cisco.

Use Cases for SD-WAN Capabilities in Cisco Secure Firewall

First Published: 2023-04-04

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2023 Cisco Systems, Inc. All rights reserved.

CONTENTS

	Full Cisco Trademarks with Software License ?
CHAPTER 1	Getting Started 1
	About This Publication 1
	Cisco Secure Firewall 1
	Overview of SD-WAN Capabilities 2
	Features 3
CHAPTER 2	Simplify Branch to Hub Communication using Dynamic Virtual Tunnel Interface (DVTI) 5
	Route-based VPN in a Hub and Spoke Topology 5
	Benefits 6
	Is This Use Case For You? 6
	Scenario 7
	Network Topology 7
	Best Practices 8
	Prerequisites 8
	End-to-End Procedure for Configuring a Route-based VPN (Hub and Spoke Topology) 9
	Create a Route-based Site-to-Site VPN 10
	Configure the Endpoint for the Hub Node 11
	Configure the Endpoint for the Spoke Node 12
	Configure OSPF on the Hub Node 14
	Configure OSPF on the Spoke Node 16
	Configure the Access Control Policy 17
	Deploy Configuration 20
	Verify Traffic Flow Over the VPN Tunnel 20
	Configure the Backup VTI Interface on the Spoke Node 23

Configure an ECMP Zone for the Primary and Secondary VTI Interfaces 25 Verify the Primary and Secondary Tunnels 25 Troubleshoot Route-based VPN Tunnels 29 Additional Resources 29

CHAPTER 3

Route Application Traffic from the Branch to the Internet Using Direct Internet Access (DIA) 31

Direct Internet Access 31 Benefits 33 Is This Use Case For You? 33 Components for Direct Internet Access 33 **Best Practices** 34 Prerequisites 34 Scenario 1: Direct Internet Access 34 Network Topology for DIA 35 End-to-End Procedure for Configuring DIA 36 Scenario 2: Direct Internet Access With Path Monitoring 37 Network Topology-DIA With Path Monitoring 37 End-to-End Procedure for Configuring DIA With Path Monitoring 38 Configure a Trusted DNS Server 40 Configure Interface Priority 41 Create an ECMP Zone 41 Configure an Equal Cost Static Route 41 Configure Path Monitoring Settings 42 Configure an Extended ACL Object for YouTube 43 Configure an Extended ACL Object for WebEx 43 Configure a Policy Based Routing Policy for YouTube 44 Configure a Policy Based Routing Policy for WebEx 45 Configure a Policy Based Routing Policy With Path Monitoring for Webex 45 Deploy Configuration 46 Verify Application Traffic Flow 47 Monitor and Troubleshoot Policy Based Routing 48 Additional Resources 52

CHAPTER 4 Secure Internet Traffic Using Umbrella Auto Tunnel 53

Cisco Umbrella Auto Tunnel 53 Benefits 54 Is This Use Case For You? 55 Scenario 55 Network Topology 55 Best Practices for SASE Umbrella Tunnels 56 Prerequisites for Configuring Umbrella SASE Tunnels 56 Best Practices for SASE Umbrella Tunnels 57 Prerequisites for Configuring Umbrella SASE Tunnels 57 End-to-end Procedure for Configuring Umbrella Auto Tunnel 58 Configure a SASE Tunnel for Umbrella 59 Configure a Static Route 63 Configure an Extended ACL for DNS and Web Traffic 63 Configure a PBR Policy for DNS and Web Traffic 64 Deploy Configuration 65 Verify SASE Umbrella Tunnel Deployment 65 Troubleshoot Umbrella Auto Tunnels 70 Additional Resources 71

CHAPTER 5 Empower Remote Workers with Secure Connectivity: DIA, Umbrella Auto Tunnel, and DVTI in Action 73

Enhancing Connectivity and Security for Remote Workers with DIA, Umbrella SASE Auto Tunnel, and DVTI 73
Is This Use Case For You? 73
Scenario 74
Topology 74
End-to-end Procedure for Configuring DIA, Umbrella Auto Tunnel, and DVTI 75
Additional Resources 75

Contents

I

I

UNAFIE

Getting Started

This chapter provides you with a brief overview of the Cisco Secure Firewall features and the supported SD-WAN capabilities.

- About This Publication, on page 1
- Cisco Secure Firewall, on page 1
- Overview of SD-WAN Capabilities, on page 2
- Features, on page 3

About This Publication

This guide details the primary use cases that uses the SD-WAN capabilities supported on Cisco Secure Firewall.

The approaches do not address all of the possible network needs; instead, they provide models on which you can pattern your network. You can choose not to use features presented in the examples, or you can add or substitute features that better suit your needs.

This guide assumes you are familiar with Cisco Secure Firewall. For more information on configurations, see Cisco Secure Firewall Management Center Administration Guide, 7.3 and Cisco Secure Firewall Management Center Device Configuration Guide, 7.3.

Cisco Secure Firewall

Cisco Secure Firewall is an exceptionally robust firewall solution with cutting-edge features such as Snort IPS, URL filtering, and malware defense.

This comprehensive offering greatly simplifies threat protection by enforcing consistent security policies across physical, private, and public cloud environments.

Furthermore, it grants extensive visibility into your network infrastructure, swiftly identifying the origin and activity of potential threats. Armed with this knowledge, you can promptly take action to stop attacks before they have a chance to disrupt your operations.

In addition to traditional firewall capabilities, it provides features as:

- 1. Application visibility and control
- 2. User identity awareness and control
- 3. Intrusion prevention and intrusion detection

- 4. SSL/TLS decryption
- 5. Reputation based blocking
- 6. File and malware protection
- 7. Virtual Private Network (VPN)

To further secure network deployments, Cisco Secure Firewall provides additional security capabilities in its later releases such as:

- Encrypted Visibility Engine (EVE) that enhance encrypted traffic inspection without the need to implement full main-in-the-middle (MITM) decryption.
- Elephant Flow Detection to detect and remediate elephant flows (flows that are typically larger than 1 GB/10 seconds) and avoid high CPU utilization and packet drops.
- Cisco Secure Dynamic Attribute Connector (CSDAC) that brings agility and intelligence into your security policy management by leveraging tags and labels for policy configuration rather than traditional IP/network-based policy configuration.

Overview of SD-WAN Capabilities

As organizations expand their operations across multiple branch locations, ensuring secure and streamlined connectivity becomes paramount. Deploying a secure branch network infrastructure involves complex configuration and management processes, which can be time-consuming and prone to security vulnerabilities if not handled properly. However, organizations can overcome these challenges by leveraging a secure firewall solution for simplified and secure branch deployment.

In this guide, we explore the concept of simplifying secure branch deployment using a robust firewall solution. By integrating a secure firewall as a foundational component of the branch network architecture, organizations can establish a strong security baseline while simplifying the deployment process. This approach enables organizations to enforce unified security policies, optimize traffic routing, and ensure resilient connectivity.

Some of the SD-WAN capabilities supported on the Cisco Secure Firewall are:

- Secure Elastic Connectivity:
 - Route-based (VTI) VPN tunnels between headquarters (hub) and branches (spokes)
 - IPv4 and IPv6 BGP, IPv4 and IPv6 OSPFv2/v3, and IPv4 EIGRP over VTI
 - DVTI support for spokes with static or dynamic IP
- High availability with near zero network downtime:
 - Dual ISP configuration
 - Optimal path selection based on application based interface monitoring
- Increased usable bandwidth:
 - · ECMP support for load balancing across multiple ISPs
 - ECMP support for SVTI

• Application based load balancing using PBR

• Direct Internet Access for public cloud and guest user:

- Policy based routing using applications as a match criteria
- Local tunnel ID support for Umbrella

• Simplified management:

- SASE: Umbrella auto tunnel deployment
- DVTI hub spoke topology simplification

Features

This table list some commonly used WAN features

Feature	Introduced in
Loopback interface support for VTIs	Release 7.3
Support for dynamic VTI (DVTI) with site-to-site VPN	Release 7.3
Umbrella auto tunnel	Release 7.3
Support for IPv4 and IPv6 BGP, IPv4 and IPv6 OSPFv2/v3, and IPv4 EIGRP for VTIs	Release 7.3
Route-based site-to-site VPN with hub and spoke topology	Release 7.2
Policy-based routing with path monitoring	Release 7.2
The Site to Site VPN Monitoring Dashboard	Release 7.1
Direct Internet Access/Policy Based Routing	Release 7.1
Equal-Cost-Multi-Path (ECMP) zone with WAN interfaces	Release 7.1
Equal-Cost-Multi-Path (ECMP) zone with VTI interfaces	Release 7.1
Backup VTI for route-based site-to-site VPN	Release 7.0
Support for static VTI (SVTI) with site-to-site VPN	Release 6.7

Features

I

Simplify Branch to Hub Communication using **Dynamic Virtual Tunnel Interface (DVTI)**

In this chapter, we delve into the practical application of the DVTI in a hub and spoke topology. The use case details the scenario, network topology, best practices, and prerequisites. It also provides a comprehensive end-to-end procedure for seamless implementation.

- Route-based VPN in a Hub and Spoke Topology, on page 5
- Benefits, on page 6
- Is This Use Case For You?, on page 6
- Scenario, on page 7
- Network Topology, on page 7
- Best Practices, on page 8
- Prerequisites, on page 8
- End-to-End Procedure for Configuring a Route-based VPN (Hub and Spoke Topology), on page 9
- Create a Route-based Site-to-Site VPN, on page 10
- Configure the Endpoint for the Hub Node, on page 11
- Configure the Endpoint for the Spoke Node, on page 12
- Configure OSPF on the Hub Node, on page 14
- Configure OSPF on the Spoke Node, on page 16
- Configure the Access Control Policy, on page 17
- Deploy Configuration, on page 20
- Verify Traffic Flow Over the VPN Tunnel, on page 20
- Configure the Backup VTI Interface on the Spoke Node, on page 23
- Configure an ECMP Zone for the Primary and Secondary VTI Interfaces, on page 25
- Verify the Primary and Secondary Tunnels, on page 25
- Troubleshoot Route-based VPN Tunnels, on page 29
- Additional Resources, on page 29

Route-based VPN in a Hub and Spoke Topology

The Secure Firewall Management Center supports routable logical interfaces called the Virtual Tunnel Interfaces (VTIs). You can use these interfaces to apply static and dynamic routing policies. When using VTI, you do not have to configure static crypto map access lists and map them to interfaces. You no longer have to track all remote subnets and include them in the crypto map access list.

You can create a VPN tunnel between peers using VTIs. VTIs support route-based VPN with IPsec profiles attached to the end of each tunnel. VTIs use static or dynamic routes. The threat defense device encrypts or decrypts the traffic from or to the tunnel interface and forwards it according to the routing table.

The management center supports a site-to-site VPN wizard with defaults to configure VTI or route-based VPN.

When it comes to implementing route-based VPN in a hub and spoke topology,Dynamic Virtual Tunnel Interface (DVTI) is configured on the hub and SVTI (Static Virtual Tunnel Interface) is configured on the spoke.

Dynamic VTI uses a virtual template for dynamic instantiation and management of IPsec interfaces. The virtual template dynamically generates a unique virtual access interface for each VPN session. Dynamic VTI supports multiple IPsec security associations and accepts multiple IPsec selectors proposed by the spoke.

Secure Firewall Threat Defense supports the configuration of a backup tunnel for the route-based (VTI) VPN providing link redundancy. When the primary VTI (primary tunnel) is unable to route the traffic, the traffic in the VPN is tunneled through the backup VTI (secondary tunnel).

Benefits

The benefits of using a VTI-based VPN in a hub and spoke topology are:

- 1. Simplified Configuration: VTI simplifies the configuration of VPN tunnels by providing a logical interface that represents the tunnel itself. This eliminates the need for complex crypto map or access list configurations typically associated with traditional VPN setups.
- Simplified Management: It is easy to manage peer configurations for large enterprise hub and spoke deployments. Only one dynamic VTI is configured on the hub for multiple static VTIs configured on the spokes.
- **3.** Scalability: VTI allows for easy scalability. Addition of new spokes does not require any additional VPN configuration on the hub. You may need to update NAT and routing configurations depending upon the setup.
- 4. Dynamic Routing Support: VTI supports dynamic routing protocols such as Open Shortest Path First (OSPF) allowing for the dynamic exchange of routing information between VPN endpoints. This enables efficient routing decisions based on real-time network conditions.
- 5. Dual ISP Redundancy: SVTI supports backup VTI tunnels.
- 6. Load balancing: SVTI supports load balancing of VPN traffic using ECMP.

Is This Use Case For You?

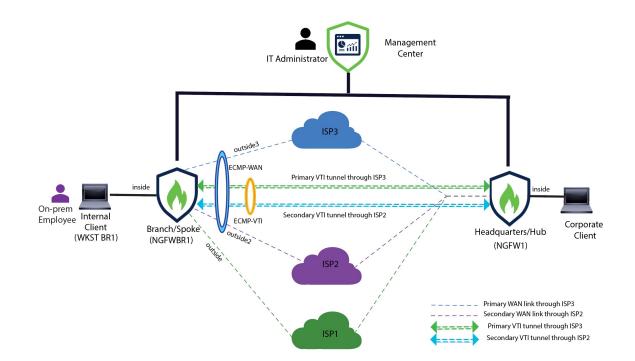
The intended audience for the DVTI hub and spoke configuration includes network architects, IT administrators, and networking professionals responsible for designing and managing the network infrastructure of an organization. This use case is valuable to those seeking to optimize network connectivity, ensure data security, and streamline network administration by implementing a centralized hub with secure tunnels connecting to remote spoke sites.

Scenario

A medium-sized company has multiple branch offices located in different cities, and they want to establish a secure and efficient network infrastructure to connect these branches with the central headquarters. The company's IT administrator, Alice, is responsible for configuring and managing the network.

What is at risk?

The current network configuration requires manual configuration of multiple point-to-point connections between each branch office and the central headquarters. This approach is time-consuming, error-prone, and makes it challenging to maintain consistency in network settings across all locations. Alice needs a solution that simplifies the configuration process and provides centralized control.


How does a route-based VPN between a branch(spoke) and headquarters (hub) solve the problem?

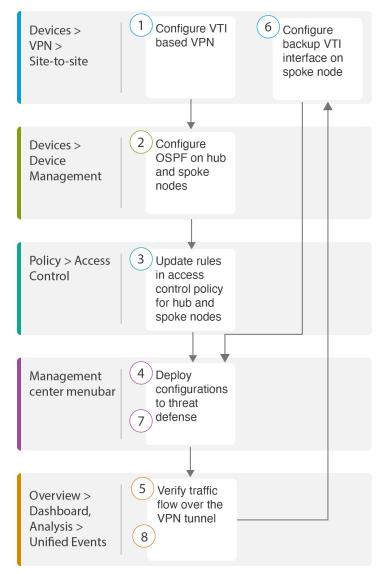
- 1. Centralized Configuration: Alice implements DVTI Hub and Spoke topology, centralizing configuration and management at the hub. This simplifies network settings across all locations.
- 2. Dynamic Routing: Alice sets up dynamic routing protocols (for example, OSPF) automating routing information exchange. Manual configuration of static routes is eliminated, simplifying network administration.
- **3.** Rapid Provisioning: With DVTI, Alice can quickly provision new branch offices by configuring a spoke router and establishing a secure tunnel with the hub. This simplifies the provisioning process and supports network scalability.

By implementing DVTI, Alice simplifies network configuration, centralizes control, ensures consistency, and enables efficient provisioning and scalability in the corporate network.

Network Topology

In this hub spoke topology, a threat defense device is deployed at a branch location. In the figure below, the internal client or branch workstation is labelled WKST BR and the branch (spoke) threat defense is labelled NGFWBR1. The headquarters (hub) is labelled as NGFW1 and is connected to the corporate network. A VPN tunnel is configured between NGFWBR1 and NGFW1. An ECMP zone is configured on the primary and secondary static VTI interfaces on the branch node for link redundancy and loading balancing of VPN traffic.

Best Practices


- Ensure that Secure Firewall Threat Defense is runing on version 6.7 and later.
- VTI is supported in routed mode only.
- Configure the Borrow IP for the dynamic interface from a loopback interface.
- Ensure to apply access rules on a VTI interface to control traffic through VTI.
- Configure ECMP zones for SVTIs to load balance VTI traffic.

Prerequisites

- Complete the Threat Defense Initial Configuration Using the Device Manager
- Assign Licenses to Devices
- Add routes for internet access. See Add a Static Route
- Configure NAT for Threat Defense
- Creating a Basic Access Control Policy

End-to-End Procedure for Configuring a Route-based VPN (Hub and Spoke Topology)

The following flowchart illustrates the workflow for configuring a route-based VPN for a hub spoke topology in Secure Firewall Management Center.

Step	Description	
(1)	Configure a VTI based VPN. See	
\bigcirc	• Create a Route-based Site-to-Site VPN, on page 10	
	• Configure the Endpoint for the Hub Node, on page 11	

Step	Description
	Configure the Endpoint for the Spoke Node, on page 12
2	Configure OSPF on the hub and spoke nodes. See
	Configure OSPF on the Hub Node, on page 14
	Configure OSPF on the Spoke Node, on page 16
3	Updates rules in the access control policy for hub and spoke nodes. See Configure the Access Control Policy, on page 17.
4	Deploy configuration to threat defense. See Deploy Configuration, on page 20.
5	Verify traffic flow over VPN tunnel. See Verify Traffic Flow Over the VPN Tunnel, on page 20.
6	Configure backup VTI on spoke node. See Configure the Backup VTI Interface on the Spoke Node, on page 23.
7	Deploy the configuration on Threat Defense. SeeDeploy Configuration, on page 20.
8	Verify traffic flow over secondary tunnel. See Verify the Primary and Secondary Tunnels, on page 25.

Create a Route-based Site-to-Site VPN

You can configure a route-based site-to-site VPN between two nodes. To configure a VTI-based VPN you need virtual tunnel interfaces at both the nodes of the tunnel.

For managed spokes, you can configure a backup static VTI interface along with the primary VTI interface.

- **Step 1** Choose **Devices** > **VPN** > **Site To Site**.
- **Step 2** Enter the name as **Corporate-VPN** in the **Topology Name** field.
- **Step 3** Choose **Route Based** (VTI) as the topology type.
- **Step 4** Configure the endpoint for the hub node. See Configure the Endpoint for the Hub Node, on page 11.
- **Step 5** Configure the endpoint for the spoke node. See Configure the Endpoint for the Spoke Node, on page 12.
- **Step 6** The default settings are used in the **IKE**, **IPsec**, and **Advanced** tabs.
- Step 7 Click Save.

The Corporate-VPN topology is created successfully.

- **Step 8** You can view the VPN topology in the Site-to-site VPN listing page by navigating to **Devices** > **Site-to-site VPN**.
 - Note Click **Refresh** if you do not see the VPN topology that you created.

Step 9 Expand the **Corporate-VPN** node to view all the tunnels in the topology. It displays the **NGFW1** hub and the **NGFWBR1** spoke with details of the physical source and VTI interfaces. Since the configuration has not yet been deployed, it displays **Deployment Pending** and the tunnel displays amber status.

		Last Updated	: 01:21 AM Refresh + Site to	Site VPN + SASE Topolog
Select				×
Topology Name	VPN Type	Network Topology	Tunnel Status Distribution	IKEv1 IKEv2
 Corporate-VPN 	Route Based (VTI)	Hub & Spoke	Deployment Pending	/ /
	Hub		Spol	(e
Device	VPN Interface	/TI Interface	Device VPN Interfa	ace VTI Interface
FTD NGFW1	out (198.18.133.81)	out (198.48.133.81)	FTD NGFWBR1 outsi (198.19.30.4) puts (169.254.20

What to do next

After you configure VTI interfaces and VTI tunnel on both the devices, you must configure:

- A routing protocol to route the VTI traffic between the devices over the VTI tunnel. See Configure OSPF on the Hub Node, on page 14 and Configure OSPF on the Spoke Node, on page 16.
- An access control rule to allow encrypted traffic. See Configure the Access Control Policy, on page 17.

Configure the Endpoint for the Hub Node

When you specify the tunnel type as dynamic and configure the related parameters, the management center generates a dynamic virtual template. The virtual template dynamically generates the virtual access interface that is unique for each VPN session.

- **Step 1** In the **Hub Nodes** section, click +. The **Add Endpoint** dialog box is displayed.
- **Step 2** Choose NGFW1 as the hub from the Device drop-down list.

Note The device must be running on software version 7.3 or later.

Step 3 Click + next to the **Dynamic Virtual Tunnel Interface** drop-down list to add a new dynamic VTI.

The Add Virtual Tunnel Interface dialog box appears with the following pre-populated default configurations.

• Tunnel Type is auto-populated with Dynamic.

- Name is auto-populated as <*tunnel_source interface logical name>*+ dynamic_vti +<*tunnel ID>*. For example, outside_dynamic_vti_1.
- The Enabled checkbox is checked by default.
- Security Zone –To define a security zone for this interface, choose New... from the drop-down list. In the New Security Zone dialog box, enter Tunnel_Zone as the name and click OK. Select Tunnel_Zone as the security zone for this tunnel interface.
- Template ID is auto-populated with a unique ID for the DVTI interface.
- **Tunnel Source** is the physical interface that is the source of the DVTI and is auto-populated by default. In this use case, we do not want to set an explicit tunnel source for the DVTI. Clear the selection by choosing **Select Interface** from the drop-down list.
- IPsec Tunnel Mode is set to IPv4, by default.
- **IP** address cannot be a static IP address as DVTI is a template interface. We recommend that you configure the Borrow IP for the dynamic interface from a loopback interface. To add a loopback interface, click + next to the **Borrow IP** (**IP unnumbered**) drop-down list. In the **Add Loopback Interface** dialog box:
- a. In the General tab, enter the Name as HUB_Tunnel_IP and Loopback ID as 1.
- b. In the IPv4 tab, enter the IP address as 198.48.133.81/32.
- c. Click OK to save the loopback interface.

The Borrow IP is set to Loopback 1(HUB_Tunnel_IP).

Click **OK** to save the DVTI. A message is displayed that confirms the VTI is created successfully. Click **OK**.

The Dynamic Virtual Tunnel Interface is set to outside_dynamic_vti_1(198.48.133.81).

- Step 4 Select GigabitEthernet 0/0 (outside) from the Tunnel Source drop-down list. The IP address of the outside interface (198.18.133.81) is auto-populated in the next field.
- **Step 5** Expand **Advanced Settings** to view the default settings.
- Step 6 Click OK.

NGFW1 is successfully configured as the hub node.

Configure the Endpoint for the Spoke Node

- Step 1 In the Spoke Nodes section, click +. The Add Endpoint dialog box is displayed.
- **Step 2** Choose NGFWBR1 as the hub from the Device drop-down list.

Note The device must be running on software version 7.3 or later.

Step 3 Click + next to the **Static Virtual Tunnel Interface** drop-down list to add a new static VTI.

The Add Virtual Tunnel Interface dialog box appears with the following pre-populated default configurations.

• Tunnel Type is auto-populated with Static.

- Name is auto-populated as <*tunnel_source interface logical name>+* static_vti +<*tunnel ID>*. For example, outside_static_vti_1.
- The Enabled checkbox is checked by default.
- Select Tunnel_Zone from the Security Zone drop-down list.
- Tunnel ID is auto-populated with a value as 1.
- Select GigabitEthernet0/4 (outside3) from the Tunnel Source drop-down list. Select the IP address of the outside 3 interface as 198.19.30.4 from the drop-down list next to it.
- IPsec Tunnel Mode is set to IPv4, by default.
- **IP address** can either be a static IP address or a borrow IP. We recommend that you configure the Borrow IP for the static interface from a loopback interface. To add a loopback interface, click + next to the **Borrow IP (IP unnumbered)** drop-down list. In the **Add Loopback Interface** dialog box:
- a. In the General tab, enter the Name as Spoke_Tunnel_IP and Loopback ID as 1.
- b. In the IPv4 tab, enter the IP address as 169.254.20.1/32.
- c. Click OK to save the loopback interface.

The Borrow IP is set to Loopback 1(Spoke_Tunnel_IP).

Click OK to save the SVTI. A message is displayed that confirms the VTI is created successfully. Click OK.

The Static Virtual Tunnel Interface is set to outside_static_vti_1(169.254.20.1).

- **Step 4** Expand Advanced Settings to view the default settings. Both checkboxes must be checked.
- Step 5 Click OK.

NGFWBR1 is successfully configured as the spoke node.

0

Create New VPN Topology

Topology Name:*			
Corporate-VPN			
O Policy Based (Crypto Map)	Based (VTI)		
Network Topology:			
Point to Point Hub and Spoke Full Me	esh		
IKE Version:* 🗌 IKEv1 🔽 IKEv2			
Endpoints IKE IPsec Advanced			
Hub Nodes:			+
Device Name	VPN Interface	Traffic Match Criteria	
FTD NGFW1	outside_dynamic_vti_1 (198.48.133.81)	Routing Policy	11
Spoke Nodes:			+
Device Name	VPN Interface	Traffic Match Criteria	
FTD NGFWBR1	outside_static_vti_1 (169.254.20.1)	Routing Policy	/ 1

Configure OSPF on the Hub Node

OSPF is configured between Hub and Spoke device to allow traffic to be sent across the VPN tunnel. For reference, static routing is underlay, over which Spoke to Hub tunnel is established and OSPF is considered as overlay.

- Step 1 To edit the hub node, choose Devices > Device Management and click the Edit (\checkmark) icon for the NGFW1 node.
- **Step 2** In the **Interfaces** tab, verify the **Loopback1** interface that was created earlier and serves as the IP address for the DVTI interface.
- Step 3 Click Routing.
- **Step 4** Click **OSPF** in the left panel.
- **Step 5** Check the **Process 1** checkbox to enable an OSPF instance.
- **Step 6** Click the **Interface** tab.
- **Step 7** Click +Add. The Add Interface dialog box appears. Modify the following fields:
 - Interface—Select the DVTI interface outside_dynamic_vti_1 from the drop-down list.
 - Point-to-point—Check the checkbox to transmit OSPF routes over VPN tunnels.
 - The rest of the fields use default values.
 - Click OK.

A row is added in the **Interface** tab for **outside_dynamic_vti_1**.

Step 8 Click the **Area** tab.

L

- Step 9 Click +Add. The Add Area dialog box appears. Modify the following fields:
 - OSPF Process—Choose the process ID as 1.
 - Area ID—Ensure the value is 1.

The rest of the fields use default values.

- Available Network— To add networks to be advertised over the tunnel:
 - To add a new network object, click +. Enter these details:
 - Name—Enter the name as HUB_Tunnel_IP.
 - Network—Select the Host option and enter the host IP as 198.48.133.81.
 - Click Save.
 - Enter **HUB** in the search area of the **Available Network** field. The newly added network object (**HUB_Tunnel_IP**) is listed. Select the object and click **Add** to add it to the **Selected Network** list.
 - Enter Corporate in the search area of the Available Network field. The Corporate_LAN network object is listed. Select the object and click Add to add it to the Selected Network list.
- Click OK.

A row is added in the Area tab.

NGFW1						
Cisco Firepower Threat Defense	for VMWare					
Device Routing Interf	faces Inline Sets DHCP	VTEP				
Manage Virtual Routers	Process 1	ID:	1			
Global	OSPF Role:					
Global	Internal Router	•	Enter Description	here	Advanced	
Virtual Router Properties	Process 2	ID:				
ECMP		ID.				
BFD	OSPF Role:					
OSPF	Internal Router	Ψ	Enter Description	here	Advanced	
OSPFv3						
EIGRP	Area Redistribution	InterArea	Filter Rule	Summary Address	Interface	
RIP						
Policy Based Routing	OSPF Process Are Area	аТуре	Networks	Options	Authentication	C
\sim BGP	1 1 1		LULE Trend ID	false		
IPv4	1 1 norm	Idi	HUB_Tunnel_IP	false	none	

Step 10 Click **Save** to save the OSPF configuration for the hub node.

Configure OSPF on the Spoke Node

Step 1 To edit the spoke node, choose **Devices** > **Device Management** and click the **Edit** () icon for the NGFWBR1 node.

Step 2 In the Interfaces tab:

- Verify the details of Tunnel1 interface that was created earlier in the spoke configuration.
- Verify the details of the Loopback1 interface that was created earlier and serves as the IP address for Tunnel1.
- Step 3 Click Routing.
- **Step 4** Click **OSPF** in the left panel.
- **Step 5** Check the **Process 1** checkbox to enable an OSPF instance.
- Step 6 Click the Area tab.
- Step 7 Click +Add. The Add Area dialog box appears. Modify the following fields:
 - **OSPF Process**—Choose the process ID as 1.
 - Area ID—Ensure the value is 1.

The rest of the fields use default values.

- Available Network— To add networks to be advertised over the tunnel:
 - To add a new network object, click +. Enter these details:
 - Name—enter the name as Spoke_Tunnel_IP.
 - Network—Select the Host option and enter the host IP as 169.254.20.1.
 - Click Save.
 - Enter **Spoke** in the search area of the **Available Network** field. The newly added network object (**Spoke_Tunnel_IP**) is listed. Select the object and click **Add** to add it to the **Selected Network** list.
 - Enter **Branch** in the search area of the **Available Network** field. The **Branch_LAN** network object is listed. Select the object and click **Add** to add it to the **Selected Network** list.
- Click **OK**.

A row is added in the Area tab.

anage Virtual Routers	Process 1	ID:	1		
	OSPF Role:				
àlobal 🔻	Internal Router	•	Enter Description here		Advanced
/irtual Router Properties	Process 2	ID:			
CMP	Process 2	ID.			
BFD	OSPF Role:				
DSPF	Internal Router	Ψ.	Enter Description here		Advanced
DSPFv3					
IGRP	Area Redistribution	InterArea	Filter Rule Sum	nmary Address	Interface
RIP					
Policy Based Routing	OSPF Proces Area ID	Area Type	Networks	Options	Authenticatio
3GP					

Step 8 Click **Save** to save the OSPF configuration for the spoke node.

Configure the Access Control Policy

Before proceeding, ensure that the VTI interfaces on NGFW1 and NGFWBR1 nodes are associated to a new zone labeled as Tunnel_Zone.

Navigate to **Policies > Access Control** to review the access control policies. The following access control policies must be updated for both the hub and spoke to allow the VPN traffic to and from the tunnel.

- NGFW1—Access control policy for the hub node (NGFW1)
- Branch Access Control Access control policy for the spoke node (NGFWBR1)

Step 1 To edit the hub node (NGFW1) AC policy, click the **Edit** (*I*) icon.

The existing rules that must be modified for this use case are:

- Allow-To-Branch-Over-Tunnel
- Allow-To-Corp-Over-Tunnel
- a. To edit the Allow-To-Branch-Over-Tunnel policy, click the Edit (\checkmark) icon.
- b. In the Zones tab, search for Tunnel_Zone, select it, and click Add Destination Zone.

Allow-To-Branch-Over-Tunnel	î,	Action 💿	Allow	√ 8 L	ogging ON 🖪 Tim	e Range None
		Intrusion	Policy None		Select Variable	Set 🗸
Q Zones (2) Networks (2) Ports	Applicati	ions Us	ers URLs	Dynamic Attribu	tes VLAN Tags	
Q Tunnel X	Showing 1 out of	of 11 5	elected Sources: 2		Selected Destinations a	and Applicati
Tunnel_Zone (Routed Security Zone)		(collapse All	Remove All	Collapse All	Remove All
			ZONE V 1 object InZone1		ZONE V 1 object	I_Zone
			NET v 1 object Corporate	e-LAN	NET - 1 object Branch-LA	AN
+ Create Security Zone Object			Add Source	Zone	Add Destinatio	on Zone

- **c.** Click **Apply** to save the rule.
- **d.** To edit the **Allow-To-Corp-Over-Tunnel** policy, click the **Edit** (\mathscr{I}) icon.
- e. In the Zones tab, search for Tunnel_Zone, select it, and click Add Source Zone.

11 Citing Rule Allow-To-Corp-Over-Tunnel	NGFW1 Default
Name Allow Action Allow	Image: Select Variable Set Image: Select Variable Set
Q Zones (2) Networks (2) Ports Applications Users	URLs Dynamic Attributes VLAN Tags
C Tunnel X Showing 1 out of 11	Selected Sources: 2 Selected Destinations and Applications: 2
Tunnel_Zone (Routed Security Zone)	Collapse All Remove All Collapse All Remove All ZONE 1 object Branch-LAN Comporter LAN Collapse All Colapse All Colapse All Colla
+ Create Security Zone Object	Add Source Zone Add Destination Zone
Comments ~	Cancel Apply

- f. Click Apply to save the rule.
- g. Verify the updated rules in NGFW1.
- h. Click Save the AC policy.
- i. Click Return to Access Conrol Policy Management to return the policy page.
- **Step 2** To edit the spoke node (NGFWBR1) AC policy, click the **Edit** () icon.

The rules that must be edited for this example are:

- Allow-To-Branch-Over-Tunnel
- Allow-To-Corp-Over-Tunnel
- a. To edit the Allow-To-Branch-Over-Tunnel policy, click the Edit () icon.
- b. In the Zones tab, search for Tunnel_Zone, select it, and click Add Souce Zone.

	ţ	Action	Allow	\sim	Logging ON	Time Range None	~
		Intru	sion Policy	None	Select Va	riable Set 🗸 🗸	File Policy None
Zones (2) Networks (2) Ports	Appl	ications	Users	URLs Dynamic	Attributes VLAN T	ags	
کر Tunnel	× Sh	owing 1 out	of 11	Selected Sources:	2	Selected Destination	ns and Applications: 2
				NET v 1 objec	nel_Zone	ZONE 1 objec InZone NET 1 objec Branch 	t

- **c.** Click **Apply** to save the rule.
- d. To edit the Allow-To-Corp-Over-Tunnel policy, click the Edit () icon.
- e. In the Zones tab, search for Tunnel_Zone, select it, and click Add Destination Zone.

3	Citing Rule Allow-To-Corp-Over-Tun	nel						Branch Access Control	Default 🕜
Nam	Allow-To-Corp-Over-Tunnel	î,	Action	Allow			ogging	ON 🐻 Time Range	e None
			Intrus	sion Policy	None			Select Variable Set	· ~ . ►
C	Zones (2) Networks (2) Ports	Applica	tions	Users	URLs	Dynamic Attrib	utes	VLAN Tags	
٩	Tunnel X Show	wing 1 out	of 11	Selecte	d Sources: 2		Select	ed Destinations and App	licati 2
	Tunnel_Zone (Routed Security Zone)			Collaps	e All	Remove All	Collap	se All Rer	move All
				ZONE	✓ 1 object InZone		ZONE	 ✓ 1 object ♣ Tunnel_Zone 	
				NET	✓ 1 object Branch-L4	AN	NET	✓ 1 object Corporate-LAN	
+	Create Security Zone Object				Add Source	Zone	[Add Destination Zone	
C	omments ^						L	Cancel	Apply

- f. Click Apply to save the rule.
- **g.** Verify the updated rules in NGFWBR1.
- **h.** Click **Save** the AC policy.

Deploy Configuration

After you complete all the configurations, deploy them to the managed device.

- **Step 1** On the management center menu bar, click **Deploy**. This displays the list of devices that are Ready for Deployment.
- **Step 2** Check the checkboxes adjacent to NGFWBR1 and NGFW1 on which you want to deploy configuration changes.
- **Step 3** Click **Deploy**. Wait till the deployment is marked Completed on the Deploy dialog box.
- **Step 4** If the system identifies errors or warnings in the changes to be deployed, it displays them in the **Validation Errors** or **Validation Warnings** window. To view complete details, click the Validation Errors or Validation Warnings link.

You have the following choices:

- Proceed with Deploy—Continue deploying without resolving warning conditions. You cannot proceed if the system identifies errors.
- Close—Exit without deploying. Resolve the error and warning conditions, and attempt to deploy the configuration again.

Verify Traffic Flow Over the VPN Tunnel

Perform the following verifications for the VPN tunnel.

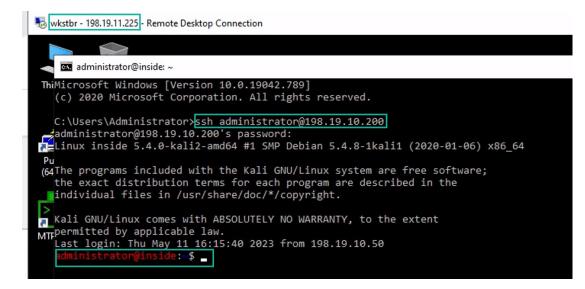
- · Verify Tunnel Status on the Site-to-site VPN Dashboard
- 1. To verify that the VPN tunnel is up and green, choose **Overview** > **Dashboards** > **Site-to-site VPN**.

▼ Device NGFW1 × ×	Select					×	Apply Cancel	Refresh eve
Tunnel Summary			Node A		Node B		Topology	Status
0	100% Active 1 connection							
Topology Name		0						
Name Corporate-VPN	0 0	_						

- 2. Hover over NGFW1. The View Full Information icon is displayed next to NGFW1.
- 3. Click the View Full Information icon. A side pane with tunnel details and additional actions appears.
- 4. Click the CLI Details tab in the side pane.
- 5. Click **Maximize View** to display a maximized dialog box that contains the details of the IPSec security associations.
- 6. You can expand the CLI for the show commands in the lower portion of the dialog box to view the VTI interfaces on the devices.

Firewall Management Center Overview / Dashboards / Site to Site VPN	v Analysis Policies Devices Objects	Integration Deploy Q 🧉	admin - 🖞 😵
Pevice NGFW1 × × Select		X Apply Cancel	Refresh every 5 minutes 🗸
Node & Node B NGFW1 (VPN IP- 198, 18, 133, 81) NGFWBR1 (VPN IP- 198, 17 Tunnel Details	Topology Status Last Updated - 9.30.4) Corporate-VPN @ Active 2023-07-05.02.0	A: NGFW1) Active t Tracer
Summary	••••••••••••••••••••••••••••••••••••	Summary	
Node A (198.18.133.81/500) 👔	Node B (198.19.30.4/500) 👔	Node A (198.18.133.81/500) 😭 💦	Node B (198.19.30.4/500) 😭
Transmitted: 4.69 KB (4804 B)	Transmitted: 4.86 KB (4972 B)	Transmitted: 4.69 KB (4804 B)	
Received: 6.07 KB (6212 B)	Received: 5.94 KB (6084 B)	Received: 6.07 KB (6212 B)	
IPsec Security /	Associations (1)	IPsec Security	Associations (1)
Settings: L2L,Tunnel,IKEv2,VTI Encaps/Encrypt: 59 / 59 pkts Dcaps/Decrypt: 62 / 62 pkts	Settings: L2L,Tunnel,IKEv2,VTI Encaps/Encrypt: 62 / 62 pkts Dcaps/Decrypt: 60 / 60 pkts	Settings: L2L,Tunnel,IKEv Encaps/Encrypt: 59 / 59 pkts Dcaps/Decrypt: 62 / 62 pkts	
Remaining Lifetime	for SPI ID: 0xF96273E3	Remaining Lifetime	
Outbound: 3.82 GB (4101115000 B) 02:51:27 (28287 sec)	Inbound: 3.91 GB (4193275000 B) 02:51:26 (28286 sec)	Outbound: 3.82 GB (4101115000 B) 02:51:27 (28287 sec)	
Remaining Lifetime	for SPI ID: 0x201775BF	Remaining Lifetime	
Inbound: 3.78 GB (4055035000 B) 02:51:27 (28287 sec)	Outbound: 3.78 GB (4055035000 B) 02:51:26 (28286 sec)	Inbound: 3.78 GB (4055035000 B) 02:51:27 (28287 sec)	Outbound: 3.78 GB (4055035000 B) 02:51:26 (28286 sec)
NGFW1 (VPN Interface IP: 198.18.133.81)	NGFWBR1 (VPN Interface IP: 198.19.30.4)	NGFW1 (VPN Interface IP: 198.18.1	
🕑 show crypto ipsec sa peer 198.19.30.4 🖥 🔶	💿 show crypto ipsec sa peer 198.18.133.81 🛐 🔺	() show crypto ipsec sa peer 198.	
peer address: 198.19.30.4	peer address: 198.18.133.81	Show vpn-sessiondb detail 121	
<pre>interface: putside_dynamic_vti_1_va1</pre>	interface: <pre>outside_static_vti_1</pre>		
Crypto map tag: outside_dynamic_vti_1_vtempla	Crypto map tag:vti-crypto-map-Tunnel1-0-1		

- 7. Click Close to terminate the Tunnel Details window.
- Verify Routing on the Hub and Branch Nodes-To verify that the OSPF routes have been correctly learned on the NGFW1 and NGFWBR1. nodes:
- 1. Choose Devices > Device Management.
- 2. To edit NGFW1, click the Edit () icon.
- 3. Click the Device tab.
- 4. Click the CLI button in the General card. The CLI Troubleshoot window appears
- 5. Enter show route in the Command field and click Execute .
- 6. Review the routes on the NGFW1 node and confirm the VPN route for the spoke's VTI IP (169.254.20.1) and OSPF learnt route for the Branch_LAN (198.19.11.0/24) as displayed in the figure below.


0	command: show route	⇒ Execute Copy	Device: NGFW1	*
> sho	w route			
Codes		static, R - RIP, M - mobile, B - BGP 1, O - OSPF, IA - OSPF inter area		
		1, N2 - OSPF, IA - OSPF inter area 1, N2 - OSPF NSSA external type 2		
		2 - OSPF external type 2, V - VPN		
		, L1 - IS-IS level-1, L2 - IS-IS level-2		
		ndidate default, U - per-user static route		
		ded static route. + - replicated route		
	SI - Static InterVRF, BI - BG	P InterVRF		
Gatew	way of last resort is 198.18.128	.1 to network 0.0.0.0		
s*	0.0.0.0 0.0.0.0 [1/0] via 1			
5		/0] via 198.18.133.60, outside		
v	169.254.20.1 255.255.255.25			
		<pre>sed), outside_dynamic_vti_1_va1</pre>		
ι		is directly connected, outside 55 is directly connected, outside		
L C	198.18.193.81 255.255.255.2 198.19.10.0 255.255.255.0 i			
L I		is directly connected, in10		
0	198.19.11.0 255.255.255.0			
•		.1, 00:19:39, outside dynamic vti 1 va1		
	198.19.20.0 255.255.255.0 i			
С		is directly connected, in20		
C L	108 10 30 0 255 255 255 0 0	1/0] via 198.18.133.63, outside		
C L S				
C L S S	198.19.40.0 255.255.255.0 [1/0] via 198.18.133.64, outside		

- 7. Repeat Steps 2 through 5 for the NGFWBR1 node.
- **8.** Review the routes on the NGFWBR1 node. Confirm the OSPF routes learnt for the hub's VTI IP (198.48.133.81) and for the Corporate_LAN (198.19.10.0/24) as displayed in the figure below.

>_ Co	ommand: show route ⇒ Execute Caption Copy	Device: NGFWBR1	•
shou	w route		
odes	: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP		
	D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area		
	N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2		
	E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN		
	i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2		
	ia - IS-IS inter area, * - candidate default, U - per-user static route		
	o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF. BI - BGP InterVRF		
atow	ay of last resort is 198.19.40.64 to network 0.0.0.0		
uccm			
*	0.0.0.0 0.0.0.0 [1/0] via 198.19.40.64, outside2		
	[1/0] via 198.19.30.63, outside3		
	169.254.20.1 255.255.255.255 is directly connected, Spoke_tunnel_IP		
	198.18.128.0 255.255.192.0 is directly connected, outside		
	198.18.128.81 255.255.255.255 is directly connected, outside		
	198.19.10.0 255.255.255.0		
	[110/1572] via 198.48.133.81, 00:22:52, outside_static_vti_1		
	198.19.10.100 255.255.255.255 [1/0] via 198.19.40.64, outside2 [1/0] via 198.19.30.63, outside3		
	[1/0] Via 196.19.30.05, Outsides 198.19.11.0 255.255.255.0 is directly connected, inside		
	198.19.11.4 255.255.255.255 is directly connected, inside		
	198.19.30.0 255.255.255.0 is directly connected, outside3		
	198.19.30.4 255.255.255.255 is directly connected, outside3		
	198.19.40.0 255.255.255.0 is directly connected, outside2		
	198.19.40.4 255.255.255.255 is directly connected, outside2		
)	198.48.133.81 255.255.255.255		
	[110/1563] via 198.48.133.81, 00:22:52, outside static vti 1		

• Verify Traffic between Protected Networks Behind the Spoke and Hub Nodes

Log into the WKST BR workstation (198.19.11.225) and SSH to the host (198.19.10.200) behind NGFW1. Ensure that you are able to SSH successfully to the host.

- · Verify Connectivity Between Branch and Spoke Nodes Using Unified Events
- 1. Choose Analysis > Unified Events.
- Add the VPN Action, Encrypt Peer, Decrypt Peer, and Egress Interface columns using the column picker.
- 3. Reorder and resize the new columns along with the columns, **Destination Port/ICMP Code**, Access Control Rule, Access Control Policy, and Device as seen in the figure below.

	Firewall Manage Analysis / Unified Event	ment Center	Overview	Analysis	Policies	Devices	Objects	Integration	Deploy	Q	693	🕻 🕜 adm	in ~ dialo cisco	SECUI
Q	Search												☆×	Refresh
\odot	Showing all 31 events (🖕 2	24 🗅 7) 🛨						Fo	2023-07-05 03:3	0:44 EDT -	+ 2023	-07-05 03:32:45	EDT 2m 1s	Go Live
	Time	Event Type	Destination ICMP Code		Veb opplication	Access Control Rule	Access Control Policy	Device	VPN Action	Decryp	t Peer	Encrypt Peer	Egress Interface	Π
>	2023-07-05 03:31:43	D File	57406 / to	sp N	licrosoft			NGFWBR1						:
>	2023-07-05 03:31:40	Sconnection	22 (ssh) /	tcp		Allow-To-Co	NGFW1	NGFW1	Decrypt	198.19	.30.4		in10	:
>	2023-07-05 03:31:40	S Connection	22 (ssh) /	tcp		Allow-To-Co	Branch Access	NGFWBR1	Encrypt			198.18.133	outside_sta.	
>	2023-07-05 03:31:38	S Connection	80 (http) /	tcp N	licrosoft	Allow Outbou	Branch Access	NGFWBR1					outside2	1

4. To view the events related to the SSH connection from the WKST BR to Corporate Host choose the row with 22 (ssh/tcp) in the Destination Port/ICMP Code column. Note the Encrypt action on NGFWBR1 over the outside_static_vti_1 interface followed by the Decrypt action on the NGFW1 as shown in the figure above.

Configure the Backup VTI Interface on the Spoke Node

Secure Firewall Threat Defense supports the configuration of a backup tunnel for the route-based (VTI) VPN. When the primary VTI is unable to route the traffic, the traffic in the VPN is tunneled through the backup VTI.

Step 1 Choose Devices > Site-to-site VPN to view the configured Corporate-VPN VPN topology and click the Edit (✓) icon. The Edit VPN Topology window appears.

Step 2 In the Spoke Nodes section, click the Edit (*I*) icon for the NGFWBR1 node. The Edit Endpoint dialog box appears.

Step 3 Click the **Add Backup VTI** link to add the secondary VTI tunnel. The link displays the Backup VTI section.

Edit Endpoint	0
Device:* NGFWBR1 Static Virtual Tunnel Interface	
outside_static_vti_1 (IP: 169.254 ★ + Tunnel Source: outside3 (IP: 198.19.30.4) □ Tunnel Source IP is Private □ Send Local Identity to Peers	
Backup VTI: Remove Virtual Tunnel Interface:*	
Tunnel Source IP is Private Edit VTI Send Local Identity to Peers	
Additional Configuration Route traffic to the VTI : <u>Routing Policy</u> Permit VPN traffic : <u>AC Policy</u>	
 Advanced Settings 	•
Cancel	

Step 4 Click + next to the **Virtual Tunnel Interface** drop-down list to add a new VTI.

The Add Virtual Tunnel Interface dialog box appears with the following pre-populated default configurations.

- Tunnel Type is auto-populated with Static.
- Name is auto-populated as <*tunnel_source interface logical name>+* static_vti +<*tunnel ID>*. For example, outside_static_vti_2.
- The Enabled checkbox is checked by default.
- Select Tunnel_Zone from the Security Zone drop-down list.
- Tunnel ID is auto-populated with a value as 2.
- Select GigabitEthernet0/3 (outside2) from the Tunnel Source drop-down list. Select the IP address of the outside 3 interface as 198.19.40.4 from the drop-down list next to it.
- IPsec Tunnel Mode is set to IPv4, by default.
- **IP** address can either be a static IP address or a borrow IP. We recommend that you configure the Borrow IP for the static interface from a loopback interface. To add a loopback interface, click select **Loopback** 1(Spoke_Tunnel_IP) from the drop-down list.

Click **OK** to save the VTI. A message is displayed that confirms the VTI is created successfully. Click **OK**.

The Backup VTI Interface is set to outside_static_vti_2(169.254.20.1).

Step 5 Click **OK** to save the spoke configuration.

Configure an ECMP Zone for the Primary and Secondary VTI Interfaces

Configure ECMP on the primary and secondary static VTI interfaces on the branch node for link redundancy and for load balancing the VPN traffic.

- **Step 1** Choose **Devices** > **Device Management**, and edit the Threat Defense device (**NGFWBR1**).
- **Step 2** Click the **Routing** tab on the interface view of NGFWBR1.
- Step 3 Click ECMP.
- Step 4 Click Add.

L

- **Step 5** In the Add ECMP box, enter a name, ECMP-VTI for the ECMP zone.
- Step 6 To associate interfaces, select the interfaces outside_static_vti_1 and outside_static_vti_2 under the Available Interfaces box, and then click Add.

Add ECMP		@ ×
Name ECMP-VTI Available Interfaces outside outside2 outside3	Selected Interface outside_static_ outside_static_	_vti_1
	Car	ncel

Step 7 Click OK.

The ECMP page now displays the newly created ECMP zone.

Step 8 Click Save.

Verify the Primary and Secondary Tunnels

Verify that both the primary and secondary VTI tunnels between the branch node and the hub node are configured, up, and active.

• Verify Tunnel Status on the Site-to-site VPN Dashboard

To verify that the VPN tunnel is up and green, choose Overview > Dashboards > Site-to-site VPN.

Firewall Management Center Overview / Dashboards / Site to Site VPN	Overview	Analysis Policies	Devices	Objects Integration	Deploy Q 💰	🖗 🗘 🕜 🔓 ac	dmin ~ doub secure
Y Select					× Refresh	Refresh every	5 minutes 🗸 🚺
Tunnel Summary		Node A		Node B	Topology	Status	Last Updated 🔺
		NGFW1 (VPN IP: 198	3.18.133.81)	NGFWBR1 (VPN IP: 198.19.30.4)	Corporate-VPN	Active	2023-07-05 02:07:58
	_	NGFW1 (VPN IP: 198	3.18.133.81)	NGFWBR1 (VPN IP: 198.19.40.4)	Corporate-VPN	Active	2023-07-05 11:32:11
100% Active 2 connections							
Topology							
Name 😑 🥝	0						
Corporate-VPN 0 0	2						

- · Verify Routing on the Hub and Branch Nodes
- 1. Choose Devices > Device Management.
- 2. To edit NGFW1, click the Edit icon.
- 3. Click the **Device** tab.
- 4. Click the CLI button in the General card. The CLI Troubleshoot window appears
- 5. Enter show interface ip brief in the Command field and click Execute to view the dynamic Virtual Access interfaces that were created from the DVTI on the hub.


```
Note
```

The Virtual-Access2 interface gets generated from the same DVTI when **NGFWBR1** connects to NGFW1 over the secondary VTI connection.

CLI Troubleshoot			
>_ Command: show interf	ace ip brief	⇒ Execute Copy	Device: NGFW1
> show interface ip brief			
Interface	IP-Address	OK? Method Status Protocol	
GigabitEthernet0/0	198.18.133.81	YES CONFIG up up	
GigabitEthernet0/1	198.19.10.1	YES CONFIG up up	
GigabitEthernet0/2	198.19.20.1	YES CONFIG up up	
GigabitEthernet0/3	unassigned	YES unset administratively down up	
GigabitEthernet0/3.100	unassigned	YES unset down down	
GigabitEthernet0/3.110	unassigned	YES unset down down	
GigabitEthernet0/4	unassigned	YES unset administratively down up	
GigabitEthernet0/4.200	unassigned	YES unset down down	
GigabitEthernet0/4.220	unassigned	YES unset down down	
Internal-Control0/0	127.0.1.1	YES unset up up	
Internal-Control0/1	unassigned	YES unset up up	
Internal-Data0/0	unassigned	YES unset down up	
Internal-Data0/0	unassigned	YES unset up up	
Internal-Data0/1	169.254.1.1	YES unset up up	
Internal-Data0/2	unassigned	YES unset up up	
Management0/0	unassigned	YES unset up up	
Loopback1	198.48.133.81	YES manual up up	
Virtual-Access1	198.48.133.81	YES CONFIG up up	
Virtual-Access2	198.48.133.81	YES CONFIG up up	
Virtual-Template1	198.48.133.81	YES CONFIG up up	
Virtual-Template2	198.48.133.81	YES CONFIG up up	

6. Repeat Steps 2 through 5 for the NGFWBR1 node to view the static VTI interfaces **Tunnel1** and **Tunnel2** as shown in the figure below.

CLI Troubleshoot				
>_ Command: show inte	rface ip brief	⇒ Execute C Refresh 🛅 Co	ору	Device: NGFWBR1
> show interface ip bri	ef			
Interface .	IP-Address	OK? Method Status	Protocol	
GigabitEthernet0/0	198.18.128.81	YES CONFIG up	up	
GigabitEthernet0/1	198.19.11.4	YES CONFIG up	up	
GigabitEthernet0/2	unassigned	YES unset administratively dow	vn up	
GigabitEthernet0/3	198.19.40.4	YES CONFIG up	up	
GigabitEthernet0/4	198.19.30.4	YES CONFIG up	up	
Internal-Control0/0	127.0.1.1	YES unset up	up	
Internal-Control0/1	unassigned	YES unset up	up	
Internal-Data0/0	unassigned	YES unset down	up	
Internal-Data0/0	unassigned	YES unset up	up	
Internal-Data0/1	169.254.1.1	YES unset up	up	
Internal-Data0/2	unassigned	YES unset up	up	
Management0/0	unassigned	YES unset up	up	
Loopback1	169.254.20.1	YES manual up	up	
Tunnel1	169.254.20.1	YES CONFIG up	up	
Tunnel2	169.254.20.1	YES CONFIG up	up	

7. Enter show route in the Command field and click Execute to view the routes after the addition of the secondary VTI tunnel.

CLI Troubleshoot

>_ C	ommand: Show route → Execute C Refresh C Copy	Device: NGFWBR1
> sho	w route	
	: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - OOR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF av of last resort is 198.19.40.64 to network 0.0.0.0	
all sources	ay of last resolt is 198.19.40.04 to network 0.0.0.0	
S*	0.0.0.0 0.0.0.0 [1/0] via 198.19.40.64, outside2	
~	[1/0] via 198.19.30.63, outside3	
c	169.254.20.1 255.255.255.255 is directly connected, Spoke_tunnel_IP	
c	198.18.128.0 255.255.192.0 is directly connected, outside	
0	198.18.128.81 255.255.255.255 is directly connected, outside 198.19.10.0 255.255.255.0	
U	[110/1572] via 198.48.133.81, 00:12:13, outside static vti 2	
	[110/1572] via 198.48.133.81, 00:12:33, outside_static_vti_2	
s	198.19.10.100 255.255.255.255 [1/0] via 198.19.40.64, outside2	
-	[1/0] via 198.19.30.63, outside3	
с	198.19.11.0 255.255.255.0 is directly connected, inside	
L	198.19.11.4 255.255.255.255 is directly connected, inside	
с	198.19.30.0 255.255.255.0 is directly connected, outside3	
L	198.19.30.4 255.255.255.255 is directly connected, outside3	
с	198.19.40.0 255.255.255.0 is directly connected, outside2	
L	198.19.40.4 255.255.255.255 is directly connected, outside2	
0	198.48.133.81 255.255.255.255	
	[110/1563] via 198.48.133.81, 00:12:13, outside_static_vti_2	
	[110/1563] via 198.48.133.81, 00:12:33, outside_static_vti_1	

- Note that the **Corporate_LAN** (198.19.10.0/24) has been learnt over OSPF on both the primary (outside_static_vti_1) and secondary (outside_static_vti_2) VTIs.
- Note that the DVTI Tunnel IP (198.48.133.81) has also been learnt over OSPF on both the primary and secondary VTIs.

• Verify Failover to Secondary Tunnel When the Primary Tunnel Goes Down

1. In this example, to validate failover to the secondary tunnel, packet loss can be induced by restricting outbound traffic sourced from the outside3 interface going to internet either through an access control list on the upstream device or by shutting down the outside3 interface for threat defense from the management center.

Note Shutting down an interface is network intrusive and must not be tried in a production network.

2. In the Site-to-site VPN Dashboard, the primary tunnel is down as shown in the figure below.

Firewall Manager Overview / Dashboards /	Ment Center / Site to Site VPN	ew Analysi	s Policies	Devices	Objects	Integration	Deploy Q 🍕	🞐 🗘 🕜 a	dmin ~ disco SECURE
Y Select							× Refresh	Refresh every	5 minutes V
Tunnel Summary		Nod	e A		Node B		Topology	Status	Last Updated 🔺
		NGF	W1 (VPN IP: 198	.18.133.81)	NGFWBR1	(VPN IP: 198.19.40.4)	Corporate-VPN	📀 Active	2023-07-05 11:32:11
0	50% Active 1 connection 50% Inactive 1 connection	NGF	W1 (VPN IP: 198	.18.133.81)	NGFWBR1	(VPN IP: 198.19.30.4)	Corporate-VPN	Inactive	2023-07-05 11:48:00
Topology Name Corporate-VPN	 2 2 3 4 4								

- **3.** Initiate traffic from Branch to Hub. Log in to the WKST BR workstation and SSH to the host behind NGFW1. Ensure that you are able to SSH successfully to the host.
- 4. Verify the egress path of the traffic using the Unified Event Viewer:
 - a. Choose Analysis > Unified Events.
 - **b.** Add the **VPN Action, Encrypt Peer, Decrypt Peer**, and **Egress Interface** columns using the column picker.
 - c. Reorder and resize the new columns along with the columns, **Destination Port/ICMP Code**, **Access Control Rule**, **Access Control Policy**, and **Device** as seen in the figure below.

Q	Search									\$
0	Showing all 102 events (S	101 🗅 1) 🛨						10 2023-07-05 1	0:52:50 EDT → 2	2023-07-05 11:52:50 EDT
	Time	Event Type	Destination Port / ICMP Code	Access Control Rule	Access Control Policy	Device	VPN Action	Encrypt Peer	Decrypt Peer	Egress Interface
>	2023-07-05 11:52:34	S Connection	3 (Port unreach	Allow Outbou	Branch Access	NGFWBR1				outside2
>	2023-07-05 11:52:12	S Connection	443 (https) / tcp	Allow Outbou	Branch Access	NGFWBR1				outside2
>	2023-07-05 11:51:46	D File	. 58273 / top			NGFW1				
>	2023-07-05 11:51:44	S Connection	443 (https) / tcp	Allow Outbou	NGFW1	NGFW1				outside
>	2023-07-05 11:51:27	S Connection	443 (https) / tcp	Allow Outbou	NGFW1	NGFW1				outside
>	2023-07-05 11:51:16	S Connection	22 (ssh) / tcp	Allow-To-Co	Branch Access .	NGFWBR1	Encrypt	198.18.133		outside_static_vti_2
>	2023-07-05 11:51:15	S Connection	22 (ssh) / tcp	Allow-To-Co	NGFW1	NGFW1	Decrypt		198.19.40.4	in10
>	2023-07-05 11:51:05	S Connection	80 (http) / tcp	Allow Outbou	Branch Access	NGFWBR1				outside3
>	2023-07-05 11:50:43	S Connection	443 (https) / tcp	Allow Outbou	NGFW1	NGFW1				outside

Notice that the egress interface on the **NGFWBR1** for the SSH (Port 22) is now displayed as the secondary interface (**outside_static_vti_2**).

Troubleshoot Route-based VPN Tunnels

After the deployment, use the following CLI to debug issues related to route-based VPN tunnels on Secure Firewall Threat Defense.

Note

Proceed with caution when you run debug commands on the threat defense device in production environments. You can set various debug levels on the device that may have verbose outputs.

How to	CLI Command
Enable conditional debugging for a particular peer	debug crypto condition peer <peer-ip></peer-ip>
Debug the Virtual Tunnel Interface information	debug vti 255
Debug the IKEv2 protocol related transactions	debug crypto ikev2 protocol 255
Debug the IKEv2 platform related transactions	debug crypto ikev2 platform 255
Debug the common IKE related transactions	debug crypto ike-common 255
Debug the IPSec related transactions	debug crypto ipsec 255

Additional Resources

Resource	URL
Secure Firewall Threat Defense Release Notes	https://www.cisco.com/c/en/us/support/security/ firepower-ngfw/products-release-notes-list.html
All New and Deprecated Features	http://www.cisco.com/go/whatsnew-fmc
Secure Firewall on Cisco.com	http://www.cisco.com/go/firewall
Secure Firewall on YouTube	https://www.youtube.com/cisco-netsec
Secure Firewall Essentials	https://secure.cisco.com/secure-firewall

CHAPTER J

Route Application Traffic from the Branch to the Internet Using Direct Internet Access (DIA)

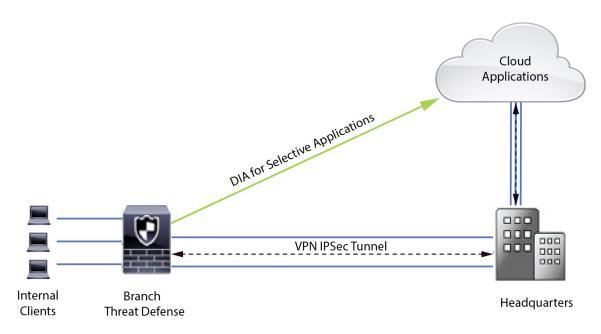
In this chapter, we delve into the practical application of Direct Internet Access (DIA) using two use cases. Each use case details the scenario, network topology, best practices, and prerequisites. It also provides a comprehensive end-to-end procedure for seamless implementation.

- Direct Internet Access, on page 31
- Benefits, on page 33
- Is This Use Case For You?, on page 33
- Components for Direct Internet Access, on page 33
- Best Practices, on page 34
- Prerequisites, on page 34
- Scenario 1: Direct Internet Access, on page 34
- Scenario 2: Direct Internet Access With Path Monitoring, on page 37
- Configure a Trusted DNS Server, on page 40
- Configure Interface Priority, on page 41
- Create an ECMP Zone, on page 41
- Configure an Equal Cost Static Route, on page 41
- Configure Path Monitoring Settings, on page 42
- Configure an Extended ACL Object for YouTube, on page 43
- Configure an Extended ACL Object for WebEx, on page 43
- Configure a Policy Based Routing Policy for YouTube, on page 44
- Configure a Policy Based Routing Policy for WebEx, on page 45
- Configure a Policy Based Routing Policy With Path Monitoring for Webex, on page 45
- Deploy Configuration, on page 46
- Verify Application Traffic Flow, on page 47
- Monitor and Troubleshoot Policy Based Routing, on page 48
- Additional Resources, on page 52

Direct Internet Access

Digital innovation is transforming the way businesses operate, communicate, and interact with customers. It has led to the creation of new applications and technologies to improve collaboration and customer experience and require high bandwidth and low latency connections.

Challenges with Traditional Networks


Traditionally, network deployments leverage a perimeter firewall on a central site to provide secure access to local and branch users. This architecture provides the desired connectivity, though it transports all internet traffic to the central site as encrypted traffic through a VPN tunnel resulting in packet latency, drops, and jitter. In addition, the network is constantly challenged with high costs and bandwidth utilization that is associated with deployment and complex network management.

Solution

One of the ways to overcome these challenges is to use Direct Internet Access (DIA). DIA is a component of the Simplified Branch feature of the Cisco Secure Firewall. DIA uses Policy Based Routing (PBR). DIA is also referred to as application aware routing.

In a DIA topology, application traffic from the branch office is routed directly to the internet thereby bypassing the latency of tunneling internet-bound traffic to the headquarters. The branch Secure Firewall Threat Defense is configured with an internet exit point. The PBR policy is applied on the ingress interface to identify the traffic based on the applications defined in the extended access control list. Correspondingly, the traffic is forwarded through the egress interfaces directly to the internet.

Figure 1: Direct Internet Access Through Specific Egress Interfaces

Why Policy based Routing?

You can use PBR to classify and securely break out traffic for specified applications. It also allows you to specify a path for certain traffic. You can configure a PBR policy in the Secure Firewall Management Center user interface to allow the applications to be directly accessed.

PBR and Path Monitoring

Typically, in PBR, traffic is forwarded through egress interfaces based on the priority value (interface cost) configured on them. In Secure Firewall Management Center version 7.2 and later versions, PBR uses path monitoring to collect performance metrics (RTT, jitter, packet loss, and MOS) of the egress interfaces. PBR uses these metrics to determine the best path (egress interface) for forwarding the traffic. Path monitoring periodically notifies PBR about the monitored interface when the metrics get modified. PBR retrieves the latest metric values for the monitored interfaces from the path monitoring database and updates the data path.

You must enable path monitoring for the interface, configure the monitoring type for the egress interface, and configure the application traffic to leverage path monitoring that uses the metrics values.

To understand path monitoring, see Scenario 2: Direct Internet Access With Path Monitoring, on page 37.

Benefits

Benefits of using DIA include

- · Improved internet speeds and branch office user experience.
- Reduced complexity, making network management easier and cheaper.
- Cost-effective as it reduces bandwidth usage and eliminates the need for expensive hardware.
- Dynamic path selection using real-time metrics.
- Best egress path guaranteed without manual intervention.
- · Continuous monitoring of link health and network state.
- Increased agility, allowing organizations to adapt quickly to changing business needs.

Is This Use Case For You?

The intended audience for this use case is network design engineers, network operations personnel, and security operations personnel who wish to implement Direct Internet Access within each remote site to allow local breakout of internet-bound traffic directly from the branch.

Components for Direct Internet Access

Some of the important components that the branch firewall uses for DIA are :

- **Trusted DNS Server**—Application detection in DIA feature relies on DNS snooping to resolve applications or a group of applications. To ensure that DNS requests are not resolved by rogue DNS servers and are indeed locked to the desired DNS servers, the management center allows you to configure a Trusted DNS server for Threat Defense.
- **Interface Priority**—Cisco Secure Firewall uses interface priority to determine the optimal internet path. Priority, lower the better, determines the preference of a particular ISP when sending the traffic out to the internet. The management center allows you to configure the interface priority for Threat Defense.
- **Network Service**—Object associated with a particular application that is used within policy based routing. This object is automatically created.
- Network Service Group (NSG)—Network Service Groups are a group of applications that the firewall
 uses to determine the path based on the configuration. Multiple network service objects can be part of a
 single NSG. The management center auto generates NSGs based on the extended access lists configured
 for policy based routing.

Best Practices

- Secure Firewall Threat Defense must run version 7.1 and higher.
- Trusted DNS servers must be configured to ensure DNS snooping is performed through trusted DNS servers to support application traffic flow.
- DNS requests passing through Threat Defense must be in a clear-text format and not encrypted to allow DNS snooping to facilitate PBR flows.
- ECMP zones must be configured for active/active load balancing of application traffic.
- ECMP is supported only in the routed firewall mode and a device can have a maximum of 256 ECMP zones.
- Only routed interfaces must be used. Each interface must belong to only a single ECMP zone.
- Make sure that interfaces belong to the virtual router where ECMP is being configured.
- Interfaces used in the ECMP zone configuration must have logical names defined within the interface configuration.
- Validate that no more than eight interfaces per ECMP zone are configured for PBR on Secure Firewall Threat Defense.
- Secure Firewall Threat Defense must not be deployed in a cluster because PBR is not supported in this mode.
- PBR must be configured for the global virtual router as it is not supported on user-defined virtual routers.
- Ensure that interfaces used in ingress and egress interface within PBR are either routed interfaces or non management-only interfaces and they belong to the global virtual router.

Prerequisites

- Complete the Threat Defense Initial Configuration Using the Device Manager
- Assign Licenses to Devices
- Add routes for internet access. See Add a Static Route
- Configure NAT for Threat Defense
- Creating a Basic Access Control Policy

Scenario 1: Direct Internet Access

Bob is an account manager and Ann is a help desk specialist. Both work at a branch office of a large corporation. Recently, they have been experiencing latency issues while using web conferencing tools like Webex and streaming platforms like YouTube.

What is at risk?

Network latency and network congestion results in reduced performance and user experience of web conferencing and streaming sessions. This may impact the productivity and efficiency of employees at the branch office, potentially leading to a negative impact on the overall business operations.

How does DIA with PBR solve the problem?

Alice, the IT administrator, used policy based routing in conjunction with DIA to reduce latency in the network.

Direct Internet Access allowed branch offices to access the internet directly, without routing traffic through a central site or data center. This reduced latency by providing a more direct and optimized internet connection for branch users.

Policy based routing separated Webex and YouTube traffic on different egress interfaces. This ensured that the traffic was directed through different paths, reducing the burden on a single interface and improving application performance.

Network Topology for DIA

In this topology, a threat defense device is deployed at a branch location with three egress interfaces. The device is configured for DIA using PBR.

In the figure below, the internal client or branch workstation is labelled **WKST BR** and the branch threat defense is labeled **NGFWBR1**. The ingress interface of **NGFWBR1** is named **inside** and the egress interfaces are named **outside**, **outside2**, and **outside3** respectively.

Load balancing between the **outside** and **outside2** interfaces is achieved by configuring an ECMP zone and static routes.

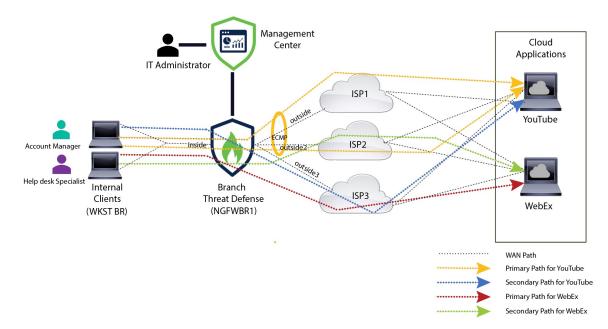
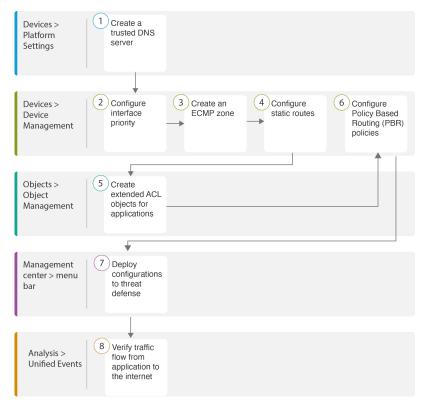


Figure 2: Direct Internet Access Topology


With DIA, users behind the branch firewall are allowed to access:

1. Social media application traffic (for example, **YouTube**) that is load balanced using two egress interfaces (**outside** and **outside2**). If both the interfaces fail, then traffic falls back to the third egress interface (**outside3**).

2. Collaboration application traffic (for example, WebEx) is forwarded through the outside3 interface and if this link fails, traffic is forwarded through the outside2 interface.

End-to-End Procedure for Configuring DIA

The following flowchart illustrates the workflow for configuring DIA in Secure Firewall Management Center.

Step	Description
1	(<i>Prerequisite</i>) Configure a Trusted DNS server. See Configure a Trusted DNS Server, on page 40.
2	(<i>Prerequisite</i>) Configure interface priority. See Configure Interface Priority, on page 41.
3	(<i>Prerequisite</i>) Create an ECMP zone. See Create an ECMP Zone, on page 41.
4	(<i>Prerequisite</i>) Configure static routes. See Configure an Equal Cost Static Route, on page 41.
5	Configure extended ACL objects for applications. See
C	Configure an Extended ACL Object for YouTube, on page 43
	• Configure an Extended ACL Object for WebEx, on page 43

Step	Description
6	Configure PBR policies for applications. See
C	Configure a Policy Based Routing Policy for YouTube, on page 44
	• Configure a Policy Based Routing Policy for WebEx, on page 45
7	Deploy the configuration on threat defense. See Deploy Configuration, on page 46.
8	Verify YouTube and WebEx traffic flow. See Verify Application Traffic Flow, on page 47.

Scenario 2: Direct Internet Access With Path Monitoring

Ann is a help desk specialist and works at a branch office of a large corporation. Ann has been experiencing connection drops and lags while using WebEx.

What is at risk?

WebEx meetings rely on real-time data transmission, including audio and video streams, between the meeting host and attendees. This real-time data is sensitive to network latency and packet loss. If the network experiences high packet loss, it can lead to audio and video quality issues such as freezing, lagging, or delays, which can negatively impact the meeting experience.

How PBR with path monitoring resolve the problem?

Alice, the IT administrator, used policy based routing with path monitoring to steer WebEx application traffic to the internet through the egress interface with minimal packet loss ensuring the best possible meeting experience for attendees.

Network Topology-DIA With Path Monitoring

In this topology, a threat defense device is deployed at a branch location with three egress interfaces. The device is configured for Direct Internet Access using Policy Based Routing.

In the figure below, the internal client or branch workstation is labeled **WKST BR** and the branch threat defense is labeled **NGFWBR1**. The ingress interface of **NGFWBR1** is named **inside** and the egress interfaces are named **outside**, **outside2**, and **outside3** respectively.

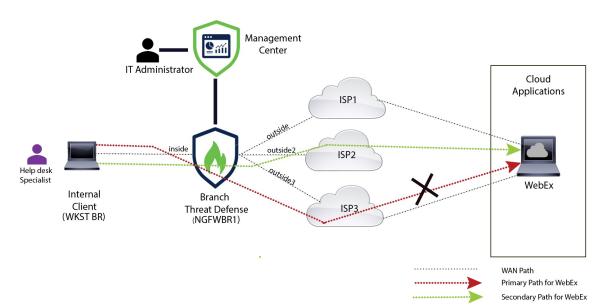
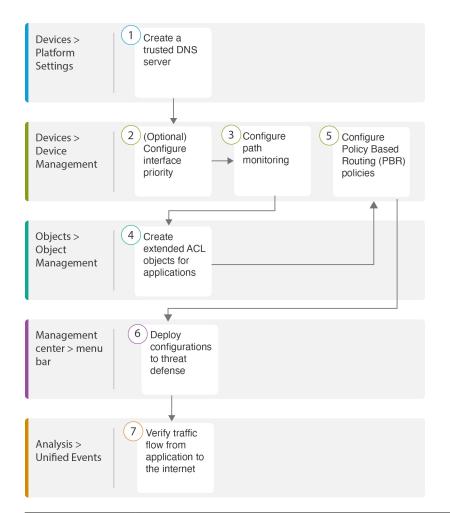


Figure 3: Direct Internet Access Topology (With Path Monitoring)

The **outside2**, and **outside3** egress interfaces are enabled with path monitoring. The PBR policy for WebEx is configured so that traffic is routed to the egress interface with minimal packet loss.

In this scenario, to validate path monitoring, packet loss can be induced by restricting outbound traffic that is sourced from the **outside3** interface going to internet either through an access control list on the upstream device or by shutting down the **outside3** interface for Secure Firewall Threat Defense from Firewall Management Center.



Note Shutting down an interface is network intrusive and must not be tried in a production network.

As a result of packet loss, the link that is associated with the **outside3** interface goes down. Collaboration application traffic is forwarded through the **outside2** interface instead of the **outside3** interface.

End-to-End Procedure for Configuring DIA With Path Monitoring

The following flowchart illustrates the workflow for configuring DIA with path monitoring in Secure Firewall Management Center.

Step	Description
1	(<i>Prerequisite</i>) Configure a Trusted DNS server. See Configure a Trusted DNS Server, on page 40.
2	[<i>Prerequisite (Optional)</i>] Configure interface priority. See Configure Interface Priority, on page 41.
3	Configure path monitoring. See Configure Path Monitoring Settings, on page 42.
4	Configure an extended ACL object for the application. See Configure an Extended ACL Object for WebEx, on page 43.
5	Configure a PBR policy for the application. See Configure a Policy Based Routing Policy With Path Monitoring for Webex, on page 45.
6	Deploy the configuration on threat defense. See Deploy Configuration, on page 46.
7	Verify WebEx traffic flow. See Verify Application Traffic Flow, on page 47.

Configure a Trusted DNS Server

Application detection in Direct Internet Access feature relies on DNS snooping to map the application domains to IPs in order to detect the application or a group of applications. To ensure that DNS requests are not resolved by rogue DNS servers and are indeed locked to desired DNS servers, Cisco Secure Firewall Management Center allows you to configure Trusted DNS Servers for Cisco Secure Firewall Threat Defense. Thus, the firewall only snoops the traffic that goes to trusted DNS servers. Apart from configuring the trusted DNS servers, you can include the already configured servers in DNS server group, DHCP pool, DHCP relay, and DHCP client as trusted DNS servers.

You can configure trusted DNS services for DNS snooping using the Trusted DNS Servers tab.

Note For an application-based PBR, you must configure trusted DNS servers. You must also ensure that the DNS traffic passes through threat defense in a clear-text format (encrypted DNS is not supported) so that domains can be resolved to detect applications.

Before you begin

- Ensure you have created one or more DNS server groups. For more information, see Creating DNS Server Group Objects.
- Ensure you have created interface objects to connect to the DNS servers.
- Ensure that the managed device has appropriate static or dynamic routes to access the DNS servers.
- **Step 1** Choose **Devices** > **Platform Settings** and edit a threat defense policy.
- **Step 2** Click the **Edit** (*I*) icon.
- Step 3 Click DNS.
- **Step 4** To configure the trusted DNS servers, click the **Trusted DNS Servers** tab.
- **Step 5** To choose **DNS_Server** from the existing host objects, under **Available Host Objects**, search for it using the search field, and click **Add** to include it to the **Selected DNS Servers** list.

Note DNS_Server is the DNS server configured in this example.

- **Step 6** Click **Save**. The added DNS server is displayed in the **Trusted DNS Servers** page.
- **Step 7** Click **Policy Assignments** to ensure **NGFWBR1** is already in the **Selected Devices** list.
- **Step 8** Click **OK** to confirm the changes.
- **Step 9** Click **Save** to write the changes for platform settings.

Configure Interface Priority

Cisco Secure Firewall Threat Defense uses interface priority to determine the optimal internet path. Priority ranges from 0 to 65535, and determines the preference of a particular ISP when sending the traffic out to the internet. The traffic is forwarded based on the priority of the interfaces. Traffic is routed to the interface with the least priority value first. When an interface is not available, traffic is forwarded to the interface with the next lowest priority value. For example, let us assume that outside2 and outside3 are configured with priority values 10 and 20 respectively. The traffic is forwarded to outside2. If outside2 becomes unavailable, the traffic is then forwarded to outside3.

Step 1 Choose Devices > Device Management	t, and edit the threat defense device (NGFWBR1)
---	---

- **Step 2** Click the **Routing** tab on the interface view of NGFWBR1.
- Step 3 Click Policy Based Routing.
- Step 4 Click Configure Interface Priority.
- **Step 5** In the dialog box, provide the priority number against the interfaces.

When the priority value is the same for all the interfaces, the traffic is balanced among the interfaces.

Step 6 Click Save.

Create an ECMP Zone

Step 1	Choose Devices > Device Management , and edit the threat defense device (NGFWBR1).
Step 2	Click the Routing tab on the interface view of NGFWBR1.
Step 3	Click ECMP.
Step 4	Click Add.
Step 5	In the Add ECMP box, enter a name, ECMP-WAN for the ECMP zone.
Step 6	To associate interfaces, select the interface under the Available Interfaces box, and then click Add.
Step 7	Click OK.
	The ECMP page now displays the newly created ECMP zone.
Step 8	Click Save.

Configure an Equal Cost Static Route

You can assign interfaces of a virtual router, both global and user-defined, to an ECMP zone for the device.

Before you begin

- To configure an equal cost static route for an interface, ensure to associate it with an ECMP zone. See Create an ECMP Zone, on page 41.
- You cannot define a static route for interfaces with same destination and metric without associating the interfaces with an ECMP zone.
- **Step 1** From the **Devices** > **Device Management** page and edit the threat defense device (**NGFWBR1**).
- **Step 2** Click the **Routing** tab.
- **Step 3** From the drop-down list, select the virtual router whose interfaces are associated with an ECMP zone.
- **Step 4** To configure the equal cost static route for the interfaces, click **Static Route**.
- **Step 5** Click **Add Route** to add a new route, or click **Edit** (*I*) for an existing route.
- **Step 6** From the **Interface** drop-down, select the interface belonging to the virtual router and an ECMP zone.
- **Step 7** Select the destination network from the **Available Networks** box and click **Add**.
- **Step 8** Enter a gateway for the network.
- **Step 9** Enter a metric value. It can be a number that ranges between 1 and 254.
- **Step 10** To save the settings, click **Save**.
- **Step 11** To configure equal cost static routing, repeat the steps to configure the static route for another interface in the same ECMP zone with the same destination network and metric value. Remember to provide a different gateway.

Configure Path Monitoring Settings

The PBR policy relies on flexible metrics, such as round trip time (RTT), jitter, mean opinion score (MOS), and packet loss of the interfaces to identify the best routing path for its traffic. Path monitoring collects these metrics on the specified interfaces. On the **Interfaces** page, you can configure interfaces with settings for path monitoring to send the probes for metrics collection.

- **Step 1** Select **Devices** > **Device Management** and click **Edit** (\checkmark) for the threat defense device (**NGFWBR1**).
- **Step 2** Click Edit (\checkmark) for the interface you want to edit (outside).
- **Step 3** Click the **Path Monitoring** tab.
- **Step 4** Check the **Enable IP based Path Monitoring** check box.
- **Step 5** From the **Monitoring Type** drop-down list, select the relevant option. In this example, we use the default value, **Next-hop** of default route out of interface (Auto).
- Step 6 Click Ok.
- **Step 7** Repeat Steps 2 through 8 for the **outside2** and **outside3** interfaces.
- Step 8 Click Save.

Configure an Extended ACL Object for YouTube

The access list is configured for YouTube traffic to be steered towards the internet from different egress interfaces with the help of policy based routing.

- **Step 1** Select **Objects** > **Object Management** and choose **Access Lists** > **Extended** from the table of contents.
- Step 2 Click Add Extended Access List to create an extended access list for social media traffic.
- Step 3 In the Extended ACL Object dialog box, enter a name (DIA_SocialMedia) for the object.
- **Step 4** Click Add to create a new Extended Access List.
- **Step 5** Configure the following access control properties:
 - a. Select the Action to Allow (match) the traffic criteria.
 - b. Click the Application tab and search for YouTube in the Available Applications list.
 - c. Select YouTube and click Add to Rule.
 - d. Click Add to add the entry to the object.
 - e. Click Save.

Configure an Extended ACL Object for WebEx

The access list is configured for WebEx traffic to be steered towards the internet from different egress interfaces with the help of policy based routing.

- **Step 1** Select **Objects** > **Object Management** and choose **Access Lists** > **Extended** from the table of contents.
- Step 2 Click Add Extended Access List to create an extended access list for collaboration traffic.
- **Step 3** In the Extended ACL Object dialog box, enter a name (**DIA_Collaboration**) for the object.
- **Step 4** Click Add to create a new Extended Access List.
- **Step 5** Configure the following access control properties:
 - a. Select the Action to Allow (match) the traffic criteria.
 - b. Click the Application tab and search for Webex in the Available Applications list.
 - c. Select Webex and click Add to Rule.
 - d. Click Add to add the entry to the object.
 - e. Click Save.

Configure a Policy Based Routing Policy for YouTube

You can configure the PBR policy in the Policy Based Routing page by specifying the ingress interfaces, match criteria (Extended Access Control List), and egress interfaces to route YouTube traffic.

The YouTube traffic is load balanced between the **outside** and **outside2** interfaces and falls back to the **outside3** if both the links fail.

- **Step 1** Select **Devices > Device Management**, and edit the threat defense device (**NGFWBR1**).
- **Step 2** Click the **Routing** tab on the interface view of NGFWBR1.
- Step 3 Click Policy Based Routing.

The Policy Based Routing page displays the configured policy. The grid displays the list of ingress interfaces and a combination of the policy-based route access list, and egress interfaces.

- **Step 4** To configure the policy, click **Add**.
- **Step 5** In the **Add Policy Based Route** dialog box, select **inside** from the **Ingress Interface** drop-down list.

Note Only interfaces that have logical names and that belong to a global virtual router are listed in the drop-down.

- **Step 6** To specify the match criteria and the forward action in the policy, click Add.
- **Step 7** In the Add Forwarding Actions dialog box, do the following:
 - a) From the Match ACL drop-down, choose DIA_SocialMedia.
 - b) To select the configured interfaces, choose Egress Interfaces from the Send To drop-down list.
 - c) Choose By Priority from the Interface Ordering drop-down list.

Traffic is routed to the interface with the least priority value first. When the interface is not available, the traffic is then forwarded to the interface with the next lowest priority value. For example, let us assume that outside2 and outside3 are configured with priority values 10 and 20 respectively. The traffic is forwarded to outside2. If outside2 becomes unavailable, the traffic is then forwarded to outside3.

d) In the Available Interfaces box, all the interfaces with their priority values are listed. Click the Add (+) icon to add the selected egress interface.

For our scenario:

- 1. From Available Interfaces, click the Add (+) icon adjacent to outside and outside2 interfaces to move it to Selected Egress Interfaces.
- 2. Then click the Add (+) icon adjacent to outside3 interface to move it to Selected Egress Interfaces.
- e) Click Save to write the changes for the match criteria.
- f) Review the configuration and click Save to write all the configuration changes for policy based routing.
- Step 8 Click Save.

Configure a Policy Based Routing Policy for WebEx

You can configure the PBR policy in the Policy Based Routing page by specifying the ingress interfaces, match criteria (Extended Access Control List), and egress interfaces to route WebEx application traffic.

The WebEx application traffic is routed to outside3 and falls back to the outside2 if the primary link fails.

- Step 1 Choose Devices > Device Management, and edit the threat defense device (NGFWBR1).
- **Step 2** Click the **Routing** tab on the interface view of NGFWBR1.
- Step 3 Click Policy Based Routing.

The Policy Based Routing page displays the configured policy. The grid displays the list of ingress interfaces and a combination of the policy-based route access list, and egress interfaces.

- **Step 4** To edit the policy, click the **Edit** (*I*) icon.
- **Step 5** To specify the match criteria and the forward action in the policy, click Add.
- **Step 6** In the Add Forwarding Actions dialog box, do the following:
 - a) From the Match ACL drop-down, choose DIA_Collaboration.
 - b) To select the configured interfaces, choose Egress Interfaces from the Send To drop-down list.
 - c) Choose Order from the Interface Ordering drop-down list.

The traffic is forwarded based on the sequence of the interfaces specified here.

d) In the Available Interfaces box, all the interfaces with their priority values are listed. Click the Add (+) icon to add the selected egress interface.

For our scenario:

- 1. From Available Interfaces, click the Add (+) icon adjacent to outside3 interface to move it to Selected Egress Interfaces.
- 2. Then click the Add (+) icon adjacent to outside2 interface to move it to Selected Egress Interfaces.
- e) Click Save to write the changes for the match criteria.
- f) Review the configuration and click Save to write all the configuration changes for policy based routing.

Step 7 Click Save.

Configure a Policy Based Routing Policy With Path Monitoring for Webex

You can configure the PBR policy with path monitoring in the Policy Based Routing page. In this example, WebEx application traffic is forwarded to the interface that has the least traffic loss.

Before you begin

To use the path monitoring metrics for configuring the traffic forwarding priority over egress interfaces, you must configure the path monitoring settings for the interfaces. See Configure Path Monitoring Settings, on page 42.

- **Step 1** Choose **Devices** > **Device Management**, and edit the threat defense device (**NGFWBR1**).
- **Step 2** Click the **Routing** tab on the interface view of NGFWBR1.
- Step 3 Click Policy Based Routing.

The Policy Based Routing page displays the configured policy. The grid displays the list of ingress interfaces and a combination of the policy-based route access list, and egress interfaces.

Step 4 To configure the policy, click **Add**.

Step 5 In the Add Policy Based Route dialog box, select inside from the Ingress Interface drop-down list.

Note Only interfaces that have logical names and that belong to a global virtual router are listed in the drop-down.

- **Step 6** To specify the match criteria and the forward action in the policy, click Add.
- **Step 7** In the **Add Forwarding Actions** dialog box, do the following:
 - a) From the Match ACL drop-down, choose DIA_Collaboration.
 - b) To select the configured interfaces, choose Egress Interfaces from the Send To drop-down list.
 - c) Choose Minimal Packet Loss from the Interface Ordering drop-down list.

The traffic is forwarded to the interface that has the minimal packet loss.

d) In the Available Interfaces box, all the interfaces are listed. From the list of interfaces, click the Add (+)icon to add the selected egress interface.

For our scenario:

- 1. From Available Interfaces, click the Add (+) icon adjacent to outside3 interface to move it to Selected Egress Interfaces.
- 2. Then click the Add (+) icon adjacent to outside2 interface to move it to Selected Egress Interfaces.
- e) Click **Save** to write the changes for the match criteria.
- f) Review the configuration and click Save to write all the configuration changes for policy based routing.

Step 8 Click Save.

Deploy Configuration

After you complete all the configurations, deploy them to the managed device.

- **Step 1** On the management center menu bar, click **Deploy**.
- **Step 2** Check the checkbox adjacent to NGFWBR1 on which you want to deploy configuration changes.

Step 3 Click Deploy.

Step 4 If the system identifies errors or warnings in the changes to be deployed, it displays them in the **Validation Errors** or **Validation Warnings** window. To view complete details, click the Validation Errors or Validation Warnings link.

You have the following choices:

- Proceed with Deploy—Continue deploying without resolving warning conditions. You cannot proceed if the system identifies errors.
- Close—Exit without deploying. Resolve the error and warning conditions, and attempt to deploy the configuration again.

Verify Application Traffic Flow

- **Step 1** In the management center interface, select **Analysis** > **Unified Events**.
- **Step 2** Customize the columns using the column picker by selecting the **Web Application** and **Egress Interface** and click **Apply**.
- **Step 3** Reorder the columns for ease of verification.
- **Step 4** Within the **Web Application** filter, enter the name **WebEx** and click **Apply**.
- Step 5 Within the Web Application filter, enter the name YouTube and click Apply.
- **Step 6** Initiate traffic for the **YouTube** and **WebEx** applications on a host behind the Secure Firewall. In our scenario, launch the Google Chrome browser and navigate to https://youtube.com and https://webex.com in different tabs on the branch workstation **WKST BR1**.
- **Step 7** In the management center, verify the traffic flow for both the applications.
 - a. For DIA:
 - WebEx application traffic is sent out through the outside3 interface as per the configuration as seen in the figure below.

	Firewall Managemer	nt Center	Overview	Analysis	Policies	Devices	Objects	Integration	Deploy	Q	0	¢
٩	Web Application WebEx	× × Select.										×
0	Showing all 9 events (🖕 9)	+					10 2023-0	3-29 11:57:54 EDT	→ 2023-03-3	29 12:5	7:54 E	DT 1h
	Time	Event Type		Web Applica	ation	Ingress Inte	erface	Egress Interfa	ice	D	evice	
>	2023-03-29 12:54:18	\$ Connectio	n	WebEx		inside		outside3		N	GFWE	R1
>	2023-03-29 12:54:18	\$ Connectio	n	WebEx		inside		outside3		N	GFWE	R1
>	2023-03-29 12:54:18	\$ Connectio	n	WebEx		inside		outside3		N	GFWE	R1
>	2023-03-29 12:54:18	\$ Connectio	n	WebEx		inside		outside3		Ν	GFWE	R1
>	2023-03-29 12:54:18	🔄 Connectio	n	WebEx		inside		outside3		N	GFWE	R1

• YouTube application traffic is load balanced between the outside and outside2 interfaces as per the configuration as seen in the figure below.

	Firewall Manage Analysis / Unified Event		Overview	Analysis	Policies	Devices	Objects	Integration	Deploy	Q	0	¢ (🗿 admin 🕇	cise
٩	Web Application Youtube	× × Select											× Ap	pply
Ø	Showing all 2,285 events (🗟 1,832 🗋 453) 🛓						2023-	03-15 05:29	:35 EDT	r → 202	23-03-2	9 05:29:35 EE	DT 2w
	Time	Event Type		W	eb Application	h	gress Interface	Egress	Interface		D	evice		
>	2023-03-29 03:43:50	S Connection		Yo	uTube	ir	nside	outsid	e2		Ν	IGFWB	R1	
>	2023-03-29 03:43:30	S Connection		Yo	uTube	ir	nside	outsid	e2		Ν	IGFWB	R1	
>	2023-03-29 03:43:10	S Connection		Yo	uTube	ir	nside	outsid	е		Ν	IGFWB	R1	
>	2023-03-29 03:42:50	S Connection		Yo	uTube	ir	nside	outsid	е		N	IGFWB	R1	
>	2023-03-29 03:42:50	S Connection		Yo	uTube	ir	nside	outsid	e2		Ν	IGFWB	R1	
>	2023-03-29 03:42:40	S Connection		Yo	uTube	ir	nside	outsid	е		Ν	IGFWB	R1	

b. For DIA with path monitoring:

WebEx application traffic is sent out through the **outside2** interface as there is packet loss on the **outside3** interface as seen in the figure below.

	Firewall Managemen Unified Events	t Center	Overview	Analysis	Policies	Devices	Objects	Integration	Deploy	Q 🥑	₽	🕜 admin 🔻
۹	Web Application WebEx	× × Select									×	Refresh
\odot	Showing all 2 events (🖕 2)	+					10 2023-03	-29 11:31:45 EDT	→ 2023-03-2	29 12:31:4 5	EDT 1	Go Live
	Time	Event Type			Web Applica	ation	Ingress Inter	face	Egress Inter	face		Device
>	2023-03-29 12:29:08		ı		WebEx		inside		outside2			NGFWBR1
>	2023-03-29 12:28:30	Sconnection	ı		WebEx		inside		outside2			NGFWBR1

Monitor and Troubleshoot Policy Based Routing

After the deployment, use the following CLI to monitor and troubleshoot issues related to policy based routing on Secure Firewall Threat Defense.

How	CLI Command
To log in to Secure Firewall Threat Defense Lina CLI	system support diagnostic-cli
To view the pre-defined network service objects that are pushed from the management center to threat defense during the deployment	 show object network-service show object network-service detail
To view a particular network service object (NSG) related to configured applications	 show object id YouTube show object id WebEx
To verify the network service group (NSG) pushed to Secure Firewall	show run object-group network-service

How	CLI Command
To view the route-map associated to policy based routing	show run route-map
To verify the interface configuration details like interface name and interface priority	show run interface
To verify the trusted DNS server configuration	show dns
To determine the path taken the traffic	debug policy-route
	Important Run the debug command with caution, especially in production environments as it may have verbose output based on the traffic.
To stop debugging the route	undebug all

To view the pre-defined network service objects, use the following command:

```
ngfwbrl# show object network-service
object network-service "ADrive" dynamic
description Online file storage and backup.
```

```
app-id 17
domain adrive.com (bid=0) ip (hitcnt=0)
object network-service "Amazon" dynamic
description Online retailer of books and most other goods.
app-id 24
domain amazon.com (bid=0) ip (hitcnt=0)
domain amazon.jobs (bid=0) ip (hitcnt=0)
domain amazon.in (bid=0) ip (hitcnt=0)
output snipped
object network-service "Logitech" dynamic
description Company develops Computer peripherals and accessories.
app-id 4671
domain logitech.com (bid=0) ip (hitcnt=0)
object network-service "Lenovo" dynamic
description Company manufactures/markets computers, software and related services.
app-id 4672
domain lenovo.com (bid=0) ip (hitcnt=0)
domain lenovo.com.cn (bid=0) ip (hitcnt=0)
domain lenovomm.com (bid=0) ip (hitcnt=0)
ngfwbr1#
```

To view specific network service objects such as YouTube and WebEx, use the following command:

```
ngfwbrl# show object id YouTube
object network-service "YouTube" dynamic
description A video-sharing website on which users can upload, share, and view videos.
app-id 929
domain youtubei.googleapis.com (bid=592729) ip (hitcnt=0)
domain yt3.ggpht.com (bid=709809) ip (hitcnt=102)
domain youtube.com (bid=830871) ip (hitcnt=101)
domain ytimg.com (bid=1035543) ip (hitcnt=93)
```

```
domain googlevideo.com (bid=1148165) ip (hitcnt=466)
domain youtu.be (bid=1247981) ip (hitcnt=0)
ngfwbrl# show object id WebEx
object network-service "WebEx" dynamic
description Cisco's online meeting and web conferencing application.
app-id 905
domain files-prod-us-east-2.webexcontent.com (bid=182837) ip (hitcnt=0)
domain webex.com (bid=290507) ip (hitcnt=30)
domain avatar-prod-us-east-2.webexcontent.com (bid=452667) ip (hitcnt=0)
ngfwbrl#
```

To verify the NSG is pushed to Threat Defense, use the following command:

```
ngfwbr1# show run object-group network-service
object-group network-service FMC_NSG_292057776181
network-service-member "WebEx"
object-group network-service FMC_NSG_292057776200
network-service-member "YouTube"
ngfwbr1#
```

To verify the route map associated with PBR, use the following command:

```
ngfwbr1# show run route-map
!
route-map FMC_GENERATED_PBR_1678091359817 permit 5
match ip address DIA_Collaboration
set interface outside3 outside2
!
route-map FMC_GENERATED_PBR_1678091359817 permit 10
match ip address DIA_SocialMedia
set adaptive-interface cost outside outside2 outside3
!
ngfwbr1#
```

To verify the interface configuration and interface priority details, use the following command:

```
ngfwbr1# show run interface
interface GigabitEthernet0/0
nameif outside
cts manual
 propagate sgt preserve-untag
 policy static sqt disabled trusted
 security-level 0
 zone-member ECMP-WAN
ip address 198.18.128.81 255.255.192.0
policy-route cost 10
interface GigabitEthernet0/1
nameif inside
cts manual
 propagate sgt preserve-untag
 policy static sgt disabled trusted
security-level 0
ip address 198.19.11.4 255.255.255.0
policy-route route-map FMC GENERATED PBR 1678091359817
interface GigabitEthernet0/2
shutdown
no nameif
no security-level
no ip address
!
interface GigabitEthernet0/3
```

```
nameif outside2
 cts manual
 propagate sgt preserve-untag
 policy static sgt disabled trusted
 security-level 0
 zone-member ECMP-WAN
 ip address 198.19.40.4 255.255.255.0
policy-route cost 10
interface GigabitEthernet0/4
nameif outside3
 cts manual
 propagate sgt preserve-untag
 policy static sgt disabled trusted
security-level 0
ip address 198.19.30.4 255.255.255.0
policy-route cost 20
interface Management0/0
management-only
nameif diagnostic
cts manual
 propagate sgt preserve-untag
 policy static sgt disabled trusted
security-level 0
no ip address
ngfwbr1#
```

To verify the trusted DNS configuration, use the following command:

```
ngfwbr1# show dns
```

```
DNS Trusted Source enabled for DHCP Server Configured

DNS Trusted Source enabled for DHCP Client Learned

DNS Trusted Source enabled for DHCP Relay Learned

DNS Trusted Source enabled for DNS Server Configured

DNS Trusted Source not enabled for Trust-any

DNS Trusted Source: Type: IPs : Interface : Idle/Timeout (sec)

DNS Server Configured: 198.19.10.100: <ifc-not-specified> : N/A

Trusted Source Configured: 198.19.10.100: <ifc-not-specified> : N/A

DNS snooping IP cache: 0 in use, 37 most used

Address Idle(sec) Timeout(sec) Hit-count Branch(es)

ngfwbrl#
```

To debug policy route, use the following command:

The debug example above is for WebEx traffic. Note that the traffic is routed through the outside3 interface before PBR changes the route path to the outside2 interface.

To stop the debug process, use the following command:

ngfwbr1# undebug all

Additional Resources

Resource	URL
Secure Firewall Threat Defense Release Notes	https://www.cisco.com/c/en/us/support/security/ firepower-ngfw/products-release-notes-list.html
All New and Deprecated Features	http://www.cisco.com/go/whatsnew-fmc
Secure Firewall on Cisco.com	http://www.cisco.com/go/firewall
Secure Firewall on YouTube	https://www.youtube.com/cisco-netsec
Secure Firewall Essentials	https://secure.cisco.com/secure-firewall

CHAPTER 4

Secure Internet Traffic Using Umbrella Auto Tunnel

In this chapter, we delve into the practical application of the Umbrella auto tunnel. The use case details the scenario, network topology, best practices, and prerequisites. It also provides a comprehensive end-to-end procedure for seamless implementation.

- Cisco Umbrella Auto Tunnel, on page 53
- Benefits, on page 54
- Is This Use Case For You?, on page 55
- Scenario, on page 55
- Network Topology, on page 55
- Best Practices for SASE Umbrella Tunnels, on page 57
- Prerequisites for Configuring Umbrella SASE Tunnels, on page 57
- End-to-end Procedure for Configuring Umbrella Auto Tunnel, on page 58
- Configure a SASE Tunnel for Umbrella, on page 59
- Configure a Static Route, on page 63
- Configure an Extended ACL for DNS and Web Traffic, on page 63
- Configure a PBR Policy for DNS and Web Traffic, on page 64
- Deploy Configuration, on page 65
- Verify SASE Umbrella Tunnel Deployment, on page 65
- Troubleshoot Umbrella Auto Tunnels, on page 70
- Additional Resources, on page 71

Cisco Umbrella Auto Tunnel

Domain Name System (DNS) is an internet protocol often used in attacks. 90% of malware uses DNS (Source: Cisco Security Research Report). However, many organizations do not monitor their DNS or use DNS-focused security.

Figure 4: Cisco Umbrella

Cisco Umbrella is a cloud based secure internet gateway platform that provides multiple levels of defense against internet based threats. Umbrella integrates DNS layer security, Cloud Access Security Border (CASB) functionality, cloud-delivered firewall, and secure web gateway to deliver highly scalable security regardless of branch resources. Internet bound traffic can be sent securely automatically from the branch to the nearest Umbrella point of presence for inspection prior to being allowed or denied access to the internet.

From Release 7.3, the Secure Firewall Management Center supports Auto Tunnel configuration for Umbrella Secure Internet Gateway (SIG) integration that enables a network device to forward DNS and web traffic to Umbrella SIG for inspection and filtering through the SIG tunnel.

DNS and web policies defined within Cisco Umbrella can be applied to connections through Secure Firewall This enables you to apply and validate requests based on their domain names.

The management center provides a new simplified intuitive wizard-based interface to build this tunnel thus minimizing the configuration steps on Firewall Threat Defense and Cisco Umbrella.

The management center leverages uses Umbrella APIs to configure the network tunnels using parameters in the Cisco Umbrella Connection configuration. Then management center fetches the list of Umbrella datacenters and displays them in the user interface for selection as a hub in the SASE Topology. The network tunnel is deployed on the threat defense device and automatically created on Cisco Umbrella after the deployment is complete in the management center. This helps to apply uniform DNS and web policies for on premise users and roaming users.

Benefits

Benefits of securing internet traffic using Cisco Umbrella include :

- Securing users and applications at the DNS layer before any connections are established thus reducing consequent packet processing resulting in faster protection.
- Uniform DNS control policies are applied for hybrid users (on premise users and roaming users).
- Umbrella blocks web requests as well as requests to malware, ransomware, phishing attempts, and botnets even before a connection is established thereby stopping threats before they hit your network or endpoints. This results in a dramatic reduction in the number of infections and alerts you need to remediate.
- Eliminates the need for advanced firewall features such as URL filtering and TLS decryption.
- Auto tunnel setup requires minimal configuration in the management center.

• Automatic network tunnel configuration on the Umbrella dashboard.

Is This Use Case For You?

The intended audience for the Umbrella SASE Auto Tunnel Configuration is IT teams, network administrators, and security professionals who are responsible for managing and securing the network infrastructure of an organization. They are interested in exploring advanced solutions for secure remote access and simplifying the configuration and management of secure tunnels. The Umbrella SASE Auto Tunnel Configuration description would appeal to those seeking to enhance network security, streamline remote connectivity, and improve the overall user experience for their organization's remote workforce.

Scenario

Alice, the IT administrator is responsible for managing the organization's IT infrastructure and ensuring its security. Alice is aware of the growing threats in cyberspace and wants to implement robust security measures to prevent any potential cyber attacks such as malware, ransomware, and phishing.

Sally is an employee who works in the branch office and uses the organization's network to access the internet for work-related activities.

What is at risk?

Without proper security measures, employees may unknowingly access malicious websites and download harmful software, which can compromise the organization's network security and data privacy.

How does SIG integration solve the problem?

Alice implemented a two-layer security approach using a branch firewall and Cisco Umbrella. The firewall provided inbound security for the network from web and non-web based attacks. Umbrella provided outbound security by blocking malicious domains, IPs, and URLs at the DNS and web layers.

Sally notices that some websites are now being blocked by the firewall and Umbrella.

Both on-prem and remote users are subject to the same DNS and web policy defined within the Umbrella dashboard. As a result of this implementation, the organization's network is now more secure and protected against potential cyber attacks.

Network Topology

In this topology, a threat defense device is deployed at a branch location. In the figure below, the internal client or branch workstation is labelled WKST BR and the branch threat defense is labelled NGFWBR1. A SIG auto tunnel is configured between NGFWBR1 and Cisco Umbrella.

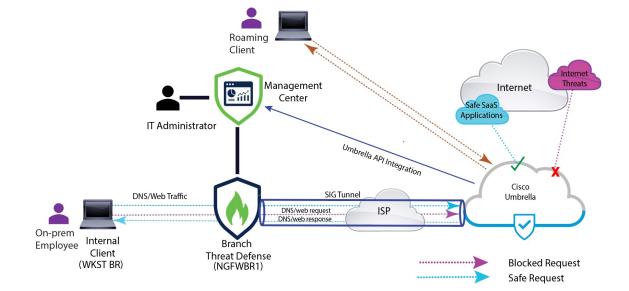


Figure 5: Network Topology for Umbrella Auto Tunnel Configuration

All DNS and web traffic is sent through the SIG tunnel to Cisco Umbrella to be validated and allowed or blocked based on the Umbrella DNS and web policy. This provides two layers of protection, one locally enforced by the Cisco Secure Threat Defense and the other cloud-delivered by Cisco Umbrella.

In the case of DNS traffic:

- 1. If Cisco Umbrella detects a DNS request for a domain that has not been classified, it will query the domain's reputation.
- 2. If the domain is classified as malicious, the DNS request is blocked, and the end user is prevented from accessing the website.
- **3.** If the domain is classified as safe, the DNS request is resolved, and the website is accessible to the end user.

Best Practices for SASE Umbrella Tunnels

- Ensure that the base license is enabled with export-controlled features in the management center.
- We recommend that the threat defense interfaces facing the internet be named or prefixed with **outside**.
- Do not edit or delete the SASE topology if the deployment to Umbrella is running for that topology.
- To configure backup Umbrella DC, replicate the same topology with same threat defense endpoints using backup Umbrella DC.
- To configure backup interface on the threat defense endpoint, replicate the same topology with the same Umbrella DC with the same threat defense endpoint using VTI on the backup interface.

Prerequisites for Configuring Umbrella SASE Tunnels

Complete the Threat Defense Initial Configuration Using the Device Manager

- Assign Licenses to Devices
- Add routes for internet access. See Add a Static Route.
- Configure NAT for Threat Defense
- Creating a Basic Access Control Policy
- You must have a Cisco Umbrella Secure Internet Gateway (SIG) Essentials subscription or a free SIG trial version.
- You must enable your Smart License account with the export-controlled features to deploy tunnels on Umbrella from the management center.
- Log into Umbrella at http://login.umbrella.com, and obtain the required information to establish a connection to Cisco Umbrella. Ensure the management center can reach management.api.umbrella.com.
- You must register your Cisco Umbrella organisation with the management center and configure the management key and the management secret in the Cisco Umbrella Connection advanced settings. This fetches the datacenter details from the Cisco Umbrella cloud. You must also configure the Organization ID, Network Device Key, Network Device Secret, and the Legacy Network Device Token in the Cisco Umbrella Connection general settings.

For more information, see:

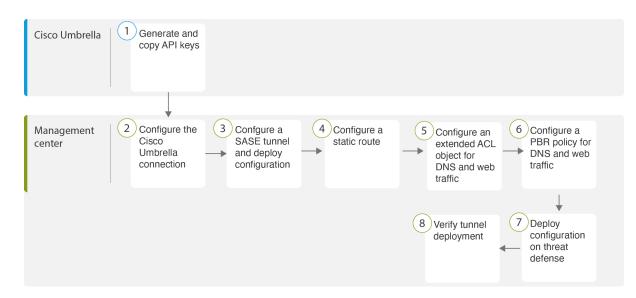
- Configure Cisco Umbrella Connection Settings
- Map Management Center Umbrella Parameters and Cisco Umbrella API Keys
- Ensure that Umbrella data center is reachable from the threat defense.
- Ensure the threat defense supports route-based VPN with local tunnel ID support (Version 7.1.0 and later). You can deploy a SASE tunnel with local tunnel ID support in management center version 7.3.0 and later.

Best Practices for SASE Umbrella Tunnels

- Ensure that the base license is enabled with export-controlled features in the management center.
- We recommend that the threat defense interfaces facing the internet be named or prefixed with **outside**.
- Do not edit or delete the SASE topology if the deployment to Umbrella is running for that topology.
- To configure backup Umbrella DC, replicate the same topology with same threat defense endpoints using backup Umbrella DC.
- To configure backup interface on the threat defense endpoint, replicate the same topology with the same Umbrella DC with the same threat defense endpoint using VTI on the backup interface.

Prerequisites for Configuring Umbrella SASE Tunnels

- Complete the Threat Defense Initial Configuration Using the Device Manager
- Assign Licenses to Devices


- Add routes for internet access. See Add a Static Route.
- Configure NAT for Threat Defense
- · Creating a Basic Access Control Policy
- You must have a Cisco Umbrella Secure Internet Gateway (SIG) Essentials subscription or a free SIG trial version.
- You must enable your Smart License account with the export-controlled features to deploy tunnels on Umbrella from the management center.
- Log into Umbrella at http://login.umbrella.com, and obtain the required information to establish a connection to Cisco Umbrella. Ensure the management center can reach management.api.umbrella.com.
- You must register your Cisco Umbrella organisation with the management center and configure the
 management key and the management secret in the Cisco Umbrella Connection advanced settings. This
 fetches the datacenter details from the Cisco Umbrella cloud. You must also configure the Organization
 ID, Network Device Key, Network Device Secret, and the Legacy Network Device Token in the Cisco
 Umbrella Connection general settings.

For more information, see:

- Configure Cisco Umbrella Connection Settings
- Map Management Center Umbrella Parameters and Cisco Umbrella API Keys
- Ensure that Umbrella data center is reachable from the threat defense.
- Ensure the threat defense supports route-based VPN with local tunnel ID support (Version 7.1.0 and later). You can deploy a SASE tunnel with local tunnel ID support in management center version 7.3.0 and later.

End-to-end Procedure for Configuring Umbrella Auto Tunnel

The following flowchart illustrates the workflow for configuring the SASE tunnel in Secure Firewall Management Center.

Step	Description
1	(<i>Prerequisite</i>) Generate and copy the API keys in Cisco Umbrella. See Map Management Center Umbrella Parameters and Cisco Umbrella API Keys.
2	(<i>Prerequisite</i>) Configure the Cisco Umbrella connection. See Configure Cisco Umbrella Connection Settings.
3	Create the SASE tunnel and deploy the configuration on threat defense. See Configure a SASE Tunnel for Umbrella, on page 59.
4	Configure a static route. See Configure a Static Route, on page 63.
5	Configure an extended ACL object for DNS and web traffic. See Configure an Extended ACL for DNS and Web Traffic, on page 63
6	Configure a PBR policy for DNS and web traffic. See Configure a PBR Policy for DNS and Web Traffic , on page 64
7	Deploy configuration on threat defense. See Deploy Configuration, on page 20.
8	Verify tunnel deployment. See Verify SASE Umbrella Tunnel Deployment, on page 65.

Configure a SASE Tunnel for Umbrella

Before you begin

Ensure that you review Prerequisites for Configuring Umbrella SASE Tunnels, on page 56 and Best Practices for SASE Umbrella Tunnels, on page 56.

- **Step 1** Log in to the management center, choose **Devices > VPN > Site To Site**.
- **Step 2** Click + **SASE Topology** to open the SASE topology wizard.
- Step 3 Enter a unique Topology Name For our example, enter VPN-MumbaiUmbrella.
- **Step 4 Pre-shared Key**: This key is auto-generated according to the Umbrella PSK requirements.

The device and Umbrella share this secret key, and IKEv2 uses it for authentication. You can override the auto-generated key. If you want to configure this key, it must be between 16 and 64 characters in length, include at least one uppercase letter, one lowercase letter, one numeral, and have no special characters. Each topology must have a unique pre-shared key. If a topology has multiple tunnels, all the tunnels have the same pre-shared key.

- **Step 5** Choose a data center from the **Umbrella Data center** drop-down list. The Umbrella data centers are auto populated with the region and IP addresses.
- **Step 6** Click Add to add a threat defense node as an endpoint in the SASE topology.
 - a) Choose a threat defense device (NGFWBR1) from the Device drop-down list.
 - b) Choose a static VTI interface from the VPN Interface drop-down list.

To create a new static VTI interface (for example, **Outside_static_vti_1**), click +. The **Add Virtual Tunnel Interface** dialog box appears with the following pre-populated default configurations.

- Tunnel Type is set to Static by default.
- Name is <*tunnel_source interface logical name*>+ static_vti +<*tunnel ID*>. For example, Outside_static_vti_1.
- Tunnel is **Enabled** by default.
- Security zone is configured as **Outside** by default.
- Tunnel ID is auto-populated with an unique ID.
- Tunnel Source Interface is auto-populated with an interface with an 'outside' prefix.
- Note Ensure the tunnel source is set to GigabitEthernet0/0
- Note You can also set the Tunnel Source Interface to a different interface.
- IPsec tunnel mode is IPv4 by default.
- Unused IP address is picked from the 169.254.x.x/30 private IP address range. In our example, **169.254.2.1/30** is selected.
- Note When the /30 subnet is used, only two IP addresses are available. The first IP address is the auto tunnel VTI IP and the second IP address is used as the next hop IP while configuring the static route to the Umbrella DC. In our example, 169.254.2.1 is the VTI IP and 169.254.2.2 is used for the static route. See Configure a Static Route, on page 63.
- Click OK.

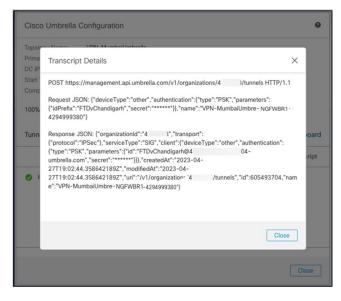
Choose outside_static_vti_1 from the VPN Interface drop-down list.

c) Enter a prefix for the local tunnel ID in the Local Tunnel ID field.

The prefix can have a minimum of eight characters and a maximum of 100 characters. Umbrella generates the complete tunnel ID (*sprefix*)@*sumbrella-generated-ID*-umbrella.com) after the management center deploys the tunnel on

Umbrella. The management center then retrieves and updates the complete tunnel ID and deploys it on the threat defense device. Each tunnel has a unique local tunnel ID.

- d) Click Save to add the endpoint device to the topology.
- **Step 7** Click **Next** to view the summary of the Umbrella SASE tunnel configuration.
 - Endpoints pane: Displays the summary of the configured threat defense endpoints.
 - Encryption Settings pane: Displays the encryption settings for the SASE tunnel.
- **Step 8** Check the **Deploy configuration on threat defense nodes** check box to trigger deployment of the network tunnels to the threat defense. This deployment only occurs after the tunnels are deployed on Umbrella. Local tunnel ID is required for the threat defense deployment.


Step 9 Click Save.

This action:

- a. Saves the SASE topology in the management center.
- b. Triggers deployment of the network tunnels for each threat defense endpoint to Umbrella.
- c. Triggers deployment of the network tunnels to the threat defense devices, if the option is enabled. This action commits and deploys all the updated configurations and policies, including non-VPN policies, since the last deployment on the device.
- d. Opens the **Cisco Umbrella Configuration** window and displays the status of the tunnel deployment on Umbrella.

CISCO OTIDIEIIA C	Configuration		0
	VPN-MumbaiUmbrella		
Primary Data Center:			
	146.112.117.8		
	Apr 27, 2023 7:02 PM		
Completion Time:	Apr 27, 2023 7:02 PM		
100%	1 Completed 0 Failure		
Tunnel Configuratio			Umbrella Dashboard
Device		Status	Transcript
Device			Tunsenpe
NGFWBR1		SUCCESS	E.
		SUCCESS	

To view the details of the deployment, click the **Transcript** button to view the transcript details such as the APIs, request payload, and the response received from Umbrella.

Click the Umbrella Dashboard link to view the Network Tunnels page in Umbrella.

Active Tunnels	Inactive Tunnels	Unestablis Tunnels <mark>0</mark>	shed	Unknown Tunnel Status O	Data Center Locations 1	
FILTERS Q Search	n tunnels by name					
Tunnel Name VPN-CLPOD8-U Secure Internet Access	Site Default Site	Data Center Location Los Angeles, California - US	Device Public IP 1	Tunnel Status	Last Status Update Jun 07, 2023 - 6:31 PM	
Tunnel Name VPN-MumbaiUmb Secure Internet Access	Site Default Site	Data Center Location Mumbai, Maharashtra - India	Device Public IP 1	Tunnel Status	Last Status Update Jul 21, 2023 - 12:51 PM	

What to do next

For the traffic intended to flow through the SASE tunnel, configure a PBR policy with a specific match criteria to send the traffic through the VTI.

Configure a Static Route

You must configure a static route from the auto tunnel to the Umbrella DC.

- **Step 1** From the **Devices** > **Device Management** page and edit the threat defense device (**NGFWBR1**).
- **Step 2** Click the **Routing** tab.
- Step 3 Click Static Route.
- **Step 4** Click **Add Route** to add a new route.
- **Step 5** Select **outside_static_vti_1** as the interface from the **Interface** drop-down list.
- **Step 6** Select **any-ipv4** as the the destination network from the **Available Networks** box and click **Add**.
- **Step 7** Enter a gateway for the network. For this example, enter **169.254.2.2**.
- **Step 8** Enter a metric value. It can be a number that ranges between 1 and 254. For this example, enter the value as 2.
- **Step 9** To save the settings, click **Save**.

The static route is created as seen in the figure below.

NGFWBR1 Cisco Firepower Threat Defense for V	MWare					
Device Routing Interfaces	Inline Sets DI	HCP VTEP				
Manage Virtual Routers						
Global 🔻	Network	Interface	Leaked from Virtual Router	Gateway	Tunneled	Metric
Virtual Router Properties	▼ IPv4 Routes					
ECMP BFD	any-ipv4	outside_static_vti_1	Global	Host_169.254.2.2	false	2

Configure an Extended ACL for DNS and Web Traffic

The access list is configured for DNS and web traffic to be steered towards the internet from the egress interface with the help of policy based routing.

- **Step 1** Select **Objects** > **Object Management** and choose **Access Lists** > **Extended** from the table of contents.
- **Step 2** Click Add Extended Access List to create an extended access list for social media traffic.
- **Step 3** In the Extended ACL Object dialog box, enter a name (LAN_to_Internet) for the object.
- **Step 4** Click Add to create a new Extended Access List.
- **Step 5** Configure the following access control properties:
 - a. Select the Action to Allow (match) the traffic criteria.
 - b. Click the Port tab and search for HTTP, HTTPS, DNS_over_UDP, DNS_over_TCP in the Available Ports list.

- c. Select the ports and click Add to Destination.
- d. Click the Network tab and search for the branch LAN in the Available Networks list.

Note In our example, the network is **Branch-LAN**.

- e. Select Branch-LAN and click Add to Source.
- f. Click Add to add the entry to the object.
- g. Click Save.

The ACL object is created as seen in the figure below.

Edit Extended Access List Object

Name LAN_to_Ir	nternet								
Entries (1)									
Sequence	Action	Source	Source Port	Destination	Destination Port	Application	Users	SGT	
1	C Allow	Branch-LAN	Any	Any	DNS_over_TCP HTTP HTTPS DNS_over_UDP	Any	Any	Any	

Configure a PBR Policy for DNS and Web Traffic

You can configure the PBR policy in the Policy Based Routing page by specifying the ingress interfaces, match criteria (Extended Access Control List), and egress interfaces to route DNS and web traffic.

- **Step 1** Choose **Devices** > **Device Management**, and edit the threat defense device (**NGFWBR1**).
- **Step 2** Click the **Routing** tab on the interface view of NGFWBR1.
- Step 3 Click Policy Based Routing.
- **Step 4** In the Add Policy Based Route dialog box, select the Ingress Interface from the drop-down list.
- **Step 5** To specify the match criteria and the forward action in the policy, click **Add**.
- **Step 6** In the **Add Forwarding Actions** dialog box, do the following:
 - a) From the Match ACL drop-down, choose LAN_to_Internet.
 - b) To select the configured interfaces, choose Egress Interfaces from the Send To drop-down list.
 - c) From Available Interfaces, click the Add (+) icon adjacent to Outside_static_vti_1 interface to move it to Selected Egress Interfaces.
 - d) Click Save to write the changes for the match criteria.
 - e) Review the configuration and click **Save** to write all the configuration changes for policy based routing.
- Step 7 Click Save.

The PBR policy is created as seen in the figure below.

Policy Based Routing

Specify ingress interfaces, match criteria and egress interfaces to route traffic accordingly. Traffic can be routed across Egress interfaces accordingly

			Configure Interface Priority	Add
Ingress Interfaces	Match criteria and forward action			
inside	If traffic matches the Access List LAN_to_Internet	Send through [#0] outside_static_vti_1		/1

Deploy Configuration

After you complete all the configurations, deploy them to the managed device.

Step 1 On the management center menu bar, click **Deploy**. This displays the list of devices that are Ready for Deployment.

Step 2 Check the checkboxes adjacent to NGFWBR1 and NGFW1 on which you want to deploy configuration changes.

Step 3 Click **Deploy**. Wait till the deployment is marked Completed on the Deploy dialog box.

Step 4 If the system identifies errors or warnings in the changes to be deployed, it displays them in the **Validation Errors** or **Validation Warnings** window. To view complete details, click the Validation Errors or Validation Warnings link.

You have the following choices:

- Proceed with Deploy—Continue deploying without resolving warning conditions. You cannot proceed if the system identifies errors.
- Close—Exit without deploying. Resolve the error and warning conditions, and attempt to deploy the configuration again.

Verify SASE Umbrella Tunnel Deployment

In the management center, go to **Notifications** > **Tasks** to view the status of the Umbrella tunnel deployment and policy deployment on the threat defense device (NGFWBR1).

Deploymer	nts Upgra	ides 🌗	Health	Tasks	
20+ total	0 waiting	0 running	0 retrying	20+ success	0 failures
Policy Dep Policy De	loyment ployment to N	IGFWBR1. A	pplied success	fully	
	Deployment by Device Cor	figuration fo	or NGFWBR1		
	Deployment by Global Con	figuration Ge	eneration		
Umbrella Tunno Umbrella Tunno	el Deployment el deployment for S	ite to Site VPN VF	PN-MumbaiUmbre	lla has succeeded	

To check the SASE auto tunnel status in the management center, choose Devices > VPN > Site To Site.

Firewall Manage Devices / VPN / Site To		Overview	Analysis	Policies	Devices	Objects	Integration	Deploy	۹ (9 🗘	0	admin	~	cisco S	SECUR
						Last Updat	ed: 04:10 PM	Refresh	+	Site to	Site VF	N -	+ SAS	Е Торо	ology
▼ Select													:	×	Refresh
Topology Name	VPN Type			Network Top	ology		Tunnel Status	Distribution				IKEv1	IKEv2		
> VPN-CLPOD8-Umbrella	Route Based (VTI)		SASE			1- Tunnels						\checkmark	۵,	
✓ VPN-MumbaiUmbrella	Route Based (VTI)		SASE			1- Tunnels						~	\$	1
	Node /	Ą						N	lode B						
Device	VPN Interface	VTI In	terface			Device		VPN Inter	face		١	/TI Interfac	e		
UMBRELLA Asia-Mumbai	146.112.1 (146.11	2.117.8)			••••	FTD NGFW	BR1	Outside	(172.16.2	2.10)	(Dutside_st	ati	(169.2	54.2.1)

To check the updated SASE topology in the management center, choose **Devices** > **VPN** > **Site To Site** > **Edit SASE Topology**. The local Tunnel ID is updated after the deployment to Umbrella.

Firewall Management Center Devices / VPN / Site To Site	Overview	Analysis	Policies	Devices	Objects	Integration	Deploy	Q	¢	¢ 0	admin \sim	-diadia cisco	SECURE
Edit SASE Topology													
1 Endpoints — 2 Summary													
Topology Name* VPN-MumbaiUmbrella													
Pre-shared Key*													
Umbreila Data Center* Asia - Mumbai(146.112.117.8)													
Threat Defense Nodes												Ad	d
Device	VPN	Interface				Local Tunnel ID	l.						
NGFWBR1	Outs	ide_static_vti_	.1			FTDvChandiga	irh@4	-	704-	umbrella	.com	/ 1	

To view the Site To Site VPN dashboard in the management center, choose **Overview > Dashboard > Site to Site VPN**.

Select									×	Refresh	Refres	sh every	5 minutes	~
Tunnel Summary				Node A			Node B			Topology		Status	Last Update	ed 🔺
				Asia-M	lumbai <i>(VPN II</i>	P: 146.112.11	NGFWBR1	(VPN IP: 172.16.2	.10)	VPN-Mumb	aiUmbr	O Active	2023-04-2	27 15:1
				North_	America-Los_	Angeles (VPN	NGFWBR1	(VPN IP: 172.16.2	.10)	VPN-CLPOI	08-Um	Active	2023-05-1	1 11:1
Topology														
Name	•	0	0											
VPN-CLPOD8-Umbrella	0	0	1											

Use the following CLI commands to verify SASE Umbrella Tunnel on threat defense:

• To verify the details of the SASE tunnel, use the following command:

```
> show running-config interface tunnel 1
!
interface Tunnel1
nameif Outside_static_vti_1
ip address 169.254.2.1 255.255.255.252
tunnel source interface Outside
tunnel destination 146.112.117.8
tunnel mode ipsec ipv4
tunnel protection ipsec profile FMC IPSEC PROFILE 1
```

• To verify the IPSec profile and the associated proposal, use the following command:

```
> show running-config crypto ipsec
crypto ipsec ikev2 ipsec-proposal CSM_IP_1
protocol esp encryption aes-gcm-256
protocol esp integrity sha-256
crypto ipsec profile FMC_IPSEC_PROFILE_1
set ikev2 ipsec-proposal CSM_IP_1
set ikev2 local-identity email-id FTDvChandigarh@41xxxxx-xxxxxxx-umbrella.com
set reverse-route
crypto ipsec security-association pmtu-aging infinite
```

• To verify the IKeV2 policy set, use the following command:

```
> show running-config crypto ikev2
crypto ikev2 policy 15
encryption aes-gcm-256
integrity null
group 20 19
prf sha256
lifetime seconds 86400
crypto ikev2 enable Outside
```

• To verify the tunnel statistics including Tx and Rx data, use the following command:

```
Login Time : 19:14:51 UTC Thu Apr 27 2023
Duration : 0h:55m:16s
Tunnel Zone : 0
```

• To check the tunnel status, use the following command:

```
> show interface ip brief
```

Interface	IP-Address	OK? Method Status	Protocol
Internal-Control0/0	127.0.1.1	YES unset up	up
Internal-Control0/1	unassigned	YES unset up	up
Internal-Data0/0	unassigned	YES unset down	up
Internal-Data0/0	unassigned	YES unset up	up
Internal-Data0/1	169.254.1.1	YES unset up	up
Internal-Data0/2	unassigned	YES unset up	up
Management0/0	203.0.113.130	YES unset up	up
TenGigabitEthernet0/0	172.16.2.10	YES manual up	up
TenGigabitEthernet0/1	172.16.3.10	YES manual up	up
TenGigabitEthernet0/2	unassigned	YES unset administratively dow	n up
Tunnel1	169.254.2.1	YES manual up	up

• To check the IPSec SA associated to the VTI tunnel, use the following command:

```
> show crypto ipsec sa
interface: outside static vti 1
   Crypto map tag: __vti-crypto-map-Tunnel1-0-1, seq num: 65280, local addr:
198.18.128.81
     Protected vrf (ivrf): Global
     local ident (addr/mask/prot/port): (0.0.0.0/0.0.0/0/0)
     remote ident (addr/mask/prot/port): (0.0.0.0/0.0.0/0/0)
     current peer: 146.112.117.8
     #pkts encaps: 705, #pkts encrypt: 705, #pkts digest: 705
     #pkts decaps: 743, #pkts decrypt: 743, #pkts verify: 743
      #pkts compressed: 0, #pkts decompressed: 0
      #pkts not compressed: 705, #pkts comp failed: 0, #pkts decomp failed: 0
      #pre-frag successes: 0, #pre-frag failures: 0, #fragments created: 0
     #PMTUs sent: 0, #PMTUs rcvd: 0, #decapsulated frgs needing reassembly: 0
     #TFC rcvd: 0, #TFC sent: 0
     #Valid ICMP Errors rcvd: 0, #Invalid ICMP Errors rcvd: 0
     #send errors: 0, #recv errors: 0
     local crypto endpt.: 198.18.128.81/4500, remote crypto endpt.: 146.112.117.8/4500
     path mtu 1500, ipsec overhead 63(44), media mtu 1500
     PMTU time remaining (sec): 0, DF policy: copy-df
     ICMP error validation: disabled, TFC packets: disabled
     current outbound spi: C76F91B4
     current inbound spi : 64907273
    inbound esp sas:
     spi: 0x2BF92601 (737748481)
        SA State: active
         transform: esp-aes-gcm-256 esp-null-hmac no compression
        in use settings ={L2L, Tunnel, NAT-T-Encaps, IKEv2, VTI, }
        slot: 0, conn id: 32, crypto-map: vti-crypto-map-Tunnel1-0-1
         sa timing: remaining key lifetime (kB/sec): (4331520/27987)
        IV size: 8 bytes
        replay detection support: Y
        Anti replay bitmap:
         0x0000000 0x0000001
   outbound esp sas:
     spi: 0xCA2DC006 (3391995910)
```

```
SA State: active
transform: esp-aes-gcm-256 esp-null-hmac no compression
in use settings ={L2L, Tunnel, NAT-T-Encaps, IKEv2, VTI, }
slot: 0, conn_id: 32, crypto-map: __vti-crypto-map-Tunnel1-0-1
sa timing: remaining key lifetime (kB/sec): (4101072/27987)
IV size: 8 bytes
replay detection support: Y
Anti replay bitmap:
0x00000000 0x00000001
```

To view the SASE tunnel in Umbrella, log in to Cisco Umbrella and navigate to **Deployments** > **Core Identities** > **Network Tunnels**. The network tunnel from the threat defense to Umbrella is displayed as shown in the figure below.

Active Tunnels	Inactive Tunnels	s Unestablis Tunnels O	shed	Unknown Tunnel Status O	Data Center Locations 1
C Search	h tunnels by name				
Tunnel Name VPN-CLPOD8-U Secure Internet Access	Site Default Site	Data Center Location Los Angeles, California - US	Device Public IP 1	Tunnel Status	Last Status Update Jun 07, 2023 - 6:31 PM
Tunnel Name VPN-MumbaiUmb Secure Internet Access	Site Default Site	Data Center Location Mumbai, Maharashtra - India	Device Public IP 1	Tunnel Status	Last Status Update Jul 21, 2023 - 12:51 PM

Expand the section to view the details of the tunnel.

Tunnel ID	Device Typ	De Dat	ta Center IP	
FTDvChandigarh@4	- other	14	6.112.117.8	
umbrella.com				
Total Natural Traffia				
Total Network Traffic				
Traffic Data Initialized	Packets In	Bytes In	Idle Time In	
Jul 20, 2023 - 8:52 PM	2.63 K	85.73 KB	0 sec	
Packets Out Bytes Out Id	lle Time Out			
69.37 K 185.26 KB 0	sec			
IPsec				
	Into avity Ala avita		Enonvotion Algorithms	Kou Ciza
State Age Installed 727 sec	Integrity Algorith	ITTI	Encryption Algorithm AES_GCM_16	Key Size 256
	-		AES_GOM_TO	250
SPI In SPI Out				
c76f91b4 64907273	}			
IKE				
Key Exchange Status Age	PRF Algorithm		Encryption Algorithm	DH Group
Established 3856 sec	PRF_HMAC_S	SHA2_256	AES_GCM_16	ECP_384
Initiator SPI Responder S	SPI			
53285f5df73e0c22 204e9091	0aca4243			

Troubleshoot Umbrella Auto Tunnels

After the deployment, use the following CLI to debug issues related to Umbrella auto tunnels on Secure Firewall Threat Defense.

Note Proceed with caution when you run debug commands on the threat defense device in production environments. You can set various debug levels on the device that may have verbose outputs.

How to	CLI Command
Enable conditional debugging for a particular peer	debug crypto condition peer <peer-ip></peer-ip>
Debug the Virtual Tunnel Interface information	debug vti 255
Debug the IKEv2 protocol related transactions	debug crypto ikev2 protocol 255
Debug the IKEv2 platform related transactions	debug crypto ikev2 platform 255
Debug the common IKE related transactions	debug crypto ike-common 255

How to	CLI Command
Debug the IPSec related transactions	debug crypto ipsec 255

Additional Resources

Resource	URL
Secure Firewall Threat Defense Release Notes	https://www.cisco.com/c/en/us/support/security/ firepower-ngfw/products-release-notes-list.html
All New and Deprecated Features	http://www.cisco.com/go/whatsnew-fmc
Secure Firewall on Cisco.com	http://www.cisco.com/go/firewall
Secure Firewall on YouTube	https://www.youtube.com/cisco-netsec
Secure Firewall Essentials	https://secure.cisco.com/secure-firewall

CHAPTER J

Empower Remote Workers with Secure Connectivity: DIA, Umbrella Auto Tunnel, and DVTI in Action

In this chapter, we delve into the practical application of using DIA, Umbrella auto tunnel, and DVTI. The use case details the scenario, network topology, and the end-to-end procedure for seamless implementation.

- Enhancing Connectivity and Security for Remote Workers with DIA, Umbrella SASE Auto Tunnel, and DVTI, on page 73
- Is This Use Case For You?, on page 73
- Scenario, on page 74
- Topology, on page 74
- End-to-end Procedure for Configuring DIA, Umbrella Auto Tunnel, and DVTI, on page 75
- Additional Resources, on page 75

Enhancing Connectivity and Security for Remote Workers with DIA, Umbrella SASE Auto Tunnel, and DVTI

In today's interconnected and remote work environment, organizations face the challenge of providing seamless connectivity, secure access, and optimized performance for their distributed workforce. This use case explores the implementation of DIA (Direct Internet Access), Umbrella SASE auto tunnel, and DVTI (Dynamic Virtual Tunnel Interface) technologies to overcome network connectivity issues, enhance collaboration, protect sensitive information, and empower the remote users to work efficiently from any location.

Is This Use Case For You?

The intended audience for this use case is IT professionals, network administrators, and decision-makers responsible for managing and securing the network infrastructure, as well as organizations looking to optimize connectivity and security for their remote workforce. It provides insights into the implementation of DIA, Umbrella SASE auto tunnel, and DVTI technologies and highlights the benefits they offer in addressing the challenges faced by remote workers.

Scenario

Sally works as a remote sales representative for a global company that relies heavily on real-time collaboration and data access. She frequently travels to different client locations, but faces challenges in accessing sales data and communicating with colleagues.

What is at risk?

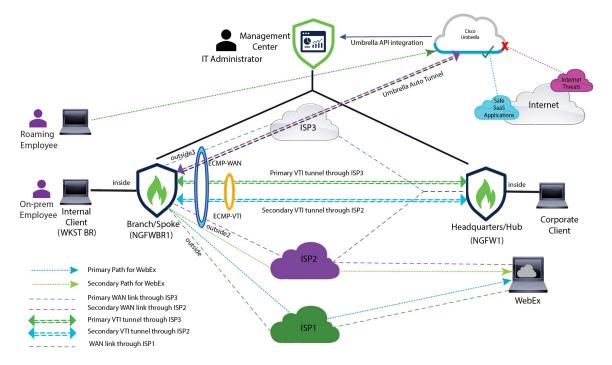
The company's existing network infrastructure is unable to provide seamless connectivity and secure access across multiple locations, resulting in delays, data inconsistency, and communication breakdowns.

How does a solution consisting of DIA, Umbrella auto tunnel, and DVTI in a hub and spoke topology solve the problem?

To address the challenges faced by remote workers like Sally, her company implements a comprehensive solution using DIA, Umbrella SASE auto tunnel, and DVTI.

- DIA: DIA allows Sally to connect directly to the internet without routing through the corporate network. This provides her with faster and more reliable internet access, enabling quick access to cloud-based applications and services. It offloads network traffic from the corporate network, reducing congestion and optimizing performance.
- 2. Umbrella Auto tunnel: By leveraging the Umbrella Auto Tunnel configuration, Sally's company ensures that uniform security policies are applied to traffic regardless of whether Sally is remotely connected or behind a branch firewall. It eliminates the need for manual configuration of VPN connections and reduces the complexity and potential errors associated with traditional tunnel setups. This technology offers simplicity, convenience, and enhanced security for Sally and other remote workers in the organization
- **3. DVTI:** DVTI in a hub and spoke topology enables the dynamic creation of secure IPsec tunnels between the branch office and the corporate network. These tunnels encrypt data transmission, ensuring secure access to corporate resources while working remotely. DVTI also optimizes network performance by intelligently routing traffic through the most efficient path and providing redundancy for uninterrupted connectivity.

By combining DIA, Umbrella SASE auto tunnel, and DVTI, Sally's company enhances her connectivity, security, and productivity as a remote worker. She can access cloud applications quickly, collaborate seamlessly with colleagues, and enjoy a secure and reliable connection to corporate resources, regardless of her location. The IT team benefits from centralized security management, reduced network complexity, and improved visibility into remote workers' activities.


Topology

In this topology, the internal client or branch workstation is labeled as WKST BR that is connected to the branch threat defense labeled as NGFWBR1. The headquarters threat defense is labeled NGFW1. The corporate network is reachable through NGFW1. The ingress interface of NGFWBR1 is named inside and the egress interfaces are named outside, outside2, and outside3 respectively.

A Umbrella auto tunnel is configured between NGFWBR1 and Cisco Umbrella.

All DNS and web traffic is sent through the Umbrella auto tunnel to Cisco Umbrella to be allowed or blocked based on the Umbrella DNS and web policy. This provides two layers of protection, one locally enforced by the Cisco Secure Threat Defense and the other cloud-delivered by Cisco Umbrella.

For the hub spoke configuration, a VPN tunnel is configured between NGFWBR1 and NGFW1. An ECMP zone is configured on the primary and secondary static VTI interfaces on the branch node for link redundancy and loading balancing of VPN traffic.

End-to-end Procedure for Configuring DIA, Umbrella Auto Tunnel, and DVTI

To configure the solution with DIA, Umbrella SASE auto tunnel, and DVTI:

- Configure Direct Internet Access: End-to-End Procedure for Configuring DIA With Path Monitoring, on page 38
- Configure Umbrella SIG Auto Tunnel:End-to-end Procedure for Configuring Umbrella Auto Tunnel, on page 58
- **Configure DVTI Hub and Spoke Topology**: End-to-End Procedure for Configuring a Route-based VPN (Hub and Spoke Topology), on page 9

Additional Resources

Resource	URL
Secure Firewall Threat Defense Release Notes	https://www.cisco.com/c/en/us/support/security/ firepower-ngfw/products-release-notes-list.html
All New and Deprecated Features	http://www.cisco.com/go/whatsnew-fmc

I

Resource	URL
Secure Firewall on Cisco.com	http://www.cisco.com/go/firewall
Secure Firewall on YouTube	https://www.youtube.com/cisco-netsec
Secure Firewall Essentials	https://secure.cisco.com/secure-firewall