
 

User Guide for Cisco S
OL-14647-02

A
 P P E N D I X B

Regular Expression Reference

• PCRE Regular Expression Details, page B-1

• Backslash, page B-2

• Circumflex and Dollar, page B-7

• Full Stop (Period, Dot), page B-8

• Matching a Single Byte, page B-8

• Square Brackets and Character Classes, page B-8

• Posix Character Classes, page B-9

• Vertical Bar, page B-10

• Internal Option Setting, page B-10

• Subpatterns, page B-11

• Named Subpatterns, page B-12

• Repetition, page B-12

• Atomic Grouping and Possessive Quantifiers, page B-14

• Back References, page B-15

• Assertions, page B-16

• Conditional Subpatterns, page B-19

• Comments, page B-20

• Recursive Patterns, page B-20

• Subpatterns as Subroutines, page B-21

• Callouts, page B-22

PCRE Regular Expression Details
The syntax and semantics of the regular expressions supported by PCRE are described below. Regular 
expressions are also described in the Perl documentation and in a number of books, some of which have 
copious examples. Jeffrey Friedl's "Mastering Regular Expressions", published by O'Reilly, covers 
regular expressions in great detail. This description of PCRE's regular expressions is intended as 
reference material. 
B-1
ecurity MARS Local Controller, Release 4.3.x



 

Appendix B      Regular Expression Reference
Backslash
The original operation of PCRE was on strings of one-byte characters. However, there is now also 
support for UTF-8 character strings. To use this, you must build PCRE to include UTF-8 support, and 
then call pcre_compile() with the PCRE_UTF8 option. How this affects pattern matching is mentioned 
in several places below. There is also a summary of UTF-8 features in the section on UTF-8 support in 
the main PCRE page. 

A regular expression is a pattern that is matched against a subject string from left to right. Most 
characters stand for themselves in a pattern, and match the corresponding characters in the subject. As 
a trivial example, the pattern 

The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular expressions comes 
from the ability to include alternatives and repetitions in the pattern. These are encoded in the pattern by 
the use of metacharacters, which do not stand for themselves but instead are interpreted in some special 
way. 

There are two different sets of metacharacters: those that are recognized anywhere in the pattern except 
within square brackets, and those that are recognized in square brackets. Outside square brackets, the 
metacharacters are as follows: 

\      general escape character with several uses
  ^      assert start of string (or line, in multiline mode)
  $      assert end of string (or line, in multiline mode)
  .      match any character except newline (by default)
  [      start character class definition
  |      start of alternative branch
  (      start subpattern
  )      end subpattern
  ?      extends the meaning of (
         also 0 or 1 quantifier
         also quantifier minimizer
  *      0 or more quantifier
  +      1 or more quantifier
         also "possessive quantifier"
  {      start min/max quantifier

Part of a pattern that is in square brackets is called a "character class". In a character class the only 
metacharacters are: 

\      general escape character
  ^      negate the class, but only if the first character
  -      indicates character range
  [      POSIX character class (only if followed by POSIX syntax)
  ]      terminates the character class

The following sections describe the use of each of the metacharacters. 

Backslash
The backslash character has several uses. Firstly, if it is followed by a non-alphanumeric character, it 
takes away any special meaning that character may have. This use of backslash as an escape character 
applies both inside and outside character classes. 

For example, if you want to match a * character, you write \* in the pattern. This escaping action applies 
whether or not the following character would otherwise be interpreted as a metacharacter, so it is always 
safe to precede a non-alphanumeric with backslash to specify that it stands for itself. In particular, if you 
want to match a backslash, you write \\. 
B-2
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Backslash
If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern (other than in a 
character class) and characters between a # outside a character class and the next newline character are 
ignored. An escaping backslash can be used to include a whitespace or # character as part of the pattern. 

If you want to remove the special meaning from a sequence of characters, you can do so by putting them 
between \Q and \E. This is different from Perl in that $ and @ are handled as literals in \Q...\E sequences 
in PCRE, whereas in Perl, $ and @ cause variable interpolation. Note the following examples: 

  Pattern            PCRE matches   Perl matches

  \Qabc$xyz\E        abc$xyz        abc followed by the contents of $xyz
  \Qabc\$xyz\E       abc\$xyz       abc\$xyz
  \Qabc\E\$\Qxyz\E   abc$xyz        abc$xyz

The \Q...\E sequence is recognized both inside and outside character classes. 

Non-printing Characters 
A second use of backslash provides a way of encoding non-printing characters in patterns in a visible 
manner. There is no restriction on the appearance of non-printing characters, apart from the binary zero 
that terminates a pattern, but when a pattern is being prepared by text editing, it is usually easier to use 
one of the following escape sequences than the binary character it represents: 

  \a        alarm, that is, the BEL character (hex 07)
  \cx       "control-x", where x is any character
  \e        escape (hex 1B)
  \f        formfeed (hex 0C)
  \n        newline (hex 0A)
  \r        carriage return (hex 0D)
  \t        tab (hex 09)
  \ddd      character with octal code ddd, or backreference
  \xhh      character with hex code hh
  \x{hhh..} character with hex code hhh... (UTF-8 mode only)

The precise effect of \cx is as follows: if x is a lower case letter, it is converted to upper case. Then bit 
6 of the character (hex 40) is inverted. Thus \cz becomes hex 1A, but \c{ becomes hex 3B, while \c; 
becomes hex 7B. 

After \x, from zero to two hexadecimal digits are read (letters can be in upper or lower case). In UTF-8 
mode, any number of hexadecimal digits may appear between \x{ and }, but the value of the character 
code must be less than 2**31 (that is, the maximum hexadecimal value is 7FFFFFFF). If characters other 
than hexadecimal digits appear between \x{ and }, or if there is no terminating }, this form of escape is 
not recognized. Instead, the initial \x will be interpreted as a basic hexadecimal escape, with no 
following digits, giving a character whose value is zero. 

Characters whose value is less than 256 can be defined by either of the two syntaxes for \x when PCRE 
is in UTF-8 mode. There is no difference in the way they are handled. For example, \xdc is exactly the 
same as \x{dc}. 

After \0 up to two further octal digits are read. In both cases, if there are fewer than two digits, just those 
that are present are used. Thus the sequence \0\x\07 specifies two binary zeros followed by a BEL 
character (code value 7). Make sure you supply two digits after the initial zero if the pattern character 
that follows is itself an octal digit. 
B-3
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Backslash
The handling of a backslash followed by a digit other than 0 is complicated. Outside a character class, 
PCRE reads it and any following digits as a decimal number. If the number is less than 10, or if there 
have been at least that many previous capturing left parentheses in the expression, the entire sequence is 
taken as a back reference. A description of how this works is given later, following the discussion of 
parenthesized subpatterns. 

Inside a character class, or if the decimal number is greater than 9 and there have not been that many 
capturing subpatterns, PCRE re-reads up to three octal digits following the backslash, and generates a 
single byte from the least significant 8 bits of the value. Any subsequent digits stand for themselves. For 
example: 

  \040   is another way of writing a space
  \40    is the same, provided there are fewer than 40 previous capturing subpatterns
  \7     is always a back reference
  \11    might be a back reference, or another way of writing a tab
  \011   is always a tab
  \0113  is a tab followed by the character "3"
  \113   might be a back reference, otherwise the character with octal code 113
  \377   might be a back reference, otherwise the byte consisting entirely of 1 bits
  \81    is either a back reference, or a binary zero followed by the two characters 
"8" and "1"

Note that octal values of 100 or greater must not be introduced by a leading zero, because no more than 
three octal digits are ever read. 

All the sequences that define a single byte value or a single UTF-8 character (in UTF-8 mode) can be 
used both inside and outside character classes. In addition, inside a character class, the sequence \b is 
interpreted as the backspace character (hex 08), and the sequence \X is interpreted as the character "X". 
Outside a character class, these sequences have different meanings (see Unicode Character Properties, 
page B-5). 

Generic Character Types 
The third use of backslash is for specifying generic character types. The following are always 
recognized: 

  \d     any decimal digit
  \D     any character that is not a decimal digit
  \s     any whitespace character
  \S     any character that is not a whitespace character
  \w     any "word" character
  \W     any "non-word" character

Each pair of escape sequences partitions the complete set of characters into two disjoint sets. Any given 
character matches one, and only one, of each pair. 

These character type sequences can appear both inside and outside character classes. They each match 
one character of the appropriate type. If the current matching point is at the end of the subject string, all 
of them fail, since there is no character to match. 

For compatibility with Perl, \s does not match the VT character (code 11). This makes it different from 
the the POSIX "space" class. The \s characters are HT (9), LF (10), FF (12), CR (13), and space (32). 
B-4
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Backslash
A "word" character is an underscore or any character less than 256 that is a letter or digit. The definition 
of letters and digits is controlled by PCRE's low-valued character tables, and may vary if locale-specific 
matching is taking place (see "Locale support" in the pcreapi page). For example, in the "fr_FR" 
(French) locale, some character codes greater than 128 are used for accented letters, and these are 
matched by \w. 

In UTF-8 mode, characters with values greater than 128 never match \d, \s, or \w, and always match \D, 
\S, and \W. This is true even when Unicode character property support is available. 

Unicode Character Properties 
When PCRE is built with Unicode character property support, three additional escape sequences to 
match generic character types are available when UTF-8 mode is selected. They are: 

 \p{xx}   a character with the xx property
 \P{xx}   a character without the xx property
 \X       an extended Unicode sequence

The property names represented by xx above are limited to the Unicode general category properties. Each 
character has exactly one such property, specified by a two-letter abbreviation. For compatibility with 
Perl, negation can be specified by including a circumflex between the opening brace and the property 
name. For example, \p{^Lu} is the same as \P{Lu}. 

If only one letter is specified with \p or \P, it includes all the properties that start with that letter. In this 
case, in the absence of negation, the curly brackets in the escape sequence are optional; these two 
examples have the same effect: 

  \p{L}
  \pL

The following property codes are supported: 

  C     Other
  Cc    Control
  Cf    Format
  Cn    Unassigned
  Co    Private use
  Cs    Surrogate

  L     Letter
  Ll    Lower case letter
  Lm    Modifier letter
  Lo    Other letter
  Lt    Title case letter
  Lu    Upper case letter

  M     Mark
  Mc    Spacing mark
  Me    Enclosing mark
  Mn    Non-spacing mark

  N     Number
  Nd    Decimal number
  Nl    Letter number
  No    Other number

  P     Punctuation
  Pc    Connector punctuation
B-5
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Backslash
  Pd    Dash punctuation
  Pe    Close punctuation
  Pf    Final punctuation
  Pi    Initial punctuation
  Po    Other punctuation
  Ps    Open punctuation

  S     Symbol
  Sc    Currency symbol
  Sk    Modifier symbol
  Sm    Mathematical symbol
  So    Other symbol

  Z     Separator
  Zl    Line separator
  Zp    Paragraph separator
  Zs    Space separator

Extended properties such as "Greek" or "InMusicalSymbols" are not supported by PCRE. 

Specifying caseless matching does not affect these escape sequences. For example, \p{Lu} always 
matches only upper case letters. 

The \X escape matches any number of Unicode characters that form an extended Unicode sequence. \X 
is equivalent to 

  (?>\PM\pM*)

That is, it matches a character without the "mark" property, followed by zero or more characters with the 
"mark" property, and treats the sequence as an atomic group (see below). Characters with the "mark" 
property are typically accents that affect the preceding character. 

Matching characters by Unicode property is not fast, because PCRE has to search a structure that 
contains data for over fifteen thousand characters. That is why the traditional escape sequences such as 
\d and \w do not use Unicode properties in PCRE. 

Simple Assertions 
The fourth use of backslash is for certain simple assertions. An assertion specifies a condition that has 
to be met at a particular point in a match, without consuming any characters from the subject string. The 
use of subpatterns for more complicated assertions is described below. The backslashed assertions are: 

  \b     matches at a word boundary
  \B     matches when not at a word boundary
  \A     matches at start of subject
  \Z     matches at end of subject or before newline at end
  \z     matches at end of subject
  \G     matches at first matching position in subject

These assertions may not appear in character classes (but note that \b has a different meaning, namely 
the backspace character, inside a character class). 

A word boundary is a position in the subject string where the current character and the previous character 
do not both match \w or \W (i.e. one matches \w and the other matches \W), or the start or end of the 
string if the first or last character matches \w, respectively. 

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described in the next 
section) in that they only ever match at the very start and end of the subject string, whatever options are 
set. Thus, they are independent of multiline mode. These three assertions are not affected by the 
B-6
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Circumflex and Dollar
PCRE_NOTBOL or PCRE_NOTEOL options, which affect only the behaviour of the circumflex and 
dollar metacharacters. However, if the startoffset argument of pcre_exec() is non-zero, indicating that 
matching is to start at a point other than the beginning of the subject, \A can never match. The difference 
between \Z and \z is that \Z matches before a newline that is the last character of the string as well as at 
the end of the string, whereas \z matches only at the end. 

The \G assertion is true only when the current matching position is at the start point of the match, as 
specified by the startoffset argument of pcre_exec(). It differs from \A when the value of startoffset is 
non-zero. By calling pcre_exec() multiple times with appropriate arguments, you can mimic Perl's /g 
option, and it is in this kind of implementation where \G can be useful. 

Note, however, that PCRE's interpretation of \G, as the start of the current match, is subtly different from 
Perl's, which defines it as the end of the previous match. In Perl, these can be different when the 
previously matched string was empty. Because PCRE does just one match at a time, it cannot reproduce 
this behaviour. 

If all the alternatives of a pattern begin with \G, the expression is anchored to the starting match position, 
and the "anchored" flag is set in the compiled regular expression. 

Circumflex and Dollar
Outside a character class, in the default matching mode, the circumflex character is an assertion that is 
true only if the current matching point is at the start of the subject string. If the startoffset argument of 
pcre_exec() is non-zero, circumflex can never match if the PCRE_MULTILINE option is unset. Inside 
a character class, circumflex has an entirely different meaning (see Square Brackets and Character 
Classes, page B-8 and Posix Character Classes, page B-9). 

Circumflex need not be the first character of the pattern if a number of alternatives are involved, but it 
should be the first thing in each alternative in which it appears if the pattern is ever to match that branch. 
If all possible alternatives start with a circumflex, that is, if the pattern is constrained to match only at 
the start of the subject, it is said to be an "anchored" pattern. (There are also other constructs that can 
cause a pattern to be anchored.) 

A dollar character is an assertion that is true only if the current matching point is at the end of the subject 
string, or immediately before a newline character that is the last character in the string (by default). 
Dollar need not be the last character of the pattern if a number of alternatives are involved, but it should 
be the last item in any branch in which it appears. Dollar has no special meaning in a character class. 

The meaning of dollar can be changed so that it matches only at the very end of the string, by setting the 
PCRE_DOLLAR_ENDONLY option at compile time. This does not affect the \Z assertion. 

The meanings of the circumflex and dollar characters are changed if the PCRE_MULTILINE option is 
set. When this is the case, they match immediately after and immediately before an internal newline 
character, respectively, in addition to matching at the start and end of the subject string. For example, 
the pattern /^abc$/ matches the subject string "def\nabc" (where \n represents a newline character) in 
multiline mode, but not otherwise. Consequently, patterns that are anchored in single line mode because 
all branches start with ̂  are not anchored in multiline mode, and a match for circumflex is possible when 
the startoffset argument of pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored 
if PCRE_MULTILINE is set. 

Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject in both modes, 
and if all branches of a pattern start with \A it is always anchored, whether PCRE_MULTILINE is set or 
not. 
B-7
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Full Stop (Period, Dot)
Full Stop (Period, Dot)
Outside a character class, a dot in the pattern matches any one character in the subject, including a 
non-printing character, but not (by default) newline. In UTF-8 mode, a dot matches any UTF-8 character, 
which might be more than one byte long, except (by default) newline. If the PCRE_DOTALL option is 
set, dots match newlines as well. The handling of dot is entirely independent of the handling of 
circumflex and dollar, the only relationship being that they both involve newline characters. Dot has no 
special meaning in a character class. 

Matching a Single Byte
Outside a character class, the escape sequence \C matches any one byte, both in and out of UTF-8 mode. 
Unlike a dot, it can match a newline. The feature is provided in Perl in order to match individual bytes 
in UTF-8 mode. Because it breaks up UTF-8 characters into individual bytes, what remains in the string 
may be a malformed UTF-8 string. For this reason, the \C escape sequence is best avoided. 

PCRE does not allow \C to appear in lookbehind assertions (described below), because in UTF-8 mode 
this would make it impossible to calculate the length of the lookbehind. 

Square Brackets and Character Classes
An opening square bracket introduces a character class, terminated by a closing square bracket. A 
closing square bracket on its own is not special. If a closing square bracket is required as a member of 
the class, it should be the first data character in the class (after an initial circumflex, if present) or 
escaped with a backslash. 

A character class matches a single character in the subject. In UTF-8 mode, the character may occupy 
more than one byte. A matched character must be in the set of characters defined by the class, unless the 
first character in the class definition is a circumflex, in which case the subject character must not be in 
the set defined by the class. If a circumflex is actually required as a member of the class, ensure it is not 
the first character, or escape it with a backslash. 

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou] matches any 
character that is not a lower case vowel. Note that a circumflex is just a convenient notation for 
specifying the characters that are in the class by enumerating those that are not. A class that starts with 
a circumflex is not an assertion: it still consumes a character from the subject string, and therefore it fails 
if the current pointer is at the end of the string. 

In UTF-8 mode, characters with values greater than 255 can be included in a class as a literal string of 
bytes, or by using the \x{ escaping mechanism. 

When caseless matching is set, any letters in a class represent both their upper case and lower case 
versions, so for example, a caseless [aeiou] matches "A" as well as "a", and a caseless [^aeiou] does not 
match "A", whereas a caseful version would. When running in UTF-8 mode, PCRE supports the concept 
of case for characters with values greater than 128 only when it is compiled with Unicode property 
support. 

The newline character is never treated in any special way in character classes, whatever the setting of the 
PCRE_DOTALL or PCRE_MULTILINE options is. A class such as [^a] will always match a newline. 
B-8
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Posix Character Classes
The minus (hyphen) character can be used to specify a range of characters in a character class. For 
example, [d-m] matches any letter between d and m, inclusive. If a minus character is required in a class, 
it must be escaped with a backslash or appear in a position where it cannot be interpreted as indicating 
a range, typically as the first or last character in the class. 

It is not possible to have the literal character "]" as the end character of a range. A pattern such as [W-]46] 
is interpreted as a class of two characters ("W" and "-") followed by a literal string "46]", so it would 
match "W46]" or "-46]". However, if the "]" is escaped with a backslash it is interpreted as the end of 
range, so [W-\]46] is interpreted as a class containing a range followed by two other characters. The octal 
or hexadecimal representation of "]" can also be used to end a range. 

Ranges operate in the collating sequence of character values. They can also be used for characters 
specified numerically, for example [\000-\037]. In UTF-8 mode, ranges can include characters whose 
values are greater than 255, for example [\x{100}-\x{2ff}]. 

If a range that includes letters is used when caseless matching is set, it matches the letters in either case. 
For example, [W-c] is equivalent to [][\\^_`wxyzabc], matched caselessly, and in non-UTF-8 mode, if 
character tables for the "fr_FR" locale are in use, [\xc8-\xcb] matches accented E characters in both 
cases. In UTF-8 mode, PCRE supports the concept of case for characters with values greater than 128 
only when it is compiled with Unicode property support. 

The character types \d, \D, \p, \P, \s, \S, \w, and \W may also appear in a character class, and add the 
characters that they match to the class. For example, [\dABCDEF] matches any hexadecimal digit. A 
circumflex can conveniently be used with the upper case character types to specify a more restricted set 
of characters than the matching lower case type. For example, the class [^\W_] matches any letter or 
digit, but not underscore. 

The only metacharacters that are recognized in character classes are backslash, hyphen (only where it 
can be interpreted as specifying a range), circumflex (only at the start), opening square bracket (only 
when it can be interpreted as introducing a POSIX class name - see the next section), and the terminating 
closing square bracket. However, escaping other non-alphanumeric characters does no harm. 

Posix Character Classes
Perl supports the POSIX notation for character classes. This uses names enclosed by [: and :] within the 
enclosing square brackets. PCRE also supports this notation. For example, 

  [01[:alpha:]%]

matches "0", "1", any alphabetic character, or "%". The supported class names are 

  alnum    letters and digits
  alpha    letters
  ascii    character codes 0 - 127
  blank    space or tab only
  cntrl    control characters
  digit    decimal digits (same as \d)
  graph    printing characters, excluding space
  lower    lower case letters
  print    printing characters, including space
  punct    printing characters, excluding letters and digits
  space    white space (not quite the same as \s)
  upper    upper case letters
  word     "word" characters (same as \w)
  xdigit   hexadecimal digits
B-9
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Vertical Bar
The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32). Notice that this 
list includes the VT character (code 11). This makes "space" different to \s, which does not include VT 
(for Perl compatibility).

The name "word" is a Perl extension, and "blank" is a GNU extension from Perl 5.8. Another Perl 
extension is negation, which is indicated by a ^ character after the colon. For example, 

  [12[:^digit:]]

matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX syntax [.ch.] and [=ch=] 
where "ch" is a "collating element", but these are not supported, and an error is given if they are 
encountered. 

In UTF-8 mode, characters with values greater than 128 do not match any of the POSIX character 
classes. 

Vertical Bar
Vertical bar characters are used to separate alternative patterns. For example, the pattern 

  gilbert|sullivan

matches either "gilbert" or "sullivan". Any number of alternatives may appear, and an empty alternative 
is permitted (matching the empty string). The matching process tries each alternative in turn, from left 
to right, and the first one that succeeds is used. If the alternatives are within a subpattern (defined below), 
"succeeds" means matching the rest of the main pattern as well as the alternative in the subpattern. 

Internal Option Setting
The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and 
PCRE_EXTENDED options can be changed from within the pattern by a sequence of Perl option letters 
enclosed between "(?" and ")". The option letters are 

  i  for PCRE_CASELESS
  m  for PCRE_MULTILINE
  s  for PCRE_DOTALL
  x  for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It is also possible to unset these options by 
preceding the letter with a hyphen, and a combined setting and unsetting such as (?im-sx), which sets 
PCRE_CASELESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and 
PCRE_EXTENDED, is also permitted. If a letter appears both before and after the hyphen, the option is 
unset. 

When an option change occurs at top level (that is, not inside subpattern parentheses), the change applies 
to the remainder of the pattern that follows. If the change is placed right at the start of a pattern, PCRE 
extracts it into the global options (and it will therefore show up in data extracted by the pcre_fullinfo() 
function). 

An option change within a subpattern affects only that part of the current pattern that follows it, so 

  (a(?i)b)c
B-10
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Subpatterns
matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used). By this means, 
options can be made to have different settings in different parts of the pattern. Any changes made in one 
alternative do carry on into subsequent branches within the same subpattern. For example, 

  (a(?i)b|c)

matches "ab", "aB", "c", and "C", even though when matching "C" the first branch is abandoned before 
the option setting. This is because the effects of option settings happen at compile time. There would be 
some very weird behaviour otherwise. 

The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed in the same way 
as the Perl-compatible options by using the characters U and X respectively. The (?X) flag setting is 
special in that it must always occur earlier in the pattern than any of the additional features it turns on, 
even when it is at top level. It is best to put it at the start. 

Subpatterns
Subpatterns are delimited by parentheses (round brackets), which can be nested. Turning part of a pattern 
into a subpattern does two things: 

Step 1 It localizes a set of alternatives. For example, the pattern :

  cat(aract|erpillar|)

matches one of the words "cat", "cataract", or "caterpillar". Without the parentheses, it would match 
"cataract", "erpillar" or the empty string. 

Step 2 It sets up the subpattern as a capturing subpattern. This means that, when the whole pattern matches, that 
portion of the subject string that matched the subpattern is passed back to the caller via the ovector 
argument of pcre_exec(). Opening parentheses are counted from left to right (starting from 1) to obtain 
numbers for the capturing subpatterns. 

For example, if the string "the red king" is matched against the pattern 

  the ((red|white) (king|queen))

the captured substrings are "red king", "red", and "king", and are numbered 1, 2, and 3, respectively. 

The fact that plain parentheses fulfil two functions is not always helpful. There are often times when a 
grouping subpattern is required without a capturing requirement. If an opening parenthesis is followed 
by a question mark and a colon, the subpattern does not do any capturing, and is not counted when 
computing the number of any subsequent capturing subpatterns. For example, if the string "the white 
queen" is matched against the pattern 

  the ((?:red|white) (king|queen))

the captured substrings are "white queen" and "queen", and are numbered 1 and 2. The maximum number 
of capturing subpatterns is 65535, and the maximum depth of nesting of all subpatterns, both capturing 
and non-capturing, is 200. 

As a convenient shorthand, if any option settings are required at the start of a non-capturing subpattern, 
the option letters may appear between the "?" and the ":". Thus the two patterns 

  (?i:saturday|sunday)
  (?:(?i)saturday|sunday)
B-11
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Named Subpatterns
match exactly the same set of strings. Because alternative branches are tried from left to right, and 
options are not reset until the end of the subpattern is reached, an option setting in one branch does affect 
subsequent branches, so the above patterns match "SUNDAY" as well as "Saturday". 

Named Subpatterns
Identifying capturing parentheses by number is simple, but it can be very hard to keep track of the 
numbers in complicated regular expressions. Furthermore, if an expression is modified, the numbers may 
change. To help with this difficulty, PCRE supports the naming of subpatterns, something that Perl does 
not provide. The Python syntax (?P<name>...) is used. Names consist of alphanumeric characters and 
underscores, and must be unique within a pattern. 

Named capturing parentheses are still allocated numbers as well as names. The PCRE API provides 
function calls for extracting the name-to-number translation table from a compiled pattern. There is also 
a convenience function for extracting a captured substring by name. For further details see the pcreapi 
documentation. 

Repetition
Repetition is specified by quantifiers, which can follow any of the following items: 

  a literal data character
  the . metacharacter
  the \C escape sequence
  the \X escape sequence (in UTF-8 mode with Unicode properties)
  an escape such as \d that matches a single character
  a character class
  a back reference (see next section)
  a parenthesized subpattern (unless it is an assertion)

The general repetition quantifier specifies a minimum and maximum number of permitted matches, by 
giving the two numbers in curly brackets (braces), separated by a comma. The numbers must be less than 
65536, and the first must be less than or equal to the second. For example: 

  z{2,4}

matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special character. If the second number 
is omitted, but the comma is present, there is no upper limit; if the second number and the comma are 
both omitted, the quantifier specifies an exact number of required matches. Thus 

  [aeiou]{3,}

matches at least 3 successive vowels, but may match many more, while 

  \d{8}

matches exactly 8 digits. An opening curly bracket that appears in a position where a quantifier is not 
allowed, or one that does not match the syntax of a quantifier, is taken as a literal character. For example, 
{,6} is not a quantifier, but a literal string of four characters. 
B-12
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Repetition
In UTF-8 mode, quantifiers apply to UTF-8 characters rather than to individual bytes. Thus, for example, 
\x{100}{2} matches two UTF-8 characters, each of which is represented by a two-byte sequence. 
Similarly, when Unicode property support is available, \X{3} matches three Unicode extended 
sequences, each of which may be several bytes long (and they may be of different lengths). 

The quantifier {0} is permitted, causing the expression to behave as if the previous item and the 
quantifier were not present. 

For convenience (and historical compatibility) the three most common quantifiers have single-character 
abbreviations: 

  *    is equivalent to {0,}
  +    is equivalent to {1,}
  ?    is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no characters with a 
quantifier that has no upper limit, for example: 

  (a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns. However, 
because there are cases where this can be useful, such patterns are now accepted, but if any repetition of 
the subpattern does in fact match no characters, the loop is forcibly broken. 

By default, the quantifiers are "greedy", that is, they match as much as possible (up to the maximum 
number of permitted times), without causing the rest of the pattern to fail. The classic example of where 
this gives problems is in trying to match comments in C programs. These appear between /* and */ and 
within the comment, individual * and / characters may appear. An attempt to match C comments by 
applying the pattern 

  /\*.*\*/

to the string 

  /* first comment */  not comment  /* second comment */

fails, because it matches the entire string owing to the greediness of the .* item. 

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead matches the 
minimum number of times possible, so the pattern 

  /\*.*?\*/

does the right thing with the C comments. The meaning of the various quantifiers is not otherwise 
changed, just the preferred number of matches. Do not confuse this use of question mark with its use as 
a quantifier in its own right. Because it has two uses, it can sometimes appear doubled, as in 

  \d??\d

which matches one digit by preference, but can match two if that is the only way the rest of the pattern 
matches. 

If the PCRE_UNGREEDY option is set (an option which is not available in Perl), the quantifiers are not 
greedy by default, but individual ones can be made greedy by following them with a question mark. In 
other words, it inverts the default behaviour. 
B-13
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Atomic Grouping and Possessive Quantifiers
When a parenthesized subpattern is quantified with a minimum repeat count that is greater than 1 or with 
a limited maximum, more memory is required for the compiled pattern, in proportion to the size of the 
minimum or maximum. 

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl's /s) is set, thus 
allowing the . to match newlines, the pattern is implicitly anchored, because whatever follows will be 
tried against every character position in the subject string, so there is no point in retrying the overall 
match at any position after the first. PCRE normally treats such a pattern as though it were preceded by 
\A. 

In cases where it is known that the subject string contains no newlines, it is worth setting 
PCRE_DOTALL in order to obtain this optimization, or alternatively using ^ to indicate anchoring 
explicitly. 

However, there is one situation where the optimization cannot be used. When .* is inside capturing 
parentheses that are the subject of a backreference elsewhere in the pattern, a match at the start may fail, 
and a later one succeed. Consider, for example: 

  (.*)abc\1

If the subject is "xyz123abc123" the match point is the fourth character. For this reason, such a pattern 
is not implicitly anchored. 

When a capturing subpattern is repeated, the value captured is the substring that matched the final 
iteration. For example, after 

  (tweedle[dume]{3}\s*)+

has matched "tweedledum tweedledee" the value of the captured substring is "tweedledee". However, if 
there are nested capturing subpatterns, the corresponding captured values may have been set in previous 
iterations. For example, after 

  /(a|(b))+/

matches "aba" the value of the second captured substring is "b". 

Atomic Grouping and Possessive Quantifiers
With both maximizing and minimizing repetition, failure of what follows normally causes the repeated 
item to be re-evaluated to see if a different number of repeats allows the rest of the pattern to match. 
Sometimes it is useful to prevent this, either to change the nature of the match, or to cause it fail earlier 
than it otherwise might, when the author of the pattern knows there is no point in carrying on. 

Consider, for example, the pattern \d+foo when applied to the subject line 

  123456bar

After matching all 6 digits and then failing to match "foo", the normal action of the matcher is to try 
again with only 5 digits matching the \d+ item, and then with 4, and so on, before ultimately failing. 
"Atomic grouping" (a term taken from Jeffrey Friedl's book) provides the means for specifying that once 
a subpattern has matched, it is not to be re-evaluated in this way. 

If we use atomic grouping for the previous example, the matcher would give up immediately on failing 
to match "foo" the first time. The notation is a kind of special parenthesis, starting with (?> as in this 
example: 
B-14
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Back References
  (?>\d+)foo

This kind of parenthesis "locks up" the part of the pattern it contains once it has matched, and a failure 
further into the pattern is prevented from backtracking into it. Backtracking past it to previous items, 
however, works as normal. 

An alternative description is that a subpattern of this type matches the string of characters that an 
identical standalone pattern would match, if anchored at the current point in the subject string. 

Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above example can 
be thought of as a maximizing repeat that must swallow everything it can. So, while both \d+ and \d+? 
are prepared to adjust the number of digits they match in order to make the rest of the pattern match, 
(?>\d+) can only match an entire sequence of digits. 

Atomic groups in general can of course contain arbitrarily complicated subpatterns, and can be nested. 
However, when the subpattern for an atomic group is just a single repeated item, as in the example above, 
a simpler notation, called a "possessive quantifier" can be used. This consists of an additional + character 
following a quantifier. Using this notation, the previous example can be rewritten as 

  \d++foo

Possessive quantifiers are always greedy; the setting of the PCRE_UNGREEDY option is ignored. They 
are a convenient notation for the simpler forms of atomic group. However, there is no difference in the 
meaning or processing of a possessive quantifier and the equivalent atomic group. 

The possessive quantifier syntax is an extension to the Perl syntax. It originates in Sun's Java package. 

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated an unlimited 
number of times, the use of an atomic group is the only way to avoid some failing matches taking a very 
long time indeed. The pattern 

  (\D+|<\d+>)*[!?]

matches an unlimited number of substrings that either consist of non-digits, or digits enclosed in <>, 
followed by either ! or ?. When it matches, it runs quickly. However, if it is applied to 

  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

it takes a long time before reporting failure. This is because the string can be divided between the internal 
\D+ repeat and the external * repeat in a large number of ways, and all have to be tried. (The example 
uses [!?] rather than a single character at the end, because both PCRE and Perl have an optimization that 
allows for fast failure when a single character is used. They remember the last single character that is 
required for a match, and fail early if it is not present in the string.) If the pattern is changed so that it 
uses an atomic group, like this: 

  ((?>\D+)|<\d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly. 

Back References
Outside a character class, a backslash followed by a digit greater than 0 (and possibly further digits) is 
a back reference to a capturing subpattern earlier (that is, to its left) in the pattern, provided there have 
been that many previous capturing left parentheses. 
B-15
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Assertions
However, if the decimal number following the backslash is less than 10, it is always taken as a back 
reference, and causes an error only if there are not that many capturing left parentheses in the entire 
pattern. In other words, the parentheses that are referenced need not be to the left of the reference for 
numbers less than 10. See Non-printing Characters, page B-3 for further details of the handling of digits 
following a backslash. 

A back reference matches whatever actually matched the capturing subpattern in the current subject 
string, rather than anything matching the subpattern itself (see Subpatterns as Subroutines, page B-21 
for a way of doing that). So the pattern 

  (sens|respons)e and \1ibility

matches "sense and sensibility" and "response and responsibility", but not "sense and responsibility". If 
caseful matching is in force at the time of the back reference, the case of letters is relevant. For example, 

  ((?i)rah)\s+\1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original capturing subpattern 
is matched caselessly. 

Back references to named subpatterns use the Python syntax (?P=name). We could rewrite the above 
example as follows: 

  (?<p1>(?i)rah)\s+(?P=p1)

There may be more than one back reference to the same subpattern. If a subpattern has not actually been 
used in a particular match, any back references to it always fail. For example, the pattern 

  (a|(bc))\2

always fails if it starts to match "a" rather than "bc". Because there may be many capturing parentheses 
in a pattern, all digits following the backslash are taken as part of a potential back reference number. If 
the pattern continues with a digit character, some delimiter must be used to terminate the back reference. 
If the PCRE_EXTENDED option is set, this can be whitespace. Otherwise an empty comment (see 
Comments, page B-20) can be used. 

A back reference that occurs inside the parentheses to which it refers fails when the subpattern is first 
used, so, for example, (a\1) never matches. However, such references can be useful inside repeated 
subpatterns. For example, the pattern 

  (a|b\1)+

matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of the subpattern, the back 
reference matches the character string corresponding to the previous iteration. In order for this to work, 
the pattern must be such that the first iteration does not need to match the back reference. This can be 
done using alternation, as in the example above, or by a quantifier with a minimum of zero. 

Assertions
An assertion is a test on the characters following or preceding the current matching point that does not 
actually consume any characters. The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are 
described above. 
B-16
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Assertions
More complicated assertions are coded as subpatterns. There are two kinds: those that look ahead of the 
current position in the subject string, and those that look behind it. An assertion subpattern is matched 
in the normal way, except that it does not cause the current matching position to be changed. 

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it makes no sense 
to assert the same thing several times. If any kind of assertion contains capturing subpatterns within it, 
these are counted for the purposes of numbering the capturing subpatterns in the whole pattern. However, 
substring capturing is carried out only for positive assertions, because it does not make sense for negative 
assertions. 

Lookahead Assertions 
Lookahead assertions start with (?= for positive assertions and (?! for negative assertions. For example, 

  \w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the match, and 

  foo(?!bar)

matches any occurrence of "foo" that is not followed by "bar". Note that the apparently similar pattern 

  (?!foo)bar

does not find an occurrence of "bar" that is preceded by something other than "foo"; it finds any 
occurrence of "bar" whatsoever, because the assertion (?!foo) is always true when the next three 
characters are "bar". A lookbehind assertion is needed to achieve the other effect. 

If you want to force a matching failure at some point in a pattern, the most convenient way to do it is 
with (?!) because an empty string always matches, so an assertion that requires there not to be an empty 
string must always fail. 

Lookbehind Assertions 
Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions. For 
example, 

  (?<!foo)bar

does find an occurrence of "bar" that is not preceded by "foo". The contents of a lookbehind assertion 
are restricted such that all the strings it matches must have a fixed length. However, if there are several 
alternatives, they do not all have to have the same fixed length. Thus 

  (?<=bullock|donkey)

is permitted, but 

  (?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted only at the 
top level of a lookbehind assertion. This is an extension compared with Perl (at least for 5.8), which 
requires all branches to match the same length of string. An assertion such as 
B-17
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Assertions
  (?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it is acceptable 
if rewritten to use two top-level branches: 

  (?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move the current 
position back by the fixed width and then try to match. If there are insufficient characters before the 
current position, the match is deemed to fail. 

PCRE does not allow the \C escape (which matches a single byte in UTF-8 mode) to appear in 
lookbehind assertions, because it makes it impossible to calculate the length of the lookbehind. The \X 
escape, which can match different numbers of bytes, is also not permitted. 

Atomic groups can be used in conjunction with lookbehind assertions to specify efficient matching at 
the end of the subject string. Consider a simple pattern such as 

  abcd$

when applied to a long string that does not match. Because matching proceeds from left to right, PCRE 
will look for each "a" in the subject and then see if what follows matches the rest of the pattern. If the 
pattern is specified as 

  ^.*abcd$

the initial .* matches the entire string at first, but when this fails (because there is no following "a"), it 
backtracks to match all but the last character, then all but the last two characters, and so on. Once again 
the search for "a" covers the entire string, from right to left, so we are no better off. However, if the 
pattern is written as 

  ^(?>.*)(?<=abcd)

or, equivalently, using the possessive quantifier syntax, 

  ^.*+(?<=abcd)

there can be no backtracking for the .* item; it can match only the entire string. The subsequent 
lookbehind assertion does a single test on the last four characters. If it fails, the match fails immediately. 
For long strings, this approach makes a significant difference to the processing time. 

Using Multiple Assertions 
Several assertions (of any sort) may occur in succession. For example, 

  (?<=\d{3})(?<!999)foo

matches "foo" preceded by three digits that are not "999". Notice that each of the assertions is applied 
independently at the same point in the subject string. First there is a check that the previous three 
characters are all digits, and then there is a check that the same three characters are not "999". This 
pattern does not match "foo" preceded by six characters, the first of which are digits and the last three 
of which are not "999". For example, it doesn't match "123abcfoo". A pattern to do that is 
B-18
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Conditional Subpatterns
  (?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the first three are digits, 
and then the second assertion checks that the preceding three characters are not "999". 

Assertions can be nested in any combination. For example, 

  (?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn is not preceded by "foo", while 

  (?<=\d{3}(?!999)...)foo

is another pattern that matches "foo" preceded by three digits and any three characters that are not "999". 

Conditional Subpatterns
It is possible to cause the matching process to obey a subpattern conditionally or to choose between two 
alternative subpatterns, depending on the result of an assertion, or whether a previous capturing 
subpattern matched or not. The two possible forms of conditional subpattern are 

  (?(condition)yes-pattern)
  (?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is used. If there 
are more than two alternatives in the subpattern, a compile-time error occurs. 

There are three kinds of condition. If the text between the parentheses consists of a sequence of digits, 
the condition is satisfied if the capturing subpattern of that number has previously matched. The number 
must be greater than zero. Consider the following pattern, which contains non-significant white space to 
make it more readable (assume the PCRE_EXTENDED option) and to divide it into three parts for ease 
of discussion: 

  ( \( )?    [^()]+    (?(1) \) )

The first part matches an optional opening parenthesis, and if that character is present, sets it as the first 
captured substring. The second part matches one or more characters that are not parentheses. The third 
part is a conditional subpattern that tests whether the first set of parentheses matched or not. If they did, 
that is, if subject started with an opening parenthesis, the condition is true, and so the yes-pattern is 
executed and a closing parenthesis is required. Otherwise, since no-pattern is not present, the subpattern 
matches nothing. In other words, this pattern matches a sequence of non-parentheses, optionally 
enclosed in parentheses. 

If the condition is the string (R), it is satisfied if a recursive call to the pattern or subpattern has been 
made. At "top level", the condition is false. This is a PCRE extension. Recursive patterns are described 
in the next section. 

If the condition is not a sequence of digits or (R), it must be an assertion. This may be a positive or 
negative lookahead or lookbehind assertion. Consider this pattern, again containing non-significant 
white space, and with the two alternatives on the second line: 

  (?(?=[^a-z]*[a-z])
  \d{2}-[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )
B-19
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Comments
The condition is a positive lookahead assertion that matches an optional sequence of non-letters followed 
by a letter. In other words, it tests for the presence of at least one letter in the subject. If a letter is found, 
the subject is matched against the first alternative; otherwise it is matched against the second. This 
pattern matches strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are 
digits. 

Comments
The sequence (?# marks the start of a comment that continues up to the next closing parenthesis. Nested 
parentheses are not permitted. The characters that make up a comment play no part in the pattern 
matching at all. 

If the PCRE_EXTENDED option is set, an unescaped # character outside a character class introduces a 
comment that continues up to the next newline character in the pattern. 

Recursive Patterns
Consider the problem of matching a string in parentheses, allowing for unlimited nested parentheses. 
Without the use of recursion, the best that can be done is to use a pattern that matches up to some fixed 
depth of nesting. It is not possible to handle an arbitrary nesting depth. Perl provides a facility that allows 
regular expressions to recurse (amongst other things). It does this by interpolating Perl code in the 
expression at run time, and the code can refer to the expression itself. A Perl pattern to solve the 
parentheses problem can be created like this: 

  $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;

The (?p{...}) item interpolates Perl code at run time, and in this case refers recursively to the pattern in 
which it appears. Obviously, PCRE cannot support the interpolation of Perl code. Instead, it supports 
some special syntax for recursion of the entire pattern, and also for individual subpattern recursion. 

The special item that consists of (? followed by a number greater than zero and a closing parenthesis is 
a recursive call of the subpattern of the given number, provided that it occurs inside that subpattern. (If 
not, it is a "subroutine" call, which is described in the next section.) The special item (?R) is a recursive 
call of the entire regular expression. 

For example, this PCRE pattern solves the nested parentheses problem (assume the PCRE_EXTENDED 
option is set so that white space is ignored): 

  \( ( (?>[^()]+) | (?R) )* \)

First it matches an opening parenthesis. Then it matches any number of substrings which can either be 
a sequence of non-parentheses, or a recursive match of the pattern itself (that is a correctly parenthesized 
substring). Finally there is a closing parenthesis. 

If this were part of a larger pattern, you would not want to recurse the entire pattern, so instead you could 
use this: 

  ( \( ( (?>[^()]+) | (?1) )* \) )
B-20
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Subpatterns as Subroutines
We have put the pattern into parentheses, and caused the recursion to refer to them instead of the whole 
pattern. In a larger pattern, keeping track of parenthesis numbers can be tricky. It may be more 
convenient to use named parentheses instead. For this, PCRE uses (?P>name), which is an extension to 
the Python syntax that PCRE uses for named parentheses (Perl does not provide named parentheses). We 
could rewrite the above example as follows: 

  (?P<pn> \( ( (?>[^()]+) | (?P>pn) )* \) )

This particular example pattern contains nested unlimited repeats, and so the use of atomic grouping for 
matching strings of non-parentheses is important when applying the pattern to strings that do not match. 
For example, when this pattern is applied to 

  (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()

it yields "no match" quickly. However, if atomic grouping is not used, the match runs for a very long 
time indeed because there are so many different ways the + and * repeats can carve up the subject, and 
all have to be tested before failure can be reported. 

At the end of a match, the values set for any capturing subpatterns are those from the outermost level of 
the recursion at which the subpattern value is set. If you want to obtain intermediate values, a callout 
function can be used (see Subpatterns as Subroutines, page B-21 and the pcrecallout documentation). 
If the pattern above is matched against 

  (ab(cd)ef)

the value for the capturing parentheses is "ef", which is the last value taken on at the top level. If 
additional parentheses are added, giving 

  \( ( ( (?>[^()]+) | (?R) )* ) \)
     ^                        ^
     ^                        ^

the string they capture is "ab(cd)ef", the cont

ents of the top level parentheses. If there are more than 15 capturing parentheses in a pattern, PCRE has 
to obtain extra memory to store data during a recursion, which it does by using pcre_malloc, freeing it 
via pcre_free afterwards. If no memory can be obtained, the match fails with the 
PCRE_ERROR_NOMEMORY error. 

Do not confuse the (?R) item with the condition (R), which tests for recursion. Consider this pattern, 
which matches text in angle brackets, allowing for arbitrary nesting. Only digits are allowed in nested 
brackets (that is, when recursing), whereas any characters are permitted at the outer level. 

  < (?: (?(R) \d++  | [^<>]*+) | (?R)) * >

In this pattern, (?(R) is the start of a conditional subpattern, with two different alternatives for the 
recursive and non-recursive cases. The (?R) item is the actual recursive call. 

Subpatterns as Subroutines
If the syntax for a recursive subpattern reference (either by number or by name) is used outside the 
parentheses to which it refers, it operates like a subroutine in a programming language. An earlier 
example pointed out that the pattern 

  (sens|respons)e and \1ibility
B-21
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02



 

Appendix B      Regular Expression Reference
Callouts
matches "sense and sensibility" and "response and responsibility", but not "sense and responsibility". If 
instead the pattern 

  (sens|respons)e and (?1)ibility

is used, it does match "sense and responsibility" as well as the other two strings. Such references must, 
however, follow the subpattern to which they refer. 

Callouts
Perl has a feature whereby using the sequence (?{...}) causes arbitrary Perl code to be obeyed in the 
middle of matching a regular expression. This makes it possible, amongst other things, to extract 
different substrings that match the same pair of parentheses when there is a repetition. 

PCRE provides a similar feature, but of course it cannot obey arbitrary Perl code. The feature is called 
"callout". The caller of PCRE provides an external function by putting its entry point in the global 
variable pcre_callout. By default, this variable contains NULL, which disables all calling out. 

Within a regular expression, (?C) indicates the points at which the external function is to be called. If 
you want to identify different callout points, you can put a number less than 256 after the letter C. The 
default value is zero. For example, this pattern has two callout points: 

  (?C1)\dabc(?C2)def

If the PCRE_AUTO_CALLOUT flag is passed to pcre_compile(), callouts are automatically installed 
before each item in the pattern. They are all numbered 255. 

During matching, when PCRE reaches a callout point (and pcre_callout is set), the external function is 
called. It is provided with the number of the callout, the position in the pattern, and, optionally, one item 
of data originally supplied by the caller of pcre_exec(). The callout function may cause matching to 
proceed, to backtrack, or to fail altogether. A complete description of the interface to the callout function 
is given in the pcrecallout documentation. 

Last updated: 09 September 2004 
Copyright © 1997-2004 University of Cambridge.
B-22
User Guide for Cisco Security MARS Local Controller, Release 4.3.x

OL-14647-02


	Regular Expression Reference
	PCRE Regular Expression Details
	Backslash
	Non-printing Characters
	Generic Character Types
	Unicode Character Properties
	Simple Assertions

	Circumflex and Dollar
	Full Stop (Period, Dot)
	Matching a Single Byte
	Square Brackets and Character Classes
	Posix Character Classes
	Vertical Bar
	Internal Option Setting
	Subpatterns
	Named Subpatterns
	Repetition
	Atomic Grouping and Possessive Quantifiers
	Back References
	Assertions
	Lookahead Assertions
	Lookbehind Assertions
	Using Multiple Assertions

	Conditional Subpatterns
	Comments
	Recursive Patterns
	Subpatterns as Subroutines
	Callouts



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


