas (NSSAs) per RFC 1587 are supported.

OSPF typically requires coordination among many internal routers, area border routers (ABRs) connected to multiple areas, and autonomous system boundary routers (ASBRs). The minimum configuration would use all default parameter values, no authentication, and interfaces assigned to areas. If you customize your environment, you must ensure coordinated configuration of all routers.

These sections contain this configuration information:
- Default OSPF Configuration, page 39-32
- Configuring Basic OSPF Parameters, page 39-35
- Configuring OSPF Interfaces, page 39-36
- Configuring OSPF Area Parameters, page 39-37
- Configuring Other OSPF Parameters, page 39-38
- Changing LSA Group Pacing, page 39-40
- Configuring a Loopback Interface, page 39-41
- Monitoring OSPF, page 39-41

Default OSPF Configuration

Table 39-6 shows the default OSPF configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface parameters</td>
<td>Cost: No default cost predefined.</td>
</tr>
<tr>
<td></td>
<td>Resend interval: 5 seconds.</td>
</tr>
<tr>
<td></td>
<td>Send delay: 1 second.</td>
</tr>
<tr>
<td></td>
<td>Priority: 1.</td>
</tr>
<tr>
<td></td>
<td>Hello interval: 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>Dead interval: 4 times the hello interval.</td>
</tr>
<tr>
<td></td>
<td>No authentication.</td>
</tr>
<tr>
<td></td>
<td>No password specified.</td>
</tr>
<tr>
<td></td>
<td>MD5 authentication disabled.</td>
</tr>
<tr>
<td>Area</td>
<td>Authentication type: 0 (no authentication).</td>
</tr>
<tr>
<td></td>
<td>Default cost: 1.</td>
</tr>
<tr>
<td></td>
<td>Range: Disabled.</td>
</tr>
<tr>
<td></td>
<td>Stub: No stub area defined.</td>
</tr>
<tr>
<td></td>
<td>NSSA: No NSSA area defined.</td>
</tr>
</tbody>
</table>
Table 39-5 Default OSPF Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto cost</td>
<td>100 Mb/s.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled. When enabled, the default metric setting is 10, and the external route type default is Type 2.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Built-in, automatic metric translation, as appropriate for each routing protocol.</td>
</tr>
<tr>
<td>Distance OSPF</td>
<td>dist1 (all routes within an area): 110. dist2 (all routes from one area to another): 110. dist3 (routes from other routing domains): 110.</td>
</tr>
<tr>
<td>OSPF database filter</td>
<td>Disabled. All outgoing link-state advertisements (LSAs) are flooded to the interface.</td>
</tr>
<tr>
<td>IP OSPF name lookup</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Log adjacency changes</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>None specified.</td>
</tr>
<tr>
<td>Neighbor database filter</td>
<td>Disabled. All outgoing LSAs are flooded to the neighbor.</td>
</tr>
<tr>
<td>Network area</td>
<td>Disabled.</td>
</tr>
<tr>
<td>NSF¹ awareness</td>
<td>Enabled². Allows Layer 3 switches to continue forwarding packets from a neighboring NSF-capable router during hardware or software changes.</td>
</tr>
<tr>
<td>NSF capability</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Note</td>
<td>The switch stack supports OSPF NSF-capable routing for IPv4.</td>
</tr>
<tr>
<td>Router ID</td>
<td>No OSPF routing process defined.</td>
</tr>
<tr>
<td>Summary address</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Timers LSA group pacing</td>
<td>240 seconds.</td>
</tr>
</tbody>
</table>
| Timers shortest path first (spf) | spf delay: 5 seconds.
| | spf-holdtime: 10 seconds. |
| Virtual link | No area ID or router ID defined. |
| | Hello interval: 10 seconds. |
| | Resend interval: 5 seconds. |
| | Send delay: 1 second. |
| | Dead interval: 40 seconds. |
| | Authentication key: no key predefined. |
| | Message-digest key (MD5): no key predefined. |

1. NSF = nonstop forwarding.
2. OSPF NSF awareness is enabled for IPv4 on switches running the IP services feature set.
OSPF for Routed Access

With Cisco IOS Release 12.2(55)SE, the IP Base image supports OSPF for routed access. The IP services image is required if you need multiple OSPFv2 and OSPFv3 instances without route restrictions. Additionally, the IP services image is required to enable the multi-VRF-CE feature.

OSPF for Routed Access is specifically designed so that you can extend Layer 3 routing capabilities to the wiring closet.

Note

OSPF for Routed Access supports only one OSPFv2 and one OSPFv3 instance with a combined total of 200 dynamically learned routes. The IP Base image provides OSPF for routed access. However, these restrictions are not enforced in this release.

With the typical topology (hub and spoke) in a campus environment, where the wiring closets (spokes) are connected to the distribution switch (hub) that forwards all nonlocal traffic to the distribution layer, the wiring closet switch need not hold a complete routing table. A best practice design, where the distribution switch sends a default route to the wiring closet switch to reach interarea and external routes (OSPF stub or totally stub area configuration) should be used when OSPF for Routed Access is used in the wiring closet.

For more details, perform a Google search on “High Availability Campus Network Design” for the routed access layer using EIGRP or OSPF.

OSPF Nonstop Forwarding

The switch or switch stack supports two levels of nonstop forwarding (NSF):

- OSPF NSF Awareness, page 39-34
- OSPF NSF Capability, page 39-35

OSPF NSF Awareness

The IP-services feature set supports OSPF NSF awareness for IPv4. When the neighboring router is NSF-capable, the Layer 3 switch continues to forward packets from the neighboring router during the interval between the primary route processor in a router failure and the take-over of the backup route processor, or while the primary route processor is manually reloaded for a nondisruptive software upgrade.

This feature cannot be disabled. For more information on this feature, see the “OSPF Nonstop Forwarding (NSF) Awareness” section of the Cisco IOS IP Routing Protocols Configuration Guide, Release 12.4.
OSPF NSF Capability

The IP-services feature set also supports OSPF NSF-capable routing for IPv4 for better convergence and lower traffic loss following a stack-master change. When a stack-master change occurs in an OSPF NSF-capable stack, the new stack master must do two things to resynchronize its link-state database with its OSPF neighbors:

- Release the available OSPF neighbors on the network without resetting the neighbor relationship.
- Re-acquire the contents of the link-state database for the network.

After a stack-master change, the new master sends an OSPF NSF signal to neighboring NSF-aware devices. A device recognizes this signal to mean that it should not reset the neighbor relationship with the stack. As the NSF-capable stack master receives signals from other routes on the network, it begins to rebuild its neighbor list.

When the neighbor relationships are reestablished, the NSF-capable stack master resynchronizes its database with its NSF-aware neighbors, and routing information is exchanged between the OSPF neighbors. The new stack master uses this routing information to remove stale routes, to update the routing information database (RIB), and to update the forwarding information base (FIB) with the new information. The OSPF protocols then fully converge.

Note

OSPF NSF requires that all neighbor networking devices be NSF-aware. If an NSF-capable router discovers non-NSF-aware neighbors on a network segment, it disables NSF capabilities for that segment. Other network segments where all devices are NSF-aware or NSF-capable continue to provide NSF capabilities.

Use the `nsf` OSPF routing configuration command to enable OSPF NSF routing. Use the `show ip ospf` privileged EXEC command to verify that it is enabled.

Note

NSF is not supported on interfaces configured for Hot Standby Router Protocol (HSRP).

Configuring Basic OSPF Parameters

Enabling OSPF requires that you create an OSPF routing process, specify the range of IP addresses to be associated with the routing process, and assign area IDs to be associated with that range.

Beginning in privileged EXEC mode, follow these steps to enable OSPF:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf process-id</td>
<td>Enable OSPF routing, and enter router configuration mode. The process ID is an internal identification parameter that is locally assigned and can be any positive integer. Each OSPF routing process has a unique value.</td>
</tr>
<tr>
<td>Step 3</td>
<td>nsf</td>
<td>(Optional) Enable NSF operations for OSPF.</td>
</tr>
</tbody>
</table>
To end an OSPF routing process, use the `no router ospf process-id` global configuration command.

This example shows how to configure an OSPF routing process and assign it a process ID of 109:

```
Switch(config)# router ospf 109
Switch(config-router)# network 131.108.0.0 255.255.255.0 area 24
```

Configuring OSPF Interfaces

You can use the `ip ospf` interface configuration commands to modify interface-specific OSPF parameters. You are not required to modify any of these parameters, but some interface parameters (hello interval, dead interval, and authentication key) must be consistent across all routers in an attached network. If you modify these parameters, be sure all routers in the network have compatible values.

Beginning in privileged EXEC mode, follow these steps to modify OSPF interface parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td><code>ip ospf cost</code></td>
<td>(Optional) Specify the cost of sending a packet on the interface.</td>
</tr>
<tr>
<td><code>ip ospf retransmit-interval seconds</code></td>
<td>(Optional) Specify the number of seconds between link-state advertisement transmissions. The range is 1 to 65535 seconds. The default is 5 seconds.</td>
</tr>
<tr>
<td><code>ip ospf transmit-delay seconds</code></td>
<td>(Optional) Set the estimated number of seconds to wait before sending a link state update packet. The range is 1 to 65535 seconds. The default is 1 second.</td>
</tr>
<tr>
<td><code>ip ospf priority number</code></td>
<td>(Optional) Set priority to help find the OSPF designated router for a network. The range is from 0 to 255. The default is 1.</td>
</tr>
<tr>
<td><code>ip ospf hello-interval seconds</code></td>
<td>(Optional) Set the number of seconds between hello packets sent on an OSPF interface. The value must be the same for all nodes on a network. The range is 1 to 65535 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td><code>ip ospf dead-interval seconds</code></td>
<td>(Optional) Set the number of seconds after the last device hello packet was seen before its neighbors declare the OSPF router to be down. The value must be the same for all nodes on a network. The range is 1 to 65535 seconds. The default is 4 times the hello interval.</td>
</tr>
</tbody>
</table>
Configuring OSPF

You can optionally configure several OSPF area parameters. These parameters include authentication for password-based protection against unauthorized access to an area, stub areas, and not-so-stubby-areas (NSSAs). Stub areas are areas into which information on external routes is not sent. Instead, the area border router (ABR) generates a default external route into the stub area for destinations outside the autonomous system. An NSSA does not flood all LSAs from the core into the area, but can import autonomous-system external routes within the area by redistribution.

Route summarization consolidates advertised addresses into a single summary route to be advertised by other areas. If network numbers are contiguous, you can use the `area range` router configuration command to configure the ABR to advertise a summary route that covers all networks in the range.

Note
The OSPF area router configuration commands are all optional.
Beginning in privileged EXEC mode, follow these steps to configure area parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router ospf process-id</td>
<td>Enable OSPF routing, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3 area area-id authentication</td>
<td>(Optional) Allow password-based protection against unauthorized access to the identified area. The identifier can be either a decimal value or an IP address.</td>
</tr>
<tr>
<td>Step 4 area area-id authentication message-digest</td>
<td>(Optional) Enable MD5 authentication on the area.</td>
</tr>
<tr>
<td>Step 5 area area-id stub [no-summary]</td>
<td>(Optional) Define an area as a stub area. The no-summary keyword prevents an ABR from sending summary link advertisements into the stub area.</td>
</tr>
<tr>
<td>Step 6 area area-id nssa [no-redistribution]</td>
<td>(Optional) Defines an area as a NSSA. Every router within the same area must agree that the area is an NSSA. Select one of these keywords:</td>
</tr>
<tr>
<td>[default-information-originate] [no-summary]</td>
<td>• no-redistribution—Select when the router is an NSSA ABR and you want the redistribute command to import routes into normal areas but not into the NSSA.</td>
</tr>
<tr>
<td></td>
<td>• default-information-originate—Select an ABR to allow importing type 7 LSAs into the NSSA.</td>
</tr>
<tr>
<td></td>
<td>• no-redistribution—Select to not send summary LSAs into the NSSA.</td>
</tr>
<tr>
<td>Step 7 area area-id range address mask</td>
<td>(Optional) Specify an address range for which a single route is advertised. Use this command only with area border routers.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9 show ip ospf [process-id]</td>
<td>Display information about the OSPF routing process in general or for a specific process ID to verify configuration.</td>
</tr>
<tr>
<td>show ip ospf [process-id [area-id]] database</td>
<td>Display lists of information related to the OSPF database for a specific router.</td>
</tr>
<tr>
<td>Step 10 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no form of these commands to remove the configured parameter value or to return to the default value.

Configuring Other OSPF Parameters

You can optionally configure other OSPF parameters from router configuration mode.

- Route summarization: When redistributing routes from other protocols, as described in the “Using Route Maps to Redistribute Routing Information” section on page 39-101, each route is advertised individually in an external LSA. To help decrease the size of the OSPF link state database, you can use the summary-address router configuration command to advertise a single router for all the redistributed routes included in a specified network address and mask.
Virtual links: In OSPF, all areas must be connected to a backbone area. You can establish a virtual link in case of a backbone-continuity break by configuring two ABRs as endpoints of a virtual link. Configuration information includes the identity of the other virtual endpoint (the other ABR) and the nonbackbone link that the two routers have in common (the transit area). Virtual links cannot be configured through a stub area.

Default route: When you specifically configure redistribution of routes into an OSPF routing domain, the route automatically becomes an autonomous system boundary router (ASBR). You can force the ASBR to generate a default route into the OSPF routing domain.

Domain name server (DNS) names for use in all OSPF `show` privileged EXEC command displays makes it easier to identify a router than displaying it by router ID or neighbor ID.

Default metrics: OSPF calculates the OSPF metric for an interface according to the bandwidth of the interface. The metric is calculated as `ref-bw` divided by bandwidth, where `ref` is 10 by default, and bandwidth (`bw`) is specified by the `bandwidth` interface configuration command. For multiple links with high bandwidth, you can specify a larger number to differentiate the cost on those links.

Administrative distance is a rating of the trustworthiness of a routing information source, an integer between 0 and 255, with a higher value meaning a lower trust rating. An administrative distance of 255 means the routing information source cannot be trusted at all and should be ignored. OSPF uses three different administrative distances: routes within an area (intra-area), routes to another area (interarea), and routes from another routing domain learned through redistribution (external). You can change any of the distance values.

Passive interfaces: Because interfaces between two devices on an Ethernet represent only one network segment, to prevent OSPF from sending hello packets for the sending interface, you must configure the sending device to be a passive interface. Both devices can identify each other through the hello packet for the receiving interface.

Route calculation timers: You can configure the delay time between when OSPF receives a topology change and when it starts the shortest path first (SPF) calculation and the hold time between two SPF calculations.

Log neighbor changes: You can configure the router to send a syslog message when an OSPF neighbor state changes, providing a high-level view of changes in the router.

Beginning in privileged EXEC mode, follow these steps to configure these OSPF parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router ospf process-id</code> Enable OSPF routing, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>summary-address address mask</code> (Optional) Specify an address and IP subnet mask for redistributed routes so that only one summary route is advertised.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>area area-id virtual-link [hello-interval seconds] [retransmit-interval seconds] [trans] [[authentication-key key] [message-digest-key keyid md5 key]]</code> (Optional) Establish a virtual link, and set its parameters. See the “Configuring OSPF Interfaces” section on page 39-36 for parameter definitions and Table 39-6 on page 39-32 for virtual link defaults.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]</code> (Optional) Force the ASBR to generate a default route into the OSPF routing domain. Parameters are all optional.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>ip ospf name-lookup</code> (Optional) Configure DNS name lookup. The default is disabled.</td>
</tr>
</tbody>
</table>
Chapter 39 Configuring IP Unicast Routing

Configuring OSPF

Changing LSA Group Pacing

The OSPF LSA group pacing feature allows the router to group OSPF LSAs and pace the refreshing, check-summing, and aging functions for more efficient router use. This feature is enabled by default with a 4-minute default pacing interval, and you will not usually need to modify this parameter. The optimum group pacing interval is inversely proportional to the number of LSAs that the router is refreshing, check-summing, and aging. For example, if you have approximately 10,000 LSAs in the database, decreasing the pacing interval would benefit you. If you have a very small database (40 to 100 LSAs), increasing the pacing interval to 10 to 20 minutes might benefit you slightly.

Beginning in privileged EXEC mode, follow these steps to configure OSPF LSA pacing:

Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td><code>ip auto-cost reference-bandwidth ref-bw</code> (Optional) Specify an address range for which a single route is advertised. Use this command only with area border routers.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>distance ospf [inter-area dist1] [inter-area dist2] [external dist3]</code> (Optional) Change the OSPF distance values. The range is 1 to 255. The default distance for each type of route is 110.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>passive-interface type number</code> (Optional) Suppress the sending of hello packets through the specified interface.</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>timers throttle spf spf-delay spf-holdtime spf-wait</code> (Optional) Configure route calculation timers.</td>
</tr>
<tr>
<td>Step 11</td>
<td><code>ospf log-adj-changes</code> (Optional) Send syslog message when a neighbor state changes.</td>
</tr>
<tr>
<td>Step 12</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 13</td>
<td><code>show ip ospf [process-id [area-id]] database</code> Display lists of information related to the OSPF database for a specific router. For some of the keyword options, see the “Monitoring OSPF” section on page 39-41.</td>
</tr>
<tr>
<td>Step 14</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router ospf process-id</code> Enable OSPF routing, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>timers lsa-group-pacing seconds</code> Change the group pacing of LSAs.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default value, use the `no timers lsa-group-pacing` router configuration command.
Configuring a Loopback Interface

OSPF uses the highest IP address configured on the interfaces as its router ID. If this interface is down or removed, the OSPF process must recalculate a new router ID and resend all its routing information through its interfaces. If a loopback interface is configured with an IP address, OSPF uses this IP address as its router ID, even if other interfaces have higher IP addresses. Loopback interfaces never fail, which provides greater stability. OSPF automatically prefers a loopback interface over other interfaces, and it chooses the highest IP address among all loopback interfaces.

Beginning in privileged EXEC mode, follow these steps to configure a loopback interface:

- **Step 1**: configure terminal
 - Enter global configuration mode.
- **Step 2**: interface loopback 0
 - Create a loopback interface, and enter interface configuration mode.
- **Step 3**: ip address address mask
 - Assign an IP address to this interface.
- **Step 4**: end
 - Return to privileged EXEC mode.
- **Step 5**: show ip interface
 - Verify your entries.
- **Step 6**: copy running-config startup-config
 - (Optional) Save your entries in the configuration file.

Use the `no interface loopback 0` global configuration command to disable the loopback interface.

Monitoring OSPF

You can display specific statistics such as the contents of IP routing tables, caches, and databases.

Table 39-7 lists some of the privileged EXEC commands for displaying statistics. For more `show ip ospf database` privileged EXEC command options and for explanations of fields in the resulting display, see the *Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2*.

Table 39-6 Show IP OSPF Statistics Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip ospf [process-id] database [router] [link-state-id]</code></td>
<td>Display lists of information related to the OSPF database.</td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [router] [self-originate]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [router] [adv-router [ip-address]]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [network] [link-state-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [summary] [link-state-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [asbr-summary] [link-state-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [external] [link-state-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id area-id] database [database-summary]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf border-routes</code></td>
<td>Display the internal OSPF routing ABR and ASBR table entries.</td>
</tr>
<tr>
<td><code>show ip ospf interface [interface-name]</code></td>
<td>Display OSPF-related interface information.</td>
</tr>
</tbody>
</table>
Configuring EIGRP

Note
If the switch is running the IP base image, you can configure complete EIGRP routing. However, the configuration is not implemented because the IP base image supports only EIGRP stub routing.

After you have entered the `eigrp stub` router configuration command, only the `eigrp stub connected summary` command takes effect. Although the CLI help might show the `receive-only` and `static` keywords, and you can enter these keywords, the switch running the IP base image always behaves as if the `connected` and `summary` keywords were configured.

Enhanced IGRP (EIGRP) is a Cisco-proprietary enhanced version of the IGRP. EIGRP uses the same distance vector algorithm and distance information as IGRP; however, the convergence properties and the operating efficiency of EIGRP are significantly improved.

The convergence technology employs an algorithm referred to as the diffusing update algorithm (DUAL), which guarantees loop-free operation at every instant throughout a route computation. All devices involved in a topology change can synchronize at the same time. Routers that are not affected by topology changes are not involved in recomputations.

IP EIGRP provides increased network width. With RIP, the largest possible width of your network is 15 hops. Because the EIGRP metric is large enough to support thousands of hops, the only barrier to network expansion is the transport-layer hop counter. EIGRP increments the transport control field only when an IP packet has traversed 15 routers and the next hop to the destination was learned through EIGRP. When a RIP route is used as the next hop to the destination, the transport control field increments as usual.

EIGRP offers these features:
- Fast convergence.
- Incremental updates when the state of a destination changes rather than sending the entire contents of the routing table, minimizing the bandwidth required for EIGRP packets.
- Less CPU usage because full update packets need not be processed each time they are received.
- Protocol-independent neighbor discovery mechanism to learn about neighboring routers.
- Variable-length subnet masks (VLSMs).
- Arbitrary route summarization.
- Scalable for large networks.

Table 39-6 Show IP OSPF Statistics Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip ospf neighbor [interface-name] [neighbor-id] detail</code></td>
<td>Display OSPF interface neighbor information.</td>
</tr>
<tr>
<td><code>show ip ospf virtual-links</code></td>
<td>Display OSPF-related virtual links information.</td>
</tr>
</tbody>
</table>
EIGRP has these four basic components:

- **Neighbor discovery and recovery** is the process that routers use to dynamically learn of other routers on their directly attached networks. Routers must also discover when their neighbors become unreachable or inoperative. Neighbor discovery and recovery is achieved by periodically sending small hello packets. As long as hello packets are received, the Cisco IOS software learns that a neighbor is alive and functioning. When this status is determined, the neighboring routers can exchange routing information.

- **The reliable transport protocol** is responsible for guaranteed, ordered delivery of EIGRP packets to all neighbors. It supports intermixed transmission of multicast and unicast packets. Some EIGRP packets must be sent reliably, and others need not be. For efficiency, reliability is provided only when necessary. For example, on a multi-access network with multicast capabilities (such as Ethernet), it is not necessary to send hellos reliably to all neighbors individually. Therefore, EIGRP sends a single multicast hello with an indication in the packet informing the receivers that the packet need not be acknowledged. Other types of packets (such as updates) require acknowledgment, which is shown in the packet. The reliable transport has a provision to send multicast packets quickly when there are unacknowledged packets pending. Doing so helps ensure that convergence time remains low in the presence of varying speed links.

- **The DUAL finite state machine** embodies the decision process for all route computations. It tracks all routes advertised by all neighbors. DUAL uses the distance information (known as a metric) to select efficient, loop-free paths. DUAL selects routes to be inserted into a routing table based on feasible successors. A successor is a neighboring router used for packet forwarding that has a least-cost path to a destination that is guaranteed not to be part of a routing loop. When there are no feasible successors, but there are neighbors advertising the destination, a recomputation occurs. This is the process whereby a new successor is determined. The amount of time it takes to recompute the route affects the convergence time. Recomputation is processor-intensive; it is advantageous to avoid recomputation if it is not necessary. When a topology change occurs, DUAL tests for feasible successors. If there are feasible successors, it uses any it finds to avoid unnecessary recomputation.

- **The protocol-dependent modules** are responsible for network layer protocol-specific tasks. An example is the IP EIGRP module, which is responsible for sending and receiving EIGRP packets that are encapsulated in IP. It is also responsible for parsing EIGRP packets and informing DUAL of the new information received. EIGRP uses DUAL for routing decisions, but the results are stored in the IP routing table. EIGRP is also responsible for redistributing routes learned by other IP routing protocols.

These sections contain this configuration information:

- **Default EIGRP Configuration**, page 39-44
- **Configuring Basic EIGRP Parameters**, page 39-46
- **Configuring EIGRP Interfaces**, page 39-47
- **Configuring EIGRP Route Authentication**, page 39-48
- **EIGRP Stub Routing**, page 39-49
- **Monitoring and Maintaining EIGRP**, page 39-49

Note

To enable EIGRP, the switch or stack master must be running the IP services feature set.

Default EIGRP Configuration

Table 39-8 shows the default EIGRP configuration.
Table 39-7 Default EIGRP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto summary</td>
<td>Enabled. Subprefixes are summarized to the classful network boundary when crossing classful network boundaries.</td>
</tr>
<tr>
<td>Default-information</td>
<td>Exterior routes are accepted, and default information is passed between EIGRP processes during redistribution.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Only connected routes and interface static routes can be redistributed without a default metric. The metric includes:</td>
</tr>
<tr>
<td></td>
<td>• Bandwidth: 0 or greater kb/s.</td>
</tr>
<tr>
<td></td>
<td>• Delay (tens of microseconds): 0 or any positive number that is a multiple of 39.1 nanoseconds.</td>
</tr>
<tr>
<td></td>
<td>• Reliability: any number between 0 and 255 (255 means 100 percent reliability).</td>
</tr>
<tr>
<td></td>
<td>• Loading: effective bandwidth as a number between 0 and 255 (255 is 100 percent loading).</td>
</tr>
<tr>
<td></td>
<td>• MTU: maximum transmission unit size of the route in bytes. 0 or any positive integer.</td>
</tr>
<tr>
<td>Distance</td>
<td>Internal distance: 90.</td>
</tr>
<tr>
<td></td>
<td>External distance: 170.</td>
</tr>
<tr>
<td>EIGRP log-neighbor changes</td>
<td>Disabled. No adjacency changes logged.</td>
</tr>
<tr>
<td>IP authentication key-chain</td>
<td>No authentication provided.</td>
</tr>
<tr>
<td>IP authentication mode</td>
<td>No authentication provided.</td>
</tr>
<tr>
<td>IP bandwidth-percent</td>
<td>50 percent.</td>
</tr>
<tr>
<td>IP hello interval</td>
<td>For low-speed nonbroadcast multiaccess (NBMA) networks: 60 seconds; all other networks: 5 seconds.</td>
</tr>
<tr>
<td>IP hold-time</td>
<td>For low-speed NBMA networks: 180 seconds; all other networks: 15 seconds.</td>
</tr>
<tr>
<td>IP split-horizon</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IP summary address</td>
<td>No summary aggregate addresses are predefined.</td>
</tr>
<tr>
<td>Metric weights</td>
<td>tos: 0; k1 and k3: 1; k2, k4, and k5: 0</td>
</tr>
<tr>
<td>Network</td>
<td>None specified.</td>
</tr>
<tr>
<td>NSF(^1) awareness</td>
<td>Enabled(^2). Allows Layer 3 switches to continue forwarding packets from a neighboring NSF-capable router during hardware or software changes.</td>
</tr>
<tr>
<td>NSF capability</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Offset-list</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Router EIGRP</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Set metric</td>
<td>No metric set in the route map.</td>
</tr>
</tbody>
</table>

Note The switch supports EIGRP NSF-capable routing for IPv4.
Configuring EIGRP

To create an EIGRP routing process, you must enable EIGRP and associate networks. EIGRP sends updates to the interfaces in the specified networks. If you do not specify an interface network, it is not advertised in any EIGRP update.

If you have routers on your network that are configured for IGRP, and you want to change to EIGRP, you must designate transition routers configured with both IGRP and EIGRP. In these cases, perform Steps 1 through 3 in the next section and also see the “Configuring Split Horizon” section on page 39-26. You must use the same autonomous-system number for routes so that they are automatically redistributed.

EIGRP Nonstop Forwarding

The switch stack supports two levels of EIGRP nonstop forwarding:

- EIGRP NSF Awareness, page 39-45
- EIGRP NSF Capability, page 39-45

EIGRP NSF Awareness

The IP-services feature set supports EIGRP NSF awareness for IPv4. When the neighboring router is NSF-capable, the Layer 3 switch continues to forward packets from the neighboring router during the interval between the primary route processor in a router failure and the backup RP take-over, or while you manually reload the primary route processor for a nondisruptive software upgrade.

This feature cannot be disabled. For more information on this feature, see the “EIGRP Nonstop Forwarding (NSF) Awareness” section of the Cisco IOS IP Routing Protocols Configuration Guide, Release 12.4.

EIGRP NSF Capability

The IP-services feature set also supports EIGRP NSF-capable routing for IPv4 for better convergence and lower traffic loss following a stack-master change. When an EIGRP NSF-capable stack master restarts or a new stack master starts and NSF restarts, the switch has no neighbors, and the topology table is empty. The switch must bring up the interfaces, re-acquire neighbors, and rebuild the topology and routing tables without interrupting the traffic directed to the switch stack. EIGRP peer routers maintain the routes learned from the new stack master and continue to forward traffic through the NSF restart process.

To prevent an adjacency reset by the neighbors, the new stack master uses a new restart bit in the EIGRP packet header. When the neighbor receives it, it synchronizes the stack in its peer list and maintains the adjacency with the stack. The neighbor then sends its topology table to the stack master with the restart bit set to show that it is NSF-aware and is aiding the new stack master.

If at least one of the stack peer neighbors is NSF-aware, the stack master receives updates and rebuilds its database. Each NSF-aware neighbor sends an end-of-table (EOT) marker in the last update packet to mark the end of the table content. The stack master recognizes the convergence when it receives the EOT

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic-share</td>
<td>Distributed proportionately to the ratios of the metrics.</td>
</tr>
<tr>
<td>Variance</td>
<td>1 (equal-cost load-balancing).</td>
</tr>
</tbody>
</table>

1. NSF = nonstop forwarding
2. EIGRP NSF awareness is enabled for IPv4 on switches running the IP services feature set.
marker and begins sending updates. When the stack master has received all EOT markers from its neighbors or when the NSF converge timer expires, EIGRP notifies the routing information database (RIB) of convergence and floods its topology table to all NSF-aware peers.

Note
NSF is not supported on interfaces configured for Hot Standby Router Protocol (HSRP).

Use the `nsf` EIGRP routing configuration command to enable EIGRP NSF routing. Use the `show ip protocols` privileged EXEC command to verify that NSF is enabled. See the command reference for this release for information about the `nsf` command.

Configuring Basic EIGRP Parameters

Beginning in privileged EXEC mode, follow these steps to configure EIGRP. Configuring the routing process is required; other steps are optional:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router eigrp autonomous-system</td>
<td>Enable an EIGRP routing process, and enter router configuration mode. The autonomous-system number identifies the routes to other EIGRP routers and tags routing information.</td>
</tr>
<tr>
<td>3</td>
<td>nsf</td>
<td>(Optional) Enable EIGRP NSF. Enter this command on the stack master and on all of its peers.</td>
</tr>
<tr>
<td>4</td>
<td>network network-number</td>
<td>Associate networks with an EIGRP routing process. EIGRP sends updates to the interfaces in the specified networks.</td>
</tr>
<tr>
<td>5</td>
<td>eigrp log-neighbor-changes</td>
<td>(Optional) Enable logging of EIGRP neighbor changes to monitor routing system stability.</td>
</tr>
<tr>
<td>6</td>
<td>metric weights tos k1 k2 k3 k4 k5</td>
<td>(Optional) Adjust the EIGRP metric. Although the defaults have been carefully set to provide excellent operation in most networks, you can adjust them.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Setting metrics is complex, and we do not recommend doing without guidance from an experienced network designer.</td>
</tr>
<tr>
<td>7</td>
<td>offset list [access-list number</td>
<td>name] [in</td>
</tr>
<tr>
<td>8</td>
<td>no auto-summary</td>
<td>(Optional) Disable automatic summarization of subnet routes into network-level routes.</td>
</tr>
<tr>
<td>9</td>
<td>ip summary-address eigrp autonomous-system-number address mask</td>
<td>(Optional) Configure a summary aggregate.</td>
</tr>
<tr>
<td>10</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>11</td>
<td>show ip protocols</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>
Configuring EIGRP Interfaces

Other optional EIGRP parameters can be configured on an interface basis.

Beginning in privileged EXEC mode, follow these steps to configure EIGRP interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip bandwidth-percent eigrp percent</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip summary-address eigrp autonomous-system-number address mask</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip hello-interval eigrp autonomous-system-number seconds</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip hold-time eigrp autonomous-system-number seconds</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
</tr>
<tr>
<td>Step 7</td>
<td>no ip split-horizon eigrp autonomous-system-number</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Step 9</td>
<td>show ip eigrp interface</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **no** forms of these commands to disable the feature or to return the setting to the default value.
Configuring EIGRP Route Authentication

EIGRP route authentication provides MD5 authentication of routing updates from the EIGRP routing protocol to prevent the introduction of unauthorized or false routing messages from unapproved sources.

Beginning in privileged EXEC mode, follow these steps to enable authentication:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip authentication mode eigrp autonomous-system md5</td>
<td>Enable MD5 authentication in IP EIGRP packets.</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip authentication key-chain eigrp autonomous-system key-chain</td>
<td>Enable authentication of IP EIGRP packets.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>key chain name-of-chain</td>
<td>Identify a key chain, and enter key-chain configuration mode. Match the name configured in Step 4.</td>
</tr>
<tr>
<td>Step 7</td>
<td>key number</td>
<td>In key-chain configuration mode, identify the key number.</td>
</tr>
<tr>
<td>Step 8</td>
<td>key-string text</td>
<td>In key-chain key configuration mode, identify the key string.</td>
</tr>
</tbody>
</table>
| Step 9 | accept-lifetime start-time {infinite | end-time | duration seconds} | (Optional) Specify the time period during which the key can be received.
The start-time and end-time syntax can be either hh:mm:ss Month date year or hh:mm:ss date Month year. The default is forever with the default start-time and the earliest acceptable date as January 1, 1993. The default end-time and duration is infinite. |
| Step 10| send-lifetime start-time {infinite | end-time | duration seconds} | (Optional) Specify the time period during which the key can be sent.
The start-time and end-time syntax can be either hh:mm:ss Month date year or hh:mm:ss date Month year. The default is forever with the default start-time and the earliest acceptable date as January 1, 1993. The default end-time and duration is infinite. |
| Step 11| end | Return to privileged EXEC mode. |
| Step 12| show key chain | Display authentication key information. |
| Step 13| copy running-config startup-config | (Optional) Save your entries in the configuration file. |

Use the no forms of these commands to disable the feature or to return the setting to the default value.
EIGRP Stub Routing

The IP base feature set contains EIGRP stub routing capability, which only advertises connected or summary routes from the routing tables to other switches in the network. The switch uses EIGRP stub routing at the access layer to eliminate the need for other types of routing advertisements. For enhanced capability and complete EIGRP routing, the switch must be running the IP services feature set.

On a switch running the IP base feature set, if you try to configure multi-VRF-CE and EIGRP stub routing at the same time, the configuration is not allowed.

In a network using EIGRP stub routing, the only allowable route for IP traffic to the user is through a switch that is configured with EIGRP stub routing. The switch sends the routed traffic to interfaces that are configured as user interfaces or are connected to other devices.

When using EIGRP stub routing, you need to configure the distribution and remote routers to use EIGRP and to configure only the switch as a stub. Only specified routes are propagated from the switch. The switch responds to all queries for summaries, connected routes, and routing updates.

Any neighbor that receives a packet informing it of the stub status does not query the stub router for any routes, and a router that has a stub peer does not query that peer. The stub router depends on the distribution router to send the proper updates to all peers.

In Figure 39-6, Switch B is configured as an EIGRP stub router. Switches A and C are connected to the rest of the WAN. Switch B advertises connected, static, redistribution, and summary routes to Switches A and C. Switch B does not advertise any routes learned from switch A (and the reverse).

Monitoring and Maintaining EIGRP

You can delete neighbors from the neighbor table. You can also display various EIGRP routing statistics. Table 39-9 lists the privileged EXEC commands for deleting neighbors and displaying statistics. For explanations of fields in the resulting display, see the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2.
Chapter 39 Configuring IP Unicast Routing

Configuring BGP

The Border Gateway Protocol (BGP) is an exterior gateway protocol for an interdomain routing system that guarantees the loop-free exchange of routing information between autonomous systems. Autonomous systems are made up of routers operating under the same administration and run Interior Gateway Protocols (IGPs), such as RIP or OSPF, within their boundaries and interconnecting by using an Exterior Gateway Protocol (EGP). BGP Version 4 is the standard EGP for interdomain routing in the Internet. You can find detailed information about BGP in *Internet Routing Architectures*, published by Cisco Press, and in the “Configuring BGP” chapter in the *Cisco IP and IP Routing Configuration Guide*.

For details about BGP commands and keywords, see the “IP Routing Protocols” part of the *Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2*. For a list of BGP commands that are visible but not supported by the switch, see Appendix C, “Unsupported Commands in Cisco IOS Release 12.2(55)SE.”

Routers belonging to the same autonomous system and exchanging BGP updates run *internal BGP* (IBGP). Routers belonging to different autonomous systems and exchanging BGP updates run *external BGP* (EBGP). Most configuration commands are the same for configuring EBGP and IBGP. The difference is that the routing updates are exchanged either between autonomous systems (EBGP) or within an autonomous system (IBGP). Figure 39-6 shows a network that is running both EBGP and IBGP.

Table 39-8 IP EIGRP Clear and Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip eigrp neighbors [if-address</td>
<td>Delete neighbors from the neighbor table.</td>
</tr>
<tr>
<td>interface]</td>
<td></td>
</tr>
<tr>
<td>show ip eigrp interface [interface] [as number]</td>
<td>Display information about interfaces configured for EIGRP.</td>
</tr>
<tr>
<td>show ip eigrp neighbors [type-number]</td>
<td>Display EIGRP discovered neighbors.</td>
</tr>
<tr>
<td>show ip eigrp topology [autonomous-system-number] [ip-address] mask]</td>
<td>Display the EIGRP topology table for a given process.</td>
</tr>
<tr>
<td>show ip eigrp traffic [autonomous-system-number]</td>
<td>Display the number of packets sent and received for all or a specified EIGRP process.</td>
</tr>
</tbody>
</table>

Configuring BGP

![Figure 39-5 EBGP, IBGP, and Multiple Autonomous Systems](image)

AS 100
- **Router A**
 - IP Address: 129.213.1.2
 - EBGP
 - Connected to AS 200

AS 200
- **Router B**
 - IP Address: 129.213.1.1
 - IBGP

AS 300
- **Router D**
 - IP Address: 192.208.10.1
 - EBGP

AS 300
- **Router C**
 - IP Address: 175.220.12.1
 - IBGP

As shown in Figure 39-6, the network consists of multiple autonomous systems interconnected by EBGP and IBGP routers.

OL-12189-05
Before exchanging information with an external autonomous system, BGP ensures that networks in the autonomous system can be reached by defining internal BGP peering among routers and by redistributing BGP routing information to IGP s that run in the autonomous system, such as IGRP and OSPF.

Routers that run a BGP routing process are often referred to as BGP *speakers*. BGP uses the Transmission Control Protocol (TCP) as its transport protocol (specifically port 179). Two BGP speakers that have a TCP connection to each other are known as *peers* or *neighbors*. In Figure 39-6, Routers A and B are BGP peers, as are Routers B and C and Routers C and D. The routing information is a series of autonomous-system numbers that describe the full path to the destination network. BGP uses this information to construct a loop-free map of autonomous systems.

The network has these characteristics:

- Routers A and B are running EBGP, and Routers B and C are running IBGP. Note that the EBGP peers are directly connected and that the IBGP peers are not. As long as an IGP allows the two neighbors to reach one another, IBGP peers do not have to be directly connected.
- All BGP speakers within an autonomous system must establish a peer relationship. That is, the BGP speakers within an autonomous system must have a logical full mesh. However, BGP4 provides techniques to reduce the requirement for a logical full mesh: *confederations* and *route reflectors*.
- Autonomous system AS 200 is a *transit autonomous system* for AS 100 and AS 300—that is, AS 200 transfers packets between AS 100 and AS 300.

BGP peers first exchange their full BGP routing tables and then send only incremental updates. BGP peers also exchange keepalive messages (to ensure that the connection is up) and notification messages (in response to errors or special conditions).

In BGP, each route consists of a network number, a list of autonomous systems that information has passed through (*the autonomous system path*), and a list of other *path attributes*. The primary function of a BGP system is to exchange network reachability information, including information about the list of autonomous-system paths, with other BGP systems. This information determines autonomous-system connectivity, to prune routing loops, and to enforce autonomous-system-level policy decisions.

A router or switch running Cisco IOS does not select or use an IBGP route unless it has a route available to the next-hop router and it has received synchronization from an IGP (unless IGP synchronization is disabled). When multiple routes are available, BGP bases its path selection on *attribute* values. See the “Configuring BGP Decision Attributes” section on page 39-58 for information about BGP attributes.

BGP Version 4 supports classless interdomain routing (CIDR), so you can reduce the size of your routing tables by creating aggregate routes, resulting in *supernets*. CIDR eliminates the network classes within BGP and supports the advertising of IP prefixes.

These sections contain this configuration information:

- Default BGP Configuration, page 39-51
- Enabling BGP Routing, page 39-54
- Managing Routing Policy Changes, page 39-57
- Configuring BGP Decision Attributes, page 39-58
- Configuring BGP Filtering with Route Maps, page 39-60
- Configuring BGP Filtering by Neighbor, page 39-61
- Configuring Prefix Lists for BGP Filtering, page 39-62
- Configuring BGP Community Filtering, page 39-63
- Configuring BGP Neighbors and Peer Groups, page 39-65
- Configuring Aggregate Addresses, page 39-67
Configuring BGP

- Configuring Routing Domain Confederations, page 39-67
- Configuring BGP Route Reflectors, page 39-68
- Configuring Route Dampening, page 39-69
- Monitoring and Maintaining BGP, page 39-70

For a list of BGP commands that are visible but not supported by the switch, see Appendix C, “Unsupported Commands in Cisco IOS Release 12.2(55)SE.”

Default BGP Configuration

Table 39-10 shows the default BGP configuration. For the defaults for all characteristics, see the specific commands in the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate address</td>
<td>Disabled: None defined.</td>
</tr>
<tr>
<td>Autonomous-system path access list</td>
<td>None defined.</td>
</tr>
<tr>
<td>Auto summary</td>
<td>Enabled.</td>
</tr>
</tbody>
</table>
| Best path | • The router considers *as-path* in choosing a route and does not compare similar routes from external BGP peers.
 | • Compare router ID: Disabled. |
| BGP community list | • Number: None defined. When you permit a value for the community number, the list defaults to an implicit deny for everything else that has not been permitted.
 | • Format: Cisco IOS default format (32-bit number). |
| BGP confederation identifier/peers | • Identifier: None configured. |
| | • Peers: None identified. |
| BGP fast external fallover | Enabled. |
| BGP local preference | 100. The range is 0 to 4294967295 with the higher value preferred. |
| BGP network | None specified; no backdoor route advertised. |
| BGP route dampening | Disabled by default. When enabled:
 | • Half-life is 15 minutes. |
 | • Re-use is 750 (10-second increments). |
 | • Suppress is 2000 (10-second increments). |
 | • Max-suppress-time is 4 times half-life; 60 minutes. |
| BGP router ID | The IP address of a loopback interface if one is configured or the highest IP address configured for a physical interface on the router. |
| Default information originate (protocol or network redistribution) | Disabled. |
Table 39-9 Default BGP Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default metric</td>
<td>Built-in, automatic metric translations.</td>
</tr>
<tr>
<td>Distance</td>
<td>• External route administrative distance: 20 (acceptable values are from 1 to 255).</td>
</tr>
<tr>
<td></td>
<td>• Internal route administrative distance: 200 (acceptable values are from 1 to 255).</td>
</tr>
<tr>
<td></td>
<td>• Local route administrative distance: 200 (acceptable values are from 1 to 255).</td>
</tr>
<tr>
<td>Distribute list</td>
<td>• In (filter networks received in updates): Disabled.</td>
</tr>
<tr>
<td></td>
<td>• Out (suppress networks from being advertised in updates): Disabled.</td>
</tr>
<tr>
<td>Internal route redistribution</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP prefix list</td>
<td>None defined.</td>
</tr>
<tr>
<td>Multi-exit discriminator (MED)</td>
<td>• Always compare: Disabled. Does not compare MEDs for paths from neighbors in</td>
</tr>
<tr>
<td></td>
<td>different autonomous systems.</td>
</tr>
<tr>
<td></td>
<td>• Best-path compare: Disabled.</td>
</tr>
<tr>
<td></td>
<td>• MED missing as worst path: Disabled.</td>
</tr>
<tr>
<td></td>
<td>• Deterministic MED comparison is disabled.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>• Advertisement interval: 30 seconds for external peers; 5 seconds for internal</td>
</tr>
<tr>
<td></td>
<td>peers.</td>
</tr>
<tr>
<td></td>
<td>• Change logging: Enabled.</td>
</tr>
<tr>
<td></td>
<td>• Conditional advertisement: Disabled.</td>
</tr>
<tr>
<td></td>
<td>• Default originate: No default route is sent to the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• Description: None.</td>
</tr>
<tr>
<td></td>
<td>• Distribute list: None defined.</td>
</tr>
<tr>
<td></td>
<td>• External BGP multihop: Only directly connected neighbors are allowed.</td>
</tr>
<tr>
<td></td>
<td>• Filter list: None used.</td>
</tr>
<tr>
<td></td>
<td>• Maximum number of prefixes received: No limit.</td>
</tr>
<tr>
<td></td>
<td>• Next hop (router as next hop for BGP neighbor): Disabled.</td>
</tr>
<tr>
<td></td>
<td>• Password: Disabled.</td>
</tr>
<tr>
<td></td>
<td>• Peer group: None defined; no members assigned.</td>
</tr>
<tr>
<td></td>
<td>• Prefix list: None specified.</td>
</tr>
<tr>
<td></td>
<td>• Remote autonomous system (add entry to neighbor BGP table): No peers defined.</td>
</tr>
<tr>
<td></td>
<td>• Private autonomous system number removal: Disabled.</td>
</tr>
<tr>
<td></td>
<td>• Route maps: None applied to a peer.</td>
</tr>
<tr>
<td></td>
<td>• Send community attributes: None sent to neighbors.</td>
</tr>
<tr>
<td></td>
<td>• Shutdown or soft reconfiguration: Not enabled.</td>
</tr>
<tr>
<td></td>
<td>• Timers: keepalive: 60 seconds; holdtime: 180 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Update source: Best local address.</td>
</tr>
<tr>
<td></td>
<td>• Weight: Routes learned through BGP peer: 0; routes sourced by the local router:</td>
</tr>
<tr>
<td></td>
<td>32768.</td>
</tr>
</tbody>
</table>
Table 39-9 Default BGP Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF(^1) awareness</td>
<td>Disabled(^2). Allows Layer 3 switches to continue forwarding packets from a neighboring NSF-capable router during hardware or software changes.</td>
</tr>
<tr>
<td>Route reflector</td>
<td>None configured.</td>
</tr>
<tr>
<td>Synchronization (BGP and IGP)</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Table map update</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Timers</td>
<td>Keepalive: 60 seconds; holdtime: 180 seconds.</td>
</tr>
</tbody>
</table>

1. NSF = nonstop forwarding.
2. NSF awareness can be enabled for IPv4 on switches with the IP services feature set by enabling graceful restart.
Nonstop Forwarding Awareness

The BGP NSF awareness feature is supported for IPv4 in the IP services feature set. To enable this feature with BGP routing, you need to enable graceful restart. When the neighboring router is NSF-capable, and this feature is enabled, the Layer 3 switch continues to forward packets from the neighboring router during the interval between the primary route processor in a router failure and the backup route processor take-over, or while you manually reload the primary route processor for a nondisruptive software upgrade.

For more information, see the “BGP Nonstop Forwarding (NSF) Awareness” section of the Cisco IOS IP Routing Protocols Configuration Guide, Release 12.4.

Enabling BGP Routing

To enable BGP routing, you establish a BGP routing process and define the local network. Because BGP must fully recognize the relationships with its neighbors, you must also specify a BGP neighbor.

BGP supports two kinds of neighbors: internal and external. Internal neighbors are in the same autonomous system; external neighbors are in different autonomous systems. External neighbors are usually adjacent to each other and share a subnet, but internal neighbors can be anywhere in the same autonomous system.

The switch supports the use of private autonomous-system numbers, usually assigned by service providers and given to systems whose routes are not advertised to external neighbors. The private autonomous-system numbers are from 64512 to 65535. You can configure external neighbors to remove private autonomous-system numbers from the autonomous-system path by using the neighbor remove-private-as router configuration command. Then when an update is passed to an external neighbor, if the autonomous-system path includes any private autonomous-system numbers, these numbers are dropped.

If your autonomous system will be passing traffic through it from another autonomous system to a third autonomous system, it is important to be consistent about the routes it advertises. If BGP advertised a route before all routers in the network learned about the route through the IGP, the autonomous system might receive traffic that some routers could not yet route. Therefore, BGP must wait until the IGP has propagated information across the autonomous system so that BGP synchronizes with the IGP. Synchronization is enabled by default. If your autonomous system does not pass traffic from one autonomous system to another autonomous system, or if all routers in your autonomous systems are running BGP, you can disable synchronization, which allows your network to carry fewer routes in the IGP and allows BGP to converge more quickly.

Note

To enable BGP, the switch or stack master must be running the IP services feature set.

Beginning in privileged EXEC mode, follow these steps to enable BGP routing, establish a BGP routing process, and specify a neighbor:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip routing</td>
<td>Enable IP routing (required only if IP routing is disabled).</td>
</tr>
</tbody>
</table>
Configuring BGP

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><code>router bgp autonomous-system</code></td>
<td>Enable a BGP routing process, assign it an autonomous-system number, and enter router configuration mode. The autonomous-system number can be from 1 to 65535, with 64512 to 65535 designated as private autonomous numbers.</td>
</tr>
<tr>
<td>4</td>
<td><code>network network-number [mask network-mask] [route-map route-map-name]</code></td>
<td>Configure a network as local to this autonomous system, and enter it in the BGP table.</td>
</tr>
<tr>
<td>5</td>
<td>`neighbor {ip-address</td>
<td>peer-group-name} remote-as number`</td>
</tr>
<tr>
<td>6</td>
<td>`neighbor {ip-address</td>
<td>peer-group-name} remove-private-as`</td>
</tr>
<tr>
<td>7</td>
<td><code>no synchronization</code></td>
<td>(Optional) Disable synchronization between BGP and an IGP.</td>
</tr>
<tr>
<td>8</td>
<td><code>no auto-summary</code></td>
<td>(Optional) Disable automatic network summarization. By default, when a subnet is redistributed from an IGP into BGP, only the network route is inserted into the BGP table.</td>
</tr>
<tr>
<td>9</td>
<td><code>bgp fast-external-fallover</code></td>
<td>(Optional) Automatically reset a BGP session when a link between external neighbors goes down. By default, the session is not immediately reset.</td>
</tr>
<tr>
<td>10</td>
<td><code>bgp graceful-restart</code></td>
<td>(Optional) Enable NSF awareness on switch. By default, NSF awareness is disabled.</td>
</tr>
<tr>
<td>11</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| 12 | `show ip bgp network network-number` or `show ip bgp neighbor` | Verify the configuration. Verify that NSF awareness (graceful restart) is enabled on the neighbor. If NSF awareness is enabled on the switch and the neighbor, this message appears:

```
Graceful Restart Capability: advertised and received
```

If NSF awareness is enabled on the switch, but not on the neighbor, this message appears:

```
Graceful Restart Capability: advertised
```

Command Purpose

Step 3

- ** router bgp autonomous-system**: Enable a BGP routing process, assign it an autonomous-system number, and enter router configuration mode. The autonomous-system number can be from 1 to 65535, with 64512 to 65535 designated as private autonomous numbers.

Step 4

- ** network network-number [mask network-mask] [route-map route-map-name]**: Configure a network as local to this autonomous system, and enter it in the BGP table.

Step 5

- ** neighbor {ip-address | peer-group-name} remote-as number**: Add an entry to the BGP neighbor table specifying that the neighbor identified by the IP address belongs to the specified autonomous system. EBGP neighbors are usually directly connected, and the IP address is the interface address at the other end of the connection. For IBGP, the IP address can be the address of any of the router interfaces.

Step 6

- ** neighbor {ip-address | peer-group-name} remove-private-as**: (Optional) Remove private autonomous-system numbers from the autonomous-system path in outbound routing updates.

Step 7

- ** no synchronization**: (Optional) Disable synchronization between BGP and an IGP.

Step 8

- ** no auto-summary**: (Optional) Disable automatic network summarization. By default, when a subnet is redistributed from an IGP into BGP, only the network route is inserted into the BGP table.

Step 9

- ** bgp fast-external-fallover**: (Optional) Automatically reset a BGP session when a link between external neighbors goes down. By default, the session is not immediately reset.

Step 10

- ** bgp graceful-restart**: (Optional) Enable NSF awareness on switch. By default, NSF awareness is disabled.

Step 11

- ** end**: Return to privileged EXEC mode.

Step 12

- ** show ip bgp network network-number** or ** show ip bgp neighbor**: Verify the configuration. Verify that NSF awareness (graceful restart) is enabled on the neighbor.

Step 13

- ** copy running-config startup-config**: (Optional) Save your entries in the configuration file.
configuration command to remove a neighbor. Use the \texttt{no neighbor \{ip-address | peer-group-name\}} \texttt{remove-private-as} router configuration command to include private autonomous-system numbers in updates to a neighbor. Use the \texttt{synchronization} router configuration command to re-enable synchronization.

These examples show how to configure BGP on the routers in Figure 39-6.

Router A:

\begin{verbatim}
Switch(config)# router bgp 100
Switch(config-router)# neighbor 129.213.1.1 remote-as 200
\end{verbatim}

Router B:

\begin{verbatim}
Switch(config)# router bgp 200
Switch(config-router)# neighbor 129.213.1.2 remote-as 100
Switch(config-router)# neighbor 175.220.1.2 remote-as 200
\end{verbatim}

Router C:

\begin{verbatim}
Switch(config)# router bgp 200
Switch(config-router)# neighbor 175.220.212.1 remote-as 200
Switch(config-router)# neighbor 192.208.10.1 remote-as 300
\end{verbatim}

Router D:

\begin{verbatim}
Switch(config)# router bgp 300
Switch(config-router)# neighbor 192.208.10.2 remote-as 200
\end{verbatim}

To verify that BGP peers are running, use the \texttt{show ip bgp neighbors} privileged EXEC command. This is the output of this command on Router A:

\begin{verbatim}
Switch# show ip bgp neighbors
BGP neighbor is 129.213.1.1, remote AS 200, external link
BGP version 4, remote router ID 175.220.212.1
BGP state = established, table version = 3, up for 0:10:59
Last read 0:00:29, hold time is 180, keepalive interval is 60 seconds
Minimum time between advertisement runs is 30 seconds
Received 2828 messages, 0 notifications, 0 in queue
Sent 2826 messages, 0 notifications, 0 in queue
Connections established 11; dropped 10
\end{verbatim}

Anything other than \texttt{BGP state = established} means that the peers are not running. The remote router ID is the highest IP address on that router (or the highest loopback interface). Each time the table is updated with new information, the table version number increments. A table version number that continually increments means that a route is flapping, causing continual routing updates.

For exterior protocols, a reference to an IP network from the \texttt{network} router configuration command controls only which networks are advertised. This is in contrast to Interior Gateway Protocols (IGPs), such as EIGRP, which also use the \texttt{network} command to specify where to send updates.

For detailed descriptions of BGP configuration, see the “IP Routing Protocols” part of the \textit{Cisco IOS IP Configuration Guide, Release 12.2}. For details about specific commands, see the \textit{Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2}. See Appendix C, “Unsupported Commands in Cisco IOS Release 12.2(55)SE,” for a list of BGP commands that are visible but not supported by the switch.
Managing Routing Policy Changes

Routing policies for a peer include all the configurations that might affect inbound or outbound routing table updates. When you have defined two routers as BGP neighbors, they form a BGP connection and exchange routing information. If you later change a BGP filter, weight, distance, version, or timer, or make a similar configuration change, you must reset the BGP sessions so that the configuration changes take effect.

There are two types of reset, hard reset and soft reset. Cisco IOS Releases 12.1 and later support a soft reset without any prior configuration. To use a soft reset without preconfiguration, both BGP peers must support the soft-route refresh capability, which is advertised in the OPEN message sent when the peers establish a TCP session. A soft reset allows the dynamic exchange of route refresh requests and routing information between BGP routers and the subsequent re-advertisement of the respective outbound routing table.

- When soft reset generates inbound updates from a neighbor, it is called dynamic inbound soft reset.
- When soft reset sends a set of updates to a neighbor, it is called outbound soft reset.

A soft inbound reset causes the new inbound policy to take effect. A soft outbound reset causes the new local outbound policy to take effect without resetting the BGP session. As a new set of updates is sent during outbound policy reset, a new inbound policy can also take effect.

Table 39-11 lists the advantages and disadvantages hard reset and soft reset.

<table>
<thead>
<tr>
<th>Type of Reset</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard reset</td>
<td>No memory overhead</td>
<td>The prefixes in the BGP, IP, and FIB tables provided by the neighbor are lost. Not recommended.</td>
</tr>
<tr>
<td>Outbound soft reset</td>
<td>No configuration, no storing of routing table updates</td>
<td>Does not reset inbound routing table updates.</td>
</tr>
<tr>
<td>Dynamic inbound soft reset</td>
<td>Does not clear the BGP session and cache</td>
<td>Both BGP routers must support the route refresh capability (in Cisco IOS Release 12.1 and later).</td>
</tr>
<tr>
<td></td>
<td>Does not require storing of routing table updates and has no memory overhead</td>
<td></td>
</tr>
</tbody>
</table>

Table 39-10 Advantages and Disadvantages of Hard and Soft Resets

Beginning in privileged EXEC mode, follow these steps to learn if a BGP peer supports the route-refresh capability and to reset the BGP session:

Step 1: show ip bgp neighbors
- Display whether a neighbor supports the route-refresh capability. When supported, this message appears for the router:
 Received route refresh capability from peer.

Step 2: clear ip bgp { * | address | peer-group-name }
- Reset the routing table on the specified connection.
 - Enter an asterisk (*) to reset all connections.
 - Enter an IP address to reset a specific connection.
 - Enter a peer group name to reset the peer group.
Configuring BGP Decision Attributes

When a BGP speaker receives updates from multiple autonomous systems that describe different paths to the same destination, it must choose the single best path for reaching that destination. The selected path is then entered in the BGP routing table and propagated to its neighbors. The decision is based on the value of attributes that the update contains and other BGP-configurable factors.

When a BGP peer learns two EBGP paths for a prefix from a neighboring autonomous system, it chooses the best path and inserts that path in the IP routing table. If BGP multipath support is enabled and the EBGP paths are learned from the same neighboring autonomous systems, instead of a single best path, multiple paths are entered in the IP routing table. Then, during packet switching, per-packet or per-destination load-balancing is performed among the multiple paths. The `maximum-paths` router configuration command controls the number of paths allowed.

These factors summarize the order in which BGP evaluates the attributes for choosing the best path:

1. If the path specifies a next hop that is inaccessible, drop the update. The BGP next-hop attribute, automatically determined by the software, is the IP address of the next hop to be used to reach a destination. For EBGP, this is usually the IP address of the neighbor specified by the `neighbor remote-as` router configuration command. You can disable next-hop processing by using route maps or the `neighbor next-hop-self` router configuration command.

2. Prefer the path with the largest weight (a Cisco-proprietary parameter). The weight attribute is local to the router and not propagated in routing updates. By default, the weight attribute is 32768 for paths that the router originates and zero for other paths. Routes with the largest weight are preferred. You can use access lists, route maps, or the `neighbor weight` router configuration command to set weights.

3. Prefer the route with the highest local preference. Local preference is part of the routing update and is exchanged among routers in the same autonomous system. The default value of the local preference attribute is 100. You can set local preference by using the `bgp default local-preference` router configuration command or by using a route map.

4. Prefer the route that was originated by BGP running on the local router.

5. Prefer the route with the shortest autonomous-system path.

6. Prefer the route with the lowest origin type. An interior route or IGP is lower than a route learned by EGP, and an EGP-learned route is lower than one of unknown origin or learned in another way.

7. Prefer the route with the lowest multi-exit discriminator (MED) metric attribute if the neighboring autonomous system is the same for all routes considered. You can configure the MED by using route maps or by using the `default-metric` router configuration command. When an update is sent to an IBGP peer, the MED is included.

8. Prefer the external (EBGP) path over the internal (IBGP) path.
9. Prefer the route that can be reached through the closest IGP neighbor (the lowest IGP metric). This means that the router prefers the shortest internal path within the autonomous system to reach the destination (the shortest path to the BGP next hop).

10. If these conditions are all true, insert the route for this path into the IP routing table:
 • Both the best route and this route are external.
 • Both the best route and this route are from the same neighboring autonomous system.
 • maximum-paths is enabled.

11. If multipath is not enabled, prefer the route with the lowest IP address value for the BGP router ID. The router ID is usually the highest IP address on the router or the loopback (virtual) address, but might be implementation-specific.

Beginning in privileged EXEC mode, follow these steps to configure some decision attributes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system Enable a BGP routing process, assign it an autonomous-system number, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>bgp best-path as-path ignore (Optional) Configure the router to ignore autonomous-system path length in selecting a route.</td>
</tr>
<tr>
<td>Step 4</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 5</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>default-metric number (Optional) Set a MED metric to set preferred paths to external neighbors. All routes without a MED are also set to this value. The range is 1 to 4294967295. The lowest value is the most desirable.</td>
</tr>
<tr>
<td>Step 7</td>
<td>bgp bestpath med missing-as-worst (Optional) Configure the switch to consider a missing MED as having a value of infinity, making the path without a MED value the least desirable path.</td>
</tr>
<tr>
<td>Step 8</td>
<td>bgp always-compare med (Optional) Configure the switch to compare MEDs for paths from neighbors in different autonomous systems. By default, MED comparison is only done among paths in the same autonomous system.</td>
</tr>
<tr>
<td>Step 9</td>
<td>bgp bestpath med confed (Optional) Configure the switch to consider the MED in choosing a path from among those advertised by different subautonomous systems within a confederation.</td>
</tr>
<tr>
<td>Step 10</td>
<td>bgp deterministic med (Optional) Configure the switch to consider the MED variable when choosing among routes advertised by different peers in the same autonomous system.</td>
</tr>
</tbody>
</table>
Use the no form of each command to return to the default state.

Configuring BGP Filtering with Route Maps

Within BGP, route maps can control and modify routing information and define the conditions by which routes are redistributed between routing domains. See the “Using Route Maps to Redistribute Routing Information” section on page 39-101 for more information about route maps. Each route map has a name that identifies the it (map tag) and an optional sequence number.

Beginning in privileged EXEC mode, follow these steps to use a route map to disable next-hop processing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>route-map map-tag ([permit</td>
</tr>
<tr>
<td>Step 3</td>
<td>set ip next-hop ip-address [...ip-address] [peer-address]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show route-map [map-name]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no route-map map-tag command to delete the route map. Use the no set ip next-hop ip-address command to re-enable next-hop processing.
Configuring BGP Filtering by Neighbor

You can filter BGP advertisements by using autonomous-system-path filters, such as the `as-path access-list` global configuration command and the `neighbor filter-list` router configuration command. You can also use access lists with the `neighbor distribute-list` router configuration command. Distribute-list filters are applied to network numbers. See the “Controlling Advertising and Processing in Routing Updates” section on page 39-110 for information about the `distribute-list` command.

You can use route maps on a per-neighbor basis to filter updates and to modify various attributes. You can apply a route map to either inbound or outbound updates. Only the routes that pass the route map are sent or accepted in updates. On both inbound and outbound updates, matching is supported based on autonomous-system path, community, and network numbers. Autonomous-system-path matching requires the `match as-path access-list` route-map command, community-based matching requires the `match community-list` route-map command, and network-based matching requires the `ip access-list` global configuration command.

Beginning in privileged EXEC mode, follow these steps to apply a per-neighbor route map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router bgp autonomous-system</code> Enable a BGP routing process, assign it an autonomous-system number, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 4</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show ip bgp neighbors</code> Verify the configuration.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no neighbor distribute-list` command to remove the access list from the neighbor. Use the `no neighbor route-map map-tag` router configuration command to remove the route map from the neighbor.
Another filtering method is to specify an access list filter on both incoming and outbound updates, based on the BGP autonomous system paths. Each filter is an access list based on regular expressions. (See the “Regular Expressions” appendix in the Cisco IOS Dial Technologies Command Reference, Release 12.2 for more information on forming regular expressions.) To use this method, define an autonomous-system-path access list, and apply it to updates to and from particular neighbors.

Beginning in privileged EXEC mode, follow these steps to configure BGP autonomous-system-path filtering:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip as-path access-list access-list-number {permit</td>
<td>deny} as-regular-expressions</td>
</tr>
<tr>
<td>Step 3 router bgp autonomous-system</td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 4 neighbor {ip-address</td>
<td>peer-group name} filter-list {access-list-number</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show ip bgp neighbors [paths regular-expression]</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring Prefix Lists for BGP Filtering

You can use prefix lists as an alternative to access lists in many BGP route filtering commands, including the neighbor distribute-list router configuration command. The advantages of using prefix lists include performance improvements in loading and lookup of large lists, incremental update support, easier CLI configuration, and greater flexibility.

Prefix-list filtering matches the prefixes of routes with those listed in the prefix list, as when matching access lists. When there is a match, the route is used. Whether a prefix is permitted or denied is based upon these rules:

- An empty prefix list permits all prefixes.
- An implicit deny is assumed if a prefix does not match any entries in a prefix list.
- When multiple entries of a prefix list match a prefix, the sequence number of a prefix-list entry identifies the entry with the lowest sequence number.

By default, sequence numbers are generated automatically and incremented in units of five. If you disable the automatic generation of sequence numbers, you must specify the sequence number for each entry. You can specify sequence values in any increment. If you specify increments of one, you cannot insert additional entries into the list. If you choose very large increments, you might run out of values.

You do not need to specify a sequence number when removing a configuration entry. **Show** commands include the sequence numbers in their output.
Before using a prefix list in a command, you must set up the prefix list. Beginning in privileged EXEC mode, follow these steps to create a prefix list or to add an entry to a prefix list:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip prefix-list list-name [seq seq-value] deny</td>
</tr>
<tr>
<td></td>
<td>permit networklen [ge ge-value] [le le-value]</td>
</tr>
<tr>
<td></td>
<td>(Optional) Add an entry to a prefix list, and assign a sequence number to the entry.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip prefix-list list-name seq seq-value deny</td>
</tr>
<tr>
<td></td>
<td>permit networklen [ge ge-value] [le le-value]</td>
</tr>
<tr>
<td></td>
<td>(Optional) Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip prefix list [detail</td>
</tr>
<tr>
<td></td>
<td>[networklen] [seq seq-num] [longer]</td>
</tr>
<tr>
<td></td>
<td>[first-match]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete a prefix list and all its entries, use the **no ip prefix-list list-name** global configuration command. To delete an entry from a prefix list, use the **no ip prefix-list seq seq-value** global configuration command. To disable automatic generation of sequence numbers, use the **no ip prefix-list sequence number** command; to reenable automatic generation, use the **ip prefix-list sequence number** command. To clear the hit-count table of prefix list entries, use the **clear ip prefix-list** privileged EXEC command.

Configuring BGP Community Filtering

One way that BGP controls the distribution of routing information is based on the value of the COMMUNITIES attribute. The attribute groups destinations into communities and applies routing decisions based on the communities. This method simplifies the configuration of a BGP speaker to control distribution of routing information.

A community is a group of destinations that share some common attribute. Each destination can belong to multiple communities. Autonomous-system administrators can define to which communities a destination belongs. By default, all destinations belong to the general Internet community. The community is identified by the COMMUNITIES attribute, an optional, transitive, global attribute in the numerical range from 1 to 4294967200. These are some predefined, well-known communities:

- **internet**—Advertise this route to the Internet community. All routers belong to it.
- **no-export**—Do not advertise this route to EBGP peers.
- **no-advertise**—Do not advertise this route to any peer (internal or external).
- **local-as**—Do not advertise this route to peers outside the local autonomous system.
Based on the community, you can control the routing information to accept, prefer, or distribute to other neighbors. A BGP speaker can set, append, or modify the community of a route when learning, advertising, or redistributing routes. When routes are aggregated, the resulting aggregate has a COMMUNITIES attribute that contains all communities from all the initial routes.

You can use community lists to create groups of communities to use in a match clause of a route map. As with an access list, a series of community lists can be created. Statements are evaluated until a match is found. As soon as one statement is met, the test stops.

To set the COMMUNITIES attribute and match clauses based on communities, see the **match community-list** and **set community** route-map configuration commands in the “Using Route Maps to Redistribute Routing Information” section on page 39-101.

By default, no COMMUNITIES attribute is sent to a neighbor. You can specify that the COMMUNITIES attribute be sent to the neighbor at an IP address by using the **neighbor send-community** router configuration command.

Beginning in privileged EXEC mode, follow these steps to create and to apply a community list:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | ip community-list community-list-number {permit | deny} community-number | Create a community list, and assign it a number.
 - The **community-list-number** is an integer from 1 to 99 that identifies one or more permit or deny groups of communities.
 - The **community-number** is the number configured by a **set community** route-map configuration command. |
| 3 | router bgp autonomous-system | Enter BGP router configuration mode. | |
| 4 | neighbor {ip-address | peer-group name} send-community | Specify that the COMMUNITIES attribute is sent to the neighbor at this IP address. |
| 5 | set comm-list list-num delete | (Optional) Remove communities from the community attribute of an inbound or outbound update that match a standard or extended community list specified by a route map. |
| 6 | exit | Return to global configuration mode. |
| 7 | ip bgp-community new-format | (Optional) Display and parse BGP communities in the format AA:NN. A BGP community appears in a two-part format 2 bytes long. The Cisco-default community format is NNAA. In the most recent RFC for BGP, a community takes the form AA:NN, where the first part is the autonomous-system number and the second part is a 2-byte number. |
| 8 | end | Return to privileged EXEC mode. |
| 9 | show ip bgp community | Verify the configuration. |
| 10 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
Configuring BGP Neighbors and Peer Groups

Often many BGP neighbors are configured with the same update policies (that is, the same outbound route maps, distribute lists, filter lists, update source, and so on). You can group neighbors with the same update policies into peer groups to simplify configuration and to make updating more efficient. When you have configured many peers, we recommend this approach.

To configure a BGP peer group, you create the peer group, assign options to the peer group, and add neighbors as peer group members. You configure the peer group by using the `neighbor` router configuration commands. By default, peer group members inherit all the configuration options of the peer group, including the remote-as (if configured), version, update-source, out-route-map, out-filter-list, out-dist-list, minimum-advertisement-interval, and next-hop-self. All peer group members also inherit changes made to the peer group. You can also configure members to override the options that do not affect outbound updates.

To assign configuration options to an individual neighbor, specify any of these router configuration commands by using the neighbor IP address. To assign the options to a peer group, specify any of the commands by using the peer-group name. You can disable a BGP peer or peer group without removing all the configuration information by using the `neighbor shutdown` router configuration command.

Beginning in privileged EXEC mode, use these commands to configure BGP peers:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td>Step 3</td>
<td>neighbor peer-group-name peer-group</td>
</tr>
<tr>
<td>Step 4</td>
<td>neighbor ip-address peer-group peer-group-name</td>
</tr>
<tr>
<td>Step 5</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 7</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 8</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 9</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 10</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 11</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td>Step 12</td>
<td>neighbor {ip-address</td>
</tr>
</tbody>
</table>
To disable an existing BGP neighbor or neighbor peer group, use the `neighbor shutdown` router configuration command. To enable a previously existing neighbor or neighbor peer group that had been disabled, use the `no neighbor shutdown` router configuration command.
Configuring Aggregate Addresses

Classless interdomain routing (CIDR) creates aggregate routes (or supernet) to minimize the size of routing tables. You can configure aggregate routes in BGP either by redistributing an aggregate route into BGP or by creating an aggregate entry in the BGP routing table. An aggregate address is added to the BGP table when there is at least one more specific entry in the BGP table.

Beginning in privileged EXEC mode, use these commands to create an aggregate address in the routing table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td></td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aggregate-address address mask</td>
</tr>
<tr>
<td></td>
<td>Create an aggregate entry in the BGP routing table. The aggregate route is advertised as coming from the autonomous system, and the atomic aggregate attribute is set to show that information might be missing.</td>
</tr>
<tr>
<td>Step 4</td>
<td>aggregate-address address mask as-set</td>
</tr>
<tr>
<td></td>
<td>(Optional) Generate autonomous-system set path information. The command creates an aggregate entry following the same rules as the previous command, but the advertised path is an AS_SET consisting of all elements contained in all paths. Do not use this keyword when aggregating many paths because this route must be continually withdrawn and updated.</td>
</tr>
<tr>
<td>Step 5</td>
<td>aggregate-address address-mask summary-only</td>
</tr>
<tr>
<td></td>
<td>(Optional) Advertise only summary addresses.</td>
</tr>
<tr>
<td>Step 6</td>
<td>aggregate-address address mask suppress-map map-name</td>
</tr>
<tr>
<td></td>
<td>(Optional) Suppress selected, more specific routes.</td>
</tr>
<tr>
<td>Step 7</td>
<td>aggregate-address address mask advertise-map map-name</td>
</tr>
<tr>
<td></td>
<td>(Optional) Generate an aggregate based on conditions specified by the route map.</td>
</tr>
<tr>
<td>Step 8</td>
<td>aggregate-address address mask attribute-map map-name</td>
</tr>
<tr>
<td></td>
<td>(Optional) Generate an aggregate with attributes specified in the route map.</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>show ip bgp neighbors [advertised-routes]</td>
</tr>
<tr>
<td></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 11</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete an aggregate entry, use the no aggregate-address address mask router configuration command. To return options to the default values, use the command with keywords.

Configuring Routing Domain Confederations

You can reduce the IBGP mesh to divide an autonomous system into multiple subautonomous systems and to group them into a single confederation that appears as a single autonomous system. Each autonomous system is fully meshed within itself and has a few connections to other autonomous systems in the same confederation. Even though the peers in different autonomous systems have EBGP sessions, they exchange routing information as if they were IBGP peers. Specifically, the next hop, MED, and local-preference information is preserved. You can then use a single IGP for all of the autonomous systems.
To configure a BGP confederation, you must specify a confederation identifier that acts as the autonomous-system number for the autonomous-system group.

Beginning in privileged EXEC mode, use these commands to configure a BGP confederation:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>bgp confederation identifier autonomous-system</td>
<td>Configure a BGP confederation identifier.</td>
</tr>
<tr>
<td>Step 4</td>
<td>bgp confederation peers autonomous-system</td>
<td>Specify the autonomous systems that belong to the confederation and that are treated as special EBGP peers.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip bgp neighbor</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td></td>
<td>show ip bgp network</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring BGP Route Reflectors

BGP requires that all of the IBGP speakers be fully meshed. When a router receives a route from an external neighbor, it must advertise it to all internal neighbors. To prevent a routing information loop, all IBPG speakers must be connected. The internal neighbors do not send routes learned from internal neighbors to other internal neighbors.

With route reflectors, all IBGP speakers do not need to be fully meshed. When you configure an internal BGP peer as a route reflector, it passes IBGP learned routes to a set of IBGP neighbors. The internal peers of the route reflector are divided into client peers and nonclient peers (all the other routers in the autonomous system). A route reflector reflects routes between these two groups. The route reflector and its client peers form a cluster. The nonclient peers must be fully meshed with each other, but the client peers need not be fully meshed. The clients in the cluster do not communicate with IBGP speakers outside their cluster.

When the route reflector receives an advertised route, it takes one of these actions, depending on the neighbor:

- A route from an external BGP speaker is advertised to all clients and nonclient peers.
- A route from a nonclient peer is advertised to all clients.
- A route from a client is advertised to all clients and nonclient peers. Hence, the clients need not be fully meshed.

Usually, a cluster of clients have a single route reflector, and the cluster is identified by the route reflector router ID. To increase redundancy and to avoid a single point of failure, a cluster can have more than one route reflector. In this case, you must configure all route reflectors in the cluster with the same 4-byte cluster ID so that a route reflector recognizes updates from route reflectors in the same cluster. All the route reflectors serving a cluster should be fully meshed and should have identical sets of client and nonclient peers.
Beginning in privileged EXEC mode, use these commands to configure a route reflector and clients:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td></td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>neighbor {ip-address</td>
</tr>
<tr>
<td></td>
<td>Configure the local router as a BGP route reflector and the specified neighbor as a client.</td>
</tr>
<tr>
<td>Step 4</td>
<td>bgp cluster-id cluster-id</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configure the cluster ID if the cluster has more than one route reflector.</td>
</tr>
<tr>
<td>Step 5</td>
<td>no bgp client-to-client reflection</td>
</tr>
<tr>
<td></td>
<td>(Optional) Disable client-to-client route reflection. By default, the routes from a route reflector client are reflected to other clients. However, if the clients are fully meshed, the route reflector does not need to reflect routes to clients.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip bgp</td>
</tr>
<tr>
<td></td>
<td>Verify the configuration. Display the originator ID and the cluster-list attributes.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring Route Dampening

Route flap dampening is a BGP feature to minimize the propagation of flapping routes across an internetwork. A route is flapping when it is repeatedly available, then unavailable, then available, then unavailable, and so on. When route dampening is enabled, a numeric penalty value is assigned to a route when it flaps. When the accumulated penalties for a route reach the configured limit, BGP suppresses advertisements of the route, even if the route is running. The reuse limit is a configurable value that is compared with the penalty. If the penalty is less than the reuse limit, a suppressed route that is up is advertised again.

Dampening is not applied to routes that are learned by IBGP. This policy prevents the IBGP peers from having a higher penalty for routes external to the autonomous system.

Beginning in privileged EXEC mode, use these commands to configure BGP route dampening:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td></td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>bgp dampening</td>
</tr>
<tr>
<td></td>
<td>Enable BGP route dampening.</td>
</tr>
<tr>
<td>Step 4</td>
<td>bgp dampening half-life reuse suppress max-suppress [route-map map]</td>
</tr>
<tr>
<td></td>
<td>(Optional) Change the default values of route dampening factors.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ip bgp flap-statistics {{ regexp regexp }</td>
</tr>
<tr>
<td></td>
<td>(Optional) Monitor the flaps of all paths that are flapping. The statistics are deleted when the route is not suppressed and is stable.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip bgp dampened-paths</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display the dampened routes, including the time remaining before they are suppressed.</td>
</tr>
</tbody>
</table>
To disable flap dampening, use the `no bgp dampening` router configuration command without keywords. To set dampening factors back to the default values, use the `no bgp dampening` router configuration command with values.

Monitoring and Maintaining BGP

You can remove all contents of a particular cache, table, or database. This might be necessary when the contents have become or are suspected to be invalid.

You can display specific statistics, such as the contents of BGP routing tables, caches, and databases. You can use the information to get resource usage and to solve network problems. You can also display information about node reachability and discover the routing path the packets of your device are taking through the network.

Table 39-9 lists the privileged EXEC commands for clearing and displaying BGP. For explanations of the display fields, see the *Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2*.

Table 39-11 IP BGP Clear and Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8 clear ip bgp flap-statistics [{regexp regexp}</td>
<td>(Optional) Clear BGP flap statistics to make it less likely that a route is dampened.</td>
</tr>
<tr>
<td>[{filter-list list}] [{address mask [longer-prefix]}]</td>
<td></td>
</tr>
<tr>
<td>Step 9 clear ip bgp dampening</td>
<td>(Optional) Clear route dampening information, and unsuppress the suppressed routes.</td>
</tr>
<tr>
<td>Step 10 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable flap dampening, use the `no bgp dampening` router configuration command without keywords. To set dampening factors back to the default values, use the `no bgp dampening` router configuration command with values.

Table 39-11 IP BGP Clear and Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip bgp address</td>
<td>Reset a particular BGP connection.</td>
</tr>
<tr>
<td>clear ip bgp *</td>
<td>Reset all BGP connections.</td>
</tr>
<tr>
<td>clear ip bgp peer-group tag</td>
<td>Remove all members of a BGP peer group.</td>
</tr>
<tr>
<td>show ip bgp prefix</td>
<td>Display peer groups and peers not in peer groups to which the prefix has been advertised. Also display prefix attributes such as the next hop and the local prefix.</td>
</tr>
<tr>
<td>show ip bgp cidr-only</td>
<td>Display all BGP routes that contain subnet and supernet network masks.</td>
</tr>
<tr>
<td>show ip bgp community [community-number]</td>
<td>Display routes that belong to the specified communities.</td>
</tr>
<tr>
<td>[exact]</td>
<td></td>
</tr>
<tr>
<td>show ip bgp community-list</td>
<td>Display routes that are permitted by the community list.</td>
</tr>
<tr>
<td>community-list-number [exact-match]</td>
<td></td>
</tr>
<tr>
<td>show ip bgp filter-list access-list-number</td>
<td>Display routes that are matched by the specified autonomous-system path access list.</td>
</tr>
<tr>
<td>show ip bgp inconsistent-as</td>
<td>Display the routes with inconsistent originating autonomous systems.</td>
</tr>
<tr>
<td>show ip bgp regexp regular-expression</td>
<td>Display the routes that have an autonomous-system path that matches the specified regular expression entered on the command line.</td>
</tr>
<tr>
<td>show ip bgp</td>
<td>Display the contents of the BGP routing table.</td>
</tr>
</tbody>
</table>
You can also enable the logging of messages generated when a BGP neighbor resets, comes up, or goes down by using the `bgp log-neighbor changes` router configuration command.

Configuring ISO CLNS Routing

The International Organization for Standardization (ISO) Connectionless Network Service (CLNS) protocol is a standard for the network layer of the Open System Interconnection (OSI) model. Addresses in the ISO network architecture are referred to as network service access point (NSAP) addresses and network entity titles (NETs). Each node in an OSI network has one or more NETs. In addition, each node has many NSAP addresses.

When you enable connectionless routing on the switch by using the `clns routing` global configuration command, the switch makes only forwarding decisions, with no routing-related functionality. For dynamic routing, you must also enable a routing protocol. The switch supports the Intermediate System-to-Intermediate System (IS-IS) dynamic routing protocol that is based on the OSI routing protocol for ISO CLNS networks.

When dynamically routing, you use IS-IS. This routing protocol supports the concept of `areas`. Within an area, all routers know how to reach all the system IDs. Between areas, routers know how to reach the proper area. IS-IS supports two levels of routing: `station routing` (within an area) and `area routing` (between areas).

The key difference between the ISO IGRP and IS-IS NSAP addressing schemes is in the definition of area addresses. Both use the system ID for Level 1 routing (routing within an area). However, they differ in the way addresses are specified for area routing. An ISO IGRP NSAP address includes three separate fields for routing: the `domain`, `area`, and `system ID`. An IS-IS address includes two fields: a single continuous `area` field (comprising the domain and area fields) and the `system ID`.

For more detailed information about ISO CLNS, see the *Cisco IOS Apollo Domain, Banyan VINES, DECnet, ISO CLNS and XNS Configuration Guide, Release 12.2*. For complete syntax and usage information for the commands used in this chapter, see the *Cisco IOS Apollo Domain, Banyan VINES, DECnet, ISO CLNS and XNS Command Reference, Release 12.2*, use the IOS command reference master index, or search online.
Configuring IS-IS Dynamic Routing

IS-IS is an ISO dynamic routing protocol (described in ISO 105890). Unlike other routing protocols, enabling IS-IS requires that you create an IS-IS routing process and assign it to a specific interface, rather than to a network. You can specify more than one IS-IS routing process per Layer 3 switch or router by using the multiarea IS-IS configuration syntax. You then configure the parameters for each instance of the IS-IS routing process.

Small IS-IS networks are built as a single area that includes all the routers in the network. As the network grows larger, it is usually reorganized into a backbone area made up of the connected set of all Level 2 routers from all areas, which is in turn connected to local areas. Within a local area, routers know how to reach all system IDs. Between areas, routers know how to reach the backbone, and the backbone routers know how to reach other areas.

Routers establish Level 1 adjacencies to perform routing within a local area (station routing). Routers establish Level 2 adjacencies to perform routing between Level 1 areas (area routing).

A single Cisco router can participate in routing in up to 29 areas and can perform Level 2 routing in the backbone. In general, each routing process corresponds to an area. By default, the first instance of the routing process configured performs both Level 1 and Level 2 routing. You can configure additional router instances, which are automatically treated as Level 1 areas. You must configure the parameters for each instance of the IS-IS routing process individually.

For IS-IS multiarea routing, you can configure only one process to perform Level 2 routing, although you can define up to 29 Level 1 areas for each Cisco unit. If Level 2 routing is configured on any process, all additional processes are automatically configured as Level 1. You can configure this process to perform Level 1 routing at the same time. If Level 2 routing is not desired for a router instance, remove the Level 2 capability using the `is-type` global configuration command. Use the `is-type` command also to configure a different router instance as a Level 2 router.

Note

For more detailed information about IS-IS, see the “IP Routing Protocols” chapter of the *Cisco IOS IP Configuration Guide, Release 12.2*. For complete syntax and usage information for the commands used in this section, see the *Cisco IOS IP Command Reference, Release 12.2*.

This section briefly describes how to configure IS-IS routing. It includes this information:

- Default IS-IS Configuration, page 39-73
- Enabling IS-IS Routing, page 39-74
- Configuring IS-IS Global Parameters, page 39-76
- Configuring IS-IS Interface Parameters, page 39-78
Default IS-IS Configuration

Table 39-13 shows the default IS-IS configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore link-state PDU (LSP) errors</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IS-IS type</td>
<td>Conventional IS-IS: the router acts as both a Level 1 (station) and a Level 2 (area) router.</td>
</tr>
<tr>
<td></td>
<td>Multiarea IS-IS: the first instance of the IS-IS routing process is a Level 1-2 router. Remaining instances are Level 1 routers.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Log IS-IS adjacency state changes.</td>
<td>Disabled.</td>
</tr>
<tr>
<td>LSP generation throttling timers</td>
<td>Maximum interval between two consecutive occurrences: 5 seconds. Initial LSP generation delay: 50 ms. Hold time between the first and second LSP generation: 5000 ms.</td>
</tr>
<tr>
<td>LSP maximum lifetime (without a refresh)</td>
<td>1200 seconds (20 minutes) before the LSP packet is deleted.</td>
</tr>
<tr>
<td>LSP refresh interval</td>
<td>Send LSP refreshes every 900 seconds (15 minutes).</td>
</tr>
<tr>
<td>Maximum LSP packet size</td>
<td>1497 bytes.</td>
</tr>
<tr>
<td>NSF Awareness(^1)</td>
<td>Enabled. Allows Layer 3 switches to continue forwarding packets from a neighboring NSF-capable router during hardware or software changes.</td>
</tr>
<tr>
<td>timers</td>
<td>Partition avoidance</td>
</tr>
<tr>
<td>Password</td>
<td>No area or domain password is defined, and authentication is disabled.</td>
</tr>
<tr>
<td>Set-overload-bit</td>
<td>Disabled. When enabled, if no arguments are entered, the overload bit is set immediately and remains set until you enter the no set-overload-bit command.</td>
</tr>
<tr>
<td>Shortest path first (SPF) throttling timers</td>
<td>Maximum interval between consecutive SFPs: 10 seconds. Initial SFP calculation after a topology change: 5500 ms. Hold time between the first and second SFP calculation: 5500 ms.</td>
</tr>
<tr>
<td>Summary-address</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

1. NSF = Nonstop Forwarding
2. IS-IS NSF awareness is enabled for IPv4 on switches running Cisco IOS Release 12.2(25)SEG or later.
Nonstop Forwarding Awareness

The integrated IS-IS NSF Awareness feature is supported for IPv4, beginning with Cisco IOS Release 12.2(25)SEG. The feature allows customer premises equipment (CPE) routers that are NSF-aware to help NSF-capable routers perform nonstop forwarding of packets. The local router is not necessarily performing NSF, but its awareness of NSF allows the integrity and accuracy of the routing database and link-state database on the neighboring NSF-capable router to be maintained during the switchover process.

This feature is automatically enabled and requires no configuration. For more information on this feature, see the *Integrated IS-IS Nonstop Forwarding (NSF) Awareness Feature Guide*.

Enabling IS-IS Routing

To enable IS-IS, you specify a name and NET for each routing process. You then enable IS-IS routing on the interface and specify the area for each instance of the routing process.

Beginning in privileged EXEC mode, follow these steps to enable IS-IS and specify the area for each instance of the IS-IS routing process:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>clns routing</td>
<td>Enable ISO connectionless routing on the switch.</td>
</tr>
</tbody>
</table>
| 3 | router isis [area tag] | Enable the IS-IS routing for the specified routing process and enter IS-IS routing configuration mode.
(Optional) Use the *area tag* argument to identify the area to which the IS-IS router is assigned. You must enter a value if you are configuring multiple IS-IS areas.
The first IS-IS instance configured is Level 1-2 by default. Later instances are automatically Level 1. You can change the level of routing by using the *is-type* global configuration command. |
| 4 | net network-entity-title | Configure the NETs for the routing process. If you are configuring multiarea IS-IS, specify a NET for each routing process. You can specify a name for a NET and for an address. |
| 5 | is-type {level-1 | level-1-2 | level-2-only} | (Optional) You can configure the router to act as a Level 1 (station) router, a Level 2 (area) router for multi-area routing, or both (the default):
- **level-1**—act as a station router only
- **level-1-2**—act as both a station router and an area router
- **level 2**—act as an area router only |
| 6 | exit | Return to global configuration mode. |
| 7 | interface interface-id | Specify an interface to route IS-IS, and enter interface configuration mode. If the interface is not already configured as a Layer 3 interface, enter the *no switchport* command to put it into Layer 3 mode. |
| 8 | ip router isis [area tag] | Configure an IS-IS routing process for ISO CLNS on the interface and attach an area designator to the routing process. |
| 9 | clns router isis [area tag] | Enable ISO CLNS on the interface. |
Configuring ISO CLNS Routing

Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><code>ip address ip-address-mask</code></td>
<td>Define the IP address for the interface. An IP address is required on all interfaces in an area enabled for IS-IS if any one interface is configured for IS-IS routing.</td>
</tr>
<tr>
<td>11</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>12</td>
<td><code>show isis [area tag] database detail</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>13</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable IS-IS routing, use the **no router isis area-tag** router configuration command.

This example shows how to configure three routers to run conventional IS-IS as an IP routing protocol. In conventional IS-IS, all routers act as Level 1 and Level 2 routers (by default).

Router A

```
Switch(config)# clns routing
Switch(config)# router isis
Switch(config-router)# net 49.0001.0000.0000.000a.00
Switch(config-router)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config-router)# exit
```

Router B

```
Switch(config)# clns routing
Switch(config)# router isis
Switch(config-router)# net 49.0001.0000.0000.000b.00
Switch(config-router)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config-router)# exit
```

Router C

```
Switch(config)# clns routing
Switch(config)# router isis
Switch(config-router)# net 49.0001.0000.0000.000c.00
Switch(config-router)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip router isis
Switch(config-if)# clns router isis
Switch(config-router)# exit
```
Configuring IS-IS Global Parameters

These are some optional IS-IS global parameters that you can configure:

- You can force a default route into an IS-IS routing domain by configuring a default route controlled by a route map. You can also specify other filtering options configurable under a route map.
- You can configure the router to ignore IS-IS LSPs that are received with internal checksum errors or to purge corrupted LSPs, which causes the initiator of the LSP to regenerate it.
- You can assign passwords to areas and domains.
- You can create aggregate addresses that are represented in the routing table by a summary address (route-summarization). Routes learned from other routing protocols can also be summarized. The metric used to advertise the summary is the smallest metric of all the specific routes.
- You can set an overload bit.
- You can configure the LSP refresh interval and the maximum time that an LSP can remain in the router database without a refresh.
- You can set the throttling timers for LSP generation, shortest path first computation, and partial route computation.
- You can configure the switch to generate a log message when an IS-IS adjacency changes state (up or down).
- If a link in the network has a maximum transmission unit (MTU) size of less than 1500 bytes, you can lower the LSP MTU so that routing will still occur.
- The partition avoidance router configuration command prevents an area from becoming partitioned when full connectivity is lost among a Level1-2 border router, adjacent Level 1 routers, and end hosts.

Beginning in privileged EXEC mode, follow these steps to configure IS-IS parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 clns routing</td>
<td>Enable ISO connectionless routing on the switch.</td>
</tr>
<tr>
<td>Step 3 router isis</td>
<td>Specify the IS-IS routing protocol and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 4 default-information originate</td>
<td>(Optional) Force a default route into the IS-IS routing domain. If you enter route-map map-name, the routing process generates the default route if the route map is satisfied.</td>
</tr>
<tr>
<td>[route-map map-name]</td>
<td></td>
</tr>
<tr>
<td>Step 5 ignore-lsp-errors</td>
<td>(Optional) Configure the router to ignore LSPs with internal checksum errors, instead of purging the LSPs. This command is enabled by default (corrupted LSPs are dropped). To purge the corrupted LSPs, enter the no ignore-lsp-errors router configuration command.</td>
</tr>
<tr>
<td>Step 6 area-password password</td>
<td>(Optional) Configure the area authentication password, which is inserted in Level 1 (station router level) LSPs.</td>
</tr>
<tr>
<td>Step 7 domain-password password</td>
<td>(Optional) Configure the routing domain authentication password, which is inserted in Level 2 (area router level) LSPs.</td>
</tr>
<tr>
<td>Step 8 summary-address address mask</td>
<td>(Optional) Create a summary of addresses for a given level.</td>
</tr>
<tr>
<td>[level-1</td>
<td>level-1-2</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 9 | set-overload-bit [on-startup [seconds | (Optional) Set an overload bit (a hippity bit) to allow other routers to ignore the router in their shortest path first (SPF) calculations if the router is having problems.
 - (Optional) **on-startup**—sets the overload bit only on startup. If **on-startup** is not specified, the overload bit is set immediately and remains set until you enter the **no set-overload-bit** command. If **on-startup** is specified, you must enter a number of seconds or **wait-for-bgp**.
 - **seconds**—When the **on-startup** keyword is configured, causes the overload bit to be set upon system startup and remain set for this number of seconds. The range is from 5 to 86400 seconds.
 - **wait-for-bgp**—When the **on-startup** keyword is configured, causes the overload bit to be set upon system startup and remain set until BGP has converged. If BGP does not signal IS-IS that it is converged, IS-IS will turn off the overload bit after 10 minutes.
| | [wait-for-bgp]] | |
| 10 | lsp-refresh-interval seconds | (Optional) Set an LSP refresh interval in seconds. The range is from 1 to 65535 seconds. The default is to send LSP refreshes every 900 seconds (15 minutes).
| 11 | max-lsp-lifetime seconds | (Optional) Set the maximum time that LSP packets remain in the router database without being refreshed. The range is from 1 to 65535 seconds. The default is 1200 seconds (20 minutes). After the specified time interval, the LSP packet is deleted.
| 12 | lsp-gen-interval [level-1 | (Optional) Set the IS-IS LSP generation throttling timers:
 - **lsp-max-wait**—the maximum interval (in seconds) between two consecutive occurrences of an LSP being generated. The range is 1 to 120, the default is 5.
 - **lsp-initial-wait**—the initial LSP generation delay (in milliseconds). The range is 1 to 10000; the default is 50.
 - **lsp-second-wait**—the hold time between the first and second LSP generation (in milliseconds). The range is 1 to 10000; the default is 5000.
| | level-2] | |
| | lsp-max-wait [lsp-initial-wait | |
| | lsp-second-wait] | |
| 13 | spf-interval [level-1 | (Optional) Sets IS-IS shortest path first (SPF) throttling timers.
 - **spf-max-wait**—the maximum interval between consecutive SPF calculations (in seconds). The range is 1 to 120, the default is 10.
 - **spf-initial-wait**—the initial SPF calculation after a topology change (in milliseconds). The range is 1 to 10000; the default is 5500.
 - **spf-second-wait**—the holdtime between the first and second SPF calculation (in milliseconds). The range is 1 to 10000; the default is 5500.
| | level-2] | |
| | spf-max-wait [spf-initial-wait | |
| | spf-second-wait] | |
Configuring IS-IS Interface Parameters

You can optionally configure certain interface-specific IS-IS parameters, independently from other attached routers. However, if you change some values from the defaults, such as multipliers and time intervals, it makes sense to also change them on multiple routers and interfaces. Most of the interface parameters can be configured for level 1, level 2, or both.

These are some interface level parameters you can configure:

- The default metric on the interface, which is used as a value for the IS-IS metric and assigned when there is no quality of service (QoS) routing performed.

- The hello interval (length of time between hello packets sent on the interface) or the default hello packet multiplier used on the interface to determine the hold time sent in IS-IS hello packets. The hold time determines how long a neighbor waits for another hello packet before declaring the neighbor down. This determines how quickly a failed link or neighbor is detected so that routes can be recalculated. Change the hello-multiplier in circumstances where hello packets are lost.
frequently and IS-IS adjacencies are failing unnecessarily. You can raise the hello multiplier and lower the hello interval correspondingly to make the hello protocol more reliable without increasing the time required to detect a link failure.

- Other time intervals:
 - Complete sequence number PDU (CSNP) interval. CSNPs are sent by the designated router to maintain database synchronization.
 - Retransmission interval. This is the time between retransmission of IS-IS LSPs for point-to-point links.
 - IS-IS LSP retransmission throttle interval. This is the maximum rate (number of milliseconds between packets) at which IS-IS LSPs are re-sent on point-to-point links. This interval is different from the retransmission interval, which is the time between successive retransmissions of the same LSP.
 - Designated router election priority, which allows you to reduce the number of adjacencies required on a multiaccess network, which in turn reduces the amount of routing protocol traffic and the size of the topology database.
 - The interface circuit type, which is the type of adjacency desired for neighbors on the specified interface.
 - Password authentication for the interface.

Beginning in privileged EXEC mode, follow these steps to configure IS-IS interface parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the interface to be configured and enter interface configuration mode. If the interface is not already configured as a Layer 3 interface, enter the no switchport command to put it into Layer 3 mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>isis metric default-metric [level-1</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configure the metric (or cost) for the specified interface. The range is from 0 to 63. The default is 10. If no level is entered, the default is to apply to both Level 1 and Level 2 routers.</td>
</tr>
<tr>
<td>Step 4</td>
<td>isis hello-interval {seconds</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the length of time between hello packets sent by the switch. By default, a value three times the hello interval seconds is advertised as the holdtime in the hello packets sent. With smaller hello intervals, topological changes are detected faster, but there is more routing traffic.</td>
</tr>
<tr>
<td></td>
<td>- minimal—causes the system to compute the hello interval based on the hello multiplier so that the resulting hold time is 1 second.</td>
</tr>
<tr>
<td></td>
<td>- seconds—the range is from 1 to 65535. The default is 10 seconds.</td>
</tr>
<tr>
<td>Step 5</td>
<td>isis hello-multiplier multiplier [level-1</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the number of IS-IS hello packets a neighbor must miss before the router should declare the adjacency as down. The range is from 3 to 1000. The default is 3. Using a smaller hello-multiplier causes fast convergence, but can result in more routing instability.</td>
</tr>
<tr>
<td>Step 6</td>
<td>isis csnp-interval seconds [level-1</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configure the IS-IS complete sequence number PDU (CSNP) interval for the interface. The range is from 0 to 65535. The default is 10 seconds.</td>
</tr>
</tbody>
</table>
Step 7

Command: `isis retransmit-interval seconds`

(Optional) Configure the number of seconds between retransmission of IS-IS LSPs for point-to-point links. The value you specify should be an integer greater than the expected round-trip delay between any two routers on the network. The range is from 0 to 65535. The default is 5 seconds.

Step 8

Command: `isis retransmit-throttle-interval milliseconds`

(Optional) Configure the IS-IS LSP retransmission throttle interval, which is the maximum rate (number of milliseconds between packets) at which IS-IS LSPs will be re-sent on point-to-point links. The range is from 0 to 65535. The default is determined by the `isis lsp-interval` command.

Step 9

Command: `isis priority value [level-1 | level-2]`

(Optional) Configure the priority to use for designated router election. The range is from 0 to 127. The default is 64.

Step 10

Command: `isis circuit-type {level-1 | level-1-2 | level-2-only}`

(Optional) Configure the type of adjacency desired for neighbors on the specified interface (specify the interface circuit type).

- **level-1**—a Level 1 adjacency is established if there is at least one area address common to both this node and its neighbors.
- **level-1-2**—a Level 1 and 2 adjacency is established if the neighbor is also configured as both Level 1 and Level 2 and there is at least one area in common. If there is no area in common, a Level 2 adjacency is established. This is the default.
- **level 2**—a Level 2 adjacency is established. If the neighbor router is a Level 1 router, no adjacency is established.

Step 11

Command: `isis password password [level-1 | level-2]`

(Optional) Configure the authentication password for an interface. By default, authentication is disabled. Specifying Level 1 or Level 2 enables the password only for Level 1 or Level 2 routing, respectively. If you do not specify a level, the default is Level 1 and Level 2.

Step 12

Command: `end`

Return to privileged EXEC mode.

Step 13

Command: `show clns interface interface-id`

Verify your entries.

Step 14

Command: `copy running-config startup-config`

(Optional) Save your entries in the configuration file.

To return to the default settings, use the **no** forms of the commands.
Monitoring and Maintaining ISO IGRP and IS-IS

You can remove all contents of a CLNS cache or remove information for a particular neighbor or route. You can display specific CLNS or IS-IS statistics, such as the contents of routing tables, caches, and databases. You can also display information about specific interfaces, filters, or neighbors.

Table 39-14 lists the privileged EXEC commands for clearing and displaying ISO CLNS and IS-IS routing. For explanations of the display fields, see the Cisco IOS Apollo Domain, Banyan VINES, DECnet, ISO CLNS and XNS Command Reference, Release 12.2, use the Cisco IOS command reference master index, or search online.

Table 39-13 ISO CLNS and IS-IS Clear and Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear clns cache</td>
<td>Clear and reinitialize the CLNS routing cache.</td>
</tr>
<tr>
<td>clear clns es-neighbors</td>
<td>Remove end system (ES) neighbor information from the adjacency database.</td>
</tr>
<tr>
<td>clear clns is-neighbors</td>
<td>Remove intermediate system (IS) neighbor information from the adjacency database.</td>
</tr>
<tr>
<td>clear clns neighbors</td>
<td>Remove CLNS neighbor information from the adjacency database.</td>
</tr>
<tr>
<td>clear clns route</td>
<td>Remove dynamically derived CLNS routing information.</td>
</tr>
<tr>
<td>show clns</td>
<td>Display information about the CLNS network.</td>
</tr>
<tr>
<td>show clns cache</td>
<td>Display the entries in the CLNS routing cache.</td>
</tr>
<tr>
<td>show clns es-neighbors</td>
<td>Display ES neighbor entries, including the associated areas.</td>
</tr>
<tr>
<td>show clns filter-expr</td>
<td>Display filter expressions.</td>
</tr>
<tr>
<td>show clns filter-set</td>
<td>Display filter sets.</td>
</tr>
<tr>
<td>show clns interface [interface-id]</td>
<td>Display the CLNS-specific or ES-IS information about each interface.</td>
</tr>
<tr>
<td>show clns neighbor</td>
<td>Display information about IS-IS neighbors.</td>
</tr>
<tr>
<td>show clns protocol</td>
<td>List the protocol-specific information for each IS-IS or ISO IGRP routing process in this router.</td>
</tr>
<tr>
<td>show clns route</td>
<td>Display all the destinations to which this router knows how to route CLNS packets.</td>
</tr>
<tr>
<td>show clns traffic</td>
<td>Display information about the CLNS packets this router has seen.</td>
</tr>
<tr>
<td>show ip route isis</td>
<td>Display the current state of the ISIS IP routing table.</td>
</tr>
<tr>
<td>show isis database</td>
<td>Display the IS-IS link-state database.</td>
</tr>
<tr>
<td>show isis routes</td>
<td>Display the IS-IS Level 1 routing table.</td>
</tr>
<tr>
<td>show isis spf-log</td>
<td>Display a history of the shortest path first (SPF) calculations for IS-IS.</td>
</tr>
<tr>
<td>show isis topology</td>
<td>Display a list of all connected routers in all areas.</td>
</tr>
<tr>
<td>show route-map</td>
<td>Display all route maps configured or only the one specified.</td>
</tr>
<tr>
<td>trace clns destination</td>
<td>Discover the paths taken to a specified destination by packets in the network.</td>
</tr>
<tr>
<td>which-route [nsap-address</td>
<td>clns-name]</td>
</tr>
</tbody>
</table>
Configuring Multi-VRF CE

Virtual Private Networks (VPNs) provide a secure way for customers to share bandwidth over an ISP-backbone network. A VPN is a collection of sites sharing a common routing table. A customer site is connected to the service-provider network by one or more interfaces, and the service provider associates each interface with a VPN routing table known as a VPN routing/forwarding (VRF) table.

The switch supports multiple VPN routing/forwarding (multi-VRF) instances in customer-edge (CE) devices (multi-VRF CE) when the switch is running the IP services feature set. A service provider uses multi-VRF CE allows to support two or more VPNs with overlapping IP addresses.

Note

The switch does not use Multiprotocol Label Switching (MPLS) to support VPNs. For information about MPLS VRF, see the Cisco IOS Switching Services Configuration Guide, Release 12.2.

These sections contain this information:
- Understanding Multi-VRF CE, page 39-82
- Default Multi-VRF CE Configuration, page 39-84
- Multi-VRF CE Configuration Guidelines, page 39-84
- Configuring VRFs, page 39-85
- Configuring VRF-Aware Services, page 39-86
- Configuring Multicast VRFs, page 39-90
- Configuring a VPN Routing Session, page 39-91
- Configuring BGP PE to CE Routing Sessions, page 39-92
- Multi-VRF CE Configuration Example, page 39-92
- Displaying Multi-VRF CE Status, page 39-96

Understanding Multi-VRF CE

Multi-VRF CE is a feature that allows a service provider to support two or more VPNs overlapping IP addresses among the VPNs. Multi-VRF CE uses input interfaces to distinguish routes for different VPNs and forms virtual-packet-forwarding tables by associating one or more Layer 3 interfaces with each VRF. Interfaces in a VRF can be either physical, such as Ethernet ports, or logical, such as VLAN switch virtual interfaces (SVIs), but an interface cannot belong to more than one VRF at any time.

Note

Multi-VRF CE interfaces must be Layer 3 interfaces.

Multi-VRF CE includes these devices:
- Customer-edge (CE) devices provide customers access to the service-provider network over a data link to one or more provider edge routers. The CE device advertises the site local routes to the router and learns the remote VPN routes from it. A switch can be a CE.
- Provider-edge (PE) routers exchange routing information with CE devices by using static routing or a routing protocol such as BGP, RIPv2, OSPF, or EIGRP. The PE is only required to maintain VPN routes for those VPNs to which it is directly attached. The PE only needs to maintain all of the service-provider VPN routes. Each PE router maintains a VRF for each of its directly connected sites. Multiple interfaces on a PE router can be associated with a single VRF if all of these sites
participate in the same VPN. Each VPN is mapped to a specified VRF. After learning local VPN routes from CEs, a PE router exchanges VPN routing information with other PE routers by using internal BGP (iBGP).

- Provider routers or core routers are any routers in the service provider network that are not attached to CE devices.

With multi-VRF CE, multiple customers can share one CE, and only one physical link is used between the CE and the PE. The shared CE maintains separate VRF tables for each customer and switches or routes packets for each customer based on its own routing table. Multi-VRF CE extends limited PE functionality to a CE device. It can then maintain separate VRF tables to extend the privacy and security of a VPN to the branch office.

Figure 39-7 is an example of switches as multiple virtual CEs. This scenario is suited for customers who have low bandwidth requirements for their VPN service, for example, small companies. In this case, multi-VRF CE support is required in the switches. Because multi-VRF CE is a Layer 3 feature, each interface in a VRF must be a Layer 3 interface.

![Switches Acting as Multiple Virtual CEs](image)

When the CE switch receives a command to add a Layer 3 interface to a VRF, it sets up the mapping between the VLAN ID and the policy label (PL) in multi-VRF-CE-related data structures and adds the VLAN ID and PL to the VLAN database.

When multi-VRF CE is configured, the Layer 3 forwarding table is virtually partitioned into two sections:

- The multi-VRF CE routing section contains the routes from different VPNs.
- The global routing section contains routes to non-VPN networks, such as the Internet.

VLAN IDs from different VRFs are mapped to different policy labels, which are used to distinguish the VRFs during processing. For each new VPN route learned, the Layer 3 setup function retrieves the policy label by using the VLAN ID of the ingress port and inserts the policy label and the new route to the multi-VRF CE routing section. If the packet is received from a routed port, the port internal VLAN ID number is used; if the packet is received from an SVI, the VLAN number is used.

This is the packet-forwarding process in a multi-VRF-CE-enabled network:

- When the switch receives a packet from a VPN, the switch looks up the routing table based on the input policy label number. When a route is found, the switch forwards the packet to the PE.
- When the ingress PE receives a packet from the CE, it performs a VRF lookup. When a route is found, the router adds a corresponding MPLS label to the packet and sends it to the MPLS network.
When an egress PE receives a packet from the network, it strips the label and uses the label to identify the correct VPN routing table. Then it performs the normal route lookup. When a route is found, it forwards the packet to the correct adjacency.

When a CE receives a packet from an egress PE, it uses the input policy label to look up the correct VPN routing table. If a route is found, the PE forwards the packet within the VPN.

To configure VRF, you create a VRF table and specify the Layer 3 interface associated with the VRF. Then you configure the routing protocols in the VPN and between the CE and the PE. BGP is the preferred routing protocol used to distribute VPN routing information across the provider’s backbone. The multi-VRF CE network has these major components:

- VPN route target communities—lists of all other members of a VPN community. You need to configure VPN route targets for each VPN community member.
- Multiprotocol BGP peering of VPN community PE routers—propagates VRF reachability information to all members of a VPN community. You need to configure BGP peering in all PE routers within a VPN community.
- VPN forwarding—transports all traffic between all VPN community members across a VPN service-provider network.

Default Multi-VRF CE Configuration

Table 39-15 shows the default multi-VRF CE configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>Disabled. No VRFs are defined.</td>
</tr>
<tr>
<td>Maps</td>
<td>No import maps, export maps, or route maps are defined.</td>
</tr>
<tr>
<td>VRF maximum routes</td>
<td>Fast Ethernet switches: 8000</td>
</tr>
<tr>
<td></td>
<td>Gigabit Ethernet switches: 12,000</td>
</tr>
<tr>
<td>Forwarding table</td>
<td>The default for an interface is the global routing table.</td>
</tr>
</tbody>
</table>

Multi-VRF CE Configuration Guidelines

To use multi-VRF CE, you must have the IP services feature set enabled on your switch. These are considerations when configuring multi-VRF CE in your network:

- A switch with multi-VRF CE is shared by multiple customers, and each customer has its own routing table.
- Because customers use different VRF tables, the same IP addresses can be reused. Overlapped IP addresses are allowed in different VPNs.
- Multi-VRF CE lets multiple customers share the same physical link between the PE and the CE. Trunk ports with multiple VLANs separate packets among customers. Each customer has its own VLAN.
- Multi-VRF CE does not support all MPLS-VRF functionality. It does not support label exchange, LDP adjacency, or labeled packets.
The PE router does not recognize a difference between using multi-VRF CE or using multiple CEs. In Figure 39-7, multiple virtual Layer 3 interfaces are connected to the multi-VRF CE device.

The switch supports VRF over physical ports, VLAN SVIs, or a combination of both. The SVIs can be connected through an access port or a trunk port.

A customer can use multiple VLANs if they do not overlap with those of other customers. A customer’s VLANs are mapped to a specific routing table ID that identifies the appropriate routing tables stored on the switch.

A switch supports 1 global network and up to 26 VRFs.

Most routing protocols (BGP, OSPF, RIP, and static routing) can be used between the CE and the PE. However, we recommend using external BGP (EBGP) for these reasons:

- BGP does not require multiple algorithms to communicate with multiple CEs.
- BGP is designed for passing routing information between systems run by different administrations.
- BGP simplifies the passing of attributes of the routes to the CE.

Multi-VRF CE does not affect the packet switching rate.

VPN multicast is not supported.

You can configure 104 policies whether or not VRFs are configured on the switch or the switch stack.

You can enable VRF on a private VLAN and the reverse.

You cannot enable VRF when policy-based routing (PBR) is enabled on an interface and the reverse.

You cannot enable VRF when Web Cache Communication Protocol (WCCP) is enabled on an interface and the reverse.

Configuring VRFs

Beginning in privileged EXEC mode, follow these steps to configure one or more VRFs. For complete syntax and usage information for the commands, see the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.2.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip routing</td>
<td>Enable IP routing.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip vrf vrf-name</td>
<td>Name the VRF, and enter VRF configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>rd route-distinguisher</td>
<td>Create a VRF table by specifying a route distinguisher. Enter either an autonomous-system number and an arbitrary number (nnn:y) or an IP address and arbitrary number (A.B.C.D:y)</td>
</tr>
<tr>
<td>Step 5</td>
<td>route-target { export</td>
<td>import</td>
</tr>
</tbody>
</table>
Chapter 39 Configuring IP Unicast Routing

Configuring Multi-VRF CE

Configuring Multi-VRF CE

Use the `no ip vrf vrf-name` global configuration command to delete a VRF and to remove all interfaces from it. Use the `no ip vrf forwarding interface configuration` command to remove a specific interface from the VRF.

Configuring VRF-Aware Services

IP services can be configured on global interfaces that run within the global routing instance. IP services are enhanced to run on multiple routing instances; they are VRF-aware. Any configured VRF in the system can be specified for a VRF-aware service.

VRF-aware services are implemented in platform-independent modules. VRF means multiple routing instances in Cisco IOS. Each platform has its own limit on the number of VRFs it supports.

VRF-aware services have the following characteristics:
- The user can ping a host in a user-specified VRF.
- ARP entries are learned in separate VRFs. The user can display Address Resolution Protocol (ARP) entries for specific VRFs.

These services are VRF-aware:
- ARP
- Ping
- Simple Network Management Protocol (SNMP)
- Hot Standby Router Protocol (HSRP)
- Unicast Reverse Path Forwarding (Unicast RPF)
- Syslog
- Traceroute
- FTP and TFTP
- RADIUS

User Interface for ARP

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for ARP. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.2*.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 <code>import map route-map</code></td>
<td>(Optional) Associate a route map with the VRF.</td>
</tr>
<tr>
<td>Step 7 <code>interface interface-id</code></td>
<td>Specify the Layer 3 interface to associate with the VRF, and enter interface configuration mode. The interface can be a routed port or an SVI.</td>
</tr>
<tr>
<td>Step 8 <code>ip vrf forwarding vrf-name</code></td>
<td>Associate the VRF with the Layer 3 interface.</td>
</tr>
<tr>
<td>Step 9 <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10 `show ip vrf [brief</td>
<td>detail</td>
</tr>
<tr>
<td>Step 11 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
User Interface for PING

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for ping. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.2*.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip arp vrf vrf-name</code></td>
<td>Display the ARP table in the specified VRF.</td>
</tr>
</tbody>
</table>

User Interface for SNMP

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for SNMP. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the *Cisco IOS Switching Services Command Reference, Release 12.2*.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ping vrf vrf-name ip-host</code></td>
<td>Display the ARP table in the specified VRF.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>snmp-server trap authentication vrf</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>snmp-server engineID remote host vrf vpn-instance engine-id string</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>snmp-server host host vrf vpn-instance traps community</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>snmp-server host host vrf vpn-instance informs community</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>snmp-server user user group remote host vrf vpn-instance security model</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>end</code></td>
</tr>
</tbody>
</table>
User Interface for HSRP

HSRP support for VRFs ensures that HSRP virtual IP addresses are added to the correct IP routing table. Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for HSRP. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>no switchport</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip vrf forwarding vrf-name</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip address ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>standby 1 ip ip-address</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
</tbody>
</table>

User Interface for Unicast RPF

Unicast RPF can be configured on an interface assigned to a VRF, and source lookup occurs in the VRF table. Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for Unicast RPF. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>no switchport</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip vrf forwarding vrf-name</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip address ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip verify unicast reverse-path</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
</tbody>
</table>
User Interface for Syslog

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for syslog. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>logging on</td>
</tr>
<tr>
<td>Step 3</td>
<td>logging host ip-address vrf vrf-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>logging buffered logging buffered size debugging</td>
</tr>
<tr>
<td>Step 5</td>
<td>logging trap debugging</td>
</tr>
<tr>
<td>Step 6</td>
<td>logging facility facility</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
</tbody>
</table>

User Interface for Traceroute

Beginning in privileged EXEC mode, follow these steps to configure VRF-aware services for traceroute. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>traceroute vrf vrf-name ipaddress</td>
</tr>
</tbody>
</table>

User Interface for FTP and TFTP

So that FTP and TFTP are VRF-aware, you must configure command-line interface (CLI) commands for FTP/TFTP. For example, if you want to use a VRF table that is attached to an interface, say E1/0, you need to configure the CLI ip [t]ftp source-interface E1/0 to inform [t]ftp to use a specific routing table. In this example, the VRF table looks up the destination IP address. These changes are backward-compatible and do not affect existing behavior. That is, you can use the source-interface CLI to send packets out a particular interface even if no VRF is configured on that interface.

To specify the source IP address for FTP connections, use the ip ftp source-interface show mode command. To use the address of the interface where the connection is made, use the no form of this command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip ftp source-interface interface-type interface-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
</tbody>
</table>
To specify an interface IP address as the source address for TFTP connections, use the `ip tftp source-interface` show mode command. To return to the default, use the `no` form of this command.

User Interface for VRF-Aware RADIUS

To configure VRF-Aware RADIUS, you must first enable AAA on a RADIUS server. The switch supports the `ip vrf forwarding vrf-name` server-group configuration and the `ip radius source-interface` global configuration commands, as described in the Per VRF AAA Feature Guide at this URL:

Configuring Multicast VRFs

Beginning in privileged EXEC mode, follow these steps to configure a multicast within a VRF table. For complete syntax and usage information for the commands, see the switch command reference for this release and the Cisco IOS Switching Services Command Reference, Release 12.2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip tftp source-interface interface-type interface-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
</tbody>
</table>

Command Purpose

Step 1
- `configure terminal` | Enter global configuration mode. |
Step 2
- `ip routing` | Enable IP routing mode. |
- `ip vrf vrf-name` | Name the VRF, and enter VRF configuration mode. |
- `rd route-distinguisher` | Create a VRF table by specifying a route distinguisher. Enter either an autonomous-system number and an arbitrary number (nnn:y) or an IP address and an arbitrary number (A.B.C.D:y) |
- `route-target { export | import | both } route-target-ext-community` | Create a list of import, export, or import and export route target communities for the specified VRF. Enter either an autonomous-system number and an arbitrary number (nnn:y) or an IP address and an arbitrary number (A.B.C.D:y). The `route-target-ext-community` should be the same as the `route-distinguisher` entered in Step 4. |
Step 6
- `import map route-map` | (Optional) Associate a route map with the VRF. |
Step 7
- `ip multicast-routing vrf vrf-name distributed` | (Optional) Enable global multicast routing for VRF table. |
Step 8
- `interface interface-id` | Specify the Layer 3 interface to be associated with the VRF, and enter interface configuration mode. The interface can be a routed port or an SVI. |
Step 9
- `ip vrf forwarding vrf-name` | Associate the VRF with the Layer 3 interface. |
Step 10
- `ip address ip-address mask` | Configure the IP address for the Layer 3 interface. |
Step 11
- `ip pim sparse-dense mode` | Enable PIM on the VRF-associated Layer 3 interface. |
Chapter 39 Configuring IP Unicast Routing

Configuring Multi-VRF CE

For more information about configuring a multicast within a Multi-VRF CE, see the *Cisco IOS IP Multicast Configuration Guide, Release 12.4*.

Configuring a VPN Routing Session

Routing within the VPN can be configured with any supported routing protocol (RIP, OSPF, EIGRP, or BGP) or with static routing. The configuration shown here is for OSPF, but the process is the same for other protocols.

Note

To configure an EIGRP routing process to run within a VRF instance, you must configure an autonomous-system number by entering the `autonomous-system autonomous-system-number` address-family configuration mode command.

Beginning in privileged EXEC mode, follow these steps to configure OSPF in the VPN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf process-id vrf vrf-name Enable OSPF routing, specify a VPN forwarding table, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>log-adjacency-changes (Optional) Log changes in the adjacency state. This is the default state.</td>
</tr>
<tr>
<td>Step 4</td>
<td>redistribute bgp autonomous-system-number subnets Set the switch to redistribute information from the BGP network to the OSPF network.</td>
</tr>
<tr>
<td>Step 5</td>
<td>network network-number area area-id Define a network address and mask on which OSPF runs and the area ID for that network address.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip ospf process-id Verify the configuration of the OSPF network.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no router ospf process-id vrf vrf-name` global configuration command to disassociate the VPN forwarding table from the OSPF routing process.
Configuring BGP PE to CE Routing Sessions

Beginning in privileged EXEC mode, follow these steps to configure a BGP PE to CE routing session:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system-number</td>
<td>Configure the BGP routing process with the autonomous-system number passed to other BGP routers, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>network network-number mask network-mask</td>
<td>Specify a network and mask to advertise through BGP.</td>
</tr>
<tr>
<td>Step 4</td>
<td>redistribute ospf process-id match internal</td>
<td>Set the switch to redistribute OSPF internal routes.</td>
</tr>
<tr>
<td>Step 5</td>
<td>network network-number area area-id</td>
<td>Define a network address and mask on which OSPF runs and the area ID for that network address.</td>
</tr>
<tr>
<td>Step 6</td>
<td>address-family ipv4 vrf vrf-name</td>
<td>Define BGP parameters for PE to CE routing sessions, and enter VRF address-family mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>neighbor address remote-as as-number</td>
<td>Define a BGP session between PE and CE routers.</td>
</tr>
<tr>
<td>Step 8</td>
<td>neighbor address activate</td>
<td>Activate the advertisement of the IPv4 address family.</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>show ip bgp [ipv4] [neighbors]</td>
<td>Verify BGP configuration.</td>
</tr>
<tr>
<td>Step 11</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no router bgp autonomous-system-number global configuration command to delete the BGP routing process. Use the command with keywords to delete routing characteristics.

Multi-VRF CE Configuration Example

Figure 39-8 is a simplified example of the physical connections in a network similar to that in Figure 39-7. OSPF is the protocol used in VPN1, VPN2, and the global network. BGP is used in the CE-to-PE connections. The examples following the illustration show how to configure a switch as a CE Switch A, and the VRF configuration for customer switches D and F. Commands for configuring CE Switch C and the other customer switches are not included but would be similar. The example also includes commands for configuring traffic to Switch A for a Catalyst 6000 or Catalyst 6500 switch acting as a PE router.
Configuring Switch A

On Switch A, enable routing, and configure VRF.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# ip vrf v11
Switch(config-vrf)# rd 800:1
Switch(config-vrf)# route-target export 800:1
Switch(config-vrf)# route-target import 800:1
Switch(config-vrf)# exit
Switch(config)# ip vrf v12
Switch(config-vrf)# rd 800:2
Switch(config-vrf)# route-target export 800:2
Switch(config-vrf)# route-target import 800:2
Switch(config-vrf)# exit
```

Configure the loopback and physical interfaces on Switch A. Gigabit Ethernet port 1 is a trunk connection to the PE. Gigabit Ethernet ports 8 and 11 connect to VPNs:

```
Switch(config)# interface loopback1
Switch(config-if)# ip vrf forwarding v11
Switch(config-if)# ip address 8.8.1.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface loopback2
Switch(config-if)# ip vrf forwarding v12
Switch(config-if)# ip address 8.8.2.8 255.255.255.0
Switch(config-if)# exit
```
Switch(config)# interface gigabitethernet1/0/5
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# no ip address
Switch(config-if)# exit

Switch(config)# interface gigabitethernet1/0/8
Switch(config-if)# switchport access vlan 208
Switch(config-if)# no ip address
Switch(config-if)# exit

Switch(config)# interface gigabitethernet1/0/11
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# no ip address
Switch(config-if)# exit

Configure the VLANs used on Switch A. VLAN 10 is used by VRF 11 between the CE and the PE. VLAN 20 is used by VRF 12 between the CE and the PE. VLANs 118 and 208 are used for the VPNs that include Switch F and Switch D, respectively:

Switch(config)# interface vlan10
Switch(config-if)# ip vrf forwarding v11
Switch(config-if)# ip address 38.0.0.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface vlan20
Switch(config-if)# ip vrf forwarding v12
Switch(config-if)# ip address 83.0.0.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface vlan118
Switch(config-if)# ip vrf forwarding v12
Switch(config-if)# ip address 118.0.0.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface vlan208
Switch(config-if)# ip vrf forwarding v11
Switch(config-if)# ip address 208.0.0.8 255.255.255.0
Switch(config-if)# exit

Configure OSPF routing in VPN1 and VPN2.

Switch(config)# router ospf 1 vrf vl1
Switch(config-router)# redistribute bgp 800 subnets
Switch(config-router)# network 208.0.0.0 0.0.0.255 area 0
Switch(config-router)# exit
Switch(config)# router ospf 2 vrf vl2
Switch(config-router)# redistribute bgp 800 subnets
Switch(config-router)# network 118.0.0.0 0.0.0.255 area 0
Switch(config-router)# exit

Configure BGP for CE-to-PE routing.

Switch(config)# router bgp 800
Switch(config-router)# address-family ipv4 vrf vl2
Switch(config-router-af)# redistribute ospf 2 vrf v12 activate
Switch(config-router-af)# neighbor 83.0.0.3 remote-as 100
Switch(config-router-af)# network 8.8.2.0 mask 255.255.255.0
Switch(config-router-af)# exit
Switch(config-router-af)# address-family ipv4 vrf vl1
Switch(config-router-af)# redistribute ospf 1 match internal
Switch(config-router-af)# neighbor 38.0.0.3 remote-as 100
Switch(config-router-af)# neighbor 38.0.0.3 activate
Switch(config-router-af)# network 8.8.1.0 mask 255.255.255.0
Switch(config-router-af)# end

Configuring Switch D

Switch D belongs to VPN 1. Configure the connection to Switch A by using these commands.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 208.0.0.20 255.255.255.0
Switch(config-if)# exit

Switch(config)# router ospf 101
Switch(config-router)# network 208.0.0.0 0.0.0.255 area 0
Switch(config-router)# end

Configuring Switch F

Switch F belongs to VPN 2. Configure the connection to Switch A by using these commands.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# no ip address
Switch(config-if)# exit

Switch(config)# interface vlan118
Switch(config-if)# ip address 118.0.0.11 255.255.255.0
Switch(config-if)# exit

Switch(config)# router ospf 101
Switch(config-router)# network 118.0.0.0 0.0.0.255 area 0
Switch(config-router)# end

Configuring PE Switch B

When used on switch B (the PE router), these commands configure only the connections to the CE device, Switch A.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip vrf v1
Router(config-vrf)# rd 100:1
Router(config-vrf)# route-target export 100:1
Router(config-vrf)# route-target import 100:1
Router(config-vrf)# exit

Router(config)# ip vrf v2
Router(config-vrf)# rd 100:2
Router(config-vrf)# route-target export 100:2
Router(config-vrf)# route-target import 100:2
Router(config-vrf)# exit

Router(config)# ip cef
Router(config)# interface loopback1
Displaying Multi-VRF CE Status

You can use the privileged EXEC commands in Table 39-16 to display information about multi-VRF CE configuration and status.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip protocols vrf vrf-name</code></td>
<td>Display routing protocol information associated with a VRF.</td>
</tr>
<tr>
<td><code>show ip route vrf vrf-name [connected] [protocol [as-number]] [list] [mobile] [odr] [profile] [static] [summary] [supernets-only]</code></td>
<td>Display IP routing table information associated with a VRF.</td>
</tr>
<tr>
<td>`show ip vrf [brief</td>
<td>detail</td>
</tr>
</tbody>
</table>

For more information about the information in the displays, see the *Cisco IOS Switching Services Command Reference, Release 12.2*.
Configuring Unicast Reverse Path Forwarding

The Unicast Reverse Path Forwarding (Unicast RPF) forwarding feature helps to mitigate problems that are caused by the introduction of malformed or forged (spoofed) IP source addresses into a network. Unicast RPF discards IP packets without a verifiable IP source address. For example, a number of common denial-of-service (DoS) attacks, including Smurf and Tribal Flood Network (TFN), take advantage of forged or rapidly changing source-IP addresses to allow attackers to avoid efforts to locate or to filter the attacks. For Internet service providers (ISPs) that provide public access, Unicast RPF deflects such attacks by forwarding only packets with valid source addresses and that are consistent with the IP routing table. This action protects the network of the ISP, its customer, and the rest of the Internet.

For detailed IP Unicast RPF configuration information, see the Other Security Features section in the Cisco IOS Security Configuration Guide, Release 12.2.

Configuring Protocol-Independent Features

This section describes how to configure IP routing protocol-independent features. These features are available on switches running the IP base or the IP services feature set. However, on the IP base feature set, protocol-related features are available only for RIP. For a complete description of the IP routing protocol-independent commands in this chapter, see the “IP Routing Protocol-Independent Commands” chapter of the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2 from the Cisco.com page under Documentation > Cisco IOS Software > 12.2 Mainline > Command References.

These sections contain this configuration information:

- Configuring Cisco Express Forwarding and Distributed Cisco Express Forwarding, page 39-97
- Configuring the Number of Equal-Cost Routing Paths, page 39-99
- Configuring Static Unicast Routes, page 39-99
- Specifying Default Routes and Networks, page 39-101
- Using Route Maps to Redistribute Routing Information, page 39-101
- Configuring Policy-Based Routing, page 39-105
- Filtering Routing Information, page 39-109
- Managing Authentication Keys, page 39-111

Configuring Cisco Express Forwarding and Distributed Cisco Express Forwarding

Cisco Express Forwarding (CEF) is a Layer 3 IP switching technology used to optimize network performance. CEF implements an advanced IP look-up and forwarding algorithm to deliver maximum Layer 3 switching performance. CEF is less CPU-intensive than fast-switching route-caching, providing more CPU processing power dedicated to packet forwarding. In a switch stack, a stack member uses distributed CEF (dCEF) in the stack. On a standalone switch, the switch uses CEF. In dynamic networks, fast-switching cache entries are frequently invalidated because of routing changes, which causes traffic to be process-switched using the routing table, instead of fast-switched using the route cache. CEF and dCEF use the Forwarding Information Base (FIB) lookup table for destination-based switching of IP packets.
The two main components in CEF and dCEF are the distributed FIB and the distributed adjacency tables.

- The FIB is similar to a routing table or information base and maintains a mirror image of the forwarding information in the IP routing table. When routing or topology changes occur in the network, the IP routing table is updated, and those changes are reflected in the FIB. The FIB maintains next-hop address information based on the information in the IP routing table. Because the FIB contains all known routes in the routing table, CEF eliminates route cache maintenance, is more efficient for switching traffic, and is not affected by traffic patterns.

- Nodes in the network are said to be adjacent if they can reach each other with a single hop across a link layer. CEF uses adjacency tables to prepend Layer 2 addressing information. The adjacency table maintains Layer 2 next-hop addresses for all FIB entries.

Because the switch or switch stack uses ASICs to achieve Gigabit-speed line rate IP traffic, CEF or dCEF forwarding applies only to the software-forwarding path, that is, traffic that is forwarded by the CPU.

The default configuration is CEF or dCEF enabled on all Layer 3 interfaces. Entering the `no ip route-cache cef` interface configuration command disables CEF for traffic that is being forwarded by software. This command does not affect the hardware forwarding path. You can re-enable CEF or dCEF by using the `ip cef` or `ip cef distributed` global configuration command. To enable CEF on an interface for the software-forwarding path, use the `ip route-cache cef` interface configuration command.

![Caution]

Although the `no ip route-cache cef` interface configuration command to disable CEF on an interface is visible in the CLI, we strongly recommend that you do not disable CEF or dCEF on interfaces except for debugging purposes.

Beginning in privileged EXEC mode, follow these steps to enable CEF or dCEF globally and on an interface if it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>ip cef</code>
<code>ip cef distributed</code>
<code>interface interface-id</code>
<code>ip route-cache cef</code>
<code>end</code>
<code>show ip cef</code>
<code>show cef linecard [detail]</code>
<code>show cef linecard [stack-member-number] [detail]</code>
<code>show cef interface [interface-id]</code></td>
<td>Enable CEF operation on a standalone switch, or enable dCEF operation on a switch stack. Enter interface configuration mode, and specify the Layer 3 interface to configure. Display the CEF status on all interfaces. Display CEF-related interface information on a standalone switch, or display dCEF-related interface information for all switches in the stack or for the specified stack member. (Optional) For <code>stack-member-number</code>, specify the stack member. Display detailed CEF information for all interfaces or the specified interface.</td>
</tr>
</tbody>
</table>
Configuring Protocol-Independent Features

Chapter 39 Configuring IP Unicast Routing

Configuring the Number of Equal-Cost Routing Paths

When a router has two or more routes to the same network with the same metrics, these routes can be thought of as having an equal cost. A parallel path provides another way to see occurrences of equal-cost routes in an IP routing table. A router with two or more equal-cost paths to a network can use them concurrently. Parallel paths provide redundancy in case of a circuit failure and also enable a router to load balance packets for more efficient use of available bandwidth. Equal-cost routes are supported across switches in a stack.

The router automatically learns about and configures equal-cost routes, but you can control the maximum number of parallel paths supported by an IP routing protocol in its routing table. Although the switch software allows a maximum of 32 equal-cost routes, the switch never uses more than 16 paths per route.

Beginning in privileged EXEC mode, follow these steps to change the maximum number of parallel paths in a routing table from the default:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9 show adjacency</td>
<td>Display CEF adjacency table information.</td>
</tr>
<tr>
<td>Step 10 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configure the Number of Equal-Cost Routing Paths

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router {bgp</td>
<td>rip</td>
</tr>
<tr>
<td>Step 3 maximum-paths maximum</td>
<td>Set the maximum number of parallel paths for the protocol routing table. The range is from 1 to 16; the default is 4 for most IP routing protocols, but only 1 for BGP.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip protocols</td>
<td>Verify the setting in the Maximum path field.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no maximum-paths router configuration command to restore the default value.

Configuring Static Unicast Routes

Static unicast routes are user-defined routes that cause packets moving between a source and a destination to take a specified path. Static routes can be important if the router cannot dynamically build a route to a particular destination and are useful for specifying a gateway of last resort to which all unroutable packets are sent.

Beginning in privileged EXEC mode, follow these steps to configure a static route:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip route prefix mask {address</td>
<td>interface} [distance]</td>
</tr>
</tbody>
</table>
Use the `no ip route prefix mask {address | interface}` global configuration command to remove a static route.

The switch retains static routes until you remove them. However, you can override static routes with dynamic routing information by assigning administrative distance values. Each dynamic routing protocol has a default administrative distance, as listed in Table 39-17. If you want a static route to be overridden by information from a dynamic routing protocol, set the administrative distance of the static route higher than that of the dynamic protocol.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show ip route</td>
<td>Display the routing table to verify the configuration.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Table 39-17 Dynamic Routing Protocol Default Administrative Distances

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Default Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected interface</td>
<td>0</td>
</tr>
<tr>
<td>Static route</td>
<td>1</td>
</tr>
<tr>
<td>Enhanced IRGP summary route</td>
<td>5</td>
</tr>
<tr>
<td>External BGP</td>
<td>20</td>
</tr>
<tr>
<td>Internal Enhanced IGRP</td>
<td>90</td>
</tr>
<tr>
<td>IGRP</td>
<td>100</td>
</tr>
<tr>
<td>OSPF</td>
<td>110</td>
</tr>
<tr>
<td>Internal BGP</td>
<td>200</td>
</tr>
<tr>
<td>Unknown</td>
<td>225</td>
</tr>
</tbody>
</table>

Static routes that point to an interface are advertised through RIP, IGRP, and other dynamic routing protocols, whether or not static `redistribute` router configuration commands were specified for those routing protocols. These static routes are advertised because static routes that point to an interface are considered as connected in the routing table and hence lose their static nature. However, if you define a static route to an interface that is not one of the networks defined in a network command, no dynamic routing protocols advertise the route unless a `redistribute` static command is specified for these protocols.

When an interface goes down, all static routes through that interface are removed from the IP routing table. When the software can no longer find a valid next hop for the address specified as the forwarding-router address in a static route, the static route is also removed from the IP routing table.

Specifying Default Routes and Networks

A router might not be able to learn the routes to all other networks. To provide complete routing capability, you can use some routers as smart routers and give the remaining routers default routes to the smart router. (Smart routers have routing table information for the entire internetwork.) These default routes can be dynamically learned or can be configured in the individual routers. Most dynamic interior routing protocols can cause a smart router to generate dynamic default information that is then forwarded to other routers.
If a router has a directly connected interface to the specified default network, the dynamic routing protocols running on that device generate a default route. In RIP, it advertises the pseudonetwork 0.0.0.0.

A router that is generating the default route for a network also might need a default route of its own. One way a router can generate its own default router is to specify a static route to the network 0.0.0.0 through the appropriate device.

Beginning in privileged EXEC mode, follow these steps to define a default static route to a network:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip default-network network number</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip route</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no ip default-network network number global configuration command to remove the route.

When default information passes through a dynamic routing protocol, no further configuration is required. The system periodically scans its routing table to choose the best default network as its default route. IGRP networks might have several candidate networks for the system default. Cisco routers use administrative distance and metric information to set the default route or the gateway of last resort.

If dynamic default information is not being passed to the system, you can specify candidates for the default route with the ip default-network global configuration command. If this network appears in the routing table from any source, it is flagged as a possible choice for the default route. If the router has no interface on the default network, but does have a path to it, the network is considered as a possible candidate, and the gateway to the best default path becomes the gateway of last resort.

Using Route Maps to Redistribute Routing Information

The switch can run multiple routing protocols simultaneously, and it can redistribute information from one routing protocol to another. Information redistribution from one routing protocol to another applies to all supported IP-based routing protocols.

You can also conditionally control the redistribution of routes between routing domains by defining enhanced packet filters or route maps between the two domains. The match and set route-map configuration commands define the condition portion of a route map. The match command specifies that a criterion must be matched. The set command specifies an action to be taken if the routing update meets the conditions defined by the match command. Although redistribution is a protocol-independent feature, some of the match and set route-map configuration commands are specific to a particular protocol.

One or more match commands and one or more set commands follow a route-map command. If there are no match commands, everything matches. If there are no set commands, only the match action occurs. Therefore, you need at least one match or set command.

A route map with no set route-map configuration commands is sent to the CPU, which causes high CPU utilization.
You can also identify route-map statements as `permit` or `deny`. If the statement is marked as a deny, the packets meeting the match criteria are sent back through the normal forwarding channels (destination-based routing). If the statement is marked as a permit, set clauses are applied to packets meeting the match criteria. Packets that do not meet the match criteria are forwarded through the normal routing channel.

You can use the BGP route map `continue` clause to execute additional entries in a route map after an entry is executed with successful match and set clauses. You can use the `continue` clause to configure and organize more modular policy definitions so that specific policy configurations are not repeated within the same route map. The switch supports the `continue` clause for outbound policies. For more information about using the route map `continue` clause, see the BGP Route-Map Continue Support for an Outbound Policy feature guide for Cisco IOS Release 12.4(4)T at this URL:

Note Although each of Steps 3 through 14 in the following section is optional, you must enter at least one `match` route-map configuration command and one `set` route-map configuration command.

Beginning in privileged EXEC mode, follow these steps to configure a route map for redistribution:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 route-map map-tag [permit</td>
<td>Define any route maps used to control redistribution, and enter route-map configuration mode.</td>
</tr>
<tr>
<td></td>
<td>deny] [sequence number]</td>
</tr>
<tr>
<td></td>
<td>[permit</td>
</tr>
<tr>
<td></td>
<td>deny] (Optional)—If <code>permit</code> is specified and the match criteria are met for this route map, the route is redistributed as controlled by the set actions. If <code>deny</code> is specified, the route is not redistributed.</td>
</tr>
<tr>
<td></td>
<td>sequence number (Optional)—Number that defines the position a new route map is to have in the list of route maps already configured with the same name.</td>
</tr>
<tr>
<td>Step 3 match as-path path-list-number</td>
<td>Match a BGP autonomous-system path access list.</td>
</tr>
<tr>
<td>Step 4 match community-list community-list-number [exact]</td>
<td>Match a BGP community list.</td>
</tr>
<tr>
<td>Step 5 match ip address {access-list-number</td>
<td>Match a standard access list by specifying the name or number. It can be an integer from 1 to 199.</td>
</tr>
<tr>
<td></td>
<td>access-list-name} [...access-list-number</td>
</tr>
<tr>
<td></td>
<td>...access-list-name]</td>
</tr>
<tr>
<td>Step 6 match metric metric-value</td>
<td>Match the specified route metric. The <code>metric-value</code> can be an EIGRP metric with a specified value from 0 to 4294967295.</td>
</tr>
<tr>
<td>Step 7 match ip next-hop {access-list-number</td>
<td>Match a next-hop router address passed by one of the access lists specified (numbered from 1 to 199).</td>
</tr>
<tr>
<td></td>
<td>access-list-name} [...access-list-number</td>
</tr>
<tr>
<td></td>
<td>...access-list-name]</td>
</tr>
<tr>
<td>Step 8 match tag tag-value [...tag-value]</td>
<td>Match the specified tag value in a list of one or more route tag values. Each can be an integer from 0 to 4294967295.</td>
</tr>
</tbody>
</table>
Command | Purpose
--- | ---
Step 9, **match interface** `type number` [...`type number`] | Match the specified next-hop route out one of the specified interfaces.
Step 10, **match ip route-source** `{access-list-number | access-list-name} [...access-list-number | ...access-list-name}` | Match the address specified by the specified advertised access lists.
Step 11, **match route-type** `{local | internal | external [type-1 | type-2]}` | Match the specified **route-type**:
- **local**—Locally generated BGP routes.
- **internal**—OSPF intra-area and interarea routes or EIGRP internal routes.
- **external**—OSPF external routes (Type 1 or Type 2) or EIGRP external routes.
Step 12, **set dampening** halflife reuse suppress max-suppress-time | Set BGP route dampening factors.
Step 13, **set local-preference** `value` | Assign a value to a local BGP path.
Step 14, **set origin** `{igp | egp as | incomplete}` | Set the BGP origin code.
Step 15, **set as-path** `{tag | prepend as-path-string}` | Modify the BGP autonomous system path.
Step 16, **set level** `{level-1 | level-2 | level-1-2 | stub-area | backbone}` | Set the level for routes that are advertised into the specified area of the routing domain. The **stub-area** and **backbone** are OSPF NSSA and backbone areas.
Step 17, **set metric** `metric value` | Set the metric value to give the redistributed routes (only for EIGRP). The **metric value** is an integer from –294967295 to 294967295.
Step 18, **set metric** `bandwidth delay reliability loading mtu` | Set the metric value to give the redistributed routes (only for EIGRP):
- **bandwidth**—Metric value or IGRP bandwidth of the route in Kb/s in the range 0 to 4294967295
- **delay**—Route delay in tens of microseconds in the range 0 to 4294967295.
- **reliability**—Likelihood of successful packet transmission expressed as a number between 0 and 255, where 255 means 100 percent reliability, and 0 means no reliability.
- **loading**—Effective bandwidth of the route expressed as a number from 0 to 255 (255 is 100 percent loading).
- **mtu**—Minimum maximum transmission unit (MTU) size of the route in bytes in the range 0 to 4294967295.
Step 19, **set metric-type** `{type-1 | type-2}` | Set the OSPF external metric type for redistributed routes.
Step 20, **set metric-type internal** | Set the multi-exit discriminator (MED) value on prefixes advertised to an external BGP neighbor to match the IGP metric of the next hop.
To delete an entry, use the **no route-map map tag** global configuration command or the **no match** or **no set** route-map configuration commands.

You can distribute routes from one routing domain into another and control route distribution.

Beginning in privileged EXEC mode, follow these steps to control route redistribution. Note that the keywords are the same as defined in the previous procedure.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 21 set weight</td>
<td>Set the BGP weight for the routing table. The value is from 1 to 65535.</td>
</tr>
<tr>
<td>Step 22 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 23 show route-map</td>
<td>Display all configured route maps or only the one specified to verify configuration.</td>
</tr>
<tr>
<td>Step 24 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable redistribution, use the **no** form of the commands.

The metrics of one routing protocol do not necessarily translate into the metrics of another. For example, the RIP metric is a hop count, and the IGRP metric is a combination of five qualities. In these situations, an artificial metric is assigned to the redistributed route. Uncontrolled exchanging of routing information between different routing protocols can create routing loops and seriously degrade network operation.

If you have not defined a default redistribution metric that replaces metric conversion, some automatic metric translations occur between routing protocols:

- RIP can automatically redistribute static routes. It assigns static routes a metric of 1 (directly connected).
- Any protocol can redistribute other routing protocols if a default mode is in effect.
Configuring Policy-Based Routing

You can use policy-based routing (PBR) to configure a defined policy for traffic flows. By using PBR, you have more control over routing by reducing the reliance on routes derived from routing protocols. PBR can specify and implement routing policies that allow or deny paths based on:

- Identity of a particular end system
- Application
- Protocol

You can use PBR to provide equal-access and source-sensitive routing, routing based on interactive instead of batch traffic, or routing based on dedicated links. For example, you could transfer stock records to a corporate office on a high-bandwidth, high-cost link for a short time while sending routine application data such as e-mail over a low-bandwidth, low-cost link.

With PBR, you classify traffic using access control lists (ACLs) and then make traffic go through a different path. PBR is applied to incoming packets. All packets received on an interface with PBR enabled are passed through route maps. Based on the criteria defined in the route maps, packets are forwarded (routed) to the appropriate next hop.

- If packets do not match any route map statements, all set clauses are applied.
- If a statement is marked as permit and the packets do not match any route-map statements, the packets are sent through the normal forwarding channels, and destination-based routing is performed.
- For PBR, route-map statements marked as deny are not supported.

For more information about configuring route maps, see the “Using Route Maps to Redistribute Routing Information” section on page 39-101.

You can use standard IP ACLs to specify match criteria for a source address or extended IP ACLs to specify match criteria based on an application, a protocol type, or an end station. The process proceeds through the route map until a match is found. If no match is found, normal destination-based routing occurs. There is an implicit deny at the end of the list of match statements.

If match clauses are satisfied, you can use a set clause to specify the IP addresses that identify the next hop router in the path.

For details about PBR commands and keywords, see the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.2. For a list of PBR commands that are visible but not supported by the switch, see Appendix C, “Unsupported Commands in Cisco IOS Release 12.2(55)SE.”

PBR configuration is applied to the whole stack, and all switches use the stack-master configuration.

Note

This software release does not support Policy-Based Routing (PBR) when processing IPv4 and IPv6 traffic.

PBR Configuration Guidelines

Before configuring PBR, you should be aware of this information:

- To use PBR, you must have the IP services feature set enabled on the switch or the stack master.
- Multicast traffic is not policy routed. PBR applies to only to unicast traffic.
- You can enable PBR on a routed port or on an SVI.
- The switch does not support route-map deny statements for PBR.
You can apply a policy route map to an EtherChannel port channel in Layer 3 mode, but you cannot apply a policy route map to a physical interface that is a member of the EtherChannel. If you try to do so, the command is rejected. When a policy route map is applied to a physical interface, that interface cannot become a member of an EtherChannel.

You can define a maximum of 246 IP policy route maps on the switch or the switch stack.

You can define a maximum of 512 access control entries (ACEs) for PBR on the switch or the switch stack.

When configuring match criteria in a route map, follow these guidelines:

- Do not match ACLs that permit packets destined for a local address. PBR would forward these packets, which could cause ping or Telnet failure or route protocol flapping.
- Do not match ACLs with deny ACEs. Packets that match a deny ACE are sent to the CPU, which could cause high CPU utilization.

To use PBR, you must first enable the routing template by using the `sdm prefer routing` global configuration command. PBR is not supported with the VLAN and default templates. For more information on the SDM templates, see Chapter 8, “Configuring SDM Templates.”

VRF and PBR are mutually exclusive on a switch interface. You cannot enable VRF when PBR is enabled on an interface. The reverse is also true; you cannot enable PBR when VRF is enabled on an interface.

Web Cache Communication Protocol (WCCP) and PBR are mutually exclusive on a switch interface. You cannot enable WCCP when PBR is enabled on an interface. The reverse is also true; you cannot enable PBR when WCCP is enabled on an interface.

The number of hardware entries used by PBR depends on the route map itself, the ACLs used, and the order of the ACLs and route-map entries.

Policy-based routing based on packet length, ToS, set interface, set default next hop, or set default interface are not supported. Policy maps with no valid set actions or with a set action set to `Don’t Fragment` are not supported.

The switch supports QoS DSCP and IP precedence matching in PBR route maps, with these limitations:

- You cannot apply QoS DSCP mutation maps and PBR route maps to the same interface.
- You cannot configure DSCP transparency and PBR DSCP route maps on the same switch.
- When you configure PBR with QoS DSCP, you can set QoS as enabled (by entering the `mls qos` global configuration command) or disabled (by entering the `no mls qos` command). When QoS is enabled, to ensure that the DSCP value of the traffic is unchanged, you should configure the DSCP trust state on the port where traffic enters the switch by entering the `mls qos trust dscp` interface configuration command. If the trust state is not DSCP, by default, all nontrusted traffic has the DSCP value marked as 0.
Enabling PBR

By default, PBR is disabled on the switch. To enable PBR, you must create a route map that specifies the match criteria and the resulting action if all of the match clauses are met. Then, you must enable PBR on an interface for that route map. All packets arriving on that interface that match the match clauses are subject to PBR.

PBR can be fast-switched or implemented at speeds that do not slow down the switch. Fast-switched PBR supports most match and set commands. You must first enable PBR before you enable fast-switched PBR. By default, fast-switched PBR is disabled.

Packets that are generated by the switch, or local packets, are not normally policy routed. When you globally enable local PBR on the switch, all packets that originate on the switch are subject to local PBR. Local PBR is disabled by default.

Note
To enable PBR, the switch or stack master must be running the IP services feature set.

Beginning in privileged EXEC mode, follow these steps to configure PBR:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>route-map map-tag [permit] [sequence number]</td>
</tr>
<tr>
<td></td>
<td>Define any route maps used to control from where packets are sent, and enter route-map configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• map-tag—A meaningful name for the route map. The ip policy route-map interface configuration command uses this name to reference the route map. Multiple route maps might share the same map-tag name.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) If permit is specified and the match criteria are met for this route map, the route is policy routed as controlled by the set actions.</td>
</tr>
<tr>
<td>Note</td>
<td>The route-map deny statement is not supported in PBR route maps to be applied to an interface.</td>
</tr>
<tr>
<td></td>
<td>• sequence number (Optional)—Number that shows the position of a new route map in the list of route maps already configured with the same name.</td>
</tr>
<tr>
<td>Step 3</td>
<td>match ip address {access-list-number</td>
</tr>
<tr>
<td></td>
<td>Match the source and destination IP addresses that are permitted by one or more standard or extended access lists.</td>
</tr>
<tr>
<td>Note</td>
<td>Do not enter an ACL with a deny ACE or an ACL that permits a packet destined for a local address.</td>
</tr>
<tr>
<td></td>
<td>If you do not specify a match command, the route map applies to all packets.</td>
</tr>
<tr>
<td>Step 4</td>
<td>set ip next-hop ip-address [...ip-address]</td>
</tr>
<tr>
<td></td>
<td>Specify the action to take on the packets that match the criteria. Set the next hop to which to route the packet (the next hop must be adjacent).</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>
Filtering Routing Information

You can filter routing protocol information by performing the tasks described in this section.

Note

When routes are redistributed between OSPF processes, no OSPF metrics are preserved.

Setting Passive Interfaces

To prevent other routers on a local network from dynamically learning about routes, you can use the `passive-interface` router configuration command. Then routing update messages are not being sent through a router interface. When you use this command in the OSPF protocol, the interface address that you specify as passive appears as a stub network in the OSPF domain. OSPF routing information is neither sent nor received through that interface.
In networks with many interfaces, you do not need to manually set them as passive. You can set all interfaces to be passive by default by using the `passive-interface default` router configuration command. You can then manually set interfaces where adjacencies are desired.

Beginning in privileged EXEC mode, follow these steps to configure passive interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router {bgp</td>
<td>rip</td>
</tr>
<tr>
<td>Step 3 passive-interface interface-id</td>
<td>Suppress sending of routing updates through the specified Layer 3 interface.</td>
</tr>
<tr>
<td>Step 4 passive-interface default</td>
<td>(Optional) Set all interfaces as passive by default.</td>
</tr>
<tr>
<td>Step 5 no passive-interface interface type</td>
<td>(Optional) Activate only those interfaces that need to have adjacencies sent.</td>
</tr>
<tr>
<td>Step 6 network network-address</td>
<td>(Optional) Specify the list of networks for the routing process. The <code>network-address</code> is an IP address.</td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use a network monitoring privileged EXEC command such as `show ip ospf interface` to verify the interfaces that you enabled as passive, or use the `show ip interface` privileged EXEC command to verify the interfaces that you enabled as active.

To re-enable the sending of routing updates, use the `no passive-interface interface-id` router configuration command. The `default` keyword sets all interfaces as passive by default. You can then configure individual interfaces where you want adjacencies by using the `no passive-interface` router configuration command. The `default` keyword is useful in Internet service provider and large enterprise networks where many of the distribution routers have more than 200 interfaces.

Controlling Advertising and Processing in Routing Updates

You can use the `distribute-list` router configuration command with access control lists to suppress routes from being advertised in routing updates and to prevent other routers from learning one or more routes. When used in OSPF, this feature applies only to external routes, and you cannot specify an interface name.

You can also use a `distribute-list` router configuration command to avoid processing certain routes listed in incoming updates. (This feature does not apply to OSPF.)
Beginning in privileged EXEC mode, follow these steps to control the advertising or processing of routing updates:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router {bgp</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>distribute-list {access-list-number</td>
</tr>
<tr>
<td>Step 4</td>
<td>distribute-list {access-list-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no distribute-list in router configuration command to change or cancel a filter. To cancel suppression of network advertisements in updates, use the no distribute-list out router configuration command.

Filtering Sources of Routing Information

Because some routing information might be more accurate than others, you can use filtering to prioritize information coming from different sources. An administrative distance is a rating of the trustworthiness of a routing information source, such as a router or group of routers. In a large network, some routing protocols can be more reliable than others. By specifying administrative distance values, you enable the router to intelligently discriminate between sources of routing information. The router always picks the route whose routing protocol has the lowest administrative distance. Table 39-17 on page 39-101 shows the default administrative distances for various routing information sources.

Because each network has its own requirements, there are no general guidelines for assigning administrative distances.

Beginning in privileged EXEC mode, follow these steps to filter sources of routing information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router {bgp</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Managing Authentication Keys

Key management is a method of controlling authentication keys used by routing protocols. Not all protocols can use key management. Authentication keys are available for EIGRP and RIP Version 2.

Before you manage authentication keys, you must enable authentication. See the appropriate protocol section to see how to enable authentication for that protocol. To manage authentication keys, define a key chain, identify the keys that belong to the key chain, and specify how long each key is valid. Each key has its own key identifier (specified with the `key number` key chain configuration command), which is stored locally. The combination of the key identifier and the interface associated with the message uniquely identifies the authentication algorithm and Message Digest 5 (MD5) authentication key in use.

You can configure multiple keys with life times. Only one authentication packet is sent, regardless of how many valid keys exist. The software examines the key numbers in order from lowest to highest and uses the first valid key it encounters. The lifetimes allow for overlap during key changes. Note that the router must know these lifetimes.

Beginning in privileged EXEC mode, follow these steps to manage authentication keys:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>key chain name-of-chain</td>
<td>Identify a key chain, and enter key chain configuration mode.</td>
</tr>
<tr>
<td>key number</td>
<td>Identify the key number. The range is 0 to 2147483647.</td>
</tr>
<tr>
<td>key-string text</td>
<td>Identify the key string. The string can contain from 1 to 80 uppercase and lowercase alphanumeric characters, but the first character cannot be a number.</td>
</tr>
</tbody>
</table>

To remove a distance definition, use the `no distance` router configuration command.

Table 39-1:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 distance weight {ip-address [ip-address mask]} [ip access list]</td>
<td>Define an administrative distance. <code>weight</code>—The administrative distance as an integer from 10 to 255. Used alone, <code>weight</code> specifies a default administrative distance that is used when no other specification exists for a routing information source. Routes with a distance of 255 are not installed in the routing table. (Optional) <code>ip access list</code>—An IP standard or extended access list to be applied to incoming routing updates.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip protocols</td>
<td>Display the default administrative distance for a specified routing process.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Step 5

```
accept-lifetime start-time { infinite | end-time | duration seconds }
```

(Optional) Specify the time period during which the key can be received.

The `start-time` and `end-time` syntax can be either `hh:mm:ss Month date year` or `hh:mm:ss date Month year`. The default is forever with the default `start-time` and the earliest acceptable date as January 1, 1993. The default `end-time` and `duration` is infinite.

Step 6

```
send-lifetime start-time { infinite | end-time | duration seconds }
```

(Optional) Specify the time period during which the key can be sent.

The `start-time` and `end-time` syntax can be either `hh:mm:ss Month date year` or `hh:mm:ss date Month year`. The default is forever with the default `start-time` and the earliest acceptable date as January 1, 1993. The default `end-time` and `duration` is infinite.

Step 7

```
end
```

Return to privileged EXEC mode.

Step 8

```
show key chain
```

Display authentication key information.

Step 9

```
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.

To remove the key chain, use the `no key chain name-of-chain` global configuration command.
Monitoring and Maintaining the IP Network

You can remove all contents of a particular cache, table, or database. You can also display specific statistics. Use the privileged EXEC commands in Table 39-18 to clear routes or display status:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip route `{network [mask</td>
<td>*]}`</td>
</tr>
<tr>
<td>show ip protocols</td>
<td>Display the parameters and state of the active routing protocol process.</td>
</tr>
<tr>
<td>show ip route `{address [mask] [longer-prefixes]]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[protocol [process-id]]</td>
</tr>
<tr>
<td>show ip route summary</td>
<td>Display the state of the routing table in summary form.</td>
</tr>
<tr>
<td>show ip route supernets-only</td>
<td>Display supernets.</td>
</tr>
<tr>
<td>show ip cache</td>
<td>Display the routing table used to switch IP traffic.</td>
</tr>
<tr>
<td>show route-map <code>{map-name}</code></td>
<td>Display all configured route maps or only the one specified.</td>
</tr>
</tbody>
</table>
Configuring IPv6 Unicast Routing

Internet Protocol Version 6 (IPv6) is the network-layer Internet Protocol intended to replace Version 4 (IPv4) in the TCP/IP suite of protocols. This chapter describes how to configure IPv6 unicast routing on the switch.

For information about configuring IPv4 unicast routing, see Chapter 39, “Configuring IP Unicast Routing.” For information about configuring IPv6 Multicast Listener Discovery (MLD) snooping, see Chapter 25, “Configuring IPv6 MLD Snooping.” For information on configuring IPv6 access control lists (ACLs), see Chapter 36, “Configuring IPv6 ACLs.”

To use all IPv6 features in this chapter, the switch or stack master must be running the IP services feature set. Switches running the IP base feature set support only IPv6 static routing and RIP for IPv6.

To enable IPv6 routing, you must configure the switch to use the a dual IPv4 and IPv6 switch database management (SDM) template. See the “Dual IPv4 and IPv6 Protocol Stacks” section on page 40-7.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS documentation referenced in the procedures.

This chapter consists of these sections:

- “Understanding IPv6” section on page 40-3
- “Configuring IPv6” section on page 40-12
- “Displaying IPv6” section on page 40-29

Understanding IPv6

IPv4 users can move to IPv6 and receive services such as end-to-end security, quality of service (QoS), and globally unique addresses. The IPv6 address space reduces the need for private addresses and Network Address Translation (NAT) processing by border routers at network edges.

For information about how Cisco Systems implements IPv6, go to this URL:

For information about IPv6 and other features in this chapter

- See the Cisco IOS IPv6 Configuration Library at this URL:
IPv6 Addresses

The switch supports only IPv6 unicast addresses. It does not support site-local unicast addresses, anycast addresses, or multicast addresses.

The IPv6 128-bit addresses are represented as a series of eight 16-bit hexadecimal fields separated by colons in the format: n:n:n:n:n:n:n:n. This is an example of an IPv6 address:

2031:0000:130F:0000:0000:09C0:080F:130B

For easier implementation, leading zeros in each field are optional. This is the same address without leading zeros:

2031:0:130F:0:0:9C0:080F:130B

You can also use two colons (::) to represent successive hexadecimal fields of zeros, but you can use this short version only once in each address:

2031:0:130F::09C0:080F:130B

For more information about IPv6 address formats, address types, and the IPv6 packet header, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.
In the “Information About Implementing Basic Connectivity for IPv6” chapter, these sections apply to
the switch:

- IPv6 Address Formats
- IPv6 Address Type: Unicast
- IPv6 Address Output Display
- Simplified IPv6 Packet Header

Supported IPv6 Unicast Routing Features

These sections describe the IPv6 protocol features supported by the switch:

- 128-Bit Wide Unicast Addresses, page 40-5
- DNS for IPv6, page 40-5
- Path MTU Discovery for IPv6 Unicast, page 40-5
- ICMPv6, page 40-5
- Neighbor Discovery, page 40-5
- Default Router Preference, page 40-6
- IPv6 Stateless Autoconfiguration and Duplicate Address Detection, page 40-6
- IPv6 Applications, page 40-6
- Dual IPv4 and IPv6 Protocol Stacks, page 40-7
- DHCP for IPv6 Address Assignment, page 40-7
- Static Routes for IPv6, page 40-8
- RIP for IPv6, page 40-8
- OSPF for IPv6, page 40-8
- EIGRP for IPv6, page 40-8
- HSRP for IPv6, page 40-8
- SNMP and Syslog Over IPv6, page 40-9
- HTTP(S) Over IPv6, page 40-9

Support on the switch includes expanded address capability, header format simplification, improved
support of extensions and options, and hardware parsing of the extension header. The switch supports
hop-by-hop extension header packets, which are routed or bridged in software.

The switch provides IPv6 routing capability over 802.1Q trunk ports for static routes, Routing
Information Protocol (RIP) for IPv6, and Open Shortest Path First (OSPF) Version 3 protocol. It supports
up to 16 equal-cost routes and can forward IPv4 and IPv6 frames simultaneously at line rate.
128-Bit Wide Unicast Addresses

The switch supports aggregatable global unicast addresses and link-local unicast addresses. It does not support site-local unicast addresses.

- Aggregatable global unicast addresses are IPv6 addresses from the aggregatable global unicast prefix. The address structure enables strict aggregation of routing prefixes and limits the number of routing table entries in the global routing table. These addresses are used on links that are aggregated through organizations and eventually to the Internet service provider.

 These addresses are defined by a global routing prefix, a subnet ID, and an interface ID. Current global unicast address allocation uses the range of addresses that start with binary value 001 (2000::/3). Addresses with a prefix of 2000::/3(001) through E000::/3(111) must have 64-bit interface identifiers in the extended unique identifier (EUI)-64 format.

- Link local unicast addresses can be automatically configured on any interface by using the link-local prefix FE80::/10(1111 1110 10) and the interface identifier in the modified EUI format. Link-local addresses are used in the neighbor discovery protocol and the stateless autoconfiguration process. Nodes on a local link use link-local addresses and do not require globally unique addresses to communicate. IPv6 routers do not forward packets with link-local source or destination addresses to other links.

For more information, see the section about IPv6 unicast addresses in the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

DNS for IPv6

IPv6 supports Domain Name System (DNS) record types in the DNS name-to-address and address-to-name lookup processes. The DNS AAAA resource record types support IPv6 addresses and are equivalent to an A address record in IPv4. The switch supports DNS resolution for IPv4 and IPv6.

Path MTU Discovery for IPv6 Unicast

The switch supports advertising the system MTU to IPv6 nodes and path MTU discovery. Path MTU discovery allows a host to dynamically discover and adjust to differences in the MTU size of every link along a given data path. In IPv6, if a link along the path is not large enough to accommodate the packet size, the source of the packet handles the fragmentation. The switch does not support path MTU discovery for multicast packets.

ICMPv6

The Internet Control Message Protocol (ICMP) in IPv6 generates error messages, such as ICMP destination unreachable messages, to report errors during processing and other diagnostic functions. In IPv6, ICMP packets are also used in the neighbor discovery protocol and path MTU discovery.

Neighbor Discovery

The switch supports NDP for IPv6, a protocol running on top of ICMPv6, and static neighbor entries for IPv6 stations that do not support NDP. The IPv6 neighbor discovery process uses ICMP messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), to verify the reachability of the neighbor, and to keep track of neighboring routers.

The switch supports ICMPv6 redirect for routes with mask lengths less than 64 bits. ICMP redirect is not supported for host routes or for summarized routes with mask lengths greater than 64 bits.
Neighbor discovery throttling ensures that the switch CPU is not unnecessarily burdened while it is in the process of obtaining the next hop forwarding information to route an IPv6 packet. The switch drops any additional IPv6 packets whose next hop is the same neighbor that the switch is actively trying to resolve. This drop avoids further load on the CPU.

Default Router Preference

The switch supports IPv6 default router preference (DRP), an extension in router advertisement messages. DRP improves the ability of a host to select an appropriate router, especially when the host is multihomed and the routers are on different links. The switch does not support the Route Information Option in RFC 4191.

An IPv6 host maintains a default router list from which it selects a router for traffic to offlink destinations. The selected router for a destination is then cached in the destination cache. NDP for IPv6 specifies that routers that are reachable or probably reachable are preferred over routers whose reachability is unknown or suspect. For reachable or probably reachable routers, NDP can either select the same router every time or cycle through the router list. By using DRP, you can configure an IPv6 host to prefer one router over another, provided both are reachable or probably reachable.

For more information about DRP for IPv6, see the “Implementing IPv6 Addresses and Basic Connectivity” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

IPv6 Stateless Autoconfiguration and Duplicate Address Detection

The switch uses stateless autoconfiguration to manage link, subnet, and site addressing changes, such as management of host and mobile IP addresses. A host autonomously configures its own link-local address, and booting nodes send router solicitations to request router advertisements for configuring interfaces.

For more information about autoconfiguration and duplicate address detection, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter of *Cisco IOS IPv6 Configuration Library* on Cisco.com.

IPv6 Applications

The switch has IPv6 support for these applications:

- Ping, traceroute, Telnet, TFTP, and FTP
- Secure Shell (SSH) over an IPv6 transport
- HTTP server access over IPv6 transport
- DNS resolver for AAAA over IPv4 transport
- Cisco Discovery Protocol (CDP) support for IPv6 addresses

For more information about managing these applications, see the “Managing Cisco IOS Applications over IPv6” chapter and the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.
Dual IPv4 and IPv6 Protocol Stacks

You must use the dual IPv4 and IPv6 template to allocate ternary content addressable memory (TCAM) usage to both IPv4 and IPv6 protocols.

Figure 40-1 shows a router forwarding both IPv4 and IPv6 traffic through the same interface, based on the IP packet and destination addresses.

Use the dual IPv4 and IPv6 switch database management (SDM) template to enable IPv6 routing. For more information about the dual IPv4 and IPv6 SDM template, see Chapter 8, “Configuring SDM Templates.”

The dual IPv4 and IPv6 templates allow the switch to be used in dual stack environments.

- If you try to configure IPv6 without first selecting a dual IPv4 and IPv6 template, a warning message appears.
- In IPv4-only environments, the switch routes IPv4 packets and applies IPv4 QoS and ACLs in hardware. IPv6 packets are not supported.
- In dual IPv4 and IPv6 environments, the switch routes both IPv4 and IPv6 packets and applies IPv4 QoS in hardware.
- The switch does not support IPv6 QoS.
- If you do not plan to use IPv6, do not use the dual stack template because this template results in less TCAM capacity for each resource.

For more information about IPv4 and IPv6 protocol stacks, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.

DHCP for IPv6 Address Assignment

DHCPv6 enables DHCP servers to pass configuration parameters, such as IPv6 network addresses, to IPv6 clients. The address assignment feature manages nonduplicate address assignment in the correct prefix based on the network where the host is connected. Assigned addresses can be from one or multiple prefix pools. Additional options, such as default domain and DNS name-server address, can be passed back to the client. Address pools can be assigned for use on a specific interface, on multiple interfaces, or the server can automatically find the appropriate pool.

This document describes only the DHCPv6 address assignment. For more information about configuring the DHCPv6 client, server, or relay agent functions, see the “Implementing DHCP for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.
Static Routes for IPv6

Static routes are manually configured and define an explicit route between two networking devices. Static routes are useful for smaller networks with only one path to an outside network or to provide security for certain types of traffic in a larger network.

For more information about static routes, see the “Implementing Static Routes for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

RIP for IPv6

Routing Information Protocol (RIP) for IPv6 is a distance-vector protocol that uses hop count as a routing metric. It includes support for IPv6 addresses and prefixes and the all-RIP-routers multicast group address FF02::9 as the destination address for RIP update messages.

For more information about RIP for IPv6, see the “Implementing RIP for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

OSPF for IPv6

The switch supports Open Shortest Path First (OSPF) for IPv6, a link-state protocol for IP. For more information, see the “Implementing OSFP for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

EIGRP for IPv6

The switch supports Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv6. It is configured on the interfaces on which it runs and does not require a global IPv6 address.

Before running, an instance of EIGRP IPv6 requires an implicit or explicit router ID. An implicit router ID is derived from a local IPv4 address, so any IPv4 node always has an available router ID. However, EIGRP IPv6 might be running in a network with only IPv6 nodes and therefore might not have an available IPv4 router ID.

For more information about EIGRP for IPv6, see the “Implementing EIGRP for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

HSRP for IPv6

The switch supports the Hot Standby Router Protocol (HSRP) for IPv6. HSRP provides routing redundancy for routing IPv6 traffic not dependent on the availability of any single router. IPv6 hosts learn of available routers through IPv6 neighbor discovery router advertisement messages. These messages are multicast periodically or are solicited by hosts.

An HSRP IPv6 group has a virtual MAC address that is derived from the HSRP group number and a virtual IPv6 link-local address that is, by default, derived from the HSRP virtual MAC address. Periodic messages are sent for the HSRP virtual IPv6 link-local address when the HSRP group is active. These messages stop after a final one is sent when the group leaves the active state.

For more information about configuring HSRP for IPv6, see the “Configuring First Hop Redundancy Protocols in IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.
SNMP and Syslog Over IPv6

To support both IPv4 and IPv6, IPv6 network management requires both IPv6 and IPv4 transports. Syslog over IPv6 supports address data types for these transports.

SNMP and syslog over IPv6 provide these features:
- Support for both IPv4 and IPv6
- IPv6 transport for SNMP and to modify the SNMP agent to support traps for an IPv6 host
- SNMP- and syslog-related MIBs to support IPv6 addressing
- Configuration of IPv6 hosts as trap receivers

For support over IPv6, SNMP modifies the existing IP transport mapping to simultaneously support IPv4 and IPv6. These SNMP actions support IPv6 transport management:
- Opens User Datagram Protocol (UDP) SNMP socket with default settings
- Provides a new transport mechanism called SR_IPV6_TRANSPORT
- Sends SNMP notifications over IPv6 transport
- Supports SNMP-named access lists for IPv6 transport
- Supports SNMP proxy forwarding using IPv6 transport
- Verifies SNMP Manager feature works with IPv6 transport

For information on SNMP over IPv6, including configuration procedures, see the “Managing Cisco IOS Applications over IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

For information about syslog over IPv6, including configuration procedures, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

HTTP(S) Over IPv6

The HTTP client sends requests to both IPv4 and IPv6 HTTP servers, which respond to requests from both IPv4 and IPv6 HTTP clients. URLs with literal IPv6 addresses must be specified in hexadecimal using 16-bit values between colons.

The accept socket call chooses an IPv4 or IPv6 address family. The accept socket is either an IPv4 or IPv6 socket. The listening socket continues to listen for both IPv4 and IPv6 signals that indicate a connection. The IPv6 listening socket is bound to an IPv6 wildcard address.

The underlying TCP/IP stack supports a dual-stack environment. HTTP relies on the TCP/IP stack and the sockets for processing network-layer interactions.

Basic network connectivity (ping) must exist between the client and the server hosts before HTTP connections can be made.

For more information, see the “Managing Cisco IOS Applications over IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Unsupported IPv6 and Unicast Routing Features

The switch does not support these IPv6 features:
- IPv6 policy-based routing
- IPv6 virtual private network (VPN) routing and forwarding (VRF) table support
Understanding IPv6

- Support for IPv6 routing protocols: multiprotocol Border Gateway Protocol (BGP) and Intermediate System-to-Intermediate System (IS-IS) routing
- IPv6 packets destined to site-local addresses
- Tunneling protocols, such as IPv4-to-IPv6 or IPv6-to-IPv4
- The switch as a tunnel endpoint supporting IPv4-to-IPv6 or IPv6-to-IPv4 tunneling protocols
- IPv6 unicast reverse-path forwarding
- IPv6 general prefixes

Limitations

Because IPv6 is implemented in switch hardware, some limitations occur due to the IPv6 compressed addresses in the hardware memory. These hardware limitations result in some loss of functionality and limits some features.

These are feature limitations.

- ICMPv6 redirect functionality is not supported for IPv6 host routes (routes used to reach a specific host) or for IPv6 routes with masks greater than 64 bits. The switch cannot redirect hosts to a better first-hop router for a specific destination that is reachable through a host route or through a route with masks greater than 64 bits.
- Load-balancing using equal cost and unequal cost routes is not supported for IPv6 host routes or for IPv6 routes with a mask greater than 64 bits.
- The switch cannot forward SNAP-encapsulated IPv6 packets.

Note: There is a similar limitation for IPv4 SNAP-encapsulated packets, but the packets are dropped at the switch and are not forwarded.

- The switch routes IPv6-to-IPv4 and IPv4-to-IPv6 packets in hardware, but the switch cannot be an IPv6-to-IPv4 or IPv4-to-IPv6 tunnel endpoint.
- Bridged IPv6 packets with hop-by-hop extension headers are forwarded in software. In IPv4, these packets are routed in software, but bridged in hardware.
- In addition to the normal SPAN and RSPAN limitations defined in the software configuration guide, these limitations are specific to IPv6 packets:
 - When you send RSPAN IPv6-routed packets, the source MAC address in the SPAN output packet can be incorrect.
 - When you send RSPAN IPv6-routed packets, the destination MAC address can be incorrect. Normal traffic is not affected.
- The switch cannot apply QoS classification or policy-based routing on source-routed IPv6 packets in hardware.
- The switch cannot generate ICMPv6 Packet Too Big messages for multicast packets.
IPv6 and Switch Stacks

The switch supports IPv6 forwarding across the stack and IPv6 host functionality on the stack master. The stack master runs the IPv6 unicast routing protocols and computes the routing tables. Using distributed CEF (dCEF), the stack master downloads the routing table to the stack member switches. They receive the tables and create hardware IPv6 routes for forwarding. The stack master also runs all IPv6 applications.

Note
To route IPv6 packets in a stack, all switches in the stack must be running the IP services feature set.

If a new switch becomes the stack master, it recomputes the IPv6 routing tables and distributes them to the member switches. While the new stack master is being elected and is resetting, the switch stack does not forward IPv6 packets. The stack MAC address changes, which also changes the IPv6 address. When you specify the stack IPv6 address with an extended unique identifier (EUI) by using the `ipv6 address ipv6-prefix/prefix length eui-64` interface configuration command, the address is based on the interface MAC address. See the “Configuring IPv6 Addressing and Enabling IPv6 Host Functions or Routing” section on page 40-13.

If you configure the persistent MAC address feature on the stack and the stack master changes, the stack MAC address does not change for approximately 4 minutes. For more information, see the “Enabling Persistent MAC Address” section on page 7-22 in Chapter 7, “Managing Switch Stacks.”

These are the functions of IPv6 stack master and members:

- Stack master:
 - runs IPv6 routing protocols
 - generates routing tables
 - distributes CEFv6 routing tables to stack members that use dCEFv6
 - runs IPv6 host functionality and IPv6 applications
• Stack member (must be running the IP services feature set):
 – receives CEFv6 routing tables from the stack master
 – programs the routes into hardware

Note IPv6 packets are routed in hardware across the stack if the packet does not have exceptions (IPv6Options) and the switches in the stack have not run out of hardware resources.

 – flushes the CEFv6 tables on master re-election

With IPv4 unicast routing, if the stack detects that the stack master is down and elects one of the stack members the new stack master, except for a momentary interruption, the hardware continues to forward packets with no active protocols. With IPv6, the switch does not continue forwarding packets. On election of a new stack master, the stack might need up to 60 seconds to recover all routes and resume forwarding traffic.

IPv6 host functionality is supported on the stack master, and all IPv6 applications run on the stack master.

Configuring IPv6

These sections contain this IPv6 forwarding configuration information:

- Default IPv6 Configuration, page 40-13
- Configuring IPv6 Addressing and Enabling IPv6 Host Functions or Routing, page 40-13
- Configuring Default Router Preference, page 40-15
- Configuring IPv4 and IPv6 Protocol Stacks, page 40-16
- Configuring DHCP for IPv6 Address Assignment, page 40-17
- Configuring IPv6 ICMP Rate Limiting, page 40-21
- Configuring CEF and dCEF for IPv6, page 40-21
- Configuring Static Routes for IPv6, page 40-22
- Configuring RIP for IPv6, page 40-23
- Configuring OSPF for IPv6, page 40-24
- Configuring EIGRP for IPv6, page 40-26
- Configuring HSRP for IPv6, page 40-26

Default IPv6 Configuration

Table 40-2 shows the default IPv6 configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM template</td>
<td>Default desktop.</td>
</tr>
<tr>
<td>IPv6 routing</td>
<td>Disabled globally and on all interfaces.</td>
</tr>
</tbody>
</table>
Configuring IPv6 Addressing and Enabling IPv6 Host Functions or Routing

This section describes how to assign IPv6 addresses to individual Layer 3 interfaces and to globally forward IPv6 traffic on the switch.

Before configuring IPv6 on the switch, consider these guidelines:

- Be sure to select a dual IPv4 and IPv6 SDM template.
- Not all features discussed in this chapter are supported by the switch. See the “Unsupported IPv6 Host Functions and Unicast Routing Features” section on page 40-10.
- In the `ipv6 address` interface configuration command, you must enter the `ipv6-address` and `ipv6-prefix` variables with the address specified in hexadecimal using 16-bit values between colons. The `prefix-length` variable (preceded by a slash `/`) is a decimal value that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address).

To forward IPv6 traffic on an interface, you must configure a global IPv6 address on that interface. Configuring an IPv6 address on an interface automatically configures a link-local address and activates IPv6 for the interface. The configured interface automatically joins these required multicast groups for that link:

- solicited-node multicast group FF02::1:ff00::/104 for each unicast address assigned to the interface (this address is used in the neighbor discovery process.)
- all-nodes link-local multicast group FF02::1
- all-routers link-local multicast group FF02::2

For more information about configuring IPv6 host functions or routing, see the “Implementing Addressing and Basic Connectivity for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

Table 40-1 Default IPv6 Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEFv6 or dCEFv6(^1)</td>
<td>Disabled (IPv4 CEF and dCEF are enabled by default).</td>
</tr>
<tr>
<td></td>
<td>Note When IPv6 routing is enabled, CEFv6 and dCEFv6 are automatically enabled.</td>
</tr>
<tr>
<td>IPv6 addresses</td>
<td>None configured.</td>
</tr>
</tbody>
</table>

1. This feature is supported only on the Catalyst Switch Module 3110.
Beginning in privileged EXEC mode, follow these steps to assign an IPv6 address to a Layer 3 interface and enable IPv6 routing:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>sdm prefer dual-ipv4-and-ipv6 {default</td>
<td>routing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• default—Set the switch to the default template to balance system resources.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• routing—Set the switch to the routing template to support IPv4 and IPv6 routing, including IPv4 policy-based routing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• vlan—Maximize VLAN configuration on the switch with no routing supported in hardware.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>reload</td>
<td>Reload the operating system.</td>
</tr>
<tr>
<td>5</td>
<td>configure terminal</td>
<td>Enter global configuration mode after the switch reloads.</td>
</tr>
<tr>
<td>6</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure. The interface can be a physical interface, a switch virtual interface (SVI), or a Layer 3 EtherChannel.</td>
</tr>
<tr>
<td>7</td>
<td>no switchport</td>
<td>Remove the interface from Layer 2 configuration mode (if it is a physical interface).</td>
</tr>
<tr>
<td>8</td>
<td>ipv6 address ipv6-prefix/prefix length eui-64</td>
<td>Specify a global IPv6 address with an extended unique identifier (EUI) in the low-order 64 bits of the IPv6 address. Specify only the network prefix; the last 64 bits are automatically computed from the switch MAC address. This enables IPv6 processing on the interface.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>ipv6 address ipv6-address link-local</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>ipv6 enable</td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>10</td>
<td>ip routing</td>
<td>Enable IP routing on the switch.</td>
</tr>
<tr>
<td>11</td>
<td>ipv6 unicast-routing</td>
<td>Enable forwarding of IPv6 unicast data packets.</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>13</td>
<td>show ipv6 interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>14</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove an IPv6 address from an interface, use the `no ipv6 address ipv6-prefix/prefix length eui-64` or `no ipv6 address ipv6-address link-local` interface configuration command. To remove all manually configured IPv6 addresses from an interface, use the `no ipv6 address` interface configuration command.
without arguments. To disable IPv6 processing on an interface that has not been explicitly configured with an IPv6 address, use the `no ipv6 enable` interface configuration command. To globally disable IPv6 routing, use the `no ipv6 unicast-routing` global configuration command.

This example shows how to enable IPv6 with both a link-local address and a global address based on the IPv6 prefix 2001:0DB8:c18:1::/64. The EUI-64 interface ID is used in the low-order 64 bits of both addresses. Output from the `show ipv6 interface` EXEC command shows how the interface ID (20B:46FF:FE2F:D940) is appended to the link-local prefix FE80::/64 of the interface.

```plaintext
Switch(config)# sdm prefer dual-ipv4-and-ipv6 default
Switch(config)# ipv6 unicast-routing
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::/64 eui 64
Switch(config-if)# end
Switch# show ipv6 interface gigabitethernet1/0/1
GigabitEthernet1/0/1 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::20B:46FF:FE2F:D940
Global unicast address(es):
2001:0DB8:c18:1::/64 [EUI]
Joined group address(es):
FF02::1
FF02::2
FF02::1:FF2F:D940
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
Hosts use stateless autoconfig for addresses.
```

Configuring Default Router Preference

Router advertisement messages are sent with the default router preference (DRP) configured by the `ipv6 nd router-preference` interface configuration command. If no DRP is configured, RAs are sent with a medium preference.

A DRP is useful when two routers on a link might provide equivalent, but not equal-cost routing, and policy might dictate that hosts should prefer one of the routers.

Beginning in privileged EXEC mode, follow these steps to configure a DRP for a router on an interface.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the Layer 3 interface on which you want to specify the DRP.</td>
</tr>
<tr>
<td>3</td>
<td>ipv6 nd router-preference {high</td>
<td>medium</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show ipv6 interface</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use the `no ipv6 nd router-preference` interface configuration command to disable an IPv6 DRP.

This example shows how to configure a DRP of *high* for the router on an interface.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ipv6 nd router-preference high
Switch(config-if)# end
```

For more information about configuring DRP for IPv6, see the “Implementing IPv6 Addresses and Basic Connectivity” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

Configuring IPv4 and IPv6 Protocol Stacks

Before configuring IPv6 routing, you must select an SDM template that supports IPv4 and IPv6. If not already configured, use the `sdm prefer dual-ipv4-and-ipv6 {default | routing | vlan} [desktop]` global configuration command to configure a template that supports IPv6. When you select a new template, you must reload the switch by using the `reload` privileged EXEC command so that the template takes effect.

Beginning in privileged EXEC mode, follow these steps to configure a Layer 3 interface to support both IPv4 and IPv6 and to enable IPv6 routing.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip routing</code> Enable routing on the switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ipv6 unicast-routing</code> Enable forwarding of IPv6 data packets on the switch.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>interface interface-id</code> Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>no switchport</code> Remove the interface from Layer 2 configuration mode (if it is a physical interface).</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>ip address ip-address mask [secondary]</code> Specify a primary or secondary IPv4 address for the interface.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>ipv6 address ipv6-prefix/prefix length eui-64</code> Specify a global IPv6 address. Specify only the network prefix; the last 64 bits are automatically computed from the switch MAC address.</td>
</tr>
<tr>
<td>or</td>
<td><code>ipv6 address ipv6-address link-local</code> Specify a link-local address on the interface to be used instead of the automatically configured link-local address when IPv6 is enabled on the interface.</td>
</tr>
<tr>
<td>or</td>
<td><code>ipv6 enable</code> Automatically configure an IPv6 link-local address on the interface, and enable the interface for IPv6 processing. The link-local address can only be used to communicate with nodes on the same link.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>show interface interface-id</code> <code>show ip interface interface-id</code> <code>show ipv6 interface interface-id</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable IPv4 routing, use the `no ip routing` global configuration command. To disable IPv6 routing, use the `no ipv6 unicast-routing` global configuration command. To remove an IPv4 address from an interface, use the `no ip address ip-address mask` interface configuration command. To remove an IPv6 address from an interface, use the `no ipv6 address ipv6-prefix/prefix length eui-64` or `no ipv6 address ipv6-address link-local` interface configuration command. To remove all manually configured IPv6 addresses from an interface, use the `no ipv6 address` interface configuration command without arguments. To disable IPv6 processing on an interface that has not been explicitly configured with an IPv6 address, use the `no ipv6 enable` interface configuration command.

This example shows how to enable IPv4 and IPv6 routing on an interface.

```
Switch(config)# sdm prefer dual-ipv4-and-ipv6 default
Switch(config)# ip routing
Switch(config)# ipv6 unicast-routing
Switch(config)# interface fastethernet1/0/11
Switch(config-if)# no switchport
Switch(config-if)# ip address 192.168.99.1 24 4.244.244.0
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::/64 eui 64
Switch(config-if)# end
```

Configuring DHCP for IPv6 Address Assignment

These sections describe how to configure Dynamic Host Configuration Protocol for IPv6 (DHCPv6) address assignment:

- Default DHCPv6 Address Assignment Configuration, page 40-18
- DHCPv6 Address Assignment Configuration Guidelines, page 40-18
- Enabling DHCPv6 Server Function, page 40-18
- Enabling DHCPv6 Client Function, page 40-20

Default DHCPv6 Address Assignment Configuration

By default, no DHCPv6 features are configured on the switch.

DHCPv6 Address Assignment Configuration Guidelines

When configuring DHCPv6 address assignment, consider these guidelines:

- In the procedures, the specified interface must be one of these Layer 3 interfaces:
 - DHCPv6 IPv6 routing must be enabled on a Layer 3 interface.
 - SVI: a VLAN interface created by using the `interface vlan vlan_id` command.
 - EtherChannel port channel in Layer 3 mode: a port-channel logical interface created by using the `interface port-channel port-channel-number` command.
- Before configuring DHCPv6, you must select a Switch Database Management (SDM) template that supports IPv4 and IPv6.
- The switch can act as a DHCPv6 client, server, or relay agent. The DHCPv6 client, server, and relay function are mutually exclusive on an interface.
- The DHCPv6 client, server, or relay agent runs only on the master switch. When there is a stack master re-election, the new master switch retains the DHCPv6 configuration. However, the local RAM copy of the DHCP server database lease information is not retained.
Enabling DHCPv6 Server Function

Beginning in privileged EXEC mode, follow these steps to enable the DHCPv6 server function on an interface.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ipv6 dhcp pool poolname</td>
<td>Enter DHCP pool configuration mode, and define the name for the IPv6 DHCP pool. The pool name can be a symbolic string (such as Engineering) or an integer (such as 0).</td>
</tr>
</tbody>
</table>
| 3 | address prefix IPv6-prefix lifetime \{t1 t1 | infinite\} | (Optional) Specify an address prefix for address assignment. This address must be in hexadecimal, using 16-bit values between colons.
 lifetime t1 t1—Specify a time interval (in seconds) that an IPv6 address prefix remains in the valid state. The range is 5 to 4294967295 seconds. Specify infinite for no time interval. |
| 4 | link-address IPv6-prefix | (Optional) Specify a link-address IPv6 prefix.
 When an address on the incoming interface or a link-address in the packet matches the specified IPv6 prefix, the server uses the configuration information pool.
 This address must be in hexadecimal, using 16-bit values between colons. |
| 5 | vendor-specific vendor-id | (Optional) Enter vendor-specific configuration mode and enter a vendor-specific identification number. This number is the vendor IANA Private Enterprise Number. The range is 1 to 4294967295. | | |
| 6 | suboption number \{address IPv6-address | ascii ASCII-string | hex hex-string\} | (Optional) Enter a vendor-specific suboption number. The range is 1 to 65535. Enter an IPv6 address, ASCII text, or a hex string as defined by the suboption parameters. |
| 7 | exit | Return to DHCP pool configuration mode. |
| 8 | exit | Return to global configuration mode. |
| 9 | interface interface-id | Enter interface configuration mode, and specify the interface to configure. |
Configuring IPv6

Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>**ipv6 dhcp server [poolname</td>
<td>automatic] [rapid-commit] [preference value] [allow-hint]**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>poolname</code>—(Optional) User-defined name for the IPv6 DHCP pool. The pool name can be a symbolic string (such as Engineering) or an integer (such as 0).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>automatic</code>—(Optional) Enables the system to automatically determine which pool to use when allocating addresses for a client.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>rapid-commit</code>—(Optional) Allow two-message exchange method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>preference value</code>—(Optional) The preference value carried in the preference option in the advertise message sent by the server. The range is from 0 to 255. The preference value default is 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>allow-hint</code>—(Optional) Specifies whether the server should consider client suggestions in the SOLICIT message. By default, the server ignores client hints.</td>
</tr>
</tbody>
</table>

Step 11

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 12

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 dhcp pool</td>
<td>Verify DHCPv6 pool configuration.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>show ipv6 dhcp interface</td>
<td>Verify that the DHCPv6 server function is enabled on an interface.</td>
</tr>
</tbody>
</table>

Step 13

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete a DHCPv6 pool, use the `no ipv6 dhcp pool poolname` global configuration command. Use the `no` form of the DHCP pool configuration mode commands to change the DHCPv6 pool characteristics.

To disable the DHCPv6 server function on an interface, use the `no ipv6 dhcp server interface` interface configuration command.

This example shows how to configure a pool called `engineering` with an IPv6 address prefix:

```
Switch# configure terminal
Switch(config)# ipv6 dhcp pool engineering
Switch(config-dhcpv6)# address prefix 2001:1000::/64
Switch(config-dhcpv6)# end
```

This example shows how to configure a pool called `testgroup` with three link-addresses and an IPv6 address prefix:

```
Switch# configure terminal
Switch(config)# ipv6 dhcp pool testgroup
Switch(config-dhcpv6)# link-address 2001:1001::/64
Switch(config-dhcpv6)# link-address 2001:1002::/64
Switch(config-dhcpv6)# link-address 2001:2000::/48
Switch(config-dhcpv6)# address prefix 2001:1003::/64
Switch(config-dhcpv6)# end
```

This example shows how to configure a pool called `350` with vendor-specific options:

```
Switch# configure terminal
Switch(config)# ipv6 dhcp pool 350
Switch(config-dhcpv6)# address prefix 2001:1005::/48
Switch(config-dhcpv6)# vendor-specific 9
```
Configuring IPv6

Switch(config-dhcpv6-vs)# suboption 1 address 1000:235D::1
Switch(config-dhcpv6-vs)# suboption 2 ascii "IP-Phone"
Switch(config-dhcpv6-vs)# end

Enabling DHCPv6 Client Function

Beginning in privileged EXEC mode, follow these steps to enable DHCPv6 client function on an interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 address dhcp [rapid-commit]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 dhcp client request [vendor-specific]</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ipv6 dhcp interface</td>
</tr>
</tbody>
</table>

To disable the DHCPv6 client function, use the `no ipv6 address dhcp` interface configuration command. To remove the DHCPv6 client request, use the `no ipv6 address dhcp client request` interface configuration command.

This example shows how to acquire an IPv6 address and to enable the rapid-commit option:

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ipv6 address dhcp rapid-commit

This document describes only the DHCPv6 address assignment. For more information about configuring the DHCPv6 client, server, or relay agent functions, see the “Implementing DHCP for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Configuring IPv6 ICMP Rate Limiting

ICMP rate limiting is enabled by default with a default interval between error messages of 100 milliseconds and a bucket size (maximum number of tokens to be stored in a bucket) of 10.
Beginning in privileged EXEC mode, follow these steps to change the ICMP rate-limiting parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| ipv6 icmp error-interval interval [bucketsize] | Configure the interval and bucket size for IPv6 ICMP error messages:
 - interval—The interval (in milliseconds) between tokens being added to the bucket. The range is from 0 to 2147483647 milliseconds.
 - bucketsize—(Optional) The maximum number of tokens stored in the bucket. The range is from 1 to 200. |
| end | Return to privileged EXEC mode. |
| show ipv6 interface [interface-id] | Verify your entries. |
| copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default configuration, use the no ipv6 icmp error-interval global configuration command.

This example shows how to configure an IPv6 ICMP error message interval of 50 milliseconds and a bucket size of 20 tokens.

```
Switch(config)# ipv6 icmp error-interval 50 20
```

Configuring CEF and dCEF for IPv6

Cisco Express Forwarding (CEF) is a Layer 3 IP switching technology to improve network performance. In a switch stack, the hardware uses distributed CEF (dCEF) in the stack. IPv6 CEF is IPv6 CEF and dCEF are disabled by default but are automatically enabled when you configure IPv6 routing.

To route IPv6 unicast packets, you must first globally configure IPv6 unicast packet forwarding by using the ipv6 unicast-routing global configuration command. You must configure an IPv6 address and IPv6 processing on an interface by using the ipv6 address interface configuration command.

To disable IPv6 CEF or distributed CEF, use the no ipv6 cef or no ipv6 cef distributed global configuration command. To reenable IPv6 CEF or dCEF if it has been disabled, use the ipv6 cef or ipv6 cef distributed global configuration command. You can verify the IPv6 state by entering the show ipv6 cef privileged EXEC command.

For more information about configuring CEF and dCEF, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Configuring Static Routes for IPv6

Before configuring a static IPv6 route, you must enable routing by using the ip routing global configuration command, enable the forwarding of IPv6 packets by using the ipv6 unicast-routing global configuration command, and enable IPv6 on at least one Layer 3 interface by configuring an IPv6 address on the interface.
Beginning in privileged EXEC mode, follow these steps to configure an IPv6 static route:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>ipv6 route ipv6-prefix/prefix length {ipv6-address</td>
<td>interface-id [ipv6-address]} [administrative distance]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ipv6-prefix—The IPv6 network that is the destination of the static route. It can also be a hostname when static host routes are configured.</td>
</tr>
<tr>
<td></td>
<td>• /prefix length—The length of the IPv6 prefix. A decimal value that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
<tr>
<td></td>
<td>• ipv6-address—The IPv6 address of the next hop that can be used to reach the specified network. The IPv6 address of the next hop need not be directly connected; recursion is done to find the IPv6 address of the directly connected next hop. The address must be specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td></td>
<td>• interface-id—Specify direct static routes from point-to-point and broadcast interfaces. With point-to-point interfaces, there is no need to specify the IPv6 address of the next hop. With broadcast interfaces, you should always specify the IPv6 address of the next hop, or ensure that the specified prefix is assigned to the link, specifying a link-local address as the next hop. You can optionally specify the IPv6 address of the next hop to which packets are sent.</td>
</tr>
<tr>
<td></td>
<td>Note You must specify an interface-id when using a link-local address as the next hop (the link-local next hop must also be an adjacent router).</td>
</tr>
<tr>
<td></td>
<td>• administrative distance—(Optional) An administrative distance. The range is 1 to 254; the default value is 1, which gives static routes precedence over any other type of route except connected routes. To configure a floating static route, use an administrative distance greater than that of the dynamic routing protocol.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring IPv6

To remove a configured static route, use the `no ipv6 route ipv6-prefix/prefix length {ipv6-address | interface interface-id} [administrative distance]` global configuration command.

This example shows how to configure a floating static route with an administrative distance of 130 to an interface:

```
Switch(config)# ipv6 route 2001:0DB8::/32 gigabitethernet2/0/1 130
```

For more information about configuring static IPv6 routing, see the “Implementing Static Routes for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

Configuring RIP for IPv6

Before configuring the switch to run IPv6 RIP, you must enable routing by using the `ip routing` global configuration command, enable the forwarding of IPv6 packets by using the `ipv6 unicast-routing` global configuration command, and enable IPv6 on any Layer 3 interfaces on which IPv6 RIP is to be enabled.

Beginning in privileged EXEC mode, follow these required and optional steps to configure IPv6 RIP:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ipv6 router rip name</td>
<td>Configure an IPv6 RIP routing process, and enter router configuration mode for the process.</td>
</tr>
<tr>
<td>3</td>
<td>maximum-paths number-paths</td>
<td>(Optional) Define the maximum number of equal-cost routes that IPv6 RIP can support. The range is from 1 to 64, and the default is 4 routes.</td>
</tr>
<tr>
<td>4</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>5</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>6</td>
<td>ipv6 rip name enable</td>
<td>Enable the specified IPv6 RIP routing process on the interface.</td>
</tr>
</tbody>
</table>
Configuring IPv6 Unicast Routing

To disable a RIP routing process, use the `no ipv6 router rip name` global configuration command. To disable the RIP routing process for an interface, use the `no ipv6 rip name` interface configuration command.

This example shows how to enable the RIP routing process `cisco` with a maximum of eight equal-cost routes and to enable it on an interface:

```
Switch(config)# ipv6 router rip cisco
Switch(config-router)# maximum-paths 8
Switch(config)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ipv6 rip cisco enable
```

For more information about configuring RIP routing for IPv6, see the “Implementing RIP for IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com

Configuring OSPF for IPv6

You can customize OSPF for IPv6 for your network. However, the defaults for OSPF in IPv6 are set to meet the requirements of most customers and features.

Follow these guidelines:

- Be careful when changing the defaults for IPv6 commands. Changing the defaults might adversely affect OSPF for the IPv6 network.

- Before you enable IPv6 OSPF on an interface, you must enable routing by using the `ip routing` global configuration command, enable the forwarding of IPv6 packets by using the `ipv6 unicast-routing` global configuration command, and enable IPv6 on Layer 3 interfaces on which you are enabling IPv6 OSPF.

Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 7 | `ipv6 rip name default-information {only | originate}` | (Optional) Originate the IPv6 default route (::/0) in the RIP routing process updates sent from the specified interface. **Note** To avoid routing loops after the IPv6 default route (::/0) is originated from any interface, the routing process ignores all default routes received on any interface.
 - only—Select to originate the default route, but suppress all other routes in the updates sent on this interface.
 - originate—Select to originate the default route in addition to all other routes in the updates sent on this interface. |
| 8 | `end` | Return to privileged EXEC mode. |
| 9 | `show ipv6 rip [name] [interface interface-id] [database] [next-hops]` or `show ipv6 route rip [updated]` | Display information about IPv6 RIP processes. Display the contents of the IPv6 routing table. |
| 10 | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |
Beginning in privileged EXEC mode, follow these required and optional steps to configure IPv6 OSPF:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>ipv6 router ospf process-id</code></td>
<td>Enable OSPF router configuration mode for the process. The process ID is the number administratively assigned when enabling the OSPF for IPv6 routing process. It is locally assigned and can be a positive integer from 1 to 65535.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>area area-id range {ipv6-prefix/prefix length}</code></td>
<td>(Optional) Consolidate and summarize routes at an area boundary.</td>
</tr>
<tr>
<td>`advertise</td>
<td>not-advertise</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>maximum paths number-paths</code></td>
<td>(Optional) Define the maximum number of equal-cost routes to the same destination that IPv6 OSPF should enter in the routing table. The range is from 1 to 64, and the default is 16.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>ipv6 ospf process-id area area-id [instance instance-id]</code></td>
<td>Enable OSPF for IPv6 on the interface.</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td><code>show ipv6 ospf [process-id] [area-id] interface [interface-id]</code></td>
<td>Display information about OSPF interfaces.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td><code>show ipv6 ospf [process-id] [area-id]</code></td>
<td>Display general information about OSPF routing processes.</td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable an OSPF routing process, use the no ipv6 router ospf process-id global configuration command. To disable the OSPF routing process for an interface, use the no ipv6 ospf process-id area area-id interface configuration command.

For more information about configuring OSPF routing for IPv6, see the “Implementing OSPF for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Configuring EIGRP for IPv6

By default, EIGRP for IPv6 is disabled. You can configure EIGRP for IPv6 on an interface. After configuring the router and the interface for EIGRP, enter the no shutdown privileged EXEC command to start EIGRP.

Note

If EIGRP for IPv6 is not in shutdown mode, EIGRP might start running before you enter the EIGRP router-mode commands to configure the router and the interface.

To set an explicit router ID, use the show ipv6 eigrp command to see the configured router IDs, and then use the router-id command.

As with EIGRP IPv4, you can use EIGRPv6 to specify your EIGRP IPv4 interfaces and to select a subset of those as passive interfaces. Use the passive-interface default command to make all interfaces passive, and then use the no passive-interface command on selected interfaces to make them active.

EIGRP IPv6 does not need to be configured on a passive interface.

For more configuration procedures, see the “Implementing EIGRP for IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Configuring HSRP for IPv6

Hot Standby Router Protocol (HSRP) for IPv6 provides routing redundancy for routing IPv6 traffic not dependent on the availability of any single router.

When HSRP for IPv6 is enabled on a switch, IPv6 hosts learn of available IPv6 routers through IPv6 neighbor discovery router advertisement messages. An HSRP IPv6 group has a virtual MAC address that is derived from the HSRP group number. The group has a virtual IPv6 link-local address that is, by default, derived from the HSRP virtual MAC address. Periodic messages are sent for the HSRP virtual IPv6 link-local address when the HSRP group is active.

When configuring HSRP for IPv6, you must enable HSRP version 2 (HSRPv2) on the interface. For more information about HSRP for IPv6 and HSRPv2, see the Chapter 41, “Configuring HSRP.”

Note

Before configuring an HSRP for IPv6 group, you must enable the forwarding of IPv6 packets by using the ipv6 unicast-routing global configuration command and enable IPv6 on the interface on which you will configure an HSRP for IPv6 group.
Enabling HSRP Version 2

Beginning in privileged EXEC mode, follow these steps to enable HSRP version 2 on a Layer 3 interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>interface interface-id</code></td>
<td>Enter interface configuration mode, and enter the Layer 3 interface on which you want to specify the standby version.</td>
</tr>
<tr>
<td>Step 3: `standby version {1</td>
<td>2}`</td>
</tr>
<tr>
<td>Step 4: <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: <code>show standby</code></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 6: <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Enabling an HSRP Group for IPv6

Beginning in privileged EXEC mode, follow these steps to create or enable HSRP for IPv6 on a Layer 3 interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>interface interface-id</code></td>
<td>Enter interface configuration mode, and enter the Layer 3 interface on which you want to enable HSRP for IPv6.</td>
</tr>
<tr>
<td>Step 3: `standby [group-number] ipv6 {link-local-address</td>
<td>autoconfig}`</td>
</tr>
<tr>
<td></td>
<td>• (Optional) <code>group-number</code>—The group number on the interface for which HSRP is being enabled. The range is 0 to 4095. The default is 0. If there is only one HSRP group, you do not need to enter a group number.</td>
</tr>
<tr>
<td></td>
<td>• Enter the link-local address of the Hot Standby router interface, or enable the link-local address to be generated automatically from the link-local prefix and a modified EUI-64 format interface identifier, where the EUI-64 interface identifier is created from the relevant HSRP virtual MAC address.</td>
</tr>
</tbody>
</table>
Configuring IPv6 Unicast Routing

Chapter 40

Configuring IPv6

Use the `no standby [group-number] ipv6` interface configuration command to disable HSRP for IPv6.

This example shows how to activate HSRP for IPv6 for group 1 on a port. The IP address used by the hot standby group is learned by using HSRP for IPv6.

Step 4

```
standby [group-number] preempt [delay {minimum seconds | reload seconds | sync seconds}]
```

Configure the router to `preempt`, which means that when the local router has a higher priority than the active router, it assumes control as the active router.

- (Optional) `group-number`—The group number to which the command applies.
- (Optional) `delay`—Set to cause the local router to postpone taking over the active role for the shown number of seconds. The range is 0 to 3600 (1 hour). The default is 0 (no delay before taking over).
- (Optional) `reload`—Set the preemption delay, in seconds, after a reload. The delay period applies only to the first interface-up event after the router reloads.
- (Optional) `sync`—Set the maximum synchronization period, in seconds, for IP redundancy clients.

Use the `no` form of the command to restore the default values.

Step 5

```
standby [group-number] priority priority
```

Set a `priority` value used in choosing the active router. The range is 1 to 255; the default priority is 100. The highest number represents the highest priority.

Use the `no` form of the command to restore the default values.

Step 6

```
end
```

Return to privileged EXEC mode.

Step 7

```
show standby [interface-id [group-number]]
```

Verify the configuration.

Step 8

```
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.

Use the `no standby [group-number] ipv6` interface configuration command to disable HSRP for IPv6.

This example shows how to activate HSRP for IPv6 for group 1 on a port. The IP address used by the hot standby group is learned by using HSRP for IPv6.

Note

This procedure is the minimum number of steps required to enable HSRP for IPv6. Other configurations are optional.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 ipv6 autoconfig
Switch(config-if)# end
Switch# show standby
```

For more information about configuring HSRP for IPv6, see the “Configuring First Hop Redundancy Protocols in IPv6” chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.
Displaying IPv6

For complete syntax and usage information on these commands, see the Cisco IOS command reference publications.

Table 40-3 shows the privileged EXEC commands for monitoring IPv6 on the switch.

Table 40-2 Commands for Monitoring IPv6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 access-list</td>
<td>Display a summary of access lists.</td>
</tr>
<tr>
<td>show ipv6 cef</td>
<td>Display Cisco Express Forwarding for IPv6.</td>
</tr>
<tr>
<td>show ipv6 interface interface-id</td>
<td>Display IPv6 interface status and configuration.</td>
</tr>
<tr>
<td>show ipv6 mtu</td>
<td>Display IPv6 MTU per destination cache.</td>
</tr>
<tr>
<td>show ipv6 neighbors</td>
<td>Display IPv6 neighbor cache entries.</td>
</tr>
<tr>
<td>show ipv6 ospf</td>
<td>Display IPv6 OSPF information.</td>
</tr>
<tr>
<td>show ipv6 prefix-list</td>
<td>Display a list of IPv6 prefix lists.</td>
</tr>
<tr>
<td>show ipv6 protocols</td>
<td>Display IPv6 routing protocols on the switch.</td>
</tr>
<tr>
<td>show ipv6 rip</td>
<td>Display IPv6 RIP routing protocol status.</td>
</tr>
<tr>
<td>show ipv6 route</td>
<td>Display the IPv6 route table entries.</td>
</tr>
<tr>
<td>show ipv6 routers</td>
<td>Display the local IPv6 routers.</td>
</tr>
<tr>
<td>show ipv6 static</td>
<td>Display IPv6 static routes.</td>
</tr>
<tr>
<td>show ipv6 traffic</td>
<td>Display IPv6 traffic statistics.</td>
</tr>
</tbody>
</table>

1. This command is not supported on the Catalyst Switch Module 3012.

Table 40-3 shows the privileged EXEC command for displaying EIGRP IPv6 information.

Table 40-3 Commands for Displaying EIGRP IPv6 Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 eigrp [as-number] interface</td>
<td>Displays information about interfaces configured for EIGRP IPv6.</td>
</tr>
<tr>
<td>show ipv6 eigrp [as-number] neighbor</td>
<td>Displays the neighbors discovered by EIGRP IPv6.</td>
</tr>
<tr>
<td>show ipv6 eigrp [as-number] traffic</td>
<td>Displays the number of EIGRP IPv6 packets sent and received.</td>
</tr>
<tr>
<td>show ipv6 eigrp topology [as-number</td>
<td>[ipv6-address] [active</td>
</tr>
</tbody>
</table>
Table 40-5 shows the privileged EXEC commands for showing IPv4 and IPv6 address types on the switch.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip http server history</code></td>
<td>Display the previous 20 connections to the HTTP server, including the IP address accessed and the time when the connection was closed.</td>
</tr>
<tr>
<td><code>show ip http server connection</code></td>
<td>Display the current connections to the HTTP server, including the local and remote IP addresses being accessed.</td>
</tr>
<tr>
<td><code>show ip http client connection</code></td>
<td>Display the configuration values for HTTP client connections to HTTP servers.</td>
</tr>
<tr>
<td><code>show ip http client history</code></td>
<td>Display a list of the last 20 requests made by the HTTP client to the server.</td>
</tr>
</tbody>
</table>

This is an example of the output from the `show ipv6 interface` privileged EXEC command:

```
Switch# `show ipv6 interface`
Vlan1 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::20B:46FF:FE2F:D940
  Global unicast address(es):
    3FFE:C000:0:1::20B:46FF:FE2F:D940, subnet is 3FFE:C000:0:1::/64 [EUI]
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF2F:D940
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
  ND advertised reachable time is 0 milliseconds
  ND advertised retransmit interval is 0 milliseconds
  ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
<output truncated>
```

This is an example of the output from the `show ipv6 cef` privileged EXEC command:

```
Switch# `show ipv6 cef`
::/0
  next-hop 3FFE:C000:0:7::777 Vlan7
  3FFE:C000:0:1::/64
    attached to Vlan1
  3FFE:C000:0:1:20B:46FF:FE2F:D940/128 receive
  3FFE:C000:0:7::/64
    attached to Vlan7
  3FFE:C000:0:7:777/128
    attached to Vlan7
  3FFE:C000:0:7:20B:46FF:FE2F:D97F/128 receive
  3FFE:C000:111:1::/64
    attached to GigabitEthernet1/0/11
  3FFE:C000:111:1:20B:46FF:FE2F:D945/128 receive
  3FFE:C000:168:1::/64
    attached to GigabitEthernet2/0/13
  3FFE:C000:168:1:20B:46FF:FE2F:D94B/128 receive
```
Displaying IPv6

```
3FFE:C000:16A:1::/64
  attached to Loopback10
3FFE:C000:16A:1:20B:46FF:FE2F:D900/128
receive
<output truncated>
```

This is an example of the output from the `show ipv6 protocols` privileged EXEC command:

```
Switch# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "static"
IPv6 Routing Protocol is "rip fer"
  Interfaces:
    Vlan6
    GigabitEthernet2/0/4
    GigabitEthernet2/0/11
    GigabitEthernet1/0/12
  Redistribution:
    None

This is an example of the output from the `show ipv6 rip` privileged EXEC command:

```
Switch# show ipv6 rip
RIP process "fer", port 521, multicast-group FF02::9, pld 190
 Administrative distance is 120. Maximum paths is 16
 Updates every 30 seconds, expire after 180
 Holdown lasts 0 seconds, garbage collect after 120
 Split horizon is on; poison reverse is off
 Default routes are not generated
 Periodic updates 9040, trigger updates 60
 Interfaces:
 Vlan6
 GigabitEthernet2/0/4
 GigabitEthernet2/0/11
 GigabitEthernet1/0/12
 Redistribution:
 None
```

This is an example of the output from the `show ipv6 neighbor` privileged EXEC command:

```
Switch# show ipv6 neighbors
IPv6 Address Age Link-layer Addr State Interface
 3FFE:C000:0:7::777 - 0007.0007.0007 REACH Vl7
 3FFE:C101:113:1::33 - 0000.0000.0033 REACH Fa1/0/13
```

This is an example of the output from the `show ipv6 static` privileged EXEC command:

```
Switch# show ipv6 static
IPv6 Static routes
 * ::/0 via nexthop 3FFE:C000:0:7::777, distance 1
```

This is an example of the output from the `show ipv6 route` privileged EXEC command:

```
Switch# show ipv6 route
IPv6 Routing Table - 21 entries
 Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
 U - Per-user Static route
 I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
 O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
 ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
 S ::/0 [1/0]
 via 3FFE:C000:0:7::777
C 3FFE:C000:0:1::/64 [0/0]
```
via ::, Vlan1
L 3FFE:C000:0:1:20B:46FF:FE2F:D940/128 [0/0]
via ::, Vlan1
C 3FFE:C000:0:7::/64 [0/0]
via ::, Vlan7
L 3FFE:C000:0:7:20B:46FF:FE2F:D97F/128 [0/0]
via ::, Vlan7
C 3FFE:C000:111:1::/64 [0/0]
via ::, GigabitEthernet1/0/11
L 3FFE:C000:111:1:20B:46FF:FE2F:D945/128 [0/0]
C 3FFE:C000:168:1::/64 [0/0]
via ::, GigabitEthernet2/0/4
L 3FFE:C000:168:1:20B:46FF:FE2F:D94B/128 [0/0]
via ::, GigabitEthernet2/0/4
C 3FFE:C000:16A:1::/64 [0/0]
via ::, Loopback10
L 3FFE:C000:16A:1:20B:46FF:FE2F:D900/128 [0/0]
via ::, Loopback10

<output truncated>

This is an example of the output from the **show ipv6 traffic** privileged EXEC command.

Switch# **show ipv6 traffic**

**IPv6 statistics:**
- Rcvd: 1 total, 1 local destination
  - 0 source-routed, 0 truncated
  - 0 format errors, 0 hop count exceeded
  - 0 bad header, 0 unknown option, 0 bad source
  - 0 unknown protocol, 0 not a router
  - 0 fragments, 0 total reassembled
  - 0 reassembly timeouts, 0 reassembly failures
- Sent: 36861 generated, 0 forwarded
  - 0 fragmented into 0 fragments, 0 failed
  - 0 encapsulation failed, 0 no route, 0 too big
  - 0 RPF drops, 0 RPF suppressed drops
- Mcast: 1 received, 36861 sent

**ICMP statistics:**
- Rcvd: 1 input, 0 checksum errors, 0 too short
  - 0 unknown info type, 0 unknown error type
  - unreachable: 0 routing, 0 admin, 0 neighbor, 0 address, 0 port
    - parameter: 0 error, 0 header, 0 option
    - hopcount expired, 0 reassembly timeout, 0 too big
    - echo request, 0 echo reply
    - group query, 0 group report, 0 group reduce
    - 1 router solicit, 0 router advert, 0 redirects
    - 0 neighbor solicit, 0 neighbor advert
- Sent: 10112 output, 0 rate-limited
  - unreachable: 0 routing, 0 admin, 0 neighbor, 0 address, 0 port
    - parameter: 0 error, 0 header, 0 option
    - hopcount expired, 0 reassembly timeout, 0 too big
    - echo request, 0 echo reply
    - group query, 0 group report, 0 group reduce
    - 0 router solicit, 0 router advert, 0 redirects
    - 84 neighbor solicit, 84 neighbor advert

**UDP statistics:**
- Rcvd: 0 input, 0 checksum errors, 0 length errors
  - 0 no port, 0 dropped
- Sent: 26749 output

**TCP statistics:**
- Rcvd: 0 input, 0 checksum errors
Sent: 0 output, 0 retransmitted
Displaying IPv6
Configuring HSRP

This chapter describes how to use Hot Standby Router Protocol (HSRP) on the switch to provide routing redundancy for routing IP traffic without being dependent on the availability of any single router. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the Cisco IOS IP Command Reference, Volume 1 of 3: Addressing and Services, Release 12.2.

This chapter consists of these sections:

- Understanding HSRP, page 41-1
- Configuring HSRP, page 41-5
- Displaying HSRP Configurations, page 41-12

Understanding HSRP

HSRP is Cisco’s standard method of providing high network availability by providing first-hop redundancy for IP hosts on an IEEE 802 LAN configured with a default gateway IP address. HSRP routes IP traffic without relying on the availability of any single router. It enables a set of router interfaces to work together to present the appearance of a single virtual router or default gateway to the hosts on a LAN. When HSRP is configured on a network or segment, it provides a virtual Media Access Control (MAC) address and an IP address that is shared among a group of configured routers. HSRP allows two or more HSRP-configured routers to use the MAC address and IP network address of a virtual router. The virtual router does not exist; it represents the common target for routers that are configured to provide backup to each other. One of the routers is selected to be the active router and another to be the standby router, which assumes control of the group MAC address and IP address should the designated active router fail.

Note
Routers in an HSRP group can be any router interface that supports HSRP, including routed ports and switch virtual interfaces (SVIs).

HSRP provides high network availability by providing redundancy for IP traffic from hosts on networks. In a group of router interfaces, the active router is the router of choice for routing packets; the standby router is the router that takes over the routing duties when an active router fails or when preset conditions are met.
HSRP is useful for hosts that do not support a router discovery protocol and cannot switch to a new router when their selected router reloads or loses power. When HSRP is configured on a network segment, it provides a virtual MAC address and an IP address that is shared among router interfaces in a group of router interfaces running HSRP. The router selected by the protocol to be the active router receives and routes packets destined for the group’s MAC address. For \( n \) routers running HSRP, there are \( n + 1 \) IP and MAC addresses assigned.

HSRP detects when the designated active router fails, and a selected standby router assumes control of the Hot Standby group’s MAC and IP addresses. A new standby router is also selected at that time. Devices running HSRP send and receive multicast UDP-based hello packets to detect router failure and to designate active and standby routers. When HSRP is configured on an interface, Internet Control Message Protocol (ICMP) redirect messages are automatically enabled for the interface.

You can configure multiple Hot Standby groups among switches and switch stacks that are operating in Layer 3 to make more use of the redundant routers. To do so, specify a group number for each Hot Standby command group you configure for an interface. For example, you might configure an interface on switch 1 as an active router and one on switch 2 as a standby router and also configure another interface on switch 2 as an active router with another interface on switch 1 as its standby router.

Figure 41-1 shows a segment of a network configured for HSRP. Each router is configured with the MAC address and IP network address of the virtual router. Instead of configuring blade servers on the network with the IP address of Router A, you configure them with the IP address of the virtual router as their default router. When blade server C sends packets to blade server B, it sends them to the MAC address of the virtual router. If for any reason, Router A stops transferring packets, Router B responds to the virtual IP address and virtual MAC address and becomes the active router, assuming the active router duties. Blade server C continues to use the IP address of the virtual router to address packets destined for blade server B, which Router B now receives and sends to blade server B. Until Router A resumes operation, HSRP allows Router B to provide uninterrupted service to users on blade server C’s segment that need to communicate with users on blade server B’s segment and also continues to perform its normal function of handling packets between the blade server A segment and blade server B.
HSRP Versions

Cisco IOS Release 12.2(46)SE and later support these Hot Standby Router Protocol (HSRP) versions:

- HSRPv1—Version 1 of the HSRP, the default version of HSRP. It has these features:
  - The HSRP group number can be from 0 to 255.
  - HSRPv1 uses the multicast address 224.0.0.2 to send hello packets, which can conflict with Cisco Group Management Protocol (CGMP) leave processing. You cannot enable HSRPv1 and CGMP at the same time; they are mutually exclusive.

- HSRPv2—Version 2 of the HSRP has these features:
  - To match the HSRP group number to the VLAN ID of a subinterface, HSRPv2 can use a group number from 0 to 4095 and a MAC address from 0000.0C9F.F000 to 0000.0C9F.FFFF.
  - HSRPv2 uses the multicast address 224.0.0.102 to send hello packets. HSRPv2 and CGMP leave processing are no longer mutually exclusive, and both can be enabled at the same time.
Understanding HSRP

- HSRPv2 has a different packet format than HSRPv1.
  A switch running HSRPv1 cannot identify the physical router that sent a hello packet because
  the source MAC address of the router is the virtual MAC address.

  HSRPv2 has a different packet format than HSRPv1. A HSRPv2 packet uses the
  type-length-value (TLV) format and has a 6-byte identifier field with the MAC address of the
  physical router that sent the packet.

  If an interface running HSRPv1 gets an HSRPv2 packet, the type field is ignored.

  HSRPv2 and HSRPv1 are mutually exclusive. HSRPv2 is not interoperable with HSRPv1 on an interface
  and the reverse.

Multiple HSRP

The switch supports Multiple HSRP (MHSRP), an extension of HSRP that allows load sharing between
 two or more HSRP groups. You can configure MHSRP to achieve load-balancing and to use two or more
 standby groups (and paths) from a blade server network to a server network.

In Figure 41-2, one enclosure with blade servers is configured for Router A, and the other enclosure with
 blade servers is configured for Router B. Together, the configuration for Routers A and B establishes two
 HSRP groups. For group 1, Router A is the default active router because it has the assigned highest
 priority, and Router B is the standby router. For group 2, Router B is the default active router because it
 has the assigned highest priority, and Router A is the standby router. During normal operation, the two
 routers share the IP traffic load. When either router becomes unavailable, the other router becomes active
 and assumes the packet-transfer functions of the router that is unavailable.

See the “Configuring MHSRP” section on page 41-10 for the example configuration steps.

Note

For MHSRP, you need to enter the standby preempt interface configuration command on the HSRP
 interfaces so that if a router fails and then comes back up, preemption restores load sharing.
HSRP and Switch Stacks

HSRP hello messages are generated by the stack master. If an HSRP-active stack master fails, a flap in the HSRP active state might occur. This is because HSRP hello messages are not generated while a new stack master is elected and initialized, and the standby router might become active after the stack master fails.

Configuring HSRP

These sections contain this configuration information:

- Default HSRP Configuration, page 41-6
- HSRP Configuration Guidelines, page 41-6
- Enabling HSRP, page 41-7
- Configuring HSRP Priority, page 41-8
- Configuring MHSRP, page 41-10
Configuring HSRP Authentication and Timers, page 41-11
Enabling HSRP Support for ICMP Redirect Messages, page 41-12

Default HSRP Configuration

Table 41-1 shows the default HSRP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSRP version</td>
<td>Version 1</td>
</tr>
<tr>
<td>HSRP groups</td>
<td>None configured</td>
</tr>
<tr>
<td>Standby group number</td>
<td>0</td>
</tr>
<tr>
<td>Standby MAC address</td>
<td>System assigned as: 0000.0c07.acXX, where XX is the HSRP group number</td>
</tr>
<tr>
<td>Standby priority</td>
<td>100</td>
</tr>
<tr>
<td>Standby delay</td>
<td>0 (no delay)</td>
</tr>
<tr>
<td>Standby track interface priority</td>
<td>10</td>
</tr>
<tr>
<td>Standby hello time</td>
<td>3 seconds</td>
</tr>
<tr>
<td>Standby holdtime</td>
<td>10 seconds</td>
</tr>
</tbody>
</table>

HSRP Configuration Guidelines

Follow these guidelines when configuring HSRP:

- HSRP can be configured on a maximum of 32 VLAN or routing interfaces.
- In the procedures, the specified interface must be one of these Layer 3 interfaces:
  - Routed port: a physical port configured as a Layer 3 port by entering the `no switchport` interface configuration command.
  - SVI: a VLAN interface created by using the `interface vlan vlan_id` global configuration command and by default a Layer 3 interface.
  - Etherchannel port channel in Layer 3 mode: a port-channel logical interface created by using the `interface port-channel port-channel-number` global configuration command and binding the Ethernet interface into the channel group. For more information, see the “Configuring Layer 3 EtherChannels” section on page 38-15.
- All Layer 3 interfaces must have IP addresses assigned to them. See the “Configuring Layer 3 Interfaces” section on page 11-24.
- HSRPv2 and HSRPv1 can be configured on the same switch if HSRPv2 is configured on different interfaces than those on which HSRPv1 is configured.
- The version of an HSRP group can be changed from HSRPv2 to HSRPv1 only if the group number is less than 256.
- If you change the HSRP version on an interface, each HSRP group resets because it now has a new virtual MAC address.
Enabling HSRP

The `standby ip` interface configuration command activates HSRP on the configured interface. If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the address is learned through the standby function. You must configure at least one Layer 3 port on the LAN with the designated address. Configuring an IP address always overrides another designated address currently in use.

When the `standby ip` command is enabled on an interface and proxy ARP is enabled, if the interface’s Hot Standby state is active, proxy ARP requests are answered using the Hot Standby group MAC address. If the interface is in a different state, proxy ARP responses are suppressed.

Beginning in privileged EXEC mode, follow these steps to create or enable HSRP on a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby version {1</td>
</tr>
<tr>
<td></td>
<td>• 1 — Select HSRPv1.</td>
</tr>
<tr>
<td></td>
<td>• 2 — Select HSRPv2.</td>
</tr>
<tr>
<td>Step 4</td>
<td>standby [group-number] ip [ip-address [secondary]]</td>
</tr>
<tr>
<td></td>
<td>• (Optional) group-number — The group number on the interface for which HSRP is being enabled. The range is 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number.</td>
</tr>
<tr>
<td></td>
<td>• (Optional on all but one interface) ip-address — The virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) secondary — The IP address is a secondary hot standby router interface. If neither router is designated as a secondary or standby router and no priorities are set, the primary IP addresses are compared and the higher IP address is the active router, with the next highest as the standby router.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show standby [interface-id [group]]</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `no standby [group-number] ip [ip-address]` interface configuration command to disable HSRP.
This example shows how to activate HSRP for group 1 on an interface. The IP address used by the hot standby group is learned by using HSRP.

Note

This procedure is the minimum number of steps required to enable HSRP. Other configuration is optional.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 ip
Switch(config-if)# end
Switch# show standby
```

### Configuring HSRP Priority

The `standby priority`, `standby preempt`, and `standby track` interface configuration commands are all used to set characteristics for finding active and standby routers and behavior regarding when a new active router takes over.

When configuring HSRP priority, follow these guidelines:

- Assigning a priority allows you to select the active and standby routers. If preemption is enabled, the router with the highest priority becomes the active router. If priorities are equal, the current active router does not change. Helps select the active and standby routers.
- The highest number (1 to 255) represents the highest priority (most likely to become the active router).
- When setting the priority, preempt, or both, you must specify at least one keyword (`priority`, `preempt`, or both).
- The priority of the device can change dynamically if an interface is configured with the `standby track` command and another interface on the router goes down.
- The `standby track` interface configuration command ties the router hot standby priority to the availability of its interfaces and is useful for tracking interfaces that are not configured for HSRP. When a tracked interface fails, the hot standby priority on the device on which tracking has been configured decreases by 10. If an interface is not tracked, its state changes do not affect the hot standby priority of the configured device. For each interface configured for hot standby, you can configure a separate list of interfaces to be tracked.
- The `standby track interface-priority` interface configuration command specifies how much to decrement the hot standby priority when a tracked interface goes down. When the interface comes back up, the priority is incremented by the same amount.
- When multiple tracked interfaces are down and `interface-priority` values have been configured, the configured priority decrements are cumulative. If tracked interfaces that were not configured with priority values fail, the default decrement is 10, and it is noncumulative.
- When routing is first enabled for the interface, it does not have a complete routing table. If it is configured to preempt, it becomes the active router, even though it is unable to provide adequate routing services. To solve this problem, configure a delay time to allow the router to update its routing table.
Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP priority characteristics on an interface:

### Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the HSRP interface on which you want to set priority.</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby [group-number] priority priority</td>
<td>Set a priority value used in choosing the active router. The range is 1 to 255; the default priority is 100. The highest number represents the highest priority.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) group-number—The group number to which the command applies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use the no form of the command to restore the default values.</td>
</tr>
<tr>
<td>Step 4</td>
<td>standby [group-number] preempt [delay [minimum seconds]] [reload seconds] [sync seconds]]</td>
<td>Configure the router to preempt, which means that when the local router has a higher priority than the active router, it becomes the active router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) group-number—The group number to which the command applies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) delay minimum—Set to cause the local router to postpone taking over the active role for the number of seconds shown. The range is 0 to 36000 seconds (1 hour); the default is 0 (no delay before taking over).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) delay reload—Set to cause the local router to postpone taking over the active role after a reload for the number of seconds shown. The range is 0 to 36000 seconds (1 hour); the default is 0 (no delay before taking over).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) delay sync—Set to cause the local router to postpone taking over the active role so that IP redundancy clients can reply (either with an ok or wait reply) for the number of seconds shown. The range is 0 to 36000 seconds (1 hour); the default is 0 (no delay before taking over).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use the no form of the command to restore the default values.</td>
</tr>
<tr>
<td>Step 5</td>
<td>standby [group-number] track type number [interface-priority]</td>
<td>Configure an interface to track other interfaces so that if one of the other interfaces goes down, the device’s Hot Standby priority is lowered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) group-number—The group number to which the command applies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• type—Enter the interface type (combined with interface number) that is tracked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• number—Enter the interface number (combined with interface type) that is tracked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) interface-priority—Enter the amount by which the hot standby priority for the router is decremented or incremented when the interface goes down or comes back up. The default value is 10.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config</td>
<td>Verify the configuration of the standby groups.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use the `no standby [group-number] priority priority [preempt [delay delay]]` and `no standby [group-number] priority priority preempt [delay delay]` interface configuration commands to restore default priority, preempt, and delay values.

Use the `no standby [group-number] track type number [interface-priority]` interface configuration command to remove the tracking.

This example activates a port, sets an IP address and a priority of 120 (higher than the default value), and waits for 300 seconds (5 minutes) before attempting to become the active router:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby ip 172.20.128.3
Switch(config-if)# standby priority 120 preempt delay 300
Switch(config-if)# end
```

### Configuring MHSRP

To enable MHSRP and load-balancing, you configure two routers as active routers for their groups, with virtual routers as standby routers. This example shows how to enable the MHSRP configuration shown in Figure 41-2 on page 41-5. You need to enter the `standby preempt` interface configuration command on each HSRP interface so that if a router fails and comes back up, the preemption occurs and restores load-balancing.

Router A is configured as the active router for group 1, and Router B is configured as the active router for group 2. The HSRP interface for Router A has an IP address of 10.0.0.1 with a group 1 standby priority of 110 (the default is 100). The HSRP interface for Router B has an IP address of 10.0.0.2 with a group 2 standby priority of 110.

Group 1 uses a virtual IP address of 10.0.0.3 and group 2 uses a virtual IP address of 10.0.0.4.

#### Router A Configuration

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.0.0.1 255.255.255.0
Switch(config-if)# standby 1 ip 10.0.0.3
Switch(config-if)# standby 1 priority 110
Switch(config-if)# standby 1 preempt
Switch(config-if)# end
```

#### Router B Configuration

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.0.0.2 255.255.255.0
Switch(config-if)# standby 1 ip 10.0.0.3
Switch(config-if)# standby 1 preempt
Switch(config-if)# end
```
Configuring HSRP Authentication and Timers

You can optionally configure an HSRP authentication string or change the hello-time interval and holdtime.

When configuring these attributes, follow these guidelines:

- The authentication string is sent unencrypted in all HSRP messages. You must configure the same authentication string on all routers and access servers on a cable to ensure interoperability. Authentication mismatch prevents a device from learning the designated Hot Standby IP address and timer values from other routers configured with HSRP.
- Routers or access servers on which standby timer values are not configured can learn timer values from the active or standby router. The timers configured on an active router always override any other timer settings.
- All routers in a Hot Standby group should use the same timer values. Normally, the holdtime is greater than or equal to 3 times the hello-time.

Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP authentication and timers on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby [group-number] authentication string</td>
</tr>
<tr>
<td>Step 4</td>
<td>standby [group-number] timers hello-time holdtime</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no standby [group-number] authentication string interface configuration command to delete an authentication string. Use the no standby [group-number] timers hello-time holdtime interface configuration command to restore timers to their default values.
This example shows how to configure `word` as the authentication string required to allow Hot Standby routers in group 1 to interoperate:

Switch# configure terminal  
Switch(config)# interface gigabitethernet1/0/1  
Switch(config-if)# no switchport  
Switch(config-if)# standby 1 authentication word  
Switch(config-if)# end

This example shows how to set the timers on standby group 1 with the time between hello packets at 5 seconds and the time after which a router is considered down to be 15 seconds:

Switch# configure terminal  
Switch(config)# interface gigabitethernet1/0/1  
Switch(config-if)# no switchport  
Switch(config-if)# standby 1 ip  
Switch(config-if)# standby 1 timers 5 15  
Switch(config-if)# end

**Enabling HSRP Support for ICMP Redirect Messages**

ICMP redirect messages are automatically enabled on interfaces configured with HSRP. ICMP is a network layer Internet protocol that provides message packets to report errors and other information relevant to IP processing. ICMP provides diagnostic functions, such as sending and directing error packets to the host. This feature filters outgoing ICMP redirect messages through HSRP, in which the next hop IP address might be changed to an HSRP virtual IP address. For more information, see the *Cisco IOS IP Configuration Guide, Release 12.2*.

**Displaying HSRP Configurations**

From privileged EXEC mode, use this command to display HSRP settings:

```
show standby [interface-id [group]] [brief] [detail]
```

You can display HSRP information for the whole switch, for a specific interface, for an HSRP group, or for an HSRP group on an interface. You can also specify whether to display a concise overview of HSRP information or detailed HSRP information. The default display is `detail`. If there are a large number of HSRP groups, using the `show standby` command without qualifiers can result in an unwieldy display.
This is an example of output from the `show standby` privileged EXEC command, displaying HSRP information for two standby groups (group 1 and group 100):

```
Switch# show standby
VLAN1 - Group 1
 Local state is Standby, priority 105, may preempt
 Hellotime 3 holdtime 10
 Next hello sent in 00:00:02.182
 Hot standby IP address is 172.20.128.3 configured
 Active router is 172.20.128.1 expires in 00:00:09
 Standby router is local
 Standby virtual mac address is 0000.0c07.ac01
 Name is bbb
VLAN1 - Group 100
 Local state is Active, priority 105, may preempt
 Hellotime 3 holdtime 10
 Next hello sent in 00:00:02.262
 Hot standby IP address is 172.20.138.51 configured
 Active router is local
 Standby router is unknown expired
 Standby virtual mac address is 0000.0c07.ac64
 Name is test
```
Configuring Cisco IOS IP SLAs Operations

This chapter describes how to use Cisco IOS IP Service Level Agreements (SLAs) on the switch. Cisco IP SLAs is a part of Cisco IOS software that allows Cisco customers to analyze IP service levels for IP applications and services by using active traffic monitoring—the generation of traffic in a continuous, reliable, and predictable manner—for measuring network performance. With Cisco IOS IP SLAs, service provider customers can measure and provide service level agreements, and enterprise customers can verify service levels, verify outsourced service level agreements, and understand network performance. Cisco IOS IP SLAs can perform network assessments, verify quality of service (QoS), ease the deployment of new services, and assist with network troubleshooting.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For more information about IP SLAs, see the Cisco IOS IP SLAs Configuration Guide, Release 12.4T at this URL:


For command syntax information, see the command reference at this URL:


This chapter consists of these sections:

- Understanding Cisco IOS IP SLAs, page 42-1
- Configuring IP SLAs Operations, page 42-6
- Monitoring IP SLAs Operations, page 42-13

Understanding Cisco IOS IP SLAs

Cisco IOS IP SLAs sends data across the network to measure performance between multiple network locations or across multiple network paths. It simulates network data and IP services and collects network performance information in real time. Cisco IOS IP SLAs generates and analyzes traffic either between Cisco IOS devices or from a Cisco IOS device to a remote IP device such as a network application server. Measurements provided by the various Cisco IOS IP SLAs operations can be used for troubleshooting, for problem analysis, and for designing network topologies.

Depending on the specific Cisco IOS IP SLAs operation, various network performance statistics are monitored within the Cisco device and stored in both command-line interface (CLI) and Simple Network Management Protocol (SNMP) MIBs. IP SLAs packets have configurable IP and application layer options such as source and destination IP address, User Datagram Protocol (UDP)/TCP port numbers, a type of service (ToS) byte (including Differentiated Services Code Point [DSCP] and IP Prefix bits), Virtual Private Network (VPN) routing/forwarding instance (VRF), and URL web address.
Because Cisco IP SLAs is Layer 2 transport independent, you can configure end-to-end operations over disparate networks to best reflect the metrics that an end user is likely to experience. IP SLAs collects a unique subset of these performance metrics:

- Delay (both round-trip and one-way)
- Jitter (directional)
- Packet loss (directional)
- Packet sequencing (packet ordering)
- Path (per hop)
- Connectivity (directional)
- Server or website download time

Because Cisco IOS IP SLAs is SNMP-accessible, it can also be used by performance-monitoring applications like CiscoWorks Internetwork Performance Monitor (IPM) and other third-party Cisco partner performance management products. You can find more details about network management products that use Cisco IOS IP SLAs at this URL:

http://www.cisco.com/go/ipsla

Using IP SLAs can provide these benefits:

- Service-level agreement monitoring, measurement, and verification.
- Network performance monitoring
  - Measures the jitter, latency, or packet loss in the network.
  - Provides continuous, reliable, and predictable measurements.
- IP service network health assessment to verify that the existing QoS is sufficient for new IP services.
- Edge-to-edge network availability monitoring for proactive verification and connectivity testing of network resources (for example, shows the network availability of an NFS server used to store business critical data from a remote site).
- Troubleshooting of network operation by providing consistent, reliable measurement that immediately identifies problems and saves troubleshooting time.
- Multiprotocol Label Switching (MPLS) performance monitoring and network verification (if the switch supports MPLS)

This section includes this information about IP SLAs functionality:

- Using Cisco IOS IP SLAs to Measure Network Performance, page 42-3
- IP SLAs Responder and IP SLAs Control Protocol, page 42-4
- Response Time Computation for IP SLAs, page 42-4
- IP SLAs Operation Scheduling, page 42-5
- IP SLAs Operation Threshold Monitoring, page 42-5
Using Cisco IOS IP SLAs to Measure Network Performance

You can use IP SLAs to monitor the performance between any area in the network—core, distribution, and edge—without deploying a physical probe. It uses generated traffic to measure network performance between two networking devices. Figure 42-1 shows how IP SLAs begins when the source device sends a generated packet to the destination device. After the destination device receives the packet, depending on the type of IP SLAs operation, it responds with time-stamp information for the source to make the calculation on performance metrics. An IP SLAs operation performs a network measurement from the source device to a destination in the network using a specific protocol such as UDP.

Figure 42-1 Cisco IOS IP SLAs Operation

To implement IP SLAs network performance measurement, you need to perform these tasks:

1. Enable the IP SLAs responder, if required.
2. Configure the required IP SLAs operation type.
3. Configure any options available for the specified operation type.
4. Configure threshold conditions, if required.
5. Schedule the operation to run, then let the operation run for a period of time to gather statistics.
6. Display and interpret the results of the operation using the Cisco IOS CLI or a network management system (NMS) system with SNMP.

For more information about IP SLAs operations, see the operation-specific chapters in the Cisco IOS IP SLAs Configuration Guide at this URL:


**Note**

The switch does not support Voice over IP (VoIP) service level analysis or IP service level analysis using DLSw+ operation. Before configuring any IP SLAs application, you can use the `show ip sla application` privileged EXEC command to verify that the operation type is supported on your software image.
IP SLAs Responder and IP SLAs Control Protocol

The IP SLAs responder is a component embedded in the destination Cisco device that allows the system to anticipate and respond to IP SLAs request packets. The responder provides accurate measurements without the need for dedicated probes. The responder uses the Cisco IOS IP SLAs Control Protocol to provide a mechanism through which it can be notified on which port it should listen and respond. Only a Cisco IOS device can be a source for a destination IP SLAs Responder.

Note

The IP SLAs responder can be a Cisco IOS Layer 2, responder-configurable switch, such as a Catalyst 2960 or Cisco ME 2400 switch. The responder does not need to support full IP SLAs functionality.

Figure 42-1 shows where the Cisco IOS IP SLAs responder fits in the IP network. The responder listens on a specific port for control protocol messages sent by an IP SLAs operation. Upon receipt of the control message, it enables the specified UDP or TCP port for the specified duration. During this time, the responder accepts the requests and responds to them. It disables the port after it responds to the IP SLAs packet, or when the specified time expires. MD5 authentication for control messages is available for added security.

You do not need to enable the responder on the destination device for all IP SLAs operations. For example, a responder is not required for services that are already provided by the destination router (such as Telnet or HTTP). You cannot configure the IP SLAs responder on non-Cisco devices and Cisco IOS IP SLAs can send operational packets only to services native to those devices.

Response Time Computation for IP SLAs

Switches and routers can take tens of milliseconds to process incoming packets due to other high priority processes. This delay affects the response times because the test-packet reply might be in a queue while waiting to be processed. In this situation, the response times would not accurately represent true network delays. IP SLAs minimizes these processing delays on the source device as well as on the target device (if the responder is being used) to determine true round-trip times. IP SLAs test packets use time stamping to minimize the processing delays.

When the IP SLAs responder is enabled, it allows the target device to take time stamps when the packet arrives on the interface at interrupt level and again just as it is leaving, eliminating the processing time. This time stamping is made with a granularity of sub-milliseconds (ms).

Figure 42-2 demonstrates how the responder works. Four time stamps are taken to make the calculation for round-trip time. At the target router, with the responder functionality enabled, time stamp 2 (TS2) is subtracted from time stamp 3 (TS3) to produce the time spent processing the test packet as represented by delta. This delta value is then subtracted from the overall round-trip time. Notice that the same principle is applied by IP SLAs on the source router where the incoming time stamp 4 (TS4) is also taken at the interrupt level to allow for greater accuracy.
### Understanding Cisco IOS IP SLAs

An additional benefit of the two time stamps at the target device is the ability to track one-way delay, jitter, and directional packet loss. Because much network behavior is asynchronous, it is critical to have these statistics. However, to capture one-way delay measurements, you must configure both the source router and target router with Network Time Protocol (NTP) so that the source and target are synchronized to the same clock source. One-way jitter measurements do not require clock synchronization.

### IP SLAs Operation Scheduling

When you configure an IP SLAs operation, you must schedule the operation to begin capturing statistics and collecting error information. You can schedule an operation to start immediately or to start at a certain month, day, and hour. You can use the *pending* option to set the operation to start at a later time. The pending option is an internal state of the operation that is visible through SNMP. The pending state is also used when an operation is a reaction (threshold) operation waiting to be triggered. You can schedule a single IP SLAs operation or a group of operations at one time.

You can schedule several IP SLAs operations by using a single command through the Cisco IOS CLI or the CISCO RTTMON-MIB. Scheduling the operations to run at evenly distributed times allows you to control the amount of IP SLAs monitoring traffic. This distribution of IP SLAs operations helps minimize the CPU utilization and thus improves network scalability.

For more details about the IP SLAs multioperations scheduling functionality, see the “IP SLAs—Multiple Operation Scheduling” chapter of the *Cisco IOS IP SLAs Configuration Guide* at this URL:


### IP SLAs Operation Threshold Monitoring

To support successful service level agreement monitoring, you must have mechanisms that notify you immediately of any possible violation. IP SLAs can send SNMP traps that are triggered by events such as these:

- Connection loss
- Timeout
- Round-trip time threshold
- Average jitter threshold
- One-way packet loss
- One-way jitter
• One-way mean opinion score (MOS)
• One-way latency

An IP SLAs threshold violation can also trigger another IP SLAs operation for further analysis. For example, the frequency could be increased or an ICMP path echo or ICMP path jitter operation could be initiated for troubleshooting.

Determining the type of threshold and the level to set can be complex, and depends on the type of IP service being used in the network. For more details on using thresholds with Cisco IOS IP SLAs operations, see the “IP SLAs—Proactive Threshold Monitoring” chapter of the Cisco IOS IP SLAs Configuration Guide at this URL:


Configuring IP SLAs Operations

This section does not include configuration information for all available operations as the configuration information details are included in the Cisco IOS IP SLAs Configuration Guide. It does include several operations as examples, including configuring the responder, configuring UDP jitter operation, which requires a responder, and configuring ICMP echo operation, which does not require a responder. For details about configuring other operations, see the Cisco IOS IP SLAs Configuration Guide at this URL:


This section includes this information:
• Default Configuration, page 42-6
• Configuration Guidelines, page 42-6
• Configuring the IP SLAs Responder, page 42-7
• Analyzing IP Service Levels by Using the UDP Jitter Operation, page 42-8
• Analyzing IP Service Levels by Using the ICMP Echo Operation, page 42-11

Default Configuration

No IP SLAs operations are configured.

Configuration Guidelines

For information on the IP SLAs commands, see the Cisco IOS IP SLAs Command Reference, Release 12.4T command reference at this URL:


For detailed descriptions and configuration procedures, see the Cisco IOS IP SLAs Configuration Guide, Release 12.4T at this URL:


Note that not all of the IP SLAs commands or operations described in this guide are supported on the switch. The switch supports IP service level analysis by using UDP jitter, UDP echo, HTTP, TCP connect, ICMP echo, ICMP path echo, ICMP path jitter, FTP, DNS, and DHCP, as well as multiple operation scheduling and proactive threshold monitoring. It does not support VoIP service analysis or IP service level analysis by using DLSw+ operation.
Before configuring any IP SLAs application, you can use the `show ip sla application` privileged EXEC command to verify that the operation type is supported on your software image. This is an example of the output from the command:

```
Switch# show ip sla application
IP SLAs
Version: 2.2.0 Round Trip Time MIB, Infrastructure Engine-II
Time of last change in whole IP SLAs: 22:17:39.117 UTC Fri Jun
Estimated system max number of entries: 15801

Estimated number of configurable operations: 15801
Number of Entries configured : 0
Number of active Entries : 0
Number of pending Entries : 0
Number of inactive Entries : 0

Supported Operation Types
Type of Operation to Perform: 802.1agEcho
Type of Operation to Perform: 802.1agJitter
Type of Operation to Perform: dhcp
Type of Operation to Perform: dns
Type of Operation to Perform: echo
Type of Operation to Perform: ftp
Type of Operation to Perform: http
Type of Operation to Perform: jitter
Type of Operation to Perform: pathEcho
Type of Operation to Perform: pathJitter
Type of Operation to Perform: tcpConnect
Type of Operation to Perform: udpEcho

IP SLAs low memory water mark: 21741224
```

**Configuring the IP SLAs Responder**

The IP SLAs responder is available only on Cisco IOS software-based devices, including some Layer 2 switches that do not support full IP SLAs functionality, such as the Catalyst 2960 or the Cisco ME 2400 switch. Beginning in privileged EXEC mode, follow these steps to configure the IP SLAs responder on the target device (the operational target):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip sla responder {tcp-connect</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The IP address and port number must match those configured on the source device for the IP SLAs operation.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring IP SLAs Operations

Chapter 42      Configuring Cisco IOS IP SLAs Operations

Configuring IP SLAs Operations

To disable the IP SLAs responder, enter the `no ip sla responder` global configuration command. This example shows how to configure the device as a responder for the UDP jitter IP SLAs operation in the next procedure:

```
Switch(config)# ip sla responder udp-echo 172.29.139.134 5000
```

Analyzing IP Service Levels by Using the UDP Jitter Operation

Jitter means interpacket delay variance. When multiple packets are sent consecutively 10 ms apart from source to destination, if the network is behaving correctly, the destination should receive them 10 ms apart. But if there are delays in the network (like queuing, arriving through alternate routes, and so on) the arrival delay between packets might be more than or less than 10 ms with a positive jitter value meaning that the packets arrived more than 10 ms apart. If the packets arrive 12 ms apart, positive jitter is 2 ms; if the packets arrive 8 ms apart, negative jitter is 2 ms. For delay-sensitive networks, positive jitter values are undesirable, and a jitter value of 0 is ideal.

In addition to monitoring jitter, the IP SLAs UDP jitter operation can be used as a multipurpose data gathering operation. The packets IP SLAs generates carry packet sending and receiving sequence information and sending and receiving time stamps from the source and the operational target. Based on these, UDP jitter operations measure this data:

- Per-direction jitter (source to destination and destination to source)
- Per-direction packet-loss
- Per-direction delay (one-way delay)
- Round-trip delay (average round-trip time)

Because the paths for the sending and receiving of data can be different (asymmetric), you can use the per-direction data to more readily identify where congestion or other problems are occurring in the network.

The UDP jitter operation generates synthetic (simulated) UDP traffic and sends a number of UDP packets, each of a specified size, sent a specified number of milliseconds apart, from a source router to a target router, at a given frequency. By default, ten packet-frames, each with a payload size of 10 bytes are generated every 10 ms, and the operation is repeated every 60 seconds. You can configure each of these parameters to best simulate the IP service you want to provide.

To provide accurate one-way delay (latency) measurements, time synchronization, such as that provided by NTP, is required between the source and the target device. Time synchronization is not required for the one-way jitter and packet loss measurements. If the time is not synchronized between the source and target devices, one-way jitter and packet loss data is returned, but values of 0 are returned for the one-way delay measurements provided by the UDP jitter operation.

**Note**

Before you configure a UDP jitter operation on the source device, you must enable the IP SLAs responder on the target device (the operational target).

---

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip sla responder</code></td>
<td>Verify the IP SLAs responder configuration on the device.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

---

To disable the IP SLAs responder, enter the `no ip sla responder` global configuration command. This example shows how to configure the device as a responder for the UDP jitter IP SLAs operation in the next procedure:

```
Switch(config)# ip sla responder udp-echo 172.29.139.134 5000
```
Beginning in privileged EXEC mode, follow these steps to configure UDP jitter operation on the source device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip sla operation-number</td>
<td>Create an IP SLAs operation, and enter IP SLAs configuration mode.</td>
</tr>
<tr>
<td>Step 3 udp-jitter {destination-ip-address</td>
<td>destination-hostname</td>
</tr>
<tr>
<td></td>
<td>• destination-ip-address</td>
</tr>
<tr>
<td></td>
<td>• destination-port—Specify the destination port number in the range from 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) source-ip {ip-address</td>
</tr>
<tr>
<td></td>
<td>• (Optional) source-port port-number—Specify the source port number in the range from 1 to 65535. When a port number is not specified, IP SLAs chooses an available port.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) control—Enable or disable sending of IP SLAs control messages to the IP SLAs responder. By default, IP SLAs control messages are sent to the destination device to establish a connection with the IP SLAs responder.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) num-packets number-of-packets—Enter the number of packets to be generated. The range is 1 to 6000; the default is 10.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) interval inter-packet-interval—Enter the interval between sending packets in milliseconds. The range is 1 to 6000; the default value is 20 ms.</td>
</tr>
<tr>
<td>Step 4 frequency seconds</td>
<td>(Optional) Set the rate at which a specified IP SLAs operation repeats. The range is from 1 to 604800 seconds; the default is 60 seconds.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exit UDP jitter configuration mode, and return to global configuration mode.</td>
</tr>
</tbody>
</table>
To disable the IP SLAs operation, enter the no `ip sla operation-number` global configuration command.

This example shows how to configure a UDP jitter IP SLAs operation:

```
Switch(config)# ip sla 10
Switch(config-ip-sla)# udp-jitter 172.29.139.134 5000
Switch(config-ip-sla-jitter)# frequency 30
Switch(config-ip-sla-jitter)# exit
Switch(config)# ip sla schedule 5 start-time now life forever
Switch(config)# end
Switch# show ip sla configuration 10
IP SLAs, Infrastructure Engine-II.
Entry number: 10
Owner:
Tag:
Type of operation to perform: udp-jitter
Target address/Source address: 1.1.1.1/0.0.0.0
Target port/Source port: 2/0
Request size (ARR data portion): 32
Operation timeout (milliseconds): 5000
Packet Interval (milliseconds)/Number of packets: 20/10
Type Of Service parameters: 0x0
Verify data: No
Vrf Name:
Control Packets: enabled
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip sla monitor schedule</code> operation-number [life {forever</td>
<td>seconds}] [start-time {hh:mm[:ss]} [month day</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show ip sla configuration [operation-number]</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Analyzing IP Service Levels by Using the ICMP Echo Operation

The ICMP echo operation measures end-to-end response time between a Cisco device and any devices using IP. Response time is computed by measuring the time taken between sending an ICMP echo request message to the destination and receiving an ICMP echo reply. Many customers use IP SLAs ICMP-based operations, in-house ping testing, or ping-based dedicated probes for response time measurements between the source IP SLAs device and the destination IP device. The IP SLAs ICMP echo operation conforms to the same specifications as ICMP ping testing, and the two methods result in the same response times.

**Note**

This operation does not require the IP SLAs responder to be enabled.

Beginning in privileged EXEC mode, follow these steps to configure an ICMP echo operation on the source device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip sla operation-number</td>
<td>Create an IP SLAs operation and enter IP SLAs configuration mode.</td>
</tr>
<tr>
<td>Step 3 icmp-echo {destination-ip-address</td>
<td>destination-hostname} [source-ip [ip-address</td>
</tr>
<tr>
<td></td>
<td>destination-ip-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) source-ip {ip-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) source-interface interface-id—Specify the source interface for the operation.</td>
</tr>
<tr>
<td>Step 4 frequency seconds</td>
<td>(Optional) Set the rate at which a specified IP SLAs operation repeats. The range is from 1 to 604800 seconds; the default is 60 seconds.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exit UDP jitter configuration mode, and return to global configuration mode.</td>
</tr>
</tbody>
</table>
### Configuring IP SLAs Operations

#### Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip sla schedule operation-number [life {forever</td>
<td>seconds}] [start-time {hh:mm [:ss] [month day</td>
</tr>
<tr>
<td></td>
<td>• operation-number—Enter the RTR entry number.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) life—Set the operation to run indefinitely (forever) or for a specific number of seconds. The range is from 0 to 2147483647. The default is 3600 seconds (1 hour)</td>
</tr>
<tr>
<td></td>
<td>• (Optional) start-time—Enter the time for the operation to begin collecting information:</td>
</tr>
<tr>
<td></td>
<td>- To start at a specific time, enter the hour, minute, second (in 24-hour notation), and day of the month. If no month is entered, the default is the current month.</td>
</tr>
<tr>
<td></td>
<td>- Enter pending to select no information collection until a start time is selected.</td>
</tr>
<tr>
<td></td>
<td>- Enter now to start the operation immediately.</td>
</tr>
<tr>
<td></td>
<td>- Enter after hh:mm:ss to indicate that the operation should start after the entered time has elapsed.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) ageout seconds—Enter the number of seconds to keep the operation in memory when it is not actively collecting information. The range is 0 to 2073600 seconds; the default is 0 seconds (never ages out).</td>
</tr>
<tr>
<td></td>
<td>• (Optional) recurring—Set the operation to automatically run every day.</td>
</tr>
</tbody>
</table>

#### Command Summary

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip sla schedule operation-number [life {forever</td>
<td>seconds}] [start-time {hh:mm [:ss] [month day</td>
<td>day month]</td>
</tr>
</tbody>
</table>

#### Step 7
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

#### Step 8
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip sla configuration [operation-number]</td>
<td>(Optional) Display configuration values including all defaults for all IP SLAs operations or a specified operation.</td>
</tr>
</tbody>
</table>

#### Step 9
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the IP SLAs operation, enter the `no ip sla operation-number` global configuration command. This example shows how to configure an ICMP echo IP SLAs operation:

```
Switch(config)# ip sla 12
Switch(config-ip-sla)# icmp-echo 172.29.139.134
Switch(config-ip-sla-echo)# frequency 30
Switch(config-ip-sla-echo)# exit
Switch(config)# ip sla schedule 5 start-time now life forever
Switch(config)# end
Switch# show ip sla configuration 22
IP SLAs, Infrastructure Engine-II.
```

Entry number: 12
Owner:
Tag:
Type of operation to perform: echo
Target address: 2.2.2.2
Source address: 0.0.0.0
Request size (ARR data portion): 28
Operation timeout (milliseconds): 5000
Type Of Service parameters: 0x0
Verify data: No
Vrf Name:
Schedule:
  Operation frequency (seconds): 60
Next Scheduled Start Time: Pending trigger  
Group Scheduled : FALSE  
Randomly Scheduled : FALSE  
Life (seconds): 3600  
Enter Ageout (seconds): never  
Recurring (Starting Everyday): FALSE  
Status of entry (SNMP RowStatus): notInService  
Threshold (milliseconds): 5000  
Distribution Statistics:  
Number of statistic hours kept: 2  
Number of statistic distribution buckets kept: 1  
Statistic distribution interval (milliseconds): 20  
History Statistics:  
Number of history Lives kept: 0  
Number of history Buckets kept: 15  
History Filter Type: None  
Enhanced History:

### Monitoring IP SLAs Operations

Use the user EXEC or privileged EXEC commands in Table 42-1 to display IP SLAs operations configuration and results.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip sla application</code></td>
<td>Display global information about Cisco IOS IP SLAs.</td>
</tr>
<tr>
<td><code>show ip sla authentication</code></td>
<td>Display IP SLAs authentication information.</td>
</tr>
<tr>
<td><code>show ip sla configuration [entry-number]</code></td>
<td>Display configuration values including all defaults for all IP SLAs operations or a specific operation.</td>
</tr>
<tr>
<td>`show ip sla enhanced-history {collection-statistics</td>
<td>distribution statistics} [entry-number]`</td>
</tr>
<tr>
<td><code>show ip sla ethernet-monitor configuration [entry-number]</code></td>
<td>Display IP SLAs automatic Ethernet configuration.</td>
</tr>
<tr>
<td><code>show ip sla group schedule [schedule-entry-number]</code></td>
<td>Display IP SLAs group scheduling configuration and details.</td>
</tr>
<tr>
<td>`show ip sla history [entry-number</td>
<td>full</td>
</tr>
<tr>
<td><code>show ip sla reaction-configuration [entry-number]</code></td>
<td>Display the configured proactive threshold monitoring settings for all IP SLAs operations or a specific operation.</td>
</tr>
<tr>
<td><code>show ip sla reaction-trigger [entry-number]</code></td>
<td>Display the reaction trigger information for all IP SLAs operations or a specific operation.</td>
</tr>
<tr>
<td><code>show ip sla responder</code></td>
<td>Display information about the IP SLAs responder.</td>
</tr>
<tr>
<td>`show ip sla statistics [entry-number</td>
<td>aggregated</td>
</tr>
</tbody>
</table>
Configuring Enhanced Object Tracking

This chapter describes how to configure enhanced object tracking on the switch. This feature provides a more complete alternative to the Hot Standby Routing Protocol (HSRP) tracking mechanism, which allows you to track the line-protocol state of an interface. If the line protocol state of an interface goes down, the HSRP priority of the interface is reduced and another HSRP device with a higher priority becomes active. The enhanced object tracking feature separates the tracking mechanism from HSRP and creates a separate, standalone tracking process that can be used by processes other than HSRP. This allows tracking other objects in addition to the interface line-protocol state. A client process, such as HSRP, can register an interest in tracking objects and request notification when the tracked object changes state. This feature increases the availability and speed of recovery of a routing system and decreases outages and outage duration.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

The chapter includes these sections:

- Understanding Enhanced Object Tracking, page 43-1
- Configuring Enhanced Object Tracking Features, page 43-1
- Monitoring Enhanced Object Tracking, page 43-9

Understanding Enhanced Object Tracking

Each tracked object has a unique number that is specified in the tracking command-line interface (CLI). Client processes use this number to track a specific object. The tracking process periodically polls the tracked object for value changes and sends any changes (as up or down values) to interested client processes, either immediately or after a specified delay. Several clients can track the same object, and can take different actions when the object changes state.

You can also track a combination of objects in a list by using either a weight threshold or a percentage threshold to measure the state of the list. You can combine objects using Boolean logic. A tracked list with a Boolean “AND” function requires that each object in the list be in an up state for the tracked object to be up. A tracked list with a Boolean “OR” function needs only one object in the list to be in the up state for the tracked object to be up.

Configuring Enhanced Object Tracking Features

These sections describe configuring enhanced object tracking:

- Default Configuration, page 43-2
Tracking Interface Line-Protocol or IP Routing State

You can track either the interface line protocol state or the interface IP routing state. When you track the IP routing state, these three conditions are required for the object to be up:

- IP routing must be enabled and active on the interface.
- The interface line-protocol state must be up.
- The interface IP address must be known.

If all three of these conditions are not met, the IP routing state is down.

Beginning in privileged EXEC mode, follow these steps to track the line-protocol state or IP routing state of an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>track object-number interface-id line-protocol (Optional) Create a tracking list to track the line-protocol state of an interface and enter tracking configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• The object-number identifies the tracked object and can be from 1 to 500.</td>
</tr>
<tr>
<td></td>
<td>• The interface interface-id is the interface being tracked.</td>
</tr>
<tr>
<td>Step 3</td>
<td>delay {up seconds [down seconds]</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>track object-number interface-id ip routing (Optional) Create a tracking list to track the IP routing state of an interface, and enter tracking configuration mode. IP-route tracking tracks an IP route in the routing table and the ability of an interface to route IP packets.</td>
</tr>
<tr>
<td></td>
<td>• The object-number identifies the tracked object and can be from 1 to 500.</td>
</tr>
<tr>
<td></td>
<td>• The interface interface-id is the interface being tracked.</td>
</tr>
<tr>
<td>Step 6</td>
<td>delay {up seconds [down seconds]</td>
</tr>
<tr>
<td>Step 7</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show track object-number Verify that the specified objects are being tracked.</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
This example configures the tracking of an interface line-protocol state and verifies the configuration:

```
Switch(config)# track 33 interface gigabitethernet 1/0/1 line-protocol
Switch(config-track)# end
Switch# show track 33
Track 33
 Interface GigabitEthernet1/0/1 line-protocol
 Line protocol is Down (hw down)
 1 change, last change 00:18:28
```

### Configuring a Tracked List

You can configure a tracked list of objects with a Boolean expression, a weight threshold, or a percentage threshold. A tracked list contains one or more objects. An object must exist before it can be added to the tracked list.

- You configure a Boolean expression to specify calculation by using either “AND” or “OR” operators.
- When you measure the tracked list state by a weight threshold, you assign a weight number to each object in the tracked list. The state of the tracked list is determined by whether or not the threshold was met. The state of each object is determined by comparing the total weight of all objects against a threshold weight for each object.
- When you measure the tracked list by a percentage threshold, you assign a percentage threshold to all objects in the tracked list. The state of each object is determined by comparing the assigned percentages of each object to the list.

### Configuring a Tracked List with a Boolean Expression

Configuring a tracked list with a Boolean expression enables calculation by using either “AND” or “OR” operators. For example, when tracking two interfaces using the “AND” operator, `up` means that both interfaces are up, and `down` means that either interface is down.

Beginning in privileged EXEC mode, follow these steps to configure a tracked list of objects with a Boolean expression:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2    | track track-number list boolean {and | or} | Configure a tracked list object, and enter tracking configuration mode. The `track-number` can be from 1 to 500.  
  - `boolean`—Specify the state of the tracked list based on a Boolean calculation.  
  - `and`—Specify that the list is up if all objects are up or down if one or more objects are down.  
  - `or`—Specify that the list is up if one object is up or down if all objects are down. |
| 3    | object object-number [not] | Specify the object to be tracked. The range is from 1 to 500. The keyword `not` negates the state of the object, which means that when the object is up, the tracked list detects the object as down. |

**Note** An object must exist before you can add it to a tracked list.
Configuring Enhanced Object Tracking Features

### Configuring Enhanced Object Tracking Features

#### Use the no track track-number global configuration command to delete the tracked list.

This example configures track list 4 with a Boolean AND expression that contains two objects with one object state negated. If the list is up, the list detects that object 2 is down:

```
Switch(config)# track 4 list boolean and
Switch(config-track)# object 1
Switch(config-track)# object 2 not
Switch(config-track)# exit
```

#### Configuring a Tracked List with a Weight Threshold

To track by weight threshold, configure a tracked list of objects, specify that weight is used as the threshold, and configure a weight for each of its objects. The state of each object is determined by comparing the total weight of all objects that are up against a threshold weight for each object.

You cannot use the Boolean “NOT” operator in a weight threshold list.

Beginning in privileged EXEC mode, follow these steps to configure a tracked list of objects by using a weight threshold and to configure a weight for each object:

```
Step 1 configure terminal
Step 2 track track-number list threshold weight
Step 3 object object-number [weight weight-number]
Step 4 threshold weight { up number } [down number]
Step 5 delay { up seconds } [down seconds]
Step 6 end
```

#### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>track track-number list threshold weight</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>object object-number [weight weight-number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>threshold weight { up number } [down number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>delay { up seconds } [down seconds]</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring Enhanced Object Tracking

Configuring Enhanced Object Tracking Features

Use the `no track track-number` global configuration command to delete the tracked list.

The example configures track list 4 to track by weight threshold. If object 1 and object 2 are down, then track list 4 is up because object 3 satisfies the up threshold value of up 30. But if object 3 is down, both objects 1 and 2 must be up in order to satisfy the threshold weight.

```
Switch(config)# track 4 list threshold weight
Switch(config-track)# object 1 weight 15
Switch(config-track)# object 2 weight 20
Switch(config-track)# object 3 weight 30
Switch(config-track)# threshold weight up 30 down 10
Switch(config-track)# exit
```

This configuration can be useful if object 1 and object 2 represent two small bandwidth connections and object 3 represents one large bandwidth connection. The configured `down 10` value means that once the tracked object is up, it will not go down until the threshold value is equal to or lower than 10, which in this example means that all connections are down.

Configuring a Tracked List with a Percentage Threshold

To track by percentage threshold, configure a tracked list of objects, specify that a percentage will be used as the threshold, and specify a percentage for all objects in the list. The state of the list is determined by comparing the assigned percentage of each object to the list.

You cannot use the Boolean “NOT” operator in a percentage threshold list.

Beginning in privileged EXEC mode, follow these steps to configure a tracked list of objects by using a percentage threshold:

```
Command	Purpose
Step 1 configure terminal | Enter global configuration mode.
Step 2 track track-number list threshold percentage | Configure a tracked list object and enter tracking configuration mode. The `track-number` can be from 1 to 500.
 • `threshold`—Specify the state of the tracked list based on a threshold.
 • `percentage`—Specify that the threshold is based on percentage.
Step 3 object object-number | Specify the object to be tracked. The range is from 1 to 500.
 Note An object must exist before you can add it to a tracked list.
Step 4 threshold percentage [up number] [down number] | Specify the threshold percentage.
 • `up number`—The valid range is from 1 to 100.
 • `down number`—(Optional) The range depends on the number selected for the `up number`. If you configure the `up number` as 25, the range shown for the down number is 0 to 24.
Step 5 delay [up seconds] [down seconds] | (Optional) Specify a period of time in seconds to delay communicating state changes of a tracked object. The range is from 1 to 180 seconds.
Step 6 end | Return to privileged EXEC mode.
```

Use the `show track object-number` command to verify that the specified objects are being tracked.

(Optional) Save your entries in the configuration file.

This configuration can be useful if object 1 and object 2 represent two small bandwidth connections and object 3 represents one large bandwidth connection. The configured `down 10` value means that once the tracked object is up, it will not go down until the threshold value is equal to or lower than 10, which in this example means that all connections are down.
### Configuring Enhanced Object Tracking Features

**Command**

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show track object-number</td>
<td>Verify that the specified objects are being tracked.</td>
</tr>
</tbody>
</table>

**Command**

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no track track-number` global configuration command to delete the tracked list.

This example configures tracked list 4 with three objects and a specified percentages to measure the state of the list:

```
Switch(config)# track 4 list threshold percentage
Switch(config-track)# object 1
Switch(config-track)# object 2
Switch(config-track)# object 3
Switch(config-track)# threshold percentage up 51 down 10
Switch(config-track)# exit
```

### Configuring HSRP Object Tracking

Beginning in privileged EXEC mode, follow these steps to configure a standby HSRP group to track an object and change the HSRP priority based on the object state:

**Command**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

**Command**

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>track object-number {interface interface-id [line-protocol</td>
<td>ip routing]</td>
</tr>
<tr>
<td></td>
<td>• The <code>object-number</code> range is from 1 to 500.</td>
</tr>
<tr>
<td></td>
<td>• Enter <code>interface interface-id</code> to select an interface to track.</td>
</tr>
<tr>
<td></td>
<td>• Enter <code>line-protocol</code> to track the interface line protocol state or enter <code>ip routing</code> to track the interface IP routing state.</td>
</tr>
<tr>
<td></td>
<td>• Enter <code>ip route ip-address/prefix-length</code> to track the state of an IP route.</td>
</tr>
<tr>
<td></td>
<td>• Enter <code>metric threshold</code> to track the threshold metric or enter <code>reachability</code> to track if the route is reachable.</td>
</tr>
<tr>
<td></td>
<td>• Enter <code>list</code> to track objects grouped in a list. Configure the list as described on the previous pages.</td>
</tr>
<tr>
<td></td>
<td>• For <code>boolean</code>, see the “Configuring a Tracked List with a Boolean Expression” section on page 43-3</td>
</tr>
<tr>
<td></td>
<td>• For <code>threshold weight</code>, see the “Configuring a Tracked List with a Weight Threshold” section on page 43-4</td>
</tr>
<tr>
<td></td>
<td>• For <code>threshold percentage</code>, see the “Configuring a Tracked List with a Percentage Threshold” section on page 43-5</td>
</tr>
</tbody>
</table>

**Note** Repeat this step for each interface to be tracked.

**Command**

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>

**Command**

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Chapter 43 Configuring Enhanced Object Tracking

### Configuring Enhanced Object Tracking Features

**You can also use the enhanced object tracking for tracking other characteristics.**

- You can track the reachability of an IP route by using the `track ip route reachability` global configuration command.
- You can use the `track ip route metric threshold` global configuration command to determine if a route is above or below threshold.
- You can use the `track resolution` global configuration command to change the metric resolution default values for routing protocols.
- You can use the `track timer` tracking configuration command to configure the tracking process to periodically poll tracked objects.

Use the `show track` privileged EXEC command to verify enhanced object tracking configuration.

For more information about enhanced object tracking and the commands used to configure it.
Configuring IP SLAs Object Tracking

Cisco IOS IP Service Level Agreements (IP SLAs) is a network performance measurement and diagnostics tool that uses active monitoring by generating traffic to measure network performance. Cisco IP SLAs operations collects real-time metrics that you can use for network troubleshooting, design, and analysis.

For more information about Cisco IP SLAs on the switch, see Chapter 42, “Configuring Cisco IOS IP SLAs Operations.” For IP SLAs command information see the Cisco IOS IP SLAs Command Reference, Release 12.4T.

Object tracking of IP SLAs operations allows clients to track the output from IP SLAs objects and use this information to trigger an action. Every IP SLAs operation maintains an SNMP operation return-code value, such as OK or OverThreshold, that can be interpreted by the tracking process. You can track two aspects of IP SLAs operation: state and reachability. For state, if the return code is OK, the track state is up; if the return code is not OK, the track state is down. For reachability, if the return code is OK or OverThreshold, reachability is up; if not OK, reachability is down.

Beginning in privileged EXEC mode, follow these steps to track the state of an IP SLAs operation or the reachability of an IP SLAs IP host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>track object-number rtr operation-number state</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>delay {up seconds [down seconds]</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>exit</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>track object-number rtr operation-number reachability</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>delay {up seconds [down seconds]</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>show track object-number</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
This example shows how to configure and display IP SLAs state tracking:

Switch(config)# track 2 200 state
Switch(config)# end
Switch# show track 2
Track 2
  Response Time Reporter 1 state
  State is Down
    1 change, last change 00:00:47
  Latest operation return code: over threshold
  Latest RTT (milliseconds) 4
  Tracked by:
    HSRP Ethernet0/1 3

This example output shows whether a route is reachable:

Switch(config)# track 3 500 reachability
Switch(config)# end
Switch# show track 3
Track 3
  Response Time Reporter 1 reachability
  Reachability is Up
    1 change, last change 00:00:47
  Latest operation return code: over threshold
  Latest RTT (milliseconds) 4
  Tracked by:
    HSRP Ethernet0/1 3

**Monitoring Enhanced Object Tracking**

Use the privileged EXEC or user EXEC commands in *Table 43-1* to display enhanced object tracking information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show track <em>object-number</em></td>
<td>Display information about the all tracking lists or the specified list.</td>
</tr>
<tr>
<td>show track brief</td>
<td>Display a single line of tracking information output.</td>
</tr>
<tr>
<td>show track interface [brief]</td>
<td>Display information about tracked interface objects.</td>
</tr>
<tr>
<td>show track ip <em>object-number</em> [brief] route</td>
<td>Display information about tracked IP-route objects.</td>
</tr>
<tr>
<td>show track resolution</td>
<td>Display the resolution of tracked parameters.</td>
</tr>
<tr>
<td>show track timers</td>
<td>Display tracked polling interval timers.</td>
</tr>
</tbody>
</table>
Configuring Cache Services By Using WCCP

This chapter describes how to configure your switch to redirect traffic to wide-area application engines (such as the Cisco Cache Engine 550) by using the Web Cache Communication Protocol (WCCP). This software release supports only WCCP Version 2 (WCCPv2).

WCCP is a Cisco-developed content-routing technology that you can use to integrate wide-area application engines—referred to as application engines—into your network infrastructure. The application engines transparently store frequently accessed content and then fulfill successive requests for the same content, eliminating repetitive transmissions of identical content from servers. Application engines accelerate content delivery and ensure maximum scalability and availability of content. In a service-provider network, you can deploy the WCCP and application engine solution at the points of presence (POPs). In an enterprise network, you can deploy the WCCP and application engine solution at the regional site and the small branch office. To use this feature, the switch or the stack master must be running the IP services feature set.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the “WCCP Router Configuration Commands” section in the “System Management Commands” part of the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2.

This chapter consists of these sections:

- Understanding WCCP, page 44-2
- Configuring WCCP, page 44-5
- Monitoring and Maintaining WCCP, page 44-10
Understanding WCCP

The WCCP and Cisco cache engines (or other application engines running WCCP) localize traffic patterns in the network, enabling content requests to be fulfilled locally.

WCCP enables supported Cisco routers and switches to transparently redirect content requests. With transparent redirection, users do not have to configure their browsers to use a web proxy. Instead, they can use the target URL to request content, and their requests are automatically redirected to an application engine. The word *transparent* means that the end user does not know that a requested file (such as a web page) came from the application engine instead of from the originally specified server.

When an application engine receives a request, it attempts to service it from its own local cache. If the requested information is not present, the application engine sends a separate request to the end server to retrieve the requested information. After receiving the requested information, the application engine forwards it to the requesting client and also caches it to fulfill future requests.

With WCCP, the application-engine cluster (a series of application engines) can service multiple routers or switches, as shown Figure 44-1.

**Figure 44-1 Cisco Cache Engine and WCCP Network Configuration**

![Diagram of Cisco Cache Engine and WCCP Network Configuration](image-url)
WCCP Message Exchange

This sequence of events describes the WCCP message exchange:

1. The application engines send their IP addresses to the WCCP-enabled switch by using WCCP, signaling their presence through a Here I am message. The switch and application engines communicate to each other through a control channel based on UDP port 2048.

2. The WCCP-enabled switch uses the application engine IP information to create a cluster view (a list of application engines in the cluster). This view is sent through an I see you message to each application engine in the cluster, essentially making all the application engines aware of each other. A stable view is established after the membership of the cluster remains the same for a certain amount of time.

3. When a stable view is established, the application engine in the cluster with the lowest IP address is elected as the designated application engine.

WCCP Negotiation

In the exchange of WCCP protocol messages, the designated application engine and the WCCP-enabled switch negotiate these items:

- Forwarding method (the method by which the switch forwards packets to the application engine). The switch rewrites the Layer 2 header by replacing the packet destination MAC address with the target application engine MAC address. It then forwards the packet to the application engine. This forwarding method requires the target application engine to be directly connected to the switch at Layer 2.

- Assignment method (the method by which packets are distributed among the application engines in the cluster). The switch uses some bits of the destination IP address, the source IP address, the destination Layer 4 port, and the source Layer 4 port to determine which application engine receives the redirected packets.

- Packet-return method (the method by which packets are returned from the application engine to the switch for normal forwarding). These are the typical reasons why an application engine rejects packets and starts the packet-return feature:
  - The application engine is overloaded and has no room to service the packets.
  - The application engine receives an error message (such as a protocol or authentication error) from the server and uses the dynamic client bypass feature. The bypass enables clients to bypass the application engines and to connect directly to the server.

The application engine returns a packet to the WCCP-enabled switch to forward to the server as if the application engine is not present. The application engine does not intercept the reconnection attempt. In this way, the application engine effectively cancels the redirection of a packet to the application engine and creates a bypass flow. If the return method is generic-route encapsulation (GRE), the switch receives the returned packet through a GRE tunnel that is configured in the application engine. The switch CPU uses Cisco Express Forwarding to send these packets to the target server. If the return method is Layer 2 rewrite, the packets are forwarded in hardware to the target server. When the server responds with the information, the switch uses normal Layer 3 forwarding to return the information to the requesting client.
Understanding WCCP

MD5 Security

WCCP provides an optional security component in each protocol message to enable the switch to use MD5 authentication on messages between the switch and the application engine. Messages that do not authenticate by MD5 (when authentication of the switch is enabled) are discarded by the switch. The password string is combined with the MD5 value to create security for the connection between the switch and the application engine. You must configure the same password on each application engine.

Packet Redirection and Service Groups

You can configure WCCP to classify traffic for redirection, such as FTP, proxy-web-cache handling, and audio and video applications. This classification, known as a service group, is based on the protocol type (TCP or UDP) and the Layer 4 source destination port numbers. The service groups are identified either by well-known names such as web-cache, which means TCP port 80, or a service number, 0 to 99.

Service groups are configured to map to a protocol and Layer 4 port numbers and are established and maintained independently. WCCP allows dynamic service groups, where the classification criteria are provided dynamically by a participating application engine.

You can configure up to 8 service groups on a switch and up to 32 clients per service group. WCCP maintains the priority of the service group in the group definition. WCCP uses the priority to configure the service groups in the switch hardware. For example, if service group 1 has a priority of 100 and looks for destination port 80, and service group 2 has a priority of 50 and looks for source port 80, the incoming packet with source and destination port 80 is forwarded by using service group 1 because it has the higher priority.

WCCP supports a cluster of application engines for every service group. Redirected traffic can be sent to any one of the application engines. The switch supports the mask assignment method of load balancing the traffic among the application engines in the cluster for a service group.

After WCCP is configured on the switch, the switch forwards all service group packets received from clients to the application engines. However, these packets are not redirected:

- Packets originating from the application engine and targeted to the server.
- Packets originating from the application engine and targeted to the client.
- Packets returned or rejected by the application engine. These packets are sent to the server.

You can configure a single multicast address per service group for sending and receiving protocol messages. When there is a single multicast address, the application engine sends a notification to one address, which provides coverage for all routers in the service group, for example, 225.0.0.0. If you add and remove routers dynamically, using a single multicast address provides easier configuration because you do not need to specifically enter the addresses of all devices in the WCCP network.

You can use a router group list to validate the protocol packets received from the application engine. Packets matching the address in the group list are processed, packets not matching the group list address are dropped.

To disable caching for specific clients, servers, or client/server pairs, you can use a WCCP redirect access control list (ACL). Packets that do not match the redirect ACL bypass the cache and are forwarded normally.

Before WCCP packets are redirected, the switch examines ACLs associated with all inbound features configured on the interface and permits or denies packet forwarding based on how the packet matches the entries in the ACL.
When packets are redirected, the output ACLs associated with the redirected interface are applied to the packets. Any ACLs associated with the original port are not applied unless you specifically configure the required output ACLs on the redirected interfaces.

**WCCP and Switch Stacks**

WCCP support is the same for a switch stack as for a standalone switch. WCCP configuration information is propagated to all switches in the stack. All switches in the stack, including the stack master, process the information and program their hardware. For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”

The stack master performs these WCCP functions:

- It receives protocol packets from any WCCP-enabled interface and sends them out any WCCP-enabled interface in the stack.
- It processes the WCCP configuration and propagates the information to all stack members.
- It distributes the WCCP information to any switch that joins the stack.
- It programs its hardware with the WCCP information it processes.

Stack members receive the WCCP information from the master switch and program their hardware.

**Unsupported WCCP Features**

These WCCP features are not supported in this software release:

- Packet redirection on an outbound interface that is configured by using the `ip wccp redirect out` interface configuration command. This command is not supported.
- The GRE forwarding method for packet redirection is not supported.
- The hash assignment method for load balancing is not supported.
- There is no SNMP support for WCCP.

**Configuring WCCP**

These sections describe how to configure WCCP on your switch:

- Default WCCP Configuration, page 44-6
- WCCP Configuration Guidelines, page 44-6
- Enabling the Cache Service, page 44-6 (required)
Default WCCP Configuration

Table 44-1 shows the default WCCP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCCP enable state</td>
<td>WCCP services are disabled.</td>
</tr>
<tr>
<td>Protocol version</td>
<td>WCCPv2.</td>
</tr>
<tr>
<td>Redirecting traffic received on an interface</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

WCCP Configuration Guidelines

Before configuring WCCP on your switch, make sure to follow these configuration guidelines:

- The application engines and switches in the same service group must be in the same subnetwork directly connected to the switch that has WCCP enabled.
- Configure the switch interfaces that are connected to the clients, the application engines, and the server as Layer 3 interfaces (routed ports and switch virtual interfaces [SVIs]). For WCCP packet redirection to work, the servers, application engines, and clients must be on different subnets.
- Use only nonreserved multicast addresses when configuring a single multicast address for each application engine.
- WCCP entries and PBR entries use the same TCAM region. WCCP is supported only on the templates that support PBR: access, routing, and dual IPv4/v6 routing.
- When TCAM entries are not available to add WCCP entries, packets are not redirected and are forwarded by using the standard routing tables.
- The number of available policy-based routing (PBR) labels are reduced as more interfaces are enabled for WCCP ingress redirection. For every interface that supports service groups, one label is consumed. The WCCP labels are taken from the PBR labels. You need to monitor and manage the labels that are available between PBR and WCCP. When labels are not available, the switch cannot add service groups. However, if another interface has the same sequence of service groups, a new label is not needed, and the group can be added to the interface.
- The routing maximum transmission unit (MTU) size configured on the stack member switches should be larger than the client MTU size. The MAC-layer MTU size configured on ports connected to application engines should take into account the GRE tunnel header bytes.
- You cannot configure WCCP and VPN routing/forwarding (VRF) on the same switch interface.
- You cannot configure WCCP and PBR on the same switch interface.
- You cannot configure WCCP and a private VLAN (PVLAN) on the same switch interface.

Enabling the Cache Service

For WCCP packet redirection to operate, you must configure the switch interface connected to the client to redirect inbound packets.

This procedure shows how to configure these features on routed ports. To configure these features on SVIs, see the configuration examples that follow the procedure.
Beginning in privileged EXEC mode, follow these steps to enable the cache service, to set a multicast group address or group list, to configure routed interfaces, to redirect inbound packets received from a client to the application engine, enable an interface to listen for a multicast address, and to set a password. This procedure is required.

Before configuring WCCP commands, configure the SDM template, and reboot the switch. For more information, see Chapter 8, “Configuring SDM Templates.”

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip wccp [web-cache</td>
<td>Enable the cache service, and specify the service number which corresponds to a dynamic service that is defined by the application engine. By default, this feature is disabled.</td>
</tr>
<tr>
<td></td>
<td>service-number] [group-address groupaddress] [group-list access-list] [redirect-list access-list] [password encryption-number password]</td>
<td>(Optional) For group-address groupaddress, specify the multicast group address used by the switches and the application engines to participate in the service group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) For group-list access-list, if a multicast group address is not used, specify a list of valid IP addresses that correspond to the application engines that are participating in the service group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) For redirect-list access-list, specify the redirect service for specific hosts or specific packets from hosts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) For password encryption-number password, specify an encryption number. The range is 0 to 7. Use 0 for not encrypted, and use 7 for proprietary. Specify a password name up to seven characters in length. The switch combines the password with the MD5 authentication value to create security for the connection between the switch and the application engine. By default, no password is configured, and no authentication is performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You must configure the same password on each application engine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When authentication is enabled, the switch discards messages that are not authenticated.</td>
</tr>
<tr>
<td>3</td>
<td>interface interface-id</td>
<td>Specify the interface connected to the application engine or the server, and enter interface configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>no switchport</td>
<td>Enter Layer 3 mode.</td>
</tr>
<tr>
<td>5</td>
<td>ip address ip-address subnet-mask</td>
<td>Configure the IP address and subnet mask.</td>
</tr>
<tr>
<td>6</td>
<td>no shutdown</td>
<td>Enable the interface.</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Return to global configuration mode. Repeat Steps 3 through 7 for each application engine and server.</td>
</tr>
<tr>
<td>8</td>
<td>interface interface-id</td>
<td>Specify the interface connected to the client, and enter interface configuration mode.</td>
</tr>
<tr>
<td>9</td>
<td>no switchport</td>
<td>Enter Layer 3 mode.</td>
</tr>
<tr>
<td>10</td>
<td>ip address ip-address subnet-mask</td>
<td>Configure the IP address and subnet mask.</td>
</tr>
<tr>
<td>11</td>
<td>no shutdown</td>
<td>Enable the interface.</td>
</tr>
</tbody>
</table>
Configuring WCCP

To disable the cache service, use the `no ip wccp web-cache` global configuration command. To disable inbound packet redirection, use the `no ip wccp web-cache redirect in` interface configuration command. After completing this procedure, configure the application engines in the network.

This example shows how to configure routed interfaces and to enable the cache service with a multicast group address and a redirect access list. Gigabit Ethernet port 1 is connected to the application engine, is configured as a routed port with an IP address of 172.20.10.30, and is re-enabled. Gigabit Ethernet port 2 is connected through the Internet to the server, is configured as a routed port with an IP address of 175.20.20.10, and is re-enabled. Gigabit Ethernet ports 3 to 6 are connected to the clients and are configured as routed ports with IP addresses 175.20.30.20, 175.20.40.30, 175.20.50.40, and 175.20.60.50. The switch listens for multicast traffic and redirects packets received from the client interfaces to the application engine.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12</td>
<td>**ip wccp {web-cache</td>
</tr>
<tr>
<td>Step 13</td>
<td>**ip wccp {web-cache</td>
</tr>
<tr>
<td>Step 14</td>
<td><strong>exit</strong> Return to global configuration mode. Repeat Steps 8 through 13 for each client.</td>
</tr>
<tr>
<td>Step 15</td>
<td><strong>end</strong> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 16</td>
<td><strong>show ip wccp web-cache</strong> and <strong>show running-config</strong> Verify your entries.</td>
</tr>
<tr>
<td>Step 17</td>
<td><strong>copy running-config startup-config</strong> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Switch# configure terminal
Switch(config)# ip wccp web-cache 80 group-address 224.1.1.100 redirect list 12
Switch(config)# access-list 12 permit host 10.1.1.1
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ip address 172.20.10.30 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache group-listen
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.20.10 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.30.20 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.40.30 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/5
Switch(config-if)# no switchport
This example shows how to configure SVIs and how to enable the cache service with a multicast group list. VLAN 299 is created and configured with an IP address of 175.20.20.10. Gigabit Ethernet port 1 is connected through the Internet to the server and is configured as an access port in VLAN 299. VLAN 300 is created and configured with an IP address of 172.20.10.30. Gigabit Ethernet port 2 is connected to the application engine and is configured as an access port in VLAN 300. VLAN 301 is created and configured with an IP address of 175.20.30.50. Fast Ethernet ports 3 to 6, which are connected to the clients, are configured as access ports in VLAN 301. The switch redirects packets received from the client interfaces to the application engine.

Switch# configure terminal
Switch(config)# ip wccp web-cache 80 group-list 15
Switch(config)# access-list 15 permit host 171.69.198.102
Switch(config)# access-list 15 permit host 171.69.198.104
Switch(config)# access-list 15 permit host 171.69.198.106
Switch(config)# vlan 299
Switch(config-vlan)# exit
Switch(config)# interface vlan 299
Switch(config-if)# ip address 175.20.20.10 255.255.255.0
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 299
Switch(config)# vlan 300
Switch(config-vlan)# exit
Switch(config)# interface vlan 300
Switch(config-if)# ip address 171.69.198.100 255.255.255.0
Switch(config-if)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 300
Switch(config-if)# exit
Switch(config)# vlan 301
Switch(config-vlan)# exit
Switch(config)# interface vlan 301
Switch(config-if)# ip address 175.20.30.20 255.255.255.0
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
Switch(config)# interface range gigabitethernet1/0/3 - 6
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 301
Switch(config-if-range)# exit
### Monitoring and Maintaining WCCP

To monitor and maintain WCCP, use one or more of the privileged EXEC commands in Table 44-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip wccp web-cache</td>
<td>Removes statistics for the web-cache service.</td>
</tr>
<tr>
<td>show ip wccp web-cache</td>
<td>Displays global information related to WCCP.</td>
</tr>
<tr>
<td>show ip wccp web-cache detail</td>
<td>Displays information for the switch and all application engines in the WCCP cluster.</td>
</tr>
<tr>
<td>show ip interface</td>
<td>Displays status about any IP WCCP redirection commands that are configured on an interface; for example, Web Cache Redirect is enabled / disabled.</td>
</tr>
<tr>
<td>show ip wccp web-cache view</td>
<td>Displays which other members have or have not been detected.</td>
</tr>
</tbody>
</table>
Configuring IP Multicast Routing

This chapter describes how to configure IP multicast routing on the switch. IP multicasting is a more efficient way to use network resources, especially for bandwidth-intensive services such as audio and video. IP multicast routing enables a host (source) to send packets to a group of hosts (receivers) anywhere within the IP network by using a special form of IP address called the IP multicast group address. The sending host inserts the multicast group address into the IP destination address field of the packet, and IP multicast routers and multilayer switches forward incoming IP multicast packets out all interfaces that lead to members of the multicast group. Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message.

To use this feature, the switch or stack master must be running the IP services feature set. To use the PIM stub routing feature, the switch or stack master can be running the IP base image.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

This chapter consists of these sections:

- Understanding Cisco’s Implementation of IP Multicast Routing, page 45-1
- Multicast Routing and Switch Stacks, page 45-9
- Configuring IP Multicast Routing, page 45-10
- Configuring Advanced PIM Features, page 45-39
- Configuring Optional IGMP Features, page 45-43
- Configuring Optional Multicast Routing Features, page 45-48
- Configuring Basic DVMRP Interoperability Features, page 45-53
- Configuring Advanced DVMRP Interoperability Features, page 45-58
- Monitoring and Maintaining IP Multicast Routing, page 45-66

For information on configuring the Multicast Source Discovery Protocol (MSDP), see Chapter 46, “Configuring MSDP.”

Understanding Cisco’s Implementation of IP Multicast Routing

The Cisco IOS software supports these protocols to implement IP multicast routing:

- Internet Group Management Protocol (IGMP) is used among hosts on a LAN and the routers (and multilayer switches) on that LAN to track the multicast groups of which hosts are members.
- Protocol-Independent Multicast (PIM) protocol is used among routers and multilayer switches to track which multicast packets to forward to each other and to their directly connected LANs.
• Distance Vector Multicast Routing Protocol (DVMRP) is used on the multicast backbone of the Internet (MBONE). The software supports PIM-to-DVMRP interaction.
• Cisco Group Management Protocol (CGMP) is used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP.

Figure 45-1 shows where these protocols operate within the IP multicast environment.

According to IPv4 multicast standards, the MAC destination multicast address begins with 0100:5e and is appended by the last 23 bits of the IP address. For example, if the IP destination address is 239.1.1.39, the MAC destination address is 0100:5e01:0127.

A multicast packet is unmatched when the destination IPv4 address does not match the destination MAC address. The switch forwards the unmatched packet in hardware based on the MAC address table. If the destination MAC address is not in the MAC address table, the switch floods the packet to the all port in the same VLAN as the receiving port.

This section includes information about these topics:
• Understanding IGMP, page 45-2
• Understanding PIM, page 45-3
• Understanding DVMRP, page 45-8
• Understanding CGMP, page 45-9

Understanding IGMP

To participate in IP multicasting, multicast hosts, routers, and multilayer switches must have the IGMP operating. This protocol defines the querier and host roles:
• A querier is a network device that sends query messages to discover which network devices are members of a given multicast group.
• A host is a receiver that sends report messages (in response to query messages) to inform a querier of a host membership.
Understanding Cisco's Implementation of IP Multicast Routing

A set of queriers and hosts that receive multicast data streams from the same source is called a multicast group. Queriers and hosts use IGMP messages to join and leave multicast groups.

Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message. Membership in a multicast group is dynamic; hosts can join and leave at any time. There is no restriction on the location or number of members in a multicast group.

A host can be a member of more than one multicast group at a time. How active a multicast group is and what members it has can vary from group to group and from time to time. A multicast group can be active for a long time, or it can be very short-lived. Membership in a group can constantly change. A group that has members can have no activity.

IP multicast traffic uses group addresses, which are class D addresses. The high-order bits of a Class D address are 1110. Therefore, host group addresses can be in the range 224.0.0.0 through 239.255.255.255. Multicast addresses in the range 224.0.0.0 to 224.0.0.255 are reserved for use by routing protocols and other network control traffic. The address 224.0.0.0 is guaranteed not to be assigned to any group.

IGMP packets are sent using these IP multicast group addresses:
- IGMP general queries are destined to the address 224.0.0.1 (all systems on a subnet).
- IGMP group-specific queries are destined to the group IP address for which the switch is querying.
- IGMP group membership reports are destined to the group IP address for which the switch is reporting.
- IGMP Version 2 (IGMPv2) leave messages are destined to the address 224.0.0.2 (all-multicast-routers on a subnet). In some old host IP stacks, leave messages might be destined to the group IP address rather than to the all-routers address.

**IGMP Version 1**

IGMP Version 1 (IGMPv1) primarily uses a query-response model that enables the multicast router and multilayer switch to find which multicast groups are active (have one or more hosts interested in a multicast group) on the local subnet. IGMPv1 has other processes that enable a host to join and leave a multicast group. For more information, see RFC 1112.

**IGMP Version 2**

IGMPv2 extends IGMP functionality by providing such features as the IGMP leave process to reduce leave latency, group-specific queries, and an explicit maximum query response time. IGMPv2 also adds the capability for routers to elect the IGMP querier without depending on the multicast protocol to perform this task. For more information, see RFC 2236.

**Understanding PIM**

PIM is called protocol-independent: regardless of the unicast routing protocols used to populate the unicast routing table, PIM uses this information to perform multicast forwarding instead of maintaining a separate multicast routing table.

PIM is defined in RFC 2362, Protocol-Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification. PIM is defined in these Internet Engineering Task Force (IETF) Internet drafts:
- Protocol Independent Multicast (PIM): Motivation and Architecture
- Protocol Independent Multicast (PIM), Dense Mode Protocol Specification
• Protocol Independent Multicast (PIM), Sparse Mode Protocol Specification
• draft-ietf-idmr-igmp-v2-06.txt, Internet Group Management Protocol, Version 2
• draft-ietf-pim-v2-dm-03.txt, PIM Version 2 Dense Mode

PIM Versions

PIMv2 includes these improvements over PIMv1:
• A single, active rendezvous point (RP) exists per multicast group, with multiple backup RPs. This single RP compares to multiple active RPs for the same group in PIMv1.
• A bootstrap router (BSR) provides a fault-tolerant, automated RP discovery and distribution mechanism that enables routers and multilayer switches to dynamically learn the group-to-RP mappings.
• Sparse mode and dense mode are properties of a group, as opposed to an interface. We strongly recommend sparse-dense mode, as opposed to either sparse mode or dense mode only.
• PIM join and prune messages have more flexible encoding for multiple address families.
• A more flexible hello packet format replaces the query packet to encode current and future capability options.
• Register messages to an RP specify whether they are sent by a border router or a designated router.
• PIM packets are no longer inside IGMP packets; they are standalone packets.

PIM Modes

PIM can operate in dense mode (DM), sparse mode (SM), or in sparse-dense mode (PIM DM-SM), which handles both sparse groups and dense groups at the same time.

PIM DM

PIM DM builds source-based multicast distribution trees. In dense mode, a PIM DM router or multilayer switch assumes that all other routers or multilayer switches forward multicast packets for a group. If a PIM DM device receives a multicast packet and has no directly connected members or PIM neighbors present, a prune message is sent back to the source to stop unwanted multicast traffic. Subsequent multicast packets are not flooded to this router or switch on this pruned branch because branches without receivers are pruned from the distribution tree, leaving only branches that contain receivers.

When a new receiver on a previously pruned branch of the tree joins a multicast group, the PIM DM device detects the new receiver and immediately sends a graft message up the distribution tree toward the source. When the upstream PIM DM device receives the graft message, it immediately puts the interface on which the graft was received into the forwarding state so that the multicast traffic begins flowing to the receiver.

PIM-SM

PIM-SM uses shared trees and shortest-path-trees (SPTs) to distribute multicast traffic to multicast receivers in the network. In PIM-SM, a router or multilayer switch assumes that other routers or switches do not forward multicast packets for a group, unless there is an explicit request for the traffic (join message). When a host joins a multicast group using IGMP, its directly connected PIM-SM device sends PIM join messages toward the root, also known as the RP. This join message travels router-by-router toward the root, constructing a branch of the shared tree as it goes.
The RP keeps track of multicast receivers. It also registers sources through register messages received from the source’s first-hop router (designated router [DR]) to complete the shared tree path from the source to the receiver. When using a shared tree, sources must send their traffic to the RP so that the traffic reaches all receivers.

Prune messages are sent up the distribution tree to prune multicast group traffic. This action permits branches of the shared tree or SPT that were created with explicit join messages to be torn down when they are no longer needed.

When the number of PIM-enabled interfaces exceeds the hardware capacity and PIM-SM is enabled with the SPT threshold is set to \textit{infinity}, the switch does not create (S,G) entries in the multicast routing table for the some directly connected interfaces if they are not already in the table. The switch might not correctly forward traffic from these interfaces.

**PIM Stub Routing**

The PIM stub routing feature, available in all software images, reduces resource usage by moving routed traffic closer to the end user.

---

\textbf{Note}

The IP base image contains only PIM stub routing. The IP services image contains complete multicast routing. On a switch running the IP base image, if you try to configure a VLAN interface with PIM dense-mode, sparse-mode, or dense-sparse-mode, the configuration is not allowed.

In a network using PIM stub routing, the only allowable route for IP traffic to the user is through a switch that is configured with PIM stub routing. PIM passive interfaces are connected to Layer 2 access domains, such as VLANs, or to interfaces that are connected to other Layer 2 devices. Only directly connected multicast (IGMP) receivers and sources are allowed in the Layer 2 access domains. The PIM passive interfaces do not send or process any received PIM control packets.

When using PIM stub routing, you should configure the distribution and remote routers to use IP multicast routing and configure only the switch as a PIM stub router. The switch does not route transit traffic between distribution routers. You also need to configure a routed uplink port on the switch. The switch uplink port cannot be used with SVIs. If you need PIM for an SVI uplink port, you should upgrade to the IP services feature set.

You must also configure EIGRP stub routing when configuring PIM stub routing on the switch. For more information, see the “EIGRP Stub Routing” section on page 39-49.

The redundant PIM stub router topology is not supported. The redundant topology exists when there is more than one PIM router forwarding multicast traffic to a single access domain. PIM messages are blocked, and the PIM asset and designated router election mechanisms are not supported on the PIM passive interfaces. Only the nonredundant access router topology is supported by the PIM stub feature. By using a nonredundant topology, the PIM passive interface assumes that it is the only interface and designated router on that access domain.

The PIM stub feature is enforced in the IP base image. If you upgrade to a higher software version, the PIM stub configuration remains until you reconfigure the interfaces.

In Figure 45-2, Switch A routed uplink port 25 is connected to the router and PIM stub routing is enabled on the VLAN 100 interfaces and on Host 3. This configuration allows the directly connected hosts to receive traffic from multicast source 200.1.1.3. See the “Enabling PIM Stub Routing” section on page 45-26 for more information.
IGMP Helper

PIM stub routing moves routed traffic closer to the end user and reduces network traffic. You can also reduce traffic by configuring a stub router (switch) with the IGMP helper feature.

You can configure a stub router (switch) with the `igmp helper help-address` interface configuration command to enable the switch to send reports to the next-hop interface. Hosts that are not directly connected to a downstream router can then join a multicast group sourced from an upstream network. The IGMP packets from a host wanting to join a multicast stream are forwarded upstream to the next-hop device when this feature is configured. When the upstream central router receives the helper IGMP reports or leaves, it adds or removes the interfaces from its outgoing interface list for that group.

Auto-RP

This proprietary feature eliminates the need to manually configure the RP information in every router and multilayer switch in the network. For auto-RP to work, you configure a Cisco router or multilayer switch as the mapping agent. It uses IP multicast to learn which routers or switches in the network are possible candidate RPs to receive candidate RP announcements. Candidate RPs periodically send multicast RP-announce messages to a particular group or group range to announce their availability.

Mapping agents listen to these candidate RP announcements and use the information to create entries in their Group-to-RP mapping caches. Only one mapping cache entry is created for any Group-to-RP range received, even if multiple candidate RPs are sending RP announcements for the same range. As the RP-announce messages arrive, the mapping agent selects the router or switch with the highest IP address as the active RP and stores this RP address in the Group-to-RP mapping cache.

Mapping agents periodically multicast the contents of their Group-to-RP mapping caches. Thus, all routers and switches automatically discover which RP to use for the groups that they support. If a router or switch fails to receive RP-discovery messages and the Group-to-RP mapping information expires, it changes to a statically configured RP that was defined with the `ip pim rp-address` global configuration command. If no statically configured RP exists, the router or switch changes the group to dense-mode operation.

Multiple RPs serve different group ranges or serve as hot backups of each other.
Bootstrap Router

PIMv2 BSR is another method to distribute group-to-RP mapping information to all PIM routers and multilayer switches in the network. It eliminates the need to manually configure RP information in every router and switch in the network. However, instead of using IP multicast to distribute group-to-RP mapping information, BSR uses hop-by-hop flooding of special BSR messages to distribute the mapping information.

The BSR is elected from a set of candidate routers and switches in the domain that have been configured to function as BSRs. The election mechanism is similar to the root-bridge election mechanism used in bridged LANs. The BSR election is based on the BSR priority of the device contained in the BSR messages that are sent hop-by-hop through the network. Each BSR device examines the message and forwards out all interfaces only the message that has either a higher BSR priority than its BSR priority or the same BSR priority, but with a higher BSR IP address. Using this method, the BSR is elected.

The elected BSR sends BSR messages with a TTL of 1. Neighboring PIMv2 routers or multilayer switches receive the BSR message and multicast it out all other interfaces (except the one on which it was received) with a TTL of 1. In this way, BSR messages travel hop-by-hop throughout the PIM domain. Because BSR messages contain the IP address of the current BSR, the flooding mechanism enables candidate RPs to automatically learn which device is the elected BSR.

Candidate RPs send candidate RP advertisements showing the group range for which they are responsible to the BSR, which stores this information in its local candidate-RP cache. The BSR periodically advertises the contents of this cache in BSR messages to all other PIM devices in the domain. These messages travel hop-by-hop through the network to all routers and switches, which store the RP information in the BSR message in their local RP cache. The routers and switches select the same RP for a given group because they all use a common RP hashing algorithm.

Multicast Forwarding and Reverse Path Check

With unicast routing, routers and multilayer switches forward traffic through the network along a single path from the source to the destination host whose IP address appears in the destination address field of the IP packet. Each router and switch along the way makes a unicast forwarding decision, using the destination IP address in the packet, by looking up the destination address in the unicast routing table and forwarding the packet through the specified interface to the next hop toward the destination.

With multicasting, the source is sending traffic to an arbitrary group of hosts represented by a multicast group address in the destination address field of the IP packet. To decide whether to forward or drop an incoming multicast packet, the router or multilayer switch uses a reverse path forwarding (RPF) check on the packet as follows and shown in Figure 45-3:

1. The router or multilayer switch examines the source address of the arriving multicast packet to decide whether the packet arrived on an interface that is on the reverse path back to the source.
2. If the packet arrives on the interface leading back to the source, the RPF check is successful and the packet is forwarded to all interfaces in the outgoing interface list (which might not be all interfaces on the router).
3. If the RPF check fails, the packet is discarded.

Some multicast routing protocols, such as DVMRP, maintain a separate multicast routing table and use it for the RPF check. However, PIM uses the unicast routing table to perform the RPF check.

Figure 45-3 shows port 2 receiving a multicast packet from source 151.10.3.21. Table 45-1 shows that the port on the reverse path to the source is port 1, not port 2. Because the RPF check fails, the multilayer switch discards the packet. Another multicast packet from source 151.10.3.21 is received on port 1, and the routing table shows this port is on the reverse path to the source. Because the RPF check passes, the switch forwards the packet to all port in the outgoing port list.
Understanding Cisco’s Implementation of IP Multicast Routing

Figure 45-3  RPF Check

Table 45-1  Routing Table Example for an RPF Check

<table>
<thead>
<tr>
<th>Network</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.10.0.0/16</td>
<td>Gigabit Ethernet 1/0/1</td>
</tr>
<tr>
<td>198.14.32.0/32</td>
<td>Gigabit Ethernet 1/0/3</td>
</tr>
<tr>
<td>204.1.16.0/24</td>
<td>Gigabit Ethernet 1/0/4</td>
</tr>
</tbody>
</table>

PIM uses both source trees and RP-rooted shared trees to forward datagrams (described in the “PIM DM” section on page 45-4 and the “PIM-SM” section on page 45-5). The RPF check is performed differently for each:

- If a PIM router or multilayer switch has a source-tree state (that is, an (S,G) entry is present in the multicast routing table), it performs the RPF check against the IP address of the source of the multicast packet.
- If a PIM router or multilayer switch has a shared-tree state (and no explicit source-tree state), it performs the RPF check on the RP address (which is known when members join the group).

Sparse-mode PIM uses the RPF lookup function to decide where it needs to send joins and prunes:

- (S,G) joins (which are source-tree states) are sent toward the source.
- (*,G) joins (which are shared-tree states) are sent toward the RP.

DVMRP and dense-mode PIM use only source trees and use RPF as previously described.

Understanding DVMRP

DVMRP is implemented in the equipment of many vendors and is based on the public-domain mrouted program. This protocol has been deployed in the MBONE and in other intradomain multicast networks.

Cisco routers and multilayer switches run PIM and can forward multicast packets to and receive from a DVMRP neighbor. It is also possible to propagate DVMRP routes into and through a PIM cloud. The software propagates DVMRP routes and builds a separate database for these routes on each router and multilayer switch, but PIM uses this routing information to make the packet-forwarding decision. The software does not implement the complete DVMRP. However, it supports dynamic discovery of DVMRP routers and can interoperate with them over traditional media (such as Ethernet and FDDI) or over DVMRP-specific tunnels.
DVMRP neighbors build a route table by periodically exchanging source network routing information in route-report messages. The routing information stored in the DVMRP routing table is separate from the unicast routing table and is used to build a source distribution tree and to perform multicast forwarding using RPF.

DVMRP is a dense-mode protocol and builds a parent-child database using a constrained multicast model to build a forwarding tree rooted at the source of the multicast packets. Multicast packets are initially flooded down this source tree. If redundant paths are on the source tree, packets are not forwarded along those paths. Forwarding occurs until prune messages are received on the parent-child links, which further constrain the broadcast of multicast packets.

**Understanding CGMP**

This software release provides CGMP-server support on your switch; no client-side functionality is provided. The switch serves as a CGMP server for devices that do not support IGMP snooping but have CGMP-client functionality.

CGMP is a protocol used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP. CGMP permits Layer 2 group membership information to be communicated from the CGMP server to the switch. The switch can then learn on which interfaces multicast members reside instead of flooding multicast traffic to all switch interfaces. (IGMP snooping is another method to constrain the flooding of multicast packets. For more information, see Chapter 24, “Configuring IGMP Snooping and MVR.”)

CGMP is necessary because the Layer 2 switch cannot distinguish between IP multicast data packets and IGMP report messages, which are both at the MAC-level and are addressed to the same group address.

CGMP is mutually exclusive with HSRPv1. You cannot enable CGMP leaving processing and HSRPv1 at the same time. However, you can enable CGMP and HSRPv2 at the same time. For more information, see the “HSRP Versions” section on page 41-3.

**Multicast Routing and Switch Stacks**

For all multicast routing protocols, the entire stack appears as a single router to the network and operates as a single multicast router.

In a switch stack, the routing master (stack master) performs these functions:

- It is responsible for completing the IP multicast routing functions of the stack. It fully initializes and runs the IP multicast routing protocols.
- It builds and maintains the multicast routing table for the entire stack.
- It is responsible for distributing the multicast routing table to all stack members.

The stack members perform these functions:

- They act as multicast routing standby devices and are ready to take over if there is a stack master failure.

If the stack master fails, all stack members delete their multicast routing tables. The newly elected stack master starts building the routing tables and distributes them to the stack members.

**Note**

If a stack master running the IP services feature set fails and if the newly elected stack master is running the IP base feature set, the switch stack loses its multicast routing capability.
For information about the stack master election process, see Chapter 7, “Managing Switch Stacks.”

- They do not build multicast routing tables. Instead, they use the multicast routing table that is distributed by the stack master.

## Configuring IP Multicast Routing

These sections contain this configuration information:

- Default Multicast Routing Configuration, page 45-10
- Multicast Routing Configuration Guidelines, page 45-11
- Configuring Basic Multicast Routing, page 45-12 (required)
- Configuring Source-Specific Multicast, page 45-23
- Enabling PIM Stub Routing, page 45-26 (optional)
- Configuring a Rendezvous Point, page 45-27 (required if the interface is in sparse-dense mode, and you want to treat the group as a sparse group)
- Using Auto-RP and a BSR, page 45-37 (required for non-Cisco PIMv2 devices to interoperate with Cisco PIM v1 devices)
- Monitoring the RP Mapping Information, page 45-39 (optional)
- Troubleshooting PIMv1 and PIMv2 Interoperability Problems, page 45-39 (optional)

## Default Multicast Routing Configuration

Table 45-2 shows the default multicast routing configuration.

### Table 45-2 Default Multicast Routing Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast routing</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>PIM version</td>
<td>Version 2.</td>
</tr>
<tr>
<td>PIM mode</td>
<td>No mode is defined.</td>
</tr>
<tr>
<td>PIM stub routing</td>
<td>None configured.</td>
</tr>
<tr>
<td>PIM RP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>PIM domain border</td>
<td>Disabled.</td>
</tr>
<tr>
<td>PIM multicast boundary</td>
<td>None.</td>
</tr>
<tr>
<td>Candidate BSRs</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Candidate RPs</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Shortest-path tree threshold rate</td>
<td>0 kb/s.</td>
</tr>
<tr>
<td>PIM router query message interval</td>
<td>30 seconds.</td>
</tr>
</tbody>
</table>

## Multicast Routing Configuration Guidelines

To avoid misconfiguring multicast routing on your switch, review the information in these sections:
PIM v1 and PIM v2 Interoperability

The Cisco PIMv2 implementation provides interoperability and transition between Version 1 and Version 2, although there might be some minor problems.

You can upgrade to PIMv2 incrementally. PIM Versions 1 and 2 can be configured on different routers and multilayer switches within one network. Internally, all routers and multilayer switches on a shared media network must run the same PIM version. Therefore, if a PIMv2 device detects a PIMv1 device, the Version 2 device downgrades itself to Version 1 until all Version 1 devices have been shut down or upgraded.

PIMv2 uses the BSR to discover and announce RP-set information for each group prefix to all the routers and multilayer switches in a PIM domain. PIMv1, together with the Auto-RP feature, can perform the same tasks as the PIMv2 BSR. However, Auto-RP is a standalone protocol, separate from PIMv1, and is a proprietary Cisco protocol. PIMv2 is a standards track protocol in the IETF. We recommend that you use PIMv2. The BSR mechanism interoperates with Auto-RP on Cisco routers and multilayer switches. For more information, see the “Auto-RP and BSR Configuration Guidelines” section on page 45-12.

When PIMv2 devices interoperate with PIMv1 devices, Auto-RP should have already been deployed. A PIMv2 BSR that is also an Auto-RP mapping agent automatically advertises the RP elected by Auto-RP. That is, Auto-RP sets its single RP on every router or multilayer switch in the group. Not all routers and switches in the domain use the PIMv2 hash function to select multiple RPs.

Dense-mode groups in a mixed PIMv1 and PIMv2 region need no special configuration; they automatically interoperate.

Sparse-mode groups in a mixed PIMv1 and PIMv2 region are possible because the Auto-RP feature in PIMv1 interoperates with the PIMv2 RP feature. Although all PIMv2 devices can also use PIMv1, we recommend that the RPs be upgraded to PIMv2. To ease the transition to PIMv2, we have these recommendations:

- Use Auto-RP throughout the region.
- Configure sparse-dense mode throughout the region.

If Auto-RP is not already configured in the PIMv1 regions, configure Auto-RP. For more information, see the “Configuring Auto-RP” section on page 45-29.

Auto-RP and BSR Configuration Guidelines

There are two approaches to using PIMv2. You can use Version 2 exclusively in your network or migrate to Version 2 by employing a mixed PIM version environment.

- If your network is all Cisco routers and multilayer switches, you can use either Auto-RP or BSR.
- If you have non-Cisco routers in your network, you must use BSR.
- If you have Cisco PIMv1 and PIMv2 routers and multilayer switches and non-Cisco routers, you must use both Auto-RP and BSR. If your network includes routers from other vendors, configure the Auto-RP mapping agent and the BSR on a Cisco PIMv2 device. Ensure that no PIMv1 device is located in the path between the BSR and a non-Cisco PIMv2 device.
- Because bootstrap messages are sent hop-by-hop, a PIMv1 device prevents these messages from reaching all routers and multilayer switches in your network. Therefore, if your network has a PIMv1 device in it and only Cisco routers and multilayer switches, it is best to use Auto-RP.
If you have a network that includes non-Cisco routers, configure the Auto-RP mapping agent and the BSR on a Cisco PIMv2 router or multilayer switch. Ensure that no PIMv1 device is on the path between the BSR and a non-Cisco PIMv2 router.

If you have non-Cisco PIMv2 routers that need to interoperate with Cisco PIMv1 routers and multilayer switches, both Auto-RP and a BSR are required. We recommend that a Cisco PIMv2 device be both the Auto-RP mapping agent and the BSR. For more information, see the “Using Auto-RP and a BSR” section on page 45-37.

Configuring Basic Multicast Routing

You must enable IP multicast routing and configure the PIM version and the PIM mode. Then the software can forward multicast packets, and the switch can populate its multicast routing table.

You can configure an interface to be in PIM dense mode, sparse mode, or sparse-dense mode. The switch populates its multicast routing table and forwards multicast packets it receives from its directly connected LANs according to the mode setting. You must enable PIM in one of these modes for an interface to perform IP multicast routing. Enabling PIM on an interface also enables IGMP operation on that interface.

Note

If you enable PIM on multiple interfaces, when most of these interfaces are not on the outgoing interface list, and IGMP snooping is disabled, the outgoing interface might not be able to sustain line rate for multicast traffic because of the extra replication.

In populating the multicast routing table, dense-mode interfaces are always added to the table. Sparse-mode interfaces are added to the table only when periodic join messages are received from downstream devices or when there is a directly connected member on the interface. When forwarding from a LAN, sparse-mode operation occurs if there is an RP known for the group. If so, the packets are encapsulated and sent toward the RP. When no RP is known, the packet is flooded in a dense-mode fashion. If the multicast traffic from a specific source is sufficient, the receiver’s first-hop router might send join messages toward the source to build a source-based distribution tree.

By default, multicast routing is disabled, and there is no default mode setting. This procedure is required. Beginning in privileged EXEC mode, follow these steps to enable IP multicasting, to configure a PIM version, and to configure a PIM mode. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: ip multicast-routing distributed</td>
<td>Enable IP multicast distributed switching.</td>
</tr>
</tbody>
</table>
Configuring IP Multicast Routing

To disable multicasting, use the `no ip multicast-routing distributed` global configuration command. To return to the default PIM version, use the `no ip pim version` interface configuration command. To disable PIM on an interface, use the `no ip pim` interface configuration command.

### Configuring Source-Specific Multicast

This section describes how to configure source-specific multicast (SSM). For a complete description of the SSM commands in this section, refer to the “IP Multicast Routing Commands” chapter of the *Cisco IOS IP Command Reference, Volume 3 of 3: Multicast*. To locate documentation for other commands that appear in this chapter, use the command reference master index, or search online.
The SSM feature is an extension of IP multicast in which datagram traffic is forwarded to receivers from only those multicast sources that the receivers have explicitly joined. For multicast groups configured for SSM, only SSM distribution trees (no shared trees) are created.

SSM Components Overview

SSM is a datagram delivery model that best supports one-to-many applications, also known as broadcast applications. SSM is a core networking technology for the Cisco implementation of IP multicast solutions targeted for audio and video broadcast application environments. The switch supports these components that support the implementation of SSM:

- Protocol independent multicast source-specific mode (PIM-SSM)
  - PIM-SSM is the routing protocol that supports the implementation of SSM and is derived from PIM sparse mode (PIM-SM).
- Internet Group Management Protocol version 3 (IGMPv3)
  - To run SSM with IGMPv3, SSM must be supported in the Cisco IOS router, the host where the application is running, and the application itself.

How SSM Differs from Internet Standard Multicast

The current IP multicast infrastructure in the Internet and many enterprise intranets is based on the PIM-SM protocol and Multicast Source Discovery Protocol (MSDP). These protocols have the limitations of the Internet Standard Multicast (ISM) service model. For example, with ISM, the network must maintain knowledge about which hosts in the network are actively sending multicast traffic.

The ISM service consists of the delivery of IP datagrams from any source to a group of receivers called the multicast host group. The datagram traffic for the multicast host group consists of datagrams with an arbitrary IP unicast source address S and the multicast group address G as the IP destination address. Systems receive this traffic by becoming members of the host group.

Membership in a host group simply requires signalling the host group through IGMP version 1, 2, or 3. In SSM, delivery of datagrams is based on (S, G) channels. In both SSM and ISM, no signalling is required to become a source. However, in SSM, receivers must subscribe or unsubscribe to (S, G) channels to receive or not receive traffic from specific sources. In other words, receivers can receive traffic only from (S, G) channels to which they are subscribed, whereas in ISM, receivers need not know the IP addresses of sources from which they receive their traffic. The proposed standard approach for channel subscription signalling use IGMP include mode membership reports, which are supported only in IGMP version 3.

SSM IP Address Range

SSM can coexist with the ISM service by applying the SSM delivery model to a configured subset of the IP multicast group address range. Cisco IOS software allows SSM configuration for the IP multicast address range of 224.0.0.0 through 239.255.255.255. When an SSM range is defined, existing IP multicast receiver applications do not receive any traffic when they try to use an address in the SSM range (unless the application is modified to use an explicit (S, G) channel subscription).
SSM Operations

An established network, in which IP multicast service is based on PIM-SM, can support SSM services. SSM can also be deployed alone in a network without the full range of protocols that are required for interdomain PIM-SM (for example, MSDP, Auto-RP, or bootstrap router [BSR]) if only SSM service is needed.

If SSM is deployed in a network already configured for PIM-SM, only the last-hop routers support SSM. Routers that are not directly connected to receivers do not require support for SSM. In general, these not-last-hop routers must only run PIM-SM in the SSM range and might need additional access control configuration to suppress MSDP signalling, registering, or PIM-SM shared tree operations from occurring within the SSM range.
Use the `ip pim ssm` global configuration command to configure the SSM range and to enable SSM. This configuration has the following effects:

- For groups within the SSM range, (S, G) channel subscriptions are accepted through IGMPv3 include-mode membership reports.
- PIM operations within the SSM range of addresses change to PIM-SSM, a mode derived from PIM-SM. In this mode, only PIM (S, G) join and prune messages are generated by the router, and no (S, G) rendezvous point tree (RPT) or (*, G) RPT messages are generated. Incoming messages related to RPT operations are ignored or rejected, and incoming PIM register messages are immediately answered with register-stop messages. PIM-SSM is backward-compatible with PIM-SM unless a router is a last-hop router. Therefore, routers that are not last-hop routers can run PIM-SM for SSM groups (for example, if they do not yet support SSM).
- No MSDP source-active (SA) messages within the SSM range are accepted, generated, or forwarded.

**IGMPv3 Host Signalling**

In IGMPv3, hosts signal membership to last hop routers of multicast groups. Hosts can signal group membership with filtering capabilities with respect to sources. A host can either signal that it wants to receive traffic from all sources sending to a group except for some specific sources (called exclude mode), or that it wants to receive traffic only from some specific sources sending to the group (called include mode).

IGMPv3 can operate with both ISM and SSM. In ISM, both exclude and include mode reports are applicable. In SSM, only include mode reports are accepted by the last-hop router. Exclude mode reports are ignored.

**Configuration Guidelines**

This section contains the guidelines for configuring SSM.

**Legacy Applications Within the SSM Range Restrictions**

Existing applications in a network predating SSM do not work within the SSM range unless they are modified to support (S, G) channel subscriptions. Therefore, enabling SSM in a network can cause problems for existing applications if they use addresses within the designated SSM range.

**Address Management Restrictions**

Address management is still necessary to some degree when SSM is used with Layer 2 switching mechanisms. Cisco Group Management Protocol (CGMP), IGMP snooping, or Router-Port Group Management Protocol (RGMP) support only group-specific filtering, not (S, G) channel-specific filtering. If different receivers in a switched network request different (S, G) channels sharing the same group, they do not benefit from these existing mechanisms. Instead, both receivers receive all (S, G) channel traffic and filter out the unwanted traffic on input. Because SSM can re-use the group addresses in the SSM range for many independent applications, this situation can lead to decreased traffic filtering in a switched network. For this reason, it is important to use random IP addresses from the SSM range for an application to minimize the chance for re-use of a single address within the SSM range between different applications. For example, an application service providing a set of television channels should, even with SSM, use a different group for each television (S, G) channel. This setup guarantees that multiple receivers to different channels within the same application service never experience traffic aliasing in networks that include Layer 2 switches.
IGMP Snooping and CGMP Limitations

IGMPv3 uses new membership report messages that might not be correctly recognized by older IGMP snooping switches.

For more information about switching issues related to IGMP (especially with CGMP), refer to the “Understanding IGMP” section on page 45-2.

State Maintenance Limitations

In PIM-SSM, the last hop router continues to periodically send (S, G) join messages if appropriate (S, G) subscriptions are on the interfaces. Therefore, as long as receivers send (S, G) subscriptions, the shortest path tree (SPT) state from the receivers to the source is maintained, even if the source does not send traffic for longer periods of time (or even never).

This case is opposite to PIM-SM, where (S, G) state is maintained only if the source is sending traffic and receivers are joining the group. If a source stops sending traffic for more than 3 minutes in PIM-SM, the (S, G) state is deleted and only re-established after packets from the source arrive again through the RPT. Because no mechanism in PIM-SSM notifies a receiver that a source is active, the network must maintain the (S, G) state in PIM-SSM as long as receivers are requesting receipt of that channel.

Configuring SSM

Beginning in privileged EXEC mode, follow these steps to configure SSM:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 ip pim ssm [default</td>
<td>range access-list]</td>
</tr>
<tr>
<td>Step 2 interface type number</td>
<td>Select an interface that is connected to hosts on which IGMPv3 can be enabled, and enter the interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip pim {sparse-mode</td>
<td>sparse-dense-mode}</td>
</tr>
<tr>
<td>Step 4 ip igmp version 3</td>
<td>Enable IGMPv3 on this interface. The default version of IGMP is set to Version 2.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Monitoring SSM

Beginning in privileged EXEC mode, follow these steps to monitor SSM:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ip igmp groups detail</td>
<td>Display the (S, G) channel subscription through IGMPv3.</td>
</tr>
<tr>
<td>Router# show ip mroute</td>
<td>Display whether a multicast group supports SSM service or whether a source-specific host report was received.</td>
</tr>
</tbody>
</table>
Configuring Source Specific Multicast Mapping

The Source Specific Multicast (SSM) mapping feature supports SSM transition when supporting SSM on the end system is impossible or unwanted due to administrative or technical reasons. You can use SSM mapping to leverage SSM for video delivery to legacy STBs that do not support IGMPv3 or for applications that do not use the IGMPv3 host stack.

This section covers these topics:

- Configuration Guidelines, page 45-18
- SSM Mapping Overview, page 45-18
- Configuring SSM Mapping, page 45-20
- Monitoring SSM Mapping, page 45-23

Configuration Guidelines

These are the SSM mapping configuration guidelines:

- Before you configure SSM mapping, enable IP multicast routing, enable PIM sparse mode, and configure SSM. For information on enabling IP multicast routing and PIM sparse mode, see the “Default Multicast Routing Configuration” section on page 45-10.

- Before you configure static SSM mapping, you must configure access control lists (ACLs) that define the group ranges to be mapped to source addresses. For information on configuring an ACL, see Chapter 35, “Configuring Network Security with ACLs.”

- Before you can configure and use SSM mapping with DNS lookups, you must be able to add records to a running DNS server. If you do not already have a DNS server running, you need to install one. You can use a product such as Cisco Network Registrar. Go to this URL for more information: http://www.cisco.com/en/US/products/sw/netmgtsw/ps1982/index.html

These are the SSM mapping restrictions:

- The SSM mapping feature does not have all the benefits of full SSM. Because SSM mapping takes a group join from a host and identifies this group with an application associated with one or more sources, it can only support one such application per group. Full SSM applications can still share the same group as in SSM mapping.

- Enable IGMPv3 with care on the last hop router when you rely solely on SSM mapping as a transition solution for full SSM. When you enable both SSM mapping and IGMPv3 and the hosts already support IGMPv3 (but not SSM), the hosts send IGMPv3 group reports. SSM mapping does not support these IGMPv3 group reports, and the router does not correctly associate sources with these reports.

SSM Mapping Overview

In a typical STB deployment, each TV channel uses one separate IP multicast group and has one active server host sending the TV channel. A single server can send multiple TV channels, but each to a different group. In this network environment, if a router receives an IGMPv1 or IGMPv2 membership report for a particular group, the report addresses the well-known TV server for the TV channel associated with the multicast group.

When SSM mapping is configured, if a router receives an IGMPv1 or IGMPv2 membership report for a particular group, the router translates this report into one or more channel memberships for the well-known sources associated with this group.
When the router receives an IGMPv1 or IGMPv2 membership report for a group, the router uses SSM mapping to determine one or more source IP addresses for the group. SSM mapping then translates the membership report as an IGMPv3 report and continues as if it had received an IGMPv3 report. The router then sends PIM joins and continues to be joined to these groups as long as it continues to receive the IGMPv1 or IGMPv2 membership reports, and the SSM mapping for the group remains the same.

SSM mapping enables the last hop router to determine the source addresses either by a statically configured table on the router or through a DNS server. When the statically configured table or the DNS mapping changes, the router leaves the current sources associated with the joined groups.

Go to this URL for additional information on SSM mapping:

**Static SSM Mapping**

With static SSM mapping, you can configure the last hop router to use a static map to determine the sources that are sending to groups. Static SSM mapping requires that you configure ACLs to define group ranges. Then you can map the groups permitted by those ACLs to sources by using the `ip igmp static ssm-map` global configuration command.

You can configure static SSM mapping in smaller networks when a DNS is not needed or to locally override DNS mappings. When configured, static SSM mappings take precedence over DNS mappings.

**DNS-Based SSM Mapping**

You can use DNS-based SSM mapping to configure the last hop router to perform a reverse DNS lookup to determine sources sending to groups. When DNS-based SSM mapping is configured, the router constructs a domain name that includes the group address and performs a reverse lookup into the DNS. The router looks up IP address resource records and uses them as the source addresses associated with this group. SSM mapping supports up to 20 sources for each group. The router joins all sources configured for a group (see Figure 45-4).
Configuring IP Multicast Routing

Chapter 45 Configuring IP Multicast Routing

Figure 45-4 DNS-Based SSM-Mapping

The SSM mapping mechanism that enables the last hop router to join multiple sources for a group can provide source redundancy for a TV broadcast. In this context, the last hop router provides redundancy using SSM mapping to simultaneously join two video sources for the same TV channel. However, to prevent the last hop router from duplicating the video traffic, the video sources must use a server-side switchover mechanism. One video source is active, and the other backup video source is passive. The passive source waits until an active source failure is detected before sending the video traffic for the TV channel. Thus, the server-side switchover mechanism ensures that only one of the servers is actively sending video traffic for the TV channel.

To look up one or more source addresses for a group that includes G1, G2, G3, and G4, you must configure these DNS records on the DNS server:

IN A source-address-2
IN A source-address-n

Refer to your DNS server documentation for more information about configuring DNS resource records, and go to this URL for additional information on SSM mapping:


Configuring SSM Mapping

This section covers these topics:

- Configuring Static SSM Mapping, page 45-21 (required)
- Configuring DNS-Based SSM Mapping, page 45-21 (required)
- Configuring Static Traffic Forwarding with SSM Mapping, page 45-22 (optional)
Configuring Static SSM Mapping

Beginning in privileged EXEC mode, follow these steps to configure static SSM mapping:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip igmp ssm-map enable</td>
</tr>
<tr>
<td></td>
<td>Enable SSM mapping for groups in the configured SSM range.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> By default, this command enables DNS-based SSM mapping.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>no ip igmp ssm-map query dns</td>
</tr>
<tr>
<td></td>
<td>(Optional) Disable DNS-based SSM mapping.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Disable DNS-based SSM mapping if you only want to rely on static SSM mapping. By default, the ip igmp ssm-map global configuration command enables DNS-based SSM mapping.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip igmp ssm-map static access-list source-address</td>
</tr>
<tr>
<td></td>
<td>Configure static SSM mapping.</td>
</tr>
<tr>
<td></td>
<td>The ACL supplied for access-list defines the groups to be mapped to the source IP address entered for the source-address.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> You can configure additional static SSM mappings. If additional SSM mappings are configured and the router receives an IGMPv1 or IGMPv2 membership report for a group in the SSM range, the switch determines the source addresses associated with the group by using each configured ip igmp ssm-map static command. The switch associates up to 20 sources per group.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Repeat Step 4 to configure additional static SSM mappings, if required.</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring DNS-Based SSM Mapping

To configure DNS-based SSM mapping, you need to create a DNS server zone or add records to an existing zone. If the routers that are using DNS-based SSM mapping are also using DNS for other purposes, you should use a normally configured DNS server. If DNS-based SSM mapping is the only DNS implementation being used on the router, you can configure a false DNS setup with an empty root zone or a root zone that points back to itself.
Beginning in privileged EXEC mode, follow these steps to configure DNS-based SSM mapping:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp ssm-map enable</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp ssm-map query dns</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip domain multicast domain-prefix</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip name-server server-address1 [server-address2... server-address6]</td>
</tr>
<tr>
<td>Step 6</td>
<td>Repeat Step 5 to configure additional DNS servers for redundancy, if required.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

**Configuring Static Traffic Forwarding with SSM Mapping**

Use static traffic forwarding with SSM mapping to statically forward SSM traffic for certain groups. Beginning in privileged EXEC mode, follow these steps to configure static traffic forwarding with SSM mapping:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type number</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp static-group group-address source ssm-map</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Monitoring SSM Mapping

Use the privileged EXEC commands in Table 45-3 to monitor SSM mapping.

Table 45-3 SSM Mapping Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp ssm-mapping</td>
<td>Display information about SSM mapping.</td>
</tr>
<tr>
<td>show ip igmp ssm-mapping group-address</td>
<td>Display the sources that SSM mapping uses for a particular group.</td>
</tr>
<tr>
<td>show ip igmp groups [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>show host</td>
<td>Display the default domain name, the style of name lookup service, a list of name server hosts, and the cached list of hostnames and addresses.</td>
</tr>
<tr>
<td>debug ip igmp group-address</td>
<td>Display the IGMP packets received and sent and IGMP host-related events.</td>
</tr>
</tbody>
</table>
The ISM service consists of the delivery of IP datagrams from any source to a group of receivers called the multicast host group. The datagram traffic for the multicast host group consists of datagrams with an arbitrary IP unicast source address $S$ and the multicast group address $G$ as the IP destination address. Systems receive this traffic by becoming members of the host group.

Membership in a host group simply requires signalling the host group through IGMP version 1, 2, or 3. In SSM, delivery of datagrams is based on $(S, G)$ channels. In both SSM and ISM, no signalling is required to become a source. However, in SSM, receivers must subscribe or unsubscribe to $(S, G)$ channels to receive or not receive traffic from specific sources. In other words, receivers can receive traffic only from $(S, G)$ channels to which they are subscribed, whereas in ISM, receivers need not know the IP addresses of sources from which they receive their traffic. The proposed standard approach for channel subscription signalling use IGMP include mode membership reports, which are supported only in IGMP version 3.

**SSM IP Address Range**

SSM can coexist with the ISM service by applying the SSM delivery model to a configured subset of the IP multicast group address range. Cisco IOS software allows SSM configuration for the IP multicast address range of 224.0.0.0 through 239.255.255.255. When an SSM range is defined, existing IP multicast receiver applications do not receive any traffic when they try to use an address in the SSM range (unless the application is modified to use an explicit $(S, G)$ channel subscription).

**SSM Operations**

An established network, in which IP multicast service is based on PIM-SM, can support SSM services. SSM can also be deployed alone in a network without the full range of protocols that are required for interdomain PIM-SM (for example, MSDP, Auto-RP, or bootstrap router [BSR]) if only SSM service is needed.

If SSM is deployed in a network already configured for PIM-SM, only the last-hop routers support SSM. Routers that are not directly connected to receivers do not require support for SSM. In general, these not-last-hop routers must only run PIM-SM in the SSM range and might need additional access control configuration to suppress MSDP signalling, registering, or PIM-SM shared tree operations from occurring within the SSM range.

Use the `ip pim ssm` global configuration command to configure the SSM range and to enable SSM. This configuration has the following effects:

- For groups within the SSM range, $(S, G)$ channel subscriptions are accepted through IGMPv3 include-mode membership reports.
- PIM operations within the SSM range of addresses change to PIM-SSM, a mode derived from PIM-SM. In this mode, only PIM $(S, G)$ join and prune messages are generated by the router, and no $(S, G)$ rendezvous point tree (RPT) or $(*, G)$ RPT messages are generated. Incoming messages related to RPT operations are ignored or rejected, and incoming PIM register messages are immediately answered with register-stop messages. PIM-SSM is backward-compatible with PIM-SM unless a router is a last-hop router. Therefore, routers that are not last-hop routers can run PIM-SM for SSM groups (for example, if they do not yet support SSM).
- No MSDP source-active (SA) messages within the SSM range are accepted, generated, or forwarded.
IGMPv3 Host Signalling

In IGMPv3, hosts signal membership to last hop routers of multicast groups. Hosts can signal group membership with filtering capabilities with respect to sources. A host can either signal that it wants to receive traffic from all sources sending to a group except for some specific sources (called exclude mode), or that it wants to receive traffic only from some specific sources sending to the group (called include mode).

IGMPv3 can operate with both ISM and SSM. In ISM, both exclude and include mode reports are applicable. In SSM, only include mode reports are accepted by the last-hop router. Exclude mode reports are ignored.

Configuration Guidelines

This section contains the guidelines for configuring SSM.

Legacy Applications Within the SSM Range Restrictions

Existing applications in a network predating SSM do not work within the SSM range unless they are modified to support (S, G) channel subscriptions. Therefore, enabling SSM in a network can cause problems for existing applications if they use addresses within the designated SSM range.

Address Management Restrictions

Address management is still necessary to some degree when SSM is used with Layer 2 switching mechanisms. Cisco Group Management Protocol (CGMP), IGMP snooping, or Router-Port Group Management Protocol (RGMP) support only group-specific filtering, not (S, G) channel-specific filtering. If different receivers in a switched network request different (S, G) channels sharing the same group, they do not benefit from these existing mechanisms. Instead, both receivers receive all (S, G) channel traffic and filter out the unwanted traffic on input. Because SSM can re-use the group addresses in the SSM range for many independent applications, this situation can lead to decreased traffic filtering in a switched network. For this reason, it is important to use random IP addresses from the SSM range for an application to minimize the chance for re-use of a single address within the SSM range between different applications. For example, an application service providing a set of television channels should, even with SSM, use a different group for each television (S, G) channel. This setup guarantees that multiple receivers to different channels within the same application service never experience traffic aliasing in networks that include Layer 2 switches.

IGMP Snooping and CGMP Limitations

IGMPv3 uses new membership report messages that might not be correctly recognized by older IGMP snooping switches.

For more information about switching issues related to IGMP (especially with CGMP), see the “Configuring IGMP Version 3” section of the “Configuring IP Multicast Routing” chapter.

State Maintenance Limitations

In PIM-SSM, the last hop router continues to periodically send (S, G) join messages if appropriate (S, G) subscriptions are on the interfaces. Therefore, as long as receivers send (S, G) subscriptions, the shortest path tree (SPT) state from the receivers to the source is maintained, even if the source does not send traffic for longer periods of time (or even never).
This case is opposite to PIM-SM, where (S, G) state is maintained only if the source is sending traffic and receivers are joining the group. If a source stops sending traffic for more than 3 minutes in PIM-SM, the (S, G) state is deleted and only re-established after packets from the source arrive again through the RPT. Because no mechanism in PIM-SSM notifies a receiver that a source is active, the network must maintain the (S, G) state in PIM-SSM as long as receivers are requesting receipt of that channel.

### Configuring SSM

Beginning in privileged EXEC mode, follow these steps to configure SSM. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>ip pim ssm [default</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type number</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip pim {sparse-mode</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip igmp version 3</td>
</tr>
</tbody>
</table>

### Monitoring SSM

Beginning in privileged EXEC mode, use these commands to monitor SSM.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp groups detail</td>
<td>Display the (S, G) channel subscription through IGMPv3.</td>
</tr>
<tr>
<td>show ip mroute</td>
<td>Display whether a multicast group supports SSM service or whether a source-specific host report was received.</td>
</tr>
</tbody>
</table>

### Enabling PIM Stub Routing

Beginning in privileged EXEC mode, follow these steps to enable PIM stub routing on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip pim passive</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring IP Multicast Routing

To disable PIM stub routing on an interface, use the **no ip pim passive** interface configuration command. In this example, IP multicast routing is enabled, Switch A PIM uplink port 25 is configured as a routed uplink port with **spare-dense-mode enabled**. PIM stub routing is enabled on the VLAN 100 interfaces and on Gigabit Ethernet port 20 in Figure 45-2:

```
Switch(config)# ip multicast-routing distributed
Switch(config)# interface GigabitEthernet3/0/25
Switch(config-if)# no switchport
Switch(config-if)# ip address 3.1.1.2 255.255.255.0
Switch(config-if)# ip pim sparse-dense-mode
Switch(config-if)# exit
Switch(config)# interface vlan100
Switch(config-if)# ip pim passive
Switch(config-if)# exit
Switch(config)# interface GigabitEthernet3/0/20
Switch(config-if)# ip pim passive
Switch(config-if)# exit
Switch(config)# interface vlan100
Switch(config-if)# ip address 100.1.1.1 255.255.255.0
Switch(config-if)# ip pim passive
Switch(config-if)# exit
Switch(config)# interface GigabitEthernet3/0/20
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.1.1.1 255.255.255.0
Switch(config-if)# ip pim passive
Switch(config-if)# end
```

To verify that PIM stub is enabled for each interface, use the **show ip pim interface** privileged EXEC command:

```
Switch# show ip pim interface
Address Interface Ver/ Nbr Query DR DR
Mode Count Intvl Prior
3.1.1.2 GigabitEthernet3/0/25 v2/SD 1 30 1 3.1.1.2
100.1.1.1 Vlan100 v2/P 0 30 1 100.1.1.1
10.1.1.1 GigabitEthernet3/0/20 v2/P 0 30 1 10.1.1.1
```

Use these privileged EXEC commands to display information about PIM stub configuration and status:
- **show ip pim interface** displays the PIM stub that is enabled on each interface.
- **show ip igmp detail** displays the interested clients that have joined the specific multicast source group.
- **show ip igmp mroute** verifies that the multicast stream forwards from the source to the interested clients.

### Configuring a Rendezvous Point

You must have an RP if the interface is in sparse-dense mode and if you want to treat the group as a sparse group. You can use several methods, as described in these sections:
- **Manually Assigning an RP to Multicast Groups**, page 45-28
- **Configuring Auto-RP**, page 45-29 (a standalone, Cisco-proprietary protocol separate from PIMv1)
• Configuring PIMv2 BSR, page 45-33 (a standards track protocol in the Internet Engineering Task Force [IETF])

You can use auto-RP, BSR, or a combination of both, depending on the PIM version that you are running and the types of routers in your network. For more information, see the “PIMv1 and PIMv2 Interoperability” section on page 45-11 and the “Auto-RP and BSR Configuration Guidelines” section on page 45-12.

Manually Assigning an RP to Multicast Groups

This section explains how to manually configure an RP. If the RP for a group is learned through a dynamic mechanism (such as auto-RP or BSR), you need not perform this task for that RP.

Senders of multicast traffic announce their existence through register messages received from the source first-hop router (designated router) and forwarded to the RP. Receivers of multicast packets use RPs to join a multicast group by using explicit join messages. RPs are not members of the multicast group; rather, they serve as a meeting place for multicast sources and group members.

You can configure a single RP for multiple groups defined by an access list. If there is no RP configured for a group, the multilayer switch treats the group as dense and uses the dense-mode PIM techniques.

Beginning in privileged EXEC mode, follow these steps to manually configure the address of the RP. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip pim rp-address ip-address [access-list-number] [override]</td>
<td>Configure the address of a PIM RP. By default, no PIM RP address is configured. You must configure the IP address of RPs on all routers and multilayer switches (including the RP). If there is no RP configured for a group, the switch treats the group as dense, using the dense-mode PIM techniques. A PIM device can be an RP for more than one group. Only one RP address can be used at a time within a PIM domain. The access-list conditions specify for which groups the device is an RP.</td>
</tr>
</tbody>
</table>

• For ip-address, enter the unicast address of the RP in dotted-decimal notation.

• (Optional) For access-list-number, enter an IP standard access list number from 1 to 99. If no access list is configured, the RP is used for all groups.

• (Optional) The override keyword means that if there is a conflict between the RP configured with this command and one learned by Auto-RP or BSR, the RP configured with this command prevails.
To remove an RP address, use the `no ip pim rp-address ip-address [access-list-number] [override]` global configuration command.

This example shows how to configure the address of the RP to 147.106.6.22 for multicast group 225.2.2.2 only:

```
Switch(config)# access-list 1 permit 225.2.2.2 0.0.0.0
Switch(config)# ip pim rp-address 147.106.6.22 1
```

### Configuring Auto-RP

Auto-RP uses IP multicast to automate the distribution of group-to-RP mappings to all Cisco routers and multilayer switches in a PIM network. It has these benefits:

- It is easy to use multiple RPs within a network to serve different group ranges.
- It provides load splitting among different RPs and arrangement of RPs according to the location of group participants.
- It avoids inconsistent, manual RP configurations on every router and multilayer switch in a PIM network, which can cause connectivity problems.

Follow these guidelines when configuring Auto-RP:

- If you configure PIM in sparse mode or sparse-dense mode and do not configure Auto-RP, you must manually configure an RP as described in the “Manually Assigning an RP to Multicast Groups” section on page 45-28.
- If routed interfaces are configured in sparse mode, Auto-RP can still be used if all devices are configured with a manual RP address for the Auto-RP groups.
- If routed interfaces are configured in sparse mode and you enter the `ip pim autorp listener` global configuration command, Auto-RP can still be used even if all devices are not configured with a manual RP address for the Auto-RP groups.
These sections describe how to configure Auto-RP:

- Setting up Auto-RP in a New Internetwork, page 45-30 (optional)
- Adding Auto-RP to an Existing Sparse-Mode Cloud, page 45-30 (optional)
- Preventing Join Messages to False RPs, page 45-31 (optional)
- Filtering Incoming RP Announcement Messages, page 45-32 (optional)

For overview information, see the “Auto-RP” section on page 45-6.

Setting up Auto-RP in a New Internetwork

If you are setting up Auto-RP in a new internetwork, you do not need a default RP because you configure all the interfaces for sparse-dense mode. Follow the process described in the “Adding Auto-RP to an Existing Sparse-Mode Cloud” section on page 45-30. However, omit Step 3 if you want to configure a PIM router as the RP for the local group.

Adding Auto-RP to an Existing Sparse-Mode Cloud

This section contains some suggestions for the initial deployment of Auto-RP into an existing sparse-mode cloud to minimize disruption of the existing multicast infrastructure.

Beginning in privileged EXEC mode, follow these steps to deploy Auto-RP in an existing sparse-mode cloud. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>show running-config</code></td>
<td>Verify that a default RP is already configured on all PIM devices and the RP in the sparse-mode network. It was previously configured with the <code>ip pim rp-address</code> global configuration command. This step is not required for spare-dense-mode environments. The selected RP should have good connectivity and be available across the network. Use this RP for the global groups (for example 224.x.x.x and other global groups). Do not reconfigure the group address range that this RP serves. RPs dynamically discovered through Auto-RP take precedence over statically configured RPs. Assume that it is desirable to use a second RP for the local groups.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3 <code>ip pim send-rp-announce interface-id scope ttl group-list access-list-number interval seconds</code></td>
<td>Configure another PIM device to be the candidate RP for local groups. For <code>interface-id</code>, enter the interface type and number that identifies the RP address. Valid interfaces include physical ports, port channels, and VLANs. For <code>scope ttl</code>, specify the time-to-live value in hops. Enter a hop count that is high enough so that the RP-announce messages reach all mapping agents in the network. There is no default setting. The range is 1 to 255. For <code>group-list access-list-number</code>, enter an IP standard access list number from 1 to 99. If no access list is configured, the RP is used for all groups. For <code>interval seconds</code>, specify how often the announcement messages must be sent. The default is 60 seconds. The range is 1 to 16383.</td>
</tr>
</tbody>
</table>
### Configuring IP Multicast Routing

**Chapter 45      Configuring IP Multicast Routing**

#### Configuring IP Multicast Routing

To remove the PIM device configured as the candidate RP, use the `no ip pim send-rp-announce` global configuration command. To remove the switch as the RP-mapping agent, use the `no ip pim send-rp-discovery` global configuration command.

This example shows how to send RP announcements out all PIM-enabled interfaces for a maximum of 31 hops. The IP address of port 1 is the RP. Access list 5 describes the group for which this switch serves as RP:

```bash
Switch(config)# ip pim send-rp-announce gigabitethernet0/1 scope 31 group-list 5
Switch(config)# access-list 5 permit 224.0.0.0 15.255.255.255
```

#### Preventing Join Messages to False RPs

Find whether the `ip pim accept-rp` command was previously configured throughout the network by using the `show running-config` privileged EXEC command. If the `ip pim accept-rp` command is not configured on any device, this problem can be addressed later. In those routers or multilayer switches already configured with the `ip pim accept-rp` command, you must enter the command again to accept the newly advertised RP.

---

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4** | `access-list access-list-number [deny | permit] source [source-wildcard]` | Create a standard access list, repeating the command as many times as necessary.  
  - For `access-list-number`, enter the access list number specified in Step 3.  
  - The `deny` keyword denies access if the conditions are matched. The `permit` keyword permits access if the conditions are matched.  
  - For `source`, enter the multicast group address range for which the RP should be used.  
  - (Optional) For `source-wildcard`, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.  
  Recall that the access list is always terminated by an implicit `deny` statement for everything. |
| **Step 5** | `ip pim send-rp-discovery scope ttl` | Find a switch whose connectivity is not likely to be interrupted, and assign it the role of RP-mapping agent.  
  For `scope ttl`, specify the time-to-live value in hops to limit the RP discovery packets. All devices within the hop count from the source device receive the Auto-RP discovery messages. These messages tell other devices which group-to-RP mapping to use to avoid conflicts (such as overlapping group-to-RP ranges). There is no default setting. The range is 1 to 255. |
| **Step 6** | `end` | Return to privileged EXEC mode. |
| **Step 7** | `show running-config` | Verify your entries. |
| | `show ip pim rp mapping` | Display active RPs that are cached with associated multicast routing entries. |
| | `show ip pim rp` | Display the information cached in the routing table. |
| **Step 8** | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |
To accept all RPs advertised with Auto-RP and reject all other RPs by default, use the `ip pim accept-rp auto-rp` global configuration command. This procedure is optional.

If all interfaces are in sparse mode, use a default-configured RP to support the two well-known groups 224.0.1.39 and 224.0.1.40. Auto-RP uses these two well-known groups to collect and distribute RP-mapping information. When this is the case and the `ip pim accept-rp auto-rp` command is configured, another `ip pim accept-rp` command accepting the RP must be configured as follows:

```
Switch(config)# ip pim accept-rp 172.10.20.1 1
Switch(config)# access-list 1 permit 224.0.1.39
Switch(config)# access-list 1 permit 224.0.1.40
```

**Filtering Incoming RP Announcement Messages**

You can add configuration commands to the mapping agents to prevent a maliciously configured router from masquerading as a candidate RP and causing problems.

Beginning in privileged EXEC mode, follow these steps to filter incoming RP announcement messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip pim rp-announce-filter rp-list</td>
<td>Filter incoming RP announcement messages.</td>
</tr>
<tr>
<td>access-list-number group-list access-list-number</td>
<td>Enter this command on each mapping agent in the network. Without this command, all incoming RP-announce messages are accepted by default. For <code>rp-list access-list-number</code>, configure an access list of candidate RP addresses that, if permitted, is accepted for the group ranges supplied in the <code>group-list access-list-number</code> variable. If this variable is omitted, the filter applies to all multicast groups. If more than one mapping agent is used, the filters must be consistent across all mapping agents to ensure that no conflicts occur in the Group-to-RP mapping information.</td>
</tr>
</tbody>
</table>
### Chapter 45  Configuring IP Multicast Routing

#### Configuring IP Multicast Routing

To remove a filter on incoming RP announcement messages, use the `no ip pim rp-announce-filter rp-list access-list-number [deny | permit] source [source-wildcard]` command.

This example shows a sample configuration on an Auto-RP mapping agent that is used to prevent candidate RP announcements from being accepted from unauthorized candidate RPs:

```
Switch(config)# ip pim rp-announce-filter rp-list 10 group-list 20
Switch(config)# access-list 10 permit host 172.16.5.1
Switch(config)# access-list 10 permit host 172.16.2.1
Switch(config)# access-list 20 deny 239.0.0.0 0.0.255.255
Switch(config)# access-list 20 permit 224.0.0.0 15.255.255.255
```

In this example, the mapping agent accepts candidate RP announcements from only two devices, 172.16.5.1 and 172.16.2.1. The mapping agent accepts candidate RP announcements from these two devices only for multicast groups that fall in the group range of 224.0.0.0 to 239.255.255.255. The mapping agent does not accept candidate RP announcements from any other devices in the network. Furthermore, the mapping agent does not accept candidate RP announcements from 172.16.5.1 or 172.16.2.1 if the announcements are for any groups in the 239.0.0.0 through 239.255.255.255 range. This range is the administratively scoped address range.

#### Configuring PIMv2 BSR

These sections describe how to set up BSR in your PIMv2 network:

- **Defining the PIM Domain Border,** page 45-34 (optional)
- **Defining the IP Multicast Boundary,** page 45-35 (optional)

---

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`access-list access-list-number {deny</td>
<td>permit} source [source-wildcard]`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>access-list-number</code>, enter the access list number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>deny</code> keyword denies access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>permit</code> keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create an access list that specifies from which routers and multilayer switches the mapping agent accepts candidate RP announcements (rp-list ACL).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Create an access list that specifies the range of multicast groups from which to accept or deny (group-list ACL).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>source</code>, enter the multicast group address range for which the RP should be used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For <code>source-wildcard</code>, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
</tbody>
</table>

Step 4	end	Return to privileged EXEC mode.
Step 5	show running-config	Verify your entries.
Step 6	`copy running-config startup-config`	(Optional) Save your entries in the configuration file.
Configuring IP Multicast Routing

- Configuring Candidate BSRs, page 45-35 (optional)
- Configuring Candidate RPs, page 45-36 (optional)

For overview information, see the “Bootstrap Router” section on page 45-7.

Defining the PIM Domain Border

As IP multicast becomes more widespread, the chance of one PIMv2 domain bordering another PIMv2 domain is increasing. Because these two domains probably do not share the same set of RPs, BSR, candidate RPs, and candidate BSRs, you need to constrain PIMv2 BSR messages from flowing into or out of the domain. Allowing these messages to leak across the domain borders could adversely affect the normal BSR election mechanism and elect a single BSR across all bordering domains and co-mingle candidate RP advertisements, resulting in the election of RPs in the wrong domain.

Beginning in privileged EXEC mode, follow these steps to define the PIM domain border. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip pim bsr-border</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the PIM border, use the **no ip pim bsr-border** interface configuration command.

**Figure 45-5** Constraining PIMv2 BSR Messages

Configure the **ip pim bsr-border** command on this interface.

- Neighboring PIMv2 domain
- Layer 3 switch

Configure the **ip pim bsr-border** command on this interface.

- Neighboring PIMv2 domain
- Layer 3 switch

PIMv2 sparse-mode network

BSR messages

BSR messages
Defining the IP Multicast Boundary

You define a multicast boundary to prevent Auto-RP messages from entering the PIM domain. You create an access list to deny packets destined for 224.0.1.39 and 224.0.1.40, which carry Auto-RP information.

Beginning in privileged EXEC mode, follow these steps to define a multicast boundary. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>access-list access-list-number deny source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip multicast boundary access-list-number</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the boundary, use the **no ip multicast boundary** interface configuration command.

This example shows a portion of an IP multicast boundary configuration that denies Auto-RP information:

```
Switch(config)# access-list 1 deny 224.0.1.39
Switch(config)# access-list 1 deny 224.0.1.40
Switch(config)# access-list 1 permit all
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip multicast boundary 1
```

Configuring Candidate BSRs

You can configure one or more candidate BSRs. The devices serving as candidate BSRs should have good connectivity to other devices and be in the backbone portion of the network.
Beginning in privileged EXEC mode, follow these steps to configure your switch as a candidate BSR. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>ip pim bsr-candidate interface-id</td>
<td>Configure your switch to be a candidate BSR.</td>
</tr>
<tr>
<td>hash-mask-length [priority]</td>
<td></td>
</tr>
<tr>
<td>• For interface-id, enter the interface on</td>
<td></td>
</tr>
<tr>
<td>which the BSR address is derived to make</td>
<td></td>
</tr>
<tr>
<td>it a candidate. This interface must</td>
<td></td>
</tr>
<tr>
<td>be enabled with PIM. Valid interfaces</td>
<td></td>
</tr>
<tr>
<td>include physical ports, port channels, and</td>
<td></td>
</tr>
<tr>
<td>VLANs.</td>
<td></td>
</tr>
<tr>
<td>• For hash-mask-length, specify the mask</td>
<td></td>
</tr>
<tr>
<td>length (32 bits maximum) that is to be ANDed</td>
<td></td>
</tr>
<tr>
<td>with the group address before the hash</td>
<td></td>
</tr>
<tr>
<td>function is called. All groups with the</td>
<td></td>
</tr>
<tr>
<td>same seed hash correspond to the same RP.</td>
<td></td>
</tr>
<tr>
<td>For example, if this value is 24, only the</td>
<td></td>
</tr>
<tr>
<td>first 24 bits of the group addresses</td>
<td></td>
</tr>
<tr>
<td>matter.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For priority, enter a number</td>
<td></td>
</tr>
<tr>
<td>from 0 to 255. The BSR with the larger</td>
<td></td>
</tr>
<tr>
<td>priority is preferred. If the priority</td>
<td></td>
</tr>
<tr>
<td>values are the same, the device with the</td>
<td></td>
</tr>
<tr>
<td>highest IP address is selected as the BSR.</td>
<td></td>
</tr>
<tr>
<td>The default is 0.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove this device as a candidate BSR, use the `no ip pim bsr-candidate` global configuration command.

This example shows how to configure a candidate BSR, which uses the IP address 172.21.24.18 on a port as the advertised BSR address, uses 30 bits as the hash-mask-length, and has a priority of 10.

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip address 172.21.24.18 255.255.255.0
Switch(config-if)# ip pim sparse-dense-mode
Switch(config-if)# ip pim bsr-candidate gigabitethernet1/0/2 30 10
```

**Configuring Candidate RPs**

You can configure one or more candidate RPs. Similar to BSRs, the RPs should also have good connectivity to other devices and be in the backbone portion of the network. An RP can serve the entire IP multicast address space or a portion of it. Candidate RPs send candidate RP advertisements to the BSR. When deciding which devices should be RPs, consider these options:

- In a network of Cisco routers and multilayer switches where only Auto-RP is used, any device can be configured as an RP.
- In a network that includes only Cisco PIMv2 routers and multilayer switches and with routers from other vendors, any device can be used as an RP.
- In a network of Cisco PIMv1 routers, Cisco PIMv2 routers, and routers from other vendors, configure only Cisco PIMv2 routers and multilayer switches as RPs.
Beginning in privileged EXEC mode, follow these steps to configure your switch to advertise itself as a PIMv2 candidate RP to the BSR. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
</tr>
<tr>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
</tr>
<tr>
<td>ip pim rp-candidate interface-id [group-list access-list-number]</td>
</tr>
<tr>
<td>Configure your switch to be a candidate RP.</td>
</tr>
<tr>
<td>For interface-id, specify the interface whose associated IP address is advertised as a candidate RP address. Valid interfaces include physical ports, port channels, and VLANs.</td>
</tr>
<tr>
<td>(Optional) For group-list access-list-number, enter an IP standard access list number from 1 to 99. If no group-list is specified, the switch is a candidate RP for all groups.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
</tr>
<tr>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td>Create a standard access list, repeating the command as many times as necessary.</td>
</tr>
<tr>
<td>For access-list-number, enter the access list number specified in Step 2.</td>
</tr>
<tr>
<td>The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td>For source, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td>(Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
</tr>
<tr>
<td>end</td>
</tr>
<tr>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
</tr>
<tr>
<td>show running-config</td>
</tr>
<tr>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove this device as a candidate RP, use the no ip pim rp-candidate interface-id global configuration command.

This example shows how to configure the switch to advertise itself as a candidate RP to the BSR in its PIM domain. Standard access list number 4 specifies the group prefix associated with the RP that has the address identified by a port. That RP is responsible for the groups with the prefix 239.

Switch(config)# ip pim rp-candidate gigabitethernet1/0/2 group-list 4
Switch(config)# access-list 4 permit 239.0.0.0 0.255.255.255

Using Auto-RP and a BSR

If there are only Cisco devices in you network (no routers from other vendors), there is no need to configure a BSR. Configure Auto-RP in a network that is running both PIMv1 and PIMv2.

If you have non-Cisco PIMv2 routers that need to interoperate with Cisco PIMv1 routers and multilayer switches, both Auto-RP and a BSR are required. We recommend that a Cisco PIMv2 router or multilayer switch be both the Auto-RP mapping agent and the BSR.
If you must have one or more BSRs, we have these recommendations:

- Configure the candidate BSRs as the RP-mapping agents for Auto-RP. For more information, see the “Configuring Auto-RP” section on page 45-29 and the “Configuring Candidate BSRs” section on page 45-35.

- For group prefixes advertised through Auto-RP, the PIMv2 BSR mechanism should not advertise a subrange of these group prefixes served by a different set of RPs. In a mixed PIMv1 and PIMv2 domain, have backup RPs serve the same group prefixes. This prevents the PIMv2 DRs from selecting a different RP from those PIMv1 DRs, due to the longest match lookup in the RP-mapping database.

Beginning in privileged EXEC mode, follow these steps to verify the consistency of group-to-RP mappings. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>show ip pim rp [group-name</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>show ip pim rp-hash group</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monitoring the RP Mapping Information

To monitor the RP mapping information, use these commands in privileged EXEC mode:

- `show ip pim bsr` displays information about the elected BSR.
- `show ip pim rp-hash group` displays the RP that was selected for the specified group.
- `show ip pim rp [group-name | group-address | mapping]` displays how the switch learns of the RP (through the BSR or the Auto-RP mechanism).

Troubleshooting PIMv1 and PIMv2 Interoperability Problems

When debugging interoperability problems between PIMv1 and PIMv2, check these in the order shown:

1. Verify RP mapping with the `show ip pim rp-hash` privileged EXEC command, making sure that all systems agree on the same RP for the same group.
2. Verify interoperability between different versions of DRs and RPs. Make sure the RPs are interacting with the DRs properly (by responding with register-stops and forwarding decapsulated data packets from registers).

Configuring Advanced PIM Features

These sections describe the optional advanced PIM features:

- Understanding PIM Shared Tree and Source Tree, page 45-39
- Delaying the Use of PIM Shortest-Path Tree, page 45-41 (optional)
- Modifying the PIM Router-Query Message Interval, page 45-42 (optional)

Understanding PIM Shared Tree and Source Tree

By default, members of a group receive data from senders to the group across a single data-distribution tree rooted at the RP. Figure 45-6 shows this type of shared-distribution tree. Data from senders is delivered to the RP for distribution to group members joined to the shared tree.
If the data rate warrants, leaf routers (routers without any downstream connections) on the shared tree can use the data distribution tree rooted at the source. This type of distribution tree is called a shortest-path tree or source tree. By default, the software switches to a source tree upon receiving the first data packet from a source.

This process describes the move from a shared tree to a source tree:

1. A receiver joins a group; leaf Router C sends a join message toward the RP.
2. The RP puts a link to Router C in its outgoing interface list.
3. A source sends data; Router A encapsulates the data in a register message and sends it to the RP.
4. The RP forwards the data down the shared tree to Router C and sends a join message toward the source. At this point, data might arrive twice at Router C, once encapsulated and once natively.
5. When data arrives natively (unencapsulated) at the RP, it sends a register-stop message to Router A.
6. By default, reception of the first data packet prompts Router C to send a join message toward the source.
7. When Router C receives data on (S,G), it sends a prune message for the source up the shared tree.
8. The RP deletes the link to Router C from the outgoing interface of (S,G). The RP triggers a prune message toward the source.

Join and prune messages are sent for sources and RPs. They are sent hop-by-hop and are processed by each PIM device along the path to the source or RP. Register and register-stop messages are not sent hop-by-hop. They are sent by the designated router that is directly connected to a source and are received by the RP for the group.

Multiple sources sending to groups use the shared tree.

You can configure the PIM device to stay on the shared tree. For more information, see the “Delaying the Use of PIM Shortest-Path Tree” section on page 45-41.
Delaying the Use of PIM Shortest-Path Tree

The change from shared to source tree happens when the first data packet arrives at the last-hop router (Router C in Figure 45-6). This change occurs because the `ip pim spt-threshold` global configuration command controls that timing.

The shortest-path tree requires more memory than the shared tree but reduces delay. You might want to postpone its use. Instead of allowing the leaf router to immediately move to the shortest-path tree, you can specify that the traffic must first reach a threshold.

You can configure when a PIM leaf router should join the shortest-path tree for a specified group. If a source sends at a rate greater than or equal to the specified kbps rate, the multilayer switch triggers a PIM join message toward the source to construct a source tree (shortest-path tree). If the traffic rate from the source drops below the threshold value, the leaf router switches back to the shared tree and sends a prune message toward the source.

You can specify to which groups the shortest-path tree threshold applies by using a group list (a standard access list). If a value of 0 is specified or if the group list is not used, the threshold applies to all groups.

Beginning in privileged EXEC mode, follow these steps to configure a traffic rate threshold that must be reached before multicast routing is switched from the source tree to the shortest-path tree. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list access-list-number {deny</td>
<td>permit} source [source-wildcard]</td>
<td>Create a standard access list.</td>
</tr>
<tr>
<td></td>
<td>• For <code>access-list-number</code>, the range is 1 to 99.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The <code>deny</code> keyword denies access if the conditions are matched.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The <code>permit</code> keyword permits access if the conditions are matched.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For <code>source</code>, specify the multicast group to which the threshold will apply.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>source-wildcard</code>, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim spt-threshold {kbps</td>
<td>infinity} [group-list access-list-number]</td>
<td>Specify the threshold that must be reached before moving to shortest-path tree (spt).</td>
</tr>
<tr>
<td></td>
<td>• For <code>kbps</code>, specify the traffic rate in kilobits per second. The default is 0 kbps.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note Because of switch hardware limitations, 0 kbps is the only valid entry even though the range is 0 to 4294967.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Specify <code>infinity</code> if you want all sources for the specified group to use the shared tree, never switching to the source tree.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>group-list access-list-number</code>, specify the access list created in Step 2. If the value is 0 or if the group-list is not used, the threshold applies to all groups.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Advanced PIM Features

Chapter 45 Configuring IP Multicast Routing

Modifying the PIM Router-Query Message Interval

PIM routers and multilayer switches send PIM router-query messages to find which device will be the DR for each LAN segment (subnet). The DR is responsible for sending IGMP host-query messages to all hosts on the directly connected LAN.

With PIM DM operation, the DR has meaning only if IGMPv1 is in use. IGMPv1 does not have an IGMP querier election process, so the elected DR functions as the IGMP querier. With PIM-SM operation, the DR is the device that is directly connected to the multicast source. It sends PIM register messages to notify the RP that multicast traffic from a source needs to be forwarded down the shared tree. In this case, the DR is the device with the highest IP address.

Beginning in privileged EXEC mode, follow these steps to modify the router-query message interval. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip pim query-interval seconds</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip igmp interface [interface-id]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip pim query-interval [seconds]` interface configuration command.

To return to the default setting, use the `no ip pim spt-threshold {kbps | infinity}` global configuration command.
Configuring Optional IGMP Features

These sections contain this configuration information:

- Default IGMP Configuration, page 45-43
- Configuring the Switch as a Member of a Group, page 45-43 (optional)
- Controlling Access to IP Multicast Groups, page 45-44 (optional)
- Changing the IGMP Version, page 45-45 (optional)
- Modifying the IGMP Host-Query Message Interval, page 45-46 (optional)
- Changing the IGMP Query Timeout for IGMPv2, page 45-47 (optional)
- Changing the Maximum Query Response Time for IGMPv2, page 45-47 (optional)
- Configuring the Switch as a Statically Connected Member, page 45-48 (optional)

Default IGMP Configuration

Table 45-4 shows the default IGMP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilayer switch as a member of a multicast group</td>
<td>No group memberships are defined.</td>
</tr>
<tr>
<td>Access to multicast groups</td>
<td>All groups are allowed on an interface.</td>
</tr>
<tr>
<td>IGMP version</td>
<td>Version 2 on all interfaces.</td>
</tr>
<tr>
<td>IGMP host-query message interval</td>
<td>60 seconds on all interfaces.</td>
</tr>
<tr>
<td>IGMP query timeout</td>
<td>60 seconds on all interfaces.</td>
</tr>
<tr>
<td>IGMP maximum query response time</td>
<td>10 seconds on all interfaces.</td>
</tr>
<tr>
<td>Multilayer switch as a statically connected member</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Configuring the Switch as a Member of a Group

You can configure the switch as a member of a multicast group and discover multicast reachability in a network. If all the multicast-capable routers and multilayer switches that you administer are members of a multicast group, pinging that group causes all these devices to respond. The devices respond to ICMP echo-request packets addressed to a group of which they are members. Another example is the multicast trace-route tools provided in the software.

Caution

Performing this procedure might impact the CPU performance because the CPU will receive all data traffic for the group address.
Beginning in privileged EXEC mode, follow these steps to configure the switch to be a member of a group. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip igmp join-group group-address</td>
<td>Configure the switch to join a multicast group. By default, no group memberships are defined. For group-address, specify the multicast IP address in dotted decimal notation.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip igmp interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To cancel membership in a group, use the no ip igmp join-group group-address interface configuration command.

This example shows how to enable the switch to join multicast group 255.2.2.2:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip igmp join-group 255.2.2.2
```

**Controlling Access to IP Multicast Groups**

The switch sends IGMP host-query messages to find which multicast groups have members on attached local networks. The switch then forwards to these group members all packets addressed to the multicast group. You can place a filter on each interface to restrict the multicast groups that hosts on the subnet serviced by the interface can join.

Beginning in privileged EXEC mode, follow these steps to filter multicast groups allowed on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip igmp access-group access-list-number</td>
<td>Specify the multicast groups that hosts on the subnet serviced by an interface can join. By default, all groups are allowed on an interface. For access-list-number, specify an IP standard access list number. The range is 1 to 99.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Optional IGMP Features

Configuring IP Multicast Routing

To disable groups on an interface, use the `no ip igmp access-group interface configuration command`.

This example shows how to configure hosts attached to a port as able to join only group 255.2.2.2:

```
Switch(config)# access-list 1 255.2.2.2 0.0.0.0
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# ip igmp access-group 1
```

Changing the IGMP Version

By default, the switch uses IGMP Version 2, which provides features such as the IGMP query timeout and the maximum query response time.

All systems on the subnet must support the same version. The switch does not automatically detect Version 1 systems and switch to Version 1. You can mix Version 1 and Version 2 hosts on the subnet because Version 2 routers or switches always work correctly with IGMPv1 hosts.

Configure the switch for Version 1 if your hosts do not support Version 2.

Beginning in privileged EXEC mode, follow these steps to change the IGMP version. This procedure is optional.

```
Step 1 configure terminal
进入全局配置模式。

Step 2 interface interface-id
指定要配置的接口，并进入接口配置模式。

Step 3 ip igmp version {1 | 2}
指定交换机使用的IGMP版本。

Note If you change to Version 1, you cannot configure the ip igmp query-interval or the ip igmp query-max-response-time interface configuration commands.

Step 4 end
返回到特权 EXEC 模式。
```
Configuring Optional IGMP Features

Chapter 45      Configuring IP Multicast Routing

Configuring Optional IGMP Features

To return to the default setting, use the `no ip igmp version` interface configuration command.

Modifying the IGMP Host-Query Message Interval

The switch periodically sends IGMP host-query messages to discover which multicast groups are present on attached networks. These messages are sent to the all-hosts multicast group (224.0.0.1) with a time-to-live (TTL) of 1. The switch sends host-query messages to refresh its knowledge of memberships present on the network. If, after some number of queries, the software discovers that no local hosts are members of a multicast group, the software stops forwarding multicast packets to the local network from remote origins for that group and sends a prune message upstream toward the source.

The switch elects a PIM designated router (DR) for the LAN (subnet). The DR is the router or multilayer switch with the highest IP address for IGMPv2. For IGMPv1, the DR is elected according to the multicast routing protocol that runs on the LAN. The designated router is responsible for sending IGMP host-query messages to all hosts on the LAN. In sparse mode, the designated router also sends PIM register and PIM join messages toward the RP router.

Beginning in privileged EXEC mode, follow these steps to modify the host-query interval. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip igmp query-interval seconds</code> Configure the frequency at which the designated router sends IGMP host-query messages. By default, the designated router sends IGMP host-query messages every 60 seconds to keep the IGMP overhead very low on hosts and networks. The range is 1 to 65535.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show ip igmp interface [interface-id]</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip igmp query-interval` interface configuration command.
### Changing the IGMP Query Timeout for IGMPv2

If you are using IGMPv2, you can specify the period of time before the switch takes over as the querier for the interface. By default, the switch waits twice the query interval controlled by the `ip igmp query-interval` interface configuration command. After that time, if the switch has received no queries, it becomes the querier.

You can configure the query interval by entering the `show ip igmp interface interface-id` privileged EXEC command.

Beginning in privileged EXEC mode, follow these steps to change the IGMP query timeout. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>interface interface-id</code> Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>ip igmp querier-timeout seconds</code> Specify the IGMP query timeout. The default is 60 seconds (twice the query interval). The range is 60 to 300.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>show ip igmp interface [interface-id]</code> Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip igmp querier-timeout` interface configuration command.

### Changing the Maximum Query Response Time for IGMPv2

If you are using IGMPv2, you can change the maximum query response time advertised in IGMP queries. The maximum query response time enables the switch to quickly detect that there are no more directly connected group members on a LAN. Decreasing the value enables the switch to prune groups faster.

Beginning in privileged EXEC mode, follow these steps to change the maximum query response time. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>interface interface-id</code> Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>ip igmp query-max-response-time seconds</code> Change the maximum query response time advertised in IGMP queries. The default is 10 seconds. The range is 1 to 25.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>show ip igmp interface [interface-id]</code> Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return to the default setting, use the `no ip igmp query-max-response-time` interface configuration command.

**Configuring the Switch as a Statically Connected Member**

Sometimes there is either no group member on a network segment or a host cannot report its group membership by using IGMP. However, you might want multicast traffic to go to that network segment. These are ways to pull multicast traffic down to a network segment:

- Use the `ip igmp join-group` interface configuration command. With this method, the switch accepts the multicast packets in addition to forwarding them. Accepting the multicast packets prevents the switch from fast switching.
- Use the `ip igmp static-group` interface configuration command. With this method, the switch does not accept the packets itself, but only forwards them. This method enables fast switching. The outgoing interface appears in the IGMP cache, but the switch itself is not a member, as evidenced by lack of an `L` (local) flag in the multicast route entry.

Beginning in privileged EXEC mode, follow these steps to configure the switch itself to be a statically connected member of a group (and enable fast switching). This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip igmp static-group group-address</code> Configure the switch as a statically connected member of a group. By default, this feature is disabled.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show ip igmp interface [interface-id]</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the switch as a member of the group, use the `no ip igmp static-group group-address` interface configuration command.

**Configuring Optional Multicast Routing Features**

These sections describe how to configure optional multicast routing features:

- Features for Layer 2 connectivity and MBONE multimedia conference session and set up:
  - Enabling CGMP Server Support, page 45-49 (optional)
  - Configuring sdr Listener Support, page 45-50 (optional)
- Features that control bandwidth utilization:
  - Configuring an IP Multicast Boundary, page 45-51 (optional)
- Procedure for configuring a multicast within a VPN routing/forwarding(VRF) table:
  - Configuring Multicast VRFs, page 39-90 (optional)
Enabling CGMP Server Support

The switch serves as a CGMP server for devices that do not support IGMP snooping but have CGMP client functionality. CGMP is a protocol used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP. CGMP is necessary because the Layer 2 switch cannot distinguish between IP multicast data packets and IGMP report messages, which are both at the MAC-level and are addressed to the same group address.

Beginning in privileged EXEC mode, follow these steps to enable the CGMP server on the switch interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the interface that is connected to the Layer 2 Catalyst switch, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>ip cgmp [proxy]</td>
<td>Enable CGMP on the interface. By default, CGMP is disabled on all interfaces. Enabling CGMP triggers a CGMP join message. Enable CGMP only on Layer 3 interfaces connected to Layer 2 Catalyst switches. (Optional) When you enter the proxy keyword, the CGMP proxy function is enabled. The proxy router advertises the existence of non-CGMP-capable routers by sending a CGMP join message with the non-CGMP-capable router MAC address and a group address of 0000.0000.0000.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> To perform CGMP proxy, the switch must be the IGMP querier. If you configure the ip cgmp proxy command, you must manipulate the IP addresses so that the switch is the IGMP querier, which might be the highest or lowest IP address, depending on which version of IGMP is running on the network. An IGMP Version 2 querier is selected based on the lowest IP address on the interface. An IGMP Version 1 querier is selected based on the multicast routing protocol used on the interface.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Verify the Layer 2 Catalyst switch CGMP-client configuration. For more information, see the documentation that shipped with the product.</td>
</tr>
</tbody>
</table>

To disable CGMP on the interface, use the **no ip cgmp** interface configuration command.

When multiple Cisco CGMP-capable devices are connected to a switched network and the **ip cgmp proxy** command is needed, we recommend that all devices be configured with the same CGMP option and have precedence for becoming the IGMP querier over non-Cisco routers.
Configuring sdr Listener Support

The MBONE is the small subset of Internet routers and hosts that are interconnected and capable of forwarding IP multicast traffic. Other multimedia content is often broadcast over the MBONE. Before you can join a multimedia session, you need to know what multicast group address and port are being used for the session, when the session is going to be active, and what sort of applications (audio, video, and so forth) are required on your workstation. The MBONE Session Directory Version 2 (sdr) tool provides this information. This freeware application can be downloaded from several sites on the World Wide Web.

SDR is a multicast application that listens to a well-known multicast group address and port for Session Announcement Protocol (SAP) multicast packets from SAP clients, which announce their conference sessions. These SAP packets contain a session description, the time the session is active, its IP multicast group addresses, media format, contact person, and other information about the advertised multimedia session. The information in the SAP packet is displayed in the SDR Session Announcement window.

Enabling sdr Listener Support

By default, the switch does not listen to session directory advertisements.

Beginning in privileged EXEC mode, follow these steps to enable the switch to join the default session directory group (224.2.127.254) on the interface and listen to session directory advertisements. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be enabled for sdr, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip sdr listen</td>
<td>Enable sdr listener support.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable sdr support, use the no ip sdr listen interface configuration command.

Limiting How Long an sdr Cache Entry Exists

By default, entries are never deleted from the sdr cache. You can limit how long the entry remains active so that if a source stops advertising SAP information, old advertisements are not needlessly kept.
Beginning in privileged EXEC mode, follow these steps to limit how long an sdr cache entry stays active in the cache. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip sdr cache-timeout minutes</td>
<td>Limit how long an sdr cache entry stays active in the cache. By default, entries are never deleted from the cache. For minutes, the range is 1 to 4294967295.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no ip sdr cache-timeout global configuration command. To delete the entire cache, use the clear ip sdr privileged EXEC command.

To display the session directory cache, use the show ip sdr privileged EXEC command.

### Configuring an IP Multicast Boundary

Administratively-scoped boundaries can be used to limit the forwarding of multicast traffic outside of a domain or subdomain. This approach uses a special range of multicast addresses, called administratively-scoped addresses, as the boundary mechanism. If you configure an administratively-scoped boundary on a routed interface, multicast traffic whose multicast group addresses fall in this range can not enter or exit this interface, thereby providing a firewall for multicast traffic in this address range.

**Note**  
Multicast boundaries and TTL thresholds control the scoping of multicast domains; however, TTL thresholds are not supported by the switch. You should use multicast boundaries instead of TTL thresholds to limit the forwarding of multicast traffic outside of a domain or a subdomain.

**Figure 45-7** shows that Company XYZ has an administratively-scoped boundary set for the multicast address range 239.0.0.0/8 on all routed interfaces at the perimeter of its network. This boundary prevents any multicast traffic in the range 239.0.0.0 through 239.255.255.255 from entering or leaving the network. Similarly, the engineering and marketing departments have an administratively-scoped boundary of 239.128.0.0/16 around the perimeter of their networks. This boundary prevents multicast traffic in the range of 239.128.0.0 through 239.128.255.255 from entering or leaving their respective networks.
Figure 45-7  Administratively-Scoped Boundaries

You can define an administratively-scoped boundary on a routed interface for multicast group addresses. A standard access list defines the range of addresses affected. When a boundary is defined, no multicast data packets are allowed to flow across the boundary from either direction. The boundary allows the same multicast group address to be reused in different administrative domains.

The IANA has designated the multicast address range 239.0.0.0 to 239.255.255.255 as the administratively-scoped addresses. This range of addresses can then be reused in domains administered by different organizations. The addresses would be considered local, not globally unique.

Beginning in privileged EXEC mode, follow these steps to set up an administratively-scoped boundary. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> access-list</td>
<td>Create a standard access list, repeating the command as many times as necessary.</td>
</tr>
<tr>
<td>access-list-number (deny</td>
<td>The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td>permit) source [source-wildcard]</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface interface-id</td>
<td>Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip multicast boundary</td>
<td>Configure the boundary, specifying the access list you created in Step 2.</td>
</tr>
<tr>
<td>access-list-number</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong> show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To remove the boundary, use the **no ip multicast boundary** interface configuration command. This example shows how to set up a boundary for all administratively-scoped addresses:

```
Switch(config)# access-list 1 deny 239.0.0.0 0.255.255.255
Switch(config)# access-list 1 permit 224.0.0.0 15.255.255.255
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip multicast boundary 1
```

### Configuring Basic DVMRP Interoperability Features

These sections contain this configuration information:

- **Configuring DVMRP Interoperability, page 45-53** (optional)
- **Configuring a DVMRP Tunnel, page 45-55** (optional)
- **Advertising Network 0.0.0.0 to DVMRP Neighbors, page 45-57** (optional)
- **Responding to mrinfo Requests, page 45-58** (optional)

For more advanced DVMRP features, see the “Configuring Advanced DVMRP Interoperability Features” section on page 45-58.

### Configuring DVMRP Interoperability

Cisco multicast routers and multilayer switches using PIM can interoperate with non-Cisco multicast routers that use the DVMRP.

PIM devices dynamically discover DVMRP multicast routers on attached networks by listening to DVMRP probe messages. When a DVMRP neighbor has been discovered, the PIM device periodically sends DVMRP report messages advertising the unicast sources reachable in the PIM domain. By default, directly connected subnets and networks are advertised. The device forwards multicast packets that have been forwarded by DVMRP routers and, in turn, forwards multicast packets to DVMRP routers.

You can configure an access list on the PIM routed interface connected to the MBONE to limit the number of unicast routes that are advertised in DVMRP route reports. Otherwise, all routes in the unicast routing table are advertised.

**Note**

The mrouted protocol is a public-domain implementation of DVMRP. You must use mrouted Version 3.8 (which implements a non-pruning version of DVMRP) when Cisco routers and multilayer switches are directly connected to DVMRP routers or interoperate with DVMRP routers over an MBONE tunnel. DVMRP advertisements produced by the Cisco IOS software can cause older versions of the mrouted protocol to corrupt their routing tables and those of their neighbors.

You can configure what sources are advertised and what metrics are used by configuring the **ip dvmrp metric** interface configuration command. You can also direct all sources learned through a particular unicast routing process to be advertised into DVMRP.
Beginning in privileged EXEC mode, follow these steps to configure the sources that are advertised and the metrics that are used when DVMRP route-report messages are sent. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure terminal</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 2**

access-list access-list-number {deny | permit} source [source-wildcard]

Create a standard access list, repeating the command as many times as necessary.

- For access-list-number, the range is 1 to 99.
- The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.
- For source, enter the number of the network or host from which the packet is being sent.
- (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.

Recall that the access list is always terminated by an implicit deny statement for everything.

**Step 3**

interface interface-id

Specify the interface connected to the MBONE and enabled for multicast routing, and enter interface configuration mode.

**Step 4**

ip dvmrp metric metric [list access-list-number] [[protocol process-id] | [dvmrp]]

Configure the metric associated with a set of destinations for DVMRP reports.

- For metric, the range is 0 to 32. A value of 0 means that the route is not advertised. A value of 32 is equivalent to infinity (unreachable).
- (Optional) For list access-list-number, enter the access list number created in Step 2. If specified, only the multicast destinations that match the access list are reported with the configured metric.
- (Optional) For protocol process-id, enter the name of the unicast routing protocol, such as eigrp, igrp, ospf, rip, static, or dvmrp, and the process ID number of the routing protocol. If specified, only routes learned by the specified routing protocol are advertised in DVMRP report messages.
- (Optional) If specified, the dvmrp keyword allows routes from the DVMRP routing table to be advertised with the configured metric or filtered.

**Step 5**

end

Return to privileged EXEC mode.

**Step 6**

show running-config

Verify your entries.

**Step 7**

copy running-config startup-config

(Optionally) Save your entries in the configuration file.

To disable the metric or route map, use the no ip dvmrp metric metric [list access-list-number] [[protocol process-id] | [dvmrp]] or the no ip dvmrp metric metric route-map map-name interface configuration command.

A more sophisticated way to achieve the same results as the preceding command is to use a route map (ip dvmrp metric metric route-map map-name interface configuration command) instead of an access list. You subject unicast routes to route-map conditions before they are injected into DVMRP.
This example shows how to configure DVMRP interoperability when the PIM device and the DVMRP router are on the same network segment. In this example, access list 1 advertises the networks (198.92.35.0, 198.92.36.0, 198.92.37.0, 131.108.0.0, and 150.136.0.0) to the DVMRP router, and access list 2 prevents all other networks from being advertised (ip dvmrp metric 0 interface configuration command).

```
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# ip address 131.119.244.244 255.255.255.0
Switch(config-if)# ip pim dense-mode
Switch(config-if)# ip dvmrp metric 1 list 1
Switch(config-if)# ip dvmrp metric 0 list 2
Switch(config-if)# exit
Switch(config)# access-list 1 permit 198.92.35.0 0.0.0.255
Switch(config)# access-list 1 permit 198.92.36.0 0.0.0.255
Switch(config)# access-list 1 permit 198.92.37.0 0.0.0.255
Switch(config)# access-list 1 permit 131.108.0.0 0.0.255.255
Switch(config)# access-list 1 permit 150.136.0.0 0.0.255.255
Switch(config)# access-list 1 deny 0.0.0.0 255.255.255.255
Switch(config)# access-list 2 permit 0.0.0.0 255.255.255.255
```

### Configuring a DVMRP Tunnel

The software supports DVMRP tunnels to the MBONE. You can configure a DVMRP tunnel on a router or multilayer switch if the other end is running DVMRP. The software then sends and receives multicast packets through the tunnel. This strategy enables a PIM domain to connect to the DVMRP router when all routers on the path do not support multicast routing. You cannot configure a DVMRP tunnel between two routers.

When a Cisco router or multilayer switch runs DVMRP through a tunnel, it advertises sources in DVMRP report messages, much as it does on real networks. The software also caches DVMRP report messages it receives and uses them in its RPF calculation. This behavior enables the software to forward multicast packets received through the tunnel.

When you configure a DVMRP tunnel, you should assign an IP address to a tunnel in these cases:

- To send IP packets through the tunnel
- To configure the software to perform DVMRP summarization

The software does not advertise subnets through the tunnel if the tunnel has a different network number from the subnet. In this case, the software advertises only the network number through the tunnel.
Beginning in privileged EXEC mode, follow these steps to configure a DVMRP tunnel. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface tunnel number</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>tunnel source ip-address</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>tunnel destination ip-address</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>tunnel mode dvmrp</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>ip address address mask</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>ip unnumbered type number</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>ip pim [dense-mode</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>ip dvmrp accept-filter access-list-number [distance] neighbor-list access-list-number</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>end</td>
</tr>
</tbody>
</table>
### Configuring Basic DVMRP Interoperability Features

To disable the filter, use the `no ip dvmrp accept-filter access-list-number [distance] neighbor-list access-list-number interface configuration command.

This example shows how to configure a DVMRP tunnel. In this configuration, the IP address of the tunnel on the Cisco switch is assigned `unnumbered`, which causes the tunnel to appear to have the same IP address as port 1. The tunnel endpoint source address is 172.16.2.1, and the tunnel endpoint address of the remote DVMRP router to which the tunnel is connected is 192.168.1.10. Any packets sent through the tunnel are encapsulated in an outer IP header. The Cisco switch is configured to accept incoming DVMRP reports with a distance of 100 from 198.92.37.0 through 198.92.37.255.

```plaintext
Switch(config)# ip multicast-routing
Switch(config)# interface tunnel 0
Switch(config-if)# ip unnumbered gigabitethernet1/0/1
Switch(config-if)# ip pim dense-mode
Switch(config-if)# tunnel source gigabitethernet1/0/1
Switch(config-if)# tunnel destination 192.168.1.10
Switch(config-if)# tunnel mode dvmrp
Switch(config-if)# ip dvmrp accept-filter 1 100
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# ip address 172.16.2.1 255.255.255.0
Switch(config-if)# ip pim dense-mode
Switch(config)# exit
Switch(config)# access-list 1 permit 198.92.37.0 0.0.0.255
```

### Advertising Network 0.0.0.0 to DVMRP Neighbors

If your switch is a neighbor of an mrouted Version 3.6 device, you can configure the software to advertise network 0.0.0.0 (the default route) to the DVMRP neighbor. The DVMRP default route computes the RPF information for any multicast sources that do not match a more specific route.

Do not advertise the DVMRP default into the MBONE.

Beginning in privileged EXEC mode, follow these steps to advertise network 0.0.0.0 to DVMRP neighbors on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Specify the interface that is connected to the DVMRP router, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dvmrp default-information {originate</td>
</tr>
<tr>
<td></td>
<td>- originate—Specifies that other routes more specific than 0.0.0.0 can also be advertised.</td>
</tr>
<tr>
<td></td>
<td>- only— Specifies that no DVMRP routes other than 0.0.0.0 are advertised.</td>
</tr>
</tbody>
</table>
Configuring Advanced DVMRP Interoperability Features

Cisco routers and multilayer switches run PIM to forward multicast packets to receivers and receive multicast packets from senders. It is also possible to propagate DVMRP routes into and through a PIM cloud. PIM uses this information; however, Cisco routers and multilayer switches do not implement DVMRP to forward multicast packets.

These sections contain this configuration information:

- **Enabling DVMRP Unicast Routing, page 45-59** (optional)
- **Rejecting a DVMRP Nonpruning Neighbor, page 45-60** (optional)
- **Controlling Route Exchanges, page 45-62** (optional)

For information on basic DVMRP features, see the “Configuring Basic DVMRP Interoperability Features” section on page 45-53.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To prevent the default route advertisement, use the `no ip dvmrp default-information` interface configuration command.

Responding to mrinfo Requests

The software answers mrinfo requests sent by mrouted systems and Cisco routers and multilayer switches. The software returns information about neighbors through DVMRP tunnels and all the routed interfaces. This information includes the metric (always set to 1), the configured TTL threshold, the status of the interface, and various flags. You can also use the `mrinfo` privileged EXEC command to query the router or switch itself, as in this example:

```
Switch# mrinfo
171.69.214.27 (mm1-7kd.cisco.com) [version cisco 11.1] [flags: PMS]:
 171.69.214.27 -> 171.69.214.26 (mm1-r7kb.cisco.com) [1/0/pim/querier]
 171.69.214.27 -> 171.69.214.25 (mm1-45a.cisco.com) [1/0/pim/querier]
 171.69.214.33 -> 171.69.214.34 (mm1-45c.cisco.com) [1/0/pim]
 171.69.214.137 -> 0.0.0.0 [1/0/pim/querier/down/leaf]
 171.69.214.203 -> 0.0.0.0 [1/0/pim/querier/down/leaf]
 171.69.214.18 -> 171.69.214.20 (mm1-45e.cisco.com) [1/0/pim]
 171.69.214.18 -> 171.69.214.19 (mm1-45c.cisco.com) [1/0/pim]
 171.69.214.18 -> 171.69.214.17 (mm1-45a.cisco.com) [1/0/pim]
```

Configuring Advanced DVMRP Interoperability Features

Cisco routers and multilayer switches run PIM to forward multicast packets to receivers and receive multicast packets from senders. It is also possible to propagate DVMRP routes into and through a PIM cloud. PIM uses this information; however, Cisco routers and multilayer switches do not implement DVMRP to forward multicast packets.

These sections contain this configuration information:

- Enabling DVMRP Unicast Routing, page 45-59 (optional)
- Rejecting a DVMRP Nonpruning Neighbor, page 45-60 (optional)
- Controlling Route Exchanges, page 45-62 (optional)
Enabling DVMRP Unicast Routing

Because multicast routing and unicast routing require separate topologies, PIM must follow the multicast topology to build loopless distribution trees. Using DVMRP unicast routing, Cisco routers, multilayer switches, and mrouted-based machines exchange DVMRP unicast routes, to which PIM can then reverse-path forward.

Cisco devices do not perform DVMRP multicast routing among each other, but they can exchange DVMRP routes. The DVMRP routes provide a multicast topology that might differ from the unicast topology. This enables PIM to run over the multicast topology, thereby enabling sparse-mode PIM over the MBONE topology.

When DVMRP unicast routing is enabled, the router or switch caches routes learned in DVMRP report messages in a DVMRP routing table. When PIM is running, these routes might be preferred over routes in the unicast routing table, enabling PIM to run on the MBONE topology when it is different from the unicast topology.

DVMRP unicast routing can run on all interfaces. For DVMRP tunnels, it uses DVMRP multicast routing. This feature does not enable DVMRP multicast routing among Cisco routers and multilayer switches. However, if there is a DVMRP-capable multicast router, the Cisco device can do PIM/DVMRP multicast routing.

Beginning in privileged EXEC mode, follow these steps to enable DVMRP unicast routing. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specify the interface that is connected to the DVMRP router, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dvmrp unicast-routing</td>
<td>Enable DVMRP unicast routing (to send and receive DVMRP routes). This feature is disabled by default.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this feature, use the `no ip dvmrp unicast-routing` interface configuration command.
Rejecting a DVMRP Nonpruning Neighbor

By default, Cisco devices accept all DVMRP neighbors as peers, regardless of their DVMRP capability. However, some non-Cisco devices run old versions of DVMRP that cannot prune, so they continuously receive forwarded packets, wasting bandwidth. Figure 45-8 shows this scenario.

You can prevent the switch from peering (communicating) with a DVMRP neighbor if that neighbor does not support DVMRP pruning or grafting. To do so, configure the switch (which is a neighbor to the leaf, nonpruning DVMRP machine) with the `ip dvmrp reject-non-pruners` interface configuration command on the interface connected to the nonpruning machine as shown in Figure 45-9. In this case, when the switch receives DVMRP probe or report message without the prune-capable flag set, the switch logs a syslog message and discards the message.
Note that the `ip dvmrp reject-non-pruners` interface configuration command prevents peering with neighbors only. If there are any nonpruning routers multiple hops away (downstream toward potential receivers) that are not rejected, a nonpruning DVMRP network might still exist.

Beginning in privileged EXEC mode, follow these steps to prevent peering with nonpruning DVMRP neighbors. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface connected to the nonpruning DVMRP neighbor, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip dvmrp reject-non-pruners</td>
<td>Prevent peering with nonpruning DVMRP neighbors.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this function, use the `no ip dvmrp reject-non-pruners` interface configuration command.
Controlling Route Exchanges

These sections describe how to tune the Cisco device advertisements of DVMRP routes:

- Limiting the Number of DVMRP Routes Advertised, page 45-62 (optional)
- Changing the DVMRP Route Threshold, page 45-62 (optional)
- Configuring a DVMRP Summary Address, page 45-63 (optional)
- Disabling DVMRP Autosummarization, page 45-65 (optional)
- Adding a Metric Offset to the DVMRP Route, page 45-65 (optional)

Limiting the Number of DVMRP Routes Advertised

By default, only 7000 DVMRP routes are advertised over an interface enabled to run DVMRP (that is, a DVMRP tunnel, an interface where a DVMRP neighbor has been discovered, or an interface configured to run the \texttt{ip dvmrp unicast-routing} interface configuration command).

Beginning in privileged EXEC mode, follow these steps to change the DVMRP route limit. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{configure terminal}</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| \texttt{ip dvmrp route-limit \textit{count}} | Change the number of DVMRP routes advertised over an interface enabled for DVMRP.  
  This command prevents misconfigured \texttt{ip dvmrp metric} interface configuration commands from causing massive route injection into the MBONE.  
  By default, 7000 routes are advertised. The range is 0 to 4294967295. |
| \texttt{end}                                  | Return to privileged EXEC mode.                                          |
| \texttt{show running-config}                 | Verify your entries.                                                    |
| \texttt{copy running-config startup-config}  | (Optional) Save your entries in the configuration file.                 |

To configure no route limit, use the \texttt{no ip dvmrp route-limit} global configuration command.

Changing the DVMRP Route Threshold

By default, 10,000 DVMRP routes can be received per interface within a 1-minute interval. When that rate is exceeded, a syslog message is issued, warning that there might be a route surge occurring. The warning is typically used to quickly detect when devices have been misconfigured to inject a large number of routes into the MBONE.
Beginning in privileged EXEC mode, follow these steps to change the threshold number of routes that trigger the warning. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip dvmrp routehog-notification route-count</td>
<td>Configure the number of routes that trigger a syslog message. The default is 10,000 routes. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting use the no ip dvmrp routehog-notification global configuration command.

Use the show ip igmp interface privileged EXEC command to display a running count of routes. When the count is exceeded, ***ALERT*** is appended to the line.

**Configuring a DVMRP Summary Address**

By default, a Cisco device advertises in DVMRP route-report messages only connected unicast routes (that is, only routes to subnets that are directly connected to the router) from its unicast routing table. These routes undergo normal DVMRP classful route summarization. This process depends on whether the route being advertised is in the same classful network as the interface over which it is being advertised.

Figure 45-10 shows an example of the default behavior. This example shows that the DVMRP report sent by the Cisco router contains the three original routes received from the DVMRP router that have been poison-reversed by adding 32 to the DVMRP metric. Listed after these routes are two routes that are advertisements for the two directly connected networks (176.32.10.0/24 and 176.32.15.0/24) that were taken from the unicast routing table. Because the DVMRP tunnel shares the same IP address as Fast Ethernet port 1 and falls into the same Class B network as the two directly connected subnets, classful summarization of these routes was not performed. As a result, the DVMRP router is able to poison-reverse only these two routes to the directly connected subnets and is able to only RPF properly for multicast traffic sent by sources on these two Ethernet segments. Any other multicast source in the network behind the Cisco router that is not on these two Ethernet segments does not properly RPF-check on the DVMRP router and is discarded.

You can force the Cisco router to advertise the summary address (specified by the address and mask pair in the ip dvmrp summary-address address mask interface configuration command) in place of any route that falls in this address range. The summary address is sent in a DVMRP route report if the unicast routing table contains at least one route in this range; otherwise, the summary address is not advertised. In Figure 45-10, you configure the ip dvmrp summary-address command on the Cisco router tunnel interface. As a result, the Cisco router sends only a single summarized Class B advertisement for network 176.32.0.0/16 from the unicast routing table.
Beginning in privileged EXEC mode, follow these steps to customize the summarization of DVMRP routes if the default classful autosummarization does not suit your needs. This procedure is optional.

At least one more-specific route must be present in the unicast routing table before a configured summary address is advertised.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dvmrp summary-address address mask [metric value]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the summary address, use the no ip dvmrp summary-address address mask [metric value] interface configuration command.
Disabling DVMRP Autosummarization

By default, the software automatically performs some level of DVMRP summarization. Disable this function if you want to advertise all routes, not just a summary. In some special cases, you can use the neighboring DVMRP router with all subnet information to better control the flow of multicast traffic in the DVMRP network. One such case might occur if the PIM network is connected to the DVMRP cloud at several points and more specific (unsummarized) routes are being injected into the DVMRP network to advertise better paths to individual subnets inside the PIM cloud.

If you configure the `ip dvmrp summary-address` interface configuration command and did not configure `no ip dvmrp auto-summary`, you get both custom and autosummaries.

Beginning in privileged EXEC mode, follow these steps to disable DVMRP autosummarization. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>interface interface-id</code> Specify the interface connected to the DVMRP router, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>no ip dvmrp auto-summary</code> Disable DVMRP autosummarization.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable auto summarization, use the `ip dvmrp auto-summary` interface configuration command.

Adding a Metric Offset to the DVMRP Route

By default, the switch increments by one the metric (hop count) of a DVMRP route advertised in incoming DVMRP reports. You can change the metric if you want to favor or not favor a certain route.

For example, a route is learned by multilayer switch A, and the same route is learned by multilayer switch B with a higher metric. If you want to use the path through switch B because it is a faster path, you can apply a metric offset to the route learned by switch A to make it larger than the metric learned by switch B, and you can choose the path through switch B.

Beginning in privileged EXEC mode, follow these steps to change the default metric. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>interface interface-id</code> Specify the interface to be configured, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
To return to the default setting, use the `no ip dvmrp metric-offset` interface configuration command.

## Monitoring and Maintaining IP Multicast Routing

These sections describe how to monitor and maintain IP multicast routing:

- **Clearing Caches, Tables, and Databases**, page 45-66
- **Displaying System and Network Statistics**, page 45-67
- **Monitoring IP Multicast Routing**, page 45-68

### Clearing Caches, Tables, and Databases

You can remove all contents of a particular cache, table, or database. Clearing a cache, table, or database might be necessary when the contents of the particular structure are or suspected to be invalid.

You can use any of the privileged EXEC commands in Table 45-5 to clear IP multicast caches, tables, and databases:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear ip cgmp</code></td>
<td>Clear all group entries the Catalyst switches have cached.</td>
</tr>
<tr>
<td>`clear ip dvmrp route [ *</td>
<td>route ]`</td>
</tr>
</tbody>
</table>
**Chapter 45 Configuring IP Multicast Routing**

**Monitoring and Maintaining IP Multicast Routing**

**Displaying System and Network Statistics**

You can display specific statistics, such as the contents of IP routing tables, caches, and databases.

*Note*

This release does not support per-route statistics.

You can display information to learn resource usage and solve network problems. You can also display information about node reachability and discover the routing path that packets of your device are taking through the network.

You can use any of the privileged EXEC commands in Table 45-6 to display various routing statistics:

**Table 45-6 Commands for Displaying System and Network Statistics**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ping</strong> [group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td><strong>show ip dvmrp route</strong> [ip-address]</td>
<td>Display the entries in the DVMRP routing table.</td>
</tr>
<tr>
<td><strong>show ip igmp groups</strong> [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td><strong>show ip igmp interface</strong> [type number]</td>
<td>Display multicast-related information about an interface.</td>
</tr>
<tr>
<td><strong>show ip mcache</strong> [group</td>
<td>source]</td>
</tr>
<tr>
<td><strong>show ip mpacket</strong> [source-address</td>
<td>name] [group-address</td>
</tr>
<tr>
<td><strong>show ip mroute</strong> [group-name</td>
<td>group-address] [source] [summary] [count] [active kbps]</td>
</tr>
<tr>
<td><strong>show ip pim interface</strong> [type number] [count] [detail]</td>
<td>Display information about interfaces configured for PIM. This command is available in all software images.</td>
</tr>
<tr>
<td><strong>show ip pim neighbor</strong> [type number]</td>
<td>List the PIM neighbors discovered by the switch. This command is available in all software images.</td>
</tr>
</tbody>
</table>
Table 45-6  Commands for Displaying System and Network Statistics (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip pim rp</td>
<td>Display the RP routers associated with a sparse-mode multicast group. This command is available in all software images.</td>
</tr>
<tr>
<td>show ip rpf</td>
<td>Display how the switch is doing Reverse-Path Forwarding (that is, from the unicast routing table, DVMRP routing table, or static mroutes).</td>
</tr>
<tr>
<td>show ip sdr</td>
<td>Display the Session Directory Protocol Version 2 cache.</td>
</tr>
</tbody>
</table>

Monitoring IP Multicast Routing

You can use the privileged EXEC commands in Table 45-7 to monitor IP multicast routers, packets, and paths:

Table 45-7  Commands for Monitoring IP Multicast Routing

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mrinfo hostname</td>
<td>Query a multicast router or multilayer switch about which neighboring multicast devices are peering with it.</td>
</tr>
<tr>
<td>address</td>
<td>source-address</td>
</tr>
<tr>
<td>mstat source destination group</td>
<td>Trace the path from a source to a destination branch for a multicast distribution tree for a given group.</td>
</tr>
</tbody>
</table>
Configuring MSDP

This chapter describes how to configure the Multicast Source Discovery Protocol (MSDP) on the switch. The MSDP connects multiple Protocol-Independent Multicast sparse-mode (PIM-SM) domains.

MSDP is not fully supported in this software release because of a lack of support for Multicast Border Gateway Protocol (MBGP), which works closely with MSDP. However, it is possible to create default peers that MSDP can operate with if MBGP is not running.

To use this feature, the switch or stack master must be running the IP services feature set. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS IP Command Reference, Volume 3 of 3: Multicast, Release 12.2.

This chapter consists of these sections:

- Understanding MSDP, page 46-1
- Configuring MSDP, page 46-4
- Monitoring and Maintaining MSDP, page 46-18

Understanding MSDP

MSDP allows multicast sources for a group to be known to all rendezvous points (RPs) in different domains. Each PIM-SM domain uses its own RPs and does not depend on RPs in other domains. An RP runs MSDP over the Transmission Control Protocol (TCP) to discover multicast sources in other domains.

An RP in a PIM-SM domain has an MSDP peering relationship with MSDP-enabled devices in another domain. The peering relationship occurs over a TCP connection, primarily exchanging a list of sources sending to multicast groups. The TCP connections between RPs are achieved by the underlying routing system. The receiving RP uses the source lists to establish a source path.

The purpose of this topology is to have domains discover multicast sources in other domains. If the multicast sources are of interest to a domain that has receivers, multicast data is delivered over the normal, source-tree building mechanism in PIM-SM. MSDP is also used to announce sources sending to a group. These announcements must originate at the domain’s RP.
MSDP depends heavily on the Border Gateway Protocol (BGP) or MBGP for interdomain operation. We recommend that you run MSDP in RPs in your domain that are RPs for sources sending to global groups to be announced to the Internet.

**MSDP Operation**

Figure 46-1 shows MSDP operating between two MSDP peers. PIM uses MSDP as the standard mechanism to register a source with the RP of a domain. When MSDP is configured, this sequence occurs.

When a source sends its first multicast packet, the first-hop router (designated router or RP) directly connected to the source sends a PIM register message to the RP. The RP uses the register message to register the active source and to forward the multicast packet down the shared tree in the local domain. With MSDP configured, the RP also forwards a source-active (SA) message to all MSDP peers. The SA message identifies the source, the group the source is sending to, and the address of the RP or the originator ID (the IP address of the interface used as the RP address), if configured.

Each MSDP peer receives and forwards the SA message away from the originating RP to achieve peer reverse-path flooding (RPF). The MSDP device examines the BGP or MBGP routing table to discover which peer is the next hop toward the originating RP of the SA message. Such a peer is called an RPF peer (reverse-path forwarding peer). The MSDP device forwards the message to all MSDP peers other than the RPF peer. For information on how to configure an MSDP peer when BGP and MBGP are not supported, see the “Configuring a Default MSDP Peer” section on page 46-4.

If the MSDP peer receives the same SA message from a non-RPF peer toward the originating RP, it drops the message. Otherwise, it forwards the message to all its MSDP peers.

The RP for a domain receives the SA message from an MSDP peer. If the RP has any join requests for the group the SA message describes and if the (S,G) entry exists with a nonempty outgoing interface list, the domain is interested in the group, and the RP triggers an (S,G) join toward the source. After the (S,G) join reaches the source’s DR, a branch of the source tree has been built from the source to the RP in the remote domain. Multicast traffic can now flow from the source across the source tree to the RP and then down the shared tree in the remote domain to the receiver.
MSDP Benefits

MSDP has these benefits:

- It breaks up the shared multicast distribution tree. You can make the shared tree local to your domain. Your local members join the local tree, and join messages for the shared tree never need to leave your domain.
- PIM sparse-mode domains can rely only on their own RPs, decreasing reliance on RPs in another domain. This increases security because you can prevent your sources from being known outside your domain.
- Domains with only receivers can receive data without globally advertising group membership.
- Global source multicast routing table state is not required, saving memory.
**Configuring MSDP**

These sections contain this configuration information:

- Default MSDP Configuration, page 46-4
- Configuring a Default MSDP Peer, page 46-4 (required)
- Caching Source-Active State, page 46-6 (optional)
- Requesting Source Information from an MSDP Peer, page 46-8 (optional)
- Controlling Source Information that Your Switch Originates, page 46-8 (optional)
- Controlling Source Information that Your Switch Forwards, page 46-11 (optional)
- Controlling Source Information that Your Switch Receives, page 46-14 (optional)
- Configuring an MSDP Mesh Group, page 46-15 (optional)
- Shutting Down an MSDP Peer, page 46-16 (optional)
- Including a Bordering PIM Dense-Mode Region in MSDP, page 46-16 (optional)
- Configuring an Originating Address other than the RP Address, page 46-17 (optional)

**Default MSDP Configuration**

MSDP is not enabled, and no default MSDP peer exists.

**Configuring a Default MSDP Peer**

In this software release, because BGP and MBGP are not supported, you cannot configure an MSDP peer on the local switch by using the `ip msdp peer` global configuration command. Instead, you define a default MSDP peer (by using the `ip msdp default-peer` global configuration command) from which to accept all SA messages for the switch. The default MSDP peer must be a previously configured MSDP peer. Configure a default MSDP peer when the switch is not BGP- or MBGP-peering with an MSDP peer. If a single MSDP peer is configured, the switch always accepts all SA messages from that peer.

Figure 46-2 shows a network in which default MSDP peers might be used. In Figure 46-2, a customer who owns Switch B is connected to the Internet through two Internet service providers (ISPs), one owning Router A and the other owning Router C. They are not running BGP or MBGP between them. To learn about sources in the ISP’s domain or in other domains, Switch B at the customer site identifies Router A as its default MSDP peer. Switch B advertises SA messages to both Router A and Router C but accepts SA messages only from Router A or only from Router C. If Router A is first in the configuration file, it is used if it is running. If Router A is not running, only then does Switch B accept SA messages from Router C. This is the default behavior without a prefix list.

If you specify a prefix list, the peer is a default peer only for the prefixes in the list. You can have multiple active default peers when you have a prefix list associated with each. When you do not have any prefix lists, you can configure multiple default peers, but only the first one is the active default peer as long as the router has connectivity to this peer and the peer is alive. If the first configured peer fails or the connectivity to this peer fails, the second configured peer becomes the active default, and so on.

The ISP probably uses a prefix list to define which prefixes it accepts from the customer’s router.
Beginning in privileged EXEC mode, follow these steps to specify a default MSDP peer. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> ip msdp default-peer ip-address</td>
<td>Define a default peer from which to accept all MSDP SA messages.</td>
</tr>
<tr>
<td></td>
<td>name [prefix-list list]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To remove the default peer, use the `no ip msdp default-peer ip-address | name` global configuration command.

This example shows a partial configuration of Router A and Router C in Figure 46-2. Each of these ISPs have more than one customer (like the customer in Figure 46-2) who use default peering (no BGP or MBGP). In that case, they might have similar configurations. That is, they accept SAs only from a default peer if the SA is permitted by the corresponding prefix list.

**Router A**

```
Router(config)# ip msdp default-peer 10.1.1.1
Router(config)# ip msdp default-peer 10.1.1.1 prefix-list site-a
Router(config)# ip prefix-list site-b permit 10.0.0.0/1
```

**Router C**

```
Router(config)# ip msdp default-peer 10.1.1.1 prefix-list site-a
Router(config)# ip prefix-list site-b permit 10.0.0.0/1
```

### Caching Source-Active State

By default, the switch does not cache source/group pairs from received SA messages. When the switch forwards the MSDP SA information, it does not store it in memory. Therefore, if a member joins a group soon after a SA message is received by the local RP, that member needs to wait until the next SA message to hear about the source. This delay is known as join latency.

If you want to sacrifice some memory in exchange for reducing the latency of the source information, you can configure the switch to cache SA messages.
Beginning in privileged EXEC mode, follow these steps to enable the caching of source/group pairs. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip msdp cache-sa-state [list access-list-number]</td>
<td>Enable the caching of source/group pairs (create an SA state). Those pairs that pass the access list are cached. For <code>list access-list-number</code>, the range is 100 to 199.</td>
</tr>
</tbody>
</table>
| 3    | access-list access-list-number [deny | permit] protocol source source-wildcard destination destination-wildcard | Create an IP extended access list, repeating the command as many times as necessary.  
  - For `access-list-number`, the range is 100 to 199. Enter the same number created in Step 2.  
  - The `deny` keyword denies access if the conditions are matched. The `permit` keyword permits access if the conditions are matched.  
  - For `protocol`, enter `ip` as the protocol name.  
  - For `source`, enter the number of the network or host from which the packet is being sent.  
  - For `source-wildcard`, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.  
  - For `destination`, enter the number of the network or host to which the packet is being sent.  
  - For `destination-wildcard`, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.  
  Recall that the access list is always terminated by an implicit deny statement for everything. |
| 4    | end | Return to privileged EXEC mode. |
| 5    | show running-config | Verify your entries. |
| 6    | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

An alternative to this command is the `ip msdp sa-request` global configuration command, which causes the switch to send an SA request message to the MSDP peer when a new member for a group becomes active. For more information, see the next section.

To return to the default setting (no SA state is created), use the `no ip msdp cache-sa-state` global configuration command.

This example shows how to enable the cache state for all sources in 171.69.0.0/16 sending to groups 224.2.0.0/16:

```
Switch(config)# ip msdp cache-sa-state 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.2.0.0 0.0.255.255
```
Requesting Source Information from an MSDP Peer

Local RPs can send SA requests and get immediate responses for all active sources for a given group. By default, the switch does not send any SA request messages to its MSDP peers when a new member joins a group and wants to receive multicast traffic. The new member waits to receive the next periodic SA message.

If you want a new member of a group to learn the active multicast sources in a connected PIM sparse-mode domain that are sending to a group, configure the switch to send SA request messages to the specified MSDP peer when a new member joins a group. The peer replies with the information in its SA cache. If the peer does not have a cache configured, this command has no result. Configuring this feature reduces join latency but sacrifices memory.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send SA request messages to the MSDP peer when a new member joins a group and wants to receive multicast traffic. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp sa-request {ip-address</td>
</tr>
</tbody>
</table>

Step 3	end Return to privileged EXEC mode.
Step 4	show running-config Verify your entries.
Step 5	copy running-config startup-config (Optional) Save your entries in the configuration file.

To return to the default setting, use the no ip msdp sa-request \{ip-address | name\} global configuration command.

This example shows how to configure the switch to send SA request messages to the MSDP peer at 171.69.1.1:

```
Switch(config)# ip msdp sa-request 171.69.1.1
```

Controlling Source Information that Your Switch Originates

You can control the multicast source information that originates with your switch:

- Sources you advertise (based on your sources)
- Receivers of source information (based on knowing the requestor)

For more information, see the “Redistributing Sources” section on page 46-9 and the “Filtering Source-Active Request Messages” section on page 46-10.
Redistributing Sources

SA messages originate on RPs to which sources have registered. By default, any source that registers with an RP is advertised. The A flag is set in the RP when a source is registered, which means the source is advertised in an SA unless it is filtered.

Beginning in privileged EXEC mode, follow these steps to further restrict which registered sources are advertised. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip msdp redistribute [list access-list-name] [asn aspath-access-list-number] [route-map map]</td>
</tr>
<tr>
<td>Configure which (S,G) entries from the multicast routing table are advertised in SA messages.</td>
<td></td>
</tr>
<tr>
<td>By default, only sources within the local domain are advertised.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For list access-list-name, enter the name or number of an IP standard or extended access list. The range is 1 to 99 for standard access lists and 100 to 199 for extended lists. The access list controls which local sources are advertised and to which groups they send.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For asn aspath-access-list-number, enter the IP standard or extended access list number in the range 1 to 199. This access list number must also be configured in the ip as-path access-list command.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For route-map map, enter the IP standard or extended access list number in the range 1 to 199. This access list number must also be configured in the ip as-path access-list command.</td>
<td></td>
</tr>
<tr>
<td>The switch advertises (S,G) pairs according to the access list or autonomous system path access list.</td>
<td></td>
</tr>
</tbody>
</table>
To remove the filter, use the `no ip msdp redistribute` global configuration command.

### Filtering Source-Active Request Messages

By default, only switches that are caching SA information can respond to SA requests. By default, such a switch honors all SA request messages from its MSDP peers and supplies the IP addresses of the active sources.

However, you can configure the switch to ignore all SA requests from an MSDP peer. You can also honor only those SA request messages from a peer for groups described by a standard access list. If the groups in the access list pass, SA request messages are accepted. All other such messages from the peer for other groups are ignored.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`access-list access-list-number {deny</td>
<td>permit} source [source-wildcard]<code>or</code>access-list access-list-number {deny</td>
</tr>
<tr>
<td>- For <code>access-list-number</code>, the range is 1 to 99 for standard access lists and 100 to 199 for extended lists. Enter the same number created in Step 2. - The <code>deny</code> keyword denies access if the conditions are matched. The <code>permit</code> keyword permits access if the conditions are matched. - For <code>protocol</code>, enter <code>ip</code> as the protocol name. - For <code>source</code>, enter the number of the network or host from which the packet is being sent. - For <code>source-wildcard</code>, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore. - For <code>destination</code>, enter the number of the network or host to which the packet is being sent. - For <code>destination-wildcard</code>, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.</td>
<td></td>
</tr>
<tr>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the filter, use the `no ip msdp redistribute` global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure one of these options. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><strong>configure terminal</strong> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><strong>ip msdp filter-sa-request ip-address</strong></td>
</tr>
<tr>
<td>or</td>
<td><strong>name</strong></td>
</tr>
<tr>
<td>Step 3</td>
<td>**access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td>• For <strong>access-list-number</strong>, the range is 1 to 99.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>deny</strong> keyword denies access if the conditions are matched. The <strong>permit</strong> keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>• For <strong>source</strong>, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <strong>source-wildcard</strong>, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
<tr>
<td>Step 4</td>
<td><strong>end</strong> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><strong>show running-config</strong> Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><strong>copy running-config startup-config</strong> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no ip msdp filter-sa-request {ip-address | name}** global configuration command.

This example shows how to configure the switch to filter SA request messages from the MSDP peer at 171.69.2.2. SA request messages from sources on network 192.4.22.0 pass access list 1 and are accepted; all others are ignored.

```
Switch(config)# ip msdp filter sa-request 171.69.2.2 list 1
Switch(config)# access-list 1 permit 192.4.22.0 0.0.0.255
```

**Controlling Source Information that Your Switch Forwards**

By default, the switch forwards all SA messages it receives to all its MSDP peers. However, you can prevent outgoing messages from being forwarded to a peer by using a filter or by setting a time-to-live (TTL) value. These methods are described in the next sections.
Using a Filter

By creating a filter, you can perform one of these actions:

- Filter all source/group pairs
- Specify an IP extended access list to pass only certain source/group pairs
- Filter based on match criteria in a route map

Beginning in privileged EXEC mode, follow these steps to apply a filter. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip msdp sa-filter out ip-address</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>ip msdp sa-filter out {ip-address</td>
</tr>
<tr>
<td></td>
<td>list access-list-number</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>ip msdp sa-filter out {ip-address</td>
</tr>
<tr>
<td></td>
<td>route-map map-tag</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring MSDP

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the filter, use the `no ip msdp sa-filter out {ip-address | name} [list access-list-number] [route-map map-tag]` global configuration command.

This example shows how to allow only (S,G) pairs that pass access list 100 to be forwarded in an SA message to the peer named `switch.cisco.com`:

```
Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet0/1
Switch(config)# ip msdp sa-filter out switch.cisco.com list 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.20 0 0.0.255.255
```

Using TTL to Limit the Multicast Data Sent in SA Messages

You can use a TTL value to control what data is encapsulated in the first SA message for every source. Only multicast packets with an IP-header TTL greater than or equal to the `ttl` argument are sent to the specified MSDP peer. For example, you can limit internal traffic to a TTL of 8. If you want other groups to go to external locations, you must send those packets with a TTL greater than 8.

Beginning in privileged EXEC mode, follow these steps to establish a TTL threshold. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip msdp ttl-threshold {ip-address</td>
<td>name} ttl</td>
</tr>
<tr>
<td></td>
<td>• For `ip-address</td>
</tr>
<tr>
<td></td>
<td>• For <code>ttl</code>, enter the TTL value. The default is 0, which means all multicast data packets are forwarded to the peer until the TTL is exhausted. The range is 0 to 255.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip msdp ttl-threshold {ip-address | name}` global configuration command.
Controlling Source Information that Your Switch Receives

By default, the switch receives all SA messages that its MSDP RPF peers send to it. However, you can control the source information that you receive from MSDP peers by filtering incoming SA messages. In other words, you can configure the switch to not accept them.

You can perform one of these actions:

- Filter all incoming SA messages from an MSDP peer
- Specify an IP extended access list to pass certain source/group pairs
- Filter based on match criteria in a route map

Beginning in privileged EXEC mode, follow these steps to apply a filter. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt;ip msdp sa-filter in ip-address</td>
<td>Filter all SA messages from the specified MSDP peer.</td>
</tr>
<tr>
<td>or name</td>
<td>or</td>
</tr>
<tr>
<td>ip msdp sa-filter in {ip-address</td>
<td>name}</td>
</tr>
<tr>
<td>list access-list-number</td>
<td>If both the list and the route-map keywords are used, all conditions must be true to pass any (S,G) pair in incoming SA messages.</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>ip msdp sa-filter in {ip-address</td>
<td>name}</td>
</tr>
<tr>
<td>route-map map-tag</td>
<td>If all match criteria are true, a permit from the route map passes routes through the filter. A deny will filter routes.</td>
</tr>
<tr>
<td><strong>Step 3</strong>&lt;br&gt;access-list access-list-number {deny</td>
<td>permit} protocol source source-wildcard destination destination-wildcard</td>
</tr>
</tbody>
</table>

- For *access-list-number*, enter the number specified in Step 2.
- The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.
- For *protocol*, enter ip as the protocol name.
- For *source*, enter the number of the network or host from which the packet is being sent.
- For *source-wildcard*, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.
- For *destination*, enter the number of the network or host to which the packet is being sent.
- For *destination-wildcard*, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.

Recall that the access list is always terminated by an implicit deny statement for everything.
Chapter 46  Configuring MSDP

Configuring MSDP

To remove the filter, use the \texttt{no ip msdp sa-filter in \{ip-address | name\} [list access-list-number] [route-map map-tag]} global configuration command.

This example shows how to filter all SA messages from the peer named \texttt{switch.cisco.com}:

\begin{verbatim}
Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet1/0/1
Switch(config)# ip msdp sa-filter in switch.cisco.com
\end{verbatim}

**Configuring an MSDP Mesh Group**

An MSDP mesh group is a group of MSDP speakers that have fully meshed MSDP connectivity among one another. Any SA messages received from a peer in a mesh group are not forwarded to other peers in the same mesh group. Thus, you reduce SA message flooding and simplify peer-RPF flooding. Use the \texttt{ip msdp mesh-group} global configuration command when there are multiple RPs within a domain. It is especially used to send SA messages across a domain. You can configure multiple mesh groups (with different names) in a single switch.

Beginning in privileged EXEC mode, follow these steps to create a mesh group. This procedure is optional.

\begin{verbatim}
Step 1 configure terminal
Step 2 ip msdp mesh-group name \{ip-address | name\}
Step 3 end
Step 4 show running-config
Step 5 copy running-config startup-config
Step 6 Repeat this procedure on each MSDP peer in the group.
\end{verbatim}

To remove an MSDP peer from a mesh group, use the \texttt{no ip msdp mesh-group name \{ip-address | name\}} global configuration command.
Shutting Down an MSDP Peer

If you want to configure many MSDP commands for the same peer and you do not want the peer to become active, you can shut down the peer, configure it, and later bring it up. When a peer is shut down, the TCP connection is terminated and is not restarted. You can also shut down an MSDP session without losing configuration information for the peer.

Beginning in privileged EXEC mode, follow these steps to shut down a peer. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp shutdown {peer-name</td>
<td>peer address}</td>
</tr>
<tr>
<td></td>
<td>For peer-name</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To bring the peer back up, use the **no ip msdp shutdown {peer-name | peer address}** global configuration command. The TCP connection is reestablished.

Including a Bordering PIM Dense-Mode Region in MSDP

You can configure MSDP on a switch that borders a PIM sparse-mode region with a dense-mode region. By default, active sources in the dense-mode region do not participate in MSDP.

**Note**

We do not recommend using the **ip msdp border sa-address** global configuration command. It is better to configure the border router in the sparse-mode domain to proxy-register sources in the dense-mode domain to the RP of the sparse-mode domain and have the sparse-mode domain use standard MSDP procedures to advertise these sources.

Beginning in privileged EXEC mode, follow these steps to configure the border router to send SA messages for sources active in the dense-mode region to the MSDP peers. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp border sa-address interface-id</td>
<td>Configure the switch on the border between a dense-mode and sparse-mode region to send SA messages about active sources in the dense-mode region.</td>
</tr>
<tr>
<td></td>
<td>For interface-id, specify the interface from which the IP address is derived and used as the RP address in SA messages.</td>
</tr>
<tr>
<td></td>
<td>The IP address of the interface is used as the Originator-ID, which is the RP field in the SA message.</td>
</tr>
</tbody>
</table>
Chapter 46  Configuring MSDP

Configuring MSDP

Note that the `ip msdp originator-id` global configuration command also identifies an interface to be used as the RP address. If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command specifies the RP address.

To return to the default setting (active sources in the dense-mode region do not participate in MSDP), use the `no ip msdp border sa-address interface-id` global configuration command.

Configuring an Originating Address other than the RP Address

You can allow an MSDP speaker that originates an SA message to use the IP address of the interface as the RP address in the SA message by changing the Originator ID. You might change the Originator ID in one of these cases:

- If you configure a logical RP on multiple switches in an MSDP mesh group.
- If you have a switch that borders a PIM sparse-mode domain and a dense-mode domain. If a switch borders a dense-mode domain for a site, and sparse-mode is being used externally, you might want dense-mode sources to be known to the outside world. Because this switch is not an RP, it would not have an RP address to use in an SA message. Therefore, this command provides the RP address by specifying the address of the interface.

Beginning in privileged EXEC mode, follow these steps to allow an MSDP speaker that originates an SA message to use the IP address on the interface as the RP address in the SA message. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip msdp redistribute [list access-list-name] [asn aspath-access-list-number] [route-map map]</code></td>
<td>Configure which (S,G) entries from the multicast routing table are advertised in SA messages. For more information, see the “Redistributing Sources” section on page 46-9.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command specifies the address of the RP.
To prevent the RP address from being derived in this way, use the `no ip msdp originator-id interface-id` global configuration command.

**Monitoring and Maintaining MSDP**

To monitor MSDP SA messages, peers, state, or peer status, use one or more of the privileged EXEC commands in **Table 46-1**:

**Table 46-1  Commands for Monitoring and Maintaining MSDP**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`debug ip msdp [peer-address</td>
<td>name] [detail] [routes]`</td>
</tr>
<tr>
<td><code>debug ip msdp resets</code></td>
<td>Debugs MSDP peer reset reasons.</td>
</tr>
<tr>
<td><code>show ip msdp count [autonomous-system-number]</code></td>
<td>Displays the number of sources and groups originated in SA messages from each autonomous system. The <code>ip msdp cache-sa-state</code> command must be configured for this command to produce any output.</td>
</tr>
<tr>
<td>`show ip msdp peer [peer-address</td>
<td>name]`</td>
</tr>
<tr>
<td>`show ip msdp sa-cache [group-address</td>
<td>source-address</td>
</tr>
<tr>
<td><code>show ip msdp summary</code></td>
<td>Displays MSDP peer status and SA message counts.</td>
</tr>
</tbody>
</table>

To clear MSDP connections, statistics, or SA cache entries, use the privileged EXEC commands in **Table 46-2**:

**Table 46-2  Commands for Clearing MSDP Connections, Statistics, or SA Cache Entries**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`clear ip msdp peer peer-address</td>
<td>name`</td>
</tr>
<tr>
<td>`clear ip msdp statistics [peer-address</td>
<td>name]`</td>
</tr>
<tr>
<td>`clear ip msdp sa-cache [group-address</td>
<td>name]`</td>
</tr>
</tbody>
</table>
Configuring Fallback Bridging

This chapter describes how to configure fallback bridging (VLAN bridging) on the switch. With fallback bridging, you can forward non-IP packets that the switch does not route between VLAN bridge domains and routed ports.

To use this feature, the switch or stack master must be running the IP services feature set. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Bridging and IBM Networking Command Reference, Volume 1 of 2, Release 12.2.

This chapter consists of these sections:

- Understanding Fallback Bridging, page 47-1
- Configuring Fallback Bridging, page 47-3
- Monitoring and Maintaining Fallback Bridging, page 47-11

Understanding Fallback Bridging

These sections describe how fallback bridging works:

- Fallback Bridging Overview, page 47-1
- Fallback Bridging and Switch Stacks, page 47-3

Fallback Bridging Overview

With fallback bridging, the switch bridges together two or more VLANs or routed ports, essentially connecting multiple VLANs within one bridge domain. Fallback bridging forwards traffic that the switch does not route and forwards traffic belonging to a nonroutable protocol such as DECnet.

A VLAN bridge domain is represented with switch virtual interfaces (SVIs). A set of SVIs and routed ports (which do not have any VLANs associated with them) can be configured (grouped together) to form a bridge group. Recall that an SVI represents a VLAN of switch ports as one interface to the routing or bridging function in the system. You associate only one SVI with a VLAN, and you configure an SVI for a VLAN only when you want to route between VLANs, to fallback-bridge nonroutable protocols between VLANs, or to provide IP host connectivity to the switch. A routed port is a physical port that
Understanding Fallback Bridging

acts like a port on a router, but it is not connected to a router. A routed port is not associated with a particular VLAN, does not support VLAN subinterfaces, but behaves like a normal routed port. For more information about SVIs and routed ports, see Chapter 11, “Configuring Interface Characteristics.”

A bridge group is an internal organization of network interfaces on a switch. You cannot use bridge groups to identify traffic switched within the bridge group outside the switch on which they are defined. Bridge groups on the switch function as distinct bridges; that is, bridged traffic and bridge protocol data units (BPDUs) are not exchanged between different bridge groups on a switch.

Fallback bridging does not allow the spanning trees from the VLANs being bridged to collapse. Each VLAN has its own spanning-tree instance and a separate spanning tree, called the VLAN-bridge spanning tree, which runs on top of the bridge group to prevent loops.

The switch creates a VLAN-bridge spanning-tree instance when a bridge group is created. The switch runs the bridge group and treats the SVIs and routed ports in the bridge group as its spanning-tree ports.

These are the reasons for placing network interfaces into a bridge group:

- To bridge all nonrouted traffic among the network interfaces making up the bridge group. If the packet destination address is in the bridge table, the packet is forwarded on a single interface in the bridge group. If the packet destination address is not in the bridge table, the packet is flooded on all forwarding interfaces in the bridge group. A source MAC address is learned on a bridge group only when the address is learned on a VLAN (the reverse is not true). Any address that is learned on a stack member is learned by all switches in the stack.

- To participate in the spanning-tree algorithm by receiving, and in some cases sending, BPDUs on the LANs to which they are attached. A separate spanning-tree process runs for each configured bridge group. Each bridge group participates in a separate spanning-tree instance. A bridge group establishes a spanning-tree instance based on the BPDUs it receives on only its member interfaces. If the bridge STP BPDU is received on a port whose VLAN does not belong to a bridge group, the BPDU is flooded on all the forwarding ports of the VLAN.

Figure 47-1 shows a fallback bridging network example. The switch has two ports configured as SVIs with different assigned IP addresses and attached to two different VLANs. Another port is configured as a routed port with its own IP address. If all three of these ports are assigned to the same bridge group, non-IP protocol frames can be forwarded among the end stations connected to the switch even though they are on different networks and in different VLANs. IP addresses do not need to be assigned to routed ports or SVIs for fallback bridging to work.

Figure 47-1  Fallback Bridging Network Example
Fallback Bridging and Switch Stacks

When the stack master fails, a stack member becomes the new stack master by using the election process described in Chapter 7, “Managing Switch Stacks.” The new stack master creates new VLAN-bridge spanning-tree instance, which temporarily puts the spanning-tree ports used for fallback bridging into a nonforwarding state. A momentary traffic disruption occurs until the spanning-tree states transition to the forwarding state. All MAC addresses must be relearned in the bridge group.

Note
If a stack master running the IP services feature set fails and if the newly elected stack master is running the IP base feature set, the switch stack loses its fallback bridging capability.

If stacks merge or if a switch is added to the stack, any new VLANs that are part of a bridge group and become active are included in the VLAN-bridge STP.
When a stack member fails, the addresses learned from this member are deleted from the bridge group MAC address table.
For more information about switch stacks, see Chapter 7, “Managing Switch Stacks.”

Configuring Fallback Bridging

These sections contain this configuration information:

- Default Fallback Bridging Configuration, page 47-4
- Fallback Bridging Configuration Guidelines, page 47-4
- Creating a Bridge Group, page 47-4 (required)
- Adjusting Spanning-Tree Parameters, page 47-6 (optional)
Configuring Fallback Bridging

Default Fallback Bridging Configuration

Table 47-1 shows the default fallback bridging configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge groups</td>
<td>None are defined or assigned to a port. No VLAN-bridge STP is defined.</td>
</tr>
<tr>
<td>Switch forwards frames for stations that it has dynamically learned</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Spanning tree parameters:</td>
<td></td>
</tr>
<tr>
<td>• Switch priority</td>
<td>• 32768.</td>
</tr>
<tr>
<td>• Port priority</td>
<td>• 128.</td>
</tr>
<tr>
<td>• Port path cost</td>
<td>• 10 Mb/s: 100.</td>
</tr>
<tr>
<td></td>
<td>• 100 Mb/s: 19.</td>
</tr>
<tr>
<td></td>
<td>• 1000 Mb/s: 4.</td>
</tr>
<tr>
<td>• Hello BPDU interval</td>
<td>• 2 seconds.</td>
</tr>
<tr>
<td>• Forward-delay interval</td>
<td>• 20 seconds.</td>
</tr>
<tr>
<td>• Maximum idle interval</td>
<td>• 30 seconds.</td>
</tr>
</tbody>
</table>

Fallback Bridging Configuration Guidelines

Up to 32 bridge groups can be configured on the switch.

An interface (an SVI or routed port) can be a member of only one bridge group.

Use a bridge group for each separately bridged (topologically distinct) network connected to the switch.

Do not configure fallback bridging on a switch configured with private VLANs.

All protocols except IP (Version 4 and Version 6), Address Resolution Protocol (ARP), reverse ARP (RARP), LOOPBACK, and Frame Relay ARP are fallback bridged.

Creating a Bridge Group

To configure fallback bridging for a set of SVIs or routed ports, these interfaces must be assigned to bridge groups. All interfaces in the same group belong to the same bridge domain. Each SVI or routed port can be assigned to only one bridge group.

Note

The protected port feature is not compatible with fallback bridging. When fallback bridging is enabled, it is possible for packets to be forwarded from one protected port on a switch to another protected port on the same switch if the ports are in different VLANs.
Beginning in privileged EXEC mode, follow these steps to create a bridge group and to assign an interface to it. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>bridge bridge-group protocol vlan-bridge</strong></td>
</tr>
</tbody>
</table>
| **Step 3** | **interface interface-id** | Specify the interface on which you want to assign the bridge group, and enter interface configuration mode. The specified interface must be one of these:  
  - A routed port: a physical port that you have configured as a Layer 3 port by entering the no switchport interface configuration command.  
  - An SVI: a VLAN interface that you created by using the interface vlan vlan-id global configuration command.  
  
  **Note** You can assign an IP address to the routed port or to the SVI, but it is not required. |
**Step 4**	**bridge-group bridge-group**	Assign the interface to the bridge group created in Step 2. By default, the interface is not assigned to any bridge group. An interface can be assigned to only one bridge group.
**Step 5**	**end**	Return to privileged EXEC mode.
**Step 6**	**show running-config**	Verify your entries.
**Step 7**	**copy running-config startup-config**	(Optional) Save your entries in the configuration file.

To remove a bridge group, use the no bridge bridge-group global configuration command. The no bridge bridge-group command automatically removes all SVIs and routes ports from that bridge group. To remove an interface from a bridge group and to remove the bridge group, use the no bridge-group bridge-group interface configuration command.

This example shows how to create bridge group 10, to specify that the VLAN-bridge STP runs in the bridge group, to define a port as a routed port, and to assign the port to the bridge group:

```
Switch(config)# bridge 10 protocol vlan-bridge
Switch(config)# interface gigabitethernet3/0/1
Switch(config-if)# no switchport
Switch(config-if)# no shutdown
Switch(config-if)# bridge-group 10
```
This example shows how to create bridge group 10 and to specify that the VLAN-bridge STP runs in the
bridge group. It defines an SVI for VLAN 2 and assigns it to the bridge group:

Switch(config)# bridge 10 protocol vlan-bridge
Switch(config)# vlan 2
Switch(config-vlan)# exit
Switch(config)# interface vlan2
Switch(config-if)# bridge-group 10
Switch(config-if)# exit

Adjusting Spanning-Tree Parameters

You might need to adjust certain spanning-tree parameters if the default values are not suitable. You
configure parameters affecting the entire spanning tree by using variations of the `bridge` global
configuration command. You configure interface-specific parameters by using variations of the
`bridge-group` interface configuration command.

You can adjust spanning-tree parameters by performing any of the tasks in these sections:

• Changing the VLAN-Bridge Spanning-Tree Priority, page 47-6 (optional)
• Changing the Interface Priority, page 47-7 (optional)
• Assigning a Path Cost, page 47-8 (optional)
• Adjusting BPDU Intervals, page 47-8 (optional)
• Disabling the Spanning Tree on an Interface, page 47-10 (optional)

Note

Only network administrators with a good understanding of how switches and STP function should make
adjustments to spanning-tree parameters. Poorly planned adjustments can have a negative impact on
performance. A good source on switching is the IEEE 802.1D specification. For more information, see
the “References and Recommended Reading” appendix in the Cisco IOS Configuration Fundamentals
Command Reference.

Changing the VLAN-Bridge Spanning-Tree Priority

You can globally configure the VLAN-bridge spanning-tree priority of a switch when it ties with another
switch for the position as the root switch. You also can configure the likelihood that the switch will be
selected as the root switch.

Beginning in privileged EXEC mode, follow these steps to change the switch priority. This procedure is
optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>bridge bridge-group priority number</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
</tbody>
</table>
Chapter 47  Configuring Fallback Bridging

Configuring Fallback Bridging

To return to the default setting, use the `no bridge bridge-group priority` global configuration command. To change the priority on a port, use the `bridge-group priority` interface configuration command (described in the next section).

This example shows how to set the switch priority to 100 for bridge group 10:

```
Switch(config)# bridge 10 priority 100
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

### Changing the Interface Priority

You can change the priority for a port. When two switches tie for position as the root switch, you configure a port priority to break the tie. The switch with the lowest interface value is elected.

Beginning in privileged EXEC mode, follow these steps to change the interface priority. This procedure is optional.

To return to the default setting, use the `no bridge-group bridge-group priority` interface configuration command.

This example shows how to change the priority to 20 on a port in bridge group 10:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge-group 10 priority 20
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to set the priority, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 bridge-group bridge-group priority number</td>
<td>Change the priority of a port.</td>
</tr>
<tr>
<td></td>
<td>• For <code>bridge-group</code>, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For <code>number</code>, enter a number from 0 to 255 in increments of 4. The lower the number, the more likely that the port on the switch will be chosen as the root. The default is 128.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>
Assigning a Path Cost

Each port has a path cost associated with it. By convention, the path cost is 1000/data rate of the attached LAN, in Mb/s.

Beginning in privileged EXEC mode, follow these steps to assign a path cost. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port to set the path cost, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 bridge-group bridge-group path-cost cost</td>
<td>Assign the path cost of a port.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For cost, enter a number from 0 to 65535. The higher the value, the higher the cost.</td>
</tr>
<tr>
<td></td>
<td>• For 10 Mb/s, the default path cost is 100.</td>
</tr>
<tr>
<td></td>
<td>• For 100 Mb/s, the default path cost is 19.</td>
</tr>
<tr>
<td></td>
<td>• For 1000 Mb/s, the default path cost is 4.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default path cost, use the no bridge-group bridge-group path-cost interface configuration command.

This example shows how to change the path cost to 20 on a port in bridge group 10:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge-group 10 path-cost 20
```

Adjusting BPDU Intervals

You can adjust BPDU intervals as described in these sections:

• Adjusting the Interval between Hello BPDU, page 47-9 (optional)
• Changing the Forward-Delay Interval, page 47-9 (optional)
• Changing the Maximum-Idle Interval, page 47-10 (optional)

Note Each switch in a spanning tree adopts the interval between hello BPDU, the forward delay interval, and the maximum idle interval parameters of the root switch, regardless of what its individual configuration might be.
Adjusting the Interval between Hello BPDUs

Beginning in privileged EXEC mode, follow these steps to adjust the interval between hello BPDUs. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group hello-time seconds</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 1 to 10. The default is 2.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no bridge bridge-group hello-time global configuration command.

This example shows how to change the hello interval to 5 seconds in bridge group 10:

```
Switch(config)# bridge 10 hello-time 5
```

Changing the Forward-Delay Interval

The forward-delay interval is the amount of time spent listening for topology change information after a port has been activated for switching and before forwarding actually begins.

Beginning in privileged EXEC mode, follow these steps to change the forward-delay interval. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group forward-time seconds</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 4 to 200. The default is 20.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no bridge bridge-group forward-time global configuration command.

This example shows how to change the forward-delay interval to 10 seconds in bridge group 10:

```
Switch(config)# bridge 10 forward-time 10
```
Chapter 47 Configuring Fallback Bridging

Changing the Maximum-Idle Interval

If a switch does not receive BPDUs from the root switch within a specified interval, it recomputes the spanning-tree topology.

Beginning in privileged EXEC mode, follow these steps to change the maximum-idle interval (maximum aging time). This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>bridge bridge-group max-age seconds</td>
<td>Specify the interval that the switch waits to hear BPDUs from the root switch.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 6 to 200. The default is 30.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no bridge bridge-group max-age global configuration command.

This example shows how to change the maximum-idle interval to 30 seconds in bridge group 10:

```
Switch(config)# bridge 10 max-age 30
```

Disabling the Spanning Tree on an Interface

When a loop-free path exists between any two switched subnetworks, you can prevent BPDUs generated in one switching subnetwork from impacting devices in the other switching subnetwork, yet still permit switching throughout the network as a whole. For example, when switched LAN subnetworks are separated by a WAN, BPDUs can be prevented from traveling across the WAN link.

Beginning in privileged EXEC mode, follow these steps to disable spanning tree on a port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the port, and enter interface configuration mode.</td>
</tr>
<tr>
<td>bridge-group bridge-group spanning-disabled</td>
<td>Disable spanning tree on the port.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable spanning tree on the port, use the no bridge-group bridge-group spanning-disabled interface configuration command.
This example shows how to disable spanning tree on a port in bridge group 10:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge group 10 spanning-disabled
```

## Monitoring and Maintaining Fallback Bridging

To monitor and maintain the network, use one or more of the privileged EXEC commands in Table 47-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear bridge bridge-group</td>
<td>Removes any learned entries from the forwarding database.</td>
</tr>
<tr>
<td>show bridge [bridge-group] group</td>
<td>Displays details about the bridge group.</td>
</tr>
<tr>
<td>show bridge [bridge-group] [interface-id</td>
<td>mac-address</td>
</tr>
</tbody>
</table>

To display the bridge-group MAC address table on a stack member, start a session from the stack master to the stack member by using the `session stack-member-number` global configuration command. Enter the `show bridge [bridge-group] [interface-id | mac-address | verbose]` privileged EXEC command at the stack member prompt.

For information about the fields in these displays, see the *Cisco IOS Bridging and IBM Networking Command Reference, Volume 1 of 2, Release 12.2.*
Troubleshooting

This chapter describes how to identify and resolve software problems related to the Cisco IOS software on the switch. Depending on the nature of the problem, you can use the command-line interface (CLI), the device manager, or Network Assistant to identify and solve problems.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack. Additional troubleshooting information, such as LED descriptions, is provided in the hardware installation guide.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release and the Cisco IOS Command Summary, Release 12.2.

This chapter consists of these sections:

- Recovering from a Software Failure, page 48-2
- Recovering from a Lost or Forgotten Password, page 48-3
- Preventing Switch Stack Problems, page 48-8

Note

Recovery procedures require that you have physical access to the switch.

- Preventing Autonegotiation Mismatches, page 48-9
- SFP Module Security and Identification, page 48-12
- Monitoring SFP Module Status, page 48-12
- Monitoring Temperature, page 48-10
- Using Ping, page 48-10
- Using Layer 2 Traceroute, page 48-11
- Using IP Traceroute, page 48-13
- Using TDR, page 48-15
- Using Debug Commands, page 48-16
- Using the show platform forward Command, page 48-18
- Using the crashinfo Files, page 48-20
- Using On-Board Failure Logging, page 48-21
- Troubleshooting CPU Utilization, page 48-23
Recovering from a Software Failure

Switch software can be corrupted during an upgrade, by downloading the wrong file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

This procedure uses boot loader commands and TFTP to recover from a corrupted or wrong image file. You can also connect a terminal or PC to the switch to the Onboard Administrator through an Ethernet connection. For details about using the internal Ethernet management port, see the “Using the Internal Ethernet Management Port” section on page 11-13 and the hardware installation guide.

This recovery procedure requires that you have physical access to the switch.

**Step 1**
From your PC, download the software image tar file \((image\_filename.tar)\) from www.hp.com/support or Cisco.com.

The Cisco IOS image is stored as a bin file in a directory in the tar file. For information about locating the software image files on www.hp.com/support or Cisco.com, see the release notes.

**Step 2**
Extract the bin file from the tar file.

- If you are using Windows, use a zip program that can read a tar file. Use the zip program to navigate to and extract the bin file.
- If you are using UNIX, follow these steps:
  1. Display the contents of the tar file by using the `tar -tvf image_filename.tar` UNIX command.

```
switch% tar -tvf image_filename.tar
```

  2. Locate the bin file, and extract it by using the `tar -xvf image_filename.tar image_filename.bin` UNIX command.

```
switch% tar -xvf image_filename.tar image_filename.bin
x cbs31x0-universal-mz.122-40.EX/cbs31x0-universal-mz.122-40.EX.bin, 3970586 bytes, 7756 tape blocks
```

  3. Verify that the bin file was extracted by using the `ls -l image_filename.bin` UNIX command.

```
switch% ls -l image_filename.bin
-rw-r--r-- 1 boba 3970586 Apr 21 12:00
```

**Step 3**
Connect your PC to the switch Ethernet management port.

**Step 4**
Unplug the switch power cord.

**Step 5**
Power off the switch by using one of these methods:

- Power off the standalone switch or the entire switch stack.
- Power off the standalone switch or the switch stack by using the Onboard Administrator GUI.
- Remove the switch or stack members from the enclosure.
Step 6  Press the **Mode** button, and at the same time, power on the switch by using one of these methods:
- If you powered off the standalone switch or switch stack, it should automatically power on. If this does not occur, use the Onboard Administrator GUI to power on the switch or the stack.
- If you powered off the switch by using the Onboard Administrator GUI, use the GUI to power on the switch or the stack.
- If you powered off the switch by removing the switch or stack members from the enclosure, re-insert the standalone switch or the stack members in the enclosure.

You can release the **Mode** button after the system LED stops blinking and is solid green. Several lines of information about the software appear along with instructions:

```
The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system
software#
flash_init
boot
```

Step 7  Initialize the flash file system:

```
switch: flash_init
```

Step 8  Connect the switch to a TFTP server through the Ethernet management port.

Step 9  Start the file transfer by using TFTP.

a. Specify the IP address of the TFTP server:

```
switch: set ip_addr ip_address/mask
```

b. Specify the default router:

```
switch: set default_router ip_address
```

Step 10  Copy the software image from the TFTP server to the switch:

```
switch: copy tftp://ip_address/filesystem:/source-file-url flash:image_filename.bin
```

Step 11  Boot up the newly downloaded Cisco IOS image.

```
switch: boot flash:image_filename.bin
```

Step 12  Use the `archive download-sw` privileged EXEC command to download the software image to the switch or to the switch stack.

Step 13  Use the `reload` privileged EXEC command to restart the switch and to verify that the new software image is operating properly.

Step 14  Delete the flash:image_filename.bin file from the switch.
Recovering from a Lost or Forgotten Password

The default configuration for the switch allows an end user with physical access to the switch to recover from a lost password by interrupting the bootup process during power-on and by entering a new password. These recovery procedures require that you have physical access to the switch.

Note

On these switches, a system administrator can disable some of the functionality of this feature by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password when password recovery has been disabled, a status message shows this during the recovery process.

These sections describes how to recover a forgotten or lost switch password:

- Procedure with Password Recovery Enabled, page 48-5
- Procedure with Password Recovery Disabled, page 48-7

You enable or disable password recovery by using the `service password-recovery` global configuration command. When you enter the `service password-recovery` or `no service password-recovery` command on the stack master, it is propagated throughout the stack and applied to all switches in the stack.

Follow the steps in this procedure if you have forgotten or lost the switch password.

Step 1

Use one of these methods to connect a terminal or PC to the switch:

- Connect a terminal or a PC with terminal-emulation software to the switch console port. If you are recovering the password for a switch stack, connect to the console port of the stack master.
- Connect a PC to the Onboard Administrator through an Ethernet connection. If you are recovering the password for a switch stack, connect to the Onboard Administrator of a stack member. For details about using the internal Ethernet management port, see the “Using the Internal Ethernet Management Port” section on page 10-19 and the hardware installation guide.

Step 2

Set the line speed on the emulation software to 9600 baud.

Step 3

Power off the switch by using one of these methods:

- Power off the standalone switch or the entire switch stack.
- Power off the standalone switch or the switch stack by using the Onboard Administrator GUI.
- Remove the switch or stack members from the enclosure.

Step 4

Power on the switch by using one of these methods:

- If you powered off the standalone switch or switch stack, it should automatically power on. If this does not occur, use the Onboard Administrator GUI to power on the switch or the stack.
- If you powered off the switch by using the Onboard Administrator GUI, use the GUI to power on the switch or the stack.
- If you powered off the switch by removing the switch or stack members from the enclosure, re-insert the standalone switch or the stack members in the enclosure.

Within 15 seconds, press the Mode button while the System LED is still blinking green. Continue pressing the Mode button until the System LED turns briefly amber and then solid green; then release the Mode button.

Several lines of information about the software appear with instructions, informing you if the password recovery procedure has been disabled or not.
If you see a message that begins with this:
The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system:

- go to the “Procedure with Password Recovery Enabled” section on page 48-5, and follow the steps.
- If you see a message that begins with this:
The password-recovery mechanism has been triggered, but is currently disabled.

- go to the “Procedure with Password Recovery Disabled” section on page 48-7, and follow the steps.

**Step 5**
After recovering the password, reload the standalone switch or the stack master.

On a standalone switch:
```
Switch> reload
Proceed with reload? [confirm] y
```

On a stack master:
```
Switch> reload
 slot <stack-master-member-number>
Proceed with reload? [confirm] y
```

**Step 6**
For a switch stack, power on the rest of the switch stack.

---

### Procedure with Password Recovery Enabled

If the password-recovery mechanism is enabled, this message appears:
The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software:

- `flash_init`
- `load_helper`
- `boot`

**Step 1**
Initialize the flash file system:
```
switch: flash_init
```

**Step 2**
If you had set the console port speed to anything other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.

**Step 3**
Load any helper files:
```
switch: load_helper
```

**Step 4**
Display the contents of flash memory:
```
switch: dir flash:
```

The switch file system appears:

```
Directory of flash:
 2 -rwx 5752 Mar 1 1993 00:06:02 +00:00 config.text
 3 -rwx 24 Mar 1 1993 00:06:02 +00:00 private-config.text
 4 -rwx 9995193 Mar 1 1993 00:04:31 +00:00 cbs31x0-universal-mz.122-40.EX
 6 -rwx 1147 Mar 1 1993 00:40:29 +00:00 FHH105002P6_IPBase.lic
```
Step 5  Rename the configuration file to config.text.old.  
This file contains the password definition.

```
switch: rename flash:config.text flash:config.text.old
```

Step 6  Boot up the system:

```
switch: boot
```

Step 7  At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
```

Step 8  Rename the configuration file to its original name:

```
Switch# rename flash:config.text.old flash:config.text
```

**Note**  Before continuing to Step 9, power on any connected stack members and wait until they have completely initialized. Failure to follow this step can result in a lost configuration depending on how your switch is set up.

Step 9  Copy the configuration file into memory:

```
Switch# copy flash:config.text system:running-config
```

Press **Return** in response to the confirmation prompts.

The configuration file is now reloaded, and you can change the password.

Step 10 Enter global configuration mode:

```
Switch# configure terminal
```

Step 11 Change the password:

```
Switch (config)# enable secret password
```

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

Step 12 Return to privileged EXEC mode:

```
Switch (config)# exit
Switch#
```

Step 13 Write the running configuration to the startup configuration file:

```
Switch# copy running-config startup-config
```

The new password is now in the startup configuration.
This procedure is likely to leave your switch virtual interface in a shutdown state. You can see which interface is in this state by entering the `show running-config` privileged EXEC command. To re-enable the interface, enter the `interface vlan vlan-id` global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the `no shutdown` command.

**Step 14** Reload the switch or switch stack:

```
Switch# reload
```
Procedure with Password Recovery Disabled

If the password-recovery mechanism is disabled, this message appears:

The password-recovery mechanism has been triggered, but is currently disabled. Access to the boot loader prompt through the password-recovery mechanism is disallowed at this point. However, if you agree to let the system be reset back to the default system configuration, access to the boot loader prompt can still be allowed.

Would you like to reset the system back to the default configuration (y/n)?

Caution

Returning the switch to the default configuration results in the loss of all existing configurations. We recommend that you contact your system administrator to verify if there are backup switch and VLAN configuration files.

- If you enter n (no), the normal bootup process continues as if the Mode button had not been pressed; you cannot access the boot loader prompt, and you cannot enter a new password. You see the message:
  Press Enter to continue........

- If you enter y (yes), the configuration file in flash memory and the VLAN database file are deleted. When the default configuration loads, you can reset the password.

Step 1 Elect to continue with password recovery and lose the existing configuration:

Would you like to reset the system back to the default configuration (y/n)? Y

Step 2 Load any helper files:

Switch: load_helper

Step 3 Display the contents of flash memory:

switch: dir flash:

The switch file system appears:

Directory of flash:
4 -rwx 9995193 Mar 1 1993 00:04:31 +00:00 cbs3lx0-universal-mz.122-40.EX.0
57931776 bytes total (35725824 bytes free)

Step 4 Boot up the system:

Switch: boot

You are prompted to start the setup program. To continue with password recovery, enter N at the prompt:

Continue with the configuration dialog? [yes/no]: N

Step 5 At the switch prompt, enter privileged EXEC mode:

Switch> enable

Step 6 Enter global configuration mode:

Switch# configure terminal
Step 7  Change the password:

```
Switch (config)# enable secret password
```

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

Step 8  Return to privileged EXEC mode:

```
Switch (config)# exit
Switch#
```

**Note**  Before continuing to Step 9, power on any connected stack members and wait until they have completely initialized.

Step 9  Write the running configuration to the startup configuration file:

```
Switch# copy running-config startup-config
```

The new password is now in the startup configuration.

**Note**  This procedure is likely to leave your switch virtual interface in a shutdown state. You can see which interface is in this state by entering the `show running-config` privileged EXEC command. To re-enable the interface, enter the `interface vlan vlan-id` global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the `no shutdown` command.

Step 10  You must now reconfigure the switch. If the system administrator has the backup switch and VLAN configuration files available, you should use those.

Step 11  Reload the switch:

```
Switch# reload
```

---

**Preventing Switch Stack Problems**

**Note**
- Make sure that the switches that you add to or remove from the switch stack are powered off. For all powering considerations in switch stacks, see the “Switch Installation” chapter in the hardware installation guide.
- After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (32 Gb/s). Press the Mode button on a stack member until the Stack mode LED is on. The last two port LEDs on the switch should be green. Depending on the switch model, the last two ports are either 10/100/1000 ports or 10-Gigabit Ethernet ports. If the LEDs for ports 21 and 22 are not green, the stack is not operating at full bandwidth.
- We recommend using only one CLI session when managing the switch stack. Be careful when using multiple CLI sessions to the stack master. Commands that you enter in one session do not appear in the other sessions. Therefore, you might not be able to identify the session from which you entered a command.
Manually assigning stack member numbers according to the placement of the switches in the stack can make it easier to remotely troubleshoot the switch stack. However, if you add, remove, or rearrange switches later, you need to remember that the switches have manually assigned numbers. Use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command to manually assign a stack member number. For more information about stack member numbers, see the “Stack Member Numbers” section on page 7-8.

If you replace a stack member with an identical model, the new switch functions with the exact same configuration as the replaced switch. This is also assuming the new switch is using the same member number as the replaced switch.

Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks. To recover from a partitioned switch stack:

1. Power off the newly created switch stacks.
2. Reconnect them to the original switch stack through their StackWise Plus ports.
3. Power on the switches.

For the commands that you can use to monitor the switch stack and its members, see the “Displaying Switch Stack Information” section on page 7-27.

### Preventing Autonegotiation Mismatches

The IEEE 802.3ab autonegotiation protocol manages the switch settings for speed (10 Mb/s, 100 Mb/s, and 1000 Mb/s, excluding SFP module ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.

#### Note

If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

### SFP Module Security and Identification

Cisco small form-factor pluggable (SFP) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When an SFP module is inserted in the switch, the switch software reads the EEPROM to verify the serial number,
vendor name and vendor ID, and recompute the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the software generates a security error message and places the interface in an error-disabled state.

---

**Note**
The security error message references the GBIC_SECURITY facility. The switch supports SFP modules and does not support GBIC modules. Although the error message text refers to GBIC interfaces and modules, the security messages actually refer to the SFP modules and module interfaces. For more information about error messages, see the system message guide for this release.

If you are using a non-Cisco SFP module, remove the SFP module from the switch, and replace it with a Cisco module. After inserting a Cisco SFP module, use the `errdisable recovery cause gbic-invalid` global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the switch brings the interface out of the error-disabled state and retries the operation. For more information about the `errdisable recovery` command, see the command reference for this release.

If the module is identified as a Cisco SFP module, but the system is unable to read vendor-data information to verify its accuracy, an SFP module error message is generated. In this case, you should remove and re-insert the SFP module. If it continues to fail, the SFP module might be defective.

---

**Monitoring SFP Module Status**

You can check the physical or operational status of an SFP module by using the `show interfaces transceiver` privileged EXEC command. This command shows the operational status, such as the temperature and the current for an SFP module on a specific interface and the alarm status. You can also use the command to check the speed and the duplex settings on an SFP module. For more information, see the `show interfaces transceiver` command in the command reference for this release.

---

**Monitoring Temperature**

The switch monitors the temperature conditions and uses the temperature information to control the fans. Use the `show env temperature` status privileged EXEC command to display the temperature value, state, and thresholds. The temperature value is the temperature in the switch (not the external temperature). You can configure only the yellow threshold level (in Celsius) by using the `system env temperature threshold yellow value` global configuration command to set the difference between the yellow and red thresholds. You cannot configure the green or red thresholds. For more information, see the command reference for this release.

---

**Using Ping**

These sections contain this information:

- Understanding Ping, page 48-10
- Executing Ping, page 48-10
Understanding Ping

The switch supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply. Ping returns one of these responses:

- Normal response—The normal response (hostname is alive) occurs in 1 to 10 seconds, depending on network traffic.
- Destination does not respond—if the host does not respond, a no-answer message is returned.
- Unknown host—if the host does not exist, an unknown host message is returned.
- Destination unreachable—if the default gateway cannot reach the specified network, a destination-unreachable message is returned.
- Network or host unreachable—if there is no entry in the route table for the host or network, a network or host unreachable message is returned.

Executing Ping

If you attempt to ping a host in a different IP subnetwork, you must define a static route to the network or have IP routing configured to route between those subnets. For more information, see Chapter 39, “Configuring IP Unicast Routing.”

IP routing is disabled by default on all switches. If you need to enable or configure IP routing, see Chapter 39, “Configuring IP Unicast Routing.”

Beginning in privileged EXEC mode, use this command to ping another device on the network from the switch:

```
Command Purpose
ping ip host | address Ping a remote host through IP or by supplying the hostname or network address.
```

Though other protocol keywords are available with the ping command, they are not supported in this release.

This example shows how to ping an IP host:

```
Switch# ping 172.20.52.3
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echoes to 172.20.52.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
Switch#
```
Table 48-1 describes the possible ping character output.

Table 48-1 Ping Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Each exclamation point means receipt of a reply.</td>
</tr>
<tr>
<td>.</td>
<td>Each period means the network server timed out while waiting for a reply.</td>
</tr>
<tr>
<td>U</td>
<td>A destination unreachable error PDU was received.</td>
</tr>
<tr>
<td>C</td>
<td>A congestion experienced packet was received.</td>
</tr>
<tr>
<td>I</td>
<td>User interrupted test.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>&amp;</td>
<td>Packet lifetime exceeded.</td>
</tr>
</tbody>
</table>

To end a ping session, enter the escape sequence (Ctrl-^ X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys and then press the X key.

Using Layer 2 Traceroute

These sections contain this information:

- Understanding Layer 2 Traceroute, page 48-11
- Usage Guidelines, page 48-12
- Displaying the Physical Path, page 48-13

Understanding Layer 2 Traceroute

The Layer 2 traceroute feature allows the switch to identify the physical path that a packet takes from a source device to a destination device. Layer 2 traceroute supports only unicast source and destination MAC addresses. It finds the path by using the MAC address tables of the switches in the path. When the switch detects a device in the path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.

The switch can only identify the path from the source device to the destination device. It cannot identify the path that a packet takes from source host to the source device or from the destination device to the destination host.

Usage Guidelines

These are the Layer 2 traceroute usage guidelines:

- Cisco Discovery Protocol (CDP) must be enabled on all the devices in the network. For Layer 2 traceroute to function properly, do not disable CDP.

  For a list of switches that support Layer 2 traceroute, see the “Usage Guidelines” section on page 48-12. If any devices in the physical path are transparent to CDP, the switch cannot identify the path through these devices. For more information about enabling CDP, see Chapter 27, “Configuring CDP.”
A switch is reachable from another switch when you can test connectivity by using the ping privileged EXEC command. All switches in the physical path must be reachable from each other.

The maximum number of hops identified in the path is ten.

You can enter the traceroute mac or the traceroute mac ip privileged EXEC command on a switch that is not in the physical path from the source device to the destination device. All switches in the path must be reachable from this switch.

The traceroute mac command output shows the Layer 2 path only when the specified source and destination MAC addresses belong to the same VLAN. If you specify source and destination MAC addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.

If you specify a multicast source or destination MAC address, the path is not identified, and an error message appears.

If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.

The traceroute mac ip command output shows the Layer 2 path when the specified source and destination IP addresses belong to the same subnet. When you specify the IP addresses, the switch uses the Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.

- If an ARP entry exists for the specified IP address, the switch uses the associated MAC address and identifies the physical path.
- If an ARP entry does not exist, the switch sends an ARP query and tries to resolve the IP address. If the IP address is not resolved, the path is not identified, and an error message appears.

When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port), the Layer 2 traceroute feature is not supported. When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

This feature is not supported in Token Ring VLANs.

**Displaying the Physical Path**

You can display physical path that a packet takes from a source device to a destination device by using one of these privileged EXEC commands:

- **traceroute mac** [interface interface-id] {source-mac-address} [interface interface-id] {destination-mac-address} [vlan vlan-id] [detail]
- **traceroute mac ip** {source-ip-address | source-hostname} {destination-ip-address | destination-hostname} [detail]

For more information, see the command reference for this release.

**Using IP Traceroute**

These sections contain this information:

- Understanding IP Traceroute, page 48-13
- Executing IP Traceroute, page 48-14
Understanding IP Traceroute

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

Your switches can participate as the source or destination of the traceroute privileged EXEC command and might or might not appear as a hop in the traceroute command output. If the switch is the destination of the traceroute, it is displayed as the final destination in the traceroute output. Intermediate switches do not show up in the traceroute output if they are only bridging the packet from one port to another within the same VLAN. However, if the intermediate switch is a multilayer switch that is routing a particular packet, this switch shows up as a hop in the traceroute output.

The traceroute privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends an Internet Control Message Protocol (ICMP) time-to-live-exceeded message to the sender. Traceroute finds the address of the first hop by examining the source address field of the ICMP time-to-live-exceeded message.

To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This process continues until the TTL is incremented to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To learn when a datagram reaches its destination, traceroute sets the UDP destination port number in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram destined to itself containing a destination port number that is unused locally, it sends an ICMP port-unreachable error to the source. Because all errors except port-unreachable errors come from intermediate hops, the receipt of a port-unreachable error means that this message was sent by the destination port.

Executing IP Traceroute

Beginning in privileged EXEC mode, follow this step to trace the path that packets take through the network:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceroute ip host</td>
<td>Trace the path that packets take through the network.</td>
</tr>
</tbody>
</table>

Note: Though other protocol keywords are available with the traceroute privileged EXEC command, they are not supported in this release.

This example shows how to perform a traceroute to an IP host:

```
Switch# traceroute ip 171.9.15.10
Type escape sequence to abort.
Tracing the route to 171.69.115.10
 1 172.2.52.1 0 msec 0 msec 4 msec
 2 172.2.1.203 12 msec 8 msec 0 msec
 3 171.9.16.6 4 msec 0 msec 0 msec
```
Using TDR

These sections contain this information:

- Understanding TDR, page 48-15
- Running TDR and Displaying the Results, page 48-15

Understanding TDR

You can use the Time Domain Reflector (TDR) feature to diagnose and resolve cabling problems. When running TDR, a local device sends a signal through a cable and compares the reflected signal to the initial signal.

TDR is supported only on 10/100/1000 copper Ethernet ports. It is not supported on 10-Gigabit Ethernet ports and on SFP module ports.

TDR can detect these cabling problems:

- Open, broken, or cut twisted-pair wires—The wires are not connected to the wires from the remote device.
- Shorted twisted-pair wires—The wires are touching each other or the wires from the remote device. For example, a shorted twisted pair can occur if one wire of the twisted pair is soldered to the other wire.

If one of the twisted-pair wires is open, TDR can find the length at which the wire is open.

Table 48-2  Traceroute Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output means that an access list is blocking traffic.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>

To end a trace in progress, enter the escape sequence (Ctrl-\^ X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys and then press the X key.
Use TDR to diagnose and resolve cabling problems in these situations:
- Replacing a switch
- Setting up a wiring closet
- Troubleshooting a connection between two devices when a link cannot be established or when it is not operating properly

When you run TDR, the switch reports accurate information if
- The cable for the Gigabit link is a solid-core cable.
- The open-ended cable is not terminated.

When you run TDR, the switch does not report accurate information if
- The cable for the Gigabit link is a twisted-pair cable or is in series with a solid-core cable.
- The link is a 10-Megabit or a 100-Megabit link.
- The cable is a stranded cable.
- The link partner is a Cisco IP Phone.
- The link partner is not IEEE 802.3 compliant.

Running TDR and Displaying the Results

When you run TDR on an interface, you can run it on the stack master or a stack member.

To run TDR, enter the `test cable-diagnostics tdr interface interface-id` privileged EXEC command:

To display the results, enter the `show cable-diagnostics tdr interface interface-id` privileged EXEC command. For a description of the fields in the display, see the command reference for this release.

Using Debug Commands

These sections explains how you use `debug` commands to diagnose and resolve internetworking problems:
- Enabling Debugging on a Specific Feature, page 48-16
- Enabling All-System Diagnostics, page 48-17
- Redirecting Debug and Error Message Output, page 48-17

**Caution**

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use `debug` commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use `debug` commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased `debug` command processing overhead will affect system use.

**Note**

For complete syntax and usage information for specific `debug` commands, see the command reference for this release.
Enabling Debugging on a Specific Feature

In a switch stack, when you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you must start a session from the stack master by using the `session switch-number` privileged EXEC command. Then, enter the `debug` command at the command-line prompt of the stack member.

All debug commands are entered in privileged EXEC mode, and most debug commands take no arguments. For example, beginning in privileged EXEC mode, enter this command to enable the debugging for Switched Port Analyzer (SPAN):

```
Switch# debug span-session
```

The switch continues to generate output until you enter the `no` form of the command.

If you enable a debug command and no output appears, consider these possibilities:

- The switch might not be properly configured to generate the type of traffic you want to monitor. Use the `show running-config` command to check its configuration.
- Even if the switch is properly configured, it might not generate the type of traffic you want to monitor during the particular period that debugging is enabled. Depending on the feature you are debugging, you can use commands such as the TCP/IP `ping` command to generate network traffic.

To disable debugging of SPAN, enter this command in privileged EXEC mode:

```
Switch# no debug span-session
```

Alternately, in privileged EXEC mode, you can enter the `undebug` form of the command:

```
Switch# undebug span-session
```

To display the state of each debugging option, enter this command in privileged EXEC mode:

```
Switch# show debugging
```

Enabling All-System Diagnostics

Beginning in privileged EXEC mode, enter this command to enable all-system diagnostics:

```
Switch# debug all
```

**Caution**

Because debugging output takes priority over other network traffic, and because the debug all privileged EXEC command generates more output than any other debug command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific debug commands.

The `no debug all` privileged EXEC command disables all diagnostic output. Using the `no debug all` command is a convenient way to ensure that you have not accidentally left any debug commands enabled.

Redirecting Debug and Error Message Output

By default, the network server sends the output from debug commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port or the Ethernet management port.
Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.

---

**Note**

Be aware that the debugging destination you use affects system overhead. Logging messages to the console produces very high overhead, whereas logging messages to a virtual terminal produces less overhead. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

When stack members generate a system error message, the stack master displays the error message to all stack members. The syslog resides on the stack master.

---

**Note**

Make sure to save the syslog to flash memory so that the syslog is not lost if the stack master fails.

For more information about system message logging, see Chapter 32, “Configuring System Message Logging.”
Using the show platform forward Command

The output from the show platform forward privileged EXEC command provides some useful information about the forwarding results if a packet entering an interface is sent through the system. Depending upon the parameters entered about the packet, the output provides lookup table results and port maps used to calculate forwarding destinations, bitmaps, and egress information.

For more syntax and usage information for the show platform forward command, see the switch command reference for this release.

Most of the information in the output from the command is useful mainly for technical support personnel, who have access to detailed information about the switch application-specific integrated circuits (ASICs). However, packet forwarding information can also be helpful in troubleshooting.

This is an example of the output from the show platform forward command on port 1 in VLAN 5 when the packet entering that port is addressed to unknown MAC addresses. The packet should be flooded to all other ports in VLAN 5.

```
Switch# show platform forward gigabitethernet1/0/1 vlan 5 1.1.1 2.2.2 ip 13.1.1.1 13.2.2.2 udp 10 20
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:
 Lookup Key-Used Index-Hit A-Data
 InptACL 40_0D020202_0D010101-00_40000014_000A0000 01FFA 03000000
 L2Local 80_00050002_00020002-00_00000000_00000000 00C71 0000002B
Station Descriptor:02340000, DestIndex:0239, RewriteIndex:F005

 ===
 Egress:Asic 2, switch 1
 Output Packets:
 --
 Packet 1
 Lookup Key-Used Index-Hit A-Data
 OutptACL 50_0D020202_0D010101-00_40000014_000A0000 01FFE 03000000
 Port Vlan SrcMac DstMac Cos Dscpv
 Gi1/0/1 0005 0001.0001.0001 0002.0002.0002

 --
 Packet 2
 Lookup Key-Used Index-Hit A-Data
 OutptACL 50_0D020202_0D010101-00_40000014_000A0000 01FFE 03000000
 Port Vlan SrcMac DstMac Cos Dscpv
 Gi1/0/2 0005 0001.0001.0001 0002.0002.0002

 --
 Packet 10
 Lookup Key-Used Index-Hit A-Data
 OutptACL 50_0D020202_0D010101-00_40000014_000A0000 01FFE 03000000
 Packet dropped due to failed DEJA_VU Check on Gi1/0/2
```
This is an example of the output when the packet coming in on port 1 in VLAN 5 is sent to an address already learned on the VLAN on another port. It should be forwarded from the port on which the address was learned.

Switch# show platform forward gigabitethernet1/0/1 vlan 5 1.1.1 0009.43a8.0145 ip 13.1.1.1 13.2.2.2 udp 10 20
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:
Lookup Key-Used Index-Hit A-Data
InptACL 40_0D020202_0D010101-00_40000014_000A0000 01FFA 03000000
L2Local 80_00050009_43A80145-00_00000000_00000000 00086 02010197
Station Descriptor:F0050003, DestIndex:F005, RewriteIndex:0003

==========================================
Egress:Asic 3, switch 1
Output Packets:

==========================================
Packet 1
Lookup Key-Used Index-Hit A-Data
OutptACL 50_0D020202_0D010101-00_40000014_000A0000 01FFE 03000000
Port Vlan SrcMac DstMac Cos Dscpv
Gi1/0/2 0005 0001.0001.0001 0009.43A8.0145

This is an example of the output when the packet coming in on port 1 in VLAN 5 has a destination MAC address set to the router MAC address in VLAN 5 and the destination IP address unknown. Because there is no default route set, the packet should be dropped.

Switch# show platform forward gigabitethernet1/0/1 vlan 5 1.1.1 03.e319.ee44 ip 13.1.1.1 13.2.2.2 udp 10 20
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:
Lookup Key-Used Index-Hit A-Data
InptACL 40_0D020202_0D010101-00_41000014_000A0000 01FFA 03000000
L3Local 00_00000000_00000000-90_00001400_0D020202 010F0 1880290
L3Scndr 12_0D020202_0D010101-00_40000014_000A0000 034E0 000C001D_00000000
Lookup Used:Secondary
Station Descriptor:02260000, DestIndex:0226, RewriteIndex:0000

This is an example of the output when the packet coming in on port 1 in VLAN 5 has a destination MAC address set to the router MAC address in VLAN 5 and the destination IP address set to an IP address that is in the IP routing table. It should be forwarded as specified in the routing table.

Switch# show platform forward gigabitethernet1/0/1 vlan 5 1.1.1 03.e319.ee44 ip 110.1.5.5 16.1.10.5
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:
Lookup Key-Used Index-Hit A-Data
InptACL 40_10010A05_0A010505-00_41000014_000A0000 01FFA 03000000
L3Local 00_00000000_00000000-90_00001400_10010A05 010F0 1880290
L3Scndr 12_10010A05_0A010505-00_40000014_000A0000 01D28 30090001_00000000
Lookup Used:Secondary
Station Descriptor:F00700007, DestIndex:F007, RewriteIndex:0007

==========================================
Egress:Asic 3, switch 1
Using the crashinfo Files

The crashinfo files save information that helps Cisco technical support representatives to debug problems that caused the Cisco IOS image to fail (crash). The switch writes the crash information to the console at the time of the failure. The switch creates two types of crashinfo files:

- Basic crashinfo file—The switch automatically creates this file the next time you boot up the Cisco IOS image after the failure.
- Extended crashinfo file—The switch automatically creates this file when the system is failing.

Basic crashinfo Files

The information in the basic file includes the Cisco IOS image name and version that failed, a list of the processor registers, and a stack trace. You can provide this information to the Cisco technical support representative by using the `show tech-support` privileged EXEC command.

Basic crashinfo files are kept in this directory on the flash file system:

```
flash:/crashinfo/.
```

The filenames are crashinfo_n where n is a sequence number.

Each new crashinfo file that is created uses a sequence number that is larger than any previously existing sequence number, so the file with the largest sequence number describes the most recent failure. Version numbers are used instead of a timestamp because the switches do not include a real-time clock. You cannot change the name of the file that the system will use when it creates the file. However, after the file is created, you can use the `rename` privileged EXEC command to rename it, but the contents of the renamed file will not be displayed by the `show stacks` or the `show tech-support` privileged EXEC command. You can delete crashinfo files by using the `delete` privileged EXEC command.

You can display the most recent basic crashinfo file (that is, the file with the highest sequence number at the end of its filename) by entering the `show stacks` or the `show tech-support` privileged EXEC command. You also can access the file by using any command that can copy or display files, such as the `more` or the `copy` privileged EXEC command.

Extended crashinfo Files

The switch creates the extended crashinfo file when the system is failing. The information in the extended file includes additional information that can help determine the cause of the switch failure. You provide this information to the Cisco technical support representative by manually accessing the file and using the `more` or the `copy` privileged EXEC command.

Extended crashinfo files are kept in this directory on the flash file system:

```
flash:/crashinfo_ext/.
```
Using On-Board Failure Logging

You can use the on-board-failure logging (OBFL) feature to collect information about the switch. The information includes uptime, temperature, and voltage information and helps Cisco technical support representatives to troubleshoot switch problems. We recommend that you keep OBFL enabled and do not erase the data stored in the flash memory.

This section has this information:
- Understanding OBFL, page 48-21
- Configuring OBFL, page 48-22
- Displaying OBFL Information, page 48-22

Understanding OBFL

By default, OBFL is enabled. It collects information about the switch and small form-factor pluggable (SFP) modules. The switch stores this information in the flash memory:

- CLI commands—Record of the OBFL CLI commands that are entered on a standalone switch or a switch stack member
- Environment data—Unique device identifier (UDI) information for a standalone switch or a stack member and for all the connected FRU devices: the product identification (PID), the version identification (VID), and the serial number
- Message—Record of the hardware-related system messages generated by a standalone switch or a stack member
- Temperature—Temperature of a standalone switch or a stack member
- Uptime data—Time when a standalone switch or a stack member starts, the reason the switch restarts, and the length of time the switch has been running since it last restarted
- Voltage—System voltages of a standalone switch or a stack member

You should manually set the system clock or configure it by using Network Time Protocol (NTP).

When the switch is running, you can retrieve the OBFL data by using the `show logging onboard` privileged EXEC commands. If the switch fails, contact your Cisco technical support representative to find out how to retrieve the data.

When an OBFL-enabled switch is restarted, there is a 10-minute delay before logging of new data begins.

Configuring OBFL

To enable OBFL, use the `hw-module module [switch-number] logging onboard [message level level]` global configuration command. The range for `switch-number` is from 1 to 9. Use the `message level level` parameter to specify the severity of the hardware-related messages that the switch generates and stores in the flash memory.
To copy the OBFL data to the local network or a specific file system, use the `copy logging onboard module stack-member destination` privileged EXEC command.

**Caution**

We recommend that you do not disable OBFL and that you do not remove the data stored in the flash memory.

To disable OBFL, use the `no hw-module module [switch-number] logging onboard [message level]` global configuration command.

To clear all the OBFL data in the flash memory except for the uptime and CLI command information, use the `clear logging onboard` privileged EXEC command.

In a switch stack, you can enable OBFL on a standalone switch or on all stack members by using the `hw-module module logging onboard [message level]` global configuration command.

For more information about the commands in this section, see the command reference for this release.

### Displaying OBFL Information

To display the OBFL information, use one or more of the privileged EXEC commands in Table 48-3:

**Table 48-3 Commands for Displaying OBFL Information**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show logging onboard [module [switch-number]] cliolog</code></td>
<td>Displays the OBFL CLI commands that were entered on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] environment</code></td>
<td>Display the UDI information for a standalone switch or the specified stack members and for all the connected FRU devices: the PID, the VID, and the serial number.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] message</code></td>
<td>Display the hardware-related messages generated by a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] poe</code></td>
<td>Display the power consumption of PoE ports on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] temperature</code></td>
<td>Display the temperature of a standalone switch or the specified switch stack members.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] uptime</code></td>
<td>Display the time when a standalone switch or the specified stack members start, the reason the standalone switch or specified stack members restart, and the length of time that the standalone switch or specified stack members have been running since they last restarted.</td>
</tr>
<tr>
<td><code>show logging onboard [module [switch-number]] voltage</code></td>
<td>Display the system voltages of a standalone switch or the specified stack members.</td>
</tr>
</tbody>
</table>

For more information about using the commands in Table 48-3 and for examples of OBFL data, see the command reference for this release.
Troubleshooting CPU Utilization

This section lists some possible symptoms that could be caused by the CPU being too busy and shows how to verify a CPU utilization problem. Table 48-4 lists the primary types of CPU utilization problems that you can identify. It gives possible causes and corrective action with links to the Troubleshooting High CPU Utilization document on Cisco.com.

Possible Symptoms of High CPU Utilization

Note that excessive CPU utilization might result in these symptoms, but the symptoms could also result from other causes.

- Spanning tree topology changes
- EtherChannel links brought down due to loss of communication
- Failure to respond to management requests (ICMP ping, SNMP timeouts, slow Telnet or SSH sessions)
- UDLD flapping
- IP SLAs failures because of SLAs responses beyond an acceptable threshold
- DHCP or IEEE 802.1x failures if the switch does not forward or respond to requests

Layer 3 switches:

- Dropped packets or increased latency for packets routed in software
- BGP or OSPF routing topology changes
- HSRP flapping

Verifying the Problem and Cause

To determine if high CPU utilization is a problem, enter the show processes cpu sorted privileged EXEC command. Note the underlined information in the first line of the output example.

```
Switch# show processes cpu sorted
CPU utilization for five seconds: 8%/0%; one minute: 7%; five minutes: 8%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
309 42289103 752750 56180 1.75% 1.20% 1.22% 0 RIP Timers
140 8820183 4942081 1784 0.63% 0.37% 0.30% 0 HRPC qos request
100 3427318 16150534 212 0.47% 0.14% 0.11% 0 HRPC pm-counters
192 3093252 14081112 219 0.31% 0.14% 0.11% 0 Spanning Tree
143 8 37 216 0.15% 0.01% 0.00% 0 Exec
...
<output truncated>
```
This example shows normal CPU utilization. The output shows that utilization for the last 5 seconds is 8%/0%, which has this meaning:

- The total CPU utilization is 8 percent, including both time running Cisco IOS processes and time spent handling interrupts
- The time spent handling interrupts is zero percent.

<table>
<thead>
<tr>
<th>Type of Problem</th>
<th>Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt percentage value is almost as high as total CPU utilization value.</td>
<td>The CPU is receiving too many packets from the network.</td>
<td>Determine the source of the network packet. Stop the flow, or change the switch configuration. See the section on “Analyzing Network Traffic.”</td>
</tr>
<tr>
<td>Total CPU utilization is greater than 50% with minimal time spent on interrupts.</td>
<td>One or more Cisco IOS process is consuming too much CPU time. This is usually triggered by an event that activated the process.</td>
<td>Identify the unusual event, and troubleshoot the root cause. See the section on “Debugging Active Processes.”</td>
</tr>
</tbody>
</table>

For complete information about CPU utilization and how to troubleshoot utilization problems, see the Troubleshooting High CPU Utilization document on Cisco.com.
Configuring Online Diagnostics

This chapter describes how to configure the online diagnostics on the switch.

Note

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release.

This chapter consists of these sections:

- Understanding Online Diagnostics, page 49-1
- Configuring Online Diagnostics, page 49-2
- Running Online Diagnostic Tests, page 49-5

Understanding Online Diagnostics

With online diagnostics, you can test and verify the hardware functionality of the switch while the switch is connected to a live network.

The online diagnostics contain packet switching tests that check different hardware components and verify the data path and the control signals.

The online diagnostics detect problems in these areas:

- Hardware components
- Interfaces (Ethernet ports and so forth)
- Solder joints

Online diagnostics are categorized as on-demand, scheduled, or health-monitoring diagnostics. On-demand diagnostics run from the CLI; scheduled diagnostics run at user-designated intervals or at specified times when the switch is connected to a live network; and health-monitoring runs in the background.
Configuring Online Diagnostics

You must configure the failure threshold and the interval between tests before enabling diagnostic monitoring.

This section has this information:

- Scheduling Online Diagnostics, page 49-2
- Configuring Health-Monitoring Diagnostics, page 49-3

Scheduling Online Diagnostics

You can schedule online diagnostics to run at a designated time of day or on a daily, weekly, or monthly basis for a switch. Use the no form of this command to remove the scheduling.

Use this global configuration command to schedule online diagnostics:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| diagnostic schedule switch number test {name | test-id | test-id-range | all | basic | non-disruptive} [daily hh:mm | on mm dd yyyy hh:mm | weekly day-of-week hh:mm} | Schedule on-demand diagnostic tests for a specific day and time. The range for the switch number keyword is from 1 to 9. When specifying the tests to be scheduled, use these options:

- name—Name of the test that appears in the show diagnostic content command output.
- test-id—ID number of the test that appears in the show diagnostic content command output.
- test-id-range—ID numbers of the tests that appear in the show diagnostic content command output.
- all—All of the diagnostic tests.
- basic—Basic on-demand diagnostic tests.
- non-disruptive—Nondisruptive health-monitoring tests.

You can schedule the tests as follows:

- Daily—Use the daily hh:mm parameter.
- Specific day and time—Use the on mm dd yyyy hh:mm parameter.
- Weekly—Use the weekly day-of-week hh:mm parameter.

For detailed information about this command, see the command reference for this release.

Use the no diagnostic schedule switch number test {name | test-id | test-id-range | all | basic | non-disruptive} [daily hh:mm | on mm dd yyyy hh:mm | weekly day-of-week hh:mm} global configuration command to remove the scheduled tests.

This example shows how to schedule diagnostic testing for a specific day and time on a standalone switch:

Switch(config)# diagnostic schedule test TestPortAsicCam on december 3 2006 22:25

This example shows how to schedule diagnostic testing to occur weekly at a specific time on member switch 6 when this command is entered on a stack master:

Switch(config)# diagnostic schedule switch 6 test 1-4,7 weekly saturday 10:30
For more examples, see the “Examples” section of the diagnostic schedule command in the command reference for this release.

**Configuring Health-Monitoring Diagnostics**

You can configure health-monitoring diagnostic testing on a switch while it is connected to a live network. You can configure the execution interval for each health-monitoring test, enable the switch to generate a syslog message because of a test failure, and enable a specific test.

By default, health monitoring is disabled, but the switch generates a syslog message when a test fails.

Beginning in privileged EXEC mode, follow these steps to configure and enable the health-monitoring diagnostic tests:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2    | diagnostic monitor interval switch number test {name | test-id | test-id-range | all} hh:mm:ss milliseconds day | Configure the health-monitoring interval of the specified tests. The range for the switch number keyword is from 1 to 9. When specifying the tests, use one of these parameters:  
  * name—Name of the test that appears in the show diagnostic content command output.  
  * test-id—ID number of the test that appears in the show diagnostic content command output.  
  * test-id-range—ID numbers of the tests that appear in the show diagnostic content command output.  
  * all—All of the diagnostic tests. When specifying the interval, set these parameters:  
    * hh:mm:ss—Monitoring interval in hours, minutes, and seconds. The range for hh is 0 to 24, and the range for mm and ss is 0 to 60.  
    * milliseconds—Monitoring interval in milliseconds (ms). The range is from 0 to 999.  
    * day—Monitoring interval in the number of days. The range is from 0 to 20. |
| 3    | diagnostic monitor syslog | (Optional) Configure the switch to generate a syslog message when a health-monitoring test fails. |
### Configuring Online Diagnostics

#### Command

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 4 | diagnostic monitor threshold switch number test { name | test-id | test-id-range | all } failure count count | (Optional) Set the failure threshold for the health-monitoring tests. The range for the `switch number` keyword is from 1 to 9. When specifying the tests, use one of these parameters:  
  - `name`—Name of the test that appears in the `show diagnostic content` command output.  
  - `test-id`—ID number of the test that appears in the `show diagnostic content` command output.  
  - `test-id-range`—ID numbers of the tests that appear in the `show diagnostic content` command output.  
  - `all`—All of the diagnostic tests. The range for the failure threshold `count` is 0 to 99. |

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 5 | diagnostic monitor switch number test { name | test-id | test-id-range | all } | Enable the specified health-monitoring tests. The range for the `switch number` keyword is from 1 to 9. When specifying the tests, use one of these parameters:  
  - `name`—Name of the test that appears in the `show diagnostic content` command output.  
  - `test-id`—ID number of the test that appears in the `show diagnostic content` command output.  
  - `test-id-range`—ID numbers of the tests that appear in the `show diagnostic content` command output.  
  - `all`—All of the diagnostic tests. |

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>show diagnostic { content</td>
<td>post</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable diagnostic testing and return to the default settings, use these commands:

- To disable online diagnostic testing, use the `no diagnostic monitor switch number test { name | test-id | test-id-range | all }` global configuration command.
- To return to the default health-monitoring interval, use the `no diagnostic monitor interval switch number test { name | test-id | test-id-range | all }` global configuration command.
- To configure the switch to not generate a syslog message when the health-monitoring test fails, use the `no diagnostic monitor syslog` global configuration command.
- To return to the default failure threshold, use the `no diagnostic monitor threshold switch number test { name | test-id | test-id-range | all } failure count count` global configuration command.

This example shows how to configure a health-monitoring test:

```
Switch(config)# diagnostic monitor threshold switch 3 test 1 failure count 50
Switch(config)# diagnostic monitor interval switch 3 test TestPortAsicRingLoopback
```
Running Online Diagnostic Tests

After you configure online diagnostics, you can manually start diagnostic tests or display the test results. You can also see which tests are configured for the switch or switch stack and the diagnostic tests that have already run.

These sections describe how to run online diagnostic tests:
- Starting Online Diagnostic Tests, page 49-5
- Displaying Online Diagnostic Tests and Test Results, page 49-6

Starting Online Diagnostic Tests

After you configure diagnostic tests to run on the switch, use the diagnostic start privileged EXEC command to begin diagnostic testing.

Use this privileged EXEC command to manually start online diagnostic testing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic start switch number test {name</td>
<td>test-id</td>
</tr>
<tr>
<td></td>
<td>all</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After starting the tests, you cannot stop the testing process.

This example shows how to start a diagnostic test by using the test name:

Switch# diagnostic start switch 2 test TestInlineFwrCtlr

This example shows how to start all of the basic diagnostic tests:

Switch# diagnostic start switch 1 test all
Displaying Online Diagnostic Tests and Test Results

You can display the online diagnostic tests that are configured for the switch or switch stack and check the test results by using the privileged EXEC `show` commands in Table 49-1:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `show diagnostic content switch [number | Display the online diagnostics configured for a switch.  
| all]`                                         |
| `show diagnostic status`                     | Display the currently running diagnostic tests.   |
| `show diagnostic result switch [number | Display the online diagnostics test results.    
| all] [detail | test {name | test-id | test-id-range | all} [detail]`                                     |
| `show diagnostic switch [number | Display the online diagnostics test results.    
| all] [detail]`                                 |
| `show diagnostic schedule switch [number | Display the online diagnostics test schedule.   
| all]`                                         |
| `show diagnostic post`                       | Display the POST results. (The output is the same as the `show post` command output.) |

For examples of the `show diagnostic` command output, see the “Examples” section of the `show diagnostic` command in the command reference for this release.
Supported MIBs

This appendix lists the supported management information base (MIBs) for this release on the switch. It contains these sections:

- MIB List, page A-1
- Using FTP to Access the MIB Files, page A-4

MIB List

- BRIDGE-MIB

  Note
  The BRIDGE-MIB supports the context of a single VLAN. By default, SNMP messages using the configured community string always provide information for VLAN 1. To obtain the BRIDGE-MIB information for other VLANs, for example VLAN x, use this community string in the SNMP message: configured community string @x.

- CISCO-CABLE-DIAG-MIB
- CISCO-CDP-MIB
- CISCO-CONFIG-COPY-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-DHCP-SNOOPING-MIB
- CISCO-ENTITY-FRU-CONTROL-MIB
- CISCO-ENTITY-VENDORTYPE-OID-MIB
- CISCO-ENVMON-MIB
- CISCO-ERR-DISABLE-MIB
- CISCO-FLASH-MIB (Flash memory on all switches is modeled as removable flash memory.)
- CISCO-FTP-CLIENT-MIB
- CISCO-HSRP-MIB
- CISCO-HSRP-EXT-MIB (partial support)
- CISCO-IETF-IP-MIB (Only with the IP services and advanced IP services feature set)
- CISCO-IETF-IP-FORWARDING-MIB (Only with the advanced IP services feature set)
- CISCO-IETF-ISIS-MIB (Only with the IP services feature sets)
- CISCO-IF-EXTENSIONS-MIB
- CISCO-IGMP-FILTER-MIB
- CISCO-IMAGE-MIB (Only stack master feature set details are shown.)
- CISCO IP-STAT-MIB
- CISCO-L2L3-INTERFACE-CONFIG-MIB
- CISCO-LAG-MIB
- CISCO-MAC-NOTIFICATION-MIB
- CISCO-MEMORY-POOL-MIB (Only stack master feature set details are shown.)
- CISCO-NAC-NAD-MIB
- CISCO-PAE-MIB
- CISCO-PAGP-MIB
- CISCO-PING-MIB
- CISCO-PORT-QOS-MIB (the cportQosStats Table returns the values from the octets and packet counters, depending on switch configuration)
- CISCO-PORT-STORM-CONTROL-MIB
- CISCO-PRIVATE-VLAN-MIB
- CISCO-POWER-ETHERNET-EXT-MIB
- CISCO-PROCESS-MIB (Only stack master details are shown.)
- CISCO-PRODUCTS-MIB
- CISCO-RTTMON-MIB
- CISCO-SLB-MIB (Only with the IP services feature sets)
- CISCO-SMI-MIB
- CISCO-STACK-MIB (Partial support on stacking-capable switches: for some objects, only stack master information is supported. ENTITY MIB is a better alternative.)
- CISCO-STACKMAKER-MIB (stacking-capable switches only)
- CISCO-STACKWISE PLUS MIB (stacking-capable switches only)
- CISCO-STP-EXTENSIONS-MIB
- CISCO-SYSLOG-MIB
- CISCO-TC-MIB
- CISCO-TCP-MIB
- CISCO-UDLD-MIB
- CISCO-VLAN-IFTABLE-RELATIONSHIP-MIB
- CISCO-VLAN-MEMBERSHIP-MIB
- CISCO-VTP-MIB
- ENTITY-MIB (The redundant power system [RPS] is represented as an entry in the entPhysical table of this MIB.)
- ETHERLIKE-MIB
Appendix A  Supported MIBs

MIB List

- IEEE8021-PAE-MIB
- IEEE8023-LAG-MIB
- IF-MIB (In and out counters for VLANs are not supported.)
- IGMP-MIB
- INET-ADDRESS-MIB
- IPMROUTE-MIB
- OLD-CISCO-CHASSIS-MIB (Partial support on stacking-capable switches; some objects reflect only the stack master.)
- OLD-CISCO-CPU-MIB
- OLD-CISCO-FLASH-MIB (Supports only the stack master in a switch stack. Use CISCO-FLASH_MIB.)
- OLD-CISCO-INTERFACES-MIB
- OLD-CISCO-IP-MIB
- OLD-CISCO-SYS-MIB
- OLD-CISCO-TCP-MIB
- OLD-CISCO-TS-MIB
- PIM-MIB
- RFC1213-MIB (Functionality is as per the agent capabilities specified in the CISCO-RFC1213-CAPABILITY.my.)
- RFC1253-MIB (OSPF-MIB)
- RMON-MIB
- RMON2-MIB
- SNMP-FRAMEWORK-MIB
- SNMP-MPD-MIB
- SNMP-NOTIFICATION-MIB
- SNMP-TARGET-MIB
- SNMPv2-MIB
- TCP-MIB
- UDP-MIB

Note
You can also use this URL for a list of supported MIBs for these switches

You can access other information about MIBs and Cisco products on the Cisco web site:
Using FTP to Access the MIB Files

You can get each MIB file by using this procedure:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Make sure that your FTP client is in passive mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Some FTP clients do not support passive mode.</td>
</tr>
<tr>
<td>2</td>
<td>Use FTP to access the server <code>ftp.cisco.com</code>.</td>
</tr>
<tr>
<td>3</td>
<td>Log in with the username <code>anonymous</code>.</td>
</tr>
<tr>
<td>4</td>
<td>Enter your e-mail username when prompted for the password.</td>
</tr>
<tr>
<td>5</td>
<td>At the <code>ftp&gt;</code> prompt, change directories to <code>/pub/mibs/v1</code> and <code>/pub/mibs/v2</code>.</td>
</tr>
<tr>
<td>6</td>
<td>Use the <code>get MIB_filename</code> command to obtain a copy of the MIB file.</td>
</tr>
</tbody>
</table>
APPENDIX

Working with the Cisco IOS File System, Configuration Files, and Software Images

This appendix describes how to manipulate the switch flash file system, how to copy configuration files, and how to archive (upload and download) software images to a switch or to a switch stack. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, see the switch command reference for this release and the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2.

This appendix consists of these sections:

- Working with the Flash File System, page B-1
- Working with Configuration Files, page B-9
- Working with Software Images, page B-24

Working with the Flash File System

The flash file system is a single flash device on which you can store files. It also provides several commands to help you manage software image and configuration files. The default flash file system on the switch is named flash:

As viewed from the stack master, or any stack member, flash: refers to the local flash device, which is attached to the same switch on which the file system is being viewed. In a switch stack, each of the flash devices of the various stack members can be viewed from the stack master. The names of these flash file systems include the corresponding switch member numbers. For example, flash3:, as viewed from the stack master, refers to the same file system as does flash: on stack member 3. Use the show file systems privileged EXEC command to list all file systems, including the flash file systems in the switch stack.

No more than one user at a time can manage the software images and configuration files for a switch stack.

These sections contain this configuration information:

- Displaying Available File Systems, page B-2
- Setting the Default File System, page B-3
- Displaying Information about Files on a File System, page B-3
Displaying Available File Systems

To display the available file systems on your switch, use the `show file systems` privileged EXEC command as shown in this example for a stacking-capable switch. In this example, the stack master is stack member 2; therefore `flash2:` is aliased to `flash:`. The file system on stack member 5 is displayed as `flash5:` on the stack master.

```
Switch# show file systems
File Systems:

 Size(b) Free(b) Type Flags Prefixes
 - - opaque ro bs:
 * 57409536 25664000 flash rw flash: flash2:
 - - opaque rw system:
 524288 512375 nvram rw nvram:
 - - opaque ro xmodem:
 - - opaque ro ymodem:
 - - opaque rw null:
 - - opaque ro tar:
 - - network rw tftp:
 - - network rw rcp:
 - - network rw http:
 - - network rw ftp:
 - - opaque ro cns:
 57409536 27306496 flash rw flash5:
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size(b)</td>
<td>Amount of memory in the file system in bytes.</td>
</tr>
<tr>
<td>Free(b)</td>
<td>Amount of free memory in the file system in bytes.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of file system.</td>
</tr>
<tr>
<td>flash — The file system is for a flash memory device.</td>
<td></td>
</tr>
<tr>
<td>nvram — The file system is for a NVRAM device.</td>
<td></td>
</tr>
<tr>
<td>opaque — The file system is a locally generated pseudo file system (for example, the system) or a download interface, such as brimux.</td>
<td></td>
</tr>
<tr>
<td>unknown — The file system is an unknown type.</td>
<td></td>
</tr>
</tbody>
</table>
Setting the Default File System

You can specify the file system or directory that the system uses as the default file system by using the `cd filesystem:` privileged EXEC command. You can set the default file system to omit the `filesystem:` argument from related commands. For example, for all privileged EXEC commands that have the optional `filesystem:` argument, the system uses the file system specified by the `cd` command.

By default, the default file system is `flash:`.

You can display the current default file system as specified by the `cd` command by using the `pwd` privileged EXEC command.

Displaying Information about Files on a File System

You can view a list of the contents of a file system before manipulating its contents. For example, before copying a new configuration file to flash memory, you might want to verify that the file system does not already contain a configuration file with the same name. Similarly, before copying a flash configuration file to another location, you might want to verify its filename for use in another command.

To display information about files on a file system, use one of the privileged EXEC commands in Table B-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dir [all] filesystem:filename</code></td>
<td>Display a list of files on a file system.</td>
</tr>
<tr>
<td><code>show file systems</code></td>
<td>Display more information about each of the files on a file system.</td>
</tr>
</tbody>
</table>
To display information about the driver text object in the CISCO-MEMORY-POOL-MIB, use the `show memory` privileged EXEC command:

```
Switch# show memory
```

<table>
<thead>
<tr>
<th>Head</th>
<th>Total(b)</th>
<th>Used(b)</th>
<th>Free(b)</th>
<th>Lowest(b)</th>
<th>Largest(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>2BF1A9C</td>
<td>205661540</td>
<td>43619116</td>
<td>162042424</td>
<td>159736648</td>
</tr>
<tr>
<td>I/O</td>
<td>F000000</td>
<td>16769024</td>
<td>10503052</td>
<td>6265972</td>
<td>6132844</td>
</tr>
<tr>
<td>Driver te</td>
<td>1800000</td>
<td>4194304</td>
<td>44</td>
<td>4194260</td>
<td>4194260</td>
</tr>
</tbody>
</table>

**Changing Directories and Displaying the Working Directory**

Beginning in privileged EXEC mode, follow these steps to change directories and to display the working directory.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>dir filesystem:</td>
</tr>
<tr>
<td></td>
<td>Display the directories on the specified file system.</td>
</tr>
<tr>
<td></td>
<td>For filesystem:, use flash: for the system board flash device.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>cd new_configs</td>
</tr>
<tr>
<td></td>
<td>Change to the directory of interest.</td>
</tr>
<tr>
<td></td>
<td>The command example shows how to change to the directory named new_configs.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>pwd</td>
</tr>
<tr>
<td></td>
<td>Display the working directory.</td>
</tr>
</tbody>
</table>

**Creating and Removing Directories**

Beginning in privileged EXEC mode, follow these steps to create and remove a directory:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>dir filesystem:</td>
</tr>
<tr>
<td></td>
<td>Display the directories on the specified file system.</td>
</tr>
<tr>
<td></td>
<td>For filesystem:, use flash: for the system board flash device.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>mkdir old_configs</td>
</tr>
<tr>
<td></td>
<td>Create a new directory.</td>
</tr>
<tr>
<td></td>
<td>The command example shows how to create the directory named old_configs.</td>
</tr>
<tr>
<td></td>
<td>Directory names are case sensitive.</td>
</tr>
<tr>
<td></td>
<td>Directory names are limited to 45 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>dir filesystem:</td>
</tr>
<tr>
<td></td>
<td>Verify your entry.</td>
</tr>
</tbody>
</table>
To delete a directory with all its files and subdirectories, use the `delete /force /recursive filesystem:file-url` privileged EXEC command.

Use the `/recursive` keyword to delete the named directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the `archive download-sw` command but are no longer needed.

For `filesystem`, use `flash:` for the system board flash device. For `file-url`, enter the name of the directory to be deleted. All the files in the directory and the directory are removed.

⚠️ **Caution**

When files and directories are deleted, their contents cannot be recovered.

### Copying Files

To copy a file from a source to a destination, use the `copy source-url destination-url` privileged EXEC command. For the source and destination URLs, you can use `running-config` and `startup-config` keyword shortcuts. For example, the `copy running-config startup-config` command saves the currently running configuration file to the NVRAM section of flash memory to be used as the configuration during system initialization.

You can also copy from special file systems (`xmodem:`, `ymodem:`) as the source for the file from a network machine that uses the Xmodem or Ymodem protocol.

Network file system URLs include `ftp:`, `rcp:`, and `tftp:` and have these syntaxes:

- **FTP**—`ftp://username [password]@[location]/directory/filename`
- **RCP**—`rcp://username@location/directory/filename`
- **TFTP**—`tftp://[location]/directory/filename`

Local writable file systems include `flash:`.

Some invalid combinations of source and destination exist. Specifically, you cannot copy these combinations:

- From a running configuration to a running configuration
- From a startup configuration to a startup configuration
- From a device to the same device (for example, the `copy flash: flash:` command is invalid)

For specific examples of using the `copy` command with configuration files, see the “Working with Configuration Files” section on page B-9.

To copy software images either by downloading a new version or by uploading the existing one, use the `archive download-sw` or the `archive upload-sw` privileged EXEC command. For more information, see the “Working with Software Images” section on page B-24.

### Deleting Files

When you no longer need a file on a flash memory device, you can permanently delete it. To delete a file or directory from a specified flash device, use the `delete [/force] [/recursive] [filesystem:]file-url` privileged EXEC command.
Use the `/recursive` keyword for deleting a directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the `archive download-sw` command but are no longer needed.

If you omit the `filesystem:` option, the switch uses the default device specified by the `cd` command. For `file-url`, you specify the path (directory) and the name of the file to be deleted.

When you attempt to delete any files, the system prompts you to confirm the deletion.

---

**Caution**

When files are deleted, their contents cannot be recovered.

This example shows how to delete the file `myconfig` from the default flash memory device:

```
Switch# delete myconfig
```

## Creating, Displaying, and Extracting Files

You can create a file and write files into it, list the files in a file, and extract the files from a file as described in the next sections.

---

**Note**

Instead of using the `copy` privileged EXEC command or the `archive` privileged EXEC command, we recommend using the `archive download-sw` and `archive upload-sw` privileged EXEC commands to download and upload software image files. For switch stacks, the `archive download-sw` and `archive upload-sw` privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the `archive copy-sw` privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.
Beginning in privileged EXEC mode, follow these steps to create a file, display the contents, and extract it.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>archive /create</code></td>
<td>Create a file and add files to it.</td>
</tr>
<tr>
<td><code>destination-url</code></td>
<td>For <code>destination-url</code>, specify the destination URL alias for the local or network file system and the name of the file to create. The <code>-filename</code> is the file to be created. These options are supported:</td>
</tr>
<tr>
<td><code>flash:/file-url</code></td>
<td>• Local flash file system syntax:</td>
</tr>
<tr>
<td></td>
<td><code>flash:</code></td>
</tr>
<tr>
<td></td>
<td>• FTP syntax:</td>
</tr>
<tr>
<td></td>
<td><code>ftp://[username]:password@location]/directory]/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>• RCP syntax:</td>
</tr>
<tr>
<td></td>
<td><code>rcp://[//username@location]/directory]/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>• TFTP syntax:</td>
</tr>
<tr>
<td></td>
<td><code>tftp://[//location]/directory]/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>For <code>flash:/file-url</code>, specify the location on the local flash file system in which the new file is created. You can also specify an optional list of files or directories within the source directory to add to the new file. If none are specified, all files and directories at this level are written to the newly created file.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>archive /table</code></td>
<td>Display the contents of a file.</td>
</tr>
<tr>
<td><code>source-url</code></td>
<td>For <code>source-url</code>, specify the source URL alias for the local or network file system. The <code>-filename</code> is the file to display. These options are supported:</td>
</tr>
<tr>
<td></td>
<td>• Local flash file system syntax:</td>
</tr>
<tr>
<td></td>
<td><code>flash:</code></td>
</tr>
<tr>
<td></td>
<td>• FTP syntax:</td>
</tr>
<tr>
<td></td>
<td><code>ftp://[//username]:password@location]/directory]/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>• RCP syntax:</td>
</tr>
<tr>
<td></td>
<td><code>rcp://[//username@location]/directory]/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>• TFTP syntax:</td>
</tr>
<tr>
<td></td>
<td><code>tftp://[//location]/directory]/-filename</code>.</td>
</tr>
<tr>
<td></td>
<td>You can also limit the file displays by specifying a list of files or directories after the file. Only those files appear. If none are specified, all files and directories appear.</td>
</tr>
</tbody>
</table>
Appendix B  Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with the Flash File System

This example shows how to create a file. This command writes the contents of the new-configs directory on the local flash device to a file named saved on the TFTP server at 172.20.10.30:

Switch# archive /create tftp://172.20.10.30/saved. flash:/new-configs

This example shows how to display the contents of a switch file that is in flash memory:

Switch# archive /table flash:cbs31x0-universal-mz.122-40.EX.
info (219 bytes)
cbs31x0-universal-mz.122-40.EX/ (directory)
cbs31x0-universal-mz.122-40.EX/html/ (directory)
cbs31x0-universal-mz.122-40.EX/html/foo.html (0 bytes)
cbs31x0-universal-mz.122-40.EX/cbs31x0-universal-mz.122-40.EX.bin (610856 bytes)
cbs31x0-universal-mz.122-40.EX/info (219 bytes)
<output truncated>

This example shows how to display only the /html directory and its contents:

Switch# archive /table flash: cbs31x0-universal-mz.122-40/html
<output truncated>

This example shows how to extract the contents of a file located on the TFTP server at 172.20.10.30.

Switch# archive /xtract tftp://172.20.10.30/saved. flash:/new-configs

This example shows how to display the contents of a configuration file on a TFTP server:

Switch# more tftp://serverA/hampton/savedconfig

This example shows how to display the contents of any readable file, including a file on a remote file system.

Command	Purpose
archive /xtract source-url flash:/file-url [dir/file...] | Extract a file into a directory on the flash file system.
For source-url, specify the source URL alias for the local file system. The -filename is the file from which to extract files. These options are supported:
- local flash file system syntax:
  flash:
- FTP syntax:
  ftp://[[username[:password]@location]/directory]/-filename.
- RCP syntax:
  rcp://[[username@location]/directory]/-filename.
- TFTP syntax:
  tftp://[[location]/directory]/-filename.
For flash:/file-url [dir/file...], specify the location on the local flash file system from which the file is extracted. Use the dir/file... option to specify a list of files or directories within the file to be extracted. If none are specified, all files and directories are extracted.

more [/ascii | /binary | /ebcdic] file-url | Display the contents of any readable file, including a file on a remote file system.
Working with Configuration Files

This section describes how to create, load, and maintain configuration files.

Note

For information about configuration files in switch stacks, see the “Switch Stack Configuration Files” section on page 7-16.

Configuration files contain commands entered to customize the function of the Cisco IOS software. A way to create a basic configuration file is to use the setup program or to enter the setup privileged EXEC command. For more information, see Chapter 3, “Assigning the Switch IP Address and Default Gateway.”

You can copy (download) configuration files from a TFTP, FTP, or RCP server to the running configuration or startup configuration of the switch. You might want to perform this for one of these reasons:

- To restore a backed-up configuration file.
- To use the configuration file for another switch. For example, you might add another switch to your network and want it to have a configuration similar to the original switch. By copying the file to the new switch, you can change the relevant parts rather than recreating the whole file.
- To load the same configuration commands on all the switches in your network so that all the switches have similar configurations.

You can copy (upload) configuration files from the switch to a file server by using TFTP, FTP, or RCP. You might perform this task to back up a current configuration file to a server before changing its contents so that you can later restore the original configuration file from the server.

The protocol you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the TCP/IP stack, which is connection-oriented.

These sections contain this configuration information:

- Guidelines for Creating and Using Configuration Files, page B-10
- Configuration File Types and Location, page B-10
- Creating a Configuration File By Using a Text Editor, page B-11
- Copying Configuration Files By Using TFTP, page B-11
- Copying Configuration Files By Using FTP, page B-13
- Copying Configuration Files By Using RCP, page B-16
- Clearing Configuration Information, page B-19
- Replacing and Rolling Back Configurations, page B-20
Guidelines for Creating and Using Configuration Files

Creating configuration files can aid in your switch configuration. Configuration files can contain some or all of the commands needed to configure one or more switches. For example, you might want to download the same configuration file to several switches that have the same hardware configuration.

Use these guidelines when creating a configuration file:

- We recommend that you connect through the console port or Ethernet management port for the initial configuration of the switch. If you are accessing the switch through a network connection instead of through a direct connection to the console port or Ethernet management port, keep in mind that some configuration changes (such as changing the switch IP address or disabling ports) can cause a loss of connectivity to the switch.
- If no password has been set on the switch, we recommend that you set one by using the `enable secret secret-password` global configuration command.

**Note**

The `copy {ftp: | rcp: | tftp:} system:running-config` privileged EXEC command loads the configuration files on the switch as if you were entering the commands at the command line. The switch does not erase the existing running configuration before adding the commands. If a command in the copied configuration file replaces a command in the existing configuration file, the existing command is erased. For example, if the copied configuration file contains a different IP address in a particular command than the existing configuration, the IP address in the copied configuration is used. However, some commands in the existing configuration might not be replaced or negated. In this case, the resulting configuration file is a mixture of the existing configuration file and the copied configuration file, with the copied configuration file having precedence.

To restore a configuration file to an exact copy of a file stored on a server, copy the configuration file directly to the startup configuration (by using the `copy {ftp: | rcp: | tftp:} nvram:startup-config` privileged EXEC command), and reload the switch.

Configuration File Types and Location

Startup configuration files are used during system startup to configure the software. Running configuration files contain the current configuration of the software. The two configuration files can be different. For example, you might want to change the configuration for a short time period rather than permanently. In this case, you would change the running configuration but not save the configuration by using the `copy running-config startup-config` privileged EXEC command.

The running configuration is saved in DRAM; the startup configuration is stored in the NVRAM section of flash memory.
Creating a Configuration File By Using a Text Editor

When creating a configuration file, you must list commands logically so that the system can respond appropriately. This is one method of creating a configuration file:

**Step 1** Copy an existing configuration from a switch to a server.

For more information, see the “Downloading the Configuration File By Using TFTP” section on page B-12, the “Downloading a Configuration File By Using FTP” section on page B-14, or the “Downloading a Configuration File By Using RCP” section on page B-18.

**Step 2** Open the configuration file in a text editor, such as vi or emacs on UNIX or Notepad on a PC.

**Step 3** Extract the portion of the configuration file with the desired commands, and save it in a new file.

**Step 4** Copy the configuration file to the appropriate server location. For example, copy the file to the TFTP directory on the workstation (usually /tftpboot on a UNIX workstation).

**Step 5** Make sure the permissions on the file are set to world-read.

Copying Configuration Files By Using TFTP

You can configure the switch by using configuration files you create, download from another switch, or download from a TFTP server. You can copy (upload) configuration files to a TFTP server for storage.

These sections contain this configuration information:

- Preparing to Download or Upload a Configuration File By Using TFTP, page B-11
- Downloading the Configuration File By Using TFTP, page B-12
- Uploading the Configuration File By Using TFTP, page B-13

Preparing to Download or Upload a Configuration File By Using TFTP

Before you begin downloading or uploading a configuration file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:

  ```
 tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot
  ```

  Make sure that the /etc/services file contains this line:

  ```
 tftp 69/udp
  ```

  **Note** You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a `fastboot` command (on the SunOS 4.x) or a `reboot` command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, see the documentation for your workstation.

- Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the `ping` command.
• Ensure that the configuration file to be downloaded is in the correct directory on the TFTP server (usually /tftpboot on a UNIX workstation).

• For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.

• Before uploading the configuration file, you might need to create an empty file on the TFTP server. To create an empty file, enter the `touch filename` command, where `filename` is the name of the file you will use when uploading it to the server.

• During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.

### Downloading the Configuration File By Using TFTP

To configure the switch by using a configuration file downloaded from a TFTP server, follow these steps:

**Step 1** Copy the configuration file to the appropriate TFTP directory on the workstation.

**Step 2** Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page B-11.

**Step 3** Log into the switch through the console port, the Ethernet management port, or a Telnet session.

**Step 4** Download the configuration file from the TFTP server to configure the switch.

Specify the IP address or hostname of the TFTP server and the name of the file to download. Use one of these privileged EXEC commands:

- `copy tftp://location/directory/filename system:running-config`
- `copy tftp://location/directory/filename nram:startup-config`
- `copy tftp://location/directory/filename flash[n]:/directory/startup-config`

**Note** You can only enter the `flash[n]` parameter (for example, `flash3`).

The configuration file downloads, and the commands are executed as the file is parsed line-by-line.

This example shows how to configure the software from the file `tokyo-config` at IP address 172.16.2.155:

```
Switch# copy tftp://172.16.2.155/tokyo-config system:running-config
Configure using tokyo-config from 172.16.2.155? [confirm] y
Booting tokyo-config from 172.16.2.155:!!! [OK - 874/16000 bytes]
```
Uploading the Configuration File By Using TFTP

To upload a configuration file from a switch to a TFTP server for storage, follow these steps:

**Step 1** Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page B-11.

**Step 2** Log into the switch through the console port, the Ethernet management port, or a Telnet session.

**Step 3** Upload the switch configuration to the TFTP server. Specify the IP address or hostname of the TFTP server and the destination filename.

Use one of these privileged EXEC commands:

- `copy system:running-config tftp://[location]/directory/filename`
- `copy nvram:startup-config tftp://[location]/directory/filename`
- `copy flash[n]:directory/startup-config tftp://[location]/directory/filename`

**Note** You can only enter the `flash[n]` parameter (for example, `flash3`) on Catalyst 3750-E switches.

The file is uploaded to the TFTP server.

This example shows how to upload a configuration file from a switch to a TFTP server:

```
Switch# copy system:running-config tftp://172.16.2.155/tokyo-config
Write file tokyo-config on host 172.16.2.155? [confirm] y
#
Writing tokyo-config!!! [OK]
```

Copying Configuration Files By Using FTP

You can copy configuration files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy a configuration file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `copy` command if a username is specified.
- The username set by the `ip ftp username username` global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the `copy` command if a password is specified.
- The password set by the `ip ftp password password` global configuration command if the command is configured.
- The switch forms a password named `username@switchname.domain`. The variable `username` is the username associated with the current session, `switchname` is the configured hostname, and `domain` is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept your FTP write request.
Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `copy` command if you want to specify only a username for that copy operation.

If the server has a directory structure, the configuration file is written to or copied from the directory associated with the username on the server. For example, if the configuration file resides in the home directory of a user on the server, specify that user's name as the remote username.

For more information, see the documentation for your FTP server.

These sections contain this configuration information:
- Preparing to Download or Upload a Configuration File By Using FTP, page B-14
- Downloading a Configuration File By Using FTP, page B-14
- Uploading a Configuration File By Using FTP, page B-15

### Preparing to Download or Upload a Configuration File By Using FTP

Before you begin downloading or uploading a configuration file by using FTP, do these tasks:
- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username username` global configuration command during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.
- When you upload a configuration file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, see the documentation for your FTP server.

### Downloading a Configuration File By Using FTP

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-14.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>configure terminal</code> Enter global configuration mode on the switch.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip ftp username username</code> (Optional) Change the default remote username.</td>
</tr>
</tbody>
</table>
Appendix B  Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Configuration Files

This example shows how to copy a configuration file named host1-config from the netadmin1 directory on the remote server with an IP address of 172.16.101.101 to load and run those commands on the switch:

```
Switch# copy ftp://netadmin1:mypass@172.16.101.101/host1-config system:running-config
```

This example shows how to specify a remote username of netadmin1. The software copies the configuration file host2-config from the netadmin1 directory on the remote server with an IP address of 172.16.101.101 to the switch startup configuration.

```
Step 5 ip ftp password password
Step 6 end
Step 7 copy ftp://[[//username:password@]location][/directory]/filename system:running-config
```

This example shows how to upload a configuration file by using FTP.

```
Command Purpose
Step 1 ip ftp password password (Optional) Change the default password.
Step 2 Copy configuration file host1-config from the remote server to the switch.
```

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using FTP:

```
Step 1 ip ftp password password
Step 2 end
```

Using FTP, copy the configuration file from a network server to the running configuration or to the startup configuration file.

```
Step 1 ip ftp password password
Step 2 end
```

Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-14.

```
Step 1 ip ftp password password
Step 2 end
```

Log into the switch through the console port, the Ethernet management port, or a Telnet session.
Working with Configuration Files

This example shows how to copy the running configuration file named `switch2-confg` to the `netadmin1` directory on the remote host with an IP address of 172.16.101.101:

```
Switch# copy system:running-config ftp://netadmin1:mypass@172.16.101.101/switch2-confg
```

This example shows how to store a startup configuration file on a server by using FTP to copy the file:

```
Switch# configure terminal
Step 4
Step 5
Step 6
Step 7
Step 3
configure terminal
ip ftp username username
ip ftp password password
end
copy system:running-config ftp:][/username[:password]@]location[/directory] /filename]
or
copy nvram:startup-config ftp:][/username[:password]@]location[/directory] /filename]
```

### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip ftp username username</td>
</tr>
<tr>
<td></td>
<td>(Optional) Change the default remote username.</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip ftp password password</td>
</tr>
<tr>
<td></td>
<td>(Optional) Change the default password.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy system:running-config ftp:[][/username[:password]@]location[/directory] /filename]</td>
</tr>
<tr>
<td></td>
<td>Using FTP, store the switch running or startup configuration file to the specified location.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>copy nvram:startup-config ftp:[][/username[:password]@]location[/directory] /filename]</td>
</tr>
</tbody>
</table>

### Copying Configuration Files By Using RCP

The RCP provides another method of downloading, uploading, and copying configuration files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.
The RCP requires a client to send a remote username with each RCP request to a server. When you copy a configuration file from the switch to a server, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `copy` command if a username is specified.
- The username set by the `ip rcmd remote-username username` global configuration command if the command is configured.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the `username` command, the switch software sends the Telnet username as the remote username.
- The switch hostname.

For a successful RCP copy request, you must define an account on the network server for the remote username. If the server has a directory structure, the configuration file is written to or copied from the directory associated with the remote username on the server. For example, if the configuration file is in the home directory of a user on the server, specify that user's name as the remote username.

These sections contain this configuration information:

- Preparing to Download or Upload a Configuration File By Using RCP, page B-17
- Downloading a Configuration File By Using RCP, page B-18
- Uploading a Configuration File By Using RCP, page B-19

### Preparing to Download or Upload a Configuration File By Using RCP

Before you begin downloading or uploading a configuration file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the RCP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.
- When you upload a file to the RCP server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the .rhosts file for the remote user on the RCP server. For example, suppose that the switch contains these configuration lines:

```
hostname Switch1
ip rcmd remote-username User0
```

If the switch IP address translates to `Switch1.company.com`, the .rhosts file for User0 on the RCP server should contain this line:

```
Switch1.company.com Switch1
```

For more information, see the documentation for your RCP server.
## Downloading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page B-17.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Specify the remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Using RCP, copy the configuration file from a network server to the running configuration or to the startup configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to copy a configuration file named `host1-confg` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 and load and run those commands on the switch:

```
Switch# copy rcp://netadmin1@172.16.101.101/host1-confg system:running-config
Configure using host1-confg from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host1-confg:![OK]
%SYS-5-CONFIG: Configured from host1-confg by rcp from 172.16.101.101
```

This example shows how to specify a remote username of `netadmin1`. Then it copies the configuration file `host2-confg` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 to the startup configuration:

```
Switch# configure terminal
Switch(config)# ip rcmd remote-username netadmin1
Switch(config)# end
Switch# copy rcp://netadmin1@172.16.101.101/host2-confg nvram:startup-config
Address of remote host [255.255.255.255]? 172.16.101.101
Name of configuration file[rtr2-config]? host2-confg
Configure using host2-confg from 172.16.101.101?[confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-confg:![OK]
[OK]
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by rcp from 172.16.101.101
```
Uploading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page B-17.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>(Optional) Specify the remote username.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>Return to privileged EXEC mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>Using RCP, copy the configuration file from a switch running or startup configuration file to a network server.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to copy the running configuration file named switch2-conf to the netadmin1 directory on the remote host with an IP address of 172.16.101.101:

Switch# copy system:running-config rcp://netadmin1@172.16.101.101/switch2-conf
Write file switch-conf on host 172.16.101.101?[confirm]
Building configuration...[OK]
Connected to 172.16.101.101
Switch#

This example shows how to store a startup configuration file on a server:

Switch# copy nvram:startup-config rcp://netadmin2@
Switch(config)# ip rcmd remote-username netadmin2
Switch(config)# end
Switch# copy nvram:startup-config rcp:
Remote host[]? 172.16.101.101
Name of configuration file to write [switch2-conf]? file switch2-conf on host 172.16.101.101?[confirm]

Clearing Configuration Information

You can clear the configuration information from the startup configuration. If you reboot the switch without startup configuration, the switch enters the setup program so that you can reconfigure the switch with all new settings.
Clearing the Startup Configuration File

To clear the contents of your startup configuration, use the `erase nvram:` or the `erase startup-config` privileged EXEC command.

⚠️ Caution
You cannot restore the startup configuration file after it has been deleted.

Deleting a Stored Configuration File

To delete a saved configuration from flash memory, use the `delete flash:filename` privileged EXEC command. Depending on the setting of the `file prompt` global configuration command, you might be prompted for confirmation before you delete a file. By default, the switch prompts for confirmation on destructive file operations. For more information about the `file prompt` command, see the Cisco IOS Command Reference for Release 12.2.

⚠️ Caution
You cannot restore a file after it has been deleted.

Replacing and Rolling Back Configurations

The configuration replacement and rollback feature replaces the running configuration with any saved Cisco IOS configuration file. You can use the rollback function to roll back to a previous configuration.

These sections contain this information:
- Understanding Configuration Replacement and Rollback, page B-20
- Configuration Guidelines, page B-22
- Configuring the Configuration Archive, page B-22
- Performing a Configuration Replacement or Rollback Operation, page B-23

Understanding Configuration Replacement and Rollback

To use the configuration replacement and rollback feature, you should understand these concepts:
- Archiving a Configuration, page B-20
- Replacing a Configuration, page B-21
- Rolling Back a Configuration, page B-21

Archiving a Configuration

The configuration archive provides a mechanism to store, organize, and manage an archive of configuration files. The `configure replace` privileged EXEC command increases the configuration rollback capability. As an alternative, you can save copies of the running configuration by using the `copy running-config destination-url` privileged EXEC command, storing the replacement file either locally or remotely. However, this method lacks any automated file management. The configuration replacement and rollback feature can automatically save copies of the running configuration to the configuration archive.
You use the `archive config` privileged EXEC command to save configurations in the configuration archive by using a standard location and filename prefix that is automatically appended with an incremental version number (and optional timestamp) as each consecutive file is saved. You can specify how many versions of the running configuration are kept in the archive. After the maximum number of files are saved, the oldest file is automatically deleted when the next, most recent file is saved. The `show archive` privileged EXEC command displays information for all the configuration files saved in the configuration archive.

The Cisco IOS configuration archive, in which the configuration files are stored and available for use with the `configure replace` command, is in any of these file systems: FTP, HTTP, RCP, TFTP.

**Replacing a Configuration**

The `configure replace` privileged EXEC command replaces the running configuration with any saved configuration file. When you enter the `configure replace` command, the running configuration is compared with the specified replacement configuration, and a set of configuration differences is generated. The resulting differences are used to replace the configuration. The configuration replacement operation is usually completed in no more than three passes. To prevent looping behavior no more than five passes are performed.

You can use the `copy source-url running-config` privileged EXEC command to copy a stored configuration file to the running configuration. When using this command as an alternative to the `configure replace target-url` privileged EXEC command, note these major differences:

- The `copy source-url running-config` command is a merge operation and preserves all the commands from both the source file and the running configuration. This command does not remove commands from the running configuration that are not present in the source file. In contrast, the `configure replace target-url` command removes commands from the running configuration that are not present in the replacement file and adds commands to the running configuration that are not present.
- You can use a partial configuration file as the source file for the `copy source-url running-config` command. You must use a complete configuration file as the replacement file for the `configure replace target-url` command.

**Rolling Back a Configuration**

You can also use the `configure replace` command to roll back changes that were made since the previous configuration was saved. Instead of basing the rollback operation on a specific set of changes that were applied, the configuration rollback capability reverts to a specific configuration based on a saved configuration file.

If you want the configuration rollback capability, you must first save the running configuration before making any configuration changes. Then, after entering configuration changes, you can use that saved configuration file to roll back the changes by using the `configure replace target-url` command.

You can specify any saved configuration file as the rollback configuration. You are not limited to a fixed number of rollbacks, as is the case in some rollback models.
Configuration Guidelines

Follow these guidelines when configuring and performing configuration replacement and rollback:

- Make sure that the switch has free memory larger than the combined size of the two configuration files (the running configuration and the saved replacement configuration). Otherwise, the configuration replacement operation fails.
- Make sure that the switch also has sufficient free memory to execute the configuration replacement or rollback configuration commands.
- Certain configuration commands, such as those pertaining to physical components of a networking device (for example, physical interfaces), cannot be added or removed from the running configuration.
  - A configuration replacement operation cannot remove the `interface interface-id` command line from the running configuration if that interface is physically present on the device.
  - The `interface interface-id` command line cannot be added to the running configuration if no such interface is physically present on the device.
- When using the `configure replace` command, you must specify a saved configuration as the replacement configuration file for the running configuration. The replacement file must be a complete configuration generated by a Cisco IOS device (for example, a configuration generated by the `copy running-config destination-url` command).

Note

If you generate the replacement configuration file externally, it must comply with the format of files generated by Cisco IOS devices.

Configuring the Configuration Archive

Using the `configure replace` command with the configuration archive and with the `archive config` command is optional but offers significant benefit for configuration rollback scenarios. Before using the `archive config command`, you must first configure the configuration archive. Starting in privileged EXEC mode, follow these steps to configure the configuration archive:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>archive</code></td>
<td>Enter archive configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>path url</code></td>
<td>Specify the location and filename prefix for the files in the configuration archive.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>maximum number</code></td>
<td>(Optional) Set the maximum number of archive files of the running configuration to be saved in the configuration archive.</td>
</tr>
<tr>
<td></td>
<td><code>number</code>—Maximum files of the running configuration file in the configuration archive. Valid values are from 1 to 14. The default is 10.</td>
</tr>
</tbody>
</table>
| Note                  | Before using this command, you must first enter the `path archive configuration command to specify the location and filename prefix for the files in the configuration archive.
Performing a Configuration Replacement or Rollback Operation

Starting in privileged EXEC mode, follow these steps to replace the running configuration file with a saved configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>archive config</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Make necessary changes to the running configuration.</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
</tbody>
</table>
| Step 5  | configure replace target-url [list] [force] [time seconds] [nolock] | Replace the running configuration file with a saved configuration file. 

- **target-url**—URL (accessible by the file system) of the saved configuration file that is to replace the running configuration, such as the configuration file created in Step 2 by using the *archive config* privileged EXEC command.
- **list**—Display a list of the command entries applied by the software parser during each pass of the configuration replacement operation. The total number of passes also appears.
- **force**—Replace the running configuration file with the specified saved configuration file without prompting you for confirmation.
- **time seconds**—Specify the time (in seconds) within which you must enter the *configure confirm* command to confirm replacement of the running configuration file. If you do not enter the *configure confirm* command within the specified time limit, the configuration replacement operation is automatically stopped. (In other words, the running configuration file is restored to the configuration that existed before you entered the *configure replace* command.)

**Note** You must first enable the configuration archive before you can use the *time seconds* command line option.

- **nolock**—Disable the locking of the running configuration file that prevents other users from changing the running configuration during a configuration replacement operation.
This section describes how to archive (download and upload) software image files, which contain the system software, the Cisco IOS code, and the embedded device manager software.

Instead of using the `copy` privileged EXEC command or the `archive tar` privileged EXEC command, we recommend using the `archive download-sw` and `archive upload-sw` privileged EXEC commands to download and upload software image files. For switch stacks, the `archive download-sw` and `archive upload-sw` privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the `archive copy-sw` privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

You can download a switch image file from a TFTP, FTP, or RCP server to upgrade the switch software. If you do not have access to a TFTP server, you can download a software image file directly to your PC or workstation by using a web browser (HTTP) and then by using the device manager or Cisco Network Assistant to upgrade your switch. For information about upgrading your switch by using a TFTP server or a web browser (HTTP), see the release notes.

You can replace the current image with the new one or keep the current image in flash memory after a download.

You can use the `archive download-sw /allow-feature-upgrade` privileged EXEC command to allow installation of an image with a different feature set, for example, upgrading from the noncryptographic universal image with the IP services feature set to the cryptographic universal image with the advanced IP services feature set. You can also use the `boot auto-download-sw` global configuration command to specify a URL to use to get an image for automatic software upgrades. When you enter this command, the master switch uses this URL in case of a version mismatch.

You upload a switch image file to a TFTP, FTP, or RCP server for backup purposes. You can use this uploaded image for future downloads to the same switch or to another of the same type.

The protocol that you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the TCP/IP stack, which is connection-oriented.
These sections contain this configuration information:

- Image Location on the Switch, page B-25
- File Format of Images on a Server or Cisco.com, page B-25
- Copying Image Files By Using TFTP, page B-26
- Copying Image Files By Using FTP, page B-30
- Copying Image Files By Using RCP, page B-34
- Copying an Image File from One Stack Member to Another, page B-39

**Note**

For a list of software images and the supported upgrade paths, see the release notes.

## Image Location on the Switch

The Cisco IOS image is stored as a `.bin` file in a directory that shows the version number. A subdirectory contains the files needed for web management. The image is stored on the system board flash memory (flash:).

You can use the `show version` privileged EXEC command to see the software version that is currently running on your switch. In the display, check the line that begins with `System image file is...`. It shows the directory name in flash memory where the image is stored.

You can also use the `dir filesystem` privileged EXEC command to see the directory names of other software images that you might have stored in flash memory. You can use the `archive download-sw /directory` privileged EXEC command to specify a directory once followed by a tar file or list of tar files to be downloaded instead of specifying complete paths with each tar file.

## File Format of Images on a Server or Cisco.com

Software images on a server or downloaded from Cisco.com are in a file format, which contains these files:

- An `info` file, which serves as a table of contents for the file
- One or more subdirectories containing other images and files, such as Cisco IOS images and web management files

This example shows some of the information contained in the info file. **Table B-3** provides additional details about this information:

```plaintext
system_type:0x00000000:cbs31x0-universal-mz.122-40.EX
image_family:CBS31x0
stacking_number:1.9
info_end:
version_suffix:universal-mz.122-40-EX
version_directory:cbs31x0-universal-mz.122-40.EX
image_system_type_id:0x00000000
image_name:cbs31x0-universal-mz.122-40.EX.bin
ios_image_file_size:6398464
total_image_file_size:8133632
image_feature:IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family:CBS31x0
```
Appendix B  Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Software Images

stacking_number:1.9
board_ids:0x401100c4 0x00000000 0x00000001 0x00000003 0x00000002 0x00008000 0x00008002 0x40110000
info_end:

Note
The stacking_number field does not apply to the switch.

Table B-3  File Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version_suffix</td>
<td>Specifies the Cisco IOS image version string suffix</td>
</tr>
<tr>
<td>version_directory</td>
<td>Specifies the directory where the Cisco IOS image and the HTML subdirectory are installed</td>
</tr>
<tr>
<td>image_name</td>
<td>Specifies the name of the Cisco IOS image in the file</td>
</tr>
<tr>
<td>ios_image_file_size</td>
<td>Specifies the Cisco IOS image size in the file, which is an approximate measure of the flash memory that the Cisco IOS image needs.</td>
</tr>
<tr>
<td>total_image_file_size</td>
<td>Specifies the size of all the images (the Cisco IOS image and the web management files) in the file, which is an approximate measure of the flash memory needed.</td>
</tr>
<tr>
<td>image_feature</td>
<td>Describes the core functionality of the image</td>
</tr>
<tr>
<td>image_min_dram</td>
<td>Specifies the minimum amount of DRAM needed to run this image</td>
</tr>
<tr>
<td>image_family</td>
<td>Describes the family of products on which the software can be installed</td>
</tr>
</tbody>
</table>

Copying Image Files By Using TFTP

You can download a switch image from a TFTP server or upload the image from the switch to a TFTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes; this uploaded image can be used for future downloads to the same or another switch of the same type.

Note
Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

These sections contain this configuration information:

- Preparing to Download or Upload an Image File By Using TFTP, page B-27
- Downloading an Image File By Using TFTP, page B-27
- Uploading an Image File By Using TFTP, page B-29
Preparing to Download or Upload an Image File By Using TFTP

Before you begin downloading or uploading an image file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:

  tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot

  Make sure that the /etc/services file contains this line:

  tftp 69/udp

  Note You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a fastboot command (on the SunOS 4.x) or a reboot command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, see the documentation for your workstation.

- Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnet if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the ping command.

- Ensure that the image to be downloaded is in the correct directory on the TFTP server (usually /tftpboot on a UNIX workstation).

- For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.

- Before uploading the image file, you might need to create an empty file on the TFTP server. To create an empty file, enter the touch filename command, where filename is the name of the file you will use when uploading the image to the server.

- During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.

Downloading an Image File By Using TFTP

You can download a new image file and replace the current image or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 3 to download a new image from a TFTP server and to overwrite the existing image. To keep the current image, follow Steps 1, 2, and 4.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Copy the image to the appropriate TFTP directory on the workstation. Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page B-27.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
</tbody>
</table>
Appendix B: Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Software Images

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

Note

If the flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the /overwrite option.

If you specify the /leave-old-sw, the existing files are not removed. If there is not enough space to install the new image and keep the current running image, the download process stops, and an error message is displayed.

### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>(Optional) Download the image files from the TFTP server to the switch, and overwrite the current image.</td>
</tr>
<tr>
<td>archive download-sw [directory]</td>
<td>- The /allow-feature-upgrade option allows installation of a software images with different feature sets.</td>
</tr>
<tr>
<td>/allow-feature-upgrade [directory]</td>
<td>- (Optional) The /directory option specifies a directory for the images.</td>
</tr>
<tr>
<td>/overwrite /reload</td>
<td>- The /overwrite option overwrites the software image in flash memory with the downloaded image.</td>
</tr>
<tr>
<td>tftp:[][//location][directory]image-name1.tar</td>
<td>- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td>[image-name2.tar image-name3.tar image-name4.tar]</td>
<td>- For //location, specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td></td>
<td>- For /directory/image-name1.tar [/directory/image-name2.tar image-name3.tar image-name4.tar], specify the directory (optional) and the images to download. Directory and image names are case sensitive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Download the images file from the TFTP server to the switch, and keep the current image.</td>
</tr>
<tr>
<td>archive download-sw [directory]</td>
<td>- (Optional) The /directory option specifies a directory for the images.</td>
</tr>
<tr>
<td>/leave-old-sw /reload</td>
<td>- The /leave-old-sw option keeps the old software version after a download.</td>
</tr>
<tr>
<td>tftp:[][//location][directory]image-name1.tar</td>
<td>- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td>[image-name2.tar image-name3.tar image-name4.tar]</td>
<td>- For //location, specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td></td>
<td>- For /directory/image-name1.tar [/directory/image-name2.tar image-name3.tar image-name4.tar], specify the directory (optional) and the images to download. Directory and image names are case sensitive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td>Verify that the image is successfully copied into the flash device.</td>
</tr>
<tr>
<td>dir flash:</td>
<td></td>
</tr>
</tbody>
</table>
The algorithm installs the downloaded image on the system board flash device (flash:). The image is placed into a new directory named with the software version string, and the \texttt{BOOT} environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the \texttt{/leave-old-sw} keyword), you can remove it by entering the \texttt{delete /force /recursive filesystem:/file-url} privileged EXEC command. For \texttt{filesystem}, use \texttt{flash:} for the system board flash device. For \texttt{file-url}, enter the directory name of the old image. All the files in the directory and the directory are removed.

\begin{center}
\textbf{Caution}
\end{center}

For the download and upload algorithms to operate properly, do \textit{not} rename image names.

### Uploading an Image File By Using TFTP

You can upload an image from the switch to a TFTP server. You can later download this image to the switch or to another switch of the same type.

Use the upload feature only if the web management pages associated with the embedded device manager have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to a TFTP server:

\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{Step} & \textbf{Command} & \textbf{Purpose} \\
\hline
1 & \texttt{Command} & Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page B-27. \\
\hline
2 & \texttt{Log into the switch through the console port, the Ethernet management port, or a Telnet session.} & \\
\hline
3 & \texttt{archive upload-sw} & Upload the currently running switch image to the TFTP server. \\
\hline
 & \texttt{tftp://[Ilocation]/directory/image-name.tar} & \begin{itemize}
  \item For \texttt{Ilocation}, specify the IP address of the TFTP server.
  \item For \texttt{/directory/image-name.tar}, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive. \texttt{The image-name.tar} is the name of the software image to be stored on the server.
\end{itemize} \\
\hline
\end{tabular}
\end{center}

The \texttt{archive upload-sw} privileged EXEC command builds an image file on the server by uploading these files in order: info, the Cisco IOS image, and the web management files. After these files are uploaded, the upload algorithm creates the file format.

\begin{center}
\textbf{Caution}
\end{center}

For the download and upload algorithms to operate properly, do \textit{not} rename image names.
Copying Image Files By Using FTP

You can download a switch image from an FTP server or upload the image from the switch to an FTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the switch or another switch of the same type.

Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

These sections contain this configuration information:

- Preparing to Download or Upload an Image File By Using FTP, page B-30
- Downloading an Image File By Using FTP, page B-31
- Uploading an Image File By Using FTP, page B-33

Preparing to Download or Upload an Image File By Using FTP

You can copy images files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy an image file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the archive download-sw or archive upload-sw privileged EXEC command if a username is specified.
- The username set by the ip ftp username username global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the archive download-sw or archive upload-sw privileged EXEC command if a password is specified.
- The password set by the ip ftp password password global configuration command if the command is configured.
- The switch forms a password named username@switchname.domain. The variable username is the username associated with the current session, switchname is the configured hostname, and domain is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept the FTP write request from you.
Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.

If the server has a directory structure, the image file is written to or copied from the directory associated with the username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user’s name as the remote username.

Before you begin downloading or uploading an image file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnet if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.

- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username` global configuration command. This new name will be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username for that operation only.

- When you upload an image file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, see the documentation for your FTP server.

**Downloading an Image File By Using FTP**

You can download a new image file and overwrite the current image or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 7 to download a new image from an FTP server and to overwrite the existing image. To keep the current image, follow Steps 1 to 6 and Step 8.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using FTP” section on page B-30.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>configure terminal</code> Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>ip ftp username username</code> (Optional) Change the default remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>ip ftp password password</code> (Optional) Change the default password.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
### Working with Software Images

#### Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **archive download-sw**  
| **allow-feature-upgrade**  
| **[directory]**  
| **overwrite**  
| **[reload]**  
| **tftp:**  
| **[[location]]**  
| **[directory]**  
| **image-name1.tar**  
| **image-name2.tar**  
| **image-name3.tar**  
| **image-name4.tar**  |
| (Optional) Download the image files from the FTP server to the switch, and overwrite the current image.  
  - The **allow-feature-upgrade** option allows installation of a software image with a different feature set.  
  - (Optional) The **[directory]** option specifies a directory for the images.  
  - The **overwrite** option overwrites the software image in flash memory with the downloaded image.  
  - The **[reload]** option reloads the system after downloading the image unless the configuration has been changed and not been saved.  
  - For **[username]:[password]**, specify the username and password; these must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page B-30.  
  - For **@location**, specify the IP address of the FTP server.  
  - For **[directory]/image-name1.tar**  
  |  
| **tftp:**  
| **[[location]]**  
| **[directory]**  
| **image-name1.tar**  
| **image-name2.tar**  
| **image-name3.tar**  
| **image-name4.tar**  |
| (Optional) Download the image files from the FTP server to the switch, and keep the current image.  
  - (Optional) The **[directory]** option specifies a directory for the images.  
  - The **leave-old-sw** option keeps the old software version after a download.  
  - The **[reload]** option reloads the system after downloading the image unless the configuration has been changed and not been saved.  
  - For **[username]:[password]**, specify the username and password. These must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page B-30.  
  - For **@location**, specify the IP address of the FTP server.  
  - For **[directory]/image-name.tar**, specify the directory and the image to download. Directory and image names are case sensitive. |

#### Step 8

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **dir flash:**  
| | Verify that the image is successfully copied into the flash device. |
The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the `/overwrite` option, the download algorithm removes the existing image on the flash device, whether or not it is the same as the new one, downloads the new image, and then reloads the software.

**Note**

If the flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the `/overwrite` option.

If you specify the `/leave-old-sw`, the existing files are not removed. If there is not enough space to install the new image and keep the running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image onto the system board flash device (`flash:`). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the `/leave-old-sw` keyword), you can remove it by entering the `delete /force /recursive filesystem:/file-url` privileged EXEC command. For `filesystem`, use `flash:` for the system board flash device. For `file-url`, enter the directory name of the old software image. All the files in the directory and the directory are removed.

**Caution**

For the download and upload algorithms to operate properly, do **not** rename image names.

### Uploading an Image File By Using FTP

You can upload an image from the switch to an FTP server. You can later download this image to the same switch or to another switch of the same type.

Use the upload feature only if the web management pages associated with the embedded device manager have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an FTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-14.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port, the Ethernet management port, or remotely through a Telnet session by using the IP address of the Ethernet management port.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Change the default remote username.</td>
</tr>
<tr>
<td><code>ip ftp username username</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Change the default password.</td>
</tr>
<tr>
<td><code>ip ftp password password</code></td>
<td></td>
</tr>
</tbody>
</table>
Working with Software Images

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>archive upload-sw</td>
<td>Upload the currently running switch image to the FTP server.</td>
</tr>
<tr>
<td></td>
<td>ftp:][/[/username[/password[@]location[/directory[/image-name.tar.</td>
<td>For //username:password, specify the username and password. These must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page B-30.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For @location, specify the IP address of the FTP server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For /directory/image-name.tar, specify the directory and the name of the software image to be uploaded. Directory and image names are case sensitive. The image-name.tar is the name of the software image to be stored on the server.</td>
</tr>
</tbody>
</table>

The archive upload-sw command builds an image file on the server by uploading these files in order: info, the Cisco IOS image, and the web management files. After these files are uploaded, the upload algorithm creates the file format.

⚠️ Caution

For the download and upload algorithms to operate properly, do not rename image names.

Copying Image Files By Using RCP

You can download a switch image from an RCP server or upload the image from the switch to an RCP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the same switch or another of the same type.

⚠️ Note

Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

These sections contain this configuration information:

- Preparing to Download or Upload an Image File By Using RCP, page B-35
- Downloading an Image File By Using RCP, page B-36
- Uploading an Image File By Using RCP, page B-38
Preparing to Download or Upload an Image File By Using RCP

RCP provides another method of downloading and uploading image files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.

RCP requires a client to send a remote username on each RCP request to a server. When you copy an image from the switch to a server by using RCP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `archive download-sw` or `archive upload-sw` privileged EXEC command if a username is specified.
- The username set by the `ip rcmd remote-username username` global configuration command if the command is entered.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the `username` command, the switch software sends the Telnet username as the remote username.
- The switch hostname.

For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. If the server has a directory structure, the image file is written to or copied from the directory associated with the remote username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user’s name as the remote username.

Before you begin downloading or uploading an image file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnet if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and there is no need to set the RCP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.
When you upload an image to the RCP to the server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the .rhosts file for the remote user on the RCP server. For example, suppose the switch contains these configuration lines:

```
hostname Switch1
ip rcmd remote-username User0
```

If the switch IP address translates to `Switch1.company.com`, the .rhosts file for User0 on the RCP server should contain this line:

```
Switch1.company.com Switch1
```

For more information, see the documentation for your RCP server.

### Downloading an Image File By Using RCP

You can download a new image file and replace or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 6 to download a new image from an RCP server and overwrite the existing image. To keep the current image, go to Step 6.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page B-35.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong> configure terminal</td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip rcmd remote-username username</td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Step 6

```
archive download-sw /allow-feature-upgrade
[[/directory] /overwrite /reload

tftp:[[/[location]]/directory]/image-name1.tar
[image-name2.tar image-name3.tar
image-name4.tar]
```

Purpose

Download the images file from the RCP server to the switch and overwrite the current image.

- The /allow-feature-upgrade allows installation of a software image with a different feature set.
- (Optional) The /directory option specifies a directory for the images.
- The /overwrite option overwrites the software image in flash memory with the downloaded image.
- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.
- For Username, specify the username. For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-35.
- For @location, specify the IP address of the RCP server.
- For /directory/image-name1.tar
[[/directory]/image-name2.tar image-name3.tar
image-name4.tar], specify the directory (optional) and the images to download. Directory and image names are case sensitive.

Step 7

```
archive download-sw [/directory] /leave-old-sw
/reload

tftp:[[/[location]]/directory]/image-name1.tar
[image-name2.tar image-name3.tar
image-name4.tar]
```

Purpose

Download the images file from the RCP server to the switch and keep the current image.

- (Optional) The /directory option specifies a directory for the images.
- The /leave-old-sw option keeps the old software version after a download.
- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.
- For Username, specify the username. For the RCP copy request to execute, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-35.
- For @location, specify the IP address of the RCP server.
- For /directory/image-name1.tar
[[/directory]/image-name2.tar image-name3.tar
image-name4.tar], specify the directory (optional) and the images to download. Directory and image names are case sensitive.

Step 8

```
dir flash:
```

Purpose

Verify that the image is successfully copied into the flash device.
The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

---

**Note**

If the flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the /overwrite option.

If you specify the /leave-old-sw, the existing files are not removed. If there is not enough room to install the new image an keep the running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image onto the system board flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old software during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem:/file-url privileged EXEC command. For filesystem, use flash: for the system board flash device. For file-url, enter the directory name of the old software image. All the files in the directory and the directory are removed.

---

**Caution**

For the download and upload algorithms to operate properly, do not rename image names.

## Uploading an Image File By Using RCP

You can upload an image from the switch to an RCP server. You can later download this image to the same switch or to another switch of the same type.

The upload feature should be used only if the web management pages associated with the embedded device manager have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an RCP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page B-35.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port, the Ethernet management port, or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip rcmd remote-username username</td>
</tr>
</tbody>
</table>
Appendix B  Working with the Cisco IOS File System, Configuration Files, and Software Images

Working with Software Images

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><strong>end</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>archive upload-sw</td>
<td>Upload the currently running switch image to the RCP server.</td>
</tr>
<tr>
<td>rcp: [[[//username@]location][directory]image-name.tar]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For <strong>//username</strong>, specify the username; for the RCP copy request to execute, define an</td>
</tr>
<tr>
<td></td>
<td>account on the network server for the remote username. For more information, see the</td>
</tr>
<tr>
<td></td>
<td>“Preparing to Download or Upload an Image File By Using RCP” section on page B-35.</td>
</tr>
<tr>
<td></td>
<td>• For <strong>@location</strong>, specify the IP address of the RCP server.</td>
</tr>
<tr>
<td></td>
<td>• For **/directory/**image-name.tar, specify the directory (optional) and the name of the</td>
</tr>
<tr>
<td></td>
<td>software image to be uploaded. Directory and image names are case sensitive.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>image-name.tar</strong> is the name of software image to be stored on the server.</td>
</tr>
</tbody>
</table>

The archive upload-sw privileged EXEC command builds an image file on the server by uploading these files in order: info, the Cisco IOS image, and the web management files. After these files are uploaded, the upload algorithm creates the file format.

![Caution](image)

For the download and upload algorithms to operate properly, do not rename image names.

Copying an Image File from One Stack Member to Another

For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can be used only through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch that has an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the one that has incompatible software. That switch automatically reloads and joins the stack as a fully functioning member.

![Note](image)

To use the archive copy-sw privileged EXEC command, you must have downloaded from a TFTP server the images for both the stack member switch being added and the stack master. You use the archive download-sw privileged EXEC command to perform the download.
Beginning in privileged EXEC mode from the stack member that you want to upgrade, follow these steps to copy the running image file from the flash memory of a different stack member:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|        | **archive copy-sw** /destination-system destination-stack-member-number /force-reload source-stack-member-number | Copy the running image file from a stack member, and then unconditionally reload the updated stack member.  
**Note** At least one stack member must be running the image that is to be copied to the switch that is running the incompatible software.  
For /destination-system destination-stack-member-number, specify the number of the stack member (the destination) to which to copy the source running image file. If you do not specify this stack member number, the default is to copy the running image file to all stack members.  
Specify /force-reload to unconditionally force a system reload after the software image downloads.  
For source-stack-member-number, specify the number of the stack member (the source) from which to copy the running image file. The stack member number range is 1 to 9. |
| Step 2 | **reload slot** stack-member-number | Reset the updated stack member, and put this configuration change into effect. |
This appendix lists some of the command-line interface (CLI) commands that appear when you enter the question mark (?) at the switch prompt but are not supported in this release, either because they are not tested or because of switch hardware limitations. This is not a complete list. The unsupported commands are listed by software feature and command mode.

### Access Control Lists

#### Unsupported Privileged EXEC Commands

- `access-enable [host] [timeout minutes]`
- `access-template [access-list-number | name] [dynamic-name] [source] [destination] [timeout minutes]`
- `clear access-template [access-list-number | name] [dynamic-name] [source] [destination].`
- `show access-lists rate-limit [destination]`  
- `show accounting`  
- `show ip accounting [checkpoint] [output-packets | access violations]`
- `show ip cache [prefix-mask] [type number]`

#### Unsupported Global Configuration Commands

- `access-list rate-limit acl-index {precedence | mask prec-mask}`
- `access-list dynamic extended`

#### Unsupported Route-Map Configuration Commands

- `match ip address prefix-list prefix-list-name [prefix-list-name...]`
Archive Commands

Unsupported Privileged EXEC Commands

- archive config
- logging persistent
- show archive config
- show archive log

ARP Commands

Unsupported Global Configuration Commands

- `arp ip-address hardware-address smds`
- `arp ip-address hardware-address srp-a`
- `arp ip-address hardware-address srp-b`

Unsupported Interface Configuration Commands

- `arp probe`
- `ip probe proxy`

Boot Loader Commands

Unsupported User EXEC Commands

- `verify`

Unsupported Global Configuration Commands

- `boot buffersize`
- `boot enable-break`
Debug Commands

Unsupported Privileged EXEC Commands

debug platform cli-redirection main
debug platform configuration

Embedded Event Manager

Unsupported Privileged EXEC Commands

event manager update user policy [policy-filename | group [group name expression]] | repository [url location]

Parameters are not supported for this command:
event manager run [policy name] [<paramater1>... <paramater15>]

Unsupported Global Configuration Commands

no event manager directory user repository [url location]
event manager applet [applet-name] maxrun

Unsupported Commands in Applet Configuration Mode

no event interface name [interface-name] parameter [counter-name] entry-val [entry counter value] entry-op {gt|ge|eq|lt|le} [entry-type {increment | rate | value}] [exit-val [exit value] exit-op {gt|ge|eq|ne|lt|le} exit-type {increment | rate | value}] [average-factor <average-factor-value>]
no trigger
tag
Fallback Bridging

Unsupported Privileged EXEC Commands

```
clear bridge [bridge-group] multicast [router-ports | groups | counts] [group-address] [interface-unit] [counts]
clear vlan statistics
show bridge [bridge-group] circuit-group [circuit-group] [src-mac-address] [dst-mac-address]
show bridge [bridge-group] multicast [router-ports | groups] [group-address]
show bridge vlan
show interfaces crb
show interfaces {ethernet | fastethernet} [interface | slot/port] irb
show subscriber-policy range
```

Unsupported Global Configuration Commands

```
bridge bridge-group acquire
bridge bridge-group address mac-address {forward | discard} [interface-id]
bridge bridge-group aging-time seconds
bridge bridge-group bitswap_l3_addresses
bridge bridge-group bridge ip
bridge bridge-group circuit-group circuit-group pause milliseconds
bridge bridge-group circuit-group circuit-group source-based
bridge cmf
bridge crb
bridge bridge-group domain domain-name
bridge irb
bridge bridge-group mac-address-table limit number
bridge bridge-group multicast-source
bridge bridge-group protocol dec
bridge bridge-group route protocol
bridge bridge-group subscriber policy policy
subscriber-policy policy [[no | default] packet [permit | deny]]
```

Unsupported Interface Configuration Commands

```
bridge-group bridge-group ebus-bridging
bridge-group bridge-group circuit-group circuit-number
```
bridge-group bridge-group input-address-list access-list-number
bridge-group bridge-group input-lat-service-deny group-list
bridge-group bridge-group input-lat-service-permit group-list
bridge-group bridge-group input-lsap-list access-list-number
bridge-group bridge-group input-pattern-list access-list-number
bridge-group bridge-group input-type-list access-list-number
bridge-group bridge-group lat-compression
bridge-group bridge-group output-address-list access-list-number
bridge-group bridge-group output-lat-service-deny group-list
bridge-group bridge-group output-lat-service-permit group-list
bridge-group bridge-group output-lsap-list access-list-number
bridge-group bridge-group output-pattern-list access-list-number
bridge-group bridge-group output-type-list access-list-number
bridge-group bridge-group sse
bridge-group bridge-group subscriber-loop-control
bridge-group bridge-group subscriber-trunk
bridge-group bridge-group lat-service-filtering
frame-relay map bridge dlci broadcast
interface bvi bridge-group
x25 map bridge x.121-address broadcast [options-keywords]

HSRP

Unsupported Global Configuration Commands

interface Async
interface BVI
interface Dialer
interface Group-Async
interface Lex
interface Multilink
interface Virtual-Template
interface Virtual-Tokenring
Unsupported Interface Configuration Commands

  mtu
  standby mac-refresh seconds
  standby use-bia

IGMP Snooping Commands

Unsupported Global Configuration Commands

  ip igmp snooping tcn

Interface Commands

Unsupported Privileged EXEC Commands

  show interfaces [interface-id | vlan vlan-id] [crb | fair-queue | irb | mac-accounting | precedence | irb | random-detect | rate-limit | shape]

Unsupported Global Configuration Commands

  interface tunnel

Unsupported Interface Configuration Commands

  transmit-interface type number
IP Multicast Routing

Unsupported Privileged EXEC Commands

**clear ip rtp header-compression** [type number]

The **debug ip packet** command displays packets received by the switch CPU. It does not display packets that are hardware-switched.

The **debug ip mcache** command affects packets received by the switch CPU. It does not display packets that are hardware-switched.

The **debug ip mpacket [detail]** [access-list-number [group-name-or-address]] command affects only packets received by the switch CPU. Because most multicast packets are hardware-switched, use this command only when you know that the route will forward the packet to the CPU.

**debug ip pim atm**

**show frame-relay ip rtp header-compression** [interface type number]

The **show ip mcache** command displays entries in the cache for those packets that are sent to the switch CPU. Because most multicast packets are switched in hardware without CPU involvement, you can use this command, but multicast packet information is not displayed.

The **show ip mpacket** commands are supported but are only useful for packets received at the switch CPU. If the route is hardware-switched, the command has no effect because the CPU does not receive the packet and cannot display it.

**show ip pim vc** [group-address | name] [type number]

**show ip rtp header-compression** [type number] [detail]

Unsupported Global Configuration Commands

**ip pim accept-rp** {address | auto-rp} [group-access-list-number]

**ip pim message-interval** seconds

Unsupported Interface Configuration Commands

**frame-relay ip rtp header-compression** [active | passive]

**frame-relay map ip ip-address dlci [broadcast] compress**

**frame-relay map ip ip-address dlci rtp header-compression** [active | passive]

**ip igmp helper-address ip-address**

**ip multicast helper-map** {group-address | broadcast} {broadcast-address | multicast-address} extended-access-list-number

**ip multicast rate-limit** [in | out] [video | whiteboard] [group-list access-list] [source-list access-list] kbps

**ip multicast ttl-threshold** ttl-value (instead, use the **ip multicast boundary** access-list-number interface configuration command)

**ip multicast use-functional**
Appendix C  Unsupported Commands in Cisco IOS Release 12.2(55)SE

IP Unicast Routing

Unsupported Privileged EXEC or User EXEC Commands

clear ip accounting [checkpoint]
clear ip bgp address flap-statistics
clear ip bgp prefix-list
debug ip cef stats
show cef [drop | not-cef-switched]
show ip accounting [checkpoint] [output-packets | access-violations]
show ip bgp dampened-paths
show ip bgp inconsistent-as
show ip bgp regexp regular expression
show ip prefix-list regular expression

Unsupported Global Configuration Commands

ip accounting precedence {input | output}
ip accounting-list ip-address wildcard
ip accounting-transits count
ip cef accounting [per-prefix] [non-recursive]
ip cef traffic-statistics [load-interval seconds] [update-rate seconds]
ip flow-aggregation
ip flow-cache
ip flow-export
ip gratuitous-arps
ip local
ip prefix-list
ip reflexive-list
router egp

ip pim minimum-vc-rate pps
ip pim multipoint-signalling
ip pim nbma-mode
ip pim vc-count number
ip rtp compression-connections number
ip rtp header-compression [passive]
Unsupported Interface Configuration Commands

- `ip accounting`
- `ip load-sharing [per-packet]`
- `ip mtu bytes`
- `ip ospf dead-interval minimal hello-multiplier multiplier`
- `ip verify`
- `ip unnumbered type number`

All `ip security` commands

Unsupported BGP Router Configuration Commands

- `address-family vpnv4`
- `default-information originate`
- `neighbor advertise-map`
- `neighbor allowas-in`
- `neighbor default-originate`
- `neighbor description`
- `network backdoor`
- `table-map`

Unsupported VPN Configuration Commands

All

Unsupported Route Map Commands

- `match route-type` for policy-based routing (PBR)
- `set as-path [tag | prepend as-path-string]`
- `set automatic-tag`
- `set dampening half-life reuse suppress max-suppress-time`
- `set default interface interface-id [interface-id.....]`
- `set interface interface-id [interface-id.....]`
set ip default next-hop ip-address [ip-address.....]
set ip destination ip-address mask
set ip next-hop verify-availability
set ip precedence value
set ip qos-group
set metric-type internal
set origin
set metric-type internal
set tag tag-value

MAC Address Commands

Unsupported Privileged EXEC Commands

show mac-address-table
show mac-address-table address
show mac-address-table aging-time
show mac-address-table count
show mac-address-table dynamic
show mac-address-table interface
show mac-address-table multicast
show mac-address-table notification
show mac-address-table static
show mac-address-table vlan
show mac address-table multicast

Note Use the show ip igmp snooping groups privileged EXEC command to display Layer 2 multicast address-table entries for a VLAN.

Unsupported Global Configuration Commands

mac-address-table aging-time
mac-address-table notification
mac-address-table static
Appendix C  Unsupported Commands in Cisco IOS Release 12.2(55)SE

Miscellaneous

Unsupported User EXEC Commands

verify

Unsupported Privileged EXEC Commands

file verify auto
remote command
show cable-diagnostics prbs
test cable-diagnostics prbs

Unsupported Global Configuration Commands

errdisable recovery cause unicast flood
l2protocol-tunnel global drop-threshold
service compress-config
stack-mac persistent timer
track object-number rtr

MSDP

Unsupported Privileged EXEC Commands

show access-expression
show exception
show location
show pm LINE
show smf [interface-id]
show subscriber-policy [policy-number]
show template [template-name]

Unsupported Global Configuration Commands

ip msdp default-peer ip-address | name [prefix-list list] (Because BGP/MBGP is not supported, use the ip msdp peer command instead of this command.)
NetFlow Commands

Unsupported Global Configuration Commands

- ip flow-aggregation cache
- ip flow-cache entries
- ip flow-export

Network Address Translation (NAT) Commands

Unsupported Privileged EXEC Commands

- show ip nat statistics
- show ip nat translations

QoS

Unsupported Global Configuration Command

- priority-list

Unsupported Interface Configuration Commands

- priority-group
- rate-limit

Unsupported Policy-Map Configuration Command

- class class-default where class-default is the class-map-name.

RADIUS

Unsupported Global Configuration Commands

- aaa nas port extended
- aaa authentication feature default enable
aaa authentication feature default line
radius-server attribute nas-port
radius-server configure
radius-server extended-portnames

SNMP

Unsupported Global Configuration Commands

snmp-server enable informs
snmp-server ifindex persist

Spanning Tree

Unsupported Global Configuration Command

spanning-tree pathcost method {long | short}

Unsupported Interface Configuration Command

spanning-tree stack-port

VLAN

Unsupported Global Configuration Command

vlan internal allocation policy {ascending | descending}

Unsupported User EXEC Commands

show running-config vlan
show vlan ifindex
vlan database

Unsupported VLAN Database commands

vtp
Unsupported Privileged EXEC Command

```
vtp {password password | pruning | version number}
```

Note

This command has been replaced by the `vtp` global configuration command.
# Index

## Numerics

10-Gigabit Ethernet interfaces  11-6

## A

### AAA down policy, NAC Layer 2 IP validation
1-12

### abbreviating commands
2-3

### ABRs
39-32

### access
- templates  8-1
- access-class command  35-20

### access control entries
  See ACEs

### access-denied response, VMPS
13-26

### access groups
  applying IPv4 ACLs to interfaces  35-21
  Layer 2  35-21
  Layer 3  35-21

### access groups, applying IPv4 ACLs to interfaces
35-21

### accessing stack members
7-26

### access lists
  See ACLs

### access ports
  and Layer 2 protocol tunneling  17-11
  defined  11-3
  access template  8-1

### accounting
  with 802.1x  9-51
  with IEEE 802.1x  9-15
  with RADIUS  6-35
  with TACACS+  6-11, 6-17

### ACEs
  and QoS  37-8
  defined  35-2
  Ethernet  35-2
  IP  35-2

### ACLs
  ACEs  35-2
  any keyword  35-13
  applying
    on bridged packets  35-38
    on multicast packets  35-39
    on routed packets  35-39
    on switched packets  35-37
    time ranges to  35-17
    to an interface  35-20, 36-8
    to IPv6 interfaces  36-8
    to QoS  37-8
  classifying traffic for QoS  37-49
  comments in  35-19
  compiling  35-23
  defined  35-2, 35-8
  examples of  35-23, 37-49
  extended IP, configuring for QoS classification  37-50
  extended IPv4
    creating  35-11
    matching criteria  35-8
  hardware and software handling  35-22
  host keyword  35-13

### IP
  creating  35-8
  fragments and QoS guidelines  37-38
  implicit deny  35-10, 35-14, 35-17
  implicit masks  35-10
  matching criteria  35-8
Index

undefined  35-21
IPv4
  applying to interfaces  35-20
  creating  35-8
  matching criteria  35-8
  named  35-15
  numbers  35-8
  terminal lines, setting on  35-19
  unsupported features  35-7
IPv6
  and stacking  36-4
  applying to interfaces  36-8
  configuring  36-4, 36-5
  displaying  36-9
  interactions with other features  36-5
  limitations  36-3
  matching criteria  36-3
  named  36-3
  precedence of  36-3
  unsupported features  36-3
Layer 4 information in  35-37
logging messages  35-9
MAC extended  35-28, 37-53
matching  35-8, 35-21
monitoring  35-30, 36-9
named
  IPv4  35-15
  IPv6  36-3
names  36-5
number per QoS class map  37-38
port  35-2, 36-2
precedence of  35-3
QoS  37-8, 37-49
resequencing entries  35-15
router  35-2, 36-2
router ACLs and VLAN map configuration guidelines  35-37
standard IP, configuring for QoS classification  37-49, 37-51
IPv4
  creating  35-10
  matching criteria  35-8
  support for  1-10
  support in hardware  35-22
  time ranges  35-17
  types supported  35-2
  unsupported features
    IPv4  35-7
    IPv6  36-3
using router ACLs with VLAN maps  35-36
VLAN maps
  configuration guidelines  35-31
  configuring  35-30
active link  21-4, 21-5, 21-6
active links  21-2
active router  41-1
active traffic monitoring, IP SLAs  42-1
addresses
  displaying the MAC address table  5-31
  dynamic
    accelerated aging  18-9
    changing the aging time  5-21
    default aging  18-9
    defined  5-19
    learning  3-16, 5-20
    removing  5-22
IPv6  40-3
MAC, discovering  5-31
multicast
  group address range  45-3
  STP address management  18-9
static
  adding and removing  5-27
  defined  5-19
address resolution  5-31, 39-10
Address Resolution Protocol
  See ARP
adjacency tables, with CEF 39-98

administrative distances
  defined 39-111
  OSPF 39-39
  routing protocol defaults 39-100

advertisements
  CDP 27-1
  LLDP 28-1, 28-2
  RIP 39-21
  VTP 13-18, 14-3, 14-4

aggregatable global unicast addresses 40-5

aggregate addresses, BGP 39-67

aggregated ports
  See EtherChannel

aggregate policers 37-72
aggregate policing 1-13

aging, accelerating 18-9

aging time
  accelerated
    for MSTP 19-24
    for STP 18-9, 18-23
  MAC address table 5-21

maximum
  for MSTP 19-25
  for STP 18-23, 18-24

alarms, RMON 31-4

allowed-VLAN list 13-20

application engines, redirecting traffic to  44-1

area border routers
  See ABRs

area routing
  IS-IS 39-71
  ISO IGRP 39-71

ARP
  configuring 39-11
  defined 1-6, 5-31, 39-11
  encapsulation 39-12
  static cache configuration 39-11

  table

  address resolution 5-31
  managing 5-31

ASBRs 39-32

AS-path filters, BGP 39-61

asymmetrical links, and IEEE 802.1Q tunneling 17-4

attributes, RADIUS
  vendor-proprietary 6-38
  vendor-specific 6-36

attribute-value pairs 9-20, 9-21

authentication
  EIGRP 39-48
  HSRP 41-11

  local mode with AAA 6-44
  NTP associations 5-4
  open1x 9-30
  RADIUS
    key 6-28
    login 6-30
  TACACS+
    defined 6-11
    key 6-13
    login 6-14

See also port-based authentication

authentication compatibility with Catalyst 6000 switches 9-9

authentication failed VLAN
  See restricted VLAN

authentication keys, and routing protocols 39-111

authentication manager
  CLI commands 9-9

  compatibility with older 802.1x CLI commands 9-10

  overview 9-8

  single session ID 9-33

authoritative time source, described 5-2

authorization

  with RADIUS 6-34
  with TACACS+ 6-11, 6-16

authorized ports with IEEE 802.1x 9-11

autoconfiguration 3-4
auto enablement \( \text{9-32} \)
automatic advise (auto-advise) in switch stacks \( \text{7-14} \)
automatic copy (auto-copy) in switch stacks \( \text{7-13} \)
automatic extraction (auto-extract) in switch stacks \( \text{7-13} \)
automatic QoS
See QoS
automatic upgrades (auto-upgrade) in switch stacks \( \text{7-13} \)
auto-MDIX
  configuring \( \text{11-22} \)
  described \( \text{11-22} \)
autonegotiation
  duplex mode \( \text{1-4} \)
  interface configuration guidelines \( \text{11-18} \)
  mismatches \( \text{48-9} \)
autonomous system boundary routers
See ASBRs
autonomous systems, in BGP \( \text{39-54} \)
auto-QoS video devices \( \text{1-14} \)
Auto-RP, described \( \text{45-6} \)
avtosensing, port speed \( \text{1-4} \)
autostate exclude \( \text{11-6} \)
auxiliary VLAN
See voice VLAN
availability, features \( \text{1-8} \)

**B**

BackboneFast
  described \( \text{20-7} \)
  disabling \( \text{20-17} \)
  enabling \( \text{20-16} \)
  support for \( \text{1-8} \)
backup interfaces
See Flex Links
backup links \( \text{21-2} \)
banners
  configuring
    login \( \text{5-19} \)
    message-of-the-day login \( \text{5-18} \)
default configuration \( \text{5-17} \)
  when displayed \( \text{5-17} \)
BGP
aggregate addresses \( \text{39-67} \)
aggregate routes, configuring \( \text{39-67} \)
CIDR \( \text{39-67} \)
  clear commands \( \text{39-70} \)
  community filtering \( \text{39-63} \)
  configuring neighbors \( \text{39-65} \)
  default configuration \( \text{39-51} \)
  described \( \text{39-50} \)
  enabling \( \text{39-54} \)
  monitoring \( \text{39-70} \)
  multipath support \( \text{39-58} \)
  neighbors, types of \( \text{39-54} \)
  path selection \( \text{39-58} \)
  peers, configuring \( \text{39-65} \)
  prefix filtering \( \text{39-62} \)
  resetting sessions \( \text{39-57} \)
  route dampening \( \text{39-69} \)
  route maps \( \text{39-60} \)
  route reflectors \( \text{39-68} \)
  routing domain confederation \( \text{39-67} \)
  routing session with multi-VRF CE \( \text{39-92} \)
  show commands \( \text{39-70} \)
  supernets \( \text{39-67} \)
  support for \( \text{1-14} \)
  Version 4 \( \text{39-51} \)

binding database
  address, DHCP server
    See DHCP, Cisco IOS server database
DHCP snooping
  See DHCP snooping binding database
boundings
  address, Cisco IOS DHCP server \( \text{22-6} \)
  DHCP snooping database \( \text{22-6} \)
  IP source guard \( \text{22-16} \)
binding table, DHCP snooping
  See DHCP snooping binding database
blocking packets 26-7

Boolean expressions in tracked lists 43-3

booting
  boot loader, function of 3-2
  boot process 3-2
  manually 3-22
  specific image 3-23

boot loader
  accessing 3-24
  described 3-2
  environment variables 3-24
  prompt 3-24
  trap-door mechanism 3-2

bootstrap router (BSR), described 45-7

Border Gateway Protocol
  See BGP

BPDU
  error-disabled state 20-2
  filtering 20-3
  RSTP format 19-13

BPDU filtering
  described 20-3
  disabling 20-15
  enabling 20-14
  support for 1-8

BPDU guard
  described 20-2
  disabling 20-14
  enabling 20-13
  support for 1-8

bridged packets, ACLs on
  See fallback bridging

bridge groups
  See fallback bridging

bridge protocol data unit
  See BPDU

broadcast flooding 39-18

broadcast packets
  directed 39-15
  flooded 39-15

broadcast storm-control command 26-4

broadcast storms 26-1, 39-15

C

cables, monitoring for unidirectional links 29-1

Catalyst 6000 switches
  authentication compatibility 9-9

CA trustpoint
  configuring 6-53
  defined 6-50

CDP
  and trusted boundary 37-45
  configuring 27-2
  default configuration 27-2
  defined with LLDP 28-1
  described 27-1
  disabling for routing device 27-3 to 27-4
  enabling and disabling
    on an interface 27-4
    on a switch 27-3
  Layer 2 protocol tunneling 17-8
  monitoring 27-5
  overview 27-1
  support for 1-6
  switch stack considerations 27-2
  transmission timer and holdtime, setting 27-2
  updates 27-2

CEF
  defined 39-97
  distributed 39-98
  IPv6 40-21

CGMP
  as IGMP snooping learning method 24-9
  clearing cached group entries 45-66
  enabling server support 45-49
  joining multicast group 24-3
  overview 45-9
  server support only 45-9
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch support of</td>
</tr>
<tr>
<td>CIDR</td>
</tr>
<tr>
<td>CipherSuites</td>
</tr>
<tr>
<td>Cisco 7960 IP Phone</td>
</tr>
<tr>
<td>Cisco Discovery Protocol</td>
</tr>
<tr>
<td>See CDP</td>
</tr>
<tr>
<td>Cisco Express Forwarding</td>
</tr>
<tr>
<td>See CEF</td>
</tr>
<tr>
<td>Cisco Group Management Protocol</td>
</tr>
<tr>
<td>See CGMP</td>
</tr>
<tr>
<td>Cisco IOS DHCP server</td>
</tr>
<tr>
<td>See DHCP, Cisco IOS DHCP server</td>
</tr>
<tr>
<td>Cisco IOS File System</td>
</tr>
<tr>
<td>See IFS</td>
</tr>
<tr>
<td>Cisco IOS IP SLAs</td>
</tr>
<tr>
<td>Cisco Secure ACS</td>
</tr>
<tr>
<td>attribute-value pairs for downloadable ACLs</td>
</tr>
<tr>
<td>attribute-value pairs for redirect URL</td>
</tr>
<tr>
<td>Cisco Secure ACS configuration guide</td>
</tr>
<tr>
<td>Cisco StackWise Plus technology</td>
</tr>
<tr>
<td>See also stacks, switch</td>
</tr>
<tr>
<td>CiscoWorks 2000</td>
</tr>
<tr>
<td>CISP</td>
</tr>
<tr>
<td>CIST regional root</td>
</tr>
<tr>
<td>See MSTP</td>
</tr>
<tr>
<td>CIST root</td>
</tr>
<tr>
<td>See MSTP</td>
</tr>
<tr>
<td>civic location</td>
</tr>
<tr>
<td>classless interdomain routing</td>
</tr>
<tr>
<td>See CIDR</td>
</tr>
<tr>
<td>classless routing</td>
</tr>
<tr>
<td>class maps for QoS</td>
</tr>
<tr>
<td>configuring</td>
</tr>
<tr>
<td>described</td>
</tr>
<tr>
<td>displaying</td>
</tr>
<tr>
<td>class of service</td>
</tr>
<tr>
<td>See CoS</td>
</tr>
<tr>
<td>clearing interfaces</td>
</tr>
<tr>
<td>CLI</td>
</tr>
<tr>
<td>CLI command-line interface</td>
</tr>
<tr>
<td>abbreviating commands</td>
</tr>
<tr>
<td>command modes</td>
</tr>
<tr>
<td>configuration logging</td>
</tr>
<tr>
<td>described</td>
</tr>
<tr>
<td>editing features</td>
</tr>
<tr>
<td>enabling and disabling</td>
</tr>
<tr>
<td>keystroke editing</td>
</tr>
<tr>
<td>wrapped lines</td>
</tr>
<tr>
<td>error messages</td>
</tr>
<tr>
<td>filtering command output</td>
</tr>
<tr>
<td>getting help</td>
</tr>
<tr>
<td>history</td>
</tr>
<tr>
<td>changing the buffer size</td>
</tr>
<tr>
<td>described</td>
</tr>
<tr>
<td>disabling</td>
</tr>
<tr>
<td>recalling commands</td>
</tr>
<tr>
<td>no and default forms of commands</td>
</tr>
<tr>
<td>Client Information Signalling Protocol</td>
</tr>
<tr>
<td>See CISP</td>
</tr>
<tr>
<td>client mode, VTP</td>
</tr>
<tr>
<td>client processes, tracking</td>
</tr>
<tr>
<td>CLNS</td>
</tr>
<tr>
<td>See ISO CLNS</td>
</tr>
<tr>
<td>clock</td>
</tr>
<tr>
<td>See system clock</td>
</tr>
<tr>
<td>CNS</td>
</tr>
<tr>
<td>Configuration Engine</td>
</tr>
<tr>
<td>configID, deviceID, hostname</td>
</tr>
<tr>
<td>configuration service</td>
</tr>
<tr>
<td>described</td>
</tr>
<tr>
<td>event service</td>
</tr>
<tr>
<td>embedded agents</td>
</tr>
<tr>
<td>described</td>
</tr>
<tr>
<td>enabling automated configuration</td>
</tr>
<tr>
<td>enabling configuration agent</td>
</tr>
<tr>
<td>enabling event agent</td>
</tr>
<tr>
<td>management functions</td>
</tr>
<tr>
<td>CoA Request Commands</td>
</tr>
</tbody>
</table>
See CLI
command modes 2-1
commands
abbreviating 2-3
no and default 2-4
commands, setting privilege levels 6-8
common session ID
see single session ID 9-33
community list, BGP 39-64
community ports 16-2
community strings
configuring 33-8
overview 33-4
community VLANs 16-2, 16-3
compatibility, feature 26-12
compatibility, software
See stacks, switch
cfg.text 3-21
configurable leave timer, IGMP 24-6
configuration, initial
defaults 1-17
Express Setup 1-3
configuration examples, network 1-19
configuration files
archiving B-20
clearing the startup configuration B-20
creating and using, guidelines for B-10
creating using a text editor B-11
default name 3-21
deleting a stored configuration B-20
described B-9
downloading
automatically 3-21
preparing B-11, B-14, B-17
reasons for B-9
using FTP B-14
using RCP B-18
using TFTP B-12
invalid combinations when copying B-6
limiting TFTP server access 33-17
obtaining with DHCP 3-9
password recovery disable considerations 6-5
replacing and rolling back, guidelines for B-22
replacing a running configuration B-20, B-21
rolling back a running configuration B-20, B-21
specifying the filename 3-22
system contact and location information 33-16
types and location B-10
uploading
preparing B-11, B-14, B-17
reasons for B-9
using FTP B-15
using RCP B-19
using TFTP B-13
configuration guidelines, multi-VRF CE 39-84
configuration logging 2-5
configuration replacement B-20
configuration rollback B-20
configuration settings, saving 3-19
configure terminal command 11-9
configuring multicast VRFs 39-90
configuring port-based authentication violation modes 9-38 to 9-39
configuring small-frame arrival rate 26-5
connections, secure remote 6-46
connectivity problems 48-10, 48-11, 48-13
consistency checks in VTP Version 2 14-5
console port, connecting to 2-10
content-routing technology
See WCCP
control protocol, IP SLAs 42-4
corrupted software, recovery steps with Xmodem 48-2
CoS
override priority 15-6
trust priority 15-6
CoS input queue threshold map for QoS 37-17
CoS output threshold map for QoS 37-20
CoS-to-DSCP map for QoS 37-74
counters, clearing interface 11-29
cPU utilization, troubleshooting 48-23
crashinfo file 48-20
critical authentication, IEEE 802.1x 9-55
critical VLAN 9-23
cross-stack EtherChannel
configuration guidelines 38-12
configuring
on Layer 2 interfaces 38-12
on Layer 3 physical interfaces 38-16
described 38-2
illustration 38-3
support for 1-8
cross-stack UplinkFast, STP
described 20-5
disabling 20-16
enabling 20-16
fast-convergence events 20-7
Fast Uplink Transition Protocol 20-6
normal-convergence events 20-7
support for 1-8
cryptographic software image
Kerberos 6-40
SSL 6-50
switch stack considerations 6-46, 7-2, 7-18
customer edge devices 39-82
customizable web pages, web-based authentication 10-6
default commands 2-4
default configuration
802.1x 9-35
auto-QoS 37-22
banners 5-17
BGP 39-51
booting 3-21
CDP 27-2
DHCP 22-8
DHCP option 82 22-8
DHCP snooping 22-8
DHCP snooping binding database 22-9
DNS 5-16
dynamic ARP inspection 23-5
EIGRP 39-44
EtherChannel 38-10
Ethernet interfaces 11-17
fallback bridging 47-4
Flex Links 21-8
HSRP 41-6
IEEE 802.1Q tunneling 17-4
IGMP 45-43
IGMP filtering 24-25
IGMP snooping 24-7, 25-6
IGMP throttling 24-25
initial switch information 3-3
IP addressing, IP routing 39-7
IP multicast routing 45-10
IP SLAs 42-6
IP source guard 22-18
IPv6 40-13
IS-IS 39-73
Layer 2 interfaces 11-17
Layer 2 protocol tunneling 17-11
LLDP 28-4
MAC address table 5-21
MAC address-table move update 21-8
MSDP 46-4
MSTP 19-15

D

DACl
See downloadable ACL
daylight saving time 5-13
dCEF in the switch stack 39-97
debugging
enabling all system diagnostics 48-17
enabling for a specific feature 48-16
redirecting error message output 48-17
using commands 48-16
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-VRF CE</td>
<td>39-84</td>
</tr>
<tr>
<td>MVR</td>
<td>24-20</td>
</tr>
<tr>
<td>NTP</td>
<td>5-4</td>
</tr>
<tr>
<td>optional spanning-tree configuration</td>
<td>20-12</td>
</tr>
<tr>
<td>OSPF</td>
<td>39-32</td>
</tr>
<tr>
<td>password and privilege level</td>
<td>6-2</td>
</tr>
<tr>
<td>PIM</td>
<td>45-10</td>
</tr>
<tr>
<td>private VLANs</td>
<td>16-7</td>
</tr>
<tr>
<td>RADIUS</td>
<td>6-27</td>
</tr>
<tr>
<td>RIP</td>
<td>39-22</td>
</tr>
<tr>
<td>RMON</td>
<td>31-3</td>
</tr>
<tr>
<td>RSPAN</td>
<td>30-11</td>
</tr>
<tr>
<td>SDM template</td>
<td>8-4</td>
</tr>
<tr>
<td>SNMP</td>
<td>33-6</td>
</tr>
<tr>
<td>SPAN</td>
<td>30-11</td>
</tr>
<tr>
<td>SSL</td>
<td>6-52</td>
</tr>
<tr>
<td>standard QoS</td>
<td>37-36</td>
</tr>
<tr>
<td>STP</td>
<td>18-13</td>
</tr>
<tr>
<td>switch stacks</td>
<td>7-21</td>
</tr>
<tr>
<td>system message logging</td>
<td>32-4</td>
</tr>
<tr>
<td>system name and prompt</td>
<td>5-15</td>
</tr>
<tr>
<td>TACACS+</td>
<td>6-13</td>
</tr>
<tr>
<td>UDLD</td>
<td>29-4</td>
</tr>
<tr>
<td>VLAN, Layer 2 Ethernet interfaces</td>
<td>13-17</td>
</tr>
<tr>
<td>VLANs</td>
<td>13-8</td>
</tr>
<tr>
<td>VMPS</td>
<td>13-27</td>
</tr>
<tr>
<td>voice VLAN</td>
<td>15-3</td>
</tr>
<tr>
<td>VTP</td>
<td>14-8</td>
</tr>
<tr>
<td>WCCP</td>
<td>44-6</td>
</tr>
<tr>
<td>default gateway</td>
<td>3-16, 39-13</td>
</tr>
<tr>
<td>default networks</td>
<td>39-101</td>
</tr>
<tr>
<td>default router preference</td>
<td></td>
</tr>
<tr>
<td>See DRP</td>
<td></td>
</tr>
<tr>
<td>default routes</td>
<td>39-101</td>
</tr>
<tr>
<td>default routing</td>
<td>39-4</td>
</tr>
<tr>
<td>default web-based authentication configuration</td>
<td>802.1X 10-9</td>
</tr>
<tr>
<td>deleting VLANs</td>
<td>13-9</td>
</tr>
<tr>
<td>denial-of-service attack</td>
<td>26-1</td>
</tr>
<tr>
<td>description command</td>
<td>11-23</td>
</tr>
<tr>
<td>designing your network, examples</td>
<td>1-19</td>
</tr>
<tr>
<td>desktop template</td>
<td>7-12</td>
</tr>
<tr>
<td>destination addresses</td>
<td></td>
</tr>
<tr>
<td>in IPv4 ACLs</td>
<td>35-12</td>
</tr>
<tr>
<td>in IPv6 ACLs</td>
<td>36-6</td>
</tr>
<tr>
<td>destination-IP address-based forwarding, EtherChannel</td>
<td>38-8</td>
</tr>
<tr>
<td>destination-MAC address forwarding, EtherChannel</td>
<td>38-8</td>
</tr>
<tr>
<td>detecting indirect link failures, STP</td>
<td>20-8</td>
</tr>
<tr>
<td>device discovery protocol</td>
<td>27-1, 28-1</td>
</tr>
<tr>
<td>device manager</td>
<td></td>
</tr>
<tr>
<td>benefits</td>
<td>1-3</td>
</tr>
<tr>
<td>described</td>
<td>1-3, 1-5</td>
</tr>
<tr>
<td>in-band management</td>
<td>1-7</td>
</tr>
<tr>
<td>DHCP</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS server database</td>
<td></td>
</tr>
<tr>
<td>configuring</td>
<td>22-14</td>
</tr>
<tr>
<td>default configuration</td>
<td>22-9</td>
</tr>
<tr>
<td>described</td>
<td>22-6</td>
</tr>
<tr>
<td>DHCP for IPv6</td>
<td></td>
</tr>
<tr>
<td>See DHCPv6</td>
<td></td>
</tr>
<tr>
<td>enabling</td>
<td></td>
</tr>
<tr>
<td>relay agent</td>
<td>22-11</td>
</tr>
<tr>
<td>server</td>
<td>22-10</td>
</tr>
<tr>
<td>DHCP-based autoconfiguration</td>
<td></td>
</tr>
<tr>
<td>client request message exchange</td>
<td>3-4</td>
</tr>
<tr>
<td>configuring</td>
<td></td>
</tr>
<tr>
<td>client side</td>
<td>3-4</td>
</tr>
<tr>
<td>DNS</td>
<td>3-8</td>
</tr>
<tr>
<td>relay device</td>
<td>3-8</td>
</tr>
<tr>
<td>server side</td>
<td>3-7</td>
</tr>
<tr>
<td>server-side</td>
<td>22-10</td>
</tr>
<tr>
<td>TFTP server</td>
<td>3-7</td>
</tr>
<tr>
<td>example</td>
<td>3-10</td>
</tr>
<tr>
<td>lease options</td>
<td></td>
</tr>
<tr>
<td>for IP address information</td>
<td>3-7</td>
</tr>
<tr>
<td>for receiving the configuration file</td>
<td>3-7</td>
</tr>
<tr>
<td>overview</td>
<td>3-4</td>
</tr>
</tbody>
</table>
relationship to BOOTP 3-4
relay support 1-6, 1-15
support for 1-6
DHCP-based autoconfiguration and image update
configuring 3-13 to 3-15
understanding 3-5 to 3-6, 3-11 to 3-12
DHCP binding database
See DHCP snooping binding database
DHCP binding table
See DHCP snooping binding database
DHCP option 82
  circuit ID suboption 22-5
  configuration guidelines 22-9
  default configuration 22-8
  displaying 22-16
  forwarding address, specifying 22-11
  helper address 22-11
  overview 22-3
  packet format, suboption
    circuit ID 22-5
    remote ID 22-5
  remote ID suboption 22-5
DHCP server port-based address allocation
  configuration guidelines 22-27
  default configuration 22-27
  described 22-26
  displaying 22-30
  enabling 22-27
  reserved addresses 22-28
DHCP snooping
  accepting untrusted packets form edge switch 22-3, 22-13
  and private VLANs 22-14
  binding database
    See DHCP snooping binding database
  configuration guidelines 22-9
  default configuration 22-8
  displaying binding tables 22-16
  message exchange process 22-4
  option 82 data insertion 22-3
  trusted interface 22-2
  untrusted interface 22-2
  untrusted messages 22-2
DHCP snooping binding database
  adding bindings 22-15
  binding entries, displaying 22-16
  binding file
    format 22-7
    location 22-6
  bindings 22-6
  clearing agent statistics 22-15
  configuration guidelines 22-10
  configuring 22-15
  default configuration 22-8, 22-9
  deleting
    binding file 22-15
    bindings 22-16
    database agent 22-15
  described 22-6
  displaying 22-16
  binding entries 22-16
  status and statistics 22-16
  displaying status and statistics 22-16
  enabling 22-15
  entry 22-6
  renewing database 22-15
  resetting
    delay value 22-15
    timeout value 22-15
DHCP snooping binding table
  See DHCP snooping binding database
DHCPv6
  configuration guidelines 40-18
  default configuration 40-18
  described 40-7
  enabling client function 40-20
  enabling DHCPv6 server function 40-18
  diagnostic schedule command 49-2
Differentiated Services architecture, QoS 37-2
Differentiated Services Code Point 37-2
Diffusing Update Algorithm (DUAL) 39-42
directed unicast requests 1-6
directories
changing B-4
creating and removing B-5
displaying the working B-4
Distance Vector Multicast Routing Protocol
See DVMRP
distance-vector protocols 39-4
Distribute-list command 39-110
DNS
and DHCP-based autoconfiguration 3-8
default configuration 5-16
displaying the configuration 5-17
in IPv6 40-5
overview 5-15
setting up 5-16
support for 1-6
domain names
DNS 5-15
VTP 14-9
Domain Name System
See DNS
domains, ISO IGRP routing 39-71
dot1q-tunnel switchport mode 13-16
double-tagged packets
IEEE 802.1Q tunneling 17-2
Layer 2 protocol tunneling 17-10
downloadable ACL 9-19, 9-21, 9-63
downloading
configuration files
preparing B-11, B-14, B-17
reasons for B-9
using FTP B-14
using RCP B-18
using TFTP B-12
image files
deleting old image B-29
preparing B-27, B-30, B-35
reasons for B-24
using CMS 1-3
using FTP B-31
using HTTP 1-3, B-24
using RCP B-36
using TFTP B-27
using the device manager or Network Assistant B-24
drop threshold for Layer 2 protocol packets 17-11
DRP
configuring 40-15
described 40-6
IPv6 40-6
DSCP 1-13, 37-2
DSCP input queue threshold map for QoS 37-17
DSCP output queue threshold map for QoS 37-20
DSCP-to-CoS map for QoS 37-77
DSCP-to-DSCP-mutation map for QoS 37-78
DSCP transparency 37-45
DTP 1-9, 13-16
dual-action detection 38-6
DUAL finite state machine, EIGRP 39-43
dual IPv4 and IPv6 templates 8-2, 40-7
dual protocol stacks
IPv4 and IPv6 40-7
SDM templates supporting 40-7
DVMRP
autosummarization
configuring a summary address 45-63
disabling 45-65
connecting PIM domain to DVMRP router 45-55
enabling unicast routing 45-59
interoperability
with Cisco devices 45-53
with Cisco IOS software 45-9
mrinfo requests, responding to 45-58
neighbors
advertising the default route to 45-57
advertising all 45-65
advertising the default route to neighbors 45-57
caching DVMRP routes learned in report messages 45-59
changing the threshold for syslog messages 45-62
deleting 45-66
displaying 45-58
displaying neighbor information 45-58
favored over one another 45-65
limiting the number injected into MBONE 45-62
limiting unicast route advertisements 45-53
overview 45-8
routes
adding a metric offset 45-65
advertising all 45-65
advertising the default route to neighbors 45-57
caching DVMRP routes learned in report messages 45-59
changing the threshold for syslog messages 45-62
deleting 45-66
displaying 45-58
displaying neighbor information 45-58
favored over one another 45-65
limiting the number injected into MBONE 45-62
limiting unicast route advertisements 45-53
routing table 45-9
source distribution tree, building 45-9
support for 1-15
tunnels
configuring 45-55
displaying neighbor information 45-58
dynamic access ports
characteristics 13-3
configuring 13-29
defined 11-3
dynamic addresses
See addresses
dynamic ARP inspection
ARP cache poisoning 23-1
ARP requests, described 23-1
ARP spoofing attack 23-1
clearing
log buffer 23-15
statistics 23-15
configuration guidelines 23-6
configuring
ACLs for non-DHCP environments 23-8
in DHCP environments 23-7
log buffer 23-13
rate limit for incoming ARP packets 23-4, 23-10
default configuration 23-5
denial-of-service attacks, preventing 23-10
described 23-1
DHCP snooping binding database 23-2
displaying
ARP ACLs 23-14
configuration and operating state 23-14
log buffer 23-15
statistics 23-15
trust state and rate limit 23-14
error-disabled state for exceeding rate limit 23-4
function of 23-2
interface trust states 23-3
log buffer
clearing 23-15
configuring 23-13
displaying 23-15
logging of dropped packets, described 23-5
man-in-the-middle attack, described 23-2
network security issues and interface trust states 23-3
priority of ARP ACLs and DHCP snooping entries 23-4
rate limiting of ARP packets
configuring 23-10
described 23-4
error-disabled state 23-4
statistics
clearing 23-15
displaying 23-15
validation checks, performing 23-12
dynamic auto trunking mode 13-16
dynamic desirable trunking mode 13-16
Dynamic Host Configuration Protocol
See DHCP-based autoconfiguration
dynamic port VLAN membership
described 13-27
reconfirming 13-29, 13-30
troubleshooting 13-31
types of connections 13-29
dynamic routing 39-4
ISO CLNS 39-71
Dynamic Trunking Protocol
See DTP

E

EBGP 39-49
editing features
  enabling and disabling 2-6
  keystrokes used 2-7
  wrapped lines 2-8
EEM 3.2 34-5
EIGRP
  authentication 39-48
  components 39-43
  configuring 39-46
  default configuration 39-44
  definition 39-42
  interface parameters, configuring 39-47
  monitoring 39-49
  support for 1-14
EIGRP stub routing 39-29
elections
See stack master
ELIN location 28-3
embedded event manager
  3.2 34-5
  actions 34-4
  configuring 34-1, 34-6
  displaying information 34-8
  environmental variables 34-5
  event detectors 34-3
  policies 34-4
  registering and defining an applet 34-6
  registering and defining a TCL script 34-7
  understanding 34-1
enable password 6-3
enable secret password 6-3
encryption, CipherSuite 6-52
encryption for passwords 6-3
Enhanced IGRP
  See EIGRP
enhanced object tracking
defined 43-1
HSRP 43-6
IP routing state 43-2
IP SLAs 43-8
  line-protocol state 43-2
  tracked lists 43-3
environmental variables, embedded event manager 34-5
environment variables, function of 3-25
equal-cost routing 1-15, 39-99
error-disabled state, BPDU 20-2
error messages during command entry 2-4
EtherChannel
  automatic creation of 38-5, 38-6
  channel groups
    binding physical and logical interfaces 38-4
    numbering of 38-4
  configuration guidelines 38-11
  configuring
    Layer 2 interfaces 38-12
    Layer 3 physical interfaces 38-16
    Layer 3 port-channel logical interfaces 38-15
  default configuration 38-10
  described 38-2
displaying status 38-23
forwarding methods 38-8, 38-18
IEEE 802.3ad, described 38-6
interaction
  with STP 38-11
  with VLANs 38-12
LACP
described 38-6
displaying status 38-23
hot-standby ports 38-20
interaction with other features 38-7
modes 38-7
port priority 38-22
system priority 38-21
Layer 3 interface 39-6
load balancing 38-8, 38-18
logical interfaces, described 38-4
PAgP
aggregate-port learners 38-19
compatibility with Catalyst 1900 38-19
described 38-5
displaying status 38-23
interaction with other features 38-6
interaction with virtual switches 38-6
learn method and priority configuration modes 38-5
support for 1-4
with dual-action detection 38-6
port-channel interfaces
described 38-4
numbering of 38-4
port groups 11-6
stack changes, effects of 38-9
support for 1-4
EtherChannel guard
described 20-10
disabling 20-17
enabling 20-17
Ethernet management port, internal
and routing 11-15
configuring 11-16
default setting 11-15
described 11-13
Layer 3 routing guidelines 11-16
supported features 11-16
unsupported features 11-16
Ethernet VLANs
adding 13-8
defaults and ranges 13-8
modifying 13-8
EUI 40-5
event detectors, embedded event manager 34-3
events, RMON 31-4
examples
network configuration 1-19
expedite queue for QoS 37-91
Express Setup 1-3
See also getting started guide
extended crashinfo file 48-20
extended-range VLANs
configuration guidelines 13-11
configuring 13-11
creating 13-12
creating with an internal VLAN ID 13-13
defined 13-1
extended system ID
MSTP 19-18
STP 18-4, 18-16
extended universal identifier
See EUI
Extensible Authentication Protocol over LAN 9-2
external BGP
See EBGP
external neighbors, BGP 39-54
F
Fa0 port
See Ethernet management port, internal
failover support 1-8
fallback bridging
and protected ports 47-4
bridge groups
creating 47-4
described 47-2
displaying  47-11
function of  47-2
number supported  47-5
removing  47-5
bridge table
  clearing  47-11
  displaying  47-11
configuration guidelines  47-4
connecting interfaces with  11-8
default configuration  47-4
described  47-1
frame forwarding
  flooding packets  47-2
  forwarding packets  47-2
overview  47-1
protocol, unsupported  47-4
stack changes, effects of  47-3
STP
  disabling on an interface  47-10
  forward-delay interval  47-9
  hello BPDU interval  47-9
  interface priority  47-7
  keepalive messages  18-2
  maximum-idle interval  47-10
  path cost  47-8
  VLAN-bridge spanning-tree priority  47-6
  VLAN-bridge STP  47-2
support for  1-14
SVIs and routed ports  47-1
unsupported protocols  47-4
VLAN-bridge STP  18-12
Fast Convergence  21-3
fastethernet0 port
  See Ethernet management port, internal
Fast Uplink Transition Protocol  20-6
features, incompatible  26-12
FIB  39-97
fiber-optic, detecting unidirectional links  29-1
files
basic crashinfo
  description  48-20
  location  48-20
copying  B-5
crashinfo, description  48-20
deleting  B-6
displaying the contents of  B-8
extended crashinfo
  description  48-20
  location  48-20
tar
  creating  B-7
  displaying the contents of  B-7
  extracting  B-8
  image file format  B-25
file system
  displaying available file systems  B-2
  displaying file information  B-3
  local file system names  B-1
  network file system names  B-5
  setting the default  B-3
filtering
  in a VLAN  35-30
  IPv6 traffic  36-4, 36-8
  non-IP traffic  35-28
  show and more command output  2-9
filtering show and more command output  2-9
filters, IP
  See ACLs, IP
flash device, number of  B-1
flexible authentication ordering
  configuring  9-66
  overview  9-30
Flex Link Multicast Fast Convergence  21-3
Flex Links
  configuration guidelines  21-8
  configuring  21-9
  configuring preferred VLAN  21-12
  configuring VLAN load balancing  21-11
Index

default configuration 21-8

description 21-2

link load balancing 21-3

monitoring 21-14

VLANs 21-3

flooded traffic, blocking 26-8

flow-based packet classification 1-13

flowcharts

QoS classification 37-7

QoS egress queueing and scheduling 37-18

QoS ingress queueing and scheduling 37-16

QoS policing and marking 37-11

flowcontrol

configuring 11-20

described 11-20

forward-delay time

MSTP 19-24

STP 18-23

Forwarding Information Base

See FIB

forwarding nonroutable protocols 47-1

FTP

accessing MIB files A-4

configuration files

downloading B-14

overview B-13

preparing the server B-14

uploading B-15

image files

deleting old image B-33

downloading B-31

preparing the server B-30

uploading B-33

g

general query 21-5

Generating IGMP Reports 21-4

get-bulk-request operation 33-3

get-next-request operation 33-3, 33-4

get-request operation 33-3, 33-4

get-response operation 33-3

global configuration mode 2-2

global leave, IGMP 24-13

guest VLAN and IEEE 802.1x 9-21

guide mode 1-3

GUIs

See device manager and Network Assistant

H

hardware limitations and Layer 3 interfaces 11-24

hello time

MSTP 19-23

STP 18-22

help, for the command line 2-3

hierarchical policy maps 37-9

configuration guidelines 37-39

configuring 37-64

described 37-12

history

changing the buffer size 2-5

described 2-5

disabling 2-6

recalling commands 2-6

history table, level and number of syslog messages 32-10

host ports

configuring 16-12

described 16-2

hosts, limit on dynamic ports 13-31

Hot Standby Router Protocol

See HSRP

HP OpenView 1-6

HSRP

authentication string 41-11

command-switch redundancy 1-2, 1-8

configuring 41-5

default configuration 41-6
Index

definition 41-1

guidelines 41-6

monitoring 41-12

object tracking 43-6

overview 41-1

priority 41-8

routing redundancy 1-14

support for ICMP redirect messages 41-12

switch stack considerations 41-5

timers 41-11

tracking 41-8

HSRP for IPv6

configuring 40-27

guidelines 40-26

HTTP over SSL

see HTTPS

HTTPS

configuring 6-53

described 6-50

self-signed certificate 6-51

HTTP secure server 6-50

IBPG 39-49

ICMP

IPv6 40-5

redirect messages 39-13

support for 1-15

time-exceeded messages 48-13

traceroute and 48-13

unreachable messages 35-20

unreachable messages and IPv6 36-5

unreachables and ACLs 35-22

ICMP Echo operation

configuring 42-11

IP SLAs 42-11

ICMP ping

executing 48-10

overview 48-10

ICMP Router Discovery Protocol

See IRDP

ICMPv6 40-5

IDS appliances

and ingress RSPAN 30-23

and ingress SPAN 30-15

IEEE 802.1D

See STP

IEEE 802.1p 15-1

IEEE 802.1Q

and trunk ports 11-3

configuration limitations 13-17

encapsulation 13-15

native VLAN for untagged traffic 13-22

tunneling

compatibility with other features 17-6

defaults 17-4

described 17-1

tunnel ports with other features 17-6

IEEE 802.1s

See MSTP

IEEE 802.1w

See RSTP

IEEE 802.1x

See port-based authentication

IEEE 802.3ad

See EtherChannel

IEEE 802.3x flow control 11-20

ifIndex values, SNMP 33-5

IFS 1-7

IGMP

configurable leave timer

described 24-6

enabling 24-12

configuring the switch

as a member of a group 45-43

statically connected member 45-48

controlling access to groups 45-44
default configuration 45-43
deleting cache entries 45-67
displaying groups 45-67
fast switching 45-48
floated multicast traffic
controlling the length of time 24-13
disabling on an interface 24-14
global leave 24-13
query solicitation 24-13
recovering from flood mode 24-13
host-query interval, modifying 45-46
joining multicast group 24-3
join messages 24-3
leave processing, enabling 24-11, 25-9
leaving multicast group 24-5
multicast reachability 45-43
overview 45-2
queries 24-4
report suppression
described 24-6
disabling 24-16, 25-11
supported versions 24-3
support for 1-4
Version 1
changing to Version 2 45-45
described 45-3
Version 2
changing to Version 1 45-45
described 45-3
maximum query response time value 45-47
pruning groups 45-47
query timeout value 45-47
IGMP filtering
configuring 24-25
default configuration 24-25
described 24-24
monitoring 24-29
support for 1-5
IGMP groups
configuring filtering 24-28
setting the maximum number 24-27
IGMP helper 45-6
IGMP Immediate Leave
configuration guidelines 24-12
described 24-6
enabling 24-11
IGMP profile
applying 24-27
configuration mode 24-25
configuring 24-26
IGMP snooping
and address aliasing 24-2
and stack changes 24-7
configuring 24-7
default configuration 24-7, 25-6
definition 24-2
enabling and disabling 24-8, 25-7
global configuration 24-8
Immediate Leave 24-6
in the switch stack 24-7
method 24-9
monitoring 24-16, 25-12
querier
configuration guidelines 24-14
configuring 24-14
supported versions 24-3
support for 1-4
VLAN configuration 24-8
IGMP throttling
configuring 24-28
default configuration 24-25
described 24-25
displaying action 24-29
IGP 39-31
Immediate Leave, IGMP
described 24-6
enabling 25-9
inaccessible authentication bypass 9-23
support for multiauth ports 9-24
initial configuration
  defaults 1-17
  Express Setup 1-3
interface
  number 11-8
  range macros 11-12
interface command 11-8 to 11-9
interface configuration mode 2-2
interfaces
  auto-MDIX, configuring 11-22
  configuring
    procedure 11-9
  counters, clearing 11-29
  default configuration 11-17
  described 11-23
  descriptive name, adding 11-23
  displaying information about 11-28
  duplex and speed configuration guidelines 11-18
  flow control 11-20
  management 1-5
  monitoring 11-28
  naming 11-23
  physical, identifying 11-8
  range of 11-10
  restarting 11-29
  shutting down 11-29
  speed and duplex, configuring 11-19
  status 11-28
  supported 11-8
  types of 11-1
interfaces range macro command 11-12
interface types 11-8
Interior Gateway Protocol
  See IGP
internal BGP
  See IBGP
internal neighbors, BGP 39-54
Internet Control Message Protocol
  See ICMP
Internet Group Management Protocol
  See IGMP
Internet Protocol version 6
  See IPv6
inter-VLAN routing 1-14, 39-3
Intrusion Detection System
  See IDS appliances
inventory management TLV 28-3, 28-7
IP ACLs
  for QoS classification 37-8
  implicit deny 35-10, 35-14
  implicit masks 35-10
  named 35-15
  undefined 35-21
IP addresses
  128-bit 40-3
  classes of 39-8
  default configuration 39-7
  discovering 5-31
  for IP routing 39-6
  IPv6 40-3
  MAC address association 39-10
  monitoring 39-19
IP base feature set 1-2
IP broadcast address 39-17
ip cef distributed command 39-98
IP directed broadcasts 39-16
ip igmp profile command 24-25
IP information
  assigned
    manually 3-16
    through DHCP-based autoconfiguration 3-4
  default configuration 3-3
IP multicast routing
  addresses
    all-hosts 45-3
    all-multicast-routers 45-3
    host group address range 45-3
administratively-scoped boundaries, described 45-51
and IGMP snooping 24-2
Auto-RP
adding to an existing sparse-mode cloud 45-30
benefits of 45-29
clearing the cache 45-67
configuration guidelines 45-12
filtering incoming RP announcement messages 45-32
overview 45-6
preventing candidate RP spoofing 45-32
preventing join messages to false RPs 45-31
setting up in a new internetwork 45-30
using with BSR 45-37
bootstrap router
configuration guidelines 45-12
configuring candidate BSRs 45-35
configuring candidate RPs 45-36
defining the IP multicast boundary 45-35
defining the PIM domain border 45-34
overview 45-7
using with Auto-RP 45-37
Cisco implementation 45-1
configuring
basic multicast routing 45-12
IP multicast boundary 45-51
default configuration 45-10
enabling
multicast forwarding 45-13
PIM mode 45-13
group-to-RP mappings
Auto-RP 45-6
BSR 45-7
MBONE
deleting sdr cache entries 45-67
described 45-50
displaying sdr cache 45-68
enabling sdr listener support 45-50
limiting DVMRP routes advertised 45-62
limiting sdr cache entry lifetime 45-50
SAP packets for conference session announcement 45-50
Session Directory (sdr) tool, described 45-50
monitoring
packet rate loss 45-68
peering devices 45-68
tracing a path 45-68
multicast forwarding, described 45-7
PIMv1 and PIMv2 interoperability 45-11
protocol interaction 45-2
reverse path check (RPF) 45-7
routing table
deleting 45-67
displaying 45-67
RP
assigning manually 45-28
configuring Auto-RP 45-29
configuring PIMv2 BSR 45-33
monitoring mapping information 45-39
using Auto-RP and BSR 45-37
stacking
stack master functions 45-9
stack member functions 45-9
statistics, displaying system and network 45-67
See also CGMP
See also DVMRP
See also IGMP
See also PIM
IP phones
and QoS 15-1
automatic classification and queueing 37-21
configuring 15-4
ensuring port security with QoS 37-44
trusted boundary for QoS 37-44
IP Port Security for Static Hosts
on a Layer 2 access port 22-21
on a PVLAN host port 22-24
IP precedence 37-2
IP-precedence-to-DSCP map for QoS  37-75
IP protocols  
   in ACLs  35-12
   routing  1-14
IP protocols in ACLs  35-12
IP routes, monitoring  39-113
IP routing  
   connecting interfaces with  11-8
   disabling  39-20
   enabling  39-20
IP Service Level Agreements  
   See IP SLAs
IP service levels, analyzing  42-1
IP services feature set  1-2
IP SLAs  
   benefits  42-2
   configuration guidelines  42-6
   configuring object tracking  43-8
   Control Protocol  42-4
   default configuration  42-6
   definition  42-1
   ICMP echo operation  42-11
   measuring network performance  42-3
   monitoring  42-13
   multioperations scheduling  42-5
   object tracking  43-8
   operation  42-3
   reachability tracking  43-8
   responder  
      described  42-4
      enabling  42-7
   response time  42-4
   scheduling  42-5
   SNMP support  42-2
   supported metrics  42-2
   threshold monitoring  42-6
   track state  43-8
   UDP jitter operation  42-8
IP source guard  
   and DHCP snooping  22-16
   and EtherChannels  22-19
   and IEEE 802.1x  22-19
   and port security  22-19
   and private VLANs  22-19
   and routed ports  22-18
   and TCAM entries  22-19
   and trunk interfaces  22-19
   and VRF  22-19
   binding configuration  
      automatic  22-16
      manual  22-16
   binding table  22-16
   configuration guidelines  22-18
   default configuration  22-18
   described  22-16
   disabling  22-20
   displaying  
      bindings  22-26
      configuration  22-26
      enabling  22-19, 22-21
   filtering  
      source IP address  22-17
      source IP and MAC address  22-17
      source IP address filtering  22-17
      source IP and MAC address filtering  22-17
      static bindings  
         adding  22-19, 22-21
         deleting  22-20
      static hosts  22-21
   IP traceroute  
      executing  48-14
      overview  48-13
   IP unicast routing  
      address resolution  39-10
      administrative distances  39-100, 39-111
      ARP  39-11
      assigning IP addresses to Layer 3 interfaces  39-8
      authentication keys  39-111
broadcast
  address 39-17
  flooding 39-18
  packets 39-15
  storms 39-15
classless routing 39-9
classic configuration for static routes 39-99
default
  addressing configuration 39-7
  gateways 39-13
  networks 39-101
  routes 39-101
  routing 39-4
directed broadcasts 39-16
disabling 39-20
dynamic routing 39-4
enabling 39-20
EtherChannel Layer 3 interface 39-6
IGP 39-31
inter-VLAN 39-3
IP addressing
  classes 39-8
  configuring 39-6
IPv4 ACLs
IPv6 40-4
IRDP 39-14
Layer 3 interfaces 39-6
MAC address and IP address 39-10
passive interfaces 39-109
protocols
  distance-vector 39-4
  dynamic 39-4
  link-state 39-4
proxy ARP 39-11
redistribution 39-101
reverse address resolution 39-10
routed ports 39-6
static routing 39-4
steps to configure 39-6
subnet mask 39-8
subnet zero 39-8
supernet 39-9
UDP 39-17
unicast reverse path forwarding 1-15
with SVIs 39-6
See also BGP
See also EIGRP
See also OSPF
See also RIP
IPv4 ACLs
  applying to interfaces 35-20
  extended, creating 35-11
  named 35-15
  standard, creating 35-10
IPv6
  ACLs
    displaying 36-9
    limitations 36-3
    matching criteria 36-3
    port 36-2
    precedence 36-3
    router 36-2
  addresses 40-3
  address formats 40-3
  default configuration 40-13
  and switch stacks 40-11
  applications 40-6
  assigning address 40-13
  autoconfiguration 40-6
  CEFv6 40-21
  configuring static routes 40-22
  default configuration 40-13
  default router preference (DRP) 40-6
  defined 40-1, 40-3
  Enhanced Interior Gateway Routing Protocol (EIGRP)
  IPv6 40-8
    EIGRP IPv6 Commands 40-8
    Router ID 40-8
    feature limitations 40-10
    features not supported 40-10
Index

forwarding 40-13
ICMP 40-5
monitoring 40-29
neighbor discovery 40-5
OSPF 40-8
path MTU discovery 40-5
SDM templates 8-2, 25-1, 36-1
stack master functions 40-11
supported features 40-4
switch limitations 40-10
understanding static routes 40-8
IPv6 traffic, filtering 36-4
IRDP
  configuring 39-14
  definition 39-14
  support for 1-15
IS-IS
  addresses 39-71
  area routing 39-71
  default configuration 39-73
  monitoring 39-81
  show commands 39-81
  system routing 39-71
ISO CLNS
  clear commands 39-81
  dynamic routing protocols 39-71
  monitoring 39-81
  NETs 39-71
  NSAPs 39-71
  OSI standard 39-71
ISO IGRP
  area routing 39-71
  system routing 39-71
isolated port 16-2
isolated VLANs 16-2, 16-3

K

KDC
described 6-41
See also Kerberos
keepalive messages 18-2
Kerberos
  authenticating to
    boundary switch 6-43
    KDC 6-43
    network services 6-44
configuration examples 6-40
configuring 6-44
credentials 6-41
cryptographic software image 6-40
described 6-41
KDC 6-41
operation 6-43
realm 6-42
server 6-42
support for 1-12
switch as trusted third party 6-40
terms 6-41
TGT 6-42
tickets 6-41
key distribution center
  See KDC

L

l2protocol-tunnel command 17-13
LACP
  Layer 2 protocol tunneling 17-9
  See EtherChannel
Layer 2 frames, classification with CoS 37-2
Layer 2 interfaces, default configuration 11-17
Layer 2 protocol tunneling
  configuring 17-10
  configuring for EtherChannels 17-14

J

join messages, IGMP 24-3
Index

default configuration 17-11
defined 17-8
guidelines 17-12
Layer 2 traceroute
and ARP 48-12
and CDP 48-12
broadcast traffic 48-11
described 48-11
IP addresses and subnets 48-12
MAC addresses and VLANs 48-12
multicast traffic 48-12
multiple devices on a port 48-12
unicast traffic 48-11
usage guidelines 48-12
Layer 3 features 1-14
Layer 3 interfaces
assigning IP addresses to 39-8
assigning IPv4 and IPv6 addresses to 40-16
assigning IPv6 addresses to 40-14
changing from Layer 2 mode 39-8, 39-88
types of 39-6
Layer 3 packets, classification methods 37-2
LDAP 4-2
Leaking IGMP Reports 21-4
LEDs, switch
See hardware installation guide
Lightweight Directory Access Protocol
See LDAP
line configuration mode 2-2
Link Aggregation Control Protocol
See EtherChannel
Link Failure, detecting unidirectional 19-8
Link Layer Discovery Protocol
See CDP
link local unicast addresses 40-5
link redundancy
See Flex Links
links, unidirectional 29-1
link state advertisements (LSAs) 39-37
link-state protocols 39-4
link-state tracking
configuring 38-25
described 38-23
LLDP
configuring 28-4
characteristics 28-6
default configuration 28-4
enabling 28-5
monitoring and maintaining 28-10
overview 28-1
supported TLVs 28-2
switch stack considerations 28-2
transmission timer and holdtime, setting 28-6
LLDP-MED
configuring
procedures 28-4
TLVs 28-6
monitoring and maintaining 28-10
overview 28-1, 28-2
supported TLVs 28-2
LLDP Media Endpoint Discovery
See LLDP-MED
load balancing 41-4
local SPAN 30-2
location TLV 28-3, 28-7
logging messages, ACL 35-9
login authentication
with RADIUS 6-30
with TACACS+ 6-14
login banners 5-17
log messages
See system message logging
Long-Reach Ethernet (LRE) technology 1-21
loop guard
described 20-11
enabling 20-18
support for 1-8
MAC/PHY configuration status TLV 28-2

MAC addresses
- aging time 5-21
- and VLAN association 5-20
- building the address table 5-20
- default configuration 5-21
- disabling learning on a VLAN 5-30
- discovering 5-31
- displaying 5-31
- displaying in the IP source binding table 22-26
- dynamic
  - learning 5-20
  - removing 5-22
- in ACLs 35-28
- IP address association 39-10
- manually assigning IP address 3-16
- static
  - adding 5-28
  - allowing 5-29, 5-30
  - characteristics of 5-27
  - dropping 5-29
  - removing 5-28

MAC address learning 1-6

MAC address learning, disabling on a VLAN 5-30

MAC address notification, support for 1-16

MAC address-table move update
- configuration guidelines 21-8
- configuring 21-12
- default configuration 21-8
- description 21-6
- monitoring 21-14

MAC address-to-VLAN mapping 13-26

MAC authentication bypass 9-16

MAC extended access lists
- applying to Layer 2 interfaces 35-29
- configuring for QoS 37-53
- creating 35-28

defined 35-28
for QoS classification 37-5

macros
See Smartports macros

magic packet 9-27

manageability features 1-6

management access
- in-band
  - browser session 1-7
  - CLI session 1-7
  - device manager 1-7
  - SNMP 1-7
- out-of-band console port connection 1-7

management address TLV 28-2

management options
- CLI 2-1
- CNS 4-1
- Network Assistant 1-3
- overview 1-5
- switch stacks 1-3

mapping tables for QoS
- configuring
  - CoS-to-DSCP 37-74
  - DSCP 37-74
  - DSCP-to-CoS 37-77
  - DSCP-to-DSCP-mutation 37-78
  - IP-precedence-to-DSCP 37-75
  - policed-DSCP 37-76
- described 37-13

marking
- action in policy map 37-59
- action with aggregate policers 37-72
- described 37-4, 37-9

matching IPv4 ACLs 35-8

maximum aging time
- MSTP 19-25
- STP 18-23

maximum hop count, MSTP 19-25
maximum number of allowed devices, port-based authentication 9-38
maximum-paths command 39-58, 39-99
MDA
configuration guidelines 9-30 to 9-31
described 1-11, 9-30
exceptions with authentication process 9-4
membership mode, VLAN port 13-3
messages, to users through banners 5-17
metrics, in BGP 39-58
metric translations, between routing protocols 39-105
metro tags 17-2
MHSRP 41-4
MIBs
accessing files with FTP A-4
location of files A-4
overview 33-1
SNMP interaction with 33-4
supported A-1
mirroring traffic for analysis 30-1
mismatches, autonegotiation 48-9
module number 11-8
monitoring
access groups 35-40
BGP 39-70
cables for unidirectional links 29-1
CDP 27-5
CEF 39-98
EIGRP 39-49
fallback bridging 47-11
features 1-16
Flex Links 21-14
HSRP 41-12
IEEE 802.1Q tunneling 17-18
IGMP
filters 24-29
snooping 24-16, 25-12
interfaces 11-28
IP
address tables 39-19
multicast routing 45-66
routes 39-113
IP SLAs operations 42-13
IPv4 ACL configuration 35-40
IPv6 40-29
IPv6 ACL configuration 36-9
IS-IS 39-81
ISO CLNS 39-81
Layer 2 protocol tunneling 17-18
MAC address-table move update 21-14
MSDP peers 46-18
multicast router interfaces 24-17, 25-12
multi-VRF CE 39-96
MVR 24-24
network traffic for analysis with probe 30-2
object tracking 43-9
OSPF 39-41
port
blocking 26-19
protection 26-19
private VLANs 16-15
RP mapping information 45-39
source-active messages 46-18
speed and duplex mode 11-19
traffic flowing among switches 31-1
traffic suppression 26-19
tunneling 17-18
VLAN
filters 35-41
maps 35-41
VLANs 13-14
VMPS 13-30
VTP 14-18
mrouter Port 21-3
mrouter port 21-5
MSDP
benefits of 46-3
clearing MSDP connections and statistics 46-18
controlling source information
  forwarded by switch 46-11
  originated by switch 46-8
  received by switch 46-14
default configuration 46-4
dense-mode regions
  sending SA messages to 46-16
  specifying the originating address 46-17
filtering
  incoming SA messages 46-14
  SA messages to a peer 46-12
  SA requests from a peer 46-10
join latency, defined 46-6
meshed groups
  configuring 46-15
  defined 46-15
originating address, changing 46-17
overview 46-1
peer-RPF flooding 46-2
peers
  configuring a default 46-4
  monitoring 46-18
  peering relationship, overview 46-1
  requesting source information from 46-8
shutting down 46-16
source-active messages
  caching 46-6
  clearing cache entries 46-18
  defined 46-2
  filtering from a peer 46-10
  filtering incoming 46-14
  filtering to a peer 46-12
  limiting data with TTL 46-13
  monitoring 46-18
  restricting advertised sources 46-9
support for 1-15
MSTP
  boundary ports
  configuration guidelines 19-16
  described 19-6
  BPDU filtering
    described 20-3
    enabling 20-14
  BPDU guard
    described 20-2
    enabling 20-13
  CIST, described 19-3
  CIST regional root 19-3
  CIST root 19-5
  configuration guidelines 19-15, 20-12
  configuring
    forward-delay time 19-24
    hello time 19-23
    link type for rapid convergence 19-26
    maximum aging time 19-25
    maximum hop count 19-25
    MST region 19-17
    neighbor type 19-26
    path cost 19-22
    port priority 19-20
    root switch 19-18
    secondary root switch 19-19
    switch priority 19-23
  CST
    defined 19-3
    operations between regions 19-4
    default configuration 19-15
    default optional feature configuration 20-12
    displaying status 19-27
    enabling the mode 19-27
  EtherChannel guard
    described 20-10
    enabling 20-17
  extended system ID
    effects on root switch 19-18
    effects on secondary root switch 19-19
    unexpected behavior 19-18
  IEEE 802.1s
implementation 19-6
port role naming change 19-7
terminology 19-5
instances supported 18-10
interface state, blocking to forwarding 20-2
interoperability and compatibility among modes 18-11
interoperability with IEEE 802.1D
  described 19-9
  restarting migration process 19-27
IST
  defined 19-3
  master 19-3
  operations within a region 19-3
loop guard
  described 20-11
  enabling 20-18
mapping VLANs to MST instance 19-17
MST region
  CIST 19-3
  configuring 19-17
  described 19-2
  hop-count mechanism 19-5
  IST 19-3
  supported spanning-tree instances 19-2
optional features supported 1-8
overview 19-2
Port Fast
  described 20-2
  enabling 20-12
preventing root switch selection 20-10
root guard
  described 20-10
  enabling 20-18
root switch
  configuring 19-18
  effects of extended system ID 19-18
  unexpected behavior 19-18
shutdown Port Fast-enabled port 20-2
stack changes, effects of 19-8
status, displaying 19-27
MTU
  system 11-26
  system jumbo 11-26
  system routing 11-26
multi-auth
  support for inaccessible authentication bypass 9-24
multi-auth mode
  See multiple-authentication mode
multicast groups
  Immediate Leave 24-6
  joining 24-3
  leaving 24-5
  static joins 24-10, 25-8
multicast packets
  ACLs on 35-39
  blocking 26-8
multicast router interfaces, monitoring 24-17, 25-12
multicast router ports, adding 24-10, 25-9
Multicast Source Discovery Protocol
  See MSDP
multicast storm 26-1
multicast storm-control command 26-4
multicast television application 24-19
multicast VLAN 24-18
Multicast VLAN Registration
  See MVR
multidomain authentication
  See MDA
multioperations scheduling, IP SLAs 42-5
multiple authentication 9-13
Multiple HSRP
  See MHSRP
multiple VPN routing/forwarding in customer edge devices
  See multi-VRF CE
multi-VRF CE
  configuration example 39-92
configuration guidelines 39-84
configuring 39-84
default configuration 39-84
defined 39-82
displaying 39-96
monitoring 39-96
network components 39-84
packet-forwarding process 39-84
support for 1-14

MVR
and address aliasing 24-21
and IGMPv3 24-21
configuration guidelines 24-21
configuring interfaces 24-22
default configuration 24-20
described 24-18
example application 24-19
in the switch stack 24-20
modes 24-22
monitoring 24-24
multicast television application 24-19
setting global parameters 24-21
support for 1-5

N

NAC
AAA down policy 1-12
critical authentication 9-23, 9-55
IEEE 802.1x authentication using a RADIUS server 9-60
IEEE 802.1x validation using RADIUS server 9-60
inaccessible authentication bypass 1-12, 9-55
Layer 2 IEEE 802.1x validation 1-11, 9-60
Layer 2 IP validation 1-11
named IPv4 ACLs 35-15
named IPv6 ACLs 36-3
NameSpace Mapper
See NSM

native VLAN
and IEEE 802.1Q tunneling 17-4
configuring 13-22
default 13-22

NEAT
configuring 9-61
overview 9-32
neighbor discovery, IPv6 40-5
neighbor discovery/recovery, EIGRP 39-43
neighbors, BGP 39-65

Network Admission Control
See NAC

Network Assistant
benefits 1-3
described 1-5
downloading image files 1-3
guide mode 1-3
management options 1-3
managing switch stacks 7-2, 7-18
upgrading a switch 8-24
wizards 1-3

network configuration examples
data center 1-21
expanded data center 1-21
increasing network performance 1-20
providing network services 1-20
small to medium-sized network 1-22

network design
performance 1-20
services 1-20

Network Edge Access Topology
See NEAT

network management
CDP 27-1
RMON 31-1
SNMP 33-1

network performance, measuring with IP SLAs 42-3

network policy TLV 28-2, 28-7

Network Time Protocol
See NTP
no commands 2-4
nonhierarchical policy maps
  configuration guidelines 37-39
  configuring 37-59
  described 37-10
non-IP traffic filtering 35-28
nontrunking mode 13-16
normal-range VLANs 13-4
  configuration guidelines 13-6
  configuring 13-4
  defined 13-1
no switchport command 11-4
not-so-stubby areas
  See NSSA
NSAPs, as ISO IGRP addresses 39-71
NSF Awareness
  IS-IS 39-74
NSM 4-3
NSSA, OSPF 39-37
NTP
  associations
    authenticating 5-4
    defined 5-2
    enabling broadcast messages 5-6
    peer 5-5
    server 5-5
  default configuration 5-4
  displaying the configuration 5-11
  overview 5-2
restricting access
  creating an access group 5-8
  disabling NTP services per interface 5-10
source IP address, configuring 5-10
stratum 5-2
support for 1-6
synchronizing devices 5-5
time
  services 5-2

synchronizing 5-2

O

OBFL
  configuring 48-22
  described 48-21
  displaying 48-22
object tracking
  HSRP 43-6
  IP SLAs 43-8
  IP SLAs, configuring 43-8
  monitoring 43-9
offline configuration for switch stacks 7-9
off mode, VTP 14-3
on-board failure logging
  See OBFL
online diagnostics
  described 49-1
  overview 49-1
  running tests 49-5
open1x
  configuring 9-66
  open1x authentication
    overview 9-30
Open Shortest Path First
  See OSPF
optimizing system resources 8-1
options, management 1-5
OSPF
  area parameters, configuring 39-37
  configuring 39-35
  default configuration
    metrics 39-39
    route 39-39
    settings 39-32
  described 39-31
  for IPv6 40-8
  interface parameters, configuring 39-36
<table>
<thead>
<tr>
<th>LSA group pacing</th>
<th>39-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitoring</td>
<td>39-41</td>
</tr>
<tr>
<td>router IDs</td>
<td>39-41</td>
</tr>
<tr>
<td>route summarization</td>
<td>39-38</td>
</tr>
<tr>
<td>support for</td>
<td>1-14</td>
</tr>
<tr>
<td>virtual links</td>
<td>39-39</td>
</tr>
<tr>
<td>out-of-profile markdown</td>
<td>1-13</td>
</tr>
</tbody>
</table>

**P**

<table>
<thead>
<tr>
<th>packet modification, with QoS</th>
<th>37-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAgP</td>
<td></td>
</tr>
<tr>
<td>Layer 2 protocol tunneling</td>
<td>17-9</td>
</tr>
<tr>
<td>See EtherChannel</td>
<td></td>
</tr>
<tr>
<td>parallel paths, in routing tables</td>
<td>39-99</td>
</tr>
<tr>
<td>passive interfaces</td>
<td></td>
</tr>
<tr>
<td>configuring</td>
<td>39-109</td>
</tr>
<tr>
<td>OSPF</td>
<td>39-39</td>
</tr>
<tr>
<td>passwords</td>
<td></td>
</tr>
<tr>
<td>default configuration</td>
<td>6-2</td>
</tr>
<tr>
<td>disabling recovery of</td>
<td>6-5</td>
</tr>
<tr>
<td>encrypting</td>
<td>6-3</td>
</tr>
<tr>
<td>for security</td>
<td>1-10</td>
</tr>
<tr>
<td>overview</td>
<td>6-1</td>
</tr>
<tr>
<td>recovery of</td>
<td>48-3</td>
</tr>
<tr>
<td>setting</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>6-3</td>
</tr>
<tr>
<td>enable secret</td>
<td>6-3</td>
</tr>
<tr>
<td>Telnet</td>
<td>6-6</td>
</tr>
<tr>
<td>with usernames</td>
<td>6-6</td>
</tr>
<tr>
<td>VTP domain</td>
<td>14-10</td>
</tr>
<tr>
<td>path cost</td>
<td></td>
</tr>
<tr>
<td>MSTP</td>
<td>19-22</td>
</tr>
<tr>
<td>STP</td>
<td>18-20</td>
</tr>
<tr>
<td>path MTU discovery</td>
<td>40-5</td>
</tr>
<tr>
<td>PBR</td>
<td></td>
</tr>
<tr>
<td>defined</td>
<td>39-105</td>
</tr>
<tr>
<td>enabling</td>
<td>39-107</td>
</tr>
<tr>
<td>fast-switched policy-based routing</td>
<td>39-108</td>
</tr>
</tbody>
</table>

local policy-based routing	39-108
peers, BGP	39-65
percentage thresholds in tracked lists	43-5
performance, network design	1-20
performance features	1-4
persistent self-signed certificate	6-51
per-user ACLs and Filter-Ids	9-9
per-VLAN spanning-tree plus	
See PVST+	
PE to CE routing, configuring	39-92
physical ports	11-2
PIM	
default configuration	45-10
dense mode	
overview	45-4
rendezvous point (RP), described	45-5
RPF lookups	45-8
displaying neighbors	45-67
enabling a mode	45-13
overview	45-3
router-query message interval, modifying	45-42
shared tree and source tree, overview	45-39
shortest path tree, delaying the use of sparse mode	45-41
join messages and shared tree	45-5
overview	45-5
prune messages	45-5
RPF lookups	45-8
stub routing	
configuration guidelines	39-28
enabling	39-28, 45-26
overview	45-5
understanding	39-27
support for	1-15
versions	
interoperability	45-11
troubleshooting interoperability problems	45-39
v2 improvements	45-4
PIM-DVMRP, as snooping method	24-9
ping
  character output description 48-11
  executing 48-10
  overview 48-10

policed-DSCP map for QoS 37-76

policers
  configuring
    for each matched traffic class 37-59
    for more than one traffic class 37-72
  described 37-4
  displaying 37-92
  number of 37-40
  types of 37-10

policing
  described 37-4
  hierarchical
    See hierarchical policy maps
  token-bucket algorithm 37-10

policy-based routing
  See PBR

policy maps for QoS
  characteristics of 37-59
  described 37-8
  displaying 37-93
  hierarchical 37-9
  hierarchical on SVIs
    configuration guidelines 37-39
    configuring 37-64
    described 37-12
  nonhierarchical on physical ports
    configuration guidelines 37-39
    configuring 37-59
    described 37-10

port ACLs
  defined 35-2
  types of 35-3

Port Aggregation Protocol
  See EtherChannel
  port-based authentication

accounting 9-15
authentication server
  defined 9-3, 10-2
  RADIUS server 9-3
client, defined 9-3, 10-2
configuration guidelines 9-36, 10-9

configuring
  802.1x authentication 9-39
  guest VLAN 9-52
  host mode 9-44
  inaccessible authentication bypass 9-55
  manual re-authentication of a client 9-47
  periodic re-authentication 9-45
  quiet period 9-47
  RADIUS server 9-44, 10-12
  RADIUS server parameters on the switch 9-43, 10-11
  restricted VLAN 9-53
  switch-to-client frame-retransmission number 9-48, 9-49
  switch-to-client retransmission time 9-48
  violation mode 9-26
  violation modes 9-38 to 9-39

default configuration 9-35, 10-9
  described 9-2
  device roles 9-3, 10-2
  displaying statistics 9-68, 10-17

downloadable ACLs and redirect URLs
  configuring 9-63
  overview 9-19 to 9-21

EAPOL-start frame 9-6
EAP-request/identity frame 9-6
EAP-response/identity frame 9-6

enabling
  802.1X authentication 10-11
  encapsulation 9-4
  flexible authentication ordering
    configuring 9-66
    overview 9-30
guest VLAN
  configuration guidelines 9-22, 9-23
  described 9-21
host mode 9-12
inaccessible authentication bypass
  configuring 9-55
  described 9-23
  guidelines 9-37
initiation and message exchange 9-6
magic packet 9-27
maximum number of allowed devices per port 9-38
method lists 9-39
multiple authentication 9-13
multiple-hosts mode, described 9-12
per-user ACLs
  AAA authorization 9-39
  configuration tasks 9-19
  described 9-18
  RADIUS server attributes 9-18
ports
  authorization state and dot1x port-control command 9-11
  authorized and unauthorized 9-11
  voice VLAN 9-25
port security
  and voice VLAN 9-26
  described 9-26
  interactions 9-26
  multiple-hosts mode 9-12
readiness check
  configuring 9-41
  described 9-16, 9-41
resetting to default values 9-67
stack changes, effects of 9-12
statistics, displaying 9-68
switch
  as proxy 9-3, 10-2
  RADIUS client 9-3
switch supplicant
  configuring 9-61
  overview 9-32
user distribution
  guidelines 9-28
  overview 9-27
VLAN assignment
  AAA authorization 9-39
  characteristics 9-17
  configuration tasks 9-17
  described 9-16
  voice aware 802.1x security
  configuring 9-42
  described 9-31, 9-42
  voice VLAN
  described 9-25
  PVID 9-25
  VVID 9-25
wake-on-LAN, described 9-27
port-based authentication methods, supported 9-8
port blocking 1-4, 26-7
port-channel
  See EtherChannel
port description TLV 28-2
Port Fast
  described 20-2
  enabling 20-12
  mode, spanning tree 13-28
  support for 1-8
port membership modes, VLAN 13-3
port priority
  MSTP 19-20
  STP 18-18
ports
  10-Gigabit Ethernet 11-6
  access 11-3
  blocking 26-7
  dynamic access 13-3
  IEEE 802.1Q tunnel 13-4
  protected 26-6
routed 11-4
secure 26-9
static-access 13-3, 13-10
switch 11-2
trunks 13-3, 13-15
VLAN assignments 13-10
port security
  aging 26-17
  and private VLANs 26-18
  and QoS trusted boundary 37-44
  and stacking 26-18
configuring 26-13
default configuration 26-11
described 26-8
displaying 26-19
enabling 26-18
on trunk ports 26-14
sticky learning 26-9
violations 26-10
with other features 26-11
port-shutdown response, VMPS 13-26
port VLAN ID TLV 28-2
power management TLV 28-2, 28-7
preemption, default configuration 21-8
preemption delay, default configuration 21-8
preferential treatment of traffic
  See QoS
prefix lists, BGP 39-62
preventing unauthorized access 6-1
primary links 21-2
primary VLANs 16-1, 16-3
priority
  HSRP 41-8
  overriding CoS 15-6
  trusting CoS 15-6
private VLAN edge ports
  See protected ports
private VLANs
  across multiple switches 16-4
  and SDM template 16-4
  and SVIs 16-5
  and switch stacks 16-6
benefits of 16-1
community ports 16-2
community VLANs 16-2, 16-3
configuration guidelines 16-7, 16-9
configuration tasks 16-6
configuring 16-10
default configuration 16-7
described
end station access to 16-3
IP addressing 16-3
isolated port 16-2
isolated VLANs 16-2, 16-3
mapping 16-14
monitoring 16-15
ports
  community 16-2
  configuration guidelines 16-9
  configuring host ports 16-12
  configuring promiscuous ports 16-13
described 13-4
  isolated 16-2
  promiscuous 16-2
primary VLANs 16-1, 16-3
promiscuous ports 16-2
secondary VLANs 16-2
subdomains 16-1
traffic in 16-5
privileged EXEC mode 2-2
privilege levels
  changing the default for lines 6-9
  exiting 6-9
  logging into 6-9
  overview 6-2, 6-7
  setting a command with 6-8
promiscuous ports
  configuring 16-13
  defined 16-2
protected mode
  described  3-17
  disabling  3-18
  enabling  3-18
  guidelines and restrictions  3-18
protected ports  1-10, 26-6
protocol-dependent modules, EIGRP  39-43
Protocol-Independent Multicast Protocol
  See PIM
provider edge devices  39-82
provisioning new members for a switch stack  7-9
proxy ARP
  configuring  39-13
  definition  39-11
  with IP routing disabled  39-13
proxy reports  21-4
pruning, VTP
  disabling
    in VTP domain  14-16
    on a port  13-21
  enabling
    in VTP domain  14-16
    on a port  13-21
examples  14-7
overview  14-6
pruning-eligible list
  changing  13-21
  for VTP pruning  14-6
VLANs  14-16
PVST+
  described  18-10
  IEEE 802.1Q trunking interoperability  18-11
instances supported  18-10
categorizing traffic  37-22
configuration and defaults display  37-35
configuration guidelines  37-32
  described  37-21
  disabling  37-34
  displaying generated commands  37-34
  displaying the initial configuration  37-35
  effects on running configuration  37-32
  list of generated commands  37-25
basic model  37-4
classification
  class maps, described  37-8
  defined  37-4
  DSCP transparency, described  37-45
  flowchart  37-7
  forwarding treatment  37-3
  in frames and packets  37-3
  IP ACLs, described  37-6, 37-8
  MAC ACLs, described  37-5, 37-8
  options for IP traffic  37-6
  options for non-IP traffic  37-5
  policy maps, described  37-8
  trust DSCP, described  37-5
  trusted CoS, described  37-5
  trust IP precedence, described  37-5
class maps
  configuring  37-54
  displaying  37-92
collection guidelines
  auto-QoS  37-32
  standard QoS  37-38
configuring
  aggregate policers  37-72
  auto-QoS  37-21
  default port CoS value  37-43
  DSCP maps  37-74
  DSCP transparency  37-45
  DSCP trust states bordering another domain  37-46
QoS
  and MQC commands  37-2
  auto-QoS
Index

egress queue characteristics  37-84
ingress queue characteristics  37-80
IP extended ACLs  37-50
IP standard ACLs  37-49
MAC ACLs  37-53
policy maps, hierarchical  37-64
policy maps on physical ports  37-59
port trust states within the domain  37-42
trusted boundary  37-44
default auto configuration  37-22
default standard configuration  37-36
displaying statistics  37-92
DSCP transparency  37-45
egress queues
  allocating buffer space  37-85
  buffer allocation scheme, described  37-19
  configuring shaped weights for SRR  37-89
  configuring shared weights for SRR  37-90
  described  37-4
  displaying the threshold map  37-88
  flowchart  37-18
  mapping DSCP or CoS values  37-87
  scheduling, described  37-4
  setting WTD thresholds  37-85
  WTD, described  37-20
enabling globally  37-41
flowcharts
  classification  37-7
  egress queueing and scheduling  37-18
  ingress queueing and scheduling  37-16
  policing and marking  37-11
implicit deny  37-8
ingress queues
  allocating bandwidth  37-82
  allocating buffer space  37-82
  buffer and bandwidth allocation, described  37-17
  configuring shared weights for SRR  37-82
  configuring the priority queue  37-83
  described  37-4
displaying the threshold map  37-81
flowchart  37-16
mapping DSCP or CoS values  37-81
priority queue, described  37-17
scheduling, described  37-4
setting WTD thresholds  37-81
WTD, described  37-17
IP phones
  automatic classification and queueing  37-21
detection and trusted settings  37-21, 37-44
limiting bandwidth on egress interface  37-91
mapping tables
  CoS-to-DSCP  37-74
displaying  37-93
DSCP-to-CoS  37-77
DSCP-to-DSCP-mutation  37-78
IP-precedence-to-DSCP  37-75
policed-DSCP  37-76
types of  37-13
marked-down actions  37-62, 37-68
marking, described  37-4, 37-9
overview  37-2
packet modification  37-20
policers
  configuring  37-62, 37-68, 37-72
  described  37-9
displaying  37-92
number of  37-40
types of  37-10
policies, attaching to an interface  37-9
policing
  described  37-4, 37-9
token bucket algorithm  37-10
policy maps
  characteristics of  37-59
displaying  37-93
hierarchical  37-9
hierarchical on SVIs  37-64
nonhierarchical on physical ports  37-59
QoS label, defined 37-4
 queues
 configuring egress characteristics 37-84
 configuring ingress characteristics 37-80
 high priority (expedite) 37-20, 37-91
 location of 37-14
 SRR, described 37-15
 WTD, described 37-14
 rewrites 37-20
 support for 1-13
 trust states
 bordering another domain 37-46
 described 37-5
 trusted device 37-44
 within the domain 37-42
 quality of service
 See QoS
 queries, IGMP 24-4
 query solicitation, IGMP 24-13

R

RADIUS
 attributes
 vendor-proprietary 6-38
 vendor-specific 6-36
 configuring
 accounting 6-35
 authentication 6-30
 authorization 6-34
 communication, global 6-28, 6-36
 communication, per-server 6-27, 6-28
 multiple UDP ports 6-28
 default configuration 6-27
 defining AAA server groups 6-32
 displaying the configuration 6-40
 identifying the server 6-27
 limiting the services to the user 6-34
 method list, defined 6-27
 operation of 6-19
 overview 6-18
 server load balancing 6-40
 suggested network environments 6-18
 support for 1-12
 tracking services accessed by user 6-35
 RADIUS Change of Authorization 6-20
 range
 macro 11-12
 of interfaces 11-10
 rapid convergence 19-10
 rapid per-VLAN spanning-tree plus
 See rapid PVST+
 rapid PVST+
 described 18-10
 IEEE 802.1Q trunking interoperability 18-11
 instances supported 18-10
 Rapid Spanning Tree Protocol
 See RSTP
 RARP 39-11
 RCP
 configuration files
 downloading B-18
 overview B-16
 preparing the server B-17
 uploading B-19
 image files
 deleting old image B-38
 downloading B-36
 preparing the server B-35
 uploading B-38
 reachability, tracking IP SLAs IP host 43-8
 readiness check
 port-based authentication
 configuring 9-41
 described 9-16, 9-41
 reconfirmation interval, VMPS, changing 13-30
 reconfirming dynamic VLAN membership 13-29
 recovery procedures 48-1
Index

redirect URL 9-19, 9-20, 9-63

redundancy
EtherChannel 38-2
HSRP 41-1
STP
  backbone 18-8
  multidrop backbone 20-5
  path cost 13-24
  port priority 13-23
redundant links and UplinkFast 20-15
reliable transport protocol, EIGRP 39-43
reloading software 3-26
Remote Authentication Dial-In User Service
  See RADIUS
Remote Copy Protocol
  See RCP
Remote Network Monitoring
  See RMON
Remote SPAN
  See RSPAN
remote SPAN 30-3
report suppression, IGMP
  described 24-6
  disabling 24-16, 25-11
resequencing ACL entries 35-15
reserved addresses in DHCP pools 22-28
resets, in BGP 39-57
resetting a UDLD-shutdown interface 29-6
responder, IP SLAs
  described 42-4
  enabling 42-7
response time, measuring with IP SLAs 42-4
restricted VLAN
  configuring 9-53
  described 9-22
  using with IEEE 802.1x 9-22
restricting access
  NTP services 5-8
  overview 6-1
passwords and privilege levels 6-2
RADIUS 6-18
TACACS+ 6-10
retry count, VMPS, changing 13-30
reverse address resolution 39-10
Reverse Address Resolution Protocol
  See RARP
RFC
  1112, IP multicast and IGMP 24-2
  1157, SNMPv1 33-2
  1166, IP addresses 39-8
  1305, NTP 5-2
  1587, NSSAs 39-31
  1757, RMON 31-2
  1901, SNMPv2C 33-2
  1902 to 1907, SNMPv2 33-2
  2236, IP multicast and IGMP 24-2
  2273-2275, SNMPv3 33-2
RFC 5176 Compliance 6-21
RIP
  advertisements 39-21
  authentication 39-24
  configuring 39-22
  default configuration 39-22
  described 39-21
  for IPv6 40-8
  hop counts 39-21
  split horizon 39-25
  summary addresses 39-25
  support for 1-14
RMON
  default configuration 31-3
  displaying status 31-6
  enabling alarms and events 31-3
  groups supported 31-2
  overview 31-1
  statistics
  collecting group Ethernet 31-6
  collecting group history 31-5
Index

support for 1-16

root guard
described 20-10
enabling 20-18
support for 1-8

root switch
MSTP 19-18
STP 18-16
route calculation timers, OSPF 39-39
route dampening, BGP 39-69
routed packets, ACLs on 35-39
routed ports
configuring 39-6
defined 11-4
IP addresses on 11-24, 39-6
route-map command 39-108
route maps
BGP 39-60
policy-based routing 39-106
router ACLs
defined 35-2
types of 35-4
route reflectors, BGP 39-68
router ID, OSPF 39-41
route selection, BGP 39-58
route summarization, OSPF 39-38
route targets, VPN 39-84
routing
default 39-4
dynamic 39-4
redistribution of information 39-101
static 39-4
routing domain confederation, BGP 39-67
Routing Information Protocol
See RIP
routing protocol administrative distances 39-100
RSPAN 30-3
and stack changes 30-10
characteristics 30-9
configuration guidelines 30-18
default configuration 30-11
destination ports 30-8
displaying status 30-29
in a switch stack 30-2
interaction with other features 30-9
monitored ports 30-6
monitoring ports 30-8
overview 1-16, 30-1
received traffic 30-5
session limits 30-12
sessions
creating 30-18
defined 30-4
limiting source traffic to specific VLANs 30-21
specifying monitored ports 30-18
with ingress traffic enabled 30-23
source ports 30-6
transmitted traffic 30-6
VLAN-based 30-7
RSTP
active topology 19-10
BPDU
format 19-13
processing 19-13
designated port, defined 19-9
designated switch, defined 19-9
interoperability with IEEE 802.1D
described 19-9
restarting migration process 19-27
topology changes 19-14
overview 19-9
port roles
described 19-9
synchronized 19-12
proposal-agreement handshake process 19-10
rapid convergence
cross-stack rapid convergence 19-11
described 19-10
edge ports and Port Fast  19-10
point-to-point links  19-10, 19-26
root ports  19-10
root port, defined  19-9
See also MSTP
running configuration
replacing  B-20, B-21
rolling back  B-20, B-21
saving  3-19

S

scheduled reloads  3-26
scheduling, IP SLAs operations  42-5
SDM
described  8-1
switch stack consideration  7-12
templates
configuring  8-5
number of  8-1
SDM template
configuring  8-4
dual IPv4 and IPv6  8-2
types of  8-1
secondary VLANs  16-2
secure HTTP client
configuring  6-55
displaying  6-56
secure HTTP server
configuring  6-54
displaying  6-56
secure MAC addresses
and switch stacks  26-18
deleting  26-16
maximum number of  26-10
types of  26-9
secure ports
and switch stacks  26-18
configuring  26-9
secure remote connections  6-46
Secure Shell
See SSH
Secure Socket Layer
See SSL
security, port  26-8
security features  1-10
sequence numbers in log messages  32-8
server mode, VTP  14-3
service-provider network, MSTP and RSTP  19-1
service-provider networks
and customer VLANs  17-2
and IEEE 802.1Q tunneling  17-1
Layer 2 protocols across  17-8
Layer 2 protocol tunneling for EtherChannels  17-9
set-request operation  33-4
severity levels, defining in system messages  32-9
shaped round robin
See SRR
show access-lists hw-summary command  35-22
show and more command output, filtering  2-9
show cdp traffic command  27-5
show configuration command  11-23
show forward command  48-18
show interfaces command  11-19, 11-23
show interfaces switchport  21-4
show l2protocol command  17-13, 17-15, 17-16
show lldp traffic command  28-11
show platform forward command  48-18
show running-config command
displaying ACLs  35-20, 35-21, 35-32, 35-35
interface description in  11-23
shutdown command on interfaces  11-29
shutdown threshold for Layer 2 protocol packets  17-11
Simple Network Management Protocol
See SNMP
single session ID  9-33
small-frame arrival rate, configuring  26-5
Smartports macros
applying Cisco-default macros 12-6
applying global parameter values 12-5, 12-6
applying macros 12-5
applying parameter values 12-5, 12-7
configuration guidelines 12-2
creating 12-4
default configuration 12-2
defined 12-1
displaying 12-8
tracing 12-3
SNAP 27-1
SNMP
accessing MIB variables with 33-4
agent
described 33-4
disabling 33-7
and IP SLAs 42-2
authentication level 33-10
community strings
configuring 33-8
overview 33-4
configuration examples 33-18
default configuration 33-6
engine ID 33-7
groups 33-6, 33-9
host 33-6
ifIndex values 33-5
in-band management 1-7
informs
and trap keyword 33-12
described 33-5
differences from traps 33-5
disabling 33-15
enabling 33-15
limiting access by TFTP servers 33-17
limiting system log messages to NMS 32-10
manager functions 1-6, 33-3
MIBs
location of A-1
supported A-1
notifications 33-5
overview 33-1, 33-4
security levels 33-3
setting CPU threshold notification 33-16
status, displaying 33-19
system contact and location 33-16
trap manager, configuring 33-14
traps
described 33-3, 33-5
differences from informs 33-5
disabling 33-15
enabling 33-12
enabling MAC address notification 5-22, 5-24, 5-26
overview 33-1, 33-4
types of 33-12
users 33-6, 33-9
versions supported 33-2
SNMP and Syslog Over IPv6 40-9
SNMPv1 33-2
SNMPv2C 33-2
SNMPv3 33-2
snooping, IGMP 24-2
software compatibility
See stacks, switch
software images
location in flash B-25
recovery procedures 48-2
scheduling reloads 3-26
tar file format, described B-25
See also downloading and uploading
source addresses
in IPv4 ACLs 35-12
in IPv6 ACLs 36-6
source-and-destination-IP address based forwarding, EtherChannel 38-8
source-and-destination MAC address forwarding, EtherChannel 38-8
source-IP address based forwarding, EtherChannel 38-8
source-MAC address forwarding, EtherChannel 38-8
Source-specific multicast
  See SSM
SPAN
  and stack changes 30-10
  configuration guidelines 30-12
  default configuration 30-11
  destination ports 30-8
  displaying status 30-29
  interaction with other features 30-9
  monitored ports 30-6
  monitoring ports 30-8
  overview 1-16, 30-1
  ports, restrictions 26-12
  received traffic 30-5
  session limits 30-12
  sessions
    configuring ingress forwarding 30-16, 30-24
    creating 30-13, 30-25
    defined 30-4
    limiting source traffic to specific VLANs 30-16
    removing destination (monitoring) ports 30-14
    specifying monitored ports 30-13, 30-25
    with ingress traffic enabled 30-15
  source ports 30-6
  transmitted traffic 30-6
  VLAN-based 30-7
spanning tree and native VLANs 13-17
Spanning Tree Protocol
  See STP
SPAN traffic 30-5
split horizon, RIP 39-25
SRR
  configuring
    shaped weights on egress queues 37-89
    shared weights on egress queues 37-90
    shared weights on ingress queues 37-82
  described 37-15
  shaped mode 37-15
  shared mode 37-15
  support for 1-13
SSH
  configuring 6-47
  described 1-7, 6-46
  encryption methods 6-46
  switch stack considerations 6-46, 7-18
  user authentication methods, supported 6-46
SSL
  configuration guidelines 6-52
  configuring a secure HTTP client 6-55
  configuring a secure HTTP server 6-53
  cryptographic software image 6-50
  described 6-50
  monitoring 6-56
SSM
  address management restrictions 45-25
  CGMP limitations 45-25
  configuration guidelines 45-25
  configuring 45-26
  differs from Internet standard multicast 45-23
  IGMP snooping 45-25
  IGMPv3 45-14, 45-23
  IGMPv3 Host Signalling 45-25
  IP address range 45-24
  monitoring 45-26
  operations 45-24
  PIM 45-14, 45-23
  state maintenance limitations 45-25
stack changes
  effects on
    IPv6 routing 40-11
stack changes, effects on
  ACL configuration 35-7
  CDP 27-2
  cross-stack EtherChannel 38-12
  EtherChannel 38-9
  fallback bridging 47-3
  HSRP 41-5
IEEE 802.1x port-based authentication 9-12
IGMP snooping 24-7
IP routing 39-5
IPv6 ACLs 36-4
MAC address tables 5-21
MSTP 19-8
multicast routing 45-10
MVR 24-18
port security 26-18
SDM template selection 8-3
SNMP 33-1
SPAN and RSPAN 30-10
STP 18-12
system message log 32-2
VLANs 13-7
VTP 14-8
stack master
  bridge ID (MAC address) 7-8
  defined 7-1
election 7-6
IPv6 40-11
re-election 7-6
See also stacks, switch
stack member
  accessing CLI of specific member 7-26
  configuring
    member number 7-24
    priority value 7-25
  defined 7-1
  displaying information of 7-27
IPv6 40-12
number 7-8
priority value 7-9
provisioning a new member 7-25
replacing 7-17
See also stacks, switch
stack member number 11-8
stack protocol version 7-12
stacks, switch
accessing CLI of specific member 7-26
assigning information
  member number 7-24
  priority value 7-25
provisioning a new member 7-25
auto-advise 7-14
auto-copy 7-13
auto-extract 7-13
auto-upgrade 7-13
bridge ID 7-8
CDP considerations 27-2
compatibility, software 7-12
configuration file 7-16
configuration guidelines 7-22
configuration scenarios 7-19
copying an image file from one member to another B-39
default configuration 7-21
description of 7-1
displaying information of 7-27
enabling persistent MAC address timer 7-22
hardware compatibility and SDM mismatch mode 7-12
HSRP considerations 41-5
incompatible software and image upgrades 7-16, B-39
IPv6 on 40-11
MAC address considerations 5-21
MAC address of 7-22
management connectivity 7-18
managing 7-1
membership 7-3
merged 7-3
MSTP instances supported 18-10
multicast routing, stack master and member roles 45-9
offline configuration
described 7-9
effects of adding a provisioned switch 7-10
effects of removing a provisioned switch 7-11
effects of replacing a provisioned switch 7-11
provisioned configuration, defined 7-9
provisioned switch, defined 7-9
provisioning a new member 7-25
partitioned 7-3, 48-9
provisioned switch
adding 7-10
removing 7-11
replacing 7-11
replacing a failed member 7-17
software compatibility 7-12
software image version 7-12
stack protocol version 7-12
STP
bridge ID 18-3
instances supported 18-10
root port selection 18-3
stack root switch election 18-3
system messages
hostnames in the display 32-1
remotely monitoring 32-2
system prompt consideration 5-14
system-wide configuration considerations 7-17
upgrading B-39
version-mismatch (VM) mode
automatic upgrades with auto-upgrade 7-13
described 7-13
examples 7-14
manual upgrades with auto-advising 7-14
upgrades with auto-extract 7-13
See also stack master and stack member
StackWise Plus technology, Cisco 1-3
See also stacks, switch
standby ip command 41-7
standby links 21-2
standby router 41-1
standby timers, HSRP 41-11
startup configuration
booting
manually 3-22
specific image 3-23
clearing B-20
configuration file
automatically downloading 3-21
specifying the filename 3-22
default boot configuration 3-21
static access ports
assigning to VLAN 13-10
defined 11-3, 13-3
static addresses
See also addresses
static IP routing 1-14
static MAC addressing 1-10
static routes
configuring 39-99
configuring for IPv6 40-22
understanding 40-8
static routing 39-4
static VLAN membership 13-2
statistics
802.1X 10-17
CDP 27-5
IEEE 802.1x 9-68
interface 11-28
IP multicast routing 45-67
LLDP 28-10
LLDP-MED 28-10
NMSP 28-10
OSPF 39-41
QoS ingress and egress 37-92
RMON group Ethernet 31-6
RMON group history 31-5
SNMP input and output 33-19
VTP 14-18
sticky learning 26-9
storm control
configuring 26-3
described 26-1
disabling 26-5
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP</td>
<td></td>
</tr>
<tr>
<td>Accelerating root port selection</td>
<td>20-4</td>
</tr>
<tr>
<td>BackboneFast</td>
<td></td>
</tr>
<tr>
<td>Described</td>
<td>20-7</td>
</tr>
<tr>
<td>Disabling</td>
<td>20-17</td>
</tr>
<tr>
<td>Enabling</td>
<td>20-16</td>
</tr>
<tr>
<td>BPDU filtering</td>
<td></td>
</tr>
<tr>
<td>Described</td>
<td>20-3</td>
</tr>
<tr>
<td>Disabling</td>
<td>20-15</td>
</tr>
<tr>
<td>Enabling</td>
<td>20-14</td>
</tr>
<tr>
<td>BPDU guard</td>
<td></td>
</tr>
<tr>
<td>Described</td>
<td>20-2</td>
</tr>
<tr>
<td>Disabling</td>
<td>20-14</td>
</tr>
<tr>
<td>Enabling</td>
<td>20-13</td>
</tr>
<tr>
<td>BPDU message exchange</td>
<td></td>
</tr>
<tr>
<td>Configuration guidelines</td>
<td>18-3, 20-12</td>
</tr>
<tr>
<td>Configuring</td>
<td></td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>18-23</td>
</tr>
<tr>
<td>Hello time</td>
<td>18-22</td>
</tr>
<tr>
<td>Maximum aging time</td>
<td>18-23</td>
</tr>
<tr>
<td>Path cost</td>
<td>18-20</td>
</tr>
<tr>
<td>Port priority</td>
<td>18-18</td>
</tr>
<tr>
<td>Root switch</td>
<td>18-16</td>
</tr>
<tr>
<td>Secondary root switch</td>
<td>18-18</td>
</tr>
<tr>
<td>Spanning-tree mode</td>
<td>18-15</td>
</tr>
<tr>
<td>Switch priority</td>
<td>18-21</td>
</tr>
<tr>
<td>Transmit hold-count</td>
<td>18-24</td>
</tr>
<tr>
<td>Counters, clearing</td>
<td>18-24</td>
</tr>
<tr>
<td>Cross-stack UplinkFast</td>
<td></td>
</tr>
<tr>
<td>Described</td>
<td>20-5</td>
</tr>
<tr>
<td>Enabling</td>
<td>20-16</td>
</tr>
<tr>
<td>Default configuration</td>
<td>18-13</td>
</tr>
<tr>
<td>Default optional feature configuration</td>
<td>20-12</td>
</tr>
<tr>
<td>Designated port, defined</td>
<td>18-4</td>
</tr>
<tr>
<td>Designated switch, defined</td>
<td>18-4</td>
</tr>
<tr>
<td>Detecting indirect link failures</td>
<td>20-8</td>
</tr>
<tr>
<td>Disabling</td>
<td>18-16</td>
</tr>
<tr>
<td>Displaying status</td>
<td>18-24</td>
</tr>
<tr>
<td>EtherChannel guard</td>
<td></td>
</tr>
<tr>
<td>Described</td>
<td>20-10</td>
</tr>
<tr>
<td>Disabling</td>
<td>20-17</td>
</tr>
<tr>
<td>Enabling</td>
<td>20-17</td>
</tr>
<tr>
<td>Extended system ID</td>
<td></td>
</tr>
<tr>
<td>Effects on root switch</td>
<td>18-16</td>
</tr>
<tr>
<td>Effects on the secondary root switch</td>
<td>18-18</td>
</tr>
<tr>
<td>Overview</td>
<td>18-4</td>
</tr>
<tr>
<td>Unexpected behavior</td>
<td>18-16</td>
</tr>
<tr>
<td>BPDU filtering</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.1D and bridge ID</td>
<td>18-4</td>
</tr>
<tr>
<td>IEEE 802.1D and multicast addresses</td>
<td>18-9</td>
</tr>
<tr>
<td>IEEE 802.1t and VLAN identifier</td>
<td>18-4</td>
</tr>
<tr>
<td>Instances supported</td>
<td>18-10</td>
</tr>
<tr>
<td>Interface state, blocking to forwarding</td>
<td>20-2</td>
</tr>
<tr>
<td>Interface states</td>
<td></td>
</tr>
<tr>
<td>Blocking</td>
<td>18-6</td>
</tr>
<tr>
<td>Disabled</td>
<td>18-7</td>
</tr>
<tr>
<td>Forwarding</td>
<td>18-6, 18-7</td>
</tr>
<tr>
<td>Learning</td>
<td>18-7</td>
</tr>
<tr>
<td>Listening</td>
<td>18-7</td>
</tr>
<tr>
<td>Overview</td>
<td>18-5</td>
</tr>
<tr>
<td>Interoperability and compatibility among modes</td>
<td>18-11</td>
</tr>
<tr>
<td>Keepalive messages</td>
<td>18-2</td>
</tr>
<tr>
<td>Layer 2 protocol tunneling</td>
<td>17-8</td>
</tr>
<tr>
<td>Limitations with IEEE 802.1Q trunks</td>
<td>18-11</td>
</tr>
<tr>
<td>Load sharing</td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td>13-22</td>
</tr>
<tr>
<td>Using path costs</td>
<td>13-24</td>
</tr>
<tr>
<td>Using port priorities</td>
<td>13-23</td>
</tr>
<tr>
<td>Loop guard</td>
<td></td>
</tr>
<tr>
<td>Described</td>
<td>20-11</td>
</tr>
<tr>
<td>Enabling</td>
<td>20-18</td>
</tr>
<tr>
<td>Modes supported</td>
<td>18-10</td>
</tr>
<tr>
<td>Multicast addresses, effect of</td>
<td>18-9</td>
</tr>
</tbody>
</table>
optional features supported 1-8
overview 18-2
path costs 13-24, 13-25
Port Fast
described 20-2
enabling 20-12
port priorities 13-23
preventing root switch selection 20-10
protocols supported 18-10
redundant connectivity 18-8
root guard
described 20-10
enabling 20-18
root port, defined 18-3
root port selection on a switch stack 18-3
root switch
configuring 18-16
effects of extended system ID 18-4, 18-16
election 18-3
unexpected behavior 18-16
shutdown Port Fast-enabled port 20-2
stack changes, effects of 18-12
status, displaying 18-24
superior BPDU 18-3
timers, described 18-22
UplinkFast
described 20-3
enabling 20-15
VLAN-bridge 18-12
stratum, NTP 5-2
stub areas, OSPF 39-37
stub routing
EIGRP 39-29
PIM 39-27
subdomains, private VLAN 16-1
subnet mask 39-8
subnet zero 39-8
success response, VMPS 13-27
summer time 5-13
SunNet Manager 1-6
supernet 39-9
supported port-based authentication methods 9-8
SVI autostate exclude
configuring 11-25
defined 11-6
SVI link state 11-6
SVIs
and IP unicast routing 39-6
and router ACLs 35-4
connecting VLANs 11-7
defined 11-5
routing between VLANs 13-2
switch 40-3
switch console port 1-7
Switch Database Management
See SDM
switched packets, ACLs on 35-37
Switched Port Analyzer
See SPAN
switched ports 11-2
switchport backup interface 21-4, 21-5
switchport block multicast command 26-8
switchport block unicast command 26-8
switchport command 11-17
switchport mode dot1q-tunnel command 17-6
switchport protected command 26-7
switch priority
MSTP 19-23
STP 18-21
switch software features 1-1
switch virtual interface
See SVI
synchronization, BGP 39-54
syslog
See system message logging
system capabilities TLV 28-2
system clock
configuring
daylight saving time  5-13
manually  5-11
summer time  5-13
time zones  5-12
displaying the time and date  5-12
overview  5-2
See also NTP
system description TLV  28-2
system message logging
  default configuration  32-4
  defining error message severity levels  32-9
  disabling  32-4
  displaying the configuration  32-14
  enabling  32-5
  facility keywords, described  32-14
  level keywords, described  32-10
  limiting messages  32-10
  message format  32-2
  overview  32-1
  sequence numbers, enabling and disabling  32-8
  setting the display destination device  32-5
  stack changes, effects of  32-2
  synchronizing log messages  32-6
  syslog facility  1-16
  time stamps, enabling and disabling  32-8
  UNIX syslog servers
    configuring the daemon  32-13
    configuring the logging facility  32-13
    facilities supported  32-14
system MTU
  and IS-IS LSPs  39-76
system MTU and IEEE 802.1Q tunneling  17-5
system name
  default configuration  5-15
  default setting  5-15
  manual configuration  5-15
  See also DNS
system name TLV  28-2
system prompt, default setting  5-14, 5-15
system resources, optimizing  8-1
system routing
  IS-IS  39-71
  ISO IGRP  39-71

T
TACACS+
  accounting, defined  6-11
  authentication, defined  6-11
  authorization, defined  6-11
  configuring
    accounting  6-17
    authentication key  6-13
    authorization  6-16
    login authentication  6-14
  default configuration  6-13
  displaying the configuration  6-17
  identifying the server  6-13
  limiting the services to the user  6-16
  operation of  6-12
  overview  6-10
  support for  1-12
  tracking services accessed by user  6-17
tagged packets
  IEEE 802.1Q  17-3
  Layer 2 protocol  17-8
tar files
  creating  B-7
  displaying the contents of  B-7
  extracting  B-8
  image file format  B-25
TCL script, registering and defining with embedded event manager  34-7
TDR  1-16
Telnet
  accessing management interfaces  2-10
  number of connections  1-7
  setting a password  6-6
templates, SDM 8-2
temporary self-signed certificate 6-51
Terminal Access Controller Access Control System Plus
  See TACACS+
terminal lines, setting a password 6-6
TFTP
  configuration files
    downloading B-12
    preparing the server B-11
    uploading B-13
  configuration files in base directory 3-8
  configuring for autoconfiguration 3-7
image files
  deleting B-29
  downloading B-27
  preparing the server B-27
  uploading B-29
  limiting access by servers 33-17
TFTP server 1-6
threshold, traffic level 26-2
threshold monitoring, IP SLAs 42-6
time
  See NTP and system clock
Time Domain Reflector
  See TDR
time-range command 35-17
time ranges in ACLs 35-17
time stamps in log messages 32-8
time zones 5-12
TLVs
  defined 28-1
  LLDP 28-2
  LLDP-MED 28-2
Token Ring VLANs
  support for 13-6
  VTP support 14-4
ToS 1-13
traceroute, Layer 2
  and ARP 48-12
  and CDP 48-12
  broadcast traffic 48-11
  described 48-11
  IP addresses and subnets 48-12
  MAC addresses and VLANs 48-12
  multicast traffic 48-12
  multiple devices on a port 48-12
  unicast traffic 48-11
  usage guidelines 48-12
traceroute command 48-14
  See also IP traceroute
tracked lists
  configuring 43-3
  types 43-3
tracked objects
  by Boolean expression 43-3
  by threshold percentage 43-5
  by threshold weight 43-4
tracking interface line-protocol state 43-2
tracking IP routing state 43-2
tracking objects 43-1
tracking process 43-1
track state, tracking IP SLAs 43-8
traffic
  blocking flooded 26-8
  fragmented 35-5
  fragmented IPv6 36-2
  unfragmented 35-5
traffic policing 1-13
 traffic suppression 26-1
transmit hold-count
  see STP
trap-door mechanism 3-2
traps
  configuring MAC address notification 5-22, 5-24, 5-26
  configuring managers 33-12
  defined 33-3
  enabling 5-22, 5-24, 5-26, 33-12
notification types
overview
troubleshooting
connection kinds
CPU load monitoring
detecting unidirectional links
displaying crash information
PIMv1 and PIMv2 interoperability problems
setting packet forwarding
showing forward command
with CiscoWorks
with debug commands
with ping
with system message logging
with traceroute
trunk failover
See link-state tracking
trunking encapsulation
trunk ports
configuring
defined
encapsulation
trunks
allowed-VLAN list
configuring
load sharing
setting STP path costs
using STP port priorities
native VLAN for untagged traffic
parallel
pruning-eligible list
to non-DTP device
trusted boundary for QoS
trustpoints, CA
trustpoints, CA
tunneling
defined
IEEE 802.1Q
Layer 2 protocol
basestation
tunnel ports
defined
described
IEEE 802.1Q, configuring
incompatibilities with other features
twisted-pair Ethernet, detecting unidirectional links
type of service
See ToS
UDLD
configuration guidelines
default configuration
disabling
globally
on fiber-optic interfaces
per interface
echoing detection mechanism
enabling
globally
per interface
Layer 2 protocol tunneling
link-detection mechanism
neighbor database
overview
resetting an interface
status, displaying
support for
UDP, configuring
UDP jitter, configuring
UDP jitter operation, IP SLAs
unauthorized ports with IEEE 802.1x
unicast MAC address filtering
and adding static addresses 5-29
and broadcast MAC addresses 5-28
and CPU packets 5-28
and multicast addresses 5-28
and router MAC addresses 5-28
configuration guidelines 5-28
described 5-28
unicast storm 26-1
unicast storm control command 26-4
unicast traffic, blocking 26-8
UniDirectional Link Detection protocol
See UDLD
universal software image
cryptographic 1-1
feature set
   IP base 1-2
   IP services 1-2
noncryptographic 1-1
UNIX syslog servers
daemon configuration 32-13
   facilities supported 32-14
   message logging configuration 32-13
unrecognized Type-Length-Value (TLV) support 14-4
upgrading software images
See downloading
UplinkFast
described 20-3
disabling 20-16
enabling 20-15
support for 1-8
uploading
configuration files
   preparing B-11, B-14, B-17
   reasons for B-9
   using FTP B-15
   using RCP B-19
   using TFTP B-13
image files
   preparing B-27, B-30, B-35
   reasons for B-24
   using FTP B-33
   using RCP B-38
   using TFTP B-29
User Datagram Protocol
See UDP
user EXEC mode 2-2
username-based authentication 6-6

V

version-dependent transparent mode 14-5
version-mismatch (VM) mode
   automatic upgrades with auto-upgrade 7-13
described 7-13
displaying 7-13
   manual upgrades with auto-advice 7-14
   upgrades with auto-extract 7-13
Virtual Private Network
See VPN
virtual router 41-1, 41-2
virtual switches and PAgP 38-6
vlan.dat file 13-5
VLAN 1
   disabling on a trunk port 13-20
   minimization 13-20
VLAN ACLs
See VLAN maps
vlan-assignment response, VMPS 13-26
VLAN configuration
   at bootup 13-7
   saving 13-7
VLAN configuration mode 2-2
VLAN database
   and startup configuration file 13-7
   and VTP 14-1, 34-1
   VLAN configuration saved in 13-7
VLANs saved in 13-4
vlan dot1q tag native command 17-5
VLAN filtering and SPAN  
30-7
vlan global configuration command  
13-7
VLAN ID, discovering  
5-31
VLAN link state  
11-6
VLAN load balancing on flex links
configuration guidelines  
21-8
described  
21-3
VLAN management domain  
14-2
VLAN Management Policy Server
See VMPS
VLAN map entries, order of  
35-31
VLAN maps
applying  
35-35
common uses for  
35-35
configuration guidelines  
35-31
configuring  
35-30
creating  
35-32
defined  
35-2
denying access to a server example  
35-35
denying and permitting packets  
35-33
displaying  
35-41
examples of ACLs and VLAN maps  
35-33
removing  
35-35
support for  
1-10
VLAN membership
confirming  
13-29
modes  
13-3
VLAN Query Protocol
See VQP
VLANs
adding  
13-8
adding to VLAN database  
13-8
aging dynamic addresses  
18-9
allowed on trunk  
13-20
and spanning-tree instances  
13-3, 13-6, 13-11
configuration guidelines, extended-range VLANs  
13-11
configuration guidelines, normal-range VLANs  
13-6
configuring IDs 1006 to 4094  
13-11
connecting through SVIs  
11-7
customer numbering in service-provider networks  
17-3
default configuration  
13-8
deleting  
13-9
described  
11-2, 13-1
displaying  
13-14
extended-range  
13-1, 13-11
features  
1-9
illustrated  
13-2
internal  
13-12
in the switch stack  
13-7
limiting source traffic with RSPAN  
30-21
limiting source traffic with SPAN  
30-16
modifying  
13-8
multicast  
24-18
native, configuring  
13-22
normal-range  
13-1, 13-4
number supported  
1-9
parameters  
13-5
port membership modes  
13-3
static-access ports  
13-10
STP and IEEE 802.1Q trunks  
18-11
supported  
13-2
Token Ring  
13-6
traffic between  
13-2
VLAN-bridge STP  
18-12, 47-2
VTP modes  
14-3
VLAN Trunking Protocol
See VTP
VLAN trunks  
13-15
VMPS
administering  
13-30
configuration example  
13-31
configuration guidelines  
13-28
default configuration  
13-27
description  
13-26
dynamic port membership
described 13-27
reconfirming 13-30
troubleshooting 13-31
mapping MAC addresses to VLANs 13-26
monitoring 13-30
reconfirmation interval, changing 13-30
reconfirming membership 13-29
retry count, changing 13-30
voice aware 802.1x security
port-based authentication
configuring 9-42
described 9-31, 9-42
voice-over-IP 15-1
voice VLAN
Cisco 7960 phone, port connections 15-1
configuration guidelines 15-3
configuring IP phones for data traffic
override CoS of incoming frame 15-6
trust CoS priority of incoming frame 15-6
configuring ports for voice traffic in
IEEE 802.1p priority tagged frames 15-5
IEEE 802.1Q frames 15-5
connecting to an IP phone 15-4
default configuration 15-3
described 15-1
displaying 15-7
IP phone data traffic, described 15-2
IP phone voice traffic, described 15-2
VPN
configuring routing in 39-91
forwarding 39-84
in service provider networks 39-82
routes 39-83
VPN routing and forwarding table
See VRF
VQP 1-9, 13-26
VRF
defining 39-84
tables 39-82
VRF-aware services
ARP 39-87
configuring 39-86
ftp 39-89
HSRP 39-88
ping 39-87
RADIUS 39-90
SNMP 39-87
syslog 39-89
tftp 39-89
trace route 39-89
VRFs, configuring multicast 39-90
VTP
adding a client to a domain 14-17
advertisements 13-18, 14-4
and extended-range VLANs 13-3, 14-2
and normal-range VLANs 13-2, 14-2
client mode, configuring 14-13
configuration
guidelines 14-9
requirements 14-11
saving 14-9
configuration requirements 14-11
configuration revision number
guideline 14-17
resetting 14-17
consistency checks 14-5
default configuration 14-8
described 14-1
domain names 14-9
domains 14-2
Layer 2 protocol tunneling 17-8
modes
client 14-3
off 14-3
server 14-3
transitions 14-3
transparent 14-3
monitoring 14-18
Index

passwords  14-10
pruning
  disabling  14-16
  enabling  14-16
examples  14-7
overview  14-6
support for  1-9
pruning-eligible list, changing  13-21
server mode, configuring  14-14
statistics  14-18
support for  1-9
Token Ring support  14-4
transparent mode, configuring  14-11
using  14-1
Version
  enabling  14-15
version, guidelines  14-10
Version 1  14-5
Version 2
  configuration guidelines  14-10
  overview  14-4
Version 3
  overview  14-5

W

WCCP
  authentication  44-4
  configuration guidelines  44-6
  default configuration  44-6
  described  44-2
  displaying  44-10
  dynamic service groups  44-4
  enabling  44-6
  features unsupported  44-5
  forwarding method  44-3
  Layer-2 header rewrite  44-3
  MD5 security  44-4
  message exchange  44-3
  monitoring and maintaining  44-10
  negotiation  44-3
  packet redirection  44-4
  packet-return method  44-3
  redirecting traffic received from a client  44-6
  setting the password  44-7
  unsupported WCCPv2 features  44-5
web authentication  9-16
  configuring  10-16
  described  1-10
web-based authentication
  customizeable web pages  10-6
  description  10-1
  web-based authentication, interactions with other features  10-7
Web Cache Communication Protocol
  See WCCP
weighted tail drop
  See WTD
weight thresholds in tracked lists  43-4
wired location service
  configuring  28-9
  displaying  28-10
  location TLV  28-3
  understanding  28-3
wizards  1-3
WTD
  described  37-14
  setting thresholds
    egress queue-sets  37-85
    ingress queues  37-81
  support for  1-13