Configurations and Logs for Each VPN

This section includes the entire configurations from the Cisco 7600 and Cisco 12000 as PEs.

Cisco 7600 as PE

hostname 7600-DC2-PE3
 boot system flash disk0:s72033-adventerprisek9_wan-mz.122-18.SXE2.bin
 ip vrf blue-data
 rd 10:1053
 route-target export 10:105
 route-target import 10:105
 mdt default 239.232.10.1
 !
 ip vrf blue-voice
 rd 10:1063
 route-target export 10:106
 route-target import 10:106
 mdt default 239.232.10.2
 !
 ip vrf red-data
 rd 10:1033
 route-target export 10:103
 route-target import 10:103
 mdt default 239.232.10.3
 mdt data 239.232.20.32 0.0.0.15 threshold 1
 !
 ip vrf red-voice
 rd 10:1043
 route-target export 10:104
 route-target import 10:104
 mdt default 239.232.10.4
 mdt data 239.232.20.48 0.0.0.15 threshold 1
 !
 ip vrf sitemap
 !
 ip multicast-routing
 ip multicast-routing vrf blue-data
 ip multicast-routing vrf blue-voice
 ip multicast-routing vrf red-data
 ip multicast-routing vrf red-voice
 no ip domain-lookup
 vtp mode transparent
 mpls label protocol ldp
tag-switching tdp router-id Loopback0 force
mls ip multicast replication-mode ingress
mls qos
!
interface Loopback0
 ip address 125.1.125.7 255.255.255.255
 ip pim sparse-mode
!
interface Loopback1
 ip vrf forwarding red-data
 ip address 125.1.125.103 255.255.255.255
!
interface GigabitEthernet1/1
description To P1 - intf G4/0/0
 ip address 125.1.102.2 255.255.255.252
 ip pim sparse-mode
 wrr-queue bandwidth 5 25 70
 wrr-queue queue-limit 5 25 40
 wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 2 80 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 3 50 60 70 80 90 100 100 100
 wrr-queue random-detect max-threshold 1 100 100 100 100 100 100 100 100
 wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
 wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100
 wrr-queue cos-map 1 1 1
 wrr-queue cos-map 2 1 0
 wrr-queue cos-map 3 1 4
 wrr-queue cos-map 3 2 2
 wrr-queue cos-map 3 3 3
 wrr-queue cos-map 3 4 6
 wrr-queue cos-map 3 5 7
 tag-switching ip
 mls qos trust dscp
!
interface GigabitEthernet1/2
description To P2 - intf G1/9
 ip address 125.1.102.14 255.255.255.252
 ip pim sparse-mode
 wrr-queue bandwidth 5 25 70
 wrr-queue queue-limit 5 25 40
 wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 2 80 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 3 50 60 70 80 90 100 100 100
 wrr-queue random-detect max-threshold 1 100 100 100 100 100 100 100 100
 wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
 wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100
 wrr-queue cos-map 1 1 1
 wrr-queue cos-map 2 1 0
 wrr-queue cos-map 3 1 4
 wrr-queue cos-map 3 2 2
 wrr-queue cos-map 3 3 3
 wrr-queue cos-map 3 4 6
 wrr-queue cos-map 3 5 7
 tag-switching ip
 mls qos trust dscp
!
interface GigabitEthernet1/3
description To PE4 - intf TBD
 ip address 125.1.102.21 255.255.255.252
 ip pim sparse-mode
 wrr-queue bandwidth 5 25 70
 wrr-queue queue-limit 5 25 40
 wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 2 80 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 3 50 60 70 80 90 100 100 100
 wrr-queue random-detect max-threshold 1 100 100 100 100 100 100 100 100
 wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
 wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100
wrr-queue random-detect min-threshold 3 50 60 70 80 90 100 100 100 100
wrr-queue random-detect max-threshold 1 100 100 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100 100 100
wrr-queue cos-map 1 1 1
wrr-queue cos-map 2 1 0
wrr-queue cos-map 3 1 4
wrr-queue cos-map 3 2 2
wrr-queue cos-map 3 3 3
wrr-queue cos-map 3 4 6
wrr-queue cos-map 3 5 7
tag-switching ip
mls qos trust dscp
!
interface GigabitEthernet1/4
description To DL2 - intf G5/1
no ip address
load-interval 30
wrr-queue bandwidth 5 25 70
wrr-queue queue-limit 5 25 40
wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100
wrr-queue random-detect min-threshold 2 80 100 100 100 100 100 100
wrr-queue random-detect min-threshold 3 50 60 70 80 90 100 100 100
wrr-queue random-detect max-threshold 1 100 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100
wrr-queue cos-map 1 1 1
wrr-queue cos-map 2 1 0
wrr-queue cos-map 3 1 4
wrr-queue cos-map 3 2 2
wrr-queue cos-map 3 3 3
wrr-queue cos-map 3 4 6
wrr-queue cos-map 3 5 7
mls qos trust dscp
!
interface GigabitEthernet1/4.1
description RED-DATA
encapsulation dot1Q 161
ip vrf forwarding red-data
ip address 125.1.102.33 255.255.255.252
ip pim sparse-mode
wrr-queue bandwidth 5 25 70
wrr-queue queue-limit 5 25 40
wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100
wrr-queue random-detect min-threshold 2 80 100 100 100 100 100 100
wrr-queue random-detect min-threshold 3 50 60 70 80 90 100 100 100
wrr-queue random-detect max-threshold 1 100 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100
wrr-queue cos-map 1 1 1
wrr-queue cos-map 2 1 0
wrr-queue cos-map 3 1 4
wrr-queue cos-map 3 2 2
wrr-queue cos-map 3 3 3
wrr-queue cos-map 3 4 6
wrr-queue cos-map 3 5 7
!
interface GigabitEthernet1/4.2
description RED-VOICE
encapsulation dot1Q 162
ip vrf forwarding red-voice
ip address 125.1.102.37 255.255.255.252
ip pim sparse-mode
wrr-queue bandwidth 5 25 70
wrr-queue queue-limit 5 25 40
wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 1 80 100 100 100 100 100 100 100
wrr-queue random-detect min-threshold 2 50 60 70 80 90 100 100 100
wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
wrr-queue random-detect min-threshold 3 60 70 80 90 100 100 100 100
wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100
wrr-queue cos-map 1 1 1
wrr-queue cos-map 2 1 0
wrr-queue cos-map 3 1 4
wrr-queue cos-map 3 2 2
wrr-queue cos-map 3 3 3
wrr-queue cos-map 3 4 6
wrr-queue cos-map 3 5 7

interface GigabitEthernet1/5
 description To DL3 - intf G5/1
 no ip address
 ip pim sparse-mode
 wrr-queue bandwidth 5 25 70
 wrr-queue queue-limit 5 25 40
 wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100 100
 wrr-queue random-detect max-threshold 1 80 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 2 50 60 70 80 90 100 100 100
 wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 3 60 70 80 90 100 100 100 100
 wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100
 wrr-queue cos-map 1 1 1
 wrr-queue cos-map 2 1 0
 wrr-queue cos-map 3 1 4
 wrr-queue cos-map 3 2 2
 wrr-queue cos-map 3 3 3
 wrr-queue cos-map 3 4 6
 wrr-queue cos-map 3 5 7
 mls qos trust dscp

interface GigabitEthernet1/5.1
 description BLUE-DATA
 encapsulation dot1Q 163
 ip vrf forwarding blue-data
 ip vrf sitemap SoODL3
 ip address 125.1.102.41 255.255.255.252
 ip pim sparse-mode
 wrr-queue bandwidth 5 25 70
 wrr-queue queue-limit 5 25 40
 wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100 100
 wrr-queue random-detect max-threshold 1 80 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 2 50 60 70 80 90 100 100 100
 wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
 wrr-queue random-detect min-threshold 3 60 70 80 90 100 100 100 100
 wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100
 wrr-queue cos-map 1 1 1
 wrr-queue cos-map 2 1 0
 wrr-queue cos-map 3 1 4
 wrr-queue cos-map 3 2 2
 wrr-queue cos-map 3 3 3
 wrr-queue cos-map 3 4 6
 wrr-queue cos-map 3 5 7

interface GigabitEthernet1/5.2
 description BLUE-VOICE
 encapsulation dot1Q 164
 ip vrf forwarding blue-voice
 ip address 125.1.102.45 255.255.255.252
ip pim sparse-mode
wrr-queue bandwidth 5 25 70
wrr-queue queue-limit 5 25 40
wrr-queue random-detect min-threshold 1 80 100 100 100 100 100 100 100
wrr-queue random-detect min-threshold 2 80 100 100 100 100 100 100 100
wrr-queue random-detect min-threshold 3 50 60 70 80 90 100 100 100 100
wrr-queue random-detect max-threshold 1 100 100 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 2 100 100 100 100 100 100 100 100
wrr-queue random-detect max-threshold 3 60 70 80 90 100 100 100 100 100
wrr-queue cos-map 1 1 1
wrr-queue cos-map 2 1 0
wrr-queue cos-map 3 1 4
wrr-queue cos-map 3 2 2
wrr-queue cos-map 3 3 3
wrr-queue cos-map 3 4 6
wrr-queue cos-map 3 5 7

! interface GigabitEthernet1/6
description To SS2 - intf G3/1
ip address 125.1.102.65 255.255.255.252
wrr-queue cos-map 1 1 1
wrr-queue cos-map 2 1 0
wrr-queue cos-map 3 1 4
wrr-queue cos-map 3 2 2
wrr-queue cos-map 3 3 3
wrr-queue cos-map 3 4 6
wrr-queue cos-map 3 5 7
tag-switching ip
mls qos trust dscp
!
interface GigabitEthernet5/2
ip address 172.26.185.109 255.255.255.0
media-type rj45
duplex full
!
router eigrp 1
variance 2
network 125.1.125.7 0.0.0.0
network 125.0.0.0
maximum-paths 8
no auto-summary
!
router eigrp 10
no auto-summary
!
address-family ipv4 vrf blue-voice
variance 2
redistribute bgp 1 metric 1000000 100 255 1 1500
network 125.1.2.128 0.0.0.127
network 125.1.102.44 0.0.0.3
maximum-paths 8
no auto-summary
autonomous-system 11
exit-address-family
!
address-family ipv4 vrf blue-data
variance 2
redistribute bgp 1 metric 1000000 100 255 1 1500
network 125.1.2.0 0.0.0.127
network 125.1.102.40 0.0.0.3
maximum-paths 8
distance eigrp 210 210
no auto-summary
autonomous-system 10
exit-address-family
!
router ospf 1 vrf red-data
log-adjacency-changes
area 0 sham-link 125.1.125.103 125.1.125.108
area 0 sham-link 125.1.125.103 125.1.125.107
redistribute bgp 1 subnets
network 125.1.102.32 0.0.0.3 area 0
!
router ospf 2 vrf red-voice
log-adjacency-changes
redistribute bgp 1 subnets
network 125.1.102.36 0.0.0.3 area 0
!
router bgp 1
no synchronization
bgp log-neighbor-changes
network 125.1.125.103 mask 0.0.0.0
neighbor 125.1.125.15 remote-as 1
neighbor 125.1.125.15 update-source Loopback0
neighbor 125.1.125.16 remote-as 1
neighbor 125.1.125.16 update-source Loopback0
no auto-summary
!
address-family ipv4 vrf sitemap
no auto-summary
no synchronization
exit-address-family
!
address-family ipv4 vrf red-voice
redistribute ospf 2 vrf red-voice match internal external 1 external 2
no auto-summary
no synchronization
exit-address-family
!
address-family ipv4 vrf red-data
redistribute connected metric 1
redistribute ospf 1 vrf red-data match internal external 1 external 2
maximum-paths ibgp 6
no auto-summary
no synchronization
exit-address-family
!
address-family ipv4 vrf blue-voice
redistribute eigrp 11
maximum-paths ibgp unequal-cost 8
no auto-summary
no synchronization
exit-address-family
!
address-family ipv4 vrf blue-data
redistribute eigrp 10
maximum-paths ibgp unequal-cost 8
no auto-summary
no synchronization
exit-address-family
!
Chapter 8 Configurations and Logs for Each VPN

Cisco 12000 as PE

hostname 12k-DC2-PE4
!
boot-start-marker
boot system flash disk0:c12kprp-k4p-mz.120-31.S.bin
boot-end-marker
!
hw-module slot 2 qos interface queues 8
!
ip vrf blue-data
dr 10:1054
route-target export 10:105
route-target import 10:105
mdt default 239.232.10.1
mdt data 239.232.20.0 0.0.0.15 threshold 1
!
ip vrf blue-voice
dr 10:1064
route-target export 10:106
route-target import 10:106
mdt default 239.232.10.2
mdt data 239.232.20.16 0.0.0.15 threshold 1
!
ip vrf red-data
dr 10:1034
route-target export 10:103
route-target import 10:103
mdt default 239.232.10.3
mdt data 239.232.20.32 0.0.0.15 threshold 1
!
ip vrf red-voice
dr 10:1044
route-target export 10:104
route-target import 10:104
Cisco 12000 as PE

mdt default 239.232.10.4
mdt data 239.232.20.48 0.0.0.15 threshold 1
ip multicast-routing distributed
ip multicast-routing vrf blue-data distributed
ip multicast-routing vrf blue-voice distributed
ip multicast-routing vrf red-data distributed
ip multicast-routing vrf red-voice distributed
!
class-map match-any realtime
 match mpls experimental 5
class-map match-any realtime-2ce
 match qos-group 5
class-map match-all red-voice
 match vlan 166
class-map match-any bulk-data
 match mpls experimental 1
class-map match-any network-control-2ce
 match qos-group 7
class-map match-any interwork-control
 match mpls experimental 6
class-map match-any network-control
 match mpls experimental 7
class-map match-any bulk-data-2ce
 match qos-group 1
class-map match-any interwork-control-2ce
 match qos-group 6
 match precedence 6
class-map match-any bus-critical
 match mpls experimental 3
class-map match-any trans-data
 match mpls experimental 2
class-map match-all red-data
 match vlan 165
class-map match-any bus-critical-2ce
 match qos-group 3
class-map match-any trans-data-2ce
 match qos-group 2
class-map match-any video-2ce
 match qos-group 4
class-map match-any video
 match mpls experimental 4
!
policy-map q-core-out
class realtime
 priority
 police cir percent 30 bc 500 ms conform-action transmit exceed-action drop
class network-control
 bandwidth remaining percent 7
 random-detect
 random-detect precedence 7 625 packets 4721 packets 1
class interwork-control
 bandwidth remaining percent 7
 random-detect
 random-detect precedence 6 625 packets 4721 packets 1
class bus-critical
 bandwidth remaining percent 14
 random-detect
 random-detect precedence 3 625 packets 4721 packets 1
class trans-data
 bandwidth remaining percent 14
 random-detect
 random-detect precedence 2 625 packets 4721 packets 1
class video
bandwidth remaining percent 14
random-detect
random-detect precedence 4 625 packets 4721 packets 1
class bulk-data
bandwidth remaining percent 7
random-detect
random-detect precedence 1 625 packets 4721 packets 1
class class-default
bandwidth remaining percent 36
random-detect
random-detect precedence 0 625 packets 4721 packets 1
policy-map q-2ce-out-1
class network-control-2ce
bandwidth percent 7
random-detect discard-class-based
random-detect discard-class 7 625 packets 4721 packets 1
class interwork-control-2ce
bandwidth percent 7
random-detect discard-class-based
random-detect discard-class 6 625 packets 4721 packets 1
class bus-critical-2ce
bandwidth percent 14
random-detect discard-class-based
random-detect discard-class 3 625 packets 4721 packets 1
class trans-data-2ce
bandwidth percent 14
random-detect discard-class-based
random-detect discard-class 2 625 packets 4721 packets 1
class video-2ce
bandwidth percent 14
random-detect discard-class-based
random-detect discard-class 4 625 packets 4721 packets 1
class bulk-data-2ce
bandwidth percent 7
random-detect discard-class-based
random-detect discard-class 1 625 packets 4721 packets 1
class class-default
bandwidth percent 36
random-detect discard-class-based
random-detect discard-class 0 625 packets 4721 packets 1
policy-map q-2ce-out-2
class realtime-2ce
priority
police cir percent 95 bc 500 ms conform-action transmit exceed-action drop
class interwork-control-2ce
bandwidth percent 3
random-detect
random-detect precedence 6 4720 packets 4721 packets 1
class class-default
bandwidth percent 2
random-detect
policy-map q-2ce-out-parent
class red-data
shape average percent 60
service-policy q-2ce-out-1
class red-voice
shape average percent 40
service-policy q-2ce-out-2
policy-map egr-pe-in
class realtime
set qos-group 5
set discard-class 5
class network-control
set qos-group 7
set discard-class 7
class interwork-control
 set qos-group 6
 set discard-class 6
class bus-critical
 set qos-group 3
 set discard-class 3
class trans-data
 set qos-group 2
 set discard-class 2
class video
 set qos-group 4
 set discard-class 4
class bulk-data
 set qos-group 1
 set discard-class 1

mpls label protocol ldp
tag-switching tdp router-id Loopback0 force

interface Loopback0
 ip address 125.1.125.8 255.255.255.255
 no ip directed-broadcast
 ip pim sparse-mode

interface Loopback1
 ip vrf forwarding red-data
 ip address 125.1.125.104 255.255.255.255
 no ip directed-broadcast

interface GigabitEthernet2/0
 description To DL2 - intf G5/2
 no ip address
 no ip directed-broadcast
 load-interval 30
 negotiation auto
 service-policy output q-2ce-out-parent

interface GigabitEthernet2/0.1
 description RED-DATA
 encapsulation dot1Q 165
 ip vrf forwarding red-data
 ip address 125.1.102.49 255.255.255.252
 no ip directed-broadcast
 ip pim sparse-mode

interface GigabitEthernet2/0.2
 description RED-VOICE
 encapsulation dot1Q 166
 ip vrf forwarding red-voice
 ip address 125.1.102.53 255.255.255.252
 no ip directed-broadcast
 ip pim sparse-mode

interface GigabitEthernet2/1
 description To DL3 - intf G5/2
 no ip address
 no ip directed-broadcast
 negotiation auto

interface GigabitEthernet2/1.1
 description BLUE-DATA
 encapsulation dot1Q 167
 ip vrf forwarding blue-data
ip vrf sitemap SoODL3
ip address 125.1.102.57 255.255.255.252
no ip directed-broadcast
ip pim sparse-mode
service-policy output q-2ce-out-data
!
interface GigabitEthernet2/1.2
description BLUE-VOICE
encapsulation dot1Q 168
ip vrf forwarding blue-voice
ip address 125.1.102.61 255.255.255.252
no ip directed-broadcast
ip pim sparse-mode
!
interface GigabitEthernet3/0/0
description To SS2 - intf G3/2
ip address 125.1.102.69 255.255.255.252
no ip directed-broadcast
negotiation auto
tag-switching ip
service-policy input egr-pe-in
service-policy output q-core-out
!
interface GigabitEthernet3/0/1
description To P2 - intf G1/10
ip address 125.1.102.18 255.255.255.252
no ip directed-broadcast
ip pim sparse-mode
load-interval 30
negotiation auto
tag-switching ip
service-policy input egr-pe-in
service-policy output q-core-out
!
interface GigabitEthernet3/0/2
description To PE3 - intf G1/3
ip address 125.1.102.22 255.255.255.252
no ip directed-broadcast
ip pim sparse-mode
negotiation auto
tag-switching ip
service-policy input egr-pe-in
service-policy output q-core-out
!
interface GigabitEthernet3/0/3
description To P1 - intf G4/0/2
ip address 125.1.102.6 255.255.255.252
no ip directed-broadcast
ip pim sparse-mode
load-interval 30
negotiation auto
tag-switching ip
service-policy input egr-pe-in
service-policy output q-core-out
!
interface Ethernet2
description Mgmt
ip address 172.26.185.108 255.255.255.0
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
!
routing eigrp 1
address-family ipv4
variance 2
network 125.1.125.8 0.0.0.0
network 125.0.0.0
maximum-paths 8
exit-address-family
!
router eigrp 10
!
address-family ipv4
exit-address-family
!
address-family ipv4 vrf blue-voice
variance 2
redistribute bgp 1 metric 1000000 100 255 1 1500
network 125.1.2.128 0.0.0.127
network 125.1.102.60 0.0.0.3
maximum-paths 8
autonomous-system 11
exit-address-family
!
address-family ipv4 vrf blue-data
variance 2
redistribute bgp 1 metric 1000000 100 255 1 1500
network 125.1.2.0 0.0.0.127
network 125.1.102.56 0.0.0.3
maximum-paths 8
distance eigrp 210 210
autonomous-system 10
exit-address-family
!
router ospf 1 vrf red-data
log-adjacency-changes
area 0 sham-link 125.1.125.104 125.1.125.107
area 0 sham-link 125.1.125.104 125.1.125.108
redistribute bgp 1 subnets
network 125.1.102.48 0.0.0.3 area 0
!
router ospf 2 vrf red-voice
log-adjacency-changes
redistribute bgp 1 subnets
network 125.1.102.52 0.0.0.3 area 0
!
router bgp 1
no synchronization
bgp log-neighbor-changes
neighbor 125.1.125.15 remote-as 1
neighbor 125.1.125.15 update-source Loopback0
neighbor 125.1.125.16 remote-as 1
neighbor 125.1.125.16 update-source Loopback0
no auto-summary
!
address-family ipv4 mdt
neighbor 125.1.125.15 activate
neighbor 125.1.125.15 send-community extended
neighbor 125.1.125.16 activate
neighbor 125.1.125.16 send-community extended
exit-address-family
!
address-family vpnv4
neighbor 125.1.125.15 activate
neighbor 125.1.125.15 send-community extended
neighbor 125.1.125.16 activate
neighbor 125.1.125.16 send-community extended
exit-address-family

address-family ipv4 vrf red-voice
redistribute ospf 2 vrf red-voice match internal external 1 external 2
maximum-paths ibgp unequal-cost 6
no auto-summary
no synchronization
exit-address-family

address-family ipv4 vrf red-data
redistribute connected metric 1
redistribute ospf 1 vrf red-data match internal external 1 external 2
maximum-paths ibgp 2
no auto-summary
no synchronization
exit-address-family

address-family ipv4 vrf blue-voice
redistribute eigrp 11
maximum-paths ibgp unequal-cost 8
no auto-summary
no synchronization
exit-address-family

address-family ipv4 vrf blue-data
redistribute eigrp 10
maximum-paths ibgp unequal-cost 8
no auto-summary
no synchronization
exit-address-family

ip classless
ip route 0.0.0.0 0.0.0.0 172.26.185.1

ip pim ssm range 1
ip pim vrf blue-data rp-address 1.1.1.11 override
ip pim vrf blue-voice rp-address 2.2.2.11 override
ip pim vrf red-data rp-address 3.3.3.11 override
ip pim vrf red-voice rp-address 4.4.4.11 override

ip access-list standard mdtacl
permit 239.232.10.0 0.0.0.255
permit 239.232.20.0 0.0.0.255
ip access-list standard orga
permit 224.2.131.239
permit 224.2.149.231
permit 224.2.159.191
permit 224.2.201.231
permit 239.193.10.252
rx-cos-slot all SLOT_TABLE

slot-table-cos SLOT_TABLE
destination-slot all GE_policy
multicast GE-multicast

cos-queue-group GE-multicast
precedence 4 queue 4

cos-queue-group GE_policy
precedence 0 random-detect-label 1
precedence 1 queue 1
precedence 1 random-detect-label 1
precedence 2 queue 2
precedence 2 random-detect-label 1
precedence 3 queue 3
precedence 3 random-detect-label 1
precedence 4 queue 4
precedence 4 random-detect-label 1
precedence 5 queue low-latency
precedence 6 queue 5
precedence 6 random-detect-label 1
precedence 7 queue 6
precedence 7 random-detect-label 1
random-detect-label 1 625 4721 1
queue 1 2
queue 2 4
queue 3 4
queue 4 4
queue 5 2
queue 6 2
queue low-latency strict-priority
access-list 1 permit 239.232.0.0 0.0.255.255
route-map SooDL3 permit 10
set extcommunity soo 3:1

Service Validation

Core Verification

1. Ping tests to show each core device is accessible.

There are four core routers, P1...P4. 10 PEs, and two Route Reflectors. All of these devices should be able to communicate. A good test would be to run ping tests from one of
the Route Reflectors. (Notice 125.1.125.1 to .4 are Ps, .5 to .14 are PEs and .15 is RR1 and .16 is RR2).

7200-DC2-RR1#ping 125.1.125.1
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 125.1.125.1, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

7200-DC2-RR1#ping 125.1.125.2
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 125.1.125.2, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

7200-DC2-RR1#ping 125.1.125.3
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 125.1.125.3, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

7200-DC2-RR1#ping 125.1.125.4
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 125.1.125.4, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

7200-DC2-RR1#ping 125.1.125.5
 Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
7200-DC2-RR1#ping 125.1.125.6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.6, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
7200-DC2-RR1#ping 125.1.125.7

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.7, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
7200-DC2-RR1#ping 125.1.125.8

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.8, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
7200-DC2-RR1#ping 125.1.125.9

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.9, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
7200-DC2-RR1#ping 125.1.125.10

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.10, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
7200-DC2-RR1#ping 125.1.125.11

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.11, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
7200-DC2-RR1#ping 125.1.125.12

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.12, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
7200-DC2-RR1#ping 125.1.125.13

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.13, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
7200-DC2-RR1#ping 125.1.125.14

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.14, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
7200-DC2-RR1#ping 125.1.125.15

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 125.1.125.15, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
7200-DC2-RR1#ping 125.1.125.16
2. Examine global table to verify no VPN routes exists in the global table:

Notice 125.1.101.x is used for VPN links in DC1, 125.1.102.x is used for VPN links in DC2, 125.1.103.x is used for VPN links in LC, 125.1.104.x for VPN links in MC, and 125.1.105.x for VPN links in SC1 which should not exist in the global table.

```
7600-LC-P4#sh ip ro 125.1.101.0
% Subnet not in table
7600-LC-P4#

7600-LC-P4#sh ip ro 125.1.104.0
% Subnet not in table
7600-LC-P4#

7600-LC-P4#sh ip ro 125.1.105.0
% Subnet not in table
7600-LC-P4#
```

Notice that no VRF information is stored on the core routers:

```
7600-LC-P4#sh ip vrf
7600-LC-P4#
```

3. Examine LFIBs to ensure that they have labels for all the prefixes.

For example, PE1 to P3 Interface:

```
7600-LC-P4#sh mpls forwarding-table 125.1.100.32
Local  Outgoing    Prefix              Bytes tag  Outgoing   Next Hop
       tag    tag or VC   or Tunnel Id        switched   interface
36     33          125.1.100.32/30   0          Gi1/6      125.1.100.89
33          125.1.100.32/30   0          Gi1/7      125.1.100.93
50          125.1.100.32/30   0          Gi1/2      125.1.100.29
50          125.1.100.32/30   0          Gi1/1      125.1.100.25
```

PE7 to P1 Interface:

```
7600-LC-P4#sh mpls forwarding-table 125.1.100.0
Local  Outgoing    Prefix              Bytes tag  Outgoing   Next Hop
       tag    tag or VC   or Tunnel Id        switched   interface
43     Pop tag     125.1.100.0/30    0          Gi1/6      125.1.100.89
Pop tag     125.1.100.0/30    0          Gi1/7      125.1.100.93
```

Full LFIB table can be viewed using the sh mpls forwarding-table command:

```
7600-LC-P4#sh mpls forwarding-table
Local  Outgoing    Prefix              Bytes tag  Outgoing   Next Hop
       tag    tag or VC   or Tunnel Id        switched   interface
16     Pop tag     125.1.125.10/32  26684      Gi1/8      125.1.103.22
17     Pop tag     125.1.103.4/30   0          Gi1/7      125.1.100.93
Pop tag     125.1.103.4/30   0          Gi1/6      125.1.100.89
Pop tag     125.1.103.4/30   0          Gi1/8      125.1.103.22
18     Pop tag     125.1.125.3/32  2437       Gi1/6      125.1.100.89
```
Chapter 8 Configurations and Logs for Each VPN

Service Validation

1. Ping tests to VPN sites and interfaces to verify that the core does not have access to the VPN sites.

Edge Verification

1. Verify VPNv4 peering with PEs and RRs.
2. Verify the VPN site routing table on the distribution layer device; check that these routes get propagated to VRF tables and BGP tables on ingress and egress PEs. Verify that the labels assigned by the ingress PEs are propagated to and used by the egress PEs.
3. Verify that multiple paths are installed in the forwarding table without any routing loops.
4. Verify that you can reach pertinent VPN sites from PEs and that multiple paths are used.

Baseline MPLS VPN

The VRF red-data on PE3 is used as the reference for highlighting the service validation steps, which are useful in troubleshooting as well. The following example examines the reachability to 3.3.3.13/32, which resides in DC1.

1. Verify the route exists in the VRF red-data routing table:

```
7600-DC2-PE3#sh ip route vrf red-data 3.3.3.13
Routing entry for 3.3.3.13/32
Known via "bgp 1", distance 200, metric 2, type internal
Redistributing via ospf 1
Advertised by ospf 1 subnets
Last update from 125.1.125.6 00:13:13 ago
Routing Descriptor Blocks:
  * 125.1.125.5 (Default-IP-Routing-Table), from 125.1.125.15, 00:13:13 ago
    Route metric is 2, traffic share count is 1
    AS Hops 0
  125.1.125.6 (Default-IP-Routing-Table), from 125.1.125.15, 00:13:13 ago
    Route metric is 2, traffic share count is 1
    AS Hops 0
```

2. Verify that the nex-hop exists in the global routing table:

```
7600-DC2-PE3#sh ip route 125.1.125.6
Routing entry for 125.1.125.6/32
Known via "eigrp 1", distance 90, metric 131072, type internal
Redistributing via eigrp 1
Last update from 125.1.102.13 on GigabitEthernet1/2, 23:59:59 ago
Routing Descriptor Blocks:
  * 125.1.102.13, from 125.1.102.13, 23:59:59 ago, via GigabitEthernet1/2
    Route metric is 131072, traffic share count is 1
    Total delay is 5020 microseconds, minimum bandwidth is 1000000 Kbit
    Reliability 255/255, minimum MTU 1500 bytes
    Loading 1/255, Hops 2
```

3. Verify that the nex-hop exists in the global routing table:

```
7600-DC2-PE3#sh ip route 125.1.125.5
Routing entry for 125.1.125.5/32
Known via "eigrp 1", distance 90, metric 131072, type internal
Redistributing via eigrp 1
Last update from 125.1.102.1 on GigabitEthernet1/1, 1d00h ago
Routing Descriptor Blocks:
```
3. Additional verification may include checking the BGP table for the VPN route:

7600-DC2-PE3#sh ip bgp vpnv4 vrf red-data 3.3.3.13
BGP routing table entry for 10.1031:3.3.3.13/32, version 266
Paths: (2 available, best #1, table red-data)
 Multipath: IBGP
 Not advertised to any peer
Local, imported path from 10.1031:3.3.3.13/32
 125.1.125.5 (metric 131072) from 125.1.125.15 (125.1.125.15)
Origin incomplete, metric 2, valid, internal, multipath, best
 Extended Community: RT:10:103 OSPF DOMAIN ID:0x0005:0x000000010200
 OSPF RT:0.0.0.0:2:0 OSPF ROUTER ID:125.1.101.1:512
 Originator: 125.1.125.5, Cluster list: 125.1.125.15
Local, imported path from 10.1032:3.3.3.13/32
 125.1.125.6 (metric 131072) from 125.1.125.15 (125.1.125.15)
Origin incomplete, metric 2, valid, internal, multipath
 Extended Community: RT:10:103 OSPF DOMAIN ID:0x0005:0x000000010200
 OSPF RT:0.0.0.0:2:0 OSPF ROUTER ID:125.1.101.9:512
 Originator: 125.1.125.6, Cluster list: 125.1.125.15

4. Verify that the CEF entry exists for the VRF route (including the dual label stack):

7600-DC2-PE3#sh ip cef vrf red-data 3.3.3.13
3.3.3.13/32, version 34, epoch 0
 0 packets, 0 bytes
 tag information set, all rewrites owned
 local tag: VPN-route-head
 via 125.1.125.5, 0 dependencies, recursive
 traffic share 1
 next hop 125.1.102.1, GigabitEthernet1/1 via 125.1.125.5/32 (Default)
 valid adjacency
 tag rewrite with Gi1/1, 125.1.102.1, tags imposed: (62 74)
 via 125.1.125.6, 0 dependencies, recursive
 traffic share 1
 next hop 125.1.102.13, GigabitEthernet1/2 via 125.1.125.6/32 (Default)
 valid adjacency
 tag rewrite with Gi1/2, 125.1.102.13, tags imposed: (16 73)
 0 packets, 0 bytes switched through the prefix
 tmstats: external 0 packets, 0 bytes
 internal 0 packets, 0 bytes

5. The top label information can also be verified by looking at the MPLS forwarding table:

7600-DC2-PE3#sh mpls for 125.1.125.5
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
89 62 125.1.125.5/32 0 Gi1/1 125.1.102.1

7600-DC2-PE3#sh mpls for 125.1.125.6
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
47 16 125.1.125.6/32 0 Gi1/2 125.1.102.13

6. The PE-to-PE LSP check can be done by using an LSP ping. A broken LSP can be detected by identifying the break point in the pings (this avoids hop-by-hop troubleshooting):

7600-DC2-PE3#ping mpls ip 125.1.125.5/32 ver
 Sending 5, 100-byte MPLS Echos to 125.1.125.5/32,
timeout is 2 seconds, send interval is 0 msec:
Codes: ‘!’ - success, ‘Q’ - request not transmitted,
‘.’ - timeout, ‘U’ - unreachable,
‘R’ - downstream router but not target,
‘M’ - malformed request

Type escape sequence to abort.
! 125.1.100.62, return code 3

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

7. If there is a valid source address present on the PE, a VRF ping can be performed to check the
destination address reachability from the PE.

7600-DC2-PE3# ping vrf red-data ip 3.3.3.13

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 3.3.3.13, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

8. If packet drops are being experienced and the source of the drop has been identified, the above steps
can be performed. Additionally, the following show commands may be useful:

7600-DC2-PE3#sh cef drop
CEF Drop Statistics
Slot Encap_fail Unresolved Unsupported No_route No_adj ChkSum_Err
RP 5 0 0 0 0 0
5 0 0 0 0 0 0
1 0 0 0 0 0 0
6 0 0 0 0 0 0
25 0 0 0 0 0 0
IPv6 CEF Drop Statistics
Slot Encap_fail Unresolved Unsupported No_route No_adj
RP 0 0 0 0 0

7600-DC2-PE3#sh cef not-cef-switched
CEF Packets passed on to next switching layer
Slot No_adj No_encap Unsupp’ted Redirect Receive Options Access Frag
RP 0 0 0 0 54016 0 0 0
5 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0
IPv6 CEF Packets passed on to next switching layer
Slot No_adj No_encap Unsupp’ted Redirect Receive Options Access MTU
RP 0 0 0 0 0 0 0

For checking whether the locally originated route is advertised to remote PEs correctly, the following
steps may be performed:

1. Toward the CE side, verify that the PE-CE routing protocol is up and the neighbor relationship
formed:

7600-DC2-PE3#sh ip ospf nei g1/4.1

Neighbor ID Pri State Dead Time Address Interface
3.3.3.12 1 FULL/DR 00:00:32 125.1.102.34 GigabitEthernet1/4.1

2. Verify that the route is in the local VRF table:
7600-DC2-PE3#sh ip route vrf red-data 3.3.3.12
Routing entry for 3.3.3.12/32
 Known via "ospf 1", distance 110, metric 2, type intra area
 Redistributing via bgp 1
 Advertised by bgp 1 match internal external 1 & 2
 Last update from 125.1.102.34 on GigabitEthernet1/4.1, 00:27:03 ago
 Routing Descriptor Blocks:
 * 125.1.102.34, from 3.3.3.12, 00:27:03 ago, via GigabitEthernet1/4.1
 Route metric is 2, traffic share count is 1

3. Because you are redistributing the OSPF-learned routes into BGP, ensure that the route exists in the BGP table and is marked for advertisement:

7600-DC2-PE3#sh ip bgp vpnv4 vrf red-data 3.3.3.12
BGP routing table entry for 10:1033:3.3.3.12/32, version 16756
Paths: (2 available, best #2, table red-data)
Multipath: iBGP
 Advertised to update-groups:
 1
 Local, imported path from 10:1034:3.3.3.12/32
 125.1.125.8 (metric 130816) from 125.1.125.15 (125.1.125.15)
 Origin incomplete, metric 2, localpref 100, valid, internal
 Extended Community: RT:10:103 OSPF DOMAIN ID:0x0005:0x000000010200
 OSPF RT:0.0.0.0:2:0 OSPF ROUTER ID:125.1.125.104:0
 Originator: 125.1.125.8, Cluster list: 125.1.125.15
 Local
 125.1.102.34 from 0.0.0.0 (125.1.125.7)
 Origin incomplete, metric 2, localpref 100, weight 32768, valid, sourced, best
 Extended Community: RT:10:103 OSPF DOMAIN ID:0x0005:0x000000010200
 OSPF RT:0.0.0.0:2:0 OSPF ROUTER ID:125.1.125.103:512

OSPF Backdoor Link Verifications

Traceroute results from DL2 to DL6 demonstrate that without the backdoor link, traffic flows over an MPLS network:

DL2-DC2-RED#traceroute vrf red-data 1.1.1.16
Type escape sequence to abort.
Tracing the route to 1.1.1.16

 1 125.1.102.49 0 msec
 125.1.102.33 0 msec
 125.1.102.49 0 msec
 2 125.1.102.1 [MPLS: Labels 52/76 Exp 0] 4 msec
 125.1.102.17 [MPLS: Labels 63/76 Exp 0] 0 msec
 125.1.102.1 [MPLS: Labels 52/76 Exp 0] 0 msec
 3 125.1.104.9 [MPLS: Label 76 Exp 0] 0 msec
 125.1.104.1 [MPLS: Label 76 Exp 0] 0 msec
 125.1.104.9 [MPLS: Label 76 Exp 0] 0 msec
 4 125.1.104.2 4 msec
 125.1.104.10 0 msec *

DL2-DC2-RED#

Traceroute from DL2 to DL1 demonstrates that without the backdoor link, traffic flows over an MPLS network:

DL2-DC2-RED# traceroute vrf red-data 1.1.1.1
Type escape sequence to abort.
Tracing the route to 1.1.1.1
1 125.1.102.49 0 msec
125.1.102.33 0 msec
125.1.102.49 4 msec
2 125.1.102.13 [MPLS: Labels 54/20 Exp 0] 0 msec
125.1.102.17 [MPLS: Labels 54/20 Exp 0] 0 msec
125.1.102.13 [MPLS: Labels 54/20 Exp 0] 0 msec
3 125.1.101.9 [MPLS: Label 20 Exp 0] 0 msec 0 msec 0 msec
4 125.1.101.10 4 msec * 0 msec

DL2-DC2-RED#sh ip ro vrf red-data

Routing Table: red-data

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 3 subnets
O IA 1.1.1.1 [110/3] via 125.1.102.49, 01:29:09, GigabitEthernet5/2.1
 [110/3] via 125.1.102.33, 01:29:09, GigabitEthernet5/1.1
O IA 1.1.1.16 [110/3] via 125.1.102.49, 01:29:09, GigabitEthernet5/2.1
 [110/3] via 125.1.102.33, 01:29:09, GigabitEthernet5/1.1

Traceroute from DL1 to DL6 demonstrates that without the backdoor link, traffic flows over an MPLS network:

DL1-DC1-RED#traceroute vrf red-data 1.1.1.16

Type escape sequence to abort.
Tracing the route to 1.1.1.16

1 125.1.101.1 0 msec
125.1.101.9 4 msec
125.1.101.1 0 msec
2 125.1.100.73 [MPLS: Labels 32/76 Exp 0] 0 msec
125.1.100.57 [MPLS: Labels 52/76 Exp 0] 0 msec
125.1.100.73 [MPLS: Labels 32/76 Exp 0] 0 msec
3 125.1.104.1 [MPLS: Label 76 Exp 0] 0 msec
125.1.100.38 [MPLS: Labels 24/76 Exp 0] 4 msec
125.1.104.1 [MPLS: Label 76 Exp 0] 0 msec
4 125.1.104.1 [MPLS: Label 76 Exp 0] 0 msec
125.1.104.2 0 msec
125.1.104.1 [MPLS: Label 76 Exp 0] 0 msec

DL6-MC-RED# sh ip ro (all the routes except for C and all the remote VPN sites are IA, 125.1.141.0/24 - 148 are E):

Gateway of last resort is 172.26.185.1 to network 0.0.0.0

1.0.0.0/32 is subnetted, 3 subnets
O IA 1.1.1.1 [110/3] via 125.1.104.9, 1d04h, GigabitEthernet2/2
 [110/3] via 125.1.104.1, 1d04h, GigabitEthernet2/1
C 1.1.1.16 is directly connected, Loopback0
O IA 1.1.1.23 [110/3] via 125.1.104.1, 2d01h, GigabitEthernet2/1
 [110/3] via 125.1.104.9, 2d01h, GigabitEthernet2/2
100.0.0.0/30 is subnetted, 2560 subnets
O IA 100.1.37.64 [110/5] via 125.1.104.9, 02:59:39, GigabitEthernet2/2
 [110/5] via 125.1.104.1, 02:59:39, GigabitEthernet2/1

O E2 125.1.147.0/24 [110/20] via 125.1.104.1, 01:49:03, GigabitEthernet2/1
 [110/20] via 125.1.104.9, 01:49:03, GigabitEthernet2/2
O E2 125.1.141.0/24 [110/20] via 125.1.104.1, 01:49:03, GigabitEthernet2/1
 [110/20] via 125.1.104.9, 01:49:03, GigabitEthernet2/2
O E2 125.1.142.0/24 [110/20] via 125.1.104.1, 01:49:03, GigabitEthernet2/1
With the backdoor link, but without enabling OSPF sham-link:

Traceroute from DL2 to DL6 shows traffic flowing over the backdoor link:

```
DL2-DC2-RED# traceroute vrf red-data 1.1.1.16
Type escape sequence to abort.
Tracing the route to 1.1.1.16
    1 125.1.99.2 0 msec 0 msec 4 msec
    2 125.1.99.5 0 msec * 0 msec
DL2-DC2-RED#
```

Traceroute from DL6 to DL2 shows traffic flowing over the backdoor link:

```
DL6-MC-RED# traceroute 1.1.1.23
Type escape sequence to abort.
Tracing the route to 1.1.1.23
    1 125.1.99.6 0 msec 0 msec 0 msec
    2 125.1.99.1 0 msec * 0 msec
DL6-MC-RED#
```

Traceroute from DL2 to DL1m shows traffic flowing over the MPLS VPN network:

```
DL2-DC2-RED# traceroute vrf red-data 1.1.1.1
Type escape sequence to abort.
Tracing the route to 1.1.1.1
    1 125.1.102.49 0 msec
    125.1.102.33 0 msec
    125.1.102.49 0 msec
    2 125.1.102.13 [MPLS: Labels 26/68 Exp 0] 0 msec
    125.1.102.17 [MPLS: Labels 26/68 Exp 0] 0 msec
    125.1.102.13 [MPLS: Labels 26/68 Exp 0] 0 msec
    3 125.1.101.9 [MPLS: Label 68 Exp 0] 4 msec 0 msec 0 msec
    4 125.1.101.10 0 msec * 0 msec
```

Traceroute from DL1 to DL6 shows traffic flowing over the MPLS VPN network:

```
DL1-DC1-RED# traceroute vrf red-data 1.1.1.16
Type escape sequence to abort.
Tracing the route to 1.1.1.16
    1 125.1.101.1 0 msec
    125.1.101.9 0 msec
    125.1.101.1 4 msec
    2 125.1.100.69 [MPLS: Labels 59/73 Exp 0] 0 msec
    125.1.100.61 [MPLS: Labels 63/76 Exp 0] 0 msec
    125.1.100.69 [MPLS: Labels 59/73 Exp 0] 0 msec
    3 125.1.104.1 [MPLS: Label 76 Exp 0] 0 msec
    125.1.104.9 [MPLS: Label 73 Exp 0] 0 msec
    125.1.104.1 [MPLS: Label 76 Exp 0] 4 msec
    4 125.1.104.10 0 msec
    125.1.104.2 0 msec *
```

Traceroute from the backdoor link router to DL1, DL2 and DL6:
3600-bd-red#traceroute 1.1.1.1

Type escape sequence to abort.
Tracing the route to 1.1.1.1

1 125.1.99.5 0 msec
 125.1.99.1 0 msec
 125.1.99.5 0 msec
2 125.1.102.49 4 msec
 125.1.104.9 0 msec
 125.1.102.49 0 msec
3 125.1.100.37 [MPLS: Labels 47/73 Exp 0] 4 msec
 125.1.102.17 [MPLS: Labels 26/68 Exp 0] 0 msec
 125.1.100.37 [MPLS: Labels 47/73 Exp 0] 4 msec
4 125.1.101.9 [MPLS: Label 68 Exp 0] 0 msec
 125.1.100.74 [MPLS: Labels 23/73 Exp 0] 0 msec
 125.1.101.9 [MPLS: Label 68 Exp 0] 0 msec
5 125.1.101.1 [MPLS: Label 73 Exp 0] 0 msec
 125.1.101.10 4 msec
 125.1.101.1 [MPLS: Label 73 Exp 0] 0 msec

3600-bd-red#traceroute 1.1.1.23

Type escape sequence to abort.
Tracing the route to 1.1.1.23

1 125.1.99.1 0 msec * 0 msec

3600-bd-red#traceroute 1.1.1.16

Type escape sequence to abort.
Tracing the route to 1.1.1.16

1 125.1.99.5 0 msec * 0 msec

3600-bd-red#

With the backdoor link between Data Center 2 (DL2) and Medium Campus (DL6), but OSPF sham-link configured on the relevant PEs; in this case, between PE3, PE4 and PE7, PE8 pairs:

Traceroute from DL2 to DL6 shows traffic flowing over the MPLS network:

DL2-DC2-RED#traceroute vrf red-data 1.1.1.16

Type escape sequence to abort.
Tracing the route to 1.1.1.16

1 125.1.102.33 0 msec
 125.1.102.49 0 msec
 125.1.102.33 0 msec
2 125.1.102.5 [MPLS: Labels 63/76 Exp 0] 0 msec
 125.1.102.1 [MPLS: Labels 63/76 Exp 0] 0 msec
 125.1.102.5 [MPLS: Labels 63/76 Exp 0] 0 msec
3 125.1.104.1 [MPLS: Label 76 Exp 0] 4 msec 0 msec 0 msec
 125.1.104.2 0 msec * 0 msec
Traceroute from DL6 to DL2 shows traffic flowing over the MPLS VPN network:

DL6-MC-RED#traceroute 1.1.1.23

Type escape sequence to abort.
Tracing the route to 1.1.1.23
Service Validation

Chapter 8 Configurations and Logs for Each VPN

QoS

Because only queueing was implemented on the Cisco 7600 PEs, the verification involves checking to see whether DSCP is being trusted as configured and whether priority for real-time traffic is maintained in case of congestion.

Oversubscribing the PE to CE egress link:

```
7600-DC2-PE3#sh queueing int g1/4
Interface GigabitEthernet1/4 queueing strategy: Weighted Round-Robin
Port QoS is enabled
Trust state: trust DSCP
Extend trust state: not trusted [COS = 0]
Default COS is 0
Queueing Mode In Tx direction: mode-cos
Transmit queues [type = lp3q8t]:

<table>
<thead>
<tr>
<th>Queue Id</th>
<th>Scheduling</th>
<th>Num of thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>WRR</td>
<td>08</td>
</tr>
<tr>
<td>02</td>
<td>WRR</td>
<td>08</td>
</tr>
<tr>
<td>03</td>
<td>WRR</td>
<td>08</td>
</tr>
<tr>
<td>04</td>
<td>Priority</td>
<td>01</td>
</tr>
</tbody>
</table>

WRR bandwidth ratios:  5[queue 1]  25[queue 2]  70[queue 3]

queue tail-drop-thresholds

---

queue random-detect-min-thresholds

---

queue random-detect-max-thresholds

---

WRED disabled queues:

queue thresh cos-map

---
1  1  1
1  2
1  3
1  4
Queueing Mode In Rx direction: mode-cos

Receive queues [type = 2q8t]:

<table>
<thead>
<tr>
<th>Queue Id</th>
<th>Scheduling</th>
<th>Num of thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>WRR</td>
<td>08</td>
</tr>
<tr>
<td>02</td>
<td>WRR</td>
<td>08</td>
</tr>
</tbody>
</table>

WRR bandwidth ratios:  100[queue 1]   0[queue 2]
queue-limit ratios:    100[queue 1]   0[queue 2]
queue tail-drop-thresholds

<table>
<thead>
<tr>
<th>queue thresh cos-map</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

Packets dropped on Transmit:

<table>
<thead>
<tr>
<th>queue</th>
<th>dropped</th>
<th>[cos-map]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11686</td>
<td>[1 ]</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>[0 ]</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>[4 2 3 6 7 ]</td>
</tr>
</tbody>
</table>
Chapter 8  Configurations and Logs for Each VPN

Packets dropped on Receive:

<table>
<thead>
<tr>
<th>queue</th>
<th>dropped</th>
<th>[cos-map]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>[0 1 2 3 4 5 6 7]</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>[]</td>
</tr>
</tbody>
</table>

Multicast

The multicast service can be verified by performing the following steps. PE3 is the PE closest to the source, and PE8 is the PE closest to the test receiver.

1. Verify the BGP updates:

    sh ip pim mdt bgp

    7600-DC2-PE3#sh ip pim mdt bgp
    Peer (Route Distinguisher + IPv4) Next Hop
    MDT group 239.232.10.4
    2:10:1041:125.1.125.5 125.1.125.5
    2:10:1042:125.1.125.6 125.1.125.6
    2:10:1044:125.1.125.8 125.1.125.8
    MDT group 239.232.10.1
    2:10:1054:125.1.125.8 125.1.125.8
    2:10:1055:125.1.125.9 125.1.125.9
    2:10:1056:125.1.125.10 125.1.125.10
    2:10:105:125.1.125.13 125.1.125.13
    MDT group 239.232.10.3
    2:10:1031:125.1.125.5 125.1.125.5
    2:10:1032:125.1.125.6 125.1.125.6
    2:10:1034:125.1.125.8 125.1.125.8
    2:10:1037:125.1.125.11 125.1.125.11
    2:10:1038:125.1.125.12 125.1.125.12
    MDT group 239.232.10.2
    2:10:1064:125.1.125.8 125.1.125.8
    2:10:1065:125.1.125.9 125.1.125.9
    2:10:1066:125.1.125.10 125.1.125.10
    2:10:106:125.1.125.13 125.1.125.13

    sh ip bgp vpnv4 all

    7600-DC2-PE3#sh ip bgp vpnv4 all
    BGP table version is 32649, local router ID is 125.1.125.7
    Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale
    Origin codes: i - IGP, e - EGP, ? - incomplete

    Network Next Hop Metric LocPrf Weight Path
    <snip>
    Route Distinguisher: 2:10:105
    * i125.1.125.13/32 125.1.125.13 0 100 0 ?
    *>i 125.1.125.13 0 100 0 ?
    Route Distinguisher: 2:10:106
    * i125.1.125.13/32 125.1.125.13 0 100 0 ?
    *>i 125.1.125.13 0 100 0 ?
    Route Distinguisher: 2:10:1031
    * i125.1.125.5/32 125.1.125.5 0 100 0 ?
## 2. Verify the global mroute table:

```
sh ip mroute
```

7600-DC2-PE3# sh ip mroute

### IP Multicast Routing Table

| Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement, U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel, Y - Joined MDT-data group, y - Sending to MDT-data group

| Outgoing interface flags: H - Hardware switched, A - Assert winner |

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 125.1.125.5/32</td>
<td>125.1.125.5</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.6/32</td>
<td>125.1.125.6</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.6/32</td>
<td>125.1.125.6</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.7/32</td>
<td>0.0.0.0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.8/32</td>
<td>125.1.125.8</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.8/32</td>
<td>125.1.125.8</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.9/32</td>
<td>125.1.125.9</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.9/32</td>
<td>125.1.125.9</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.10/32</td>
<td>125.1.125.10</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.10/32</td>
<td>125.1.125.10</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.11/32</td>
<td>125.1.125.11</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.11/32</td>
<td>125.1.125.11</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1043</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.12/32</td>
<td>125.1.125.12</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.12/32</td>
<td>125.1.125.12</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.13/32</td>
<td>125.1.125.13</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.13/32</td>
<td>125.1.125.13</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.14/32</td>
<td>125.1.125.14</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.14/32</td>
<td>125.1.125.14</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.15/32</td>
<td>125.1.125.15</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.15/32</td>
<td>125.1.125.15</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.16/32</td>
<td>125.1.125.16</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.16/32</td>
<td>125.1.125.16</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1053</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.17/32</td>
<td>125.1.125.17</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1054</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.17/32</td>
<td>125.1.125.17</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.18/32</td>
<td>125.1.125.18</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.18/32</td>
<td>125.1.125.18</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.19/32</td>
<td>125.1.125.19</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1058</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.19/32</td>
<td>125.1.125.19</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.20/32</td>
<td>125.1.125.20</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1060</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.20/32</td>
<td>125.1.125.20</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.21/32</td>
<td>125.1.125.21</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.21/32</td>
<td>125.1.125.21</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.22/32</td>
<td>125.1.125.22</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.22/32</td>
<td>125.1.125.22</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1065</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.23/32</td>
<td>125.1.125.23</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1066</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 125.1.125.23/32</td>
<td>125.1.125.23</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:10:1067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode

(125.1.125.7, 239.232.10.1), 3d14h/00:03:21, flags: sTZ
Incoming interface: Loopback0, RPF nbr 0.0.0.0, RPF-MFD
Outgoing interface list:
  GigabitEthernet1/2, Forward/Sparse, 3d14h/00:02:37, H
  GigabitEthernet1/3, Forward/Sparse, 3d14h/00:02:49, H

(125.1.125.8, 239.232.10.1), 3d14h/00:02:51, flags: sTZ
Incoming interface: GigabitEthernet1/3, RPF nbr 125.1.102.22, RPF-MFD
Outgoing interface list:
  MVRF blue-data, Forward/Sparse, 3d14h/00:02:40, H

(125.1.125.9, 239.232.10.1), 3d14h/00:02:51, flags: sTZ
Incoming interface: GigabitEthernet1/2, RPF nbr 125.1.102.13, RPF-MFD
Outgoing interface list:
  MVRF blue-data, Forward/Sparse, 3d14h/00:00:50, H

(125.1.125.10, 239.232.10.1), 1d04h/00:02:51, flags: sTZ
Incoming interface: GigabitEthernet1/2, RPF nbr 125.1.102.13, RPF-MFD
Outgoing interface list:
  MVRF blue-data, Forward/Sparse, 05:00:10/00:02:55, H

(125.1.125.13, 239.232.10.1), 3d14h/00:02:51, flags: sTZ
Incoming interface: GigabitEthernet1/1, RPF nbr 125.1.102.1, RPF-MFD
Outgoing interface list:
  MVRF blue-data, Forward/Sparse, 3d14h/00:02:50, H

(125.1.125.7, 239.232.10.2), 3d14h/00:03:21, flags: sTZ
Incoming interface: Loopback0, RPF nbr 0.0.0.0, RPF-MFD
Outgoing interface list:
  GigabitEthernet1/2, Forward/Sparse, 3d14h/00:02:49, H
  GigabitEthernet1/3, Forward/Sparse, 3d14h/00:02:50, H

(125.1.125.8, 239.232.10.2), 3d14h/00:02:51, flags: sTZ
Incoming interface: GigabitEthernet1/3, RPF nbr 125.1.102.22, RPF-MFD
Outgoing interface list:
  MVRF blue-voice, Forward/Sparse, 3d14h/00:02:40, H

(125.1.125.9, 239.232.10.2), 3d14h/00:02:51, flags: sTZ
Incoming interface: GigabitEthernet1/2, RPF nbr 125.1.102.13, RPF-MFD
Outgoing interface list:
  MVRF blue-voice, Forward/Sparse, 3d14h/00:00:50, H

(125.1.125.10, 239.232.10.2), 1d04h/00:02:51, flags: sTZ
Incoming interface: GigabitEthernet1/2, RPF nbr 125.1.102.13, RPF-MFD
Outgoing interface list:
  MVRF blue-voice, Forward/Sparse, 05:00:07/00:02:58, H

(125.1.125.13, 239.232.10.2), 3d14h/00:02:50, flags: sTZ
Incoming interface: GigabitEthernet1/1, RPF nbr 125.1.102.1, RPF-MFD
Outgoing interface list:
  MVRF blue-voice, Forward/Sparse, 3d14h/00:02:39, H

(125.1.125.5, 239.232.10.3), 3d14h/00:02:50, flags: sTZ
Incoming interface: GigabitEthernet1/1, RPF nbr 125.1.102.1, RPF-MFD
Outgoing interface list:
  MVRF red-data, Forward/Sparse, 3d14h/00:00:49, H

(125.1.125.6, 239.232.10.3), 3d14h/00:02:50, flags: sTZ
Incoming interface: GigabitEthernet1/2, RPF nbr 125.1.102.13, RPF-MFD
Outgoing interface list:
  MVRF red-data, Forward/Sparse, 3d14h/00:00:49, H
(125.1.125.7, 239.232.10.3), 3d14h/00:03:20, flags: sTZ
Incoming interface: Loopback0, RPF nbr 0.0.0.0, RPF-MFD
Outgoing interface list:
  GigabitEthernet1/2, Forward/Sparse, 3d14h/00:02:44, H
  GigabitEthernet1/1, Forward/Sparse, 3d14h/00:02:45, H
  GigabitEthernet1/3, Forward/Sparse, 3d14h/00:03:04, H

(125.1.125.8, 239.232.10.3), 3d14h/00:02:50, flags: sTIZ
Incoming interface: GigabitEthernet1/3, RPF nbr 125.1.102.22, RPF-MFD
Outgoing interface list:
  MVRF red-data, Forward/Sparse, 3d14h/00:02:39, H

(125.1.125.11, 239.232.10.3), 3d14h/00:02:50, flags: sTIZ
Incoming interface: GigabitEthernet1/1, RPF nbr 125.1.102.1, RPF-MFD
Outgoing interface list:
  MVRF red-data, Forward/Sparse, 3d14h/00:01:20, H

(125.1.125.12, 239.232.10.3), 3d14h/00:02:50, flags: sTIZ
Incoming interface: GigabitEthernet1/2, RPF nbr 125.1.102.13, RPF-MFD
Outgoing interface list:
  MVRF red-data, Forward/Sparse, 3d14h/00:00:49, H

(125.1.125.5, 239.232.10.4), 3d14h/00:02:50, flags: sTIZ
Incoming interface: GigabitEthernet1/1, RPF nbr 125.1.102.1, RPF-MFD
Outgoing interface list:
  MVRF red-voice, Forward/Sparse, 3d14h/00:00:49, H

(125.1.125.6, 239.232.10.4), 3d14h/00:02:50, flags: sTIZ
Incoming interface: GigabitEthernet1/2, RPF nbr 125.1.102.13, RPF-MFD
Outgoing interface list:
  MVRF red-voice, Forward/Sparse, 3d14h/00:00:49, H

(125.1.125.7, 239.232.10.4), 3d14h/00:03:27, flags: sTZ
Incoming interface: Loopback0, RPF nbr 0.0.0.0, RPF-MFD
Outgoing interface list:
  GigabitEthernet1/2, Forward/Sparse, 3d14h/00:03:27, H
  GigabitEthernet1/1, Forward/Sparse, 3d14h/00:03:02, H
  GigabitEthernet1/3, Forward/Sparse, 3d14h/00:03:10, H

(125.1.125.8, 239.232.10.4), 3d14h/00:02:50, flags: sTIZ
Incoming interface: GigabitEthernet1/3, RPF nbr 125.1.102.22, RPF-MFD
Outgoing interface list:
  MVRF red-voice, Forward/Sparse, 3d14h/00:02:38, H

(125.1.125.7, 239.232.20.32), 00:02:29/00:03:20, flags: sT
Incoming interface: Loopback0, RPF nbr 0.0.0.0, RPF-MFD
Outgoing interface list:
  GigabitEthernet1/2, Forward/Sparse, 00:02:29/00:02:56, H

(125.1.125.8, 239.232.20.32), 00:03:47/00:02:12, flags: sPT
Incoming interface: GigabitEthernet1/3, RPF nbr 125.1.102.22, RPF-MFD
Outgoing interface list: Null

(*, 224.0.1.40), 3d14h/00:02:09, RP 0.0.0.0, flags: DCL
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list:
  Loopback0, Forward/Sparse, 3d14h/00:02:09

3. Verify the mroutes in the VRF (on the receiving router):

   7600-MC-PE8#sh ip mroute vrf red-data
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
Chapter 8  Configurations and Logs for Each VPN

L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel
 Y - Joined MDT-data group, y - Sending to MDT-data group

Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(*) 224.232.10.1), 02:57:22/00:03:13, RP 3.3.3.11, flags: S
Incoming interface: Tunnel0, RPF nbr 125.1.125.7, RPF-MFD
Outgoing interface list:
  GigabitEthernet1/3, Forward/Sparse, 02:57:22/00:03:13, H

(125.1.2.66, 224.232.10.1), 02:57:22/00:03:23, flags: TY
Incoming interface: Tunnel0, RPF nbr 125.1.125.7, RPF-MFD, MDT:[125.1.125.7,23
9.232.20.32]/00:02:44
Outgoing interface list:
  GigabitEthernet1/3, Forward/Sparse, 02:57:22/00:03:13, H

(*) 224.0.1.40), 3d17h/00:03:10, RP 3.3.3.11, flags: SJCL
Incoming interface: Tunnel0, RPF nbr 125.1.125.7
Outgoing interface list:
  GigabitEthernet1/3, Forward/Sparse, 3d17h/00:03:10

(*) 239.255.255.250), 02:57:22/00:03:02, RP 3.3.3.11, flags: S
Incoming interface: Tunnel0, RPF nbr 125.1.125.7, RPF-MFD
Outgoing interface list:
  GigabitEthernet1/3, Forward/Sparse, 02:57:22/00:03:02, H

4. Verify the PIM neighbors in the global table:
sh ip pim nei

7600-DC2-PE3#sh ip pim nei
PIM Neighbor Table
Neighbor          Interface                Uptime/Expires    Ver   DR
Address                                                            Prio/Mode
125.1.102.1       GigabitEthernet1/1       3d14h/00:01:17    v2    1 /   
125.1.102.13      GigabitEthernet1/2       3d14h/00:01:23    v2    1 / S   
125.1.102.22      GigabitEthernet1/3       3d14h/00:01:26    v2    1 / DR

5. Verify the PIM neighbors with the VPN
sh ip pim vrf <> nei

7600-DC2-PE3#sh ip pim vrf red-data nei
PIM Neighbor Table
Neighbor          Interface                Uptime/Expires    Ver   DR
Address                                                            Prio/Mode
125.1.102.34      GigabitEthernet1/4.1     3d14h/00:01:30    v2    1 / DR S
125.1.125.11      Tunnel1                  3d14h/00:01:17    v2    1 / S   
125.1.125.5       Tunnel1                  3d14h/00:01:16    v2    1 / S   
125.1.125.6       Tunnel1                  3d14h/00:01:37    v2    1 / S   
125.1.125.12      Tunnel1                  3d14h/00:01:34    v2    1 / DR S
125.1.125.8       Tunnel1                  3d14h/00:01:17    v2    1 /   

Next Generation Enterprise MPLS VPN-Based MAN Design and Implementation Guide