Rockwell Automation and Cisco Four Key Initiatives:

- **Common Technology View:**
 A single scalable architecture, using open Ethernet/IP™ standard networking technologies, is paramount to enable the Industrial Internet of Things for achieving the flexibility, visibility and efficiency required in a competitive manufacturing environment.

- **Converged Plantwide Ethernet Architectures:**
 Collection of tested and validated architectures developed by subject matter authorities at Cisco, Panduit, and Rockwell Automation. The content of CPwE is relevant to both Operational Technology (OT) and Information Technology (IT) disciplines and consists of documented architectures, best practices, guidance, and configuration settings to help manufacturers with design and deployment of a scalable, reliable, safe, secure, and future-ready plant-wide industrial network infrastructure.

- **Joint Product Collaboration:**

- **People and Process Optimization:**
 Education and services to facilitate Operational Technology (OT) and Information Technology (IT) convergence, which helps to assist with successful architecture deployment, and helps to enable efficient operations that allow critical resources to focus on increasing innovation and productivity.

Parallel Redundancy Protocol within a Converged Plantwide Ethernet Architecture

White Paper

April 2019
Parallel Redundancy Protocol within a Converged Plantwide Ethernet Architecture

The prevailing trend in Industrial Automation and Control System (IACS) networking is the convergence of technology, specifically IACS operational technology (OT) with information technology (IT). Converged Plantwide Ethernet (CPwE) helps to enable IACS network and security technology and OT-IT persona convergence through the use of standard Ethernet, Internet Protocol (IP), network services, security services, and EtherNet/IP. A highly-available converged plant-wide IACS architecture helps to enable the Industrial Internet of Things (IIoT).

Business practices, corporate standards, policies, industry standards, and tolerance to risk are key factors in determining the degree of resiliency and application availability required within an IACS plant-wide architecture, e.g., non-resilient LAN, resilient LAN, or redundant LANs. A highly-available network architecture within an IACS application plays a pivotal role in helping to minimize the risk of IACS application shutdowns while helping to maximize overall plant uptime.

A holistic resilient plant-wide network architecture is made up of multiple technologies (logical and physical) deployed at different levels within the plant. When selecting a resiliency technology, various plant application factors should be evaluated, including the physical layout of IACS devices (geographic dispersion), recovery time performance, uplink media type, tolerance to data latency and jitter, and future-ready requirements. For more information on resiliency technology, refer to Deploying a Resilient Converged Plantwide Ethernet Architecture (CPwE Resiliency) Design and Implementation Guide (DIG).

Deploying Parallel Redundancy Protocol within a Converged Plantwide Ethernet Architecture (CPwE PRP) DIG outlines several use cases for designing and deploying PRP technology with redundant network infrastructure across plant-wide IACS applications. CPwE PRP is an extension to CPwE Resiliency and was architected, tested and validated by Cisco Systems and Rockwell Automation with assistance by Panduit.

CPwE Overview

CPwE is the underlying architecture that provides standard network and security services for control and information disciplines, devices, and equipment found in modern IACS applications. The CPwE architectures (Figure 1) were architected, tested and validated to provide design and implementation guidance, test results, and documented configuration settings. This can help to achieve the real-time communication, reliability, scalability, security, and resiliency requirements of modern IACS applications.
Successful deployment of IIoT IACS applications within CPwE Architectures (Figure 1) depends on a network infrastructure design that addresses IACS application requirements. The content of CPwE, which is relevant to both OT and IT disciplines, consists of documented architectures and key tenets from OT and IT to help achieve reliable, secure and real-time communications to support IIoT IACS applications. CPwE key tenets include:

- **Smart IIoT Devices**—controllers, I/O, drives, instrumentation, actuators and analytics
- **Zoning (segmentation)**—smaller connected LANs, functional areas and security groups
- **Managed Infrastructure**—managed industrial Ethernet switches (IES) and industrial firewalls
- **Resiliency**—robust physical layer and resilient or redundant topologies with resiliency protocols
- **Time-critical data**—data prioritization and time synchronization via CIP Sync™ and IEEE-1588 Precision Time Protocol (PTP)
- **Wireless**—unified wireless LAN (WLAN) to enable mobility for personnel and equipment
- **Holistic Defense-in-Depth Security**—multiple layers of diverse technologies for threat detection and prevention, implemented by different persona (e.g. OT and IT) and applied at different levels of the plant-wide IACS architecture
- **Convergence-ready**—seamless plant-wide integration by trusted partner applications
Parallel Redundancy Protocol within a Converged Plantwide Ethernet Architecture

CPwE Parallel Redundancy Protocol Solution Use Cases

An IACS is deployed in a wide variety of discrete and process manufacturing industries such as automotive, pharmaceuticals, consumer packaged goods, pulp and paper, oil and gas, mining, and energy. IACS applications are made up of multiple control and information disciplines such as continuous process, batch, discrete, and hybrid combinations. One of the challenges facing industrial operations is the industrial hardening of standard Ethernet and IP-converged IACS networking technologies to take advantage of the business benefits associated with IIoT. A high-availability network architecture (Figure 2) can help to reduce the impact of a network failure on a mission-critical IIoT IACS application.

Parallel Redundancy Protocol (PRP) is a multiple-fault tolerant (depending on topology) standard defined in IEC 62439-3 and is adopted in the ODVA, Inc. EtherNet/IP specification. PRP technology creates seamless network redundancy by allowing PRP enabled IACS devices to send duplicate Ethernet frames over two independent Local Area Networks (LANs). If a failure occurs in one of the LANs, traffic continues to flow through the other LAN uninterrupted with zero recovery time.

An IACS device enabled with PRP technology has two ports that operate in parallel and attach to two independent LANs (Figure 2), e.g., LAN A and LAN B. This type of IACS device is known as a PRP double attached node (DAN). During normal network operation, an IACS DAN simultaneously sends and receives duplicate Ethernet frames across both LAN A and LAN B. The receiving IACS DAN accepts whichever frame arrives first and discards the subsequent copy. Non-PRP IACS devices, known as a PRP Virtual DAN (VDAN), utilize a PRP Redundancy Box (RedBox) to connect to the two independent LANs (Figure 2). The RedBox functions similarly to the DAN; a PRP enabled IES is an example of a RedBox.

In contrast, other resiliency technologies are typically single-fault tolerant, are a single LAN, and utilize redundant path topologies (e.g., ring and redundant star). A resiliency protocol (e.g., Device Level Ring) is used to block one physical path while forwarding Ethernet frames along the other physical path. This helps to avoid Layer 2 loops. Network convergence times vary across resiliency technologies. Convergence time disruption is defined as the time it takes to discover a failure (e.g., link or device) along a path, unblock the blocked path, then start forwarding Ethernet frames along that unblocked path. For example, the convergence time for the ODVA, Inc. Device Level Ring (DLR) protocol standard is 3 ms.

CPwE PRP outlines the concepts, requirements, and technology solutions for reference designs developed around a specific set of priority use cases. These use cases were tested for solution functional validation with limited scale by Cisco Systems and Rockwell Automation with assistance by Panduit. This helps support a redundant converged plant-wide EtherNet/IP IACS architecture.

The CPwE PRP DIG includes:

- Parallel Redundancy Protocol technology overview
- Design and configuration considerations for plant-wide IACS PRP deployments
 - Topology choices
 - PRP devices— e.g., DAN, VDAN, SAN, and RedBox
 - Distribution switch selection

Note
This release of the CPwE architecture focuses on EtherNet/IP, which uses the ODVA, Inc. Common Industrial Protocol (CIP™), and is ready for the Industrial Internet of Things (IIoT). For more information on EtherNet/IP, see odva.org at the following URL:

- http://www.odva.org/Technology-Standards/EtherNet-IP/Overview
CPwE Resilient IACS Architectures Overview

Protecting availability for IACS assets requires a defense-in-depth approach where different solutions are needed to address various network resiliency requirements for a plant-wide architecture. This section summarizes the existing Cisco, Panduit and Rockwell Automation CPwE Cisco Validated Designs (CVDs) and Cisco Reference Designs (CRDs) that address different aspects of availability for IIoT IACS applications.

- Deploying A Resilient Converged Plantwide Ethernet Architecture Design and Implementation Guide outlines several use cases for designing and deploying resilient plant-wide architectures for IACS applications, utilizing a robust physical layer and resilient topologies with resiliency protocols.
- Deploying Device Level Ring within a Converged Plantwide Ethernet Architecture Design Guide outlines several use cases for designing and deploying DLR technology with IACS device-level, switch-level, and mixed device/switch-level single and multiple ring topologies across OEM and plant-wide IACS applications.
Summary

CPwE is a collection of tested and validated architectures. The testing and validation follow the Cisco Validated Design (CVD) and Cisco Reference Design (CRD) methodologies. The content of CPwE, which is relevant to both operational technology (OT) and informational technology (IT) disciplines, consists of documented architectures, best practices, guidance, and configuration settings to help industrial operations and OEMs with the design and deployment of a scalable, reliable, secure, and future-ready plant-wide industrial network infrastructure. CPwE can also help industrial operations and OEMs achieve cost reduction benefits using proven designs that can facilitate quicker deployment while helping to minimize risk in deploying new technology. CPwE is brought to market through an ecosystem consisting of Cisco, Panduit, and Rockwell Automation emergent from the strategic alliance between Cisco Systems and Rockwell Automation.

The Deploying Parallel Redundancy Protocol within a Converged Plantwide Ethernet Architecture Design and Implementation Guide (DIG) outlines several use cases for designing and deploying PRP technology and topologies throughout a plant-wide Industrial Automation and Control System (IACS) network infrastructure. The CPwE PRP DIG highlights the key IACS application requirements, technology, and supporting design considerations to help with the successful design and deployment of these specific use cases within the CPwE framework. CPwE PRP was architected, tested, and validated by Cisco Systems and Rockwell Automation with assistance by Panduit.

More information on CPwE Design and Implementation Guides can be found at the following URLs:

- Rockwell Automation site:
- Cisco site:
Parallel Redundancy Protocol within a Converged Plantwide Ethernet Architecture

Summary

Panduit Corp. is a world-class provider of engineered, flexible, end-to-end electrical and network connectivity infrastructure solutions that provides businesses with the ability to keep pace with a connected world. Our robust partner ecosystem, global staff, and unmatched service and support make Panduit a valuable and trusted partner.

www.panduit.com

Cisco is the worldwide leader in networking that transforms how people connect, communicate and collaborate. Information about Cisco can be found at www.cisco.com. For ongoing news, please go to http://newsroom.cisco.com. Cisco equipment in Europe is supplied by Cisco Systems International BV, a wholly owned subsidiary of Cisco Systems, Inc.

www.cisco.com

Rockwell Automation is a leading provider of power, control and information solutions that enable customers to be more productive and the world more sustainable. In support of smart manufacturing concepts, Rockwell Automation helps customers maximize value and prepare for their future by building a Connected Enterprise.

www.rockwellautomation.com

© 2019 Cisco Systems, Inc., Panduit Corp. and Rockwell Automation, Inc. and all rights reserved.