Software-Defined Access Fabric Provisioning

Prescriptive Deployment Guide

July, 2019
Contents

Definition and Design: Software-Defined Access 3
Deployment: SD-Access Fabric 3
Process: Using Cisco DNA Center for Initial Network Design and Discovery 6
Process: Creating Segmentation and Policy for the SD-Access Network 17
Process: Preparing for Network Management Automation 20
Process: Provisioning the Underlay Network for SD-Access 32
Process: Provisioning the SD-Access Overlay Network 39
Process: Integrating SD-Access Wireless into the Fabric 53
Appendix A: Product List 62
Feedback 65
Definition and Design: Software-Defined Access

Cisco® Software-Defined Access (SD-Access) is the evolution from traditional campus LAN designs to networks that directly implement the intent of an organization. SD-Access is enabled with an application package that runs as part of the Cisco DNA Center software for designing, provisioning, applying policy, and facilitating the creation of an intelligent campus wired and wireless network with assurance.

This guide is used to deploy the management infrastructure, including Cisco DNA Center, Cisco Identity Services Engine (ISE), and Cisco Wireless LAN Controllers (WLC), described in the companion Software-Defined Access Solution Design Guide. The deployment described in this guide is used in advance of deploying a Cisco Software-Defined Access fabric, as described in the companion Software Defined Access Fabric Deployment Guide.

If you didn't download this guide from Cisco Community or Design Zone, you can check for the latest version of this guide.

- https://www.cisco.com/go/designzone
- https://cs.co/en-cvds
Deployment: SD-Access Fabric

How to read deployment commands

The guide uses the following conventions for commands that you enter at the command-line interface (CLI).

Commands to enter at a CLI prompt:

```plaintext
configure terminal
```

Commands that specify a value for a variable (variable is in bold italics):

```plaintext
ntp server 10.4.0.1
```

Commands with variables that you must define (definition is bracketed in bold and italics):

```plaintext
class-map [highest class name]
```

Commands at a CLI or script prompt (entered commands are in bold):

```plaintext
Router# enable
```

Long commands that line wrap on a printed page (underlined text is entered as one command):

```plaintext
police rate 1000 pps burst 10000 packets conform-action
```

The SD-Access management components are deployed into the topology described in the companion [Software-Defined Access Solution Design Guide](#), as shown in the topology diagram. This guide assumes that the Cisco DNA Center, Cisco Identity Services Engine (ISE), and Cisco Wireless LAN Controller (WLC) management infrastructure is already installed and available, as described in the Software-Defined Access Management Infrastructure Deployment Guide.
The enterprise network integrated with the described campus fabric deployment is nonvirtualized and runs Enhanced Interior Gateway Routing Protocol (EIGRP) as a routing protocol. IP prefixes from the campus, including shared services, must be available to both the fabric underlay and overlay networks while maintaining isolation among overlay networks. To maintain the isolation, VRF-Lite extends from the fabric border nodes to a set of fusion routers. The fusion routers implement VRF route leaking using a BGP route target import and export configuration and perform mutual redistribution with EIGRP in the enterprise network and with BGP to the campus fabric. A route-map configuration for dynamic tagging and filtering of redistributed routes provides a simple and dynamic way to prevent routing loops while accommodating multiple redistribution points in the high-availability design.
Process: Using Cisco DNA Center for Initial Network Design and Discovery

Cisco DNA Center provides a robust Design Application to allow customers of varying sizes and scales to easily define their physical sites and common resources. Using a hierarchical format that is intuitive to use, the Design Application removes the need to redefine the same resources, such as DHCP, DNS, and AAA servers, in multiple places when provisioning devices. The network hierarchy created in the Design Application should mimic the actual, physical network hierarchy of your deployment.

Using Cisco DNA Center, you create a network hierarchy of areas that can contain additional areas or buildings and floors within areas. Devices map into the buildings and floors for service provisioning.

Procedure 1. Create network sites

Step 1. Log in to Cisco DNA Center. From the main Cisco DNA Center dashboard, navigate to Design > Network Hierarchy.

Step 2. Click **Add Site**, in the drop-down menu select **Add Area**, supply an appropriate **Area Name**, and then click **Add**.

Step 3. Click **Add Site**, in the drop-down menu select the **Add Building** button, supply an appropriate **Building Name**, select the site created in the previous step as the **Parent**, complete the wizard to assign a location, and then click **Add**.

To add a building, you can use an approximate street address near the building within the wizard and, if desired, refine the building position on the map by clicking the target location.

Step 4. Repeat the previous step as required to add sites and buildings, creating a hierarchy that makes sense for your organization.

Step 5. If you are integrating wireless to a building or require more granularity for network choices within a building, select the building on the map (or select the gear icon next to a building in the hierarchy), choose **Add Floor**, and complete the wizard with the details.

Floors are referenced during the wireless provisioning. If you have floor map diagrams in DXF, DWG, JPG, GIF, or PNG formats, add them to any defined floors as a useful component for wireless deployments to show AP locations and coverage. You can add hundreds of sites up to the limits as described in the Software-Defined Access Solution Design Guide.
Procedure 2. Configure network services for sites

Configure AAA, DHCP, and DNS services that align to the hierarchy in Cisco DNA Center. If the services use the same servers across the complete hierarchy, then you can configure them globally, and the inheritance properties of the hierarchy makes the global settings available to all sites. Differences for individual sites can then be applied on a site-by-site basis. This procedure shows the configuration globally.

Step 1. Within Cisco DNA Center, navigate to DESIGN > Network Settings > Network. Within the left pane in the site hierarchy, select the appropriate level (example: Global), fill in the DHCP Server IP address (example: 10.4.49.10), under DNS Server fill in the Domain Name (example: ciscodna.net) and server Primary IP Address (example: 10.4.49.10), add any redundant or additional servers (you can leave the default selections to use Cisco DNA Center for the SYSLOG and SNMP server), and then click Save.
Step 2. Near the top, next to Network Telemetry, click the + Add Servers button, select the AAA and NTP check boxes, and then click OK.

The configuration pane is updated with AAA Server and NTP Server as available configuration sections. You configure AAA services for both the network infrastructure device administration and the client endpoints connecting to the infrastructure. For this example, the high-availability standalone ISE nodes are used.

Tech tip

Many organizations use TACACS for infrastructure device administration support. If you intend to enable TACACS on the same ISE server being used for RADIUS client authentication, then you integrate it with Cisco DNA Center during this step also by using the View Advanced Settings drop down menu. You can find ISE configuration information for enabling TACACS integration by navigating within ISE to Work Centers > Device Administration > Overview.
Step 3. Under **AAA Server** select the **Network** and **Client/Endpoint** check boxes, under **NETWORK**, select the **ISE** radio button, under **Network** use the pull-down to select the prepopulated ISE server (example: 10.4.49.30), under **Protocol**, select the **TACACS** radio button, under **IP Address (Primary)** use the second pull-down to select the primary ISE server (example: 10.4.49.30), click the plus sign (+) button, and then under **IP Address (Additional)** pull-down select the redundant ISE server node (example: 10.4.49.31).

To ensure ISE server redundancy is properly enabled, verify that the primary and additional IP addresses are displayed along with the selected network address before continuing.

Step 4. Under **CLIENT/ENDPOINT** and **Servers**, select the **ISE** radio button, under **Client/Endpoint**, use the pull-down to select the prepopulated ISE server. Under **Protocol**, select the **RADIUS** radio button, under **IP Address (Primary)** use the pull-down to select the primary ISE server, click the plus sign (+) button, and then under **IP Address (Additional)** use the pull-down to select the redundant ISE server node, and then click **Save**.

Step 5. On the same screen, scroll down to **NTP Server**, add the **IP Address** of the NTP server (example: 10.4.0.1), if you have one or more additional NTP servers, select the plus sign (+) button, and then in the **Additional NTP** add the IP address of the redundant NTP servers (example: 10.4.0.2), and then click **Save**.

The ISE servers for AAA, and the servers for DHCP, DNS, and NTP for the selected level in the site hierarchy, are all saved to be used during fabric provisioning.
Procedure 3. Add device credentials for discovery and management

When you deploy the SD-Access underlay using devices that are already configured and which are network reachable by Cisco DNA Center, you discover and manage the devices by supplying the CLI and Simple Network Management Protocol (SNMP) credentials.

As an option, you can deploy LAN switches without existing configurations into the underlay by using the Cisco DNA Center LAN Automation capabilities. Cisco Network Plug and Play (PnP) is the mechanism enabling connectivity and initial configuration for supported switches. For LAN Automation deployments, you also supply CLI and SNMP credentials to access and prepare one or more supported PnP seed devices, such as Cisco Catalyst 9500 Series Switches in a distribution or core. LAN Automation discovers switches directly connected to chosen seed device interfaces and their immediate neighbor switches using Cisco Discovery Protocol, all of which must be running the PnP agent and have no previous configuration. The credentials supplied allow Cisco DNA Center and seed devices to work together to configure the discovered devices and add them into managed inventory.

Add device credentials to manage scopes of the site hierarchy created in the design. These credentials enable discovery and management for the network.

Step 1. Within Cisco DNA Center, navigate to Design > Network Settings > Device Credentials and select an appropriate level of the site hierarchy in the left pane (example: Global, for common credentials across the hierarchy).

Step 2. At the top of the CLI Credentials section, click Add, complete the Name / Description (example: IOS Devices), Username, Password, and Enable Password fields, and click Save.

Caution
If you are using ISE as your AAA server, you should avoid using `admin` as the username for device CLI credentials, which can lead to username conflicts with the ISE administrator login, resulting in the inability to log in to devices.

Step 3. At the top of the **SNMP Credentials** section, select an SNMP credential type to update (example: SNMPV3). Click **Add**, select the radio button in the row next to the credential to update (a single credential per row at a time), fill out the credential details (12-character passwords are recommended to be compatible with Cisco WLCs), and then click **Save**.

Step 4. Repeat steps 2 and 3 for any additional credentials required in the hierarchy. **CLI Credentials** and either **SNMPV3** or both **SNMPV2C Read** and **SNMPV2C Write** are the most common requirements.

Step 5. For each of the CLI and SNMP credentials assigned, click all radio buttons next to each assignment created. After each selection, at the bottom of the Device Credentials screen, click **Save**. If you have used more than one SNMP credential type, repeat this step by toggling to each of the SNMP credential options, click the radio button next to the option, and then click **Save**.
A Created Common Settings Successfully acknowledgment is displayed. The device credentials to be used for network discovery and management are now available in Cisco DNA Center.

Procedure 4. Define global IP address pools

Define IP addresses for your networks by manually assigning them in Cisco DNA Center. Optionally, push the IP address assignments to an IP address manager (IPAM) (examples: Infoblox, Bluecat) by integrating the IPAM through APIs. You integrate with an IPAM by navigating to the System Settings > Settings > IP Address Manager and filling out the form with the specifics of your IPAM provider. In this example not using IPAM integration, you manually configure IP addressing and DHCP scopes on your IPAM servers to correspond to assignments in Cisco DNA Center.

DHCP scopes configured on the DHCP server should support the address allocations and any additional DHCP options required to make a device work. For example, some IP telephony vendors require specific DHCP options to enable their devices to function correctly (example: DHCP Option 150 for configuration by TFTP server). Check the product documentation to accommodate the requirements for your deployment.

This procedure shows how to manually define the IP address pools that are used during the pool reservation process. These pools are assigned to the sites in your network, and the assignment steps are required for both manual and integrated IPAM deployments. You have the flexibility to create a larger global pool and then reserve a subset of a pool at lower levels in the site hierarchy. IP address pools are created only at the global level and you reserve addresses from the pools only at levels other than global.
The deployment described in this guide uses the global address pools listed in the table. To ease understanding, smaller address spaces are used for most of the global address pool compared to what an enterprise organization would typically deploy, such as a /16 address space or larger. Larger global address pools support many smaller address space reservations throughout the site hierarchy, as shown with the EMPLOYEE example. Although address assignment of an IP gateway in each pool is required, SD-Access only uses the gateway when creating an overlay network. The table also includes example pools available for both manual LAN underlay and a separate automated LAN underlay as well as multicast peering.

Table 1. Example global address pools

<table>
<thead>
<tr>
<th>Pool name</th>
<th>Network/mask</th>
<th>IP gateway</th>
<th>DHCP server</th>
<th>DNS server</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMPLOYEE</td>
<td>10.101.0.0/16</td>
<td>10.101.0.1</td>
<td>10.4.49.10</td>
<td>10.4.49.10</td>
</tr>
<tr>
<td>BUILDING_CONTROL</td>
<td>10.102.114.0/24</td>
<td>10.102.114.1</td>
<td>10.4.49.10</td>
<td>10.4.49.10</td>
</tr>
<tr>
<td>GUEST</td>
<td>10.103.114.0/24</td>
<td>10.103.114.1</td>
<td>10.4.49.10</td>
<td>10.4.49.10</td>
</tr>
<tr>
<td>LAN_UNDERLAY</td>
<td>10.4.14.0/24</td>
<td>10.4.14.1</td>
<td>10.4.49.10</td>
<td>10.4.49.10</td>
</tr>
<tr>
<td>LAN_AUTOMATION</td>
<td>10.5.100.0/24</td>
<td>10.5.100.1</td>
<td>10.4.49.10</td>
<td>10.4.49.10</td>
</tr>
<tr>
<td>BORDER_HANDOFF</td>
<td>172.16.172.0/24</td>
<td>172.16.172.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MULTICAST_PEER</td>
<td>172.16.173.0/24</td>
<td>172.16.174.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ACCESS_POINT</td>
<td>172.16.174.0/24</td>
<td>172.16.173.1</td>
<td>10.4.49.10</td>
<td>10.4.49.10</td>
</tr>
</tbody>
</table>

Table 2. Example address pool reservations from EMPLOYEE global pool

<table>
<thead>
<tr>
<th>Pool name</th>
<th>Network/mask</th>
<th>IP gateway</th>
<th>DHCP server</th>
<th>DNS server</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMPLOYEE-DATA-RTP5</td>
<td>10.101.114.0/24</td>
<td>10.101.114.1</td>
<td>10.4.49.10</td>
<td>10.4.49.10</td>
</tr>
<tr>
<td>EMPLOYEE-PHONE-RTP5</td>
<td>10.101.214.0/24</td>
<td>10.101.214.1</td>
<td>10.4.49.10</td>
<td>10.4.49.10</td>
</tr>
</tbody>
</table>

Step 1.

1. Add a global pool in Cisco DNA Center that is dedicated to the SD-Access fabric border node connectivity provisioning. Within Cisco DNA Center, navigate to **DESIGN > Network Settings > IP Address Pools**. In the site hierarchy on the left, select Global, and click + Add IP Pool. Fill in the IP Pool Name, IP Subnet, CIDR Prefix, and Gateway IP Address. If the pool has endpoint clients, use the drop-down menus to assign the DHCP Server(s) and DNS Server(s). Do not select Overlapping. When you are done, click Save.
Step 2. Repeat the previous step for any additional global IP pools that include subnets at the site and building levels. The pools are added to the list of global pools.

Procedure 5. Reserve IP address pools

Use the defined global IP address pools to reserve IP addresses for sites in your design using the network hierarchy. For single-site deployments, the entire set of global IP address pools can be reserved for that site. When you reserve addresses from the defined global IP address pools, the DNS and DHCP servers are available to use in those reservations, or they can be overwritten.

Step 1. Within Cisco DNA Center, navigate to DESIGN > Network Settings > IP Address Pools, on the left within the site hierarchy select a site or lower level for an IP address pool reservation (example: RTP5-C9K), and then in the top right click Reserve IP Pool.
Step 2. Fill in the IP Pool Name (example: EMPLOYEE-DATA-RTPs), under Type select LAN, select the Global IP Pool source for the reservation (example: EMPLOYEE), under CIDR Notation / No. of IP Addresses select the portion of the address space to use (example: 10.101.114.0/24), assign a Gateway IP Address (example: 10.101.114.1), use the drop-down menu to assign the DHCP Server(s) and DNS Servers(s), and then click Reserve.

Step 3. Repeat the previous step for all global pool address blocks required to be reserved in the hierarchy for each site. The hierarchy shows the assigned address pools. This example shows pool reservations within the RTP site, at the RTP5-CgK building level.
IP Address Pools (9)

<table>
<thead>
<tr>
<th>Name</th>
<th>IP Subnet</th>
<th>Type</th>
<th>Global IP Pools</th>
<th>Gateway</th>
<th>DHCP Server</th>
<th>DNS Server</th>
<th>Free Count</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORD125791-LRP1</td>
<td>192.168.0.1/24</td>
<td>LAN</td>
<td></td>
<td>192.168.0.10</td>
<td>192.168.0.10</td>
<td>192.168.0.10</td>
<td>256 of 256</td>
<td>Release</td>
</tr>
<tr>
<td>MULTICAST-RP1</td>
<td>192.168.0.1/24</td>
<td>MULTICAST</td>
<td></td>
<td>192.168.0.10</td>
<td>192.168.0.10</td>
<td>192.168.0.10</td>
<td>256 of 256</td>
<td>Release</td>
</tr>
<tr>
<td>ACCESS125791-RP1</td>
<td>192.168.0.1/24</td>
<td>LAN</td>
<td>ACCESS125791</td>
<td>192.168.0.10</td>
<td>192.168.0.10</td>
<td>192.168.0.10</td>
<td>256 of 256</td>
<td>Release</td>
</tr>
</tbody>
</table>
Process: Creating Segmentation and Policy for the SD-Access Network

As part of the design decisions in preparation for your SD-Access network deployment, you decide network segmentation strategies for the organization. Macro segmentation uses additional overlay networks (VNs) in the fabric, and micro segmentation uses scalable group tags to apply policy to groups of users or device profiles.

Use group policies to easily accommodate the desired outcomes of policy application using segmentation. In a university example, students and faculty machines both may be permitted to access printing resources, but student machines should not communicate directly with faculty machines, and printing devices should not communicate with other printing devices.

In other cases, more isolation is required. In a retail store example, the point-of-sale machines should never communicate with the video surveillance network infrastructure, which in turn should never communicate with the building HVAC system. In cases where the isolation need extends from the edge of the network all the way to the core of the network to access centralized services, macro segmentation using VNs is the best choice. Governmental and industrial compliance requirements and an organization’s risk policies often drive the choice to use macro segmentation.

For a deeper exploration of designing segmentation for SD-Access, with use cases, see the Software-Defined Access Segmentation Design Guide on Cisco.com.

Use these procedures as examples for deploying your macro and micro segmentation policies.

Procedure 1. Add an overlay VN to the SD-Access network

Step 1. From the main Cisco DNA Center dashboard, navigate to POLICY > Virtual Network, click the + (plus sign) to create a new virtual network, enter a Virtual Network Name (example: OPERATIONS), drag scalable groups from the Available Scalable Groups pool into the Groups in the Virtual Network pool (example: Auditors, Developers, Development_Servers, Employees, and PCI_Servers), and then click Save.

The VN with associated groups is defined and appears in the list of defined virtual networks. These virtual network definitions are available for provisioning fabrics.

Tech tip

If you don't see any groups, then likely the pxGrid connectivity between Cisco DNA Center and ISE is not fully operational. In this case, review the integration procedures for ISE with Cisco DNA Center and be sure to approve the pxGrid connection request in ISE from Cisco DNA Center.

Step 2. If your organization requires groups different than the default groups, create custom groups by navigating to POLICY > Group-Based Access Control > Scalable Groups, and then click the Add Groups to create a new group and SGT.

Step 3. Repeat the first two steps for each overlay network. You can also return to these steps after the fabric is provisioned to create more overlay networks.
Step 4. Many networks require a guest service for wireless users — create a guest VN to support this feature. From the main Cisco DNA Center dashboard, navigate to POLICY > Virtual Network, click the + (plus sign) to create a new virtual network, enter a Virtual Network Name (example: GUEST), select the check box next to Guest Virtual Network, drag the Guests scalable groups from the Available Scalable Groups pool into the Groups in the Virtual Network pool, and then click Save.

Procedure 2. Create a micro-segmentation policy using SGTs

Micro-segmentation policies are customized for an organization’s deployment. This simple example shows a basic policy that can be used to deny users from the Employee group from communicating with the PCI_Servers group. When authentication profiles appropriately assign an SGT to an endpoint or user, ISE captures the intent of this policy and renders it into the network.

Step 1. From the main Cisco DNA Center dashboard, navigate to POLICY > Group-Based Access Control > Group-Based Access Control Policies, click + Add Policy, from the Available Scalable Groups pane drag the Employees group and drop it into the Source pane, drag the PCI_Servers group into the Destination pane, input a Policy Name (example: Deny-Employee-to-PCI), enter a Description, select Enable Policy, select Enable Bi-directional, click + Add Contract, select deny, click OK, and then click Save.

The policy is created and listed with a status of CREATED. Because of the bidirectional option selection, the reverse policy is also created.

Step 2. Select the policies created, and then click Deploy.
The status changes to **DEPLOYED** and the policies are available to be applied to SD-Access fabrics Cisco DNA Center creates and are also available in ISE, viewable using the Cisco TrustSec policy matrix.

Step 3. At the top right, click **Advanced Options**. The link is a shortcut to logging in to ISE, navigating to **Work Centers > TrustSec > TrustSec Policy**, and then on the left side selecting **Matrix**. You are redirected to log in to ISE, which redirects the browser and displays the TrustSec policy matrix.

Verify that the policy has been updated to ISE for rendering into the network.
Process: Preparing for Network Management Automation

Get ready to deploy the network designs and policies by creating a functioning network underlay including device management connectivity. As part of the integration of ISE with Cisco DNA Center shown in the companion Software-Defined Access for Distributed Campus Prescriptive Deployment Guide, ISE is configured with TACACS infrastructure device administration support. For TACACS configurations, Cisco DNA Center modifies discovered devices to use authentication and accounting services from ISE and local failover servers by default. ISE must be prepared to support the device administration configurations pushed to the devices during the discovery process.

Procedure 1. Configure underlay network device management using the Cisco IOS-XE CLI

For maximum resiliency and bandwidth, use a loopback interface on each device and enable Layer 3 connectivity for Cisco DNA Center in-band discovery and management. The following steps configure point-to-point Ethernet connectivity between devices using IS-IS as the routing protocol and SSHv2 for device configuration using the device loopback interfaces. The SNMP configuration is pushed in a later procedure as part of device discovery.

Do not add a configuration to any devices that you intend to discover and configure using LAN Automation as part of a later procedure. Devices with existing configurations cannot be configured using LAN Automation. This example shows a configuration using Cisco IOS XE on a Cisco Catalyst switch.

Step 1. Use the device CLI to configure the hostname to make it easy to identify the device and disable unused services.

```plaintext
hostname [hostname]
no service config
```

Step 2. Configure local login and password.

```plaintext
username dna privilege 15 algorithm-type scrypt secret [password]
! older software versions may not support scrypt (type 9)
! username dna privilege 15 secret [password]
enable secret [enable password]
```

Step 3. Configure Secure Shell (SSH) as the method for CLI management access.

```plaintext
ip domain-name ciscodna.net
! generate key with choice of modulus, required by some switches
crypto key generate rsa modulus 1024
ip ssh version 2
line vty 0 15
login local
transport input ssh
transport preferred none
```

Step 4. Configure the switch to support Ethernet jumbo frames. The MTU chosen allows for the extra fabric headers and compatibility with the highest common value across most switches, and the round number should be easy to remember when configuring and troubleshooting.

```plaintext
system mtu 9100
```
Tech tip

Underlay connectivity using Cisco IOS XE on routers requires the use of an `mtu` command at the interface configuration level, and Cisco Catalyst and Cisco Nexus® switches not using Cisco IOS XE use a `system jumbo mtu` command at the global configuration level.

Step 5. Configure the switch loopback address and assign SSH management to use it.

interface Loopback0

 ip address `[Device loopback IP address]` 255.255.255.255

ip ssh source-interface Loopback0

Procedure 2. Configure underlay network links for routed access connectivity

If your underlay network is already configured using a routed access network deployment model, skip this procedure. Typical Layer 2 deployments require this procedure.

Do not add a configuration to any devices that you intend to discover and configure using the LAN Automation feature. Devices with existing configurations cannot be configured using the LAN Automation onboarding without resetting the device to original default configurations.

Step 1. Configure the switch connections within the underlay network infrastructure. Repeat this step for every link to a neighbor switch within the fabric underlay. If the underlay device will be provisioned as a fabric border node and the connection is to be used as a handoff from the fabric to the external infrastructure, then use the next procedure instead.

 interface TenGigabitEthernet1/0/1
 no switchport
 ip address `[Point-to-point IP address]` [netmask]

Step 2. Enable IP routing and enable the IS-IS routing protocol on the switch.

 ! ip routing is not enabled by default on some switches
 ip routing
 ip multicast-routing
 ip pim register-source Loopback0
 ip pim ssm default
 router isis
 net 49.0000.0100.0400.0001.00
 domain-password `[domain password]`
 metric-style wide
 nsf ietf
 log-adjacency-changes
 bfd all-interfaces

Tech tip

A common convention in IS-IS is to embed the loopback IP address into the unique NET, or system ID. For example, a loopback IP address `10.4.32.1 (010.004.032.001)` is regrouped to become `0100.0403.2001`, and it is appended with `.00` and prepended with an area ID, such as `49.0000`, resulting in NET `49.0000.0100.0403.2001.00`.
Step 3. Enable IS-IS routing on all configured infrastructure interfaces in the underlay, except for the border handoff interfaces, which are configured in the next procedure. The loopback interface is enabled to share the management IP address and the physical interfaces are enabled to share routing information with the connected infrastructure.

```plaintext
interface Loopback0
  ! ip address assigned in earlier step
  ip router isis
  ip pim sparse-mode
interface range TenGigabitEthernet1/0/1-2, TenGigabitEthernet2/0/1-2
  ! routed ports with ip addresses assigned via earlier steps
  ip router isis
  isis network point-to-point
  ip pim sparse-mode
  logging event link-status
  load-interval 30
  bfd interval 100 min_rx 100 multiplier 3
  no bfd echo
dampening
```

Procedure 3. Enable routing connectivity at border toward external router neighbor

If your underlay network is already configured as a routed access network and integrated with the rest of your network using BGP using a 802.1Q handoff, skip this procedure. Most deployments require this procedure.

To connect border node devices into your network, you establish connectivity across interfaces configured using VRF-lite, which uses 802.1Q VLAN tagging to separate the VRFs. Connect common network services available outside of the border nodes such as DNS, DHCP, WLCs, and Cisco DNA Center management when it is not directly connected to the SD-Access network nodes, by extending your existing enterprise network to the underlay at the border. Connectivity to Cisco DNA Center is required for additional provisioning.

The external device handling routing among multiple virtual networks and a global routing instance acts as a fusion router for those networks. The separation of connectivity is maintained using VRFs connected by 802.1Q-tagged interfaces to the border, also known as VRF-lite. Establishing the underlay connectivity using BGP allows Cisco DNA Center to manage initial discovery and configuration using the link, and then to use the same link augmented with additional tags and BGP sessions as needed for overlay VN connectivity.

Step 1. For each border node, if you are configuring a switch supporting VLAN trunk interfaces such as Cisco Catalyst 9000, 3800, or 6800 Series switches, you must configure a trunk on the connected interface with a dedicated VLAN to establish underlay connectivity for route peering to the fusion router.

```plaintext
vlan 100
interface vlan100
  ip address [IP address] [netmask]
  ip pim sparse-mode
  no shutdown
interface FortyGigabitEthernet1/0/24
  switchport
  switchport mode trunk
  switchport trunk allowed vlan add 100
```
Step 2. For each border node, if you are configuring a device such as an ASR or ISR router that supports 802.1Q VLAN tagging, use an alternative subinterface configuration instead of a switch trunk interface to establish underlay connectivity to the fusion router.

```plaintext
interface TenGigabitEthernet0/1/0
  no shutdown
!
interface TenGigabitEthernet0/1/0.100
  encapsulation dot1Q 100
  ip address [IP address] [netmask]
  ip pim sparse-mode
  no shutdown
```

Step 3. Connect the redundant border nodes together with at least one routed interface for underlay communication and later BGP peering. The configuration for integrating into the IS-IS protocol is shown. Repeat this step for each interface connecting border nodes.

```plaintext
interface FortyGigabitEthernet1/0/23
  no switchport
  ip address [Point-to-point IP address] [netmask]
  ip router isis
  isis network point-to-point
  ip pim sparse-mode
  logging event link-status
  load-interval 30
  no shutdown
```

Step 4. Enable BGP routing to the fusion router for connectivity to networks external to the fabric and activate BGP on the connecting interfaces. Configure BGP to allow Cisco DNA Center management access to the underlay network devices, while allowing further provisioning for virtual networks on the interfaces and minimizing disruption to network connectivity. Repeat this step for each border node.

```plaintext
router bgp [underlay AS number]
  bgp router-id [loopback 0 IP address]
  bgp log-neighbor-changes
  ! fusion router is an eBGP neighbor
  neighbor [fusion interface IP address] remote-as [external AS number]
  ! redundant border is an iBGP neighbor
  neighbor [redundant border Lo0 address] remote-as [underlay AS number]
  neighbor [redundant border Lo0 address] update-source Loopback0
  !
  address-family ipv4
  network [Lo0 IP address] mask 255.255.255.255
  ! advertise underlay IP network summary in global routing table
  aggregate-address [underlay IP network summary] [netmask] summary-only
  redistribute isis level-2
  neighbor [fusion interface IP address] activate
```
Procedure 4. Redistribute shared services subnets into underlay IGP

A default route in the underlay cannot be used by the APs to reach the WLC. A more specific route (such as a /24 subnet or /32 host route) to the WLC IP address must exist in the global routing table at each node where the APs connect to establish connectivity. Permit the more specific routes for the WLC and DHCP shared services needed from BGP (examples: 10.4.174.0/24 and 10.4.48.0/21) into the underlay network by redistributing the shared services route at the border into the underlay IGP routing process using this procedure. Using this process, the prefixes used match prefixes in the BGP routing table.

Step 1. Connect to each border node and add a prefix-list and route-map for subnets used for the shared services.

```
  ip prefix-list SHARED_SERVICES_NETS seq 5 permit 10.4.48.0/21
  ip prefix-list SHARED_SERVICES_NETS seq 10 permit 10.4.174.0/24
  route-map GLOBAL_SHARED_SERVICES_NETS permit 10
  match ip address prefix-list SHARED_SERVICES_NETS
```

Step 2. At each border node, redistribute the prefixes into your underlay routing protocol. This example assumes ISIS.

```
  router isis
  redistribute bgp [underlay AS number] route-map GLOBAL_SHARED_SERVICES_NETS metric-type external
```

Procedure 5. Enable connectivity at external fusion router towards border neighbor

The fusion routers connected to your fabric border routers require CLI configuration for underlay connectivity consistent with the previous procedures. Follow this procedure at each external fusion router device that is connected to a border.

The example fusion router is configured with route peering between a VRF containing the enterprise-wide global routes and the global routing table on the border for the fabric underlay reachability, without using the fusion router global routing table.

Alternatively, peer between the fusion router enterprise-wide global routing table and the global routing table on the border, without using a VRF.

Step 1. On each external fusion router, create the VRF, route distinguisher, and route targets for the initial management connectivity to the border.

```
  vrf definition VRF-GLOBAL_ROUTES
    rd 100:100
  !
  address-family ipv4
    route-target export 100:100
    route-target import 100:100
  exit-address-family
```

Step 2. For each connection from the external fusion router to the SD-Access fabric border, enable the interface, VLAN-tagged subinterface, and IP addressing. This example uses 802.1Q VLAN tagging on a router with subinterfaces. For switches requiring trunk port configurations, match the other side that was previously configured.

```
  interface TenGigabitEthernet0/1/7
    description to Border
    mtu 9100
```
no ip address
no shutdown
interface TenGigabitEthernet0/1/7.100
 encapsulation dot1Q 100
 vrf forwarding VRF-GLOBAL ROUTES
 ip address [IP network] [netmask]

IP connectivity is now enabled for the VLAN (example: 100) on the 802.1Q tagged connection between the fusion router and the border node.

Step 3. Create route maps to tag routes and avoid routing loops when redistributing between the IGP used within the rest of the network and BGP when connecting using multiple links. IGPs can vary—the example shown is for EIGRP, completing the routing connectivity from IS-IS to BGP to EIGRP.

```plaintext
route-map RM-BGP-TO-EIGRP permit 10
  set tag 100
!
route-map RM-EIGRP-TO-BGP deny 10
  match tag 100
route-map RM-EIGRP-TO-BGP permit 20
```

Step 4. Enable BGP peering from redundant fusion routers to the border nodes and redistribute the IGP that is used to reach the networks beyond the fusion routers.

```plaintext
router bgp [external AS number]
  bgp router-id [loopback IP address]
  bgp log-neighbor-changes
  !
  address-family ipv4 vrf VRF-GLOBAL ROUTES
    redistribute eigrp 100 route-map RM-EIGRP-TO-BGP
    neighbor [redundant fusion IP] remote-as [external AS number]
    neighbor [redundant fusion IP] activate
    neighbor [border IP address] remote-as [underlay AS number]
    neighbor [border IP address] activate
    maximum-paths 2
    default-information originate
    exit-address-family
```

Step 5. Redistribute BGP into the IGP to enable reachability. IGPs can vary—the example shown is for named mode EIGRP.

```plaintext
router eigrp LAN
  !
  address-family ipv4 unicast vrf VRF-GLOBAL ROUTES autonomous-system 100
  topology base
    redistribute bgp [external AS number] metric 1000000 1 255 1 9100 route-map RM-BGP-TO-EIGRP
    exit-af-topology
    network [external IP network address] [netmask]
    eigrp router-id [loopback IP address]
```
exit-address-family

Procedure 6. Configure MTU on unmanaged intermediate devices

Optional

It is an advantage to have Cisco DNA Center manage all devices in a fabric domain. Cisco DNA Center already manages fabric edge nodes and border nodes; however, if you have intermediate devices within the fabric that will not be managed by Cisco DNA Center (example: hardware or software support isn't available in Cisco DNA Center), then the devices must still meet the requirements for transporting SD-Access traffic through those transit fabric intermediate nodes. The primary requirements are that they:

- Must be Layer 3 devices that are actively participating in the routing topology within the other fabric underlay devices.
- Must be able to transport the jumbo frames that are offered by the fabric encapsulation techniques.

For unmanaged fabric intermediate node devices, you must set an appropriate MTU (example: 9100) and manually configure routing with the other devices in the underlay. Configuration guidance for this situation is device-specific and not discussed further in this guide.

Do not add a configuration to any devices that you intend to discover and configure using LAN Automation as part of a later procedure. Devices with existing configurations cannot be configured using LAN Automation.

Procedure 7. Discover and manage network devices

You use Cisco DNA Center to discover and manage the underlay network devices for SD-Access by enabling IP connectivity to the devices and supplying Cisco DNA Center with management credentials. Use this procedure for any LAN Automation seed devices and all other devices that you do not plan to discover and manage using LAN Automation in the next procedure.

These steps show how to initiate discovery by supplying an IP address range or multiple ranges for scanning network devices, which constrains the discovery and potentially saves time. Alternatively, for the devices not using LAN Automation onboarding, you can supply an initial device for discovery and direct Cisco DNA Center to use Cisco Discovery Protocol to find connected neighbors. When using Cisco Discovery Protocol, reduce the default number of hops down to a reasonable number to speed the discovery.

Step 1. Navigate to the main Cisco DNA Center dashboard, scroll to the **Tools** section, click **Discovery** and supply a **Discovery Name**. Select **Range** and enter a start and end IP loopback address for **IP Ranges** (to cover a single address, enter that address for both the start and end of the range). For **Preferred Management IP**, if a device has a loopback interface used for management then select **UseLoopBack**.

Tech tip

If you are using a Cisco Catalyst 6800 Series switch with a very large configuration, you can avoid discovery timeouts by adding the following command to that switch in configuration mode:

```
snmp mib flash cache
```

Step 2. If you have any additional ranges, next to the first range click + (plus sign), enter the additional range, and repeat for any remaining ranges.
Step 3. Scroll down to verify the CLI credentials used for the discovery and the SNMP credential configurations pushed to the device by the Cisco DNA Center Device Controllability feature, and then at the bottom click Start.

The discovery details are displayed while the discovery runs.
Upon completion of a device discovery with Device Controllability enabled, credentials assigned using the CLI and stored locally on the device are used as a backup. The local credentials are only used if connectivity is lost to ISE, which is used to access the primary centralized credentials.

Step 4. If there are any discovery failures, inspect the devices list, resolve the problem, and restart the discovery for those devices along with any additional devices to add to the inventory.

Step 5. After successfully completing all discovery tasks, navigate to the main Cisco DNA Center dashboard, and then, under the **Tools** section, click **Inventory.** The discovered devices are displayed. After inventory collection completes, each device shows a **Managed** sync status, signifying that Cisco DNA Center maintains an internal model mirroring the device physical deployment.

Cisco DNA Center can now access the devices, synchronize the configuration inventory, and make configuration changes on the devices.

Tech tip

At the right side of the title row for the Inventory table, you can adjust which columns are displayed. Use the **Device Role** column to see the device role assigned by discovery based on device type and to adjust the role to best reflect the actual deployment of a device, such as access, distribution, core, or border router, where border router in this display is a generic non-fabric device role. Adjusting the role now can improve the appearance of the initial topology maps, versus adjusting the roles in later procedures.
Procedure 8. Manage software images for devices in inventory

To achieve the full capabilities of SD-Access, the SD-Access package in Cisco DNA Center has minimum software version requirements for the devices that it provisions. The software image management capability built into Cisco DNA Center is used to upgrade any devices that are not running a recommended image version. You can find recommended images for SD-Access using the SD-Access Hardware and Software Compatibility Matrix on Cisco.com. The images used for validation are listed in Appendix A: Product List.

Use the following steps to apply software updates of images and software maintenance updates (SMUs) to the devices, by importing the required images, marking images as golden, and applying images to devices.

Step 1. Navigate to the main Cisco DNA Center dashboard, click Design, and then click Image Repository. If this is the first time using the software, then at the top right Cisco End User License Agreement notification, select click here, and then click Accept License Agreement.

Step 2. If you choose to have Cisco DNA Center download a new image to apply to a device, then under the Image Name column click the down arrow next to the image listed for a device family, and then click the Golden Image star to mark the appropriate image as the preferred one for the platform.

Images that are not yet imported are automatically imported, using Cisco.com credentials. You can update Cisco.com credentials using Settings (gear) > System Settings > Settings > Cisco Credentials.

Step 3. Repeat the importing and tagging images as golden until all devices are marked with an appropriate image.

Step 4. If you choose to import an image from your local machine, then click + Import, in the Import Image/Add-On dialog, choose a file location, and then click Import.
The image import into Cisco DNA Center starts.

Step 5. After the import is complete, assign the imported image to devices. Next to the imported image, click **Assign**, select the devices to use the image, and then in the pop out click **Assign**.

The image is in the repository and available to tag as golden for those devices.

Step 6. For each device with a newly assigned image, click the **Golden Image** star to mark the appropriate image as the preferred one for the platform.

Step 7. Repeat these steps for all images that you wish to deploy using Cisco DNA Center. All device types with an assigned golden image are ready for the distribution of the software image.

Procedure 9. Use software image management to update device software

Cisco DNA Center runs a compliance check of devices in inventory compared to images tagged as golden. Devices out of compliance with the golden image are marked as **Outdated** in inventory. Update the images to the version marked golden. Inventory collection must have completed successfully, and the devices must be in the **Managed** state before continuing. You distribute the software images first and schedule or manually activate the devices with the distributed images.

Step 1. Navigate to **PROVISION > Devices > Inventory**, select all devices marked **Outdated**, and then in the **Actions** menu, click **Update OS Image**. For more control of the updates, start OS updates on devices that can reboot without affecting connectivity to other devices that you are updating.
Step 2. In the slide out that appears, under Distribute > When select Now, under Activate select Schedule Activation after Distribution is completed, click Next, and then under Confirm click the Confirm button.

Images are distributed to the selected devices.

Step 3. At the top right, click Update Status.

The status screen gives more details than the main screen, including explanation of any failures. Use the Refresh button to observe when the In Progress status is changed to Successful.

Step 4. Repeat this procedure as needed to update the device software to the required versions for the network deployment. At completion, all devices for the deployment are associated with a golden image and have the image installed.
Process: Provisioning the Underlay Network for SD-Access

After Cisco DNA Center discovers and has management control of devices that are running the appropriate software versions for SD-Access, use Cisco DNA Center to provision the devices in the underlay network.

Procedure 1. Provision underlay switches using the LAN Automation feature

Optional

Use this procedure if you are deploying new, unconfigured LAN switches into the underlay by using Cisco DNA Center’s LAN Automation capabilities. Use the previous procedures to configure one or more seed devices (the managed devices where the new, unmanaged network connects), the device CLI and SNMP credentials to be pushed by PnP, and the network-reachable IP address pool used for connectivity. Although it’s not a strict requirement, each seed device is typically a switch assigned in later procedures as a border, and must have an appropriate VTP mode and MTU configuration (examples: vtp mode transparent, system mtu 9100). Ports on the seed device connected to devices to be discovered must be in Layer 2 mode (access port versus routed port), and the seed device ports cannot be dedicated out-of-band (OOB) management ports.

<table>
<thead>
<tr>
<th>Tech tip</th>
</tr>
</thead>
</table>

LAN Automation enables discovery of supported switches from supported seed devices (switches used in this validation are listed in the appendix). Discovered switches are directly connected to chosen seed device interfaces (OOB management ports cannot be connected during LAN Automation device onboarding, because it will block LAN Automation on the non-OOB ports) and up to one additional hop of connected switches, for a total of two hops away from the seed device. The credentials supplied allow Cisco DNA Center and seed devices to work together to configure the discovered devices and add them into managed inventory. Because the discovered devices must be running the PnP agent with no previous configuration, any previously configured switch to be used must be restored to a state where the PnP agent is running, accomplished by using the following configuration mode and exec mode commands:

```
(config)#config-register 0x2102
(config)#crypto key zeroize
(config)#no crypto pki certificate pool
delete /force vlan.dat
delete /force nvram:*.*
delete /force nvram:pnp*
delete /force flash:pnp*
delete /force stby-nvram:*.*
delete /force stby-nvram:*.*
! previous two lines only for HA systems
write erase
reload
```

Do not save the configurations for the reload process. To prepare switch stacks for LAN Automation, use the same restoration commands for each switch in the stack.

Switch stacking requirements do not change for LAN Automation—all switches in a stack must be running the same software license and version supporting IP routing features and should be in install mode (not bundle mode). If you desire the most control over port numbering and stack behavior, then in advance of starting the LAN Automation process, you can adjust the switch stack numbering and also influence a switch to become the ACTIVE role within a stack through an increased priority by using the following commands in exec mode:

```
switch [switch stack number] renumber [new stack number]
switch [switch stack number] priority 15
```

Identify one or two devices that are in the inventory and managed by Cisco DNA Center to assign to the seed device role at a site. The same seeds can be used for multiple runs of the LAN Automation feature, allowing the discovered devices to be assigned to different buildings or floors for each run.
Step 1. From the main Cisco DNA Center dashboard, navigate to PROVISION > Devices > Inventory. Select up to two seed devices, in the Actions drop-down, click Assign Device to Site, in the Assign Device to Site screen, select the devices site assignments, and then click Apply.

Step 2. If you are using a Catalyst 6800 Series seed device, use the interface configuration mode command to change the ports towards discovered devices to be Layer 2 ports.

 switchport

After you have saved the configuration change, resync the device by navigating to the main Cisco DNA Center dashboard, under Tools select Inventory, select the modified Catalyst 6800 switch, and then at the top, in the Actions pull-down, select Resync.

Tech tip

The IP pool used for LAN Automation should be sized significantly larger than the number of devices to be discovered. The pool is divided in half, with one half used for VLAN 1 DHCP services provided by the seed devices. The second half of the pool is divided in half again, leaving a quarter of the total address space for point-to-point link addressing, and a quarter for loopback addressing. Endpoints should not be plugged into the switches, as they can exhaust the IP pool DHCP uses for PnP provisioning.

Addresses in the LAN Automation pool need to be reachable by Cisco DNA Center to successfully complete provisioning and must not be used anywhere else in the network. If your Cisco DNA Center uses the optional dedicated management network for web access port instead of a single port with a default route, then you must ensure that the route to the LAN Automation IP pool is available via the enterprise network infrastructure port. If the IP pool is not included in the configured routes on Cisco DNA Center, connect to Cisco DNA Center using SSH port 2222, and then login as maglev and execute the command:

 sudo maglev-config update

Use the configuration wizard to configure the static routes to include the IP pool on the appropriate network adapter before starting LAN Automation.

Step 3. Navigate to PROVISION > Devices > Inventory. At the top, click the LAN Automation drop-down, and then click LAN Automation.

Step 5. On the right in the LAN Automation slide-out, continue filling in the parameters for the discovery. Under **Discovered Device Configuration**, supply **Discovered Device Site***, **IP Pool***, if used, supply the **ISIS Domain Password**, select **Enable Multicast**, then click **Start**.

Step 6. At the top, click the **LAN Automation** drop-down, and then click **LAN Auto Status** to view progress.
Do not click Stop in this step. Wait until all devices show a state of **Completed**, and then proceed to the next verification step. Prematurely stopping the PnP process leaves the discovery in a state needing manual intervention for recovery. Discovering devices an additional hop away from the seed can take significantly more time to reach completion.

Step 7. Navigate to the main Cisco DNA Center dashboard, under **Tools** select **Topology.** All links should be discovered. If any links are missing from the topology, verify the physical connectivity.
Step 8. Navigate to PROVISION > Devices > Inventory. At the top, click the LAN Automation drop-down, click LAN Auto Status. After the devices discovered all reach Completed state, click Stop. LAN Automation tears down all Layer 2 connectivity on VLAN 1 and the underlay IS-IS routing process is used for reachability to the routed network, and devices are managed in the inventory.

Procedure 2. Provision devices and assign to sites to prepare for SD-Access

Provision the network devices, and then assign the devices to a site for integration into an SD-Access network.

Step 1. In Cisco DNA Center, navigate to PROVISION > Devices > Inventory, select the devices of the same type (example: all switches) to provision into the network, click Actions, and then click Provision.

A Provision Devices wizard screen appears.
Tech tip

Devices must be of the same type (example: all routers) to provision them at the same time. You can group provisioning operations in multiple small batches for common site assignments as needed.

Step 2. Within the first wizard screen, select the site assignments for the devices, and then at the bottom of the screen click Next.

Step 3. Click Next twice to skip the Configuration and Advanced Configuration screens, in the Summary screen review the details for each device, and then click Deploy.

Step 4. At the popup screen, leave the default selection of Now, and click Apply.

Configuration of each device begins, and status messages appear as each device is provisioned successfully. The Device Inventory screen updates with Provision Status and Sync Status. Use the Refresh button to update the final status.

Step 5. Repeat the Cisco DNA Center provisioning steps for each batch of devices being added. The Cisco DNA Center pxGrid integration updates the devices in ISE.
Step 6. Verify the ISE integration function by logging in to ISE and navigating to Administration > Network Resources > Network Devices. The provisioned devices appear.
Process: Provisioning the SD-Access Overlay Network

A fabric overlay network is created in Cisco DNA Center using the discovered devices added to inventory and provisioned to a site. Cisco DNA Center automates the additional device configuration supporting the SD-Access overlay networks.

The SD-Access solution supports provisioning of the following fabric constructs:

- Fabric site: An independent fabric, including control plane node and edge node functions, using a fabric border node to egress the fabric site and usually including an ISE PSN and fabric-mode WLC
- Transit site: Also known as a transit network, connects a fabric site to an external network (IP-based transit) or to one or more fabric sites natively preserving segmentation (SD-Access transit)
- Fabric domain: Encompasses one or more fabric sites and any corresponding transit sites

IP-based transit networks connect the fabric to external networks, typically using VRF-lite for IP connectivity. SD-Access transits carry SGT and VN information, inherently carrying policy and segmentation between fabric sites, creating a distributed campus. This configuration

<table>
<thead>
<tr>
<th>Tech tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco DNA Center software and Cisco IOS software listed in the appendix does not include validation of the SD-Access transit, covered in the Software-Defined Access for Distributed Campus Prescriptive Deployment Guide. You can find alternative software versions that may support additional options by searching Cisco.com for SD-Access Hardware and Software Compatibility Matrix.</td>
</tr>
</tbody>
</table>

Cisco DNA Center software and Cisco IOS software listed in the appendix does not include validation of the SD-Access transit, covered in the Software-Defined Access for Distributed Campus Prescriptive Deployment Guide. You can find alternative software versions that may support additional options by searching Cisco.com for SD-Access Hardware and Software Compatibility Matrix.

Procedure 1. Create an IP-based transit site, fabric domain, and fabric sites

The IP-based transit site represents the BGP remote autonomous system (AS). The local BGP AS is configured as part of the fabric border provisioning in a subsequent procedure.

Step 1. Using Cisco DNA Center, navigate to PROVISION > Fabric, at the top right click + Add Fabric or Transit, click Add Transit, in the slide-out supply a Transit Name (example: IP_Transit), select IP-Based, for Routing Protocol select BGP, enter an Autonomous System Number for the remote BGP AS (example: 65500), and then click Add.
A status message appears, and the transit is created.

Step 2. Navigate to **PROVISION > Fabric**, at the top right click **+ Add Fabric or Transit**, click **Add Fabric**, in the slide-out supply a **Fabric Name** (example: RTP5_Fabric), use the site hierarchy to select a location including the sites for enabling the fabric (example: RTP5-C9K), and then click **Add**.
The new campus fabric is created.

Step 3. Click the fabric domain name just created (example: RTP5_Fabric), in the **Fabric-Enabled Sites** hierarchy on the left, choose the site added in the previous step (example: RTP5-CgK). A view of the fabric and related sites is displayed.
If the fabric topology diagram shown does not mimic the two-tier (distribution/access) or three-tier (core/distribution/access) topology that is deployed, correct the topology by navigating to Tools > Inventory, on the right side of the title row for the inventory table adjust which columns are displayed to include Device Role, and then adjust the role to best reflect the actual deployment of a device. Return to the fabric domain topology view after modifying device roles for an updated view.

Procedure 2. Create a fabric overlay

Step 1. In the fabric domain topology view, hold the shift key, click all nodes that are fabric edge nodes, and then in the popup box, click **Add to Fabric**.

Blue icon borders and fabric role symbols appear, signifying the intended target behavior for the devices.

Step 2. If you have a node for the fabric dedicated to the role of being a control plane node without border functionality, click it, and then in the popup box, click **Add as CP** (control plane).

Repeat this step for a redundant dedicated control plane node without border functionality.

Tech tip

If the border nodes are Cisco Nexus 7700 Series Switches using the software listed in Appendix A: Product List, you use dedicated control plane nodes and connect them directly to the 7700 Series, configured as external border nodes. If your version of NX-OS requires it, enable the MPLS license. Configure MPLS LDP on the physical links to the control plane nodes to support the control plane connectivity.

Step 3. Click a device to perform the fabric border role, in the popup box click either **Add as Border** or **Add as CP+Border** (if skipping the previous step) and fill in the additional slide-out dialog. Under **Layer 3 Handoff**, select **Border to** (example: Outside World (External)), supply the **BGP Local Autonomous Number** (example: 65514), under **Select IP Address Pool** choose the global pool configured previously for border connectivity functionality (example: BORDER_HANDOFF-RTP5), for external borders select **Is this site connected to the Internet?**, in the **Transit** menu select the transit (example: IP: IP Transit), and then next to the transit click the gray **Add** button.
Step 4. Click the **IP Transit** text, click the **+ Add Interface** that appears, in the slide-out box select the interface for the connection to the fusion router outside of the fabric, below the BGP **Remote AS Number** for the device outside of the fabric that is displayed, expand the **Virtual Network** selection panel, select each VN used in the fabric to include in the Layer 3 handoff outside the fabric (examples: INVRA_VN, OPERATIONS), click **Save**, and then click **Add**.

An additional **IP Transit** section appears.

Tech tip

If the border is the only path to exit the fabric to the rest of the network, you should choose an external border. In cases where you have a combined control plane and border node functionality and the node uses internal border functionality, additional control plane filtering may be necessary when using the validated releases shown in Appendix A: Product List.
Acknowledge any additional informational pop-ups.

Step 5. If you have an additional fabric border node, repeat the previous two steps for it.

Tech tip

To configure a VRF-Lite handoff interface from the border to the rest of the network requires an 802.1Q-tagged interface. If you are managing the border using in-band connectivity over the redundant links to be converted, you first make the connection over a tagged interface, as described in the processes to setup management to a border device for network discovery. When using the version of SD-Access validated in this guide, provisioning is unsuccessful if the interface already includes a non-tagged configuration.

Step 6. After all required roles are assigned to the nodes in the fabric, at the bottom click **Save**, use the default choice **Now**, and then click **Apply**. Your campus fabric domain is created.
The fabric icons turn blue, signaling your intent to create the fabric. Actual provisioning of the devices can take longer to complete.

Procedure 3. Enable multicast for fabric

Use this procedure to configure multicast support in the fabric overlay.

SD-Access fabrics can support Any Source Multicast (ASM) and Source Specific Multicast (SSM). Sources can be within the fabric or outside of the fabric, and Rendezvous Point configuration is available only at the fabric border nodes. PIM messages are unicast between the border nodes and the fabric edges, and multicast packets are replicated at the head end fabric border devices toward the fabric edge nodes.

Step 1. A global pool in Cisco DNA Center that is dedicated for unicast IP interfaces is used to configure multicast for each VN where multicast is enabled. If one does not exist, revisit the “Define Global IP Address Pools” procedure to create one.

Step 2. From the Cisco DNA Center dashboard, navigate to **PROVISION > Fabric**, under **Fabrics** click the created fabric site (example: RTP5_Fabric), in the left navigation pane, click the fabric site (example: RTP5-C9K), at the top click the **Fabric Infrastructure** tab, click on a fabric border node, and then select **Enable Rendezvous Point**.
Step 3. Within the **Associate Multicast Pools to VNs** popup window at the right, under Associate Virtual Networks, choose the VN (example: OPERATIONS), under **Select IP Pools**, choose the pool created for multicast (example: MULTICAST_PEER-RTP5), click **Next**, select a VN (example: OPERATIONS), and then click **Enable**.

Step 4. Repeat the previous step for any additional fabric border nodes. At the bottom of the screen, click **Save**, and then click **Apply**.

Cisco DNA Center pushes the multicast configurations to the fabric nodes and creates the loopbacks and Multicast Source Discovery Protocol (MSDP) peering for the rendezvous point (RP) state communication between the border nodes.

Step 5. If multicast communication is required outside of the border toward the fusion router, enable the following commands on each device.

Global:

```
    ip multicast-routing
    ip pim rp address [RP Address]
    ip pim register-source Loopback0
    ip pim ssm default
```

Interface or subinterface (for each virtual network):

```
ip pim sparse-mode
```

Step 6. In the left navigation panel at the site configured with the fabric, next to the site name click the gear icon, click **Enable Native Multicast for IPv4**, at the bottom click **Save**, at the slide out window, leave the default selection of **Now**, and then click **Apply**.

The overlay multicast configuration is deployed to use underlay multicast for efficient infrastructure communication.
Procedure 4. Enable eBGP connectivity for VN at neighbor (fusion) to border router

The SD-Access application in Cisco DNA Center configures the fabric border node BGP handoff to external networks. In the SD-Access version described, you manually configure the external network peers of the border devices with the compatible VRF-Lite and BGP peering information.

Step 1. Use the CLI to login to the border devices to observe the automated configurations for IP connectivity outside of the border created by the Cisco DNA Center SD-Access application. Some of the following commands may be helpful.

- `show running-config brief`
- `show running-config | section vrf definition`
- `show running-config | section interface Vlan`
- `show running-config | section router bgp`

Tech tip

You protect against connectivity failures between border nodes and fusion routers by deploying a resilient pair of border nodes with a direct connection between them. To enable automatic traffic redirection, create an iBGP neighbor relationship between the border nodes for every configured VN. Support the multiple logical connections using 802.1Q tagging using trunk port configurations on switches and subinterfaces on routers.

Step 2. Log in to each fusion device external to the fabric that is connected to the border, using the border configuration as a guide, configure VRFs as required by virtual networks created on the border. VRFs separate communication between groups of interfaces and virtual network contexts within the fabric.

```bash
vrf definition [VRF name]
rd [Route Distinguisher]
address-family ipv4
  route-target export [Route Target]
  route-target import [Route Target]
exit-address-family
```

As an example, if the following configuration is provisioned on the border:

```bash
vrf definition OPERATIONS
rd 1:4099
!
address-family ipv4
  route-target export 1:4099
  route-target import 1:4099
exit-address-family
```

Configure the same for the fusion router.

Repeat this step for each virtual network context (including the GUEST VRF, if you have configured one), consistent with the border node configuration.

Tech tip

The VRF name, route distinguisher, and route target you configure on the fusion router should match the configuration on the border node.

Step 3. Configure each interface to the neighbor. Some devices support VLAN subinterface configuration directly on trunks, and other devices require VLAN interfaces to be created and associated with a trunk. Repeat the neighbor interface configuration for each neighbor on each peer to the border.
interface [Peer physical interface]
switchport mode trunk
interface [VLAN interface]
vrf forwarding [VN/VRF name]
ip address [Peer point-to-point IP address]

As an example, if the following configuration is provisioned on the border:

```
vlan 3003
vlan 3004
interface FortyGigabitEthernet1/0/24
  switchport mode trunk
interface Vlan3003
  description vrf interface to External router
  vrf forwarding OPERATIONS
  ip address 172.16.172.9 255.255.255.252
interface Vlan3004
  description vrf interface to External router
  ip address 172.16.172.13 255.255.255.252
```

Configure compatible connectivity and addressing for the fusion router. A VLAN interface without an associated VRF forwarding statement is used for the INFRA_VN communication to the global route table.

```
vlan 3003
vlan 3004
interface FortyGigabitEthernet1/0/7
  switchport mode trunk
interface Vlan3003
  description vrf interface to External router
  vrf forwarding OPERATIONS
  ip address 172.16.172.10 255.255.255.252
interface Vlan3004
  description vrf interface to External router
  ip address 172.16.172.14 255.255.255.252
```

Step 4. Configure BGP IPv4 unicast routing towards the border to support connectivity for each VRF associated with each VN in the fabric.

```
router bgp [Local BGP AS]
  bgp router-id interface Loopback0
  bgp log-neighbor-changes
  neighbor [Border VLAN IP Address] remote-as [Fabric BGP AS]
  neighbor [Border VLAN IP Address] update-source [VLAN interface]
  ! repeat for any additional neighbors
  address-family ipv4
    network [Loopback IP Address] mask 255.255.255.255
    neighbor [Border VLAN IP Address] activate
```
! repeat for any additional neighbors
maximum-paths 2
exit-address-family
address-family ipv4 vrf [VN/VRF name]
neighbor [Border VLAN IP Address] remote-as [Fabric BGP AS]
neighbor [Border VLAN IP Address] update-source [VLAN interface]
neighbor [Border VLAN IP Address] activate
! repeat for any additional neighbors
exit-address-family

As an example, if the following configuration is provisioned on the border:

```
router bgp 65514
bgp router-id interface Loopback0
neighbor 172.16.172.14 remote-as 65500
neighbor 172.16.172.14 update-source Vlan3004

! address-family ipv4
network 172.16.173.1 mask 255.255.255.255
aggregate-address 172.16.173.0 255.255.255.0 summary-only
neighbor 172.16.172.14 activate
exit-address-family

! address-family ipv4 vrf OPERATIONS
neighbor 172.16.172.10 remote-as 65500
neighbor 172.16.172.10 update-source Vlan3003
neighbor 172.16.172.10 activate
exit-address-family
```

Configure the following on the fusion router:

```
router bgp 65500
bgp router-id interface Loopback0
bgp log-neighbor-changes
neighbor 172.16.172.13 remote-as 65514
neighbor 172.16.172.13 update-source Vlan3004

! address-family ipv4
neighbor 172.16.172.13 activate
exit-address-family

! address-family ipv4 vrf OPERATIONS
neighbor 172.16.172.9 remote-as 65500
neighbor 172.16.172.9 update-source Vlan3003
neighbor 172.16.172.9 activate
```
Procedure 5. Assign wired clients to VN and enable connectivity

Step 1. From the Cisco DNA Center dashboard, navigate to PROVISION > Fabric, under Fabrics click the created fabric site (example: RTP5_Fabric), in the left navigation pane, click the fabric site (example: RTP5-C9K), at the top click the Host Onboarding tab, under Select Authentication template select Closed Authentication, at the top of the section click Save, and then click Apply.

Closed authentication is set as the default for host ports, requiring 802.1x authentication for an endpoint to connect to the fabric; this setting can be overridden by port for other purposes, such as for AP ports.

Step 2. Under Virtual Networks, select a VN to be used for wired clients (example: OPERATIONS), in the Edit Virtual Network: OPERATIONS slide-out pane, select the names of IP Pools to add to the VN (example: EMPLOYEE-DATA-RTP5), select a Traffic Type of Data, verify that Layer 2 Extension is On, optionally change the Auth Policy name to something meaningful for the site, click Update, and then click Apply.

A status message displays, and then the Host Onboarding screen displays.

Step 3. If you have created a guest virtual network, associate an IP pool for guest services. Under Virtual Networks, select a VN to be used for guest wireless clients (example: GUEST).
Step 4. In the Edit Virtual Network: GUEST slide-out pane, select the names of IP Pools to add to the VN (example: EMPLOYEE-DATA-RTP5), select a Traffic Type of Data, verify that Layer 2 Extension is On, optionally change the Auth Policy name to something meaningful for the site, click Update, and then click Apply.

A status message displays, and then the Host Onboarding screen displays.

Procedure 6. Enable fabric edge ports for client onboarding

Optional

Overwrite the default authentication template (closed authentication) assigned in the previous procedure, when you have devices connected that do not support 802.1x, or when using other authentication methods, such as MAB authentication for IOT devices, or when manually assigning an address pool to a port.

Repeat this procedure for each fabric edge switch with clients connecting to fabric edge ports requiring an overwriting of the default authentication template.

Step 1. Navigate to PROVISION > Fabric, under Fabrics click the created fabric site (example: RTP5_Fabric), in the left navigation pane, click the fabric site (example: RTP5-C9K), at the top click the Host Onboarding tab, and under the Select Port Assignment section, in the left column, select a switch.

Step 2. Within the list of switch ports, select a set of wired fabric edge ports to participate in a fabric VN, and then click Assign.
Step 3. In the slide-out, select the appropriate **Connected Device Type** (example: User Devices (iphone, computer, laptop)), select the **Address Pool** (example: 10_101_114_0(EMPLOYEE-DATA-RTP5)), select the **Group** (example: Employees), select a **Voice Pool** if it is required, select an **Auth Template** (example: No Authentication), and then click **Update**.

Step 4. To the right of the **Select Port Assignment** section, select **Save**, leave the default selection of **Now**, and then click **Apply**.

Step 5. Repeat the previous steps for each additional switch being added.

Devices can now connect at the fabric edge ports using the wired network overlay and authentication method created.

Tech tip

The group assignment is used to statically assign a group if the fabric edge port does not receive its assignment dynamically using an authentication server, which is useful for some types of devices used in an organization. If “No Authentication” is selected as an authentication method, Cisco DNA Center pushes the global default authentication template chosen in the “Select Authentication template” section at the top of the screen. Cisco DNA Center pushes a port configuration when you choose “Closed Authentication”, and also when you choose “Open Authentication”.
Process: Integrating SD-Access Wireless into the Fabric

The process to install wireless LAN controllers for SD-Access is described in the Software-Defined Access for Distributed Campus Prescriptive Deployment Guide. This wireless integration process assumes controllers are available to integrate into the fabric using Cisco DNA Center.

Procedure 1. Add the wireless controllers into inventory and create an HA SSO pair

If the wireless LAN controllers are not in the Cisco DNA Center inventory, you must add them before the wireless integration. For resiliency, you should also use two WLCs of the same type to create an HA SSO pair.

Step 1. Navigate to the main Cisco DNA Center dashboard, scroll to the Tools section, click Discovery and supply a Discovery Name. Select Range and enter a start and end IP loopback address for IP Ranges (to cover a single address, enter that address for both the start and end of the range). For Preferred Management IP, use None.

![Cisco DNA Center](image)

Step 2. If you have any additional ranges, next to the first range click + (plus sign), enter the additional range, and repeat for any remaining ranges.

Step 3. Scroll down to verify the CLI credentials used for the discovery and the SNMP credential configurations pushed to the device by the Cisco DNA Center Device Controllability feature. If you have discovery-specific unique credentials for the device click + Add Credentials add each new credential, save them, and then at the bottom click Start.
The discovery details are displayed while the discovery runs.

Step 4. If there are any discovery failures, inspect the devices list, resolve the problem, and restart the discovery for those devices along with any additional devices to add to the inventory.

Step 5. After successfully completing all discovery tasks, navigate to the main Cisco DNA Center dashboard, and then, under the **Tools** section, click **Inventory**. The discovered devices are displayed. After inventory collection completes, each device shows a **Managed** sync status, signifying that Cisco DNA Center maintains an internal model mirroring the device physical deployment.

Cisco DNA Center can now access the devices, synchronize the configuration inventory, and make configuration changes on the devices.
Tech tip

At the right side of the title row for the Inventory table, you can adjust which columns are displayed. Use the Device Role column to see the device role assigned by discovery based on device type and to adjust the role to best reflect the actual deployment of a device, such as access, distribution, core, or border router, where border router in this display is a generic non-fabric device role. Adjusting the role now can improve the appearance of the initial topology maps, versus adjusting the roles in later procedures. For WLCs, assigning to the core role puts the device closer to the typical location for these devices.

Before proceeding, use the Refresh button to update the Last Inventory Collection Status until it is in Managed status.

Step 6. If you are creating an HA SSO pair with a set of controllers that are currently unpaired, go to the main Cisco DNA Center dashboard, navigate to PROVISION > Devices > Inventory, click the text of the Device Name of the primary WLC (example: SDA-WLC1), on the right side in the pop-out at the top select High Availability, under Select Secondary WLC select the second WLC in the HA SSO pair (example: SDA-WLC-2), supply Redundancy Management IP and Peer Redundancy Management IP (examples: 10.4.174.126, 10.4.174.127), click Configure HA, and then at the reboot warning pop up, click OK.

On the browser, warning messages display.

Configuring HA for Primary. Please do not Refresh the page..

Configuring HA for Secondary...

The reconfiguration and reboot can take many minutes.

Step 7. Use the refresh button at the top of the display to refresh the display until the WLCs in HA mode display as one device. Check the HA status by clicking the text of the Device Name of the primary WLC (example: SDA-WLC1), on the right side in the pop-out at the top select High Availability, and check that Redundancy State is SSO, and Sync Status is Complete.

Proceed to the next step after the HA configuration is complete.

Step 8. Go to the main Cisco DNA Center dashboard, navigate to DESIGN > Image Repository. Find the device family and check the software version. If the WLC image is the correct version, then continue. If the image needs to be updated, and the image is listed, then click the star next to the image to mark the image as golden and update the software. If you need an image not listed, then at the top, click Import Image/SMU, follow the instructions to import, refresh the screen, use the drop-down for the device to mark the image golden.

Step 9. If you are upgrading the device, navigate to PROVISION > Devices > Inventory, select the WLC marked Outdated, and then in the Actions menu, select Update OS Image. Confirm the selection of device to update, use the default When selection of Now, click Apply, and then at the popup warning about devices being rebooted click OK.

Images are distributed to the selected device, and then the device reboots to activate the new image immediately after the image distribution is complete. Use the Refresh button to see when the In Progress status is removed.

Procedure 2. Create IP address pools for access points
Verify that a global pool in Cisco DNA Center is available for address assignment for the APs to be managed by the network.

Step 1. Navigate to DESIGN > Network Settings > IP Address Pools. In the site hierarchy on the left, select Global, and inspect the list of IP address Pools for a pool dedicated to the AP infrastructure (example: ACCESS_POINT).

Step 2. If a pool for the APs does not exist, click + Add IP Pool, fill in the IP Pool Name, IP Subnet, CIDR Prefix, and Gateway IP address (examples: ACCESS_POINT, 172.16.173.0, /24, 172.16.173.1), select the DHCP Server and DNS Server, and then click Save.

Step 3. Navigate to DESIGN > Network Settings > IP Address Pools, on the left within the site hierarchy select a site or lower level for an IP address pool reservation (example: RTP5-C9K). If the pool is not yet reserved, then in the top right click Reserve IP Pool.

Step 4. If you are reserving a pool, fill in the IP Pool Name (example: ACCESS_POINT-RTP5), under Type select LAN, select the Global IP Pool source for the reservation, under CIDR Notation / No. of IP Addresses select the portion of the address space to use, assign a Gateway IP Address, DHCP Server(s), and DNS Servers(s), and then click Reserve.

Procedure 3. Design fabric enterprise wireless SSIDs

Step 1. From the main Cisco DNA Center dashboard, navigate to DESIGN > Network Settings> Wireless, in the left hierarchy pane, select the Global level, in the Enterprise Wireless section click + Add.

The Create an Enterprise Wireless Network wizard appears.

Step 2. Use the Create an Enterprise Wireless Network wizard to supply the following information:

- Enter the Wireless Network Name(SSID) (example: Employee)
- Under TYPE OF ENTERPRISE NETWORK, select Voice and Data and Fast Lane
- Select or confirm the WIRELESS OPTION
- For LEVEL OF SECURITY select an option (example: WPA2 Enterprise)
- Under ADVANCED SECURITY OPTIONS select Adaptive

Step 3. Click Next to continue in the wizard, and supply the following information:

- Enter a Wireless Profile Name (example: RTP5-Wireless)
- Under Fabric, select Yes
- Under Choose a site, select the location where the SSID broadcasts (example: Global/RTP/RTP5-C9K), and include floors to include in SSID coverage (example: Global/RTP/RTP5-C9K/Floor 1)
Step 4. Click Finish to continue. The DESIGN > Network Settings > Wireless screen is displayed.

Step 5. Repeat this procedure for additional SSIDs using the same network profile and any new location profiles to be associated with an SSID.

Procedure 4. Design a fabric guest wireless SSID

Step 1. Navigate to DESIGN > Network Settings > Wireless, in the Guest Wireless section click + Add, in the Create a Guest Wireless Network wizard, and supply the following information:

- Enter the Wireless Network Name (SSID) (example: Guest)
- Under LEVEL OF SECURITY select Web Auth
- Under AUTHENTICATION SERVER select ISE Authentication

Leave the other default selections and click Next to continue in the wizard.

Step 2. In the Wireless Profiles step, select the Profile Name corresponding to the deployment location (example: RTP5-Wireless), in the slide-out panel keep the default Fabric selection of Yes, keep the other default information, at the bottom of the panel click Save, and then click Next.

Step 3. In the Portal Customization step, click + Add. The Portal Builder screen appears.

Step 4. Supply a Guest Portal name (example: Guest-RTP5), make any desired customizations, and then at the bottom of the screen click Save. A guest web authentication portal is generated for the site, and you return to the previous screen.

Step 5. Click Finish.

The wireless LAN design is created and is ready to deploy.

Procedure 5. Provision the WLC for SD-Access Wireless fabric integration

After completing the SD-Access Wireless design, push the configuration from the Design Application to the WLC.

Step 1. Navigate to PROVISION > Devices > Inventory, find the WLC and select the check box next to it, and then at the top of the screen under the Actions pull-down, select Provision. The Provision Devices wizard opens.

Tech tip

When a pair of WLCs is configured in HA SSO mode, a single WLC appears in the Cisco DNA Center inventory. You can verify that an HA SSO pair is configured by clicking the device name and then clicking the High Availability tab.

Step 2. Assign the site (example: Global/RTP/RTP5-C9K), click Next, at the Configuration step under Managed AP Location select the additional floor assignments for APs managed by the WLC (example: Global/RTP/RTP5-C9K/Floor 1), click Next, and then at the Advanced Configuration step click Next.

Step 3. At the Summary step review the configurations, click Deploy, at the slide-out panel keep the default selection Now, and then click Apply.

The WLC is assigned to the site and the provisioning starts. Use the Refresh button until Provision Status shows Success before proceeding.
Procedure 6. Provision SD-Access Wireless into the fabric

Step 1. From the Cisco DNA Center dashboard, navigate to **PROVISION > Fabric**, under Fabric click the created fabric site (example: RTP5_Fabric), on the left in the **Fabric-Enabled Sites** navigation click the associated site (example: Global/RTP/RTP5-C9K), click the WLC, and then in the popup box click **Add to Fabric**.

Step 2. At the bottom of the screen click **Save**, in the slide-out menu keep the default selection **Now**, and then click **Apply**. The WLC configurations are created to establish a secure connection to the fabric control plane.

You can verify that WLC controller pair is integrated into the fabric from the WLC management console by navigating to **CONTROLLER > Fabric Configuration > Control Plane**, which shows the fabric integration is enabled with the connection status up.

Procedure 7. Enable onboarding of access points into the wireless fabric

The APs are hosts that join the fabric and are assigned into a VN named INFRA_VN. This special VN for infrastructure devices such as APs, enables management communication between the APs at the fabric edge nodes using the fabric control plane and the WLC sitting outside of the fabric as a part of global routing connectivity.
Step 1. Connect APs to be used for the fabric directly to an edge node within the fabric.

Step 2. From the Cisco DNA Center dashboard, navigate to PROVISION > Fabric, under Fabric Domains click the created fabric site (example: RTP5_Fabric), on the left in the Fabric-Enabled Sites navigation click the associated site (example: Global/RTP/RTP5-C9K), and then click Host Onboarding.

Step 3. Under Virtual Networks, select INFRA_VN.

Step 4. Select the check box next to the IP Pool Name for the APs (example: ACCESS_POINT-RTP5), under Pool Type select AP, and then click Update.

Step 5. In the Modify Virtual Network slide-out panel, keep the default selection Now, and then click Apply.

Step 6. Under Select Port Assignment, select a switch, select any ports on the switch to be used for APs, select Assign, in the Port Assignments slide-out, under Connected Device Type select Access Point (AP), leave the default Address Pool selection, under Auth Template select No Authentication, and then click Update.
Tech tip
Cisco DNA Center enables automatic onboarding of APs by provisioning a CDP macro at the fabric edge switches when the authentication template to be set to No Authentication. Alternatively, you use the switch port configurations in Cisco DNA Center to assign a port to the IP address pool for the APs.

Step 7. Repeat the previous step for any additional switches that have ports used for APs.

Step 8. After all ports supporting APs have been selected, at the top of the Select Port Assignment section, click Save, keep the default selection of Now, and then click Apply.

After the update is complete, the edge node switch ports connected to the APs are enabled with a device tracking configuration recognizing APs and permitting the APs to get network connectivity.

Tech tip
A default route in the underlay cannot be used by the APs to reach the WLC. A more specific route (such as a /24 subnet or /32 host route) to the WLC IP addresses must exist in the global routing table at each node where the APs connect to establish connectivity. Redistribute the WLC route at the border into the underlay IGP routing process for efficiency. Alternatively, you can create static entries at each edge node supporting APs.

Step 9. Navigate to the main Cisco DNA Center dashboard, under PROVISION > Devices > Inventory, and then at the top, in the Actions pull-down menu, select Resync. The APs associated with the WLC are added to the inventory without waiting for an inventory refresh.

Step 10. Navigate to the main Cisco DNA Center dashboard, under PROVISION > Devices > Inventory select the APs being added, and at the top, in the Actions pull-down menu, select Provision.

Step 11. On the Provision Devices screen, assign the APs to a floor (example: Global/RTP/RTP5-C9K/ Floor 1), click Next, for RF Profile, if you have not created your own, select TYPICAL, click Next, at the Summary page click Deploy, and in the slide-out panel, leave the default selection of Now, and then click Apply. Acknowledge any warnings about reboots.

Procedure 8. Assign wireless clients to VN and enable connectivity

Step 1. From the Cisco DNA Center dashboard, navigate to PROVISION > Fabric, under Fabric Domains click the created fabric site (example: RTP5_Fabric), on the left in the Fabric-Enabled Sites navigation click the associated site (example: Global/RTP/RTP5-C9K), and then click the Host Onboarding tab.
Step 2. Under the Wireless SSID’s section, for each SSID Name select an associated Address Pool, select any associated Scalable Group, click Save, keep the default selection of Now, and then click Apply.

Devices can now connect via the wireless networks.
Appendix A: Product List

The following products and software versions were included as part of validation in this deployment guide, and this validated set is not inclusive of all possibilities. Additional hardware options are listed in the associated Software-Defined Access Solution Design Guide, the SD-Access Product Compatibility Matrix, and the Cisco DNA Center data sheets may have guidance beyond what was tested as part of this guide. Updated Cisco DNA Center package files are regularly released and available within the packages and updates listings.

Table 3. Cisco DNA Center

<table>
<thead>
<tr>
<th>Product</th>
<th>Part number</th>
<th>Software version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco DNA Center Appliance</td>
<td>DN2-HW-APL-L (M5-based chassis)</td>
<td>1.2.10.4 (System 1.1.0.754)</td>
</tr>
</tbody>
</table>

Table 4. Cisco DNA Center packages

All packages running on the Cisco DNA Center during validation are listed—not all packages are included as part of the testing for SD-Access validation.

<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Policy</td>
<td>2.1.28.170051</td>
</tr>
<tr>
<td>Assurance - Base</td>
<td>1.2.11.304</td>
</tr>
<tr>
<td>Assurance – Sensor</td>
<td>1.2.10.254</td>
</tr>
<tr>
<td>Automation – Base</td>
<td>2.1.28.60024_4.9</td>
</tr>
<tr>
<td>Automation – Intelligent Capture</td>
<td>2.1.28.60244</td>
</tr>
<tr>
<td>Automation – Sensor</td>
<td>2.1.28.60244</td>
</tr>
<tr>
<td>Cisco DNA Center UI</td>
<td>1.2.11.19</td>
</tr>
<tr>
<td>Command Runner</td>
<td>2.1.28.60244</td>
</tr>
<tr>
<td>Device Onboarding</td>
<td>2.1.18.60024</td>
</tr>
<tr>
<td>DNAC Platform</td>
<td>1.0.8.8</td>
</tr>
<tr>
<td>Image Management</td>
<td>2.1.28.60244</td>
</tr>
<tr>
<td>NCP – Base</td>
<td>2.1.28.60244</td>
</tr>
<tr>
<td>NCP – Services</td>
<td>2.1.28.60244_9</td>
</tr>
<tr>
<td>Network Controller Platform</td>
<td>2.1.28.60244_9</td>
</tr>
<tr>
<td>Network Data Platform – Base Analytics</td>
<td>1.1.11.8</td>
</tr>
<tr>
<td>Network Data Platform – Core</td>
<td>1.1.11.77</td>
</tr>
<tr>
<td>Network Data Platform – Manager</td>
<td>1.1.11.8</td>
</tr>
<tr>
<td>Package</td>
<td>Version</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Path Trace</td>
<td>2.1.28.60244</td>
</tr>
<tr>
<td>SD-Access</td>
<td>2.1.28.60244.9</td>
</tr>
</tbody>
</table>

Table 5. Identity Management

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Product</th>
<th>Software version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco ISE Server</td>
<td>Cisco Identity Services Engine</td>
<td>2.4 Patch 6</td>
</tr>
</tbody>
</table>

Table 6. SD-Access fabric border and control plane

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Product</th>
<th>Software version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Border and control plane</td>
<td>Cisco Catalyst 9500 Series Switches</td>
<td>16.9.3</td>
</tr>
<tr>
<td>Border and control plane</td>
<td>Cisco Catalyst 9400 Series Switches</td>
<td>16.9.3</td>
</tr>
<tr>
<td>Border and control plane – small site</td>
<td>Cisco Catalyst 3850 XS switches (10-Gbps fiber)</td>
<td>16.9.3</td>
</tr>
<tr>
<td>Border and control plane</td>
<td>Cisco 4000 Series Integrated Services Routers</td>
<td>16.9.2</td>
</tr>
<tr>
<td>Border and control plane – large scale</td>
<td>Cisco ASR 1000-X and 1000-HX Series Aggregation Services Routers</td>
<td>16.9.2</td>
</tr>
<tr>
<td>Border</td>
<td>Cisco Catalyst 6807 7-slot chassis with Supervisor Engine 6T or Supervisor Engine 2T and 6800 32-port 10 GE with dual integrated DFC4</td>
<td>15.5(1)SY2</td>
</tr>
<tr>
<td>Border</td>
<td>Cisco Catalyst 6880-X and 6840-X switches</td>
<td>15.5(1)SY2</td>
</tr>
<tr>
<td>External Border</td>
<td>Cisco Nexus 7700 switches 2-slot chassis with Supervisor 2 Enhanced module and Cisco Nexus 7700 M3-Series 48-port 1/10 Gigabit Ethernet module</td>
<td>8.3(2)</td>
</tr>
<tr>
<td>Control plane</td>
<td>Cisco Cloud Services Router 1000V Series</td>
<td>16.9.2</td>
</tr>
</tbody>
</table>

Table 7. SD-Access fabric edge

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Product</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric edge</td>
<td>Cisco Catalyst 9300 Series – stackable</td>
<td>16.9.3</td>
</tr>
<tr>
<td>Fabric edge</td>
<td>Cisco Catalyst 9400 Series with Supervisor Engine-1 – modular chassis</td>
<td>16.9.3</td>
</tr>
<tr>
<td>Fabric edge</td>
<td>Cisco Catalyst 3850 Series – stackable</td>
<td>16.9.3</td>
</tr>
<tr>
<td>Fabric edge</td>
<td>Cisco Catalyst 3650 Series – standalone with</td>
<td>16.9.3</td>
</tr>
<tr>
<td>Functional area</td>
<td>Product</td>
<td>Software Version</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>optional stacking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabric edge</td>
<td>Cisco Catalyst 4500E Series with Supervisor 8-E – modular chassis</td>
<td>3.10.2E</td>
</tr>
</tbody>
</table>

Table 8. SD-Access Wireless

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Product</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless LAN controller</td>
<td>Cisco 8540, 5520, and 3504 Series Wireless Controllers</td>
<td>8.8.111.0 (8.8 MR1)</td>
</tr>
<tr>
<td>Fabric mode access points</td>
<td>Cisco Aironet® 1800, 2800, and 3800 Series (Wave 2)</td>
<td>8.8.111.0 (8.8 MR1)</td>
</tr>
</tbody>
</table>

Table 9. LAN Automation switches tested for this guide (not inclusive of all possibilities)

<table>
<thead>
<tr>
<th>Functional area</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Catalyst 9500 Series (standard performance versions)</td>
<td>Seed device</td>
</tr>
<tr>
<td>Cisco Catalyst 3850 XS switches (10 Gbps fiber)</td>
<td>Seed device</td>
</tr>
<tr>
<td>Cisco Catalyst 9300 Series – stackable</td>
<td>Seed device</td>
</tr>
</tbody>
</table>
| Cisco Catalyst 9400 Series with Supervisor Engine-1 – modular chassis | Seed device
(10Gbps interface) |
| Cisco Catalyst 3850 Series – stackable | Discovered device |
| Cisco Catalyst 3650 Series – standalone with optional stacking | Discovered device |
| Cisco Catalyst 4500E Series with Supervisor 8-E – modular chassis | Discovered device |
Feedback

For comments and suggestions about this guide and related guides, join the discussion on Cisco Community at https://csco/en-cvds.