MPLS-Based VPN MAN Reference Topology

MAN Topology

The MAN topology described in Figure 3-1 shows a network that serves three different organizations in a single corporation.

Figure 3-1 Typical Self-Managed MPLS MAN Deployment

This corporate network spans five different locations: large campus (LC), medium campus (MC), two small campuses (SC1, SC2), and two data centers (DC1, DC2).
Each organization requires that their traffic be kept separate from the traffic of any other organization. Within each organization, voice and data traffic should also be separated. To meet these requirements, traffic is segmented into five different VPNs:

- **Red-data** to serve data traffic in the Red organization
- **Red-voice** to serve voice traffic in the Red organization
- **Blue-data** to serve data traffic in the Blue organization
- **Blue-voice** to serve voice traffic in the Blue organization
- **Green-data** to serve the Green organization

The Blue organization resides in a large campus (LC) and a small campus 1 (SC1). The Red organization resides in a medium campus (MC). Data center 2 (DC2) serves both the Blue and Red organizations. Data center 1 (DC1) serves only the Red organization. The Blue and Green organizations are using EIGRP and the Red organization is using OSPF to relay VPN subnet information.

Because voice and data traffic for each VPN user need to be segmented end-to-end, it is essential that the segmentation starts on the first Layer 3 device in the path. Note that segmentation from the access layer to a distribution layer is maintained using VLANs. Multi-VRF is deployed on the distribution layer devices (DLs), which are the first Layer 3 devices to maintain and carry the segmentation throughout the network. Users in each VLAN are directly mapped to associated VRFs on the Multi-VRF devices (DL switches) and the traffic is kept separate as it traverses through each campus and data center.

Because EIGRP and OSPF are widely adapted routing protocols in enterprise networks, testing is done with EIGRP as a core IGP and then repeated using OSPF. Note that this does not affect the VPN site routing protocols in use. The Blue and Green organizations continue to use EIGRP and the Red organization continues to use OSPF for distributing each VLAN subnet into MPLS PE regardless of the IGP used in the core.

Frame-mode unsolicited downstream on demand LDP mode is used to allocate and distribute MPLS labels. The traffic in the core is switched based on the pre-calculated incoming and outgoing labels.

Notice that dual-homing at the MPLS edge as well as redundant links in the core and distribution layer to MPLS edge exist. For example, DL1, which connects red-data and red-voice VPNs, is dual-homed to both PE1 and PE2. The distribution layer to the MPLS edge, as well as the load balancing in the core, is done by IGP Cisco Express Forwarding. To make sure the traffic is load balanced between ingress and egress edge points, MP-iBGP multipath load balancing is enabled on all the PEs. To ensure multiple paths are stored in the forwarding tables, unique RDs are used on each PE for the same VPN.

The network also has backdoor links between sites DC2 and MC for the Red organization and between sites LC and DC2 for the Blue organization. The backdoor links are not to be used for load balancing with the MPLS VPN network, but are backup links to the MPLS VPN network. To prevent routing loops for the Red organization, OSPF sham link is configured on PE3, PE4, PE7, and PE8. To prevent routing loops for the Blue organization, EIGRP SoO is configured on all the Blue site-connected PEs.

- Core AS is 1 when EIGRP is used as the IGP.
- Core area is 0 when OSPF is used as the IGP.
- MP-iBGP peers are in AS 1.
- EIGRP edge is using AS 10 for blue-data, 11 for blue-voice, and 12 for green-data.
- The Red organization uses OSPF Area 0.

VPN Information

Table 3-1 shows VPN information.
Table 3-1 VPN Information

<table>
<thead>
<tr>
<th>Organization</th>
<th>VPN Name</th>
<th>RD</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>blue-data</td>
<td>10:1055</td>
<td>10:105</td>
</tr>
<tr>
<td></td>
<td>blue-voice</td>
<td>10:1066</td>
<td>10:106</td>
</tr>
<tr>
<td>Green</td>
<td>green-data</td>
<td>10:107</td>
<td>10:107</td>
</tr>
<tr>
<td>Red</td>
<td>red-data</td>
<td>10:1031</td>
<td>10:103</td>
</tr>
<tr>
<td></td>
<td>red-voice</td>
<td>10:1042</td>
<td>10:104</td>
</tr>
</tbody>
</table>

Inventory of Devices

Table 3-2 lists an inventory of devices.

Table 3-2 Inventory of Devices

<table>
<thead>
<tr>
<th>Reference</th>
<th>Actual</th>
<th>Loop0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC1</td>
<td>PE1 7600-DC1-PE1</td>
<td>125.1.125.5/32</td>
</tr>
<tr>
<td></td>
<td>PE2 7600-DC1-PE2</td>
<td>125.1.125.6/32</td>
</tr>
<tr>
<td></td>
<td>SS1 7600-DC1-SS1</td>
<td>125.1.125.17/32</td>
</tr>
<tr>
<td>DC2</td>
<td>P1 12k-DC2-P1</td>
<td>125.1.125.1/32</td>
</tr>
<tr>
<td></td>
<td>P2 7600-DC2-P2</td>
<td>125.1.125.2/32</td>
</tr>
<tr>
<td></td>
<td>RR1 7200-DC2-RR1</td>
<td>125.1.125.15/32</td>
</tr>
<tr>
<td></td>
<td>PE4 12k-DC2-P4</td>
<td>125.1.125.8/32</td>
</tr>
<tr>
<td></td>
<td>PE3 7600-DC2-PE3</td>
<td>125.1.125.7/32</td>
</tr>
<tr>
<td>LC</td>
<td>P3 12k-LC-P3</td>
<td>125.1.125.3/32</td>
</tr>
<tr>
<td></td>
<td>PE5 7600-LC-PE5</td>
<td>125.1.125.9/32</td>
</tr>
<tr>
<td></td>
<td>PE6 7304-LC-PE6</td>
<td>125.1.125.10/32</td>
</tr>
<tr>
<td></td>
<td>RR2 7200-LC-RR2</td>
<td>125.1.125.16/32</td>
</tr>
<tr>
<td></td>
<td>P4 7600-LC-P4</td>
<td>125.1.125.4/32</td>
</tr>
<tr>
<td></td>
<td>SS2 7600-LC-SS2</td>
<td>125.1.125.18/32</td>
</tr>
<tr>
<td>MC</td>
<td>PE8 7600-MC-PE8</td>
<td>125.1.125.12/32</td>
</tr>
<tr>
<td></td>
<td>PE7 7600-MC-PE7</td>
<td>125.1.125.11/32</td>
</tr>
<tr>
<td>SC1</td>
<td>PE9 7200-SC1-PE9</td>
<td>125.1.125.13/32</td>
</tr>
<tr>
<td>SC2</td>
<td>PE10 3750-SC2-PE10</td>
<td>125.1.125.14/32</td>
</tr>
</tbody>
</table>
Building a MAN MPLS VPN Network

Layer 1 and some Layer 2 as well as IP addresses are enabled on the interfaces. Interfaces are in up and up spoofing mode.

To build a MAN MPLS VPN network, complete the following steps:

Step 1 Build the MPLS core:
 a. Enable EIGRP (or OSPF) on the core routers, RR, and PE core-facing interfaces.
 b. Enable Cisco Express Forwarding:

 Router(config)# ip cef

 c. Select the LDP router id. Enable LDP on the core routers, RR, and PE core-facing interfaces:

 Router(config)# mpls ldp router-id loopback0 force

 Router(config)# interface interface #

 Router(config)# mpls ip

 Router(config)# mpls label protocol ldp

Step 2 Build the MPLS Layer 3 VPNs:
 a. Enable MP-iBGP on PEs and establish BGP peering among all the PE routers and RRs.

 Although route reflectors are not necessary, they are used for scalability purpose. BGPv4 requires
 that all the iBGP devices be fully meshed. With route reflector in use, PEs would only have to peer
 with a route reflector instead of peering with each other. This reduces having to fully mesh PEs by
 n(n-1), n being total numbers of PEs. As the RRs do not need to be in the data path, they could be
 local on any router that does not require a powerful switching capacity.

 When route reflectors are in use, and all the outgoing updates have the same policy, it further helps
 fine tune the network by using peer-groups on route reflectors. This reduces the number of outgoing
 updates (per client) that a route reflector has to generate. Here two route reflectors are used for high
 availability purpose. All the PEs peer with RR instead of with each other.

 PEs peer with route reflectors to exchange VPNv4 routing information:

 7200-DC2-RR1(config)# router bgp 1
 7200-DC2-RR1(config-router)#

 Route reflectors peer with PEs to reflect VPNv4 routing information learned from other PEs:

 Peer-Group Setup:
 7200-DC2-RR1(config)# router bgp 1
 7200-DC2-RR1(config-router)# neighbor CampusPE peer-group
 7200-DC2-RR1(config)# neighbor CampusPE remote-as 1
 7200-DC2-RR1(config)# neighbor CampusPE update-source Loopback0
 7200-DC2-RR1(config)# neighbor <PE loopback#> peer-group CampusPE

 VPNv4 BGP peering between PEs and RRs on a route reflector:

 7200-DC2-RR1(config-router)# address-family vpnv4
 7200-DC2-RR1(config-router-af)# neighbor CampusPE activate
 7200-DC2-RR1(config-router-af)# neighbor CampusPE route-reflector-client
 7200-DC2-RR1(config-router-af)# neighbor CampusPE send-community extended
 7200-DC2-RR1(config-router-af)# neighbor <PE loopback#> peer-group CampusPE
VPNv4 BGP peering between PEs and RRs on a PE.

Enable PEs to exchange VPNv4 routing information to the RRs.

```
7600-DC1-PE1(config)#router bgp 1
7600-DC1-PE1(config-router)#no synchronization
7600-DC1-PE1(config-router)#bgp log-neighbor-changes
7600-DC1-PE1(config-router)#neighbor <RR1 loopback ip#> remote-as 1
7600-DC1-PE1(config-router)#neighbor <RR1 loopback ip#> update-source Loopback0
7600-DC1-PE1(config-router)# address-family vpnv4
7600-DC1-PE1(config-router-af)# neighbor <RR1 loopback ip#> activate
7600-DC1-PE1(config-router-af)# neighbor 125.1.125.15 send-community extended
```

If the network does not have RRs, set up VPNv4 peering with other PEs in the network by using the PEs loopback IP addresses. It is important to set up BGP peering before VPN site routing information is redistributed into BGP for easier management and troubleshooting of the network.

b. Create a VPN.

MPLS allows support for multiple VPNs in a scalable way. VLANs terminating on the distribution layer can be individually mapped into a VRF with its own routing instance. The VRF-name is a unique and case-sensitive value. It is used to identify the VRF.

```
7600-DC1-PE1(config)#ip vrf vrf name
7600-DC1-PE1(config)#ip vrf red-data
```

c. Create an RD under its associated VRF.

Use a unique RD per VRF.

```
7600-DC1-PE1(config-vrf)#rd route-distinguisher unique value
7600-DC1-PE1(config-vrf)#rd 10:1031
```

Note You can assign only one RD to a VRF. If an RD needs to be changed for any reason after VRFs are operational, make sure to save the entire VRF-related configuration. Changing the RD requires removing the current RD, which removes the associated VRF. VPN site routes as well as MP-iBGP redistribution also need to be reconfigured.

d. Create an RT under its associated VRF.

```
7600-DC1-PE1(config-vrf)#route-target {import | export | both} route-target
7600-DC1-PE1(config-vrf)#route-target export 10:103
7600-DC1-PE1(config-vrf)#route-target import 10:103
```

e. Bind a VRF to an interface.

To specify the interfaces belonging to a VPN (VRF), use the following command:

```
Router(config)#interface interface #
Router(config-if)#ip vrf forwarding <vrf-name>
7600-DC1-PE1(config)#interface GigabitEthernet1/7.1
7600-DC1-PE1(config-subif)# ip vrf forwarding red-data
```

Note You can only bind one VRF to an interface. After an interface is bound to a VRF, its IP address is not be part of the global routing table. You need to examine the associated VRF instance.

f. Redistribute VPN site routing information into MP-iBGP.
Reachability information for the adjacent VPN sites at the ingress PE needs to be sent to the egress PE so that it can update its adjacent VPN sites. To establish the connectivity between two VPN sites, redistribute routing into MP-iBGP at the ingress PE and back to the remote site IGP at the egress PE.

For OSPF:

```
7600-DC1-PE1(config)#router bgp 1
7600-DC1-PE1(config-router)#address-family ipv4 vrf red-data

7600-DC1-PE1(config-router-af)# redistribute ospf 2 vrf red-data match internal external 1 external 2

7600-DC1-PE1(config-router-af)# maximum-paths ibgp unequal-cost 6

7600-DC1-PE1(config-router-af)# no auto-summary
7600-DC1-PE1(config-router-af)# no synchronization
7600-DC1-PE1(config-router-af)# exit-address-family
```

For EIGRP:

```
7600-DC2-PE3(config)#router bgp 1
7600-DC2-PE3(config-router)# address-family ipv4 vrf blue-voice

7600-DC2-PE3(config-router-af)#redistribute eigrp 11
7600-DC2-PE3(config-router-af)#maximum-paths ibgp unequal-cost 8

7600-DC2-PE3(config-router-af)#no auto-summary
7600-DC2-PE3(config-router-af)#no synchronization
7600-DC2-PE3(config-router-af)#exit-address-family
```

g. Redistribute remote site routing information learned via MP-iBGP into local site IGP.

Configuration varies based on the routing protocol used in VPN sites.

For OSPF:

```
7600-DC1-PE1(config)#router ospf 1 vrf red-data
7600-DC1-PE1(config-router)#log-adjacency-changes
7600-DC1-PE1(config-router)#redistribute bgp 1 subnets
7600-DC1-PE1(config-router)#network <site’s subnet> area 0
```

Note OSPF process 1 is used for VRF red-data. The routes learned from remote VPN site via BGP are distributed into OSPF process 1 to update adjacent VPN segments. A different process number would be used to support additional VPN.

For EIGRP:

```
7600-DC2-PE3(config)#router eigrp 10
7600-DC2-PE3(config-router)# address-family ipv4 vrf blue-voice

7600-DC2-PE3(config-router-af)#redistribute bgp 1 metric 1000000 100 255 1 1500
7600-DC2-PE3(config-router-af)#network <VPN site Subnet or network #>
7600-DC2-PE3(config-router-af)#maximum-paths 8
```
Chapter 3 MPLS-Based VPN MAN Reference Topology

Building a MAN MPLS VPN Network

Chapter 3 MPLS-Based VPN MAN Reference Topology

h. For OSPF VPN sites with backdoor links, configure a sham-link on a pair of ingress/egress PEs:
 - Configure an additional /32 loopback interface and bind the associated VRF to this loopback interface:
     ```
     interface Loopback1
     ip vrf forwarding red-data
     ip address 125.1.125.103 255.255.255.255
     ```
 - Advertise the loopback interface address through BGP and not through OSPF process:
     ```
     7600-DC2-PE3(config)#router bgp 1
     7600-DC2-PE3(config-router)# address-family ipv4 vrf red-data
     7600-DC2-PE3(config-router-af)#redistribute connected metric 1
     ```
 - Associate the sham-link with an existing OSPF area and configure under the associated VRF OSPF process between a pair of ingress egress PEs:
     ```
     7600-DC2-PE3(config)#router ospf 1 vrf red-data
     7600-DC2-PE3(config-router)#area 0 sham-link 125.1.125.103 125.1.125.107
     7600-DC2-PE3(config-router)# area 0 sham-link 125.1.125.103 125.1.125.108
     ```

 Note The sham-link is set up between PE3 and PE5 and PE3 and PE6 as the backdoor link exists between these two sites.

i. For EIGRP sites with backdoor links, configure SoO on PE and CE interfaces.

Step 3 Enable segmentation on multi-VRF devices.

 Note This is done on a distribution layer device. Access layer VLANs are terminated and mapped into the associated VRF on a distribution layer device (DL1). End-to-end segmentation across multiple campuses is achieved by maintaining this segmentation using dedicated interfaces for each VPN subnet to connect to the MPLS ingress PE.

 a. Create VRFs on the distribution layer device.

   ```
   !
   ip vrf red-data
   rd 10:103
   !
   ip vrf red-voice
   rd 10:104
   ```

 b. Bind a VRF to a pair of ingress-egress interfaces.

 Ingress interfaces connecting to VLAN:

      ```
      !
      interface GigabitEthernet5/7
      description To RT - port 103/1
      no ip address
      interface GigabitEthernet5/7.1
      encapsulation dot1Q 505
      ip vrf forwarding red-data
      ip address 125.1.1.65 255.255.255.224
      ```
! interface GigabitEthernet5/7.2
capsulation dot1Q 506
ip vrf forwarding red-voice
ip address 125.1.10.9 255.255.255.252
!
Egress interfaces connecting to PE:

! interface GigabitEthernet5/7.1
capsulation dot1Q 505
ip vrf forwarding red-data
ip address 125.1.1.65 255.255.255.224
!
interface GigabitEthernet5/7.2

capsulation dot1Q 506
ip vrf forwarding red-voice
ip address 125.1.10.9 255.255.255.252
!

\[c.\] Redistribute VPN site routing information.

Use separate routing processes per VPN to exchange routing information with PEs:

! router ospf 1 vrf red-data
log-adjacency-changes
capability vrf-lite
redistribute static subnets
network <> area <>
maximum-paths 6
!
router ospf 2 vrf red-voice
log-adjacency-changes
capability vrf-lite
redistribute static subnets
network <> area <>
maximum-paths 6
!