

Custom Snort 3 Intrusion Policies for Access Control

First Published: 2026-02-04

Last Modified: 2026-02-05

Americas Headquarters

Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
<http://www.cisco.com>
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: <https://www.cisco.com/c/en/us/about/legal/trademarks.html>. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2026 –2026 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1

Intrusion Prevention Overview	1
About Intrusion Prevention	1
Snort Inspection Engine	3
About Snort 3	3
Guidelines and Limitations for Network Analysis and Intrusion Policies	5
How Policies Examine Traffic For Intrusions	6
Decoding, Normalizing, and Preprocessing: Network Analysis Policies	7
Access Control Rules: Intrusion Policy Selection	8
Intrusion Inspection: Intrusion Policies, Rules, and Variable Sets	9
Intrusion Event Generation	10
System-Provided and Custom Network Analysis and Intrusion Policies	11
System-Provided Network Analysis and Intrusion Policies	12
Benefits of Custom Network Analysis and Intrusion Policies	13
Benefits of Custom Network Analysis Policies	13
Benefits of Custom Intrusion Policies	14
Limitations of Custom Policies	15
Prerequisites for Network Analysis and Intrusion Policies	17

CHAPTER 2

Migrate from Snort 2 to Snort 3	19
Snort 3 Inspection Engine	19
Snort 2 versus Snort 3	20
Prerequisites for Network Analysis and Intrusion Policies	20
How to Migrate from Snort 2 to Snort 3	20
Prerequisites for Migrating from Snort 2 to Snort 3	21
Enable Snort 3 on an Individual Device	21
Enable Snort 3 on Multiple Devices	22

Convert Snort 2 Custom IPS Rules to Snort 3	22
Convert all Snort 2 Custom Rules across all Intrusion Policies to Snort 3	23
Convert Snort 2 Custom Rules of a Single Intrusion Policy to Snort 3	24
View Snort 2 and Snort 3 Base Policy Mapping	24
Synchronize Snort 2 Rules with Snort 3	25
Deploy Configuration Changes	26
Examples for Migration	28
Migrate from Snort 2 to Snort 3	28
Benefits of Migrating to Snort 3	28
Sample Business Scenario	28
Best Practices for Migrating from Snort 2 to Snort 3	28
Prerequisites	29
End-to-End Migration Workflow	29
Enable Snort 3 on Threat Defense	30
Convert Snort 2 Rules of a Single Intrusion Policy to Snort 3	31
Deploy Configuration Changes	36

CHAPTER 3**Intrusion Policies** 39

Overview of Intrusion Policies	39
Prerequisites for Network Analysis and Intrusion Policies	40
Create a Custom Snort 3 Intrusion Policy	41
Edit Snort 3 Intrusion Policies	41
Rule Group Reporting	45
Rule Action Logging	45
Change the Base Policy of an Intrusion Policy	46
View Snort 2 and Snort 3 Base Policy Mapping	47
Synchronize Snort 2 Rules with Snort 3	47
Manage Intrusion Policies	48
Access Control Rule Configuration to Perform Intrusion Prevention	49
Access Control Rule Configuration and Intrusion Policies	50
Configure an Access Control Rule to Perform Intrusion Prevention	50
Tune Intrusion Policies Using Rules	51
Overview of Tuning Intrusion Rules	51
Intrusion Rule Types	51

Prerequisites for Network Analysis and Intrusion Policies	52
Custom Rules in Snort 3	52
View Snort 3 Intrusion Rules in an Intrusion Policy	55
Intrusion Rule Action	56
Intrusion Rule Action Options	56
Set Intrusion Rule Action	57
Intrusion Event Notification Filters in an Intrusion Policy	57
Intrusion Event Thresholds	58
Intrusion Policy Suppression Configuration	60
Add Intrusion Rule Comments	62
Snort 2 Custom Rules Conversion to Snort 3	62
Convert all Snort 2 Custom Rules across all Intrusion Policies to Snort 3	63
Convert Snort 2 Custom Rules of a Single Intrusion Policy to Snort 3	64
Add Custom Rules to Rule Groups	64
Add Rule Groups with Custom Rules to an Intrusion Policy	65
Manage Custom Rules in Snort 3	66
Delete Custom Rules	67
Delete Rule Groups	67
Recommended Rules	68
Snort 3 Rule Changes in LSP Updates	68
Overview of Secure Firewall Recommended Rules	68
Prerequisites for Network Analysis and Intrusion Policies	69
Generate New Secure Firewall Recommendations in Snort 3	69
Mitigate Threats Using MITRE Framework in Snort 3 Intrusion Policies	72
About MITRE ATT&CK Framework	72
Benefits of MITRE Framework	73
Sample Business Scenario for MITRE Network	73
Prerequisites for MITRE Framework	73
View and Edit Your Snort 3 Intrusion Policy	73
View Intrusion Events	79
Additional References	81

CHAPTER 4**Intrusion Prevention Performance Tuning** 83

About Intrusion Prevention Performance Tuning	83
---	----

License Requirements for Intrusion Prevention Performance Tuning	84
Requirements and Prerequisites for Intrusion Prevention Performance Tuning	84
Limiting Pattern Matching for Intrusions	84
Regular Expression Limits Overrides for Intrusion Rules	85
Overriding Regular Expression Limits for Intrusion Rules	86
Per Packet Intrusion Event Generation Limits	87
Limiting Intrusion Events Generated Per Packet	87
Packet and Intrusion Rule Latency Threshold Configuration	88
Latency-Based Performance Settings	88
Packet Latency Thresholding	88
Packet Latency Thresholding Notes	89
Enabling Packet Latency Thresholding	90
Configuring Packet Latency Thresholding	90
Rule Latency Thresholding	91
Rule Latency Thresholding Notes	92
Configuring Rule Latency Thresholding	93
Intrusion Performance Statistic Logging Configuration	94
Configuring Intrusion Performance Statistic Logging	94

CHAPTER 5**Network Analysis Policies** **97**

Overview of Network Analysis Policies	97
Manage Network Analysis Policies	98
Snort 3 Definitions and Terminologies for Network Analysis Policy	99
Prerequisites for Network Analysis and Intrusion Policies	101
Custom Network Analysis Policy Creation for Snort 3	101
Common Industrial Protocol Safety	105
Detect and Block Safety Segments in CIP Packets	106
Network Analysis Policy Mapping	106
View Network Analysis Policy Mapping	107
Create a Network Analysis Policy	107
Modify the Network Analysis Policy	107
Search for an Inspector on the Network Analysis Policy Page	108
Copy the Inspector Configuration	109
Customize the Network Analysis Policy	109


Make Inline Edit for an Inspector to Override Configuration	113
Revert Unsaved Changes during Inline Edits	114
View the List of Inspectors with Overrides	114
Revert Overridden Configuration to Default Configuration	115
Validate Snort 3 Policies	115
Examples of Custom Network Analysis Policy Configuration	118
Network Analysis Policy Settings and Cached Changes	129
Generate Snort 3 Recommendations	129
Snort 3 Rule Recommendations	129
Benefits	129
Sample Business Scenario	130
Best Practices	130
Prerequisites	130
Generate Snort 3 Recommendations	130

CHAPTER 6

Advanced Access Control Settings for Network Analysis and Intrusion Policies	135
About Advanced Access Control Settings for Network Analysis and Intrusion Policies	135
Requirements and Prerequisites for Advanced Access Control Settings for Network Analysis and Intrusion Policies	135
Inspection of Packets That Pass Before Traffic Is Identified	136
Best Practices for Handling Packets That Pass Before Traffic Identification	136
Specify a Policy to Handle Packets That Pass Before Traffic Identification	137
Advanced Settings for Network Analysis Policies	138
Setting the Default Network Analysis Policy	138
Network Analysis Rules	139
Network Analysis Policy Rule Conditions	140
Configuring Network Analysis Rules	141
Managing Network Analysis Rules	142

CHAPTER 1

Intrusion Prevention Overview

The Snort inspection engine is an integral part of the Firewall Threat Defense. This chapter provides an overview of Snort 3 and the network analysis and intrusion policies. It also provides an insight into system-provided and custom network analysis and intrusion policies. In most cases, the system-provided policies are all you need. For advanced users with specific needs, you can create custom rules.

Note

To configure custom Snort 2 rules, see [Custom Snort 2 Intrusion Policies for Access Control](#).

- [About Intrusion Prevention, on page 1](#)
- [Snort Inspection Engine, on page 3](#)
- [About Snort 3, on page 3](#)
- [Guidelines and Limitations for Network Analysis and Intrusion Policies, on page 5](#)
- [How Policies Examine Traffic For Intrusions, on page 6](#)
- [System-Provided and Custom Network Analysis and Intrusion Policies, on page 11](#)
- [Prerequisites for Network Analysis and Intrusion Policies, on page 17](#)

About Intrusion Prevention

Network analysis and intrusion policies work together as part of the intrusion detection and prevention feature.

- The term *intrusion detection* generally refers to the process of passively monitoring and analyzing network traffic for potential intrusions and storing attack data for security analysis. This is sometimes referred to as "IDS."
- The term *intrusion prevention* includes the concept of intrusion detection, but adds the ability to block or alter malicious traffic as it travels across your network. This is sometimes referred to as "IPS."

In an intrusion prevention deployment, when the system examines packets:

- A **network analysis policy** governs how traffic is *decoded* and *preprocessed* so it can be further evaluated, especially for anomalous traffic that might signal an intrusion attempt.
- An **intrusion policy** uses *intrusion and preprocess rules* (sometimes referred to collectively as *intrusion rules*) to examine the decoded packets for attacks based on patterns. Intrusion policies are paired with *variable sets*, which allow you to use named values to accurately reflect your network environment.

Both network analysis and intrusion policies are invoked by a parent access control policy, but at different times. As the system analyzes traffic, the network analysis (decoding and preprocessing) phase occurs before and separately from the intrusion prevention (additional preprocessing and intrusion rules) phase. Together, network analysis and intrusion policies provide broad and deep packet inspection. They can help you detect, alert on, and protect against network traffic that could threaten the availability, integrity, and confidentiality of hosts and their data.

The system is delivered with several similarly named network analysis and intrusion policies (for example, Balanced Security and Connectivity) that complement and work with each other. By using system-provided policies, you can take advantage of the experience of the Cisco Talos Intelligence Group (Talos). For these policies, Talos sets intrusion and inspector rule states, as well as provides the initial configurations for inspectors and other advanced settings.

You can also create custom network analysis and intrusion policies. You can tune settings in custom policies to inspect traffic in the way that matters most to you so that you can improve both the performance of your managed devices and your ability to respond effectively to the events they generate.

You create, edit, save, and manage network analysis and intrusion policies using similar policy editors in the web interface. When you are editing either type of policy, a navigation panel appears on the left side of the web interface; the right side displays various configuration pages.

Refer to the videos for additional support and information:

- [Snort 3 Condensed Overview](#)
- [Snort 3 Extended Overview](#)

Attention

Detection mode deprecation: From management center Version 7.4.0, for a network analysis policy (NAP), the **Detection** inspection mode is deprecated and will be removed in an upcoming release.

The **Detection** mode was intended to be used as a test mode so that you can enable inspections and see how they behave in your network before setting it to drop traffic, that is, to show traffic that would be dropped.

This behavior is improved where all inspector drops are controlled by the rule state, and you can set each one to generate events. This is done to test them before configuring the rule state to drop traffic. As we now have granular control over traffic drops in Snort 3, the **Detection** mode only adds more complexity to the product and is not needed, so the detection mode is deprecated.

If you change a NAP in **Detection** mode to **Prevention**, the NAP that processes the traffic of intrusion events and have the result "will be dropped" will now be "dropped" and the corresponding traffic will drop the traffic from these events. This is applicable for rules whose GIDs are not 1 or 3. GIDs 1 and 3 are text/compiled rules (typically provided by Talos or from your custom/imported rules) and all other GIDs are inspections for anomalies. These are more uncommon rules to trigger in a network. Changing to **Prevention** mode is unlikely to have any impact on the traffic. You need to just disable the intrusion rule that is applicable for the dropped traffic and set it to just generate or disable.

We recommend you choose **Prevention** as the inspection mode, but if you choose **Prevention**, you cannot revert to **Detection** mode.

Snort Inspection Engine

The Snort inspection engine is an integral part of the Secure Firewall Threat Defense (formerly Firepower Threat Defense) device. The inspection engine analyzes traffic in real time to provide deep packet inspection. Network analysis and intrusion policies together utilize the Snort inspection engine's capabilities to detect and protect against intrusions.

About Snort 3

Snort 3 is the latest version of the Snort inspection engine, which has vast improvements compared to the earlier version of Snort. The older version of Snort is Snort 2, which is no longer supported. Snort 3 is more efficient, and it provides better performance and scalability.

Snort 3 is architecturally redesigned to inspect more traffic with equivalent resources when compared to Snort 2. Snort 3 provides simplified and flexible insertion of traffic parsers. Snort 3 also provides new rule syntax that makes rule writing easier and shared object rule equivalents visible.

The other significant changes with Snort 3 are:

- Unlike Snort 2, which uses multiple Snort instances, Snort 3 associates multiple threads with a single Snort instance. This uses less memory, improves Snort reload times, and supports more intrusion rules and a larger network map. The number of Snort threads varies by platform and is the same as the number of Snort 2 instances for each platform. Usage is virtually transparent.
- Snort version per Firewall Threat Defense—The Snort inspection engine is Firewall Threat Defense specific and not Secure Firewall Management Center (formerly Firepower Management Center) specific. Firewall Management Center can manage several Firewall Threat Defenses, each with either versions of Snort (Snort 2 and Snort 3). Although the Firewall Management Center's intrusion policies are unique, the system applies Snort 2 or Snort 3 version of an intrusion policy for intrusion protection depending on the device's selected inspection engine.
- Decoder rules—Packet decoder rules fire only in the default intrusion policy. The system ignores decoder rules that you enable in other policies.
- Shared object rules—Snort 3 supports some but not all shared object (SO) intrusion rules (rules with a generator ID (GID) of 3). Enabled shared object rules that are not supported do not trigger.
- Multi-layer inspection for Security Intelligence—Snort 3 detects the innermost IP address regardless of the layer.
- Platform support—Snort 3 requires Firewall Threat Defense 7.0 or later. It is not supported with ASA FirePOWER or NGIPSv.
- Managed Devices—An Firewall Management Center with version 7.0 can simultaneously support version 6.4, 6.5, 6.6, 6.7, and 7.0 Snort 2 Firewall Threat Defenses, and version 7.0 Snort 3 Firewall Threat Defenses.
- Traffic interruption when switching Snort versions—Switching Snort versions interrupts traffic inspection and a few packets might drop during deployment.
- Unified policies—Irrespective of the underlying Snort engine version that is enabled in the managed Firewall Threat Defenses, the access control policies, intrusion policies, and network analysis policies configured in the Firewall Management Center work seamlessly in applying the policies. All intrusion

policies in Firewall Management Center version 7.0 and above have two versions available, Snort 2 version and Snort 3 version. The intrusion policy is unified, which means that it has a common name, base policy, and inspection mode, although there are two versions of the policy (Snort 2 version and Snort 3 version). The Snort 2 and the Snort 3 versions of the intrusion policy can be different in terms of the rule settings. However, when the intrusion policy is applied on a device, the system automatically identifies the Snort version enabled on the device and applies the rule settings configured for that version.

- **Lightweight Security Package (LSP)**—Replaces the Snort Rule Updates (SRU) for Snort 3 next-generation intrusion rule and configuration updates. Downloading updates downloads both the Snort 3 LSP and the Snort 2 SRU.

LSP updates provide new and updated intrusion rules and inspector rules, modified states for existing rules, and modified default intrusion policy settings for Firewall Management Center and Firewall Threat Defense versions 7.0 or above. When you upgrade an Firewall Management Center from version 6.7 or lower to 7.0, it supports both LSPs and SRUs. LSP updates may also delete system-provided rules, provide new rule categories and default variables, and modify default variable values. For more information on LSP updates, see the *Update Intrusion Rules* topic in the latest version of the *Firepower Management Center Configuration Guide*.

- **Mapping of Snort 2 and Snort 3 rules and presets**—Snort 2 and Snort 3 rules are mapped and the mapping is system-provided. However, it is not a one-to-one mapping. The system-provided intrusion base policies are pre-configured for both Snort 2 and Snort 3, and they provide the same intrusion prevention although with different rule sets. The system-provided base policies for Snort 2 and Snort 3 are mapped with each other for the same intrusion prevention settings.
- **Synchronizing Snort 2 and Snort 3 rule override**—When a Firewall Threat Defense is upgraded to 7.0, you can upgrade the inspection engine of the Firewall Threat Defense to the Snort 3 version. Firewall Management Center maps all the overrides in the existing rules of the Snort 2 version of the intrusion policies to the corresponding Snort 3 rules using the mapping provided by Talos. However, if there are additional overrides performed after the upgrade or if you have installed a new Firewall Threat Defense of version 7.0, they have to be manually synchronized.
- **Custom intrusion rules**—You can create custom intrusion rules in Snort 3. You can also import the custom intrusion rules that exist for Snort 2 to Snort 3.
- **Rule groups**—The Firewall Management Center groups all Snort 3 rules into rule groups. Rule groups are logical groups of rules which provide an easy management interface to enhance rule accessibility, rule navigation, and a better control over the rule group security level.

From Firewall Management Center 7.3.0, rule navigation for several levels of rule groups is supported that provides more flexibility and logical grouping of rules. The MITRE framework is added that enables you to navigate through rules using the MITRE framework. MITRE is just another category of rule groups and are a part of Talos rule groups.

Note See <https://attack.mitre.org> for information about MITRE.

A rule can be part of multiple rule groups, such as multiple MITRE ATT&CK rule groups, a rule category rule group, multiple "asset type" rule groups, a malware campaign, and others. The available rule groups are listed in the intrusion policy editor and can be selected to enhance policies.

With this multi-level hierarchical structure, you can traverse down to the last element, which is the "leaf rule group." These rule groups contain sets of rules that are related to each other, such as a specific type of vulnerability, a similar target system, or a similar threat category. Rule groups have four security levels

associated with them. You can change the security level, add or remove rule groups, and you can change the rule action for rules that match traffic seen on the network. This is done to bring a satisfactory balance between security, performance, and false positive resistance.

Guidelines and Limitations for Network Analysis and Intrusion Policies

- A high percentage of traffic with small packets causes Snort performance to decrease. This behaviour is observed even when all the preprocessors are disabled.
- When you attempt to deploy a configuration change on a threat defense device with low memory, snort deployment is also triggered. This results in high consumption of RSS memory. Snort memory usage is also impacted if you deploy large configurations on the device, such as multiple IPS policies containing a large number of snort IPS rules, network objects, and access-control lists. You can mitigate such memory issues by optimizing the configuration. For best practices on how to configure access control rules to optimize the configuration, see [Best Practices for Access Control Rules](#).
- If you increase the memory of a Threat Defense Virtual instance, you must redeploy the configuration for Snort 3 to utilize the additional memory.

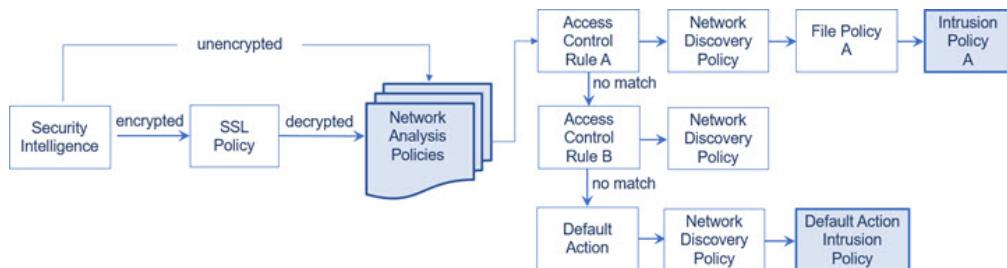
Note

The Snort 3 memory allocation is not automatically adjusted when you increase the memory of the Threat Defense Virtual instance. You must redeploy the configuration to regenerate relevant configuration files, such as `memory_allocation.lua`, which apply the updated resource limits to Snort 3.

- If an SIP stream is followed by RTP streams from the same connection, Snort inspects the initial SIP communication that is sent for connection establishment and allows SIP traffic. The RTP streams that follow the SIP communication are also trusted by default and bypass the configured rules. To prevent such scenarios, trusting the parent SIP connection or adding the parent SIP connection to a prefilter rule ensures that only the SIP stream bypasses Snort inspection and allows the subsequent RTP streams to be evaluated separately against the corresponding rules.
- When intrusion packet events are forwarded via syslog or the eStreamer fully-qualified event feed, the packet data field may be truncated due to limitations in the buffer size available for syslog generation and the eStreamer. In such scenarios, the packet length will not match the actual packet data that is sent.
- You cannot make policy changes, switch snort versions, and deploy both these changes at the same time. You must make the required policy changes and deploy, or switch the snort versions and deploy.

Feature Limitations of Snort 3 for Firewall Management Center-Managed Firewall Threat Defense

The following table lists the features that are supported on Snort 2 but not supported on Snort 3 for Firewall Management Center-managed Firewall Threat Defense devices.


Table 1: Feature Limitations of Snort 3

Policy/Area	Features not supported
Access Control Policy	The following application settings: <ul style="list-style-type: none"> Safe Search YouTube EDU
Intrusion Policy	<ul style="list-style-type: none"> Global rule thresholding Logging configuration: <ul style="list-style-type: none"> SNMP SRU rule updates as Snort 3 supports only LSP rule updates
Other features	Event logging with FQDN names

How Policies Examine Traffic For Intrusions

When the system analyzes traffic as part of your access control deployment, the network analysis (decoding and preprocessing) phase occurs before and separately from the intrusion prevention (intrusion rules and advanced settings) phase.

The following diagram shows, in a simplified fashion, the order of traffic analysis in an inline, intrusion prevention and AMP for Networks deployment. It illustrates how the access control policy invokes other policies to examine traffic, and in which order those policies are invoked. The network analysis and intrusion policy selection phases are highlighted.

In an inline deployment (that is, where relevant configurations are deployed to devices using routed, switched, or transparent interfaces, or inline interface pairs), the system can block traffic without further inspection at almost any step in the illustrated process. Security Intelligence, the SSL policy, network analysis policies, file policies, and intrusion policies can all either drop or modify traffic. Only the network discovery policy, which passively inspects packets, cannot affect the flow of traffic.

Similarly, at each step of the process, a packet could cause the system to generate an event. Intrusion and preprocessor events (sometimes referred to collectively as *intrusion events*) are indications that a packet or its contents may represent a security risk.

Tip

The diagram does not reflect that access control rules handle encrypted traffic when your SSL inspection configuration allows it to pass, or if you do not configure SSL inspection. By default, the system disables intrusion and file inspection of encrypted payloads. This helps reduce false positives and improve performance when an encrypted connection matches an access control rule that has intrusion and file inspection configured.

Note that for a single connection, although the system selects a network analysis policy before an access control rule as shown in the diagram, some preprocessing (notably application layer preprocessing) occurs after access control rule selection. This does **not** affect how you configure preprocessing in custom network analysis policies.

Decoding, Normalizing, and Preprocessing: Network Analysis Policies

Without decoding and preprocessing, the system could not appropriately evaluate traffic for intrusions because protocol differences would make pattern matching impossible. Network analysis policies govern these traffic-handling tasks:

- **after** traffic is filtered by Security Intelligence
- **after** encrypted traffic is decrypted by an optional SSL policy
- **before** traffic can be inspected by file or intrusion policies

A network analysis policy governs packet processing in phases. First the system decodes packets through the first three TCP/IP layers, then continues with normalizing, preprocessing, and detecting protocol anomalies:

- The packet decoder converts packet headers and payloads into a format that can be easily used by the inspectors and later, intrusion rules. Each layer of the TCP/IP stack is decoded in turn, beginning with the data link layer and continuing through the network and transport layers. The packet decoder also detects various anomalous behaviors in packet headers.
- In inline deployments, the inline normalization preprocessor reformats (normalizes) traffic to minimize the chances of attackers evading detection. It prepares packets for examination by other inspectors and intrusion rules, and helps ensure that the packets the system processes are the same as the packets received by the hosts on your network.
- Various network and transport layers inspectors detect attacks that exploit IP fragmentation, perform checksum validation, and perform TCP and UDP session preprocessing.

Note that some advanced transport and network inspector settings apply globally to all traffic handled by the target devices of an access control policy. You configure these in the access control policy rather than in a network analysis policy.

- Various application-layer protocol decoders normalize specific types of packet data into formats that the intrusion rules engine can analyze. Normalizing application-layer protocol encodings allows the system to effectively apply the same content-related intrusion rules to packets whose data is represented differently, and to obtain meaningful results.
- The Modbus, DNP3, CIP, and s7commplus SCADA inspectors detect traffic anomalies and provide data to intrusion rules. Supervisory Control and Data Acquisition (SCADA) protocols monitor, control, and acquire data from industrial, infrastructure, and facility processes such as manufacturing, production, water treatment, electric power distribution, airport and shipping systems, and so on.

Access Control Rules: Intrusion Policy Selection

- Several inspectors allow you to detect specific threats, such as Back Orifice, portscans, SYN floods and other rate-based attacks.

Note that you configure the sensitive data inspector, which detects sensitive data such as credit card numbers and Social Security numbers in ASCII text, in intrusion policies.

Note When TLS Server Identity is disabled, Snort 3 does not perform SNI mismatch detection. It only evaluates the SNI in the Client Hello packet and bypasses the validation of the certificate's Common Name (CN) in the Server Hello packet.

In a newly created access control policy, one default network analysis policy governs preprocessing for *all* traffic for *all* intrusion policies invoked by the same parent access control policy. Initially, the system uses the Balanced Security and Connectivity network analysis policy as the default, but you can change it to another system-provided or custom network analysis policy. In a more complex deployment, advanced users can tailor traffic preprocessing options to specific security zones, networks, and VLANs by assigning different custom network analysis policies to preprocess matching traffic.

Note For an access control policy with rule action as **Trust** and a prefilter rule with action as **Fastpath** with logging options disabled, you will observe that the end-of-flow events are still generated in the system. The events are not visible on the management center event pages.

Access Control Rules: Intrusion Policy Selection

After initial preprocessing, access control rules (when present) evaluate traffic. In most cases, the first access control rule that a packet matches is the rule that handles that traffic; you can monitor, trust, block, or allow matching traffic.

When you allow traffic with an access control rule, the system can inspect the traffic for discovery data, malware, prohibited files, and intrusions, in that order. Traffic not matching any access control rule is handled by the access control policy's default action, which can also inspect for discovery data and intrusions.

Note All packets, **regardless** of which network analysis policy preprocesses them, are matched to configured access control rules—and thus are potentially subject to inspection by intrusion policies—in top-down order.

The diagram in [How Policies Examine Traffic For Intrusions, on page 6](#) shows the flow of traffic through a device in an inline, intrusion prevention and AMP for Networks deployment, as follows:

- Access Control Rule A allows matching traffic to proceed. The traffic is then inspected for discovery data by the network discovery policy, for prohibited files and malware by File Policy A, and then for intrusions by Intrusion Policy A.
- Access Control Rule B also allows matching traffic. However, in this scenario, the traffic is not inspected for intrusions (or files or malware), so there are no intrusion or file policies associated with the rule. Note that by default, traffic that you allow to proceed is inspected by the network discovery policy; you do not need to configure this.

- In this scenario, the access control policy's default action allows matching traffic. The traffic is then inspected by the network discovery policy, and then by an intrusion policy. You can (but do not have to) use a different intrusion policy when you associate intrusion policies with access control rules or the default action.

The example in the diagram does not include any blocking or trusting rules because the system does not inspect blocked or trusted traffic.

Intrusion Inspection: Intrusion Policies, Rules, and Variable Sets

You can use intrusion prevention as the system's last line of defense before traffic is allowed to proceed to its destination. Intrusion policies govern how the system inspects traffic for security violations and, in inline deployments, can block or alter malicious traffic. The main function of intrusion policies is to manage which intrusion and preprocessor rules are enabled and how they are configured.

Intrusion and Inspector Rules

An intrusion rule is a specified set of keywords and arguments that detects attempts to exploit vulnerabilities on your network; the system uses an intrusion rule to analyze network traffic to check if it matches the criteria in the rule. The system compares packets against the conditions specified in each rule and, if the packet data matches all the conditions specified in a rule, the rule triggers.

The system includes the following types of rules created by Cisco Talos Intelligence Group (Talos):

- *shared object intrusion rules*, which are compiled and cannot be modified (except for rule header information such as source and destination ports and IP addresses)
- *standard text intrusion rules*, which can be saved and modified as new custom instances of the rule.
- *preprocessor rules*, which are rules associated with inspectors and packet decoder detection options in the network analysis policy. You cannot copy or edit inspector rules. Most inspector rules are disabled by default; you must enable them to use inspectors to generate events and, in an inline deployment, drop offending packets.

When the system processes packets according to an intrusion policy, first a rule optimizer classifies all activated rules in subsets based on criteria such as: transport layer, application protocol, direction to or from the protected network, and so on. Then, the intrusion rules engine selects the appropriate rule subsets to apply to each packet. Finally, a multi-rule search engine performs three different types of searches to determine if the traffic matches the rule:

- The protocol field search looks for matches in particular fields in an application protocol.
- The generic content search looks for ASCII or binary byte matches in the packet payload.
- The packet anomaly search looks for packet headers and payloads that, rather than containing specific content, violate well-established protocols.

In a custom intrusion policy, you can tune detection by enabling and disabling rules, as well as by writing and adding your own standard text rules. You can also use Cisco recommendations to associate the operating systems, servers, and client application protocols detected on your network with rules specifically written to protect those assets.

Note When there are insufficient packets to process specific traffic against a block rule, the system continues to evaluate the remaining traffic against other rules. If any of the remaining traffic matches a rule which is set to block, then the session is blocked. However, if the system analyses the remaining traffic to be passed, then the traffic status shows pending on the rule which is stuck for want of complete packets.

Variable Sets

Whenever the system uses an intrusion policy to evaluate traffic, it uses an associated *variable set*. Most variables in a set represent values commonly used in intrusion rules to identify source and destination IP addresses and ports. You can also use variables in intrusion policies to represent IP addresses in rule suppressions and dynamic rule states.

The system provides a single default variable set, which is comprised of predefined default variables. Most system-provided shared object rules and standard text rules use these predefined default variables to define networks and port numbers. For example, the majority of the rules use the variable `$HOME_NET` to specify the protected network and the variable `$EXTERNAL_NET` to specify the unprotected (or outside) network. In addition, specialized rules often use other predefined variables. For example, rules that detect exploits against web servers use the `$HTTP_SERVERS` and `$HTTP_PORTS` variables.

Tip Even if you use system-provided intrusion policies, Cisco **strongly** recommends that you modify key default variables in the default set. When you use variables that accurately reflect your network environment, processing is optimized and the system can monitor relevant systems for suspicious activity. Advanced users can create and use custom variable sets for pairing with one or more custom intrusion policies.

Important If you are creating a custom variable set, do not use a number as the first character in a custom variable set name (for example, 3Snort). This will cause Snort 3 validation to fail when you deploy a configuration to Firewall Threat Defense firewall on the Firewall Management Center.

Intrusion Event Generation

When the system identifies a possible intrusion, it generates an *intrusion or preprocessor event* (sometimes collectively called *intrusion events*). Managed devices transmit their events to the Firewall Management Center, where you can view the aggregated data and gain a greater understanding of the attacks against your network assets. In an inline deployment, managed devices can also drop or replace packets that you know to be harmful.

Each intrusion event in the database includes an event header and contains information about the event name and classification; the source and destination IP addresses; ports; the process that generated the event; and the date and time of the event, as well as contextual information about the source of the attack and its target. For packet-based events, the system also logs a copy of the decoded packet header and payload for the packet or packets that triggered the event.

The packet decoder, the preprocessors, and the intrusion rules engine can all cause the system to generate an event. For example:

- If the packet decoder (configured in the network analysis policy) receives an IP packet that is less than 20 bytes, which is the size of an IP datagram without any options or payload, the decoder interprets this as anomalous traffic. If, later, the accompanying decoder rule in the intrusion policy that examines the packet is enabled, the system generates a inspector event.
- If the IP defragmentation preprocessor encounters a series of overlapping IP fragments, the inspector interprets this as a possible attack and, when the accompanying inspector rule is enabled, the system generates a inspector event.
- Within the intrusion rules engine, most standard text rules and shared object rules are written so that they generate intrusion events when triggered by packets.

As the database accumulates intrusion events, you can begin your analysis of potential attacks. The system provides you with the tools you need to review intrusion events and evaluate whether they are important in the context of your network environment and your security policies.

System-Provided and Custom Network Analysis and Intrusion Policies

Creating a new access control policy is one of the first steps in managing traffic flow using the system. By default, a newly created access control policy invokes system-provided network analysis and intrusion policies to examine traffic.

The following diagram shows how a newly created access control policy in an inline, intrusion-prevention deployment initially handles traffic. The preprocessing and intrusion prevention phases are highlighted.

Note how:

- A default network analysis policy governs the preprocessing of *all* traffic handled by the access control policy. Initially, the system-provided *Balanced Security and Connectivity network analysis policy* is the default.
- The default action of the access control policy allows all non-malicious traffic, as determined by the system-provided *Balanced Security and Connectivity intrusion policy*. Because the default action allows traffic to pass, the discovery feature can examine it for host, application, and user data before the intrusion policy can examine and potentially block malicious traffic.
- The policy uses default Security Intelligence options (global Block and Do Not Block lists only), does not decrypt encrypted traffic with an SSL policy, and does not perform special handling and inspection of network traffic using access control rules.

A simple step you can take to tune your intrusion prevention deployment is to use a different set of system-provided network analysis and intrusion policies as your defaults. Cisco delivers several pairs of these policies with the system.

Or, you can tailor your intrusion prevention deployment by creating and using custom policies. You may find that the inspector options, intrusion rule, and other advanced settings configured in those policies do not address the security needs of your network. By tuning your network analysis and intrusion policies you can

System-Provided Network Analysis and Intrusion Policies

configure, at a very granular level, how the system processes and inspects the traffic on your network for intrusions.

System-Provided Network Analysis and Intrusion Policies

Cisco delivers several pairs of network analysis and intrusion policies with the system. By using system-provided network analysis and intrusion policies, you can take advantage of the experience of the Cisco Talos Intelligence Group (Talos). For these policies, Talos provides intrusion and inspector rule states as well as initial configurations for inspectors and other advanced settings.

No system-provided policy covers every network profile, traffic mix, or defensive posture. Each covers common cases and network setups that provide a starting point for a well-tuned defensive policy. Although you can use system-provided policies as-is, Cisco strongly recommends that you use them as the base for custom policies that you tune to suit your network.

Tip Even if you use system-provided network analysis and intrusion policies, you should configure the system's intrusion variables to accurately reflect your network environment. At a minimum, modify key default variables in the default set.

As new vulnerabilities become known, Talos releases intrusion rule updates also known as *Lightweight Security Package* (LSP). These rule updates can modify any system-provided network analysis or intrusion policy, and can provide new and updated intrusion rules and inspector rules, modified states for existing rules, and modified default policy settings. Rule updates may also delete rules from system-provided policies and provide new rule categories, as well as modify the default variable set.

If a rule update affects your deployment, the web interface marks affected intrusion and network analysis policies as out of date, as well as their parent access control policies. You must re-deploy an updated policy for its changes to take effect.

For your convenience, you can configure rule updates to automatically re-deploy affected intrusion policies, either alone or in combination with affected access control policies. This allows you to easily and automatically keep your deployment up-to-date to protect against recently discovered exploits and intrusions.

To ensure up-to-date preprocessing settings, you **must** re-deploy access control policies, which also deploys any associated SSL, network analysis, and file policies that are different from those currently running, and can also can update default values for advanced preprocessing and performance options.

Cisco delivers the following network analysis and intrusion policies with the system:

Balanced Security and Connectivity network analysis and intrusion policies

These policies are built for both speed and detection. Used together, they serve as a good starting point for most organizations and deployment types. The system uses the Balanced Security and Connectivity policies and settings as defaults in most cases.

Connectivity Over Security network analysis and intrusion policies

These policies are built for organizations where connectivity (being able to get to all resources) takes precedence over network infrastructure security. The intrusion policy enables far fewer rules than those enabled in the Security over Connectivity policy. Only the most critical rules that block traffic are enabled.

Security Over Connectivity network analysis and intrusion policies

These policies are built for organizations where network infrastructure security takes precedence over user convenience. The intrusion policy enables numerous network anomaly intrusion rules that could alert on or drop legitimate traffic.

Maximum Detection network analysis and intrusion policies

These policies are built for organizations where network infrastructure security is given even more emphasis than is given by the Security Over Connectivity policies, with the potential for even greater operational impact. For example, the intrusion policy enables rules in a large number of threat categories including malware, exploit kit, old and common vulnerabilities, and known in-the-wild exploits.

No Rules Active intrusion policy

In the No Rules Active intrusion policy, all intrusion rules, and all advanced settings except intrusion rule thresholds, are disabled. This policy provides a starting point if you want to create your own intrusion policy instead of basing it on the enabled rules in one of the other system-provided policies.

Note Depending on the system-provided base policy that is selected, the settings of the policy vary. To view the policy settings, click the **Edit** icon next to the policy and then click the **Base Policy** drop-down box.

Benefits of Custom Network Analysis and Intrusion Policies

You may find that the inspector options, intrusion rules, and other advanced settings configured in the system-provided network analysis and intrusion policies do not fully address the security needs of your organization.

Building custom policies can improve the performance of the system in your environment and can provide a focused view of the malicious traffic and policy violations occurring on your network. By creating and tuning custom policies you can configure, at a very granular level, how the system processes and inspects the traffic on your network for intrusions.

All custom policies have a base policy, also called a base layer, which defines the default settings for all configurations in the policy. A layer is a building block that you can use to efficiently manage multiple network analysis or intrusion policies.

In most cases, you base custom policies on system-provided policies, but you can use another custom policy. However, all custom policies have a system-provided policy as the eventual base in a policy chain. Because rule updates can modify system-provided policies, importing a rule update may affect you even if you are using a custom policy as your base. If a rule update affects your deployment, the web interface marks affected policies as out of date.

Benefits of Custom Network Analysis Policies

By default, one network analysis policy preprocesses all unencrypted traffic handled by the access control policy. That means that all packets are decoded and preprocessed according to the same settings, regardless of the intrusion policy (and therefore intrusion rule set) that later examines them.

Initially, the system-provided Balanced Security and Connectivity network analysis policy is the default. A simple way to tune preprocessing is to create and use a custom network analysis policy as the default.

Tuning options available vary by inspector, but some of the ways you can tune inspectors and decoders include:

Benefits of Custom Intrusion Policies

- You can disable inspectors that do not apply to the traffic you are monitoring. For example, the HTTP Inspect inspector normalizes HTTP traffic. If you are confident that your network does not include any web servers using Microsoft Internet Information Services (IIS), you can disable the inspector option that looks for IIS-specific traffic and thereby reduce system processing overhead.

Note If you disable a inspector in a custom network analysis policy, but the system needs to use that inspector to later evaluate packets against an enabled intrusion or inspector rule, the system automatically enables and uses the inspector although the inspector remains disabled in the network analysis policy web interface.

- Specify ports, where appropriate, to focus the activity of certain inspectors. For example, you can identify additional ports to monitor for DNS server responses or encrypted SSL sessions, or ports on which you decode telnet, HTTP, and RPC traffic.

For advanced users with complex deployments, you can create multiple network analysis policies, each tailored to preprocess traffic differently. Then, you can configure the system to use those policies to govern the preprocessing of traffic using different security zones, networks, or VLANs. (Note that ASA FirePOWER modules cannot restrict preprocessing by VLAN.)

Note Tailoring preprocessing using custom network analysis policies—especially multiple network analysis policies—is an advanced task. Because preprocessing and intrusion inspection are so closely related, you **must** be careful to allow the network analysis and intrusion policies examining a single packet to complement each other.

Benefits of Custom Intrusion Policies

In a newly created access control policy initially configured to perform intrusion prevention, the default action allows all traffic, but first inspects it with the system-provided Balanced Security and Connectivity intrusion policy. Unless you add access control rules or change the default action, all traffic is inspected by that intrusion policy.

To customize your intrusion prevention deployment, you can create multiple intrusion policies, each tailored to inspect traffic differently. Then, configure an access control policy with rules that specify which policy inspects which traffic. Access control rules can be simple or complex, matching and inspecting traffic using multiple criteria including security zone, network or geographical location, VLAN, port, application, requested URL, or user.

The main function of intrusion policies is to manage which intrusion and inspector rules are enabled and how they are configured, as follows:

- Within each intrusion policy, you should verify that all rules applicable to your environment are enabled, and improve performance by disabling rules that are not applicable to your environment. You can specify which rules should drop or modify malicious packets.
- Cisco recommendations allow you to associate the operating systems, servers, and client application protocols detected on your network with rules specifically written to protect those assets.
- You can modify existing rules and write new standard text rules as needed to catch new exploits or to enforce your security policies.


Other customizations you might make to an intrusion policy include:

- The sensitive data preprocessor detects sensitive data such as credit card numbers and Social Security numbers in ASCII text. Note that other inspectors that detect specific threats (back orifice attacks, several portscan types, and rate-based attacks that attempt to overwhelm your network with excessive traffic) are configured in network analysis policies.
- Global thresholds cause the system to generate events based on how many times traffic matching an intrusion rule originates from or is targeted to a specific address or address range within a specified time period. This helps prevent the system from being overwhelmed with a large number of events.
- Suppressing intrusion event notifications and setting thresholds for individual rules or entire intrusion policies can also prevent the system from being overwhelmed with a large number of events.
- In addition to the various views of intrusion events within the web interface, you can enable logging to syslog facilities or send event data to an SNMP trap server. Per policy, you can specify intrusion event notification limits, set up intrusion event notification to external logging facilities, and configure external responses to intrusion events. Note that in addition to these per-policy alerting configurations, you can globally enable or disable email alerting on intrusion events for each rule or rule group. Your email alert settings are used regardless of which intrusion policy processes a packet.

Limitations of Custom Policies

Because preprocessing and intrusion inspection are so closely related, you **must** be careful that your configuration allows the network analysis and intrusion policies processing and examining a single packet to complement each other.

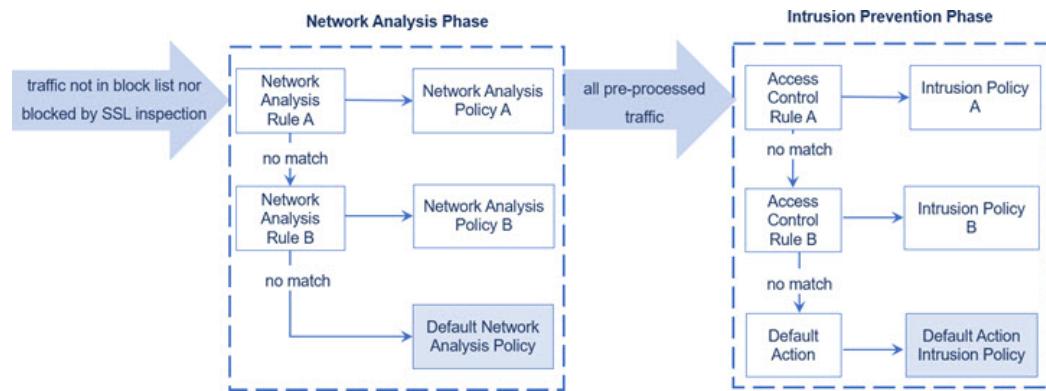
By default, the system uses one network analysis policy to preprocess all traffic handled by managed devices using a single access control policy. The following diagram shows how a newly created access control policy in an inline, intrusion-prevention deployment initially handles traffic. The preprocessing and intrusion prevention phases are highlighted.

Notice how a default network analysis policy governs the preprocessing of *all* traffic handled by the access control policy. Initially, the system-provided Balanced Security and Connectivity network analysis policy is the default.

A simple way to tune preprocessing is to create and use a custom network analysis policy as the default. However, if you disable a inspector in a custom network analysis policy but the system needs to evaluate preprocessed packets against an enabled intrusion or inspector rule, the system automatically enables and uses the inspector although it remains disabled in the network analysis policy web interface.

Note In order to get the performance benefits of disabling an inspector, you **must** make sure that none of your intrusion policies have enabled rules that require that inspector.

An additional challenge arises if you use multiple custom network analysis policies. For advanced users with complex deployments, you can tailor preprocessing to specific security zones, networks, and VLANs by assigning custom network analysis policies to preprocess matching traffic. (Note that ASA FirePOWER cannot restrict preprocessing by VLAN.) To accomplish this, you add custom *network analysis rules* to your access


control policy. Each rule has an associated network analysis policy that governs the preprocessing of traffic that matches the rule.

Tip You configure network analysis rules as an advanced setting in an access control policy. Unlike other types of rules, network analysis rules invoke—rather than being contained by—network analysis policies.

The system matches packets to any configured network analysis rules in top-down order by rule number. Traffic that does not match any network analysis rule is preprocessed by the default network analysis policy. While this allows you a great deal of flexibility in preprocessing traffic, keep in mind that all packets, **regardless** of which network analysis policy preprocessed them, are subsequently matched to access control rules—and thus to potential inspection by intrusion policies—in their own process. In other words, preprocessing a packet with a particular network analysis policy does **not** guarantee that the packet will be examined with any particular intrusion policy. You **must** carefully configure your access control policy so it invokes the correct network analysis and intrusion policies to evaluate a particular packet.

The following diagram shows in focused detail how the network analysis policy (preprocessing) selection phase occurs before and separately from the intrusion prevention (rules) phase. For simplicity, the diagram eliminates the discovery and file/malware inspection phases. It also highlights the default network analysis and default-action intrusion policies.

In this scenario, an access control policy is configured with two network analysis rules and a default network analysis policy:

- Network Analysis Rule A preprocesses matching traffic with Network Analysis Policy A. Later, you want this traffic to be inspected by Intrusion Policy A.
- Network Analysis Rule B preprocesses matching traffic with Network Analysis Policy B. Later, you want this traffic to be inspected by Intrusion Policy B.
- All remaining traffic is preprocessed with the default network analysis policy. Later, you want this traffic to be inspected by the intrusion policy associated with the access control policy's default action.

After the system preprocesses traffic, it can examine the traffic for intrusions. The diagram shows an access control policy with two access control rules and a default action:

- Access Control Rule A allows matching traffic. The traffic is then inspected by Intrusion Policy A.
- Access Control Rule B allows matching traffic. The traffic is then inspected by Intrusion Policy B.

- The access control policy's default action allows matching traffic. The traffic is then inspected by the default action's intrusion policy.

Each packet's handling is governed by a network analysis policy and intrusion policy pair, but the system does **not** coordinate the pair for you. Consider a scenario where you misconfigure your access control policy so that Network Analysis Rule A and Access Control Rule A do not process the same traffic. For example, you could intend the paired policies to govern the handling of traffic on a particular security zone, but you mistakenly use different zones in the two rules' conditions. This could cause traffic to be incorrectly preprocessed. For this reason, tailoring preprocessing using network analysis rules and custom policies is an **advanced** task.

Note that for a single connection, although the system selects a network analysis policy before an access control rule, some preprocessing (notably application layer preprocessing) occurs after access control rule selection. This does **not** affect how you configure preprocessing in custom network analysis policies.

Prerequisites for Network Analysis and Intrusion Policies

To allow the Snort inspection engine to process traffic for intrusion and malware analysis, you must have the IPS license enabled for the Firewall Threat Defense device.

You must be an Admin user to manage network analysis, intrusion policies, and perform migration tasks.

CHAPTER 2

Migrate from Snort 2 to Snort 3

Starting with Version 7.0, Snort 3 is the default inspection engine for new Firewall Threat Defense deployments with Firewall Management Center. Snort 3 is required in Version 7.7+. If you are still using the Snort 2 inspection engine, switch to Snort 3 now for improved detection and performance.

Upgrading Firewall Threat Defense to Version 7.2 through 7.6 also upgrades eligible Snort 2 devices to Snort 3. For devices that are ineligible because they use custom intrusion or network analysis policies, manually upgrade to Snort 3 as described here.

Although you can switch individual devices back, you should not. Upgrading Firewall Threat Defense to Version 7.7+ is blocked for Snort 2 devices.

- [Snort 3 Inspection Engine, on page 19](#)
- [Snort 2 versus Snort 3, on page 20](#)
- [Prerequisites for Network Analysis and Intrusion Policies, on page 20](#)
- [How to Migrate from Snort 2 to Snort 3, on page 20](#)
- [View Snort 2 and Snort 3 Base Policy Mapping, on page 24](#)
- [Synchronize Snort 2 Rules with Snort 3, on page 25](#)
- [Deploy Configuration Changes, on page 26](#)
- [Examples for Migration, on page 28](#)

Snort 3 Inspection Engine

Snort 3 is the default inspection engine for newly registered Firewall Threat Defense devices of version 7.0 and later. However, for Firewall Threat Defense devices of lower versions, Snort 2 is the default inspection engine. When you upgrade a managed Firewall Threat Defense device to version 7.0 or later, the inspection engine remains on Snort 2. To use Snort 3 in upgraded Firewall Threat Defenses of version 7.0 and later, you must explicitly enable it. When Snort 3 is enabled as the inspection engine of the device, the Snort 3 version of the intrusion policy that is applied on the device (through the access control policies) is activated and applied to all the traffic passing through the device.

You can switch Snort versions when required. Snort 2 and Snort 3 intrusion rules are mapped and the mapping is system-provided. However, you may not find a one-to-one mapping of all the intrusion rules in Snort 2 and Snort 3. If you change the rule action for one rule in Snort 2, that change is not retained if you switch to Snort 3 without synchronizing Snort 2 with Snort 3. For more information on synchronization, see [Synchronize Snort 2 Rules with Snort 3, on page 25](#).

Snort 2 versus Snort 3

Snort 3 is architecturally redesigned to inspect more traffic with equivalent resources when compared to Snort 2. Snort 3 provides simplified and flexible insertion of traffic parsers. Snort 3 also provides new rule syntax that makes rule writing easier and shared object rule equivalents visible.

The table below lists the differences between the Snort 2 and the Snort 3 versions in terms of the inspection engine capabilities.

Feature	Snort 2	Snort 3
Packet threads	One per process	Any number per process
Configuration memory use	Number of processes * x GB	x GB in total; more memory available for packets
Configuration reload	Slower	Faster; one thread can be pinned to separate cores
Rule syntax	Inconsistent and requires line escapes	Uniform system with arbitrary whitespace
Rule comments	Comments only	#, #begin and #end marks; C language style

Additional reference: [Differences between Snort 2 and Snort 3 in Firepower](#).

Prerequisites for Network Analysis and Intrusion Policies

To allow the Snort inspection engine to process traffic for intrusion and malware analysis, you must have the IPS license enabled for the Firewall Threat Defense device.

You must be an Admin user to manage network analysis, intrusion policies, and perform migration tasks.

How to Migrate from Snort 2 to Snort 3

Migrating from Snort 2 to Snort 3 requires you to switch the inspection engine of the Firewall Threat Defense device from Snort 2 to Snort 3.

Depending on your requirements, the tasks to complete the migration of your device from Snort 2 to Snort 3 is listed in the following table:

Step	Task	Links to Procedures
1	Enable Snort 3	<ul style="list-style-type: none"> Enable Snort 3 on an Individual Device, on page 21 Enable Snort 3 on Multiple Devices, on page 22

Step	Task	Links to Procedures
2	Convert Snort 2 custom rules to Snort 3	<ul style="list-style-type: none"> Convert all Snort 2 Custom Rules across all Intrusion Policies to Snort 3, on page 23 Convert Snort 2 Custom Rules of a Single Intrusion Policy to Snort 3, on page 24
3	Synchronize Snort 2 rules with Snort 3	Synchronize Snort 2 Rules with Snort 3 , on page 25

Prerequisites for Migrating from Snort 2 to Snort 3

The following are the recommended prerequisites that you must consider before migrating your device from Snort 2 to Snort 3.

- Have a working knowledge of Snort. To learn about the Snort 3 architecture, see [Snort 3 Adoption](#).
- Back up your management center. See [Backup the Management Center](#).
- Back up your intrusion policy. See [Exporting Configurations](#).
- Clone your intrusion policy. To do this, you can use an existing policy as the base policy to create a copy of your intrusion policy. In the **Intrusion Policies** page, click **Create Policy** and choose an existing intrusion policy from the **Base Policy** dropdown list.

Enable Snort 3 on an Individual Device

Important

During the deployment process, there could be a momentary traffic loss because the current inspection engine needs to be shut down.

Procedure

Step 1 Choose **Devices > Device Management**.

Step 2 Click the device to go to the device home page.

Note

The device is marked as Snort 2 or Snort 3, showing the current version on the device.

Step 3 Click the **Device** tab.

Step 4 In the Inspection Engine section, click **Upgrade**.

Note

In case you want to disable Snort 3, click **Revert to Snort 2** in the Inspection Engine section.

Step 5 Click Yes.

What to do next

Deploy the changes on the device. See, [Deploy Configuration Changes, on page 26](#).

The system converts your policy configurations during the deployment process to make them compatible with the selected Snort version.

Enable Snort 3 on Multiple Devices

To enable Snort 3 on multiple devices, ensure all the required Firewall Threat Defense devices are on version 7.0 or later.

Important During the deployment process, there could be a momentary traffic loss because the current inspection engine needs to be shut down.

Procedure

Step 1 Choose **Devices > Device Management**.

Step 2 Select all the devices on which you want to enable or disable Snort 3.

Note

The devices are marked as Snort 2 or Snort 3, showing the current version on the device.

Step 3 Click **Select Bulk Action** drop-down list and choose **Upgrade to Snort 3**.

Step 4 Click Yes.

What to do next

Deploy the changes on the device. See, [Deploy Configuration Changes, on page 26](#).

The system converts your policy configurations during the deployment process to make them compatible with the selected Snort version.

Convert Snort 2 Custom IPS Rules to Snort 3

If you are using a rule set from a third-party vendor, contact that vendor to confirm that their rules successfully convert to Snort 3 or to obtain a replacement rule set written natively for Snort 3. If you have custom rules that you have written yourself, familiarize with writing Snort 3 rules prior to conversion, so you can update your rules to optimize Snort 3 detection after conversion. See the links below to learn more about writing rules in Snort 3.

- <https://blog.snort.org/2020/08/how-rules-are-improving-in-snort-3.html>

- <https://blog.snort.org/2020/10/talos-transition-to-snort-3.html>

You can refer to other blogs at <https://blog.snort.org/> to learn more about Snort 3 rules.

See the following procedures to convert Snort 2 rules to Snort 3 rules using the system-provided tool.

- [Convert all Snort 2 Custom Rules across all Intrusion Policies to Snort 3, on page 23](#)
- [Convert Snort 2 Custom Rules of a Single Intrusion Policy to Snort 3, on page 24](#)

Important Snort 2 network analysis policy (NAP) settings *cannot* be copied to Snort 3 automatically. NAP settings have to be manually replicated in Snort 3.

Convert all Snort 2 Custom Rules across all Intrusion Policies to Snort 3

Procedure

Step 1 Choose **Objects > Intrusion Rules**.

Step 2 Click **Snort 3 All Rules** tab.

Step 3 Ensure **All Rules** is selected in the left pane.

Step 4 Click the **Tasks** drop-down list and choose:

- **Convert Snort 2 rules and import**—To automatically convert all the Snort 2 custom rules across all the intrusion policies to Snort 3 and import them into Firewall Management Center as Snort 3 custom rules.
- **Convert Snort 2 rules and download**—To automatically convert all the Snort 2 custom rules across all the intrusion policies to Snort 3 and download them into your local system.

Step 5 Click **OK**.

Note

- If you selected **Convert and import** in the previous step, then all the converted rules are saved under a newly created rule group **All Snort 2 Converted Global** under **Local Rules**.
- If you selected **Convert and download** in the previous step, then save the rules file locally. You can review the converted rules in the downloaded file and later upload them by following the steps in [Add Custom Rules to Rule Groups, on page 64](#).

Refer to the video [Converting Snort 2 Rules to Snort 3](#) for additional support and information.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Convert Snort 2 Custom Rules of a Single Intrusion Policy to Snort 3

Procedure

Step 1 Choose **Policies > Access Control** heading > **Intrusion**.

Step 2 In the **Intrusion Policies** tab, click **Show Snort 3 Sync status**.

Step 3 Click the **Sync** icon **Snort out-of-Sync** (►) of the intrusion policy.

Note

If the Snort 2 and the Snort 3 versions of the intrusion policy are synchronized, then the **Sync** icon is in blue **Snort in-Sync** (➔). It indicates that there are no custom rules to be converted.

Step 4 Read through the summary and click the **Custom Rules** tab.

Step 5 Choose:

- **Import converted rules to this policy**—To convert the Snort 2 custom rules in the intrusion policy to Snort 3 and import them into Firewall Management Center as Snort 3 custom rules.
- **Download converted rules**—To convert the Snort 2 custom rules in the intrusion policy to Snort 3 and download them into your local system. You can review the converted rules in the downloaded file and later upload the file by clicking the upload icon.

Step 6 Click **Re-Sync**.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

View Snort 2 and Snort 3 Base Policy Mapping

Note

Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

Procedure

Step 1 Choose **Policies > Access Control** heading > **Intrusion**.

Step 2 Ensure the **Intrusion Policies** tab is selected.

Step 3 Click **IPS Mapping**.

Step 4 In the **IPS Policy Mapping** dialog box, click **View Mappings** to view the Snort 3 to Snort 2 intrusion policy mapping.

Step 5 Click OK.

Synchronize Snort 2 Rules with Snort 3

To ensure that the Snort 2 version settings and custom rules are retained and carried over to Snort 3, the Firewall Management Center provides the synchronization functionality. Synchronization helps Snort 2 rule override settings and custom rules, which you may have altered and added over the last few months or years, to be replicated on the Snort 3 version. This utility helps to synchronize Snort 2 version policy configuration with Snort 3 version to start with similar coverage.

Note Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

If the Firewall Management Center is upgraded from 6.7 or earlier to 7.0 or later version, the system synchronizes the configuration. If the Firewall Management Center is a fresh 7.0 or later version, you can upgrade to a higher version, and the system will not synchronize any content during upgrade.

Before upgrading a device to Snort 3, if changes are made in Snort 2 version, you can use this utility to have the latest synchronization from Snort 2 version to Snort 3 version so that you start with a similar coverage.

Note On moving to Snort 3, it is recommended that you manage the Snort 3 version of the policy independently and do not use this utility as a regular operation.

Important

- Only the Snort 2 rule overrides and custom rules are copied to Snort 3 and not the other way around. You may not find a one-to-one mapping of all the intrusion rules in Snort 2 and Snort 3. Your changes to rule actions for rules that exist in both versions are synchronized when you perform the following procedure.
- Synchronization *does not* migrate the threshold and suppression settings of any custom or system-provided rules from Snort 2 to Snort 3.

Procedure

- Step 1** Choose **Policies > Access Control heading > Intrusion**.
- Step 2** Ensure the **Intrusion Policies** tab is selected.
- Step 3** Click **Show Snort 3 Sync status**.
- Step 4** Identify the intrusion policy that is out-of-sync.
- Step 5** Click the **Sync** icon **Snort out-of-Sync** (►).

Deploy Configuration Changes

Note

If the Snort 2 and the Snort 3 versions of the intrusion policy are synchronized, then the **Sync** icon is in blue **Snort in-Sync (→)**.

Step 6 Read through the summary and download a copy of the summary if required.

Step 7 Click **Re-Sync**.

Note

- The synchronized settings will be applicable on the Snort 3 intrusion engine only if it is applied on a device, and after a successful deployment.
- Snort 2 custom rules can be converted to Snort 3 using the system-provided tool. If you have any Snort 2 custom rules click the Custom Rules tab and follow the on-screen instructions to convert the rules. For more information, see [Convert Snort 2 Custom Rules of a Single Intrusion Policy to Snort 3, on page 24](#).

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Deploy Configuration Changes

After you change configurations, deploy them to the affected devices.

Note

This topic covers the basic steps involved in deploying configuration changes. We *strongly* recommend that you refer the *Deploy Configuration Changes* topic in the latest version of the [Cisco Secure Firewall Management Center Device Configuration Guide](#) to understand the prerequisites and implications of deploying the changes before proceeding with the steps.

Caution

When you deploy, resource demands may result in a small number of packets dropping without inspection. Additionally, deploying some configurations restarts the Snort process, which interrupts traffic inspection. Whether traffic drops during this interruption or passes without further inspection depends on how the target device handles traffic.

Procedure

Step 1 On the Firewall Management Center menu bar, click **Deploy** and choose **Deployment**.

The GUI page lists the devices with out-of-date configurations having **Pending** status.

- The **Modified By** column lists the users who have modified the policies or objects. Expand the device listing to view the users who have modified the policies for each policy listing.

Note

Usernames are not provided for deleted policies and objects.

- The **Inspect Interruption** column indicates if traffic inspection interruption might occur in the device during deployment.

If this column is blank for a device, it indicates that there will be no traffic inspection interruptions on that device during deployment.

- The **Last Modified Time** column specifies the last time you made configuration changes.
- The **Preview** column allows you to preview the changes for the next deployment.
- The **Status** column provides the status for each deployment.

Step 2 Identify and choose the devices on which you want to deploy configuration changes.

- Search—Search for the device name, type, domain, group, or status in the search box.
- Expand—Click **Expand Arrow** (>) to view device-specific configuration changes to be deployed.

When you check a check box adjacent to a device, all the changes made to the device and listed under the device, are pushed for deployment. However, you can use **Policy selection** () to select individual policies or specific configurations to deploy while withholding the remaining changes without deploying them.

Note

- When the status in the **Inspect Interruption** column indicates (Yes) that deploying will interrupt inspection, and perhaps traffic, on a Firewall Threat Defense device, the expanded list indicates the specific configurations causing the interruption with the **Inspect Interruption** ().
- When there are changes to interface groups, security zones, or objects, the impacted devices are shown as out-of-date on the Firewall Management Center. To ensure that these changes take effect, the policies with these interface groups, security zones, or objects, also need to be deployed along with these changes. The impacted policies are shown as out-of-date on the **Preview** page on the Firewall Management Center.

Step 3 Click **Deploy**.**Step 4** If the system identifies errors or warnings in the changes to be deployed, it displays them in the **Validation Messages** window. To view complete details, click the arrow icon before the warnings or errors.

You have the following choices:

- Deploy—Continue deploying without resolving warning conditions. You cannot proceed if the system identifies errors.
- Close—Exit without deploying. Resolve the error and warning conditions, and attempt to deploy the configuration again.

What to do next

During deployment, if there is a deployment failure, there is a possibility that the failure may impact traffic. However, it depends on certain conditions. If there are specific configuration changes in the deployment, the

deployment failure may lead to traffic being interrupted. For details, see the Deploy Configuration Changes topic in the latest version of the *Cisco Secure Firewall Management Center Device Configuration Guide*.

Examples for Migration

Migrate from Snort 2 to Snort 3

Snort is an intrusion detection and prevention system that has undergone a significant change from Version 2 to Version 3. To leverage the enhanced features and capabilities of Snort 3, migration of the existing rule sets from Snort 2 becomes crucial. This migration process involves converting and adapting the Snort 2 rules to the Snort 3 rule syntax and optimizing them for improved detection and performance.

In some cases, organizations can have the threat defense devices managed by the Secure Firewall Management Center. Organizations can opt for a hybrid deployment approach during the migration from Snort 2 to Snort 3. This approach allows for a gradual transition and minimizes potential disruptions, if any.

Benefits of Migrating to Snort 3

- **Enhanced protocol support**—Snort 3 provides improved protocol support, allowing you to monitor and detect threats across a wide range of modern protocols, including encrypted traffic.
- **Streamlined rule management**—Snort 3 offers a more user-friendly rule language and rule management system, making it easier to create, modify, and manage rules effectively.
- **Improved performance**—Snort 3 has been optimized to handle higher traffic volumes more efficiently, reducing the risk of performance bottlenecks and ensuring timely threat detection.

Sample Business Scenario

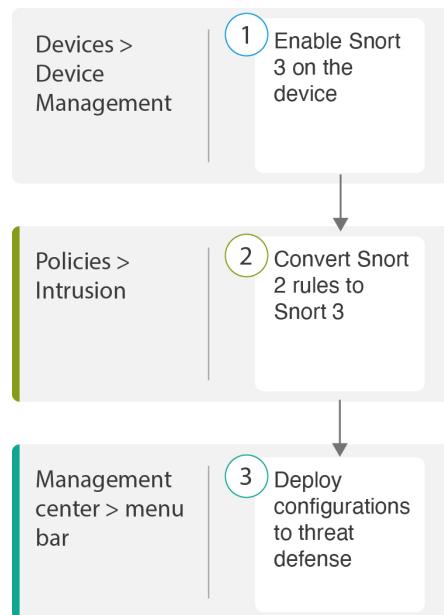
Alice works as a security analyst in a large organization that heavily relies on the Snort inspection engine to monitor and protect their network infrastructure. The organization has been using Snort Version 2 for several years, but they have encountered some limitations and challenges.

Bob, the network administrator, is looking to migrate from Snort 2 to Snort 3 to overcome these issues and enhance his organization's network security capabilities.

This migration will also improve network security monitoring, enhance performance, and streamline rule management.

Best Practices for Migrating from Snort 2 to Snort 3

- Back up your intrusion policy before performing the migration. See the Export Configurations task in the *Cisco Secure Firewall Management Center Administration Guide*.
- Before upgrading a device to Snort 3, if changes are made in Snort 2, use the synchronize utility to include the latest synchronization from Snort 2 to Snort 3 so that you can start with a similar coverage. See [Synchronize Snort 2 Rules with Snort 3 , on page 25](#).
- Snort 2 custom rules are not automatically converted to Snort 3 and must be manually migrated. See [Convert Snort 2 Custom IPS Rules to Snort 3 , on page 22](#).


- Synchronization does not migrate Snort 2 rules with thresholds or suppressions. These rules must be created again in Snort 3.

Prerequisites

- Have a working knowledge of Snort. To learn about the Snort 3 architecture, see [Snort 3 Adoption](#).
- Back up your management center. See [Backup the Management Center](#).
- Back up your intrusion policy. See [Exporting Configurations](#).

End-to-End Migration Workflow

The following flowchart illustrates the workflow for migrating Snort 2 to Snort 3 in Secure Firewall Management Center.

Step	Description
1	Enable Snort 3 on the device. See Enable Snort 3 on Threat Defense, on page 30 .
2	Convert Snort 2 rules to Snort 3. See Convert Snort 2 Rules of a Single Intrusion Policy to Snort 3, on page 31 .
3	Deploy configuration. See Deploy Configuration Changes, on page 26 .

Attention During the deployment process, there could be a momentary traffic loss because the current inspection engine needs to be shut down.

Procedure

Step 1 Choose **Devices > Device Management**.

Step 2 Click the corresponding device to go to the device home page.

Step 3 Click the **Device** tab.

Step 4 In the **Inspection Engine** section, click **Upgrade**.

Inspection Engine

Inspection Engine:

Snort 2

Before you upgrade, read and understand the Snort 3 configuration guide for your version:
<https://www.cisco.com/go/fmc-snort3>. Pay special attention to feature limitations and migration instructions. Although upgrading to Snort 3 is designed for minimal impact, features do not map exactly. Custom intrusion rules are not automatically migrated during upgrade but **options** are available to migrate. Careful planning and preparation can help you make sure that traffic is handled as expected.

Upgrading to Snort 3 also deploys configuration changes to affected devices. This briefly interrupts traffic flow and inspection on all devices, including those configured for high availability/scalability. Interface configurations determine whether traffic drops or passes without inspection during the interruption. For details, see the **Snort Restart Traffic Behavior** section in the online help.

Upgrade to Snort3 should be done during a maintenance window.

Upgrade

Step 5 Click **Yes**.

What to do next

Deploy the changes on the device. See [Deploy Configuration Changes, on page 26](#).

The system converts your policy configurations during the deployment process to make them compatible with the selected Snort version.

Convert Snort 2 Rules of a Single Intrusion Policy to Snort 3

Procedure

Step 1 Choose **Policies > Access Control heading > Intrusion > Intrusion Policies**.

Step 2 In the **Intrusion Policies** tab, click **Show Snort 3 Sync status**.

Intrusion Policy	Description	Base Policy	Usage Information
policy123	Balanced Security a...	No Access Control Policy No Zero Trust Application No Targeting 0 devices	

If your policy displays an orange arrow, it indicates that the Snort 2 and the Snort 3 versions of the intrusion policy are not synchronized.

Intrusion Policy	Description	Base Policy	Usage Information
policy123	Snort 3 is out of	Balanced Security a...	No Access Control Policy No Zero Trust Application Targeting 0 devices

Step 3 Click the orange arrow.

The **Snort 2 to Snort 3 Sync Summary** page displays that the Snort 2 to Snort 3 sync is pending.

Convert Snort 2 Rules of a Single Intrusion Policy to Snort 3

Snort 2 to Snort 3 Sync Summary

This is a utility to synchronize Snort 2 policy configuration with Snort 3 version to start with a similar coverage.

- Snort 3 policy configuration is synced from Snort 2 version by the system when Firewall Management Center is upgraded from pre-7.0 version.
- Before upgrading a device to Snort 3, If changes are made in Snort 2 version, you can use this utility to have the latest synchronization from Snort 2 version to Snort 3 version so that you start with similar coverage.

Note: After moving to Snort 3, it is recommended that you manage the Snort 3 version of the policy independently and do not use this utility as a regular operation.

[Click here](#) to learn more.

Policy Name: policy123

► Snort 3 and Snort 2 Sync Pending 2025-01-10 03:49:25 EST

Used by: No Access Control Policy | No Device

Step 4 Click **Re-Sync** to start the synchronization.

Note

When you click **Re-Sync**, the snort2Lua tool converts the rules from Snort 2 to Snort 3.

The **Summary Details** section lists the rules that were migrated or skipped. In our use case, there are 76 custom Snort 2 rules, 17 rules with thresholds, and 15 rules with suppression that were skipped during the sync process. To migrate the custom rules, go to the next step.

Policy Name: _Intrusion_Policy_1

► Snort 3 is partially in sync with Snort 2. 2023-08-01 05:42:52 EDT

Used by: 1 Access Control Policy | 0 Devices (Snort 2), 1 Devices (Snort 3)

Summary Details

Rule Overrides

● Based on Talos rule-mapping 18639 Snort 2 rule action overrides migrated to 18635 Snort 3 rules.

▲ Rules migration skipped for 17 rules with threshold, 15 rules with suppression, as sync of Suppression and Threshold setting(s) are not supported.

▲ Rules migration skipped for 76 custom rules, as sync of Custom Rule setting(s) are not supported. You can manually convert the Snort 2 custom rules to Snort 3 using the snort2Lua tool.

Download Summary Details

Overridden Advanced Custom Rules

The custom rules are not auto-converted to the Snort 3 version, as Snort 3 rules are written differently compared to Snort 2 rules. Use one of the following options to convert the custom rules manually:

To migrate rules with thresholds and suppressions, go to [Step 6](#).

Policy Name: **■_Intrusion_Policy_1**

► Snort 3 is partially in sync with Snort 2. 2023-08-01 05:42:52 EDT

Used by: 1 Access Control Policy | 0 Devices (Snort 2), 1 Devices (Snort 3)

Summary Details

Rule Overrides

● Based on Talos rule-mapping 18639 Snort 2 rule action overrides migrated to 18635 Snort 3 rules.

▲ Rules migration skipped for 17 rules with threshold, 15 rules with suppression, as sync of Suppression and Threshold setting(s) are not supported.

▲ Rules migration skipped for 76 custom rules, as sync of Custom Rule setting(s) are not supported. You can manually convert the Snort 2 custom rules to Snort 3 using the snort2Lua tool.

[Download Summary Details](#)

Overridden Advanced **Custom Rules**

The custom rules are not auto-converted to the Snort 3 version, as Snort 3 rules are written differently compared to Snort 2 rules. Use one of the following options to convert the custom rules manually:

Step 5

To migrate the 76 custom rules, perform either one of these steps:

- In the **Custom Rules** tab, click the **Import** icon to convert and auto-import the local rules to the Snort 3 version of the policy.

Overridden Advanced **Custom Rules**

Convert the rules and auto-import them to the Snort 3 version of the policy

OR

Download converted rules You can upload the file after you have reviewed the converted rules

A confirmation message is displayed after the rules are successfully imported.

- Choose **Objects > Intrusion Rules** and click **Snort 3 All Rules**.
 - Click **Local Rules** in the left panel to check if any rules have been migrated. Notice that no custom rules from Snort 2 have been migrated.
 - From the **Tasks** drop-down list, choose **Convert Snort 2 rules and import**.

Convert Snort 2 Rules of a Single Intrusion Policy to Snort 3

< Intrusion Policy

The screenshot shows the 'Intrusion Policy' interface. The left panel displays 'All Rules' with two main categories: 'Local Rules(1 group)' and 'MITRE(1 group)'. The right panel also displays 'All Rules' and shows a total of 51,056 rules. A specific rule, '133:3 (dce_smb)', is highlighted in the table, showing its details: GID:SID, Info, Rule Action, Assigned Groups, and Alert Configuration.

c. Click **OK**.

The screenshot shows the 'Intrusion Policy' interface with the 'Snort 3 All Rules' tab selected. The left panel shows 'All Rules' with a new group 'All Snort 2 Converted Global' under 'Local Rules'. The right panel shows a table of rules with a message box stating 'The custom rules were successfully imported.'

A newly created rule group (**All Snort 2 Converted Global**) is created under **Local Rules** in the left panel.

Notice that all 76 custom rules have been migrated, as shown in the following figure.

The screenshot shows the 'Intrusion Policy' interface with the 'Snort 3 All Rules' tab selected. The left panel shows 'All Rules' with the 'All Snort 2 Converted Global' group under 'Local Rules'. The right panel shows a table of rules with a message box stating 'The custom rules were successfully imported.'

Alternatively, you can select the **Convert Snort 2 rules and download** in the previous step to save the rules file locally. You can review the converted rules in the downloaded file and later upload them using the **Upload Snort 3 rules** option.

Step 6

Click the **Download Summary Details** link to download the rules in .txt format.

The following is a sample of the summary that is displayed.

```

"id": "00505691-15DC-0ed3-0000-004294988561",
"name": "_Intrusion_Policy_1",
"type": "IntrusionPolicy",
"syncStatus": {
  "source": {
    "id": "bdce2d6a-1ebe-11ee-8e88-220032eb1fb5",
    "type": "IntrusionPolicy"
  },
  "status": "WARN",
  "description": "Migration is partially successful. Some of the rules are not copied to Snort3.",
  "timestamp": 1690883954814,
  "lastUser": {
    "name": "admin"
  },
  "details": [
    {
      "type": "Summary",
      "status": "INFO",
      "description": "Based on Talos rule-mapping 18639 Snort 2 rule action overrides migrated to 18635 Snort 3 rules."
    },
    {
      "id": "1:1000156=alert,1:1000114=alert,1:1000160=alert,1:1000135=alert,1:1000115=alert,1:1000118=alert,1:1000092=alert,1:1000139=alert,1:1000123=alert,1:1000159=alert,1:1000149=disabled,1:1000167=alert,1:1000133=alert,1:1000095=alert,1:1000143=alert,1:1000106=alert,1:1000153=alert,1:1000097=alert,1:1000141=alert,1:1000148=alert,1:1000090=alert,1:1000119=alert,1:1000112=alert,1:1000138=alert,1:1000128=alert,1:1000132=alert,1:1000134=alert,1:1000145=disabled,1:1000110=disabled,1:1000107=alert,1:1000163=alert,1:1000124=alert,1:1000125=alert,1:1000094=alert,1:1000113=disabled,1:1000147=alert,1:1000161=alert,1:1000105=disabled,1:1000140=alert,1:1000111=alert,1:1000102=alert,1:1000129=disabled,1:1000108=alert,1:1000144=disabled,1:1000088=alert,1:1000091=alert,1:1000131=alert,1:1000157=alert,1:1000120=alert,1:1000126=alert,1:1000165=alert,1:1000146=alert,1:1000162=alert,1:1000116=alert,1:1000142=alert,1:1000170=disabled,1:1000169=alert,1:1000104=alert,1:1000099=disabled,1:1000171=alert,1:1000093=alert,1:1000087=alert,1:1000100=alert,1:1000137=alert,1:1000158=alert,1:1000103=alert,1:1000098=alert,1:1000127=disabled,1:1000130=alert,1:1000164=alert,1:1000089=alert,1:1000109=alert,1:1000136=alert,1:1000117=alert,1:1000166=alert,1:1000168=alert",
      "type": "PolicyInfo",
      "description": "Corresponding Snort 2 policy overridden custom (local) rules."
    },
    {
      "type": "AssignedDevices",
      "status": "INFO",
      "description": "Snort3:0 , Snort2:0"
    }
  ]
}

```

Deploy Configuration Changes

```
{
  "id": "122:6",
  "type": "Threshold",
  "status": "ERROR",
  "description": "PSNG_TCP_FILTERED_DECOY_PORTSCAN"
},
{
  "id": "122:15",
  "type": "Threshold",
  "status": "ERROR",
  "description": "PSNG_IP_PORTSWEET_FILTERED"
},
{
  "id": "122:1",
  "type": "Threshold",
  "status": "ERROR",
  "description": "PSNG_TCP_PORTSCAN"
},
```

Step 7 Click **Close** to close the **Sync Summary** dialog box.

Step 8 To check the rules with status: ERROR, choose **Policies > Access Control heading > Intrusion** and click the **Snort 2** version of the intrusion policy.

Step 9 Under **Policy Information**, click **Rules** and filter for the rule. For example, enter **PSNG_TCP_PORTSCAN** in the **Filter** field to find the rule.

Step 10 Click **Show Details** to view the detailed version of the rule.

Step 11 Create the rule again in Snort 3 using Snort 3 rule guidelines and save the file as a .txt or .rules file. For more information, see www.snort3.org.

Step 12 Upload the custom rule that you just created locally to the list of all the Snort 3 rules. See [Add Custom Rules to Rule Groups](#).

What to do next

Deploy configuration changes. See [Deploy Configuration Changes](#), on page 26.

Deploy Configuration Changes

After you change configurations, deploy them to the affected devices.

Note This topic covers the basic steps involved in deploying configuration changes. We *strongly* recommend that you refer the *Deploy Configuration Changes* topic in the latest version of the [Cisco Secure Firewall Management Center Device Configuration Guide](#) to understand the prerequisites and implications of deploying the changes before proceeding with the steps.

Caution When you deploy, resource demands may result in a small number of packets dropping without inspection. Additionally, deploying some configurations restarts the Snort process, which interrupts traffic inspection. Whether traffic drops during this interruption or passes without further inspection depends on how the target device handles traffic.

Procedure

Step 1 On the Firewall Management Center menu bar, click **Deploy** and choose **Deployment**.

The GUI page lists the devices with out-of-date configurations having **Pending** status.

- The **Modified By** column lists the users who have modified the policies or objects. Expand the device listing to view the users who have modified the policies for each policy listing.

Note

Usernames are not provided for deleted policies and objects.

- The **Inspect Interruption** column indicates if traffic inspection interruption might occur in the device during deployment.

If this column is blank for a device, it indicates that there will be no traffic inspection interruptions on that device during deployment.

- The **Last Modified Time** column specifies the last time you made configuration changes.
- The **Preview** column allows you to preview the changes for the next deployment.
- The **Status** column provides the status for each deployment.

Step 2 Identify and choose the devices on which you want to deploy configuration changes.

- Search—Search for the device name, type, domain, group, or status in the search box.
- Expand—Click **Expand Arrow** (>) to view device-specific configuration changes to be deployed.

When you check a check box adjacent to a device, all the changes made to the device and listed under the device, are pushed for deployment. However, you can use **Policy selection** () to select individual policies or specific configurations to deploy while withholding the remaining changes without deploying them.

Note

- When the status in the **Inspect Interruption** column indicates (**Yes**) that deploying will interrupt inspection, and perhaps traffic, on a Firewall Threat Defense device, the expanded list indicates the specific configurations causing the interruption with the **Inspect Interruption** ().
- When there are changes to interface groups, security zones, or objects, the impacted devices are shown as out-of-date on the Firewall Management Center. To ensure that these changes take effect, the policies with these interface groups, security zones, or objects, also need to be deployed along with these changes. The impacted policies are shown as out-of-date on the **Preview** page on the Firewall Management Center.

Step 3 Click **Deploy**.

Step 4 If the system identifies errors or warnings in the changes to be deployed, it displays them in the **Validation Messages** window. To view complete details, click the arrow icon before the warnings or errors.

You have the following choices:

- Deploy—Continue deploying without resolving warning conditions. You cannot proceed if the system identifies errors.

- Close—Exit without deploying. Resolve the error and warning conditions, and attempt to deploy the configuration again.

What to do next

During deployment, if there is a deployment failure, there is a possibility that the failure may impact traffic. However, it depends on certain conditions. If there are specific configuration changes in the deployment, the deployment failure may lead to traffic being interrupted. For details, see the Deploy Configuration Changes topic in the latest version of the *Cisco Secure Firewall Management Center Device Configuration Guide*.

CHAPTER 3

Intrusion Policies

This chapter provides information on managing Snort 3 intrusion policies and access control rule configurations for intrusion detection and prevention.

- [Overview of Intrusion Policies, on page 39](#)
- [Prerequisites for Network Analysis and Intrusion Policies, on page 40](#)
- [Create a Custom Snort 3 Intrusion Policy , on page 41](#)
- [Edit Snort 3 Intrusion Policies, on page 41](#)
- [Change the Base Policy of an Intrusion Policy, on page 46](#)
- [View Snort 2 and Snort 3 Base Policy Mapping, on page 47](#)
- [Synchronize Snort 2 Rules with Snort 3 , on page 47](#)
- [Manage Intrusion Policies, on page 48](#)
- [Access Control Rule Configuration to Perform Intrusion Prevention, on page 49](#)
- [Tune Intrusion Policies Using Rules, on page 51](#)
- [Recommended Rules, on page 68](#)
- [Mitigate Threats Using MITRE Framework in Snort 3 Intrusion Policies, on page 72](#)

Overview of Intrusion Policies

Intrusion policies are defined sets of intrusion detection and prevention configurations that inspect traffic for security violations and, in inline deployments, can block or alter malicious traffic. Intrusion policies are invoked by your access control policy and are the system’s last line of defense before traffic is allowed to its destination.

At the heart of each intrusion policy are the intrusion rules. An enabled rule causes the system to generate intrusion events for (and optionally block) traffic matching the rule. Disabling a rule stops processing of the rule.

The system delivers several base intrusion policies, which enable you to take advantage of the experience of the Cisco Talos Intelligence Group (Talos). For these policies, Talos sets intrusion and inspector rule states (enabled or disabled), as well as provides the initial configurations for other advanced settings.

Tip System-provided intrusion and network analysis policies are similarly named but contain different configurations. For example, the Balanced Security and Connectivity network analysis policy and the Balanced Security and Connectivity intrusion policy work together and can both be updated in intrusion rule updates. However, the network analysis policy governs mostly preprocessing options, whereas the intrusion policy governs mostly intrusion rules.

If you create a custom intrusion policy, you can:

- Tune detection by enabling and disabling rules, as well as by writing and adding your own rules.
- Use Secure Firewall recommendations to associate the operating systems, servers, and client application protocols detected on your network with rules specifically written to protect those assets.

An intrusion policy can drop matching packets and generate intrusion events. To configure an intrusion or preprocessor drop rule, set its state to Block.

When tailoring your intrusion policy, especially when enabling and adding rules, keep in mind that some intrusion rules require that traffic first be decoded or preprocessed in a certain way. Before an intrusion policy examines a packet, the packet is preprocessed according to configurations in a network analysis policy. If you disable a required inspector, the system automatically uses it with its current settings, although the inspector remains disabled in the network analysis policy web interface.

Caution Because preprocessing and intrusion inspection are so closely related, the network analysis and intrusion policies examining a single packet **must** complement each other. Tailoring preprocessing, especially using multiple custom network analysis policies, is an **advanced** task.

After you configure a custom intrusion policy, you can use it as part of your access control configuration by associating the intrusion policy with one or more access control rules or an access control policy's default action. This forces the system to use the intrusion policy to examine certain allowed traffic before the traffic passes to its final destination. A variable set that you pair with the intrusion policy allows you to accurately reflect your home and external networks and, as appropriate, the servers on your network.

Note that by default, the system disables intrusion inspection of encrypted payloads. This helps reduce false positives and improve performance when an encrypted connection matches an access control rule that has intrusion inspection configured.

Refer to the video for additional support and information - [Snort 3 Intrusion Policy Overview](#).

Prerequisites for Network Analysis and Intrusion Policies

To allow the Snort inspection engine to process traffic for intrusion and malware analysis, you must have the IPS license enabled for the Firewall Threat Defense device.

You must be an Admin user to manage network analysis, intrusion policies, and perform migration tasks.

Create a Custom Snort 3 Intrusion Policy

Procedure

Step 1 Choose **Policies > Access Control heading > Intrusion**.

Step 2 Click **Create Policy**.

Step 3 Enter a unique **Name** and, optionally, a **Description**.

Step 4 Choose the **Inspection Mode**.

The selected action determines whether intrusion rules block and alert (**Prevention** mode) or only alert (**Detection** mode).

Note

Before selecting the prevention mode, you might want block rules to alert only so you can identify rules that cause a lot of false positives.

Step 5 Choose the **Base Policy**.

You can use either a system-provided policy or an existing policy as your base policy.

Step 6 Click **Save**.

The new policy has the same settings as its base policy.

What to do next

To customize the policy, see [Edit Snort 3 Intrusion Policies, on page 41](#).

Edit Snort 3 Intrusion Policies

While editing a Snort 3 policy, all the changes are saved instantaneously. No additional action is required to save the changes.

Procedure

Step 1 Choose **Policies > Access Control heading > Intrusion**.

Step 2 Ensure the **Intrusion Policies** tab is selected.

Step 3 Click **Snort 3 Version** next to the intrusion policy you want to configure.

Step 4 Edit your policy:

- Change the mode—Click the **Mode** drop-down to change the inspection mode.

Caution

The inspection mode is changed only for the Snort 3 version of the policy. The existing inspection mode is retained in the Snort 2 version as is, which means that your Snort 2 and Snort 3 versions of the policy will have different inspection modes. We recommend you to use this option with caution.

- **Prevention**—Triggered Block rules create an event (alert) and drop the connection.
- **Detection**—Triggered Block rules create an alert.

You can choose the detection mode before going for prevention. For example, before choosing the prevention mode, you might want block rules to alert only, so that you can identify rules that cause a lot of false positives.

Step 5 Click the **Base Policy** layer that defines the intrusion policy's default settings.

- Search rules—Use the search field to filter the display. You can enter the GID, SID, rule message, or reference info. For example, GID:1; SID:9621—to display only rule 1:962, SID:9621,9622,9623—to display multiple rules with different SIDs. You can also click inside the Search text box to choose any of the following options:
 - apply the filters **Action = Alert**, or **Action: Block**
 - apply the **Disabled Rules** filter
 - show **Custom/User Defined Rules**
 - filter by GID, SID, or GID:SID
 - filter by CVE
 - filter by comment
- View filtered rules—Click any of the **Presets** to view rules that are set to alert, block, disabled, and so on.

Overridden rules indicate the rules where the rule action has been changed from the default action to a different action. Note that, once changed, the rule action status is Overridden even if you change it back to its original default action. However, if you select **Revert to default** from the **Rule Action** drop-down list, the Overridden status is removed.

Advanced Filters provides filter options based on the Lightweight Security Package (LSP) releases, Classifications of intrusions, and Microsoft Vulnerabilities.

- View rule documentation—Click the rule ID or the **Rule Documentation** icon to display Talos documentation for the rule.
- View a rule details—Click the **Expand Arrow (>)** icon in a rule row to view the rule details.
- Add rule comments—Click **Comment (💬)** under the Comments column to add comments for a rule.

Step 6 **Group Overrides**—Click the **Group Overrides** layer that lists all the categories of rule groups. The top level parent rule groups with Description, Overrides and Enabled Groups, and so on is displayed. Parent rule groups cannot be updated and are read-only. Only the leaf rule groups can be updated. In each rule group, you can traverse up to the last leaf group. Across each group, you can override, include, and exclude rule groups. In the leaf rule groups, you can:

- Search rule groups—Use the search field to enter keywords and search for rule groups.
- In the left panel, you can choose any of the preset filter options to search for rule groups:

- All—For displaying all rule groups.
- Excluded—For excluded groups.
- Included—For included groups.
- Overridden—For rule group configuration that is overridden.

- Set the security level for a rule group—Navigate to the required rule group on the left pane and click it. Click **Edit** next to the **Security Level** of the rule group to increase or decrease the security level based on system-defined rule settings.

In the **Edit Security Level** dialog box, you have the option to click **Revert to Default**, which reverts the changes you made.

The Firewall Management Center automatically changes the action for the rules of the rule group for the configured security level. In the **Rule Overrides** layer, notice the count of Block Rules and Disabled Rules in the **Presets** every time you change the security level.

- You can make bulk changes to the security level to change the security level of all rule groups within a particular rule category. Bulk security level applies to rule groups that have more than one rule group. After a bulk update of rule groups, you can still update the security level of any of the associated rule groups within it.

There can be **mixed** security levels within rule groups; **mixed** indicates that the child groups contain a mix of security levels within the parent rule group.

- Include or exclude rule groups—The rule groups displayed are the default rule groups associated with the system-provided base intrusion policy. You can include and exclude rule groups from the intrusion policy. An excluded rule group is removed from the intrusion policy and its rules are not applied on the traffic. For information on uploading custom rules in Firewall Management Center, see [Add Custom Rules to Rule Groups, on page 64](#).

To exclude a rule group:

- Navigate the Rule Groups pane and choose the rule group that you want to exclude.
- Click the **Exclude** hyperlink on the right-pane.
- Click **Exclude**.

To include a new rule group or multiple rule groups with the uploaded custom rules or a previously excluded rule group:

- Click **Add** (+) next to the rule group filter dropdown list.
- Choose all the rule groups you want to add by checking the check box next to it.
- Click **Save**.

- For a leaf rule group, click the icon under the **Override** column header to see the rule action trail, which describes the sequence of overridden rule actions that can be assigned due to the base policy and group overrides for an intrusion rule. Rule actions can be obtained from either the base policy configurations or the user group override. The user group override takes the priority between the two; priority refers to the final overridden action that is assigned to the rule group.

- Click the rule count (number) under the **Rule Count** column header to see a summary of rules that are part of the rule group.

Step 7 Recommendations—Click the **Recommendations** layer if you want to generate and apply Cisco recommended rules. Recommendations use the host database to enable or disable rules, based on known vulnerabilities.

Step 8 Rule Overrides—Click the **Rule Overrides** layer to choose any of the presets to view rules, which are set to alert, block, disabled, overridden, rewrite, pass, drop, or reject.

- The **Set By** column shows the default set by state (Base Policy) or modified rule state by Group Overrides, Rule Overrides, or Recommendations. The **Set By** column in **All Rules** (in the left pane) shows the trail of rule action override actions based on priority order. The priority order of rule actions is Rule Override > Recommendations > Group Override > Base Policy.
- Modify **Rule Action**—To modify rule actions, choose either of the following:

- Bulk edit—Choose one or more rules, then choose the required action from the **Rule Action** drop-down list; and click **Save**.

Note

Bulk rule action changes are supported only for the first 500 rules.

- Single rule edit—Choose the action for the rule from the drop-down list in the **Rule Action** column.

Rule actions are:

- Block**—Generates event, blocks current matching packet and all the subsequent packets in this connection.
- Alert**—Generates only events for matching packet and does not drop packet or connection.
- Disable**—Does not match traffic against this rule. No events are generated.
- Revert to default**—Reverts to the system default action.
- Pass**—No events are generated, allows packet to pass without further evaluation by any subsequent Snort rules.

Note

The Pass action is available only for custom rules and not for system-provided rules.

- Drop**—Generates event, drops matching packet and does not block further traffic in this connection.
- Reject**—Generates event, drops matching packet, blocks further traffic in this connection and sends TCP reset if it is a TCP protocol to source and destination hosts.

Behavior of reject in different firewall modes and IP address or source or destination in relation to Client or Server: Snort sends RST packets to both client and server in cases of routed, inline, and bridged interfaces. Snort sends two RST packets. RST packet in clients directions will have source set to server's IP and destination set to client's IP. RST packet in servers direction will have source set to client's IP and destination set to server's IP.

- Rewrite**—Generates event and overwrites packet contents based on the replace option in the rule.

For IPS rule action logging, see [Rule Action Logging, on page 45](#).

If there is a **React** rule, it is converted to an alert action.

Step 9 Click the **Summary** layer for a holistic view of the current changes to the policy. The policy summary page contains the following information:

- Rule distribution of the policy, that is, active rules, disabled rules, and so on.
- Option to export policy and generate report of the intrusion policy.
- Base policy details.
- Option to generate recommendations.
- Group overrides that shows the list of groups that you have overridden.
- Rule overrides that shows the list of rules that you have overridden.
- In the **Summary** layer, click the ? icon to open a popup window of the Snort helper guide that explains the Snort layering concepts.

To change the base policy, see [Change the Base Policy of an Intrusion Policy, on page 46](#).

Note

You can navigate to **Objects > Intrusion Rules** and click the **Snort 3 All Rules** tab and traverse through all the intrusion rule groups. The parent rule group lists the associated child groups and rule count.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Rule Group Reporting

The rule groups are reflected in the intrusion events generated and MITRE tactics and techniques are also called out. There are columns for MITRE tactics and techniques and for non-MITRE rule groups for intrusion events. To access the intrusion events, in Firewall Management Center, go to **Analysis > Intrusions > Events**, and click the **Table View of Events** tab. You can also view the intrusion event fields in the **Unified Events** viewer. In the **Analysis** tab, click **Unified Events**.

In the **Intrusion Events** page, the following fields are added for rule group reporting. Note that you must explicitly enable the mentioned columns.

- MITRE ATT&CK
- Rule Group

For information about these fields, see the section *Intrusion Event Fields* in the *Cisco Secure Firewall Management Center Administration Guide, 7.3*.

Rule Action Logging

From Firewall Management Center 7.2.0 onwards, in the **Intrusion Events** page, the event in the **Inline Result** column displays the same name as the IPS action applied to the rule, so that you can see the action that was applied on the traffic matching the rule.

Change the Base Policy of an Intrusion Policy

For the IPS actions, the following table shows the events that are displayed in the **Inline Result** column of the **Intrusion Events** page and **Action** column for **Intrusion Event Type** in the **Unified Events** page.

IPS Action for Snort 3	Inline Result - Firewall Management Center 7.1.0 and earlier	Inline Result - Firewall Management Center 7.2.0 onwards
Alert	Pass	Alert
Block	Dropped/Would Have Dropped/Partially Dropped	Block/Would Block/Partial Block
Drop	Dropped/Would have dropped	Drop/Would drop
Reject	Dropped/Would have dropped	Reject/Would reject
Rewrite	Allow	Rewrite

Important

- In case of a rule without the “Replace” option, the **Rewrite** action is displayed as **Would Rewrite**.
- The **Rewrite** action would also be displayed as **Would Rewrite** if the "Replace" option is specified, but the IPS policy is in Detection mode or the device is in Inline-TAP/Passive mode.

Note

In case of backward compatibility (Firewall Management Center 7.2.0 managing a Firewall Threat Defense 7.1.0 device), the events mentioned are applicable only to the Alert IPS action where **Pass** is displayed as **Alert** for events. For all the other actions, the events for Firewall Management Center 7.1.0 are applicable.

Change the Base Policy of an Intrusion Policy

You can choose a different system-provided or custom policy as your base policy.

You can chain up to five custom policies, with four of the five using one of the other four previously created policies as its base policy; the fifth must use a system-provided policy as its base.

Procedure

Step 1 Choose **Policies > Access Control** heading > **Intrusion**.

Step 2 Click **Edit** (edit icon) next to the intrusion policy you want to configure.

Step 3 Choose a policy from the **Base Policy** drop-down list.

Step 4 Click **Save**.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

View Snort 2 and Snort 3 Base Policy Mapping

Note

Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

Procedure

- Step 1** Choose **Policies > Access Control heading > Intrusion**.
- Step 2** Ensure the **Intrusion Policies** tab is selected.
- Step 3** Click **IPS Mapping**.
- Step 4** In the **IPS Policy Mapping** dialog box, click **View Mappings** to view the Snort 3 to Snort 2 intrusion policy mapping.
- Step 5** Click **OK**.

Synchronize Snort 2 Rules with Snort 3

To ensure that the Snort 2 version settings and custom rules are retained and carried over to Snort 3, the Firewall Management Center provides the synchronization functionality. Synchronization helps Snort 2 rule override settings and custom rules, which you may have altered and added over the last few months or years, to be replicated on the Snort 3 version. This utility helps to synchronize Snort 2 version policy configuration with Snort 3 version to start with similar coverage.

Note

Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

If the Firewall Management Center is upgraded from 6.7 or earlier to 7.0 or later version, the system synchronizes the configuration. If the Firewall Management Center is a fresh 7.0 or later version, you can upgrade to a higher version, and the system will not synchronize any content during upgrade.

Before upgrading a device to Snort 3, if changes are made in Snort 2 version, you can use this utility to have the latest synchronization from Snort 2 version to Snort 3 version so that you start with a similar coverage.

Note

On moving to Snort 3, it is recommended that you manage the Snort 3 version of the policy independently and do not use this utility as a regular operation.

Important

- Only the Snort 2 rule overrides and custom rules are copied to Snort 3 and not the other way around. You may not find a one-to-one mapping of all the intrusion rules in Snort 2 and Snort 3. Your changes to rule actions for rules that exist in both versions are synchronized when you perform the following procedure.
- Synchronization *does not* migrate the threshold and suppression settings of any custom or system-provided rules from Snort 2 to Snort 3.

Procedure

Step 1 Choose **Policies > Access Control heading > Intrusion**.

Step 2 Ensure the **Intrusion Policies** tab is selected.

Step 3 Click **Show Snort 3 Sync status**.

Step 4 Identify the intrusion policy that is out-of-sync.

Step 5 Click the **Sync** icon **Snort out-of-Sync** (➡).

Note

If the Snort 2 and the Snort 3 versions of the intrusion policy are synchronized, then the **Sync** icon is in blue **Snort in-Sync** (➡).

Step 6 Read through the summary and download a copy of the summary if required.

Step 7 Click **Re-Sync**.

Note

- The synchronized settings will be applicable on the Snort 3 intrusion engine only if it is applied on a device, and after a successful deployment.
- Snort 2 custom rules can be converted to Snort 3 using the system-provided tool. If you have any Snort 2 custom rules click the Custom Rules tab and follow the on-screen instructions to convert the rules. For more information, see [Convert Snort 2 Custom Rules of a Single Intrusion Policy to Snort 3, on page 24](#).

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Manage Intrusion Policies

On the Intrusion Policy page (**Policies > Access Control heading > Intrusion**) you can view your current custom intrusion policies, along with the following information:

- Number of access control policies and devices are using the intrusion policy to inspect traffic

- In a multidomain deployment, the domain where the policy was created

Note Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

In a multidomain deployment, the system displays policies created in the current domain, which you can edit. It also displays policies created in ancestor domains, which you cannot edit. To view and edit policies created in a lower domain, switch to that domain.

Procedure

Step 1 Choose **Policies > Access Control heading > Intrusion**.

Step 2 Manage your intrusion policy:

- Create — Click **Create Policy**; see [Create a Custom Snort 3 Intrusion Policy](#), on page 41.
- Delete — Click **Delete** (Delete icon) next to the policy you want to delete. The system prompts you to confirm and informs you if another user has unsaved changes in the policy. Click **OK** to confirm.
If the controls are dimmed, the configuration belongs to an ancestor domain, or you do not have permission to modify the configuration.
- Edit intrusion policy details — Click **Edit** (Edit icon) next to the policy you want to edit. You can edit the **Name**, **Inspection Mode**, and the **Base Policy** of the intrusion policy.
- Edit intrusion policy settings — Click **Snort 3 Version**; see [Edit Snort 3 Intrusion Policies](#), on page 41.
- Export — If you want to export an intrusion policy to import on another Firewall Management Center, click **Export**; see the *Exporting Configurations* topic in the latest version of the *Cisco Secure Firewall Management Center Configuration Guide*.
- Deploy — Choose **Deploy > Deployment**; see [Deploy Configuration Changes](#), on page 26.
- Report — Click **Report**; see the *Generating Current Policy Reports* topic in the latest version of the *Cisco Secure Firewall Management Center Configuration Guide*. Generates two reports, one for each policy version.

Access Control Rule Configuration to Perform Intrusion Prevention

An access control policy can have multiple access control rules associated with intrusion policies. You can configure intrusion inspection for any Allow or Interactive Block access control rule, which permits you to match different intrusion inspection profiles against different types of traffic on your network before it reaches its final destination.

Whenever the system uses an intrusion policy to evaluate traffic, it uses an associated *variable set*. Variables in a set represent values commonly used in intrusion rules to identify source and destination IP addresses and ports. You can also use variables in intrusion policies to represent IP addresses in rule suppressions and dynamic rule states.

Understanding System-Provided and Custom Intrusion Policies

Cisco delivers several intrusion policies with the system. By using system-provided intrusion policies, you can take advantage of the experience of the Cisco Talos Intelligence Group (Talos). For these policies, Talos sets intrusion and preprocessor rule states, as well as provides the initial configurations for advanced settings. You can use system-provided policies as-is, or you can use them as the base for custom policies. Building custom policies can improve the performance of the system in your environment and provide a focused view of the malicious traffic and policy violations occurring on your network.

Connection and Intrusion Event Logging

When an intrusion policy invoked by an access control rule detects an intrusion and generates an intrusion event, it saves that event to the Management Center. The system also automatically logs the end of the connection where the intrusion occurred to the Management Center database, regardless of the logging configuration of the access control rule.

Access Control Rule Configuration and Intrusion Policies

The number of unique intrusion policies you can use in a single access control policy depends on the model of the target devices; more powerful devices can handle more. Every unique **pair** of intrusion policy and variable set counts as one policy. Although you can associate a different intrusion policy-variable set pair with each Allow and Interactive Block rule (as well as with the default action), you cannot deploy an access control policy if the target devices have insufficient resources to perform inspection as configured.

Configure an Access Control Rule to Perform Intrusion Prevention

You must be an Admin, Access Admin, or Network Admin to perform this task.

Procedure

- Step 1** In the access control policy editor, create a new rule or edit an existing rule; see the *Access Control Rule Components* topic in the latest version of the *Cisco Secure Firewall Management Center Configuration Guide*.
- Step 2** Ensure the rule action is set to **Allow**, **Interactive Block**, or **Interactive Block with reset**.
- Step 3** Click **Inspection**.
- Step 4** Choose a system-provided or a custom intrusion policy, or choose **None** to disable intrusion inspection for traffic that matches the access control rule.
- Step 5** If you want to change the variable set associated with the intrusion policy, choose a value from the **Variable Set** drop-down list.
- Step 6** Click **Save** to save the rule.
- Step 7** Click **Save** to save the policy.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Tune Intrusion Policies Using Rules

This chapter provides information on custom rules in Snort 3, intrusion rule action, intrusion event notification filters in an intrusion policy, converting Snort 2 custom rules to Snort 3, and adding rule groups with custom rules to an intrusion policy.

Overview of Tuning Intrusion Rules

You can configure rule states and other settings for shared object rules, standard text rules, and inspector rules.

You enable a rule by setting its rule state to Alert or to Block. Enabling a rule causes the system to generate events on traffic matching the rule. Disabling a rule stops processing of the rule. You can also set your intrusion policy so that a rule set to Block generates events on, and drops, matching traffic.

You can filter rules to display a subset of rules, enabling you to select the exact set of rules where you want to change rule states or rule settings.

When an intrusion rule or rule argument requires a disabled inspector, the system automatically uses it with its current configuration even though it remains disabled in the network analysis policy's web interface.

Note We recommend that you do not modify shared object rules and you only enable or disable these rules for your threat defense device. To create custom Snort rules, contact Cisco support.

Intrusion Rule Types

An intrusion rule is a specified set of keywords and arguments that the system uses to detect attempts to exploit vulnerabilities in your network. As the system analyzes network traffic, it compares packets against the conditions specified in each rule, and triggers the rule if the data packet meets all the conditions specified in the rule.

An intrusion policy contains:

- *intrusion rules*, which are subdivided into *shared object rules* and *standard text rules*
- *inspector rules*, which are associated with a detection option of the packet decoder or with one of the inspectors included with the system

The following table summarizes attributes of these rule types:

Table 2: Intrusion Rule Types

Type	Generator ID (GID)	Snort ID (SID)	Source	Can Copy?	Can Edit?
shared object rule	3	lower than 1000000	Cisco Talos Intelligence Group (Talos)	yes	limited

Type	Generator ID (GID)	Snort ID (SID)	Source	Can Copy?	Can Edit?
standard text rule	1 (Global domain or legacy GID)	lower than 1000000	Talos	yes	limited
	1000 - 2000 (descendant domain)	1000000 or higher	Created or imported by user	yes	yes
preprocessor rule	decoder- or preprocessor-specific	lower than 1000000	Talos	no	no
		1000000 or higher	Generated by the system during option configuration	no	no

You cannot save changes to any rule created by Talos, but you can save a copy of a modified rule as a custom rule. You can modify either variables used in the rule or rule header information (such as source and destination ports and IP addresses). In a multidomain deployment, rules created by Talos belong to the Global domain. Administrators in descendant domains can save local copies of the rules, which they can then edit.

For the rules it creates, Talos assigns default rule states in each default intrusion policy. Most preprocessor rules are disabled by default and must be enabled if you want the system to generate events for preprocessor rules and, in an inline deployment, drop offending packets.

Prerequisites for Network Analysis and Intrusion Policies

To allow the Snort inspection engine to process traffic for intrusion and malware analysis, you must have the IPS license enabled for the Firewall Threat Defense device.

You must be an Admin user to manage network analysis, intrusion policies, and perform migration tasks.

Custom Rules in Snort 3

You can create a custom intrusion rule by importing a local rule file. The rule file can either have a `.txt` or `.rules` extension. The system saves the custom rule in the local rule category, regardless of the method you used to create it. A custom rule must belong to a rule group. However, a custom rule can be a part of two or more groups as well.

When you create a custom intrusion rule, the system assigns it a unique rule number, which has the format `GID:SID:Rev`. The elements of this number are:

- **GID**—Generator ID. For custom rules, it is not necessary to specify the GID. The system automatically generates the GID based on whether you are in the Global domain or a sub-domain while uploading the rules. For all standard text rules, this value is 2000 for a Global domain.
- **SID**—Snort ID. Indicates whether the rule is a local rule or a system rule. When you create a new rule, assign a unique SID to the rule.

SID numbers for local rules start at 1000000, and the SID for each new local rule is incremented by one.

- **Rev**—The revision number. For a new rule, the revision number is one. Each time you modify a custom rule the revision number should be incremented by one.

In a custom standard text rule, you set the rule header settings and the rule keywords and arguments. You can use the rule header settings to focus the rule to only match traffic using a specific protocol and traveling to or from specific IP addresses or ports.

To check whether a SID is enabled or disabled, verify the entries in the snort.lua file located in the `./file-contents/ngfw/var/sf/detection_engines/<id>/ips/<id>` directory.

- If the SID is disabled by default, no entry will be present in the file.
- If the SID is manually enabled, you will see an entry with **enable:yes**.
- If the SID is disabled after being manually enabled, the entry remains in the file and will display **enable:no**.

Note

- Snort 3 custom rules cannot be edited. Ensure that custom rules have a valid classification message for `classtype` within the rule text. If you import a rule without a classification or wrong classification, then delete and recreate the rule.
- You can create custom intrusion rules using Snort 3. However, support for tuning and troubleshooting these rules is not available currently.
- The `classtype` in a Snort rule assigns a classification to the rule indicating the type of attack that is associated with an event. A priority level of 1-4 is also associated with each `classtype`. However, the priority level for certain `classtypes` on the Threat Defense device do not match the open-source Snort `classtype` priority levels that are mentioned in the Snort [documentation](#). For example, `tcp-connection` has a priority of 4 in open-source Snort while a priority of 3 is assigned to it on the Threat Defense device.

Sensitive Data Detection in Snort 3

Sensitive data such as social security numbers, credit card numbers, emails, and so on may be leaked onto the internet, intentionally or accidentally. Sensitive data detection is used to detect and generate events on possible sensitive data leakage. Events are generated only if there is a transfer of significant amount of Personally Identifiable Information (PII) data. Sensitive data detection can mask PII in the output of events.

sd_pattern Option

Use the `sd_pattern` IPS option to detect and filter PII. This information includes credit card numbers, U.S. Social Security numbers, phone numbers, and email addresses. A regular expression (regex) syntax is available for defining your own PII.

The `sd_pattern` option has the following settings:

- **Pattern**—An implicit, required setting that specifies the regular expression to look for in the PDU. The regex must be written in PCRE syntax.
- **Threshold**—An explicit, optional setting that specifies the number of matches in the PDU required to generate an event.

The `sd_pattern` as IPS rule option is available in Snort with no requirements for additional inspectors. The rule option's syntax is:

```
sd_pattern: "<pattern>" [, threshold <count>];
```

For example:

```
sd_pattern:"credit_card", threshold 2;
```

Built-in Patterns

There are five built-in patterns for sensitive data. To use the built-in patterns in the "pattern" setting, you must specify the name of the PII type that needs to be matched and the necessary regex is substituted for it. The PII name and regex mappings or patterns are described as follows:

- credit_card—

```
\d{4}\D?\d{4}\D?\d{2}\D?\d{2}\D?\d{3,4}
```

- us_social—

```
[0-8]\d{2}-\d{2}-\d{4}
```

- us_social_nodashes—

```
[0-8]\d{8}
```

- Email—

```
[a-zA-Z0-9!#$%&'*+/\=?^`{|}~-]+(?:\.[a-zA-Z0-9!#$%&'*+/\=?^`{|}~-]+)*@(?:[a-zA-Z0-9](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?\.)+[a-zA-Z0-9](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?
```

- us_phone—

```
(?:\+?1[-.\s]?)?\((?:[2-9][0-8]\d)\)?[-.\s]([2-9]\d{2})[-.\s](\d{4})
```

PII Name	Pattern
credit_card	\d{4}\D?\d{4}\D?\d{2}\D?\d{2}\D?\d{3,4}
us_social	[0-8]\d{2}-\d{2}-\d{4}
us_social_nodashes	[0-8]\d{8}
Email	[a-zA-Z0-9!#\$%&'*+/\=?^`{ }~-]+(?:\.[a-zA-Z0-9!#\$%&'*+/\=?^`{ }~-]+)*@(?:[a-zA-Z0-9](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?\.)+[a-zA-Z0-9](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?
us_phone	(?:\+?1[-.\s]?)?\((?:[2-9][0-8]\d)\)?[-.\s]([2-9]\d{2})[-.\s](\d{4})

Masking for data matching these patterns only work with system-provided rules or built-in patterns for Credit Cards, U.S. Social Security numbers, emails, and U.S. phone numbers. Masking does not work for custom rules or user-defined PII patterns. Rules are available in the Lightweight Security Package (LSP) for sensitive data, gid:13. By default, they are not enabled in any system-provided policy.

The sensitive data rules in LSP cover all built-in patterns and have the following threshold values:

- credit_card: 2
- us_social: 2
- us_social_nodashes: 20
- email: 20
- us_phone: 20

You can use the `sd_pattern` option to create custom rules and modify existing rules. To do this, use the Snort 3 intrusion policy interface.

An example of a rule with `sd_pattern` with a custom pattern and threshold:

```
alert tcp (sid: 1000000001; sd_pattern:"[\\w-\\.]+@[\\w-]+\\.\\w-[2,4]", threshold 4; msg: "email, threshold 4")
```

Examples

An example of custom rules using sensitive data detection:

Rule with built-in pattern:

```
alert tcp (
    msg:"SENSITIVE-DATA Email";
    flow:only_stream;
    pkt_data;
    sd_pattern:"email", threshold 5;
    service:http, smtp, ftp-data, imap, pop3;
    gid:2000;
    sid:1000001;
)
```

Rule with custom pattern

```
alert tcp (
    msg:"SENSITIVE-DATA US phone numbers";
    flow:only_stream;
    file_data;
    sd_pattern:"+?3?8?(0[\\s\\.-]\\d{2}[\\s\\.-]\\d{3}[\\s\\.-]\\d{2}[\\s\\.-]\\d{2})", threshold 2;
    service:http, smtp, ftp-data, imap, pop3;
    gid:2000;
    sid:1000002;
)
```

Here are some more examples of complete Snort IPS rules with built-in sensitive data patterns:

- alert tcp (sid:1; msg:"Credit Card"; sd_pattern:"credit_card", threshold 2;)
- alert tcp (sid:2; msg:"US Social Number"; sd_pattern:"us_social", threshold 2;)
- alert tcp (sid:3; msg:"US Social Number No Dashes"; sd_pattern:"us_social_nodashes", threshold 2;)
- alert tcp (sid:4; msg:"US Phone Number"; sd_pattern:"us_phone", threshold 2;)
- alert tcp (sid:5; msg:"Email"; sd_pattern:"email", threshold 2;)

Disabling data masking is not supported in the Secure Firewall Management Center and Secure Firewall Device Manager.

For information how to add custom rules to rule groups, see [Add Custom Rules to Rule Groups, on page 64](#).

View Snort 3 Intrusion Rules in an Intrusion Policy

You can adjust how rules are displayed in the intrusion policy. You can also display the details for a specific rule to see rule settings, rule documentation, and other rule specifics.

Procedure

Step 1 Choose **Policies > Access Control** heading > **Intrusion**.

Step 2 Click **Snort 3 Version** next to the policy.

Step 3 While viewing the rules, you can:

- Filter the rules.
- Choose a rule group to see rules related to that group.
- View an intrusion rule's details.
- View rule comments.
- View rule documentation.

See [Edit Snort 3 Intrusion Policies, on page 41](#) for details on performing these tasks.

Intrusion Rule Action

Intrusion rule action allows you to enable or disable the rule within an individual intrusion policy, as well as specify which action the system takes if monitored conditions trigger the rule.

The Cisco Talos Intelligence Group (Talos) sets the default action of each intrusion and inspector rule in each default policy. For example, a rule may be enabled in the Security over Connectivity default policy and disabled in the Connectivity over Security default policy. Talos sometimes uses a rule update to change the default action of one or more rules in a default policy. If you allow rule updates to update your base policy, you also allow the rule update to change the default action of a rule in your policy when the default action changes in the default policy you used to create your policy (or in the default policy it is based on). Note, however, that if you have changed the rule action, the rule update does not override your change.

When you create an intrusion rule, it inherits the default actions of the rules in the default policy you use to create your policy.

Intrusion Rule Action Options

In an intrusion policy, you can set a rule's action to the following values:

Alert

You want the system to detect a specific intrusion attempt and generate an intrusion event when it finds matching traffic. When a malicious packet crosses your network and triggers the rule, the packet is sent to its destination and the system generates an intrusion event. The malicious packet reaches its target, but you are notified through the event logging.

Block

You want the system to detect a specific intrusion attempt, drop the packet containing the attack, and generate an intrusion event when it finds matching traffic. The malicious packet never reaches its target, and you are notified through the event logging.

Disable

You do not want the system to evaluate matching traffic.

Note

Choosing either the **Alert** or **Block** options enables the rule. Choosing **Disable** disables the rule.

We **strongly** recommend that you **do not** enable all the intrusion rules in an intrusion policy. The performance of your managed device is likely to degrade if all rules are enabled. Instead, tune your rule set to match your network environment as closely as possible.

Set Intrusion Rule Action

Intrusion rule actions are policy-specific.

Procedure

Step 1 Choose **Policies > Access Control heading > Intrusion**.

Step 2 Click **Snort 3 Version** next to the policy you want to edit.

Tip

This page shows the total number of:

- disabled rules
- enabled rules set to Alert
- enabled rules set to Block
- overridden rules

Step 3 Choose the rule or rules where you want to set the rule action.

Step 4 Choose one of the rule actions from the **Rule Action** drop-down list. See [Edit Snort 3 Intrusion Policies, on page 41](#) for more information about the different rule actions.

Step 5 Click **Save**.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Intrusion Event Notification Filters in an Intrusion Policy

The importance of an intrusion event can be based on frequency of occurrence, or on source or destination IP address. In some cases you may not care about an event until it has occurred a certain number of times. For example, you may not be concerned if someone attempts to log into a server until they fail a certain number of times. In other cases, you may only need to see a few occurrences to know there is a widespread problem. For example, if a DoS attack is launched against your web server, you may only need to see a few occurrences of an intrusion event to know that you need to address the situation. Seeing hundreds of the same event only overwhelms your system.

Intrusion Event Thresholds

You can set thresholds for individual rules to limit the number of times the system logs and displays an intrusion event based on how many times the event is generated within a specified time period. This can prevent you from being overwhelmed with a large number of identical events. You can set thresholds per shared object rule, standard text rule, or inspector rule.

Set Intrusion Event Thresholds

To set a threshold, first specify the thresholding type.

Table 3: Thresholding Options

Option	Description
Limit	Logs and displays events for the specified number of packets (specified by the Count argument) that trigger the rule during the specified time period. For example, if you set the type to Limit , the Count to 10, and the Seconds to 60, and 14 packets trigger the rule, the system stops logging events for the rule after displaying the first 10 that occur within the same minute.
Threshold	Logs and displays a single event when the specified number of packets (specified by the Count argument) trigger the rule during the specified time period. Note that the counter for the time restarts after you hit the threshold count of events and the system logs that event. For example, you set the type to Threshold , Count to 10, and Seconds to 60, and the rule triggers 10 times by second 33. The system generates one event, then resets the Seconds and Count counters to 0. The rule then triggers another 10 times in the next 25 seconds. Because the counters reset to 0 at second 33, the system logs another event.
Both	Logs and displays an event once per specified time period, after the specified number (count) of packets trigger the rule. For example, if you set the type to Both , Count to two, and Seconds to 10, the following event counts result: <ul style="list-style-type: none"> If the rule is triggered once in 10 seconds, the system does not generate any events (the threshold is not met) If the rule is triggered twice in 10 seconds, the system generates one event (the threshold is met when the rule triggers the second time) If the rule is triggered four times in 10 seconds, the system generates one event (the threshold is met when the rule triggers the second time, and following events are ignored)

Secondly, specify tracking, which determines whether the event threshold is calculated per source or destination IP address.

Table 4: Thresholding IP Options

Option	Description
Source	Calculates event instance count per source IP address.
Destination	Calculates event instance count per destination IP address.

Finally, specify the number of instances and time period that define the threshold.

Table 5: Thresholding Instance/Time Options

Option	Description
Count	The number of event instances per specified time period per tracking IP address required to meet the threshold.
Seconds	The number of seconds that elapse before the count resets. If you set the threshold type to limit , the tracking to Source IP , the count to 10, and the seconds to 10, the system logs and displays the first 10 events that occur in 10 seconds from a given source port. If only 7 events occur in the first 10 seconds, the system logs and displays those; if 40 events occur in the first 10 seconds, the system logs and displays 10, then begins counting again when the 10-second time period elapses.

Note that you can use intrusion event thresholding alone or in any combination with rate-based attack prevention, the `detection_filter` keyword, and intrusion event suppression.

Tip You can also add thresholds from within the packet view of an intrusion event.

Set Threshold for an Intrusion Rule in Snort 3

You can set a single threshold for a rule from the Rule Detail page. Adding a threshold overwrites any existing threshold for the rule. The threshold you set for an intrusion rule is applied to each packet thread. However, the configuration is fully applied only within the context of a unique flow. There may be more alerts on different network flows, but there will not be fewer alerts than the configured number.

Procedure

- Step 1** Choose **Objects > Intrusion Rules**.
- Step 2** Click **Snort 3 All Rules** tab.
- Step 3** From an intrusion rule's Alert Configuration column, click the **None** link.
- Step 4** Click **Edit** (edit icon).
- Step 5** In the Alert Configuration window, click the **Threshold** tab.
- Step 6** From the **Type** drop-down list, choose the type of threshold you want to set:
 - Choose **Limit** to limit notification to the specified number of event instances per time period.
 - Choose **Threshold** to provide notification for each specified number of event instances per time period.
 - Choose **Both** to provide notification once per time period after a specified number of event instances.
- Step 7** Choose **Source** or **Destination** in the **Track By** field to indicate whether you want the event instances tracked by source or destination IP address.
- Step 8** Enter the number of event instances you want to use as your threshold in the **Count** field.
- Step 9** Enter a number that specifies the time period, in seconds, for which event instances are tracked in the **Seconds** field.
- Step 10** Click **Save**.

View and Delete Intrusion Event Thresholds

Refer to the video [Snort 3 Suppression and Threshold](#) for additional support and information.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes](#).

View and Delete Intrusion Event Thresholds

To view or delete an existing threshold setting for a rule, use the Rules Details view to display the configured settings for a threshold and see if they are appropriate for your system. If they are not, you can add a new threshold to overwrite the existing values.

Procedure

- Step 1** Choose **Objects > Intrusion Rules**.
- Step 2** Click **Snort 3 All Rules** tab.
- Step 3** Choose the rule with a configured threshold as shown in the **Alert Configuration** column (the **Alert Configuration** column displays **Threshold** as a link for the rule).
- Step 4** To remove the threshold for the rule, click **Threshold** link in the **Alert Configuration** column.
- Step 5** Click **Edit** (edit).
- Step 6** Click **Threshold** tab.
- Step 7** Click **Reset**.
- Step 8** Click **Save**.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Intrusion Policy Suppression Configuration

You can suppress intrusion event notification when a specific IP address or range of IP addresses triggers a specific rule or inspector. This is useful for eliminating false positives. For example, if you have a mail server that transmits packets that look like a specific exploit, you might suppress event notification for that event when it is triggered by your mail server. The rule triggers for all packets, but you only see events for legitimate attacks.

Intrusion Policy Suppression Types

Note that you can use intrusion event suppression alone or in any combination with rate-based attack prevention, the `detection_filter` keyword, and intrusion event thresholding.

Tip You can add suppressions from within the packet view of an intrusion event. You can also access suppression settings by using the **Alert Configuration** column on the intrusion rules editor page (**Objects > Intrusion Rules**, click **Snort 3 All Rules**).

Set Suppression for an Intrusion Rule in Snort 3

You can set one or more suppressions for a rule in your intrusion policy.

Before you begin

Ensure you create the required network objects to be added for source or destination suppression.

Procedure

Step 1 Choose **Objects > Intrusion Rules**.

Step 2 Click **Snort 3 All Rules** tab.

Step 3 Click the **None** link in the intrusion rule's Alert Configuration column. ,

Step 4 Click **Edit** ().

Step 5 From the **Suppressions** tab, click the add icon **Add** () next to any of the following options:

- Choose **Source Networks** to suppress events generated by packets originating from a specified source IP address.
- Choose **Destination Networks** to suppress events generated by packets going to a specified destination IP address.

Step 6 Select any of the preset networks in the **Network** drop-down list.

Step 7 Click **Save**.

Step 8 (Optional) Repeat the last three steps if required.

Step 9 Click **Save** in the Alert Configuration window.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

View and Delete Suppression Conditions

You may want to view or delete an existing suppression condition. For example, you can suppress event notification for packets originating from a mail server IP address because the mail server normally transmits packets that look like exploits. If you then decommission that mail server and reassign the IP address to another host, you should delete the suppression conditions for that source IP address.

Procedure

Step 1 Choose **Objects > Intrusion Rules**.

Step 2 Click **Snort 3 All Rules** tab.

Step 3 Choose the rule for which you want to view or delete suppressions.

Step 4 Click **Suppression** in the **Alert Configuration** column.

Step 5 Click **Edit** ().

Add Intrusion Rule Comments**Step 6** Click **Suppressions** tab.**Step 7** Remove the suppression by clicking **Clear** (X) next to the suppression.**Step 8** Click **Save**.**What to do next**Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Add Intrusion Rule Comments

You can add comments to rules in your intrusion policy. Comments added this way are policy-specific; that is, comments you add to a rule in one intrusion policy are not visible in other intrusion policies.

Procedure**Step 1** Choose **Policies > Access Control** heading > **Intrusion**.**Step 2** Click **Snort 3 Version** next to the policy you want to edit.**Step 3** In the right side of the page where all the rules are listed, choose the rule where you want to add a comment.**Step 4** Click **Comment** (Comment icon) under the **Comments** column.**Step 5** In the **Comments** field, enter the rule comment.**Step 6** Click **Add Comment**.**Step 7** Click **Save**.**Tip**The system displays a **Comment** (Comment icon) next to the rule in the **Comments** column.**What to do next**Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Snort 2 Custom Rules Conversion to Snort 3

If you are using custom rules, make sure you are prepared to manage that rule set for Snort 3 prior to conversion from Snort 2 to Snort 3. If you are using a rule set from a third-party vendor, contact that vendor to confirm that their rules will successfully convert to Snort 3 or to obtain a replacement rule set written natively for Snort 3. If you have custom rules that you have written yourself, familiarize with writing Snort 3 rules prior to conversion, so you can update your rules to optimize Snort 3 detection after conversion. See the links below to learn more about writing rules in Snort 3.

- <https://blog.snort.org/2020/08/how-rules-are-improving-in-snort-3.html>
- <https://blog.snort.org/2020/10/talos-transition-to-snort-3.html>

You can refer to other blogs at <https://blog.snort.org/> to learn more about Snort 3 rules.

Important

Snort 2 network analysis policy (NAP) settings *cannot* be copied to Snort 3 automatically. NAP settings have to be manually replicated in Snort 3.

Note

Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

Convert all Snort 2 Custom Rules across all Intrusion Policies to Snort 3

Procedure

Step 1 Choose **Objects > Intrusion Rules**.

Step 2 Click **Snort 3 All Rules** tab.

Step 3 Ensure **All Rules** is selected in the left pane.

Step 4 Click the **Tasks** drop-down list and choose:

- **Convert Snort 2 rules and import**—To automatically convert all the Snort 2 custom rules across all the intrusion policies to Snort 3 and import them into Firewall Management Center as Snort 3 custom rules.
- **Convert Snort 2 rules and download**—To automatically convert all the Snort 2 custom rules across all the intrusion policies to Snort 3 and download them into your local system.

Step 5 Click **OK**.

Note

- If you selected **Convert and import** in the previous step, then all the converted rules are saved under a newly created rule group **All Snort 2 Converted Global** under **Local Rules**.
- If you selected **Convert and download** in the previous step, then save the rules file locally. You can review the converted rules in the downloaded file and later upload them by following the steps in [Add Custom Rules to Rule Groups, on page 64](#).

Refer to the video [Converting Snort 2 Rules to Snort 3](#) for additional support and information.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Convert Snort 2 Custom Rules of a Single Intrusion Policy to Snort 3

Procedure

Step 1 Choose **Policies > Access Control** heading > **Intrusion**.

Step 2 In the **Intrusion Policies** tab, click **Show Snort 3 Sync status**.

Step 3 Click the **Sync** icon **Snort out-of-Sync** (►) of the intrusion policy.

Note

If the Snort 2 and the Snort 3 versions of the intrusion policy are synchronized, then the **Sync** icon is in blue **Snort in-Sync** (➔). It indicates that there are no custom rules to be converted.

Step 4 Read through the summary and click the **Custom Rules** tab.

Step 5 Choose:

- **Import converted rules to this policy**—To convert the Snort 2 custom rules in the intrusion policy to Snort 3 and import them into Firewall Management Center as Snort 3 custom rules.
- **Download converted rules**—To convert the Snort 2 custom rules in the intrusion policy to Snort 3 and download them into your local system. You can review the converted rules in the downloaded file and later upload the file by clicking the upload icon.

Step 6 Click **Re-Sync**.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Add Custom Rules to Rule Groups

Uploading custom rules in the Firewall Management Center adds the custom rules that you have created locally to the list of all the Snort 3 rules.

Procedure

Step 1 Choose **Objects > Intrusion Rules**.

Step 2 Click **Snort 3 All Rules** tab.

Step 3 Click the **Tasks** drop-down list.

Step 4 Click **Upload Snort 3 Rules**.

Step 5 Drag and drop the **.txt** or **.rules** file that contains the Snort 3 custom rules that you have created.

Step 6 Click **OK**.

Note

If there are any errors in the selected file, then you cannot proceed further. You can download the error file and **Replace File** link to upload version 2 of the file, after fixing the errors.

Step 7 Associate rules to a rule group to add the new rules to that group.

You can also create a new custom rule group (by clicking the **Create New Custom Rule Group** link) and then add the rules to the new group.

Note

If there are no existing local rule groups, then proceed by clicking **Create New Custom Rule Group to proceed**. Enter a **Name** for the new rule group and click **Save**.

Step 8 Choose either of the following:

- **Merge Rules** to merge the new rules that you are adding with the existing rules in the rule group.
- **Replace all rules in the group with file contents** to replace all the exiting rules with the new rules that you are adding.

Note

If you chose more than one rule group in the previous step, then only the **Merge Rules** option is available.

Step 9 Click **Next**.

Review the summary to know the new rule IDs that are being added and optionally download it.

Step 10 Click **Finish**.

Important The rule action of all the uploaded rules is in the disabled state. You have to change them to the required state to ensure the rules are active.

What to do next

- Uploading custom rules in the Firewall Management Center adds the custom rules that you have created to the list of all the Snort 3 rules. To enforce these custom rules on the traffic, add and enable these rules in the required intrusion policies. For information on adding rule groups with custom rules to an intrusion policy, see [Add Rule Groups with Custom Rules to an Intrusion Policy, on page 65](#). For information on enabling custom rules, see [Manage Custom Rules in Snort 3, on page 66](#).
- Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Add Rule Groups with Custom Rules to an Intrusion Policy

Custom rules that are uploaded in the system have to be enabled in an intrusion policy to enforce those rules on the traffic. After uploading custom rules on Firewall Management Center, add the rule group with the new custom rules in the intrusion policy.

Procedure

Step 1 Choose **Policies > Access Control heading > Intrusion**.

Step 2 In the **Intrusion Policies** tab, click the **Snort 3 Version** of the intrusion policy.

Step 3 Click **Add** (+) next to the Rule Groups search bar.

Step 4 In the **Add Rule Groups** window, click the **Expand Arrow** (>) icon next to a rule group to expand the local rule group.

Step 5 Check the check box next to the uploaded custom rules group.

Step 6 Click **Save**.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Manage Custom Rules in Snort 3

Custom rules that are uploaded in the system have to be added to an intrusion policy and enabled to enforce those rules on the traffic. You can enable the uploaded custom rules across all policies or selectively on individual policies.

Follow the steps to enable custom rules in one or many intrusion policies:

Procedure

Step 1 Choose **Objects > Intrusion Rules**.

Step 2 Click **Snort 3 All Rules** tab.

Step 3 Expand **Local Rules**.

Step 4 Select the required rule group.

Step 5 Select the rules by checking the check boxes next to them.

Step 6 Select **Per Intrusion Policy** from the **Rule Actions** drop-down list.

Step 7 Choose:

- **All Policies**—to have the same rule actions for all the rules to be added.
- **Per Intrusion Policy**—to have different rule actions for each intrusion policy.

Step 8 Set the rule actions:

- If you selected All Policies in the previous step, then select the required rule action from the **Select Override state** drop-down list.
- If you selected Per Intrusion Policy in the previous step, then select the **Rule Action** against the policy name. To add more policies, click **Add Another**.

Step 9 Optionally, add a comment in the **Comments** text box.

Step 10 Click **Save**.

What to do next

Deploy the changes on the device. See, [Deploy Configuration Changes, on page 26](#).

Delete Custom Rules

Procedure

- Step 1** Choose **Objects > Intrusion Rules**.
- Step 2** Click **Snort 3 All Rules** tab.
- Step 3** Expand **Local Rules** in the left pane.
- Step 4** Check the check boxes of the rules you want to delete.
- Step 5** Ensure that the rule action for all the rules that you select is **Disable**.

If required, follow the steps below to disable the rule action for multiple selected rules:

- a) From the **Rule Actions** drop-down box, select **Per Intrusion Policy**.
- b) Select **All Policies** radio button.
- c) Select **Disable** from the **Select Override state** drop-down list.
- d) Click **Save**.
- e) Check the check boxes of the rules you want to delete.

- Step 6** From the **Rule Actions** drop-down list, select **Delete**.
- Step 7** Click **Delete** in the Delete Rules pop-up window.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Delete Rule Groups

Before you begin

Exclude the rule group you want to delete from all intrusion policies where you have included it. For steps on excluding a rule group from an intrusion policy, see [Edit Snort 3 Intrusion Policies, on page 41](#).

Procedure

- Step 1** Choose **Objects > Intrusion Rules**.
- Step 2** Click **Snort 3 All Rules** tab.
- Step 3** Expand **Local Rules** in the left pane.
- Step 4** Select the rule group to be deleted.
- Step 5** Ensure the rule action for all the rules in the group is set to **Disable** before proceeding.

If the rule action for any of the rules is anything other than **Disable**, then you cannot delete the rule group. If required, follow the steps below to disable the rule action for all the rules:

- a) Check the check box below the **Rule Actions** drop-down list to select all the rules in the group.
- b) From the **Rule Actions** drop-down box, select **Per Intrusion Policy**.
- c) Select **All Policies** radio button.
- d) Select **Disable** from the **Select Override state** drop-down list.
- e) Click **Save**.

Step 6 Click the **Delete** (⊖) next to the rule group.

Step 7 Click **OK** in the Delete Rule Group pop-up window.

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Recommended Rules

This chapter provides an insight into Secure Firewall recommended rules and generating and applying Secure Firewall recommended rules.

Snort 3 Rule Changes in LSP Updates

During regular Snort 3 Lightweight Security Package (LSP) updates, an existing system-defined intrusion rule may be replaced with a new intrusion rule. There could be possibilities of a single rule being replaced with multiple rules, or multiple rules being replaced with a single rule. This occurs when better detection is possible for which rules are combined or expanded. For better management, some existing system-defined rules may also be removed as a part of the LSP update.

To get notifications for changes to any *overridden* system-defined rules during LSP updates, ensure that the **Retain user overrides for deleted Snort 3 rules** check box is checked.

To navigate to the **Retain user overrides for deleted Snort 3 rules** check box, click **System** (⚙) > **Configuration** > **Intrusion Policy Preferences**.

By default this check box is checked. When this check box is checked, the system retains the rule overrides in the new replacement rules that are added as a part of the LSP update. The notifications are shown in the **Tasks** tab under the Notifications icon that is located next to **System** (⚙).

Overview of Secure Firewall Recommended Rules

You can use intrusion rule recommendations to target vulnerabilities associated with host assets detected in the network. For example, operating systems, servers, and client application protocols. This allows you to tailor your intrusion policy to the specific needs of your monitored network.

The system makes an individual set of recommendations for each intrusion policy. It typically recommends rule state changes for standard text rules and shared object rules. However, it can also recommend changes for inspector and decoder rules.

When you generate rule state recommendations, you can use the default settings or configure advanced settings. Advanced settings allow you to:

- Redefine which hosts on your network the system monitors for vulnerabilities
- Influence which rules the system recommends based on rule overhead
- Specify whether to generate recommendations to disable rules

You can also choose to use the recommendations immediately or review the recommendations (and affected rules) before accepting them.

Choosing to use recommended rule states adds a read-only Secure Firewall Recommendations layer to your intrusion policy, and subsequently choosing not to use recommended rule states removes the layer.

You can schedule a task to generate recommendations automatically based on the most recently saved configuration settings in your intrusion policy.

The system does not change rule states that you set manually such as:

- Manually setting the states of specified rules *before* you generate recommendations prevents the system from modifying the states of those rules in the future.
- Manually setting the states of specified rules *after* you generate recommendations overrides the recommended states of those rules.

Tip The intrusion policy report can include a list of rules with rule states that differ from the recommended state.

While displaying the recommendation-filtered Rules page, or after accessing the Rules page directly from the navigation panel or the Policy Information page, you can manually set rule states, sort rules, and take any of the other actions available on the Rules page, such as suppressing rules, setting rule thresholds, and so on.

Note The Cisco Talos Intelligence Group (Talos) determines the appropriate state of each rule in the system-provided policies. If you use a system-provided policy as your base policy, and you allow the system to set your rules to the Secure Firewall recommended rule state, the rules in your intrusion policy match the settings recommended for your network assets.

Prerequisites for Network Analysis and Intrusion Policies

To allow the Snort inspection engine to process traffic for intrusion and malware analysis, you must have the IPS license enabled for the Firewall Threat Defense device.

You must be an Admin user to manage network analysis, intrusion policies, and perform migration tasks.

Generate New Secure Firewall Recommendations in Snort 3

Generate the Secure Firewall recommendations for the intrusion policy and then follow the steps that are listed here to create new recommended rule settings in Snort 3. Rule overheads are interpreted as **security levels** based on the threshold policies selected by you in Snort 3. Recommended action is based on the selected

security level and if it is higher than the base policy, then the recommendation is not just limited to generating the events.

Prior to setting the Secure Firewall recommendations you should ask which of the three points listed below closely matches the goal:

- Increased Protection—Enable additional rules based on vulnerabilities found in the host database and do not automatically disable any rules. This will likely result in a larger rule set.
- Focused Protection—Enable additional rules and disable existing rules based on vulnerabilities found in the host database. This can increase or decrease the number of rules depending on vulnerabilities discovered.
- Higher Efficiency—Use the currently enabled rule set and disable any rules for vulnerabilities not found in the host database. This will likely result in a smaller enabled rule set.

Based on the response, the recommendation actions are as follows:

- Set recommendations to the next highest security level, and uncheck the disable rules.
- Set recommendations to the next highest security level, and check the disable rules.
- Set recommendations to the current security level, and check the disable rules.

Before you begin

Secure Firewall recommendations have the following requirements:

- Ensure that hosts are present in the system to generate recommendations.
- Protected networks configured for recommendations should map to the hosts present in the system

Procedure

Step 1 Choose Policies > Access Control heading > **Intrusion**.

Step 2 Click the **Snort 3 Version** button of the intrusion policy.

Step 3 Click the **Recommendations (Not in Use)** layer to configure the rule recommendations. Click **Start**.

In the Secure Firewall Rule Recommendations window you can set the following:

- **Security Level:** Click to select the security level. Optionally, you can check the **Accept Recommendation to Disable Rules** checkbox to disable rules that are not enabled at the input security level and in protected networks. Only enable this option if you need to trim your rule set due to a high number of alerts or to improve inspection performance. The security levels are:

- Security level 1: Connectivity Over Security

No Impact—No new rules are enabled and no existing rules are disabled. To increase the protection, select a higher security level.

Lower Security (checkbox is checked)—All rules are disabled except for the rules in the Connectivity Over Security ruleset that match potential vulnerabilities on discovered hosts. It is recommended instead to adjust the Base Policy.

- Security level 2: Balanced Security Over Connectivity

No Impact—No new rules are enabled and no existing rules are disabled. To increase the protection, select a higher security level.

Higher Efficiency(checkbox is checked)—Keeps existing rules that match potential vulnerabilities on discovered hosts and disables rules for vulnerabilities not found on the network.

- Security level 3: Security Over Connectivity

Increased Security—Enables additional rules that match potential vulnerabilities on discovered hosts based on the Maximum Detection ruleset.

Focused Security(checkbox is checked)—Enables additional rules that match vulnerabilities on discovered hosts based on the Security Over Connectivity ruleset, while disabling existing rules that do not match potential vulnerabilities on discovered hosts.

- Security level 4 : Maximum Detection

Increased Security—Enables additional rules that match potential vulnerabilities on discovered hosts based on the Security Over Connectivity ruleset.

Focused Security (checkbox is checked)—Enables additional rules that match vulnerabilities on discovered hosts based on the Maximum Detection ruleset, while disabling existing rules that do not match potential vulnerabilities on discovered hosts.

Note

Maximum Detection enables a very high number of rules and may impact performance. We recommend you to review and test this setting before deploying into a production environment.

- **Protected Networks:** Specifies the monitored networks or individual hosts to examine for recommendations. You can select one or more system or custom defined network objects from the drop-down list. By default, any IPv4 or IPv6 networks are selected, if no selection is done.

Important

The Secure Firewall Rule Recommendations depend on network discovery. Protected Networks apply to any hosts discovered within the ranges configured in your Network Discovery policy. For more information, see the chapter [Network Discovery Policies](#) in the *Cisco Secure Firewall Management Center Device Configuration guide*.

Click the **Add +** button to create a new network object of type Host or Network and click **Save**.

Step 4 Generate and apply recommendations:

- **Generate:** Generates the recommendations for an intrusion policy. This action lists the rules under Recommended Rules (Not in use).
- **Generate and Apply:** Generates and applies the recommendations for an intrusion policy. This action lists the rules under Recommended Rules (In use).

Recommendations are generated successfully. A new recommendation tab appears with all the recommended rules with their corresponding recommended actions. Rule action preset filters are also available for this tab, in addition with new recommendations.

Step 5 You can verify the recommendations and then choose to apply them accordingly:

- **Accept**—Applies the previously generated recommendations for an Intrusion policy.
- **Refresh**—Regenerates and updates the rule recommendations for an Intrusion policy.

- **Edit**—It opens the Recommendations dialog box, you can provide the recommendation input values and then generate the recommendations.
- **Remove All**—Revert or remove the applied recommended rules from the policy and also removes the recommendation tab.

Under **All Rules**, there is a Recommended Rules section which displays the recommended rules.

Note

Final action for an Intrusion rule is applied based on the rule action priority order and following is the rule action priority order:

Rule Override > Generated Recommendations > Group Override > Base Policy Default Action

For enabled recommendations, Firewall Management Center considers the current state: group overrides, base policy, and recommendation configurations and priority order of actions is:

pass > block > reject > drop > rewrite > alert

What to do next

Deploy configuration changes; see [Deploy Configuration Changes, on page 26](#).

Mitigate Threats Using MITRE Framework in Snort 3 Intrusion Policies

About MITRE ATT&CK Framework

The MITRE ATT&CK Framework is a comprehensive knowledge base that outlines the tactics, techniques, and procedures (TTPs) used by threat actors to compromise systems. It organizes these TTPs into matrices for different operating systems and platforms, mapping each attack stage (tactics) to specific methods (techniques). Each technique includes information about execution, procedures, defenses, detections, and real-world examples.

Note See <https://attack.mitre.org> for additional information about MITRE ATT&CK.

The management center uses the MITRE ATT&CK Framework to enhance threat detection and response, incorporating the following capabilities:

- Intrusion events include TTPs, allowing administrators to manage traffic with greater granularity by grouping rules according to vulnerability type, target system, or threat category.
- Select malware events use TTPs, enhancing the ability to detect and respond to threats.
- Unified and Classic Event Viewers display tactics, techniques, attack lifecycle graphs, and contextual enrichments from the Talos taxonomy. These enrichments include MITRE tags and a hierarchical view of associated tactics, techniques, and sub-techniques. You can also filter events using MITRE identifiers.

Benefits of MITRE Framework

- MITRE Tactics, Techniques, and Procedures (TTPs) are added to intrusion events, which enable administrators to act on traffic, based on the MITRE ATT&CK framework. This enables administrators to view and handle traffic with more granularity, and group rules by vulnerability type, target system, or threat category.
- You can organize intrusion rules according to the MITRE ATT&CK framework. This allows you to customize policies according to specific attacker tactics and techniques.

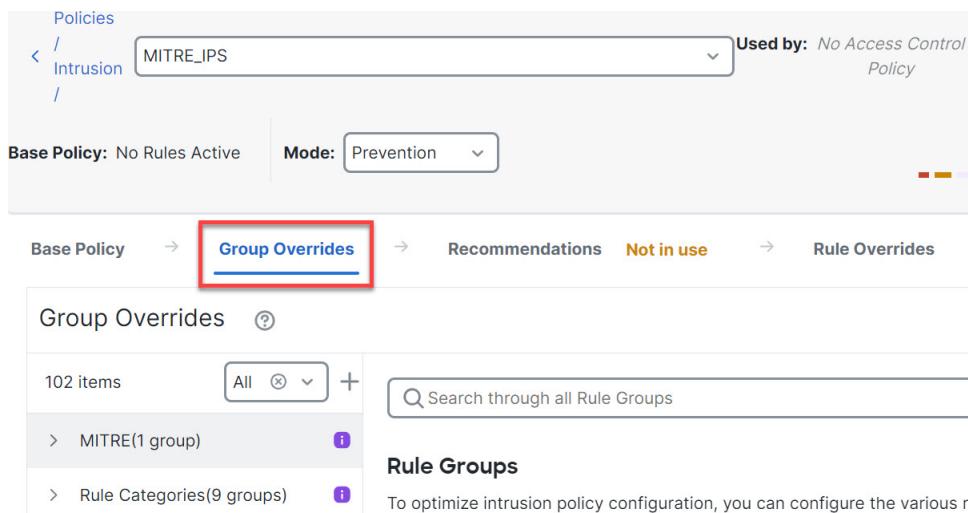
Sample Business Scenario for MITRE Network

A large corporate network uses Snort 3 as its primary intrusion detection and prevention system. In a rapidly evolving threat landscape, adoption of robust network security measures is necessary and important. Network administrators need to know if the configured policies are finding traffic of interest and if they are tracking a known attack group. For example, you may want to know if adversaries are attempting to take advantage of a weakness in your systems or applications in order to cause unanticipated behavior. The weakness in the system can be a bug, a glitch, or a design vulnerability. The applications may be websites, databases, standard services, such as Server Message Block (SMB) or Secure Shell (SSH), network device administration and management protocols or applications, such as web servers and related services.

The insights provided by the MITRE framework provides administrators with a more precise opportunity to specify protection for specific assets and protect their network from specific threat groups.

Prerequisites for MITRE Framework

- You must be running Secure Firewall Management Center and Secure Firewall Threat Defence Version 7.3.0 or later with Snort 3.
- You must have at least one intrusion policy. See [Create a Custom Snort 3 Intrusion Policy](#) , on page 41.


View and Edit Your Snort 3 Intrusion Policy

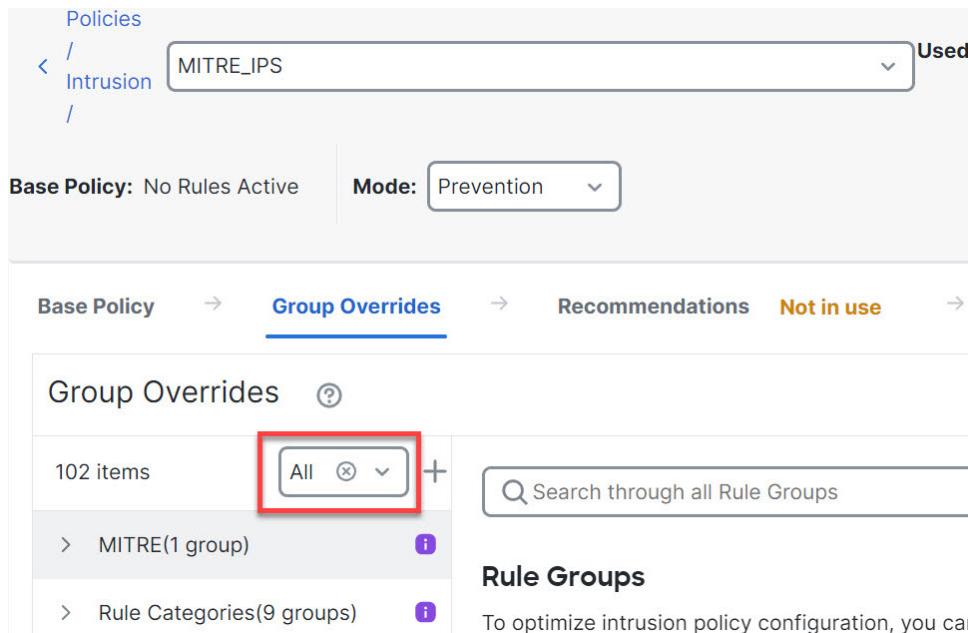
Procedure

Step 1	Choose Policies > Access Control heading > Intrusion .
Step 2	Ensure that the Intrusion Policies tab is chosen.
Step 3	Click Snort 3 Version next to the intrusion policy that you want to view or edit.
Step 4	Close the Snort helper guide that is displayed.
Step 5	Click the Group Overrides layer. This layer lists all the categories of rule groups in an hierarchical structure. You can drill down to the last leaf rule group under each rule group.

View and Edit Your Snort 3 Intrusion Policy

Policies / Intrusion / MITRE_IPS
Used by: No Access Control Policy

Base Policy: No Rules Active Mode: Prevention


Base Policy → **Group Overrides** → Recommendations Not in use → Rule Overrides

Group Overrides (102 items) All + Search through all Rule Groups

MITRE(1 group) Rule Groups
Rule Categories(9 groups)

To optimize intrusion policy configuration, you can configure the various r

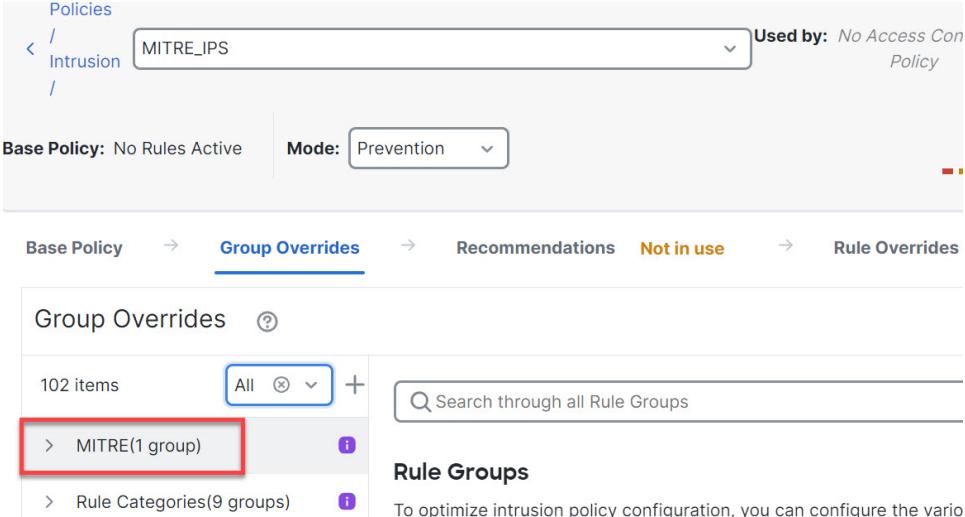
Step 6 Under **Group Overrides**, ensure that **All** is chosen in the drop-down list, so that all the rule groups for the corresponding intrusion policy are visible in the left pane.

Policies / Intrusion / MITRE_IPS
Used

Base Policy: No Rules Active Mode: Prevention

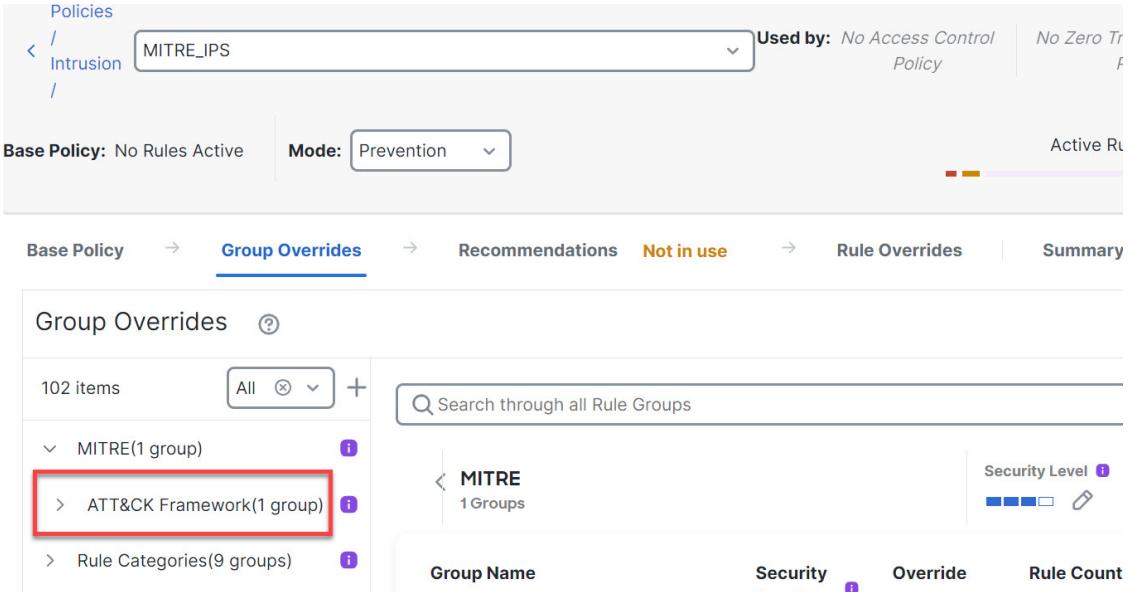
Base Policy → **Group Overrides** → Recommendations Not in use →

Group Overrides (102 items) All + Search through all Rule Groups


MITRE(1 group) Rule Groups
Rule Categories(9 groups)

To optimize intrusion policy configuration, you can

Step 7 Click **MITRE** in the left pane.


Note

Depending on your specific requirements, you can choose the **Rule Categories** rule group or any other rule group and subrule groups under it. All the rule groups use the MITRE framework.

The screenshot shows the 'Group Overrides' section of the intrusion policy interface. The navigation bar at the top shows 'Policies' > 'Intrusion' > 'MITRE_IPS'. The 'Used by' field indicates 'No Access Control Policy'. Below this, the 'Base Policy' is 'No Rules Active' and the 'Mode' is 'Prevention'. The 'Group Overrides' tab is selected. The main area shows '102 items' and a search bar. A red box highlights the 'MITRE(1 group)' item under 'Rule Groups'.

Step 8 Under **MITRE**, click **ATT&CK Framework** to drill down.

The screenshot shows the 'Group Overrides' section with the 'MITRE(1 group)' item expanded. A red box highlights the 'ATT&CK Framework(1 group)' item under the expanded 'MITRE' group. The interface includes a 'Search through all Rule Groups' bar and a table with columns for 'Group Name', 'Security Level', 'Override', and 'Rule Count'.

Step 9 Under **ATT&CK Framework**, click **Enterprise** to expand it.

View and Edit Your Snort 3 Intrusion Policy

Group Overrides

Group Name	Security Level	Override	Rule Count
MITRE / ATT&CK Framework	1 Groups		
Enterprise	13 groups		
Rule Categories	9 groups		

Step 10 Click the **Edit** (edit icon) next to the **Security Level** of the rule group to make bulk changes to the security level of all the associated rule groups under the **Enterprise** rule group category.

Group Overrides

Group Name	Security Level	Override	Rule Count
MITRE / ATT&CK Framework	1 Groups		
Enterprise	13 groups		
Rule Categories	9 groups		

Step 11 In the **Edit Security Level** window, choose a **Security Level** (in this example, 3), and click **Save**.

Edit Security Level

Bulk Group Security Level

Impacts 34 groups. This action will change the security level of all leaf groups within this group category.

Higher security with more detections for administrators who are willing to tolerate some network latency and low level of false positives, in an effort to catch more attacks

Step 12 Under **Enterprise**, click **Initial Access** to expand it.

Step 13 Under **Initial Access**, click **Exploit Public-Facing Application**, which is the last leaf group.

Base Policy → **Group Overrides** → Recommendations **Not in use** → Rule Overrides | Summary

Group Overrides

102 items

Enterprise(13 groups)

Collection(1 group)

Command and Control...

Defense Evasion(2 gro...)

Discovery(4 groups)

Execution(3 groups)

Exfiltration(1 group)

Impact(3 groups)

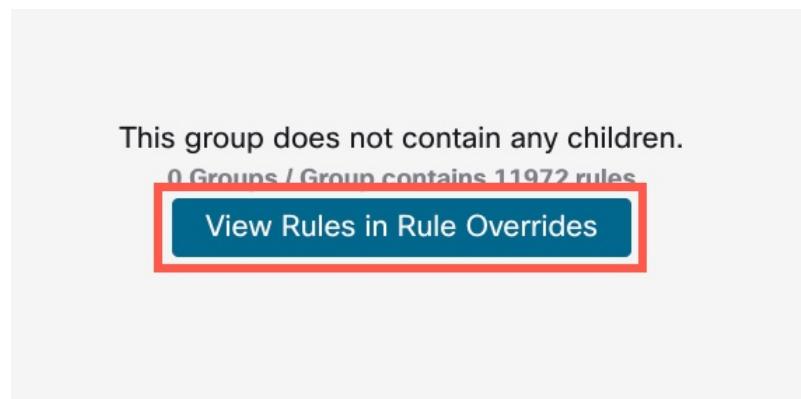
Initial Access(5 groups)

Drive...

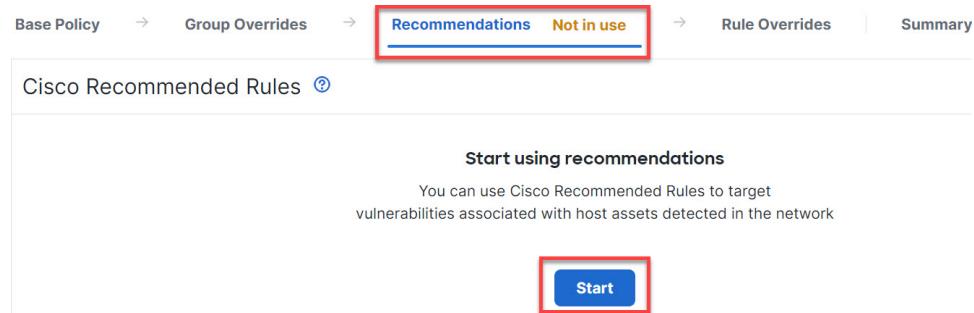
Exploit...

Exter...

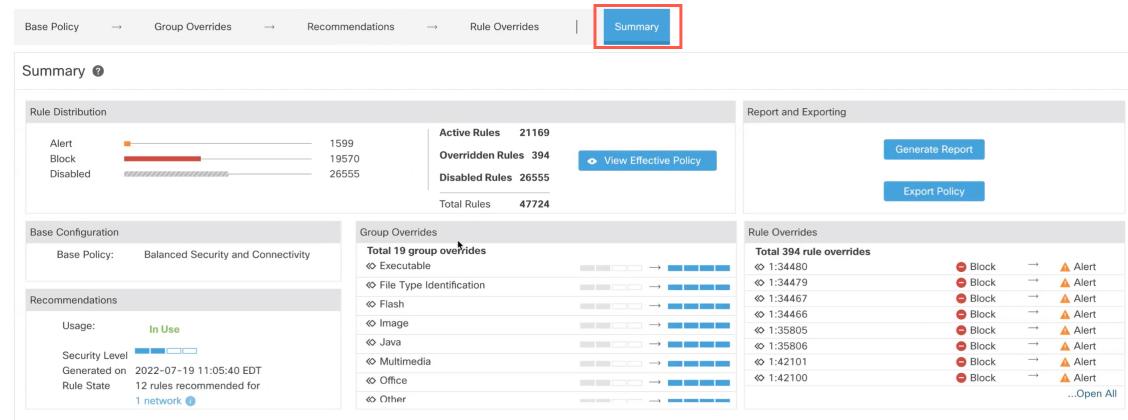
Phishi...


Valid Accounts(1 grou...)

MITRE / ATT&CK Framework / Enterprise / Initial Access / Exploit Public-Facing Application (T1190)


Adversaries may attempt to take advantage of a weakness in an Internet-facing computer or program using software, data, or commands in order to cause unintended or unanticipated behavior. The weakness in the system can be a bug, a glitch, or a design vulnerability. These applications are often

Step 14 Click **View Rules in Rule Overrides** to view the different rules, rule details, rule actions, and so on, for the different rules. You can change the rule actions for one or multiple rules in the **Rule Overrides** layer.

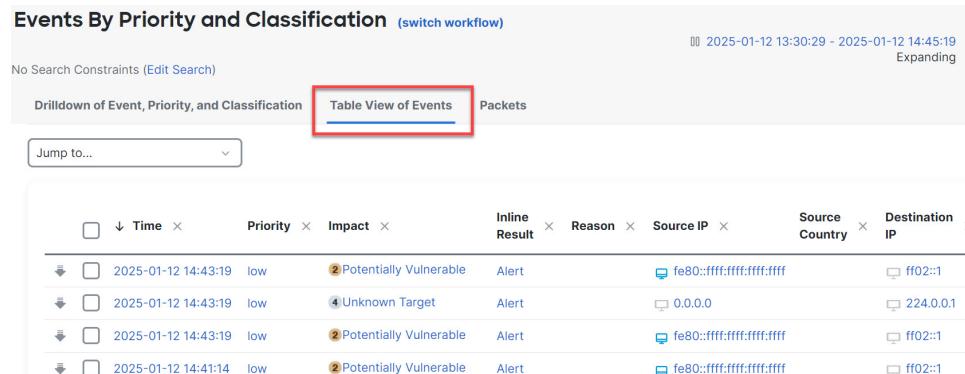

View and Edit Your Snort 3 Intrusion Policy

Step 15 Click the **Recommendations** layer and then click **Start** to start using Cisco-recommended rules. You can use the intrusion rule recommendations to target the vulnerabilities that are associated with the host assets detected in the network. For more information, see [Generate New Secure Firewall Recommendations in Snort 3, on page 69](#).

Step 16 Click the **Summary** layer for a holistic view of the current changes to the policy. Based on the rule overrides, security-level changes, and generation of Cisco-recommended rules, you can view the rule distribution of the policy, group overrides, rule overrides, rule recommendations, and so on, to verify your changes.

What to do next

Deploy your intrusion policy to detect and log events that are triggered by the Snort rules. See [Deploy Configuration Changes, on page 26](#).


View Intrusion Events

You can view the MITRE ATT&CK techniques and rule groups in the intrusion events on the **Classic Event Viewer** and **Unified Event Viewer** pages. Talos provides mappings from Snort rules (GID:SID) to MITRE ATT&CK techniques and rule groups. These mappings are installed as part of the Lightweight Security Package (LSP).

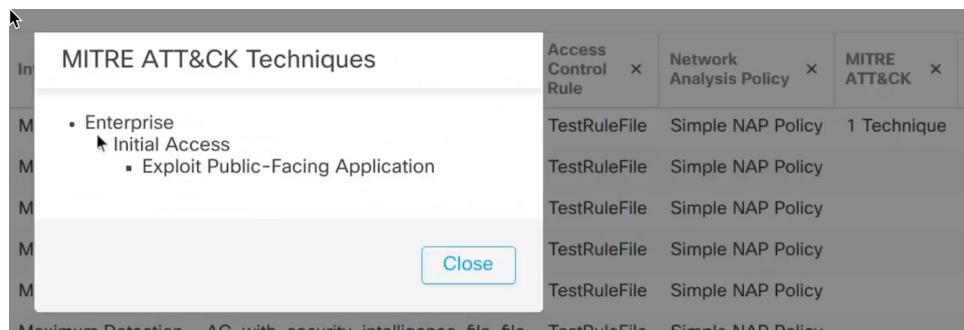
Procedure

Step 1 Click Analysis and select **Events** under **Intrusions**.

Step 2 Click the **Table View of Events** tab.

The screenshot shows the 'Events By Priority and Classification' page. At the top, there is a search bar with 'No Search Constraints (Edit Search)' and a date range '2025-01-12 13:30:29 - 2025-01-12 14:45:19'. Below the search bar, there are two tabs: 'Table View of Events' (which is highlighted with a red box) and 'Packets'. Under the 'Table View of Events' tab, there is a 'Jump to...' dropdown. The main area displays a table of intrusion events with columns: Time, Priority, Impact, Reason, Source IP, Source Country, and Destination IP. Each row shows an event with a timestamp, priority (low), reason (e.g., 'Potentially Vulnerable' or 'Unknown Target'), and source/destination details.

Step 3 Under **MITRE ATT&CK**, you can see the techniques for an intrusion event. Click **1 Technique** to view the MITRE ATT&CK techniques.



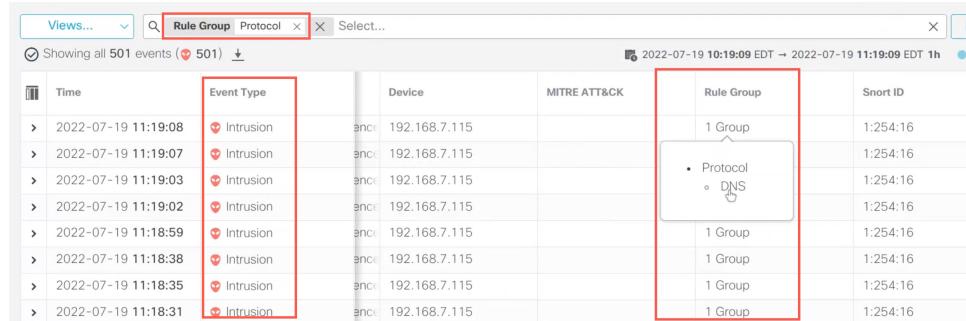
The screenshot shows a table under the 'MITRE ATT&CK' section. The columns are: Access Control Policy, Access Control Rule, Network Analysis Policy, MITRE ATT&CK (which is highlighted with a red box), and Rule Group. The table contains four rows, each with a different Access Control Policy and Rule, and the same Network Analysis Policy and Rule Group. The '1 Technique' cell in the first row is also highlighted with a red box.

Access Control Policy	Access Control Rule	Network Analysis Policy	MITRE ATT&CK	Rule Group
AC_with_security_intelligence_file_file	TestRuleFile	Simple NAP Policy	1 Technique	1 Group
AC_with_security_intelligence_file_file	TestRuleFile	Simple NAP Policy		1 Group
AC_with_security_intelligence_file_file	TestRuleFile	Simple NAP Policy		1 Group
AC_with_security_intelligence_file_file	TestRuleFile	Simple NAP Policy		1 Group

In this example, **Exploit Public-Facing Application** is the technique.

View Intrusion Events

Step 4 Click **Close**.


Step 5 Click **Analysis** and select **Unified Events**.

Step 6 If not enabled, click the column selector icon to enable the **MITRE ATT&CK** and **Rule Group** columns.

Step 7 In this example, the intrusion event is triggered by an event that is mapped to one rule group. Click **1 Group** under the **Rule Group** column.

Step 8 You can view **Protocol**, which is the parent rule group, and the DNS rule group under it. Choose **Protocol** > **DNS** to search for all the intrusion events that have at least one rule group that is .

The search results are displayed.

Time	Event Type	Device	MITRE ATT&CK	Rule Group	Snort ID
2022-07-19 11:19:08	• Intrusion	enc 192.168.7.115		1 Group	1:254:16
2022-07-19 11:19:07	• Intrusion	enc 192.168.7.115		1 Group	1:254:16
2022-07-19 11:19:03	• Intrusion	enc 192.168.7.115		1 Group	1:254:16
2022-07-19 11:19:02	• Intrusion	enc 192.168.7.115		1 Group	1:254:16
2022-07-19 11:18:59	• Intrusion	enc 192.168.7.115		1 Group	1:254:16
2022-07-19 11:18:38	• Intrusion	enc 192.168.7.115		1 Group	1:254:16
2022-07-19 11:18:35	• Intrusion	enc 192.168.7.115		1 Group	1:254:16
2022-07-19 11:18:31	• Intrusion	enc 192.168.7.115		1 Group	1:254:16

Additional References

- [Intrusion Policy in Snort 3](#)
- [Edit Snort 3 Intrusion Policies, on page 41](#)
- [MITRE Information in Malware Events](#)

Additional References

CHAPTER 4

Intrusion Prevention Performance Tuning

The following topics describe how to refine intrusion prevention performance:

- [About Intrusion Prevention Performance Tuning, on page 83](#)
- [License Requirements for Intrusion Prevention Performance Tuning, on page 84](#)
- [Requirements and Prerequisites for Intrusion Prevention Performance Tuning, on page 84](#)
- [Limiting Pattern Matching for Intrusions, on page 84](#)
- [Regular Expression Limits Overrides for Intrusion Rules, on page 85](#)
- [Overriding Regular Expression Limits for Intrusion Rules, on page 86](#)
- [Per Packet Intrusion Event Generation Limits, on page 87](#)
- [Limiting Intrusion Events Generated Per Packet, on page 87](#)
- [Packet and Intrusion Rule Latency Threshold Configuration, on page 88](#)
- [Intrusion Performance Statistic Logging Configuration, on page 94](#)
- [Configuring Intrusion Performance Statistic Logging, on page 94](#)

About Intrusion Prevention Performance Tuning

Cisco provides several features for improving the performance of your system as it analyzes traffic for attempted intrusions. You can:

- specify the number of packets to allow in the event queue. You can also, before and after stream reassembly, enable or disable inspection of packets that will be rebuilt into larger streams.
- override default match and recursion limits on PCRE that are used in intrusion rules to examine packet payload content.
- elect to have the rules engine log more than one event per packet or packet stream when multiple events are generated, allowing you to collect information beyond the reported event.
- balance security with the need to maintain device latency at an acceptable level with packet and rule latency thresholding.
- configure the basic parameters of how devices monitor and report their own performance. This allows you to specify the intervals at which the system updates performance statistics on your devices.

You configure these performance settings on a per-access-control-policy basis, and they apply to all intrusion policies invoked by that parent access control policy.

Note Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

License Requirements for Intrusion Prevention Performance Tuning

Threat Defense License

IPS

Requirements and Prerequisites for Intrusion Prevention Performance Tuning

Model support

Any.

Supported domains

Any

User roles

- Admin
- Access Admin
- Network Admin

Limiting Pattern Matching for Intrusions

Procedure

Step 1 In the access control policy editor, click **Advanced (Policies > Access Control heading > Access Control)**, click **Edit** and then click **Advanced Settings**.
In the new UI, select **Advanced Settings** from the drop-down arrow at the end of the packet flow line.

Step 2 Click **Edit** (🔗) next to **Performance Settings**.

If **View** (⌚) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 3 Click **Pattern Matching Limits** in the **Performance Settings** pop-up window.

Step 4 Enter a value for the maximum number of events to queue in the **Maximum Pattern States to Analyze Per Packet** field.

Step 5 To disable the inspection of packets that will be rebuilt into larger streams of data before and after stream reassembly in Snort 2, check the **Disable Content Checks on Traffic Subject to Future Reassembly** check box. Inspection before and after reassembly requires more processing overhead and may decrease performance.

Important

In Snort 3, the **Disable Content Checks on Traffic Subject to Future Reassembly** check box settings are:

- Checked—Indicates detecting TCP payload before reassembly. It includes inspection of packets before and after stream reassembly. This process requires more processing overhead and may decrease performance.
- Unchecked—Indicates detecting TCP payload after reassembly.

Step 6 Click **OK**.

Step 7 Click **Save** to save the policy.

What to do next

- Deploy configuration changes.

Regular Expression Limits Overrides for Intrusion Rules

The default regular expression limits ensure a minimum level of performance. Overriding these limits could increase security, but could also significantly impact performance by permitting packet evaluation against inefficient regular expressions.

Caution Do not override default PCRE limits unless you are an experienced intrusion rule writer with knowledge of the impact of degenerative patterns.

Table 6: Regular Expression Constraint Options

Option	Description
Match Limit State	Specifies whether to override Match Limit . You have the following options: <ul style="list-style-type: none"> • select Default to use the value configured for Match Limit • select Unlimited to permit an unlimited number of attempts • select Custom to specify either a limit of 1 or greater for Match Limit, or to specify 0 to completely disable PCRE match evaluations

Option	Description
Match Limit	Specifies the number of times to attempt to match a pattern defined in a PCRE regular expression.
Match Recursion Limit State	<p>Specifies whether to override Match Recursion Limit. You have the following options:</p> <ul style="list-style-type: none"> select Default to use the value configured for Match Recursion Limit select Unlimited to permit an unlimited number of recursions select Custom to specify either a limit of 1 or greater for Match Recursion Limit, or to specify 0 to completely disable PCRE recursions <p>Note that for Match Recursion Limit to be meaningful, it must be smaller than Match Limit.</p>
Match Recursion Limit	Specifies the number of recursions when evaluating a PCRE regular expression against the packet payload.

Related Topics

[Overview: The pcre Keyword](#)

Overriding Regular Expression Limits for Intrusion Rules

Procedure

Step 1 In the access control policy editor, click **Advanced**.
 In the new UI, select **Advanced Settings** from the drop-down arrow at the end of the packet flow line.

Step 2 Click **Edit** (edit icon) next to **Performance Settings**.
 If **View** (eye icon) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 3 Click **Regular Expression Limits** in the **Performance Settings** pop-up window.

Step 4 You can modify any of the options as described in [Regular Expression Limits Overrides for Intrusion Rules, on page 85](#).

Step 5 Click **OK**.

Step 6 Click **Save** to save the policy.

What to do next

- Deploy configuration changes.

Per Packet Intrusion Event Generation Limits

When the intrusion rules engine evaluates traffic against rules, it places the events generated for a given packet or packet stream in an event queue, then reports the top events in the queue to the user interface. When configuring the intrusion event logging limits, you can specify how many events can be placed in the queue and how many are logged, and select the criteria for determining event order within the queue.

Table 7: Intrusion Event Logging Limits Options

Option	Description
Maximum Events Stored Per Packet	The maximum number of events that can be stored for a given packet or packet stream.
Maximum Events Logged Per Packet	The number of events logged for a given packet or packet stream. This cannot exceed the Maximum Events Stored Per Packet value.
Prioritize Event Logging By	The value used to determine event ordering within the event queue. The highest ordered event is reported through the user interface. You can select from: <ul style="list-style-type: none"> <code>priority</code>, which orders events in the queue by the event priority. <code>content_length</code>, which orders events by the longest identified content match. When events are ordered by content length, rule events always take precedence over decoder and preprocessor events.

Limiting Intrusion Events Generated Per Packet

Procedure

Step 1 In the access control policy editor, click **Advanced**.
 In the new UI, select **Advanced Settings** from the drop-down arrow at the end of the packet flow line.

Step 2 Click **Edit** (edit icon) next to **Performance Settings**.
 If **View** (eye icon) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 3 Click **Intrusion Event Logging Limits** in the **Performance Settings** pop-up window.

Step 4 You can modify any of the options in [Per Packet Intrusion Event Generation Limits, on page 87](#).

Step 5 Click **OK**.

Step 6 Click **Save** to save the policy.

What to do next

- Deploy configuration changes.

Packet and Intrusion Rule Latency Threshold Configuration

Each access control policy has latency-based settings that use thresholding to manage packet and rule processing performance.

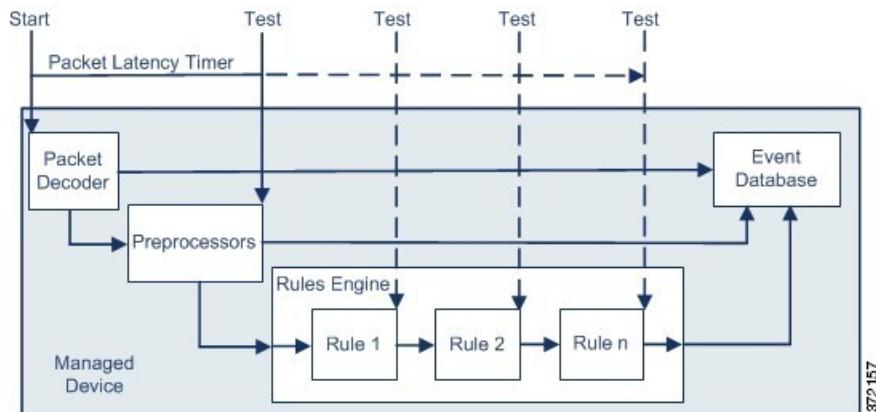
Packet latency thresholding measures the total elapsed time taken to process a packet by applicable decoders, preprocessors, and rules, and ceases inspection of the packet if the processing time exceeds a configurable threshold.

Rule latency thresholding measures the elapsed time each rule takes to process an individual packet, suspends the violating rule along with a group of related rules for a specified time if the processing time exceeds the rule latency threshold a configurable consecutive number of times, and restores the rules when the suspension expires.

Note Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

Latency-Based Performance Settings

By default, the system takes latency-based performance settings from the latest intrusion rule update deployed on your system.


The latency settings that are actually applied depend on the security level of the network analysis policy (NAP) associated with the access control policy. Generally, this is the default NAP policy. However, if custom network analysis rules are configured, and if any of these specify a NAP policy that is more secure than the default NAP policy, then latency settings are based on the most secure NAP policy among the custom rules. If the default NAP policy or any custom rules invoke a custom NAP policy, then the security level used in the evaluation is the system-provided base policy on which each custom NAP policy is based.

The above is true regardless of whether the effective threshold and/or network analysis configurations are inherited or configured directly in the policy.

Packet Latency Thresholding

Packet latency thresholding measures elapsed time, not just processing time, in order to more accurately reflect the actual time required for the rule to process a packet. However, latency thresholding is a software-based latency implementation that does not enforce strict timing.

The trade-off for the performance and latency benefits derived from latency thresholding is that uninspected packets could contain attacks. A timer starts for each packet when decoder processing begins. Timing continues either until all processing ends for the packet or until the processing time exceeds the threshold at a timing test point.

As illustrated in the above figure, packet latency timing is tested at the following test points:

- after the completion of all decoder and preprocessor processing and before rule processing begins
- after processing by each rule

If the processing time exceeds the threshold at any test point, packet inspection ceases.

Tip Total packet processing time does not include routine TCP stream or IP fragment reassembly times.

Packet latency thresholding has no effect on events triggered by a decoder, preprocessor, or rule processing the packet. Any applicable decoder, preprocessor, or rule triggers normally until a packet is fully processed, or until packet processing ends because the latency threshold is exceeded, whichever comes first. If a drop rule detects an intrusion in an inline deployment, the drop rule triggers an event and the packet is dropped.

Note No packets are evaluated against rules after processing for that packet ceases because of a packet latency threshold violation. A rule that would have triggered an event cannot trigger that event, and for drop rules, cannot drop the packet.

Packet latency thresholding can improve system performance in both passive and inline deployments, and can reduce latency in inline deployments, by stopping inspection of packets that require excessive processing time. These performance benefits might occur when, for example:

- for both passive and inline deployments, sequential inspection of a packet by multiple rules requires an excessive amount of time
- for inline deployments, a period of poor network performance, such as when someone downloads an extremely large file, slows packet processing

In a passive deployment, stopping the processing of packets might not contribute to restoring network performance because processing simply moves to the next packet.

Packet Latency Thresholding Notes

By default, the latency-based performance settings for packet handling is disabled. You may choose to enable it. However, Cisco recommends that you do not change the default value for the threshold setting.

Enabling Packet Latency Thresholding

The information in this below applies only if you choose to specify custom values.

Table 8: Packet Latency Thresholding Option

Option	Description
Threshold (microseconds)	Specifies the time, in microseconds, when inspection of a packet ceases.

Enabling Packet Latency Thresholding

Procedure

Step 1 In the access control policy editor, click **Advanced**.
 In the new UI, select **Advanced Settings** from the drop-down arrow at the end of the packet flow line.

Step 2 Click **Edit** (>Edit) next to **Latency-Based Performance Settings**.
 If **View** (View) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings.

Step 3 Click **Packet Handling** in the **Latency-Based Performance Settings** pop-up window.

Step 4 Check the **Enabled** check box.

Step 5 Click **OK**.

Step 6 Click **Save** to save the policy.

What to do next

- Deploy configuration changes.

Configuring Packet Latency Thresholding

By default, the latency-based performance settings for packet handling is disabled. You may choose to enable it. However, Cisco recommends that you do not change the default value for the threshold setting.

Procedure

Step 1 In the access control policy editor, click **Advanced**.
 In the new UI, select **Advanced Settings** from the drop-down arrow at the end of the packet flow line.

Step 2 Click **Edit** (>Edit) next to **Latency-Based Performance Settings**.
System (System) > **Monitoring** > **Statistics**

Step 3 If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 4 Click **Packet Handling** in the **Latency-Based Performance Settings** pop-up window.

By default, **Installed Rule Update** is selected. We recommend using this default.

The values displayed do not reflect the automated settings.

Step 5 If you choose to specify custom values:

- Check the **Enabled** check box, and see [Packet Latency Thresholding Notes, on page 89](#) for recommended minimum **Threshold** settings.
- You must specify custom values in both the packet handling tab and the rule handling tab.

Step 6 Click **OK**.

Step 7 Click **Save** to save the policy.

What to do next

- Deploy configuration changes.

Rule Latency Thresholding


Rule latency thresholding measures elapsed time, not just processing time, in order to more accurately reflect the actual time required for the rule to process a packet. However, latency thresholding is a software-based latency implementation that does not enforce strict timing.

The trade-off for the performance and latency benefits derived from latency thresholding is that uninspected packets could contain attacks. A timer measures the processing time each time a packet is processed against a group of rules. Any time the rule processing time exceeds a specified rule latency threshold, the system increments a counter. If the number of consecutive threshold violations reaches a specified number, the system takes the following actions:

- suspends the rules for the specified period
- triggers an event indicating the rules have been suspended
- re-enables the rules when the suspension expires
- triggers an event indicating the rules have been re-enabled

The system zeroes the counter when the group of rules has been suspended, or when rule violations are not consecutive. Permitting some consecutive violations before suspending rules lets you ignore occasional rule violations that might have negligible impact on performance and focus instead on the more significant impact of rules that repeatedly exceed the rule latency threshold.

The following example shows five consecutive rule processing times that do not result in rule suspension.

372158

Rule Latency Thresholding Notes

In the above example, the time required to process each of the first three packets violates the rule latency threshold of 1000 microseconds, and the violations counter increments with each violation. Processing of the fourth packet does not violate the threshold, and the violations counter resets to zero. The fifth packet violates the threshold and the violations counter restarts at one.

The following example shows five consecutive rule processing times that do result in rule suspension.

1	2	3	4	5	6	\dots	n	Packet
1100	1100	1100	1100	1100				Processing time (microseconds) (Threshold = 1000)
1	2	3	4	5				Violations (Consecutive violations before suspending = 5)
								872159

 = No violation = Threshold violation = Not inspected (rule suspended)

In the second example, the time required to process each of the five packets violates the rule latency threshold of 1000 microseconds. The group of rules is suspended because the rule processing time of 1100 microseconds for each packet violates the threshold of 1000 microseconds for the specified five consecutive violations. Any subsequent packets, represented in the figure as packets 6 through n, are not examined against suspended rules until the suspension expires. If more packets occur after the rules are re-enabled, the violations counter begins again at zero.

Rule latency thresholding has no effect on intrusion events triggered by the rules processing the packet. A rule triggers an event for any intrusion detected in the packet, regardless of whether the rule processing time exceeds the threshold. If the rule detecting the intrusion is a drop rule in an inline deployment, the packet is dropped. When a drop rule detects an intrusion in a packet that results in the rule being suspended, the drop rule triggers an intrusion event, the packet is dropped, and that rule and all related rules are suspended.

Note Packets are not evaluated against suspended rules. A suspended rule that would have triggered an event cannot trigger that event and, for drop rules, cannot drop the packet.

Rule latency thresholding can improve system performance in both passive and inline deployments, and can reduce latency in inline deployments, by suspending rules that take the most time to process packets. Packets are not evaluated again against suspended rules until a configurable time expires, giving the overloaded device time to recover. These performance benefits might occur when, for example:

- hastily written, largely untested rules require an excessive amount of processing time
- a period of poor network performance, such as when someone downloads an extremely large file, causes slow packet inspection

Rule Latency Thresholding Notes

By default, latency-based performance settings for both packet and rule handling are automatically populated by the latest deployed intrusion rule update, and we recommend that you do not change the default.

The information in this topic applies only if you choose to specify custom values.

Rule latency thresholding suspends rules for the time specified by **Suspension Time** when the time rules take to process a packet exceeds **Threshold** for the consecutive number of times specified by **Consecutive Threshold Violations Before Suspending Rule**.

You can enable rule 134:1 to generate an event when rules are suspended, and rule 134:2 to generate an event when suspended rules are enabled.

Table 9: Rule Latency Thresholding Options

Option	Description
Threshold	Specifies the time in microseconds that rules should not exceed when examining a packet.
Consecutive Threshold Violations Before Suspending Rule	Specifies the consecutive number of times rules can take longer than the time set for Threshold to inspect packets before rules are suspended.
Suspension Time	Specifies the number of seconds to suspend a group of rules.

Configuring Rule Latency Thresholding

By default, latency-based performance settings for both packet and rule handling are automatically populated by the latest deployed intrusion rule update, and we recommend that you do not change the default.

Procedure

Step 1 In the access control policy editor, click **Advanced**.
 In the new UI, select **Advanced Settings** from the drop-down arrow at the end of the packet flow line.

Step 2 Click **Edit** (✎) next to **Latency-Based Performance Settings**.
 If **View** (👁) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 3 Click **Rule Handling** in the **Latency-Based Performance Settings** pop-up window.
 By default, **Installed Rule Update** is selected. We recommend using this default.
 The values displayed do not reflect the automated settings.

Step 4 If you choose to specify custom values:

- You can configure any of the options in [Rule Latency Thresholding Notes, on page 92](#).
- You must specify custom values in both the packet handling tab and the rule handling tab.

Step 5 Click **OK**.

Step 6 Click **Save** to save the policy.

What to do next

- If you want to generate events, enable latency rules 134:1 and 134:2.
- Deploy configuration changes.

Intrusion Performance Statistic Logging Configuration

Sample time (seconds) and Minimum number of packets

When the number of seconds specified elapses between performance statistics updates, the system verifies it has analyzed the specified number of packets. If it has, the system updates performance statistics. Otherwise, the system waits until it analyzes the specified number of packets.

Caution

Configuring a very low value (for example 1 second) for the sample time can cause a huge impact on the device; the performance statistics logged on the device can cause disk space issues and affect the operation of the device. Hence we recommend you do not configure a very low value.

Troubleshooting Options: Log Session/Protocol Distribution

Support might ask you during a troubleshooting call to log protocol distribution, packet length, and port statistics.

Caution

Do not enable **Log Session/Protocol Distribution** unless instructed to by Support. Note that for Classic devices only, enabling or disabling **Log Session/Protocol Distribution** restarts the Snort process when you deploy configuration changes, temporarily interrupting traffic inspection. Whether traffic drops during this interruption or passes without further inspection depends on how the assigned device handles traffic. See [Snort Restart Traffic Behavior](#) for more information.

Troubleshooting Options: Summary

Support might ask you during a troubleshooting call to configure the system to calculate the performance statistics only when the Snort process is shut down or restarted. To enable this option, you must also enable the **Log Session/Protocol Distribution** troubleshooting option.

Caution

Do not enable **Summary** unless instructed to do so by Support.

Configuring Intrusion Performance Statistic Logging

Procedure

Step 1

In the access control policy editor, click **Advanced**, then click **Edit** (🔗) next to **Performance Settings**.

In the new UI, select **Advanced Settings** from the drop-down arrow at the end of the packet flow line.

If **View** (👁) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 2 Click **Performance Statistics** in the pop-up window that appears.

Step 3 Modify the **Sample time** or **Minimum number of packets** as described in [Intrusion Performance Statistic Logging Configuration, on page 94](#).

Caution

Configuring a very low value (for example 1 second) for the **Sample time** can cause a huge impact on the device; the performance statistics logged on the device can cause disk space issues and affect the operation of the device. Hence we recommend you do not configure a very low value.

Step 4 Optionally, expand the **Troubleshoot Options** section and modify those options only if asked to do so by Support.

Step 5 Click **OK**.

What to do next

- Deploy configuration changes.

CHAPTER 5

Network Analysis Policies

This chapter provides an insight into network analysis policy basics, prerequisites, and how to manage network analysis policies. It also provides information on custom network analysis policy creation and network analysis policy settings.

- [Overview of Network Analysis Policies, on page 97](#)
- [Manage Network Analysis Policies, on page 98](#)
- [Snort 3 Definitions and Terminologies for Network Analysis Policy, on page 99](#)
- [Prerequisites for Network Analysis and Intrusion Policies, on page 101](#)
- [Custom Network Analysis Policy Creation for Snort 3, on page 101](#)
- [Network Analysis Policy Settings and Cached Changes, on page 129](#)
- [Generate Snort 3 Recommendations, on page 129](#)

Overview of Network Analysis Policies

Network analysis policies govern many traffic preprocessing options, and are invoked by advanced settings in your access control policy. Network analysis-related preprocessing occurs after Security Intelligence matching and SSL decryption, but before intrusion or file inspection begins.

By default, the system uses the *Balanced Security and Connectivity* network analysis policy to preprocess all traffic handled by an access control policy. However, you can choose a different default network analysis policy to perform this preprocessing. For your convenience, the system provides a choice of several non-modifiable network analysis policies, which are tuned for a specific balance of security and connectivity by the Cisco Talos Intelligence Group (Talos). You can also create a custom network analysis policy with custom preprocessing settings.

Tip System-provided intrusion and network analysis policies are similarly named but contain different configurations. For example, the *Balanced Security and Connectivity* network analysis policy and the *Balanced Security and Connectivity* intrusion policy work together and can both be updated in intrusion rule updates. However, the network analysis policy governs mostly preprocessing options, whereas the intrusion policy governs mostly intrusion rules. Network analysis and intrusion policies work together to examine your traffic.

You can also tailor traffic preprocessing options to specific security zones, networks, and VLANs by creating multiple custom network analysis policies, then assigning them to preprocess different traffic. (Note that ASA FirePOWER cannot restrict preprocessing by VLAN.)

Manage Network Analysis Policies

Under your user name in the toolbar, the system displays a tree of available domains. To switch domains, choose the domain you want to access.

Note Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [management center](#) guide that matches your threat defense version.

Procedure

Step 1 Choose one of the following paths to access the network analysis policy.

- Policies > Access Control heading > Access Control, and then click **Network Analysis Policy**
- Policies > Access Control heading > Intrusion, and then click **Network Analysis Policies**

Note

If your custom user role limits access to the first path listed here, use the second path to access the policy.

Step 2 Manage your network analysis policy:

- Create—if you want to create a new network analysis policy, click **Create Policy**.

Two versions of the network analysis policy are created, a **Snort 2 Version** and a **Snort 3 Version**.

- For the Snort 2 version, see *Custom Network Analysis Policy Creation for Snort 2* in the *Cisco Secure Firewall Management Center Configuration Guide*.
- For the Snort 3 version, see [Custom Network Analysis Policy Creation for Snort 3, on page 101](#).

- Delete—if you want to delete a network analysis policy, click the **Delete** icon, then confirm that you want to delete the policy. You cannot delete a network analysis policy if an access control policy references it.

If the controls are dimmed, the configuration belongs to an ancestor domain, or you do not have permission to modify the configuration.

- Edit—if you want to edit an existing network analysis policy, click the **Edit** icon.

If **View** (ocular icon) appears instead, the configuration belongs to an ancestor domain, or you do not have permission to modify the configuration.

- Report—Click the **Report** icon; see *Generating Current Policy Reports* in the *Cisco Secure Firewall Management Center Configuration Guide*.

Snort 3 Definitions and Terminologies for Network Analysis Policy

The following table lists the Snort 3 concepts and terms used in the Network Analysis Policy.

Table 10: Snort 3 Definitions and Terminologies for Network Analysis Policy

Term	Description
Inspectors	Inspectors are plugins that process packets (similar to the Snort 2 preprocessor).
Binder inspector	<p>Binder inspector defines the flow when a particular inspector has to be accessed and taken into consideration.</p> <p>When the traffic matches the conditions defined in the binder inspector, only then do the values/configurations for that inspector come into effect.</p> <p>For more information, see <i>Binder Inspector</i> in Custom Network Analysis Policy Creation for Snort 3, on page 101.</p>
Singleton inspectors	<p>Singleton inspectors contain one instance. These inspectors do not support adding more instances like multiton inspectors. Settings of singleton inspector are applied to the entire traffic matching that inspector and not to a specific traffic segment.</p> <p>For more information, see <i>Singleton Inspectors</i> in Custom Network Analysis Policy Creation for Snort 3, on page 101.</p>
Multiton inspectors	<p>Multiton inspectors contain multiple instances which you can configure as needed. These inspectors support configuring settings based on specific conditions, such as network, port, and VLAN. One set of supported settings is called an instance.</p> <p>For more information, see <i>Multiton Inspectors</i> in Custom Network Analysis Policy Creation for Snort 3, on page 101.</p>

Term	Description
Schema	<p>The schema file is based on the OpenAPI JSON specification, and it validates the content that you upload or download. You can download the schema file and open it using any third-party JSON editor, such as Swagger editor. The schema file helps you to identify what parameters can be configured for inspectors with their corresponding allowed values, range, and accepted patterns to be used.</p> <p>For more information, see Customize the Network Analysis Policy, on page 109.</p>
Sample file	<p>It is a pre-existing template that contains example configurations to help you with configuring the inspectors.</p> <p>You can refer to the example configurations included in the sample file and make any changes that you may require.</p> <p>For more information, see Customize the Network Analysis Policy, on page 109.</p>
Full configuration	<p>You can download the entire inspector configurations in a single file.</p> <p>All information regarding the inspector configuration is available in this file.</p> <p>The full configuration is a merged configuration of the default configuration (rolled out as a part of the LSP updates by Cisco Talos) and the custom NAP inspector configurations.</p> <p>For more information, see Customize the Network Analysis Policy, on page 109.</p>

Term	Description
Overridden configuration	<p>In the Snort 3 Version of the network analysis policy page:</p> <ul style="list-style-type: none"> Under Actions > Upload, you can click Overridden Configuration to upload the JSON file that contains the overridden configuration. Under Actions > Download, you can click Overridden Configuration to download the inspector configuration that has been overridden. <p>If you have not overridden any inspector configuration, then this option is disabled. When you override the inspector configuration, then this option is enabled automatically to allow you to download.</p> <p>For more information, see Customize the Network Analysis Policy, on page 109.</p>

Related Topics

[Custom Network Analysis Policy Creation for Snort 3](#), on page 101

[Customize the Network Analysis Policy](#), on page 109

[Network Analysis Policy Mapping](#), on page 106

Prerequisites for Network Analysis and Intrusion Policies

To allow the Snort inspection engine to process traffic for intrusion and malware analysis, you must have the IPS license enabled for the Firewall Threat Defense device.

You must be an Admin user to manage network analysis, intrusion policies, and perform migration tasks.

Custom Network Analysis Policy Creation for Snort 3

The default network analysis policy is tuned for typical network requirements and optimal performance. Usually, the default network analysis policy suffices most network requirements and you might not need to customize the policy. However, when you have a specific network requirement or when you are facing performance issues, the default network analysis policy can be customized. Note that customizing the network analysis policy is an advanced configuration that should be done only by advanced users or Cisco support.

Network analysis policy configuration for Snort 3 is a data-driven model, which is based on JSON and JSON Schema. Schema is based on the OpenAPI specification, and it helps you get a view of the supported inspectors, settings, settings type, and valid values. The Snort 3 inspectors are plugins that process packets (similar to the Snort 2 preprocessor). Network analysis policy configuration is available to download in the JSON format.

In Snort 3, the list of inspectors and settings are not in a one-to-one mapping with the Snort 2 list of preprocessors and settings. Also, the number of inspectors and settings available in Firewall Management Center is a subset of the inspectors and settings that Snort 3 supports. See <https://snort.org/snort3> for more

information on Snort 3. See <https://www.cisco.com/go/snort3-inspectors> for more information on the inspectors available in Firewall Management Center.

Note

- While upgrading the Firewall Management Center to the 7.0 release, the changes that were done in the Snort 2 version of the network analysis policy are not migrated to Snort 3 after the upgrade.
- Unlike the intrusion policy, there is no option to synchronize Snort 2 network analysis policy settings to Snort 3.

Default Inspector Updates

Lightweight Security Package (LSP) updates may contain new inspectors or modifications to integer ranges for existing inspector configurations. Following the installation of an LSP, new inspectors and/or updated ranges will be available under **Inspectors** in the **Snort 3 Version** of your network analysis policy.

Binder Inspector

Binder inspector defines the flow when a particular inspector has to be accessed and taken into consideration. When the traffic matches the conditions defined in the binder inspector, only then the values/configurations for that inspector come into effect. For example:

For the *imap* inspector, the binder defines the following condition when it has to be accessed. That is when:

- Service is equal to imap.
- Role is equal to any.

If these conditions are met, then use the type *imap*.

```
▼ binder
185  {
186      "when": {
187          "service": "imap",
188          "role": "any"
189      },
190      "use": {
191          "type": "imap"
192      }
193  },
```

Singleton Inspectors

Singleton inspectors contain a single instance. These inspectors do not support adding more instances like multiton inspectors. Settings of singleton inspector are applied to the entire traffic and not to a specific traffic segment.

For example:

```
{
  "normalizer": {
    "enabled": true,
    "type": "singleton",
    "data": {
      "ip4": {
        "df": true
      }
    }
  }
}
```

Multiton Inspectors

Multiton inspectors contain multiple instances which you can configure as needed. These inspectors support configuring settings based on specific conditions, such as network, port, and VLAN. One set of supported

settings is called an instance. There is a default instance, and you can also add additional instances based on specific conditions. If the traffic matches that condition, the settings from that instance are applied. Otherwise, the settings from the default instance are applied. Also, the name of the default instance is the same as the inspector's name.

For a multiton inspector, when you upload the overridden inspector configuration, you also need to include/define a matching binder condition (conditions under when the inspector has to be accessed or used) for each instance in the JSON file, otherwise, the upload will result in an error. You can also create new instances, but make sure that you include a binder condition for every new instance that you create to avoid errors.

For example:

- Multiton inspector where the default instance is modified.

```
{
  "http_inspect": {
    "enabled": true,
    "type": "multiton",
    "instances": [
      {
        "name": "http_inspect",
        "data": {
          "response_depth": 5000
        }
      }
    ]
  }
}
```

- Multiton inspector where the default instance and default binder is modified.

```
{
  "http_inspect": {
    "enabled": true,
    "type": "multiton",
    "instances": [
      {
        "name": "http_inspect",
        "data": {
          "response_depth": 5000
        }
      }
    ]
  },
  "binder": {
    "type": "binder",
    "enabled": true,
    "rules": [
      {
        "use": {
          "type": "http_inspect"
        },
        "when": {
          "role": "any",
          "ports": "8080",
          "proto": "tcp",
          "service": "http"
        }
      }
    ]
  }
}
```

- Multiton inspector where a custom instance and a custom binder is added.

```
{
  "http_inspect": {
    "enabled": true,
    "type": "multiton",
    "instances": [
      {
        "name": "http_inspect1",
        "data": {
          "response_depth": 5000
        }
      }
    ],
    "binder": {
      "type": "binder",
      "enabled": true,
      "rules": [
        {
          "use": {
            "type": "http_inspect",
            "name": "http_inspect1"
          },
          "when": {
            "role": "any",
            "ports": "8080",
            "proto": "tcp",
            "service": "http"
          }
        }
      ]
    }
  }
}
```

Common Industrial Protocol Safety

Common Industrial Protocol (CIP) Safety is a set of extensions to the CIP that enables the safe operation of devices. It also provides fail-safe communication between different nodes on a CIP network.

The CIP Safety protocol comprises two main components:

- CIP Safety segments—Used in Forward Open messages to exchange safety parameters for the subsequent safety session.
- CIP Safety messages—Used to exchange actual safety information.

The CIP inspector detects and identifies:

- CIP as a service and client
- Payloads, such as CIP Read, CIP Admin, CIP Infrastructure, and CIP Write

The CIP inspector can parse the CIP segments and detect the CIP Safety segments in the Forward Open requests.

To test the CIP Safety feature, you must enable the CIP inspector. See [Detect and Block Safety Segments in CIP Packets, on page 106](#).

Detect and Block Safety Segments in CIP Packets

Use case: To detect and block CIP safety segments while allowing other CIP packets:

- Create a custom network analysis policy called **cip_safety**.
- Create access control rules in your access control policy to block CIP Safety and to allow all other packets.

To test the CIP Safety feature, enable the CIP inspector in the management center and assign it to an access control policy.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Click the **Snort 3 Version** of the network analysis policy **cip_safety** that you created.

Step 3 Under **Inspectors**, click **cip** to expand it.

The default configuration appears in the left column and the overridden configuration appears in the right column under the inspector.

Step 4 Under **Overridden Configuration** on the right column, click the **Edit Inspector** icon and change the "enabled" field in **cip** from false (default) to true.

Step 5 Click **OK**.

Step 6 Click **Save**.

Step 7 To assign the **cip** inspector to the access control policy, choose **Policies > Access Control heading > Access Control**, click **Edit** and choose the **Advanced Settings** option from the **More** drop-down arrow at the end of the packet flow line.

Step 8 Click **Edit** (🔗) next to **Network Analysis and Intrusion Policies**.

Step 9 In the **Network Analysis and Intrusion Policies** window, choose the access control policy **cip_safety** that you created from the **Default Network Analysis Policy** drop-down list.

The CIP inspector is now enabled in the management center and you can create the custom access control rules to block CIP Safety and to allow all other CIP packets.

Step 10 After you send live traffic containing CIP Safety packet flows, go to **Connection Events** to verify that the payload is the expected payload that contains CIP Safety packet logs for the detection and block use case as mentioned in this procedure. **CIP** is detected as an application protocol and client (see the **Application Protocol** and **Client** fields), and **CIP Safety** is shown under the **Web Application** field.

Network Analysis Policy Mapping

For network analysis policies, Cisco Talos provides mapping information, which is used to find the corresponding Snort 2 version of the policies for the Snort 3 version.

This mapping ensures that the Snort 3 version of policies has its equivalent Snort 2 version.

View Network Analysis Policy Mapping

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Click **NAP Mapping**.

Step 3 Expand the arrow for **View Mappings**.
The Snort 3 network analysis policies that are automatically mapped to a Snort 2 equivalent policy are displayed.

Step 4 Click **OK**.

Create a Network Analysis Policy

All the existing network analysis policies are available in Firewall Management Center with their corresponding Snort 2 and Snort 3 versions. When you create a new network analysis policy, it is created with both the Snort 2 version and the Snort 3 version.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Click **Create Policy**.

Step 3 Enter the **Name** and **Description**.

Step 4 Select a **Base Policy** and click **Save**.

The new network analysis policy is created with its corresponding **Snort 2 Version** and **Snort 3 Version**.

Modify the Network Analysis Policy

You can modify the network analysis policy to change its name, description, or the base policy.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Click **Edit** to change the name, description, inspection mode, or the base policy.

Attention
Detection mode deprecation: From management center 7.4.0 onwards, for a network analysis policy (NAP), the **Detection** inspection mode is deprecated and will be removed in an upcoming release.
The **Detection** mode was intended to be used as a test mode so that you can enable inspections and see how they behave in your network before setting it to drop traffic, that is, to show traffic that would be dropped.

Search for an Inspector on the Network Analysis Policy Page

This behavior is improved where all inspector drops are controlled by the rule state, and you can set each one to generate events. This is done to test them before configuring the rule state to drop traffic. As we now have granular control over traffic drops in Snort 3, the **Detection** mode only adds more complexity to the product and is not needed, so the detection mode is deprecated.

If you change a NAP in **Detection** mode to **Prevention**, the NAP that processes the traffic of intrusion events and have the result "will be dropped" will now be "dropped" and the corresponding traffic will drop the traffic from these events. This is applicable for rules whose GIDs are not 1 or 3. GIDs 1 and 3 are text/compiled rules (typically provided by Talos or from your custom/imported rules) and all other GIDs are inspections for anomalies. These are more uncommon rules to trigger in a network. Changing to **Prevention** mode is unlikely to have any impact on the traffic. You need to just disable the intrusion rule that is applicable for the dropped traffic and set it to just generate or disable.

We recommend you choose **Prevention** as the inspection mode, but if you choose **Prevention**, you cannot revert to **Detection** mode.

Note

If you edit the network analysis policy name, description, base policy, and inspection mode, the edits are applied to both the Snort 2 and Snort 3 versions. If you want to change the inspection mode for a specific version, then you can do that from within the network analysis policy page for that respective version.

Step 3 Click **Save**.

Search for an Inspector on the Network Analysis Policy Page

On the Snort 3 version of the network analysis policy page, you may need to search for an inspector by entering any relevant text in the search bar.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Go to the **Snort 3 Version** of the network analysis policy.

Step 3 Enter an inspector's name or any relevant text to search for in the **Search** bar.

All the inspectors matching the text you search for are displayed.

For example, if you enter **pop**, then the pop inspector and the binder inspector are shown as matching results on the screen.

Related Topics

[Examples of Custom Network Analysis Policy Configuration](#), on page 118

[View the List of Inspectors with Overrides](#), on page 114

[Snort 3 Definitions and Terminologies for Network Analysis Policy](#), on page 99

[Customize the Network Analysis Policy](#), on page 109

[Make Inline Edit for an Inspector to Override Configuration](#), on page 113

Copy the Inspector Configuration

You can copy the inspector configuration for the Snort 3 version of the network analysis policy according to your requirements.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Go to the **Snort 3 Version** of the network analysis policy.

Step 3 Under **Inspectors**, expand the required inspector for which you want to copy the configuration. The default configuration is displayed on the left column and the overridden configuration is displayed on the right column under the inspector.

Step 4 Click the **Copy to clipboard** icon to copy the inspector configuration to the clipboard for one or both of the following.

- **Default Configuration** in the left column
- **Overridden Configuration** in the right column

Step 5 Paste the copied inspector configuration to a JSON editor to make any edits you may require.

Related Topics

[Customize the Network Analysis Policy](#), on page 109

Customize the Network Analysis Policy

You can customize the Snort 3 version of the network analysis policy according to your requirements.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Go to the **Snort 3 Version** of the network analysis policy.

Step 3 Click the **Actions** drop-down menu. The following options are displayed:

- View Schema
- Download Schema / Download Sample File / Template
- Download Full Configuration
- Download Overridden Configuration
- Upload Overridden Configuration

Step 4 Click **View Schema** to open the schema file directly in a browser.

Customize the Network Analysis Policy

Step 5 You can download the schema file, sample file / template, full configuration, or overridden configuration as needed.

These options provide you an insight about the allowed values, range, and patterns, existing and default inspector configurations, and overridden inspector configurations.

- Click **Download Schema** to download the schema file.

The schema file validates the content that you upload or download. You can download the schema file and open it using any third-party JSON editor. The schema file helps you to identify what parameters can be configured for inspectors with their corresponding allowed values, range, and accepted patterns to be used.

For example, for the *arp_spoof_snort* inspector, you can configure the hosts. The hosts include the *mac* and *ip* address values. The schema file shows the following accepted pattern for these values.

- **mac-pattern:** `^([0-9A-Fa-f]{2}[:-]{5}([0-9A-Fa-f]{2}))$`
- **ip-pattern:** `^([0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}(/[0-9]{1,2}){0,1})$`

```

arp_spoof_snort.hosts <--> [arp_spoof_snort.hosts <--> {
    mac
        arp_spoof_snort.hosts.mac string
        pattern: "(0-9A-Fa-f){2}(:-){5}([0-9A-Fa-f]{2})$"
        host mac address
    ip
        arp_spoof_snort.hosts.ip string
        pattern: "^(0-9){1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}(/[0-9]{1,2}){0,1}$"
        host ip address
}]
  
```

You must provide the values, range, patterns according to the accepted ones in the schema file to be able to successfully override the inspector configuration, otherwise, you get an error message.

- Click **Download Sample File / Template** to use a pre-existing template that contains example configurations to help you with configuring the inspectors.

You can refer to the example configurations included in the sample file and make any changes that you may require.

- Click **Download Full Configuration** to download the entire inspector configurations in a single JSON file.

Instead of expanding the inspectors separately, you can download the full configuration to look out for the information you need. All information regarding the inspector configuration is available in this file.

- Click **Download Overridden Configuration** to download the inspector configuration that has been overridden.

Step 6

To override the existing configuration, follow the steps.

You can choose to override an inspector configuration using the following ways.

- Make inline edits for an inspector directly on the Firewall Management Center. See the topic **Make Inline Edit for an Inspector to Override Configuration** in the **Getting Started with Network Analysis Policies** chapter of the *Cisco Secure Firewall Management Center Snort 3 Configuration Guide*.
- Continue to follow the current procedure of using the **Actions** drop-down menu to upload the overridden configuration file.

If you chose to make inline edits directly in the Firewall Management Center, then you don't need to follow the current procedure further. Otherwise, you must follow this procedure completely.

- Under **Inspectors**, expand the required inspector for which you want to override the default configuration.

The default configuration is displayed on the left column and the overridden configuration is displayed on the right column under the inspector.

You may need to search for an inspector by entering any relevant text in the search bar.

- Click the **Copy to clipboard** icon to copy the default inspector configuration to the clipboard.
- Create a JSON file and paste the default configuration in it.
- Keep the inspector configuration that you want to override, and remove all the other configuration and instances from the JSON file.

Customize the Network Analysis Policy

You can also use the **Sample File / Template** to understand how to override the default configuration. This is a sample file that includes JSON snippets explaining how you can customize the network analysis policy for Snort 3.

- e) Make changes to the inspector configuration as needed.

Validate the changes and make sure they conform to the schema file. For multiton inspectors, make sure that the binder conditions for all instances are included in the JSON file. See *Multiton Inspectors* in the topic **Custom Network Analysis Policy Creation for Snort 3** in the *Cisco Secure Firewall Management Center Snort 3 Configuration Guide* for more information.

- f) If you are copying any further default inspector configurations, append that inspector configuration to the existing file that contains the overridden configuration.

Note

The copied inspector configuration must comply with the JSON standards.

- g) Save the overridden configuration file to your system.

Step 7

From the **Actions** drop-down menu, choose **Upload Overridden Configuration** to upload the JSON file that contains the overridden configuration.

Caution

Upload only the changes that you require. You should not upload the entire configuration as it makes the overrides sticky in nature and therefore, any subsequent changes to the default configuration as part of the LSP updates would not be applied.

You can drag and drop a file or click to browse to the JSON file saved in your system that contains the overridden inspector configuration.

- **Merge inspector overrides** – Content in the uploaded file is merged with the existing configuration if there is no common inspector. If there are common inspectors, then the content in the uploaded file (for common inspectors) takes precedence over the previous content, and it replaces the previous configuration for those inspectors.
- **Replace inspector overrides** – Removes all previous overrides and replaces them with the new content in the uploaded file.

Attention

Choosing this option deletes all the previous overrides. Make an informed decision before you override the configuration using this option.

If any error occurs while uploading the overridden inspectors, you see the error in the **Upload Overridden Configuration File** pop-up window. You can also download the file with the error, fix the error, and reupload the file.

Step 8

In the **Upload Overridden Configuration File** pop-up window, click **Import** to upload the overridden inspector configuration.

After you upload the overridden inspector configuration, you will see an orange icon next to the inspector that signifies that it is an overridden inspector.

Also, the **Overridden Configuration** column under the inspector shows the overridden value.

You can also view all the overridden inspectors using the **Show Overrides Only** checkbox adjacent to the Search bar.

Note

Make sure that you always download the overridden configuration, open the JSON file, and append any new changes/overrides to the inspector configurations to this file. This action is needed so that you do not lose the old overridden configurations.

Step 9 (Optional) Take a backup of the overridden configuration file on your system before making any new inspector configuration changes.

Tip

We recommend that you take the backup from time to time as you override the inspector configuration.

Related Topics

[Revert Overridden Configuration to Default Configuration](#), on page 115

[View the List of Inspectors with Overrides](#), on page 114

[Search for an Inspector on the Network Analysis Policy Page](#), on page 108

[Copy the Inspector Configuration](#), on page 109

Make Inline Edit for an Inspector to Override Configuration

For the Snort 3 version of the network analysis policy, you can make an inline edit for the inspector configuration to override the configuration according to your requirements.

Alternatively, you can also use the **Actions** drop-down menu to upload the overridden configuration file. See [Customize the Network Analysis Policy](#), on page 109 for more information.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Go to the **Snort 3 Version** of the network analysis policy.

Step 3 Under **Inspectors**, expand the required inspector for which you want to override the default setting.

The default configuration is displayed on the left column and the overridden configuration is displayed on the right column under the inspector.

Step 4 Under the **Overridden Configuration** in the right column, click **Edit Inspector** (Pencil) icon to make changes to the inspector configuration.

The Override Configuration pop-up appears where you can make the required edits.

Note

- Make sure that you keep only those settings that you want to override. If you leave a setting with the same value, that field becomes sticky. This means if that setting is changed in the future by Talos, the current value will be retained.
- If you are adding or deleting any custom instance, make sure that you add or delete a binder rule for that instance in the binder inspector as well.

Step 5 Click **OK**.

If there are any errors according to the JSON standards, it shows you an error message.

Step 6 Click **Save** to save the changes.

If the changes conform to the OpenAPI schema specification, the Firewall Management Center allows you to save the configuration, otherwise, the **Error saving overridden configuration** pop-up appears that shows the errors. You can also download the file with the errors.

Related Topics

[Customize the Network Analysis Policy](#), on page 109

[Revert Unsaved Changes during Inline Edits](#), on page 114

[Revert Overridden Configuration to Default Configuration](#), on page 115

[Examples of Custom Network Analysis Policy Configuration](#), on page 118

Revert Unsaved Changes during Inline Edits

While making inline edits to override the configuration for an inspector, you can revert any unsaved changes. Note that this action reverts all unsaved changes to the most recently saved value, but does not revert the configuration to the default configuration for an inspector.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Go to the **Snort 3 Version** of the network analysis policy.

Step 3 Under **Inspectors**, expand the required inspector for which you want to revert the unsaved changes.

The default configuration is displayed in the left column and the overridden configuration is displayed in the right column under the inspector.

Step 4 Under the **Overridden Configuration** on the right column, click the **Cross X** icon to revert any unsaved changes for the inspector.

Alternatively, you can click **Cancel** to cancel the changes.

If you do not have any unsaved changes to the inspector configuration, then this option is not visible.

Related Topics

[Revert Overridden Configuration to Default Configuration](#), on page 115

[Make Inline Edit for an Inspector to Override Configuration](#), on page 113

View the List of Inspectors with Overrides

You can view a list of all the overridden inspectors.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Go to the **Snort 3 Version** of the network analysis policy.

Step 3 Check the **Show Overrides Only** checkbox adjacent to the Search bar to view the list of overridden inspectors. All the overridden inspectors are shown with an orange icon next to their names to help you identify them.

Related Topics

[Search for an Inspector on the Network Analysis Policy Page](#), on page 108

[Make Inline Edit for an Inspector to Override Configuration](#), on page 113

[Customize the Network Analysis Policy](#), on page 109

Revert Overridden Configuration to Default Configuration

You can revert any changes that you made to override the default configuration for an inspector. This action reverts the overridden configuration to the default configuration for an inspector.

Procedure

Step 1 Go to **Policies > Access Control heading > Intrusion > Network Analysis Policies**.

Step 2 Go to the **Snort 3 Version** of the network analysis policy.

Step 3 Under **Inspectors**, expand the required inspector for which you want to revert the overridden configuration. The overridden inspectors are shown with the orange icon next to their name.

The default configuration is displayed on the left column and the overridden configuration is displayed on the right column under the inspector. Under the **Overridden Configuration** on the right column, click **Revert to default configuration** (back arrow) icon to revert the overridden configuration for the inspector to the default configuration.

If you did not make any changes to the default configuration for the inspector, then this option is disabled.

Step 4 Click **Revert** to confirm the decision.

Step 5 Click **Save** to save the changes.

If you do not want to save the changes, you can click **Cancel** or the **Cross** icon.

Related Topics

[Revert Unsaved Changes during Inline Edits](#), on page 114

[Customize the Network Analysis Policy](#), on page 109

[Make Inline Edit for an Inspector to Override Configuration](#), on page 113

[Examples of Custom Network Analysis Policy Configuration](#), on page 118

Validate Snort 3 Policies

To validate the Snort 3 policies, here is a list of basic information that user can make note of:

- Current version of the Firewall Management Center can manage multiple Firewall Threat Defense versions.

Validate Snort 3 Policies

- Current version of Firewall Management Center supports NAP configurations which are not applicable to previous version of Firewall Threat Defense devices.
- Current NAP Policy and validations will work based on the current version support.
- Changes may include content which is not valid for previous versions of Firewall Threat Defenses.
- Policy configuration changes are accepted if they are valid configuration for the current version and which is performed using current Snort 3 binary and NAP schema.
- For previous version Firewall Threat Defenses, validation is performed during deployment using NAP schema and Snort 3 binary for that specific version. If there is any configuration which is not applicable for the given version, user is provided information or warning that we will not deploy the configuration which is not supported on the given version and remaining configuration will get deployed.

In this procedure, when we associate the NAP policy to an Access Control Policy and deploy it on a device, for example any inspector like rate filter configuration is applied to validate the Snort 3 policies.

Procedure

Step 1 **Steps to Override NAP Policy Configuration:** Under **Inspectors** in the **Snort 3 Version** of the network analysis policy, expand the required inspector for which you want to override the default setting. The default configuration is displayed on the left column and the overridden configuration is displayed on the right column under the inspector.

Step 2 Under the **Overridden Configuration** on the right column, click **Edit Inspector** (Pencil) icon to make changes to any inspector like `rate_filter`. The Override Configuration pop-up appears where you can make the required edits to the `rate_filter` inspector.

Step 3 Click **OK**.

Step 4 Click **Save** to save the changes. Alternatively, you can also use the **Actions** drop-down menu to upload the overridden configuration file.

Step 5 Click the **Actions** drop-down menu in the **Snort 3 Version** of the network analysis policy.

Step 6 Under **Upload** you can click **Overridden Configuration** to upload the JSON file that contains the overridden configuration.

Caution

Upload only the changes that you require. You should not upload the entire configuration as it makes the overrides sticky in nature and therefore, any subsequent changes to the default configuration as part of the LSP updates will not be applied.

You can drag and drop a file or click to browse to the JSON file saved in your system that contains the overridden inspector configuration.

- **Merge inspector overrides** – Content in the uploaded file is merged with the existing configuration if there is no common inspector. If there are common inspectors, then the content in the uploaded file (for common inspectors) takes precedence over the previous content, and it replaces the previous configuration for those inspectors.
- **Replace inspector overrides** – Removes all previous overrides and replaces them with the new content in the uploaded file.

Attention

As choosing this option deletes all the previous overrides, make an informed decision before you override the configuration using this option.

If any error occurs while uploading the overridden inspectors, you see the error on the **Upload Overridden Configuration File** pop-up window. You can also download the file with the error, then fix the error and reupload the file.

Step 7 **Steps to Associate NAP Policy to Access Control Policy:** In the access control policy editor, click **Advanced**, then click **Edit** next to the Network Analysis and Intrusion Policies section.

Step 8 From the **Default Network Analysis Policy** drop-down list, select a default network analysis policy.

If you choose a user-created policy, you can click **Edit** to edit the policy in a new window. You cannot edit system-provided policies.

Step 9 Click **OK**.

Step 10 Click **Save** to save the policy.

Step 11 Alternatively, in the access control policy editor, click **Advanced**, then click **Edit** next to the Network Analysis and Intrusion Policies section.

Step 12 Click **Add Rule**.

Step 13 Configure the rule's conditions by clicking the conditions you want to add.

Step 14 Click **Network Analysis** and choose the **Network Analysis Policy** you want to use to preprocess the traffic matching this rule.

Step 15 Click **Add**.

Step 16 **Deployment:** On the Firewall Management Center menu bar, click **Deploy** and then select **Deployment**.

Step 17 Identify and choose the devices on which you want to deploy configuration changes.

- **Search**—Search for the device name, type, domain, group, or status in the search box.
- **Expand**—Click **Expand Arrow** to view device-specific configuration changes to be deployed.

By selecting the device check box, all the changes for the device, which are listed under the device, are pushed for deployment. However, you can use the **Policy Selection** to select individual policies or configurations to deploy while withholding the remaining changes without deploying them.

Optionally, use **Show or Hide Policy** to selectively view or hide the associated unmodified policies.

Step 18 Click **Deploy**.

Step 19 If the system identifies errors or warnings in the changes to be deployed, it displays them in the **Validation Messages** window. To view complete details, click the arrow icon before the warnings or errors.

Note

It shows a warning that Snort 3 Network analysis policy contains inspectors or attributes that are not valid for this Firewall Threat Defense version, following the invalid settings will be skipped in deployment: Invalid inspectors are : [“rate_filter”] only for devices lower than 7.1 version.

Examples of Custom Network Analysis Policy Configuration

This is a sample file that includes JSON snippets explaining how you can customize the network analysis policy for Snort 3. You can choose to override an inspector configuration using the following ways:

- Make inline edits for an inspector directly on the Firewall Management Center. See [Make Inline Edit for an Inspector to Override Configuration, on page 113](#).
- Use the **Actions** drop-down menu to upload the overridden configuration file. See [Customize the Network Analysis Policy, on page 109](#).

Before you choose any of these options, review all the following details and examples that will help you in defining the network analysis policy overrides successfully. You must read and understand the examples for various scenarios explained here to avoid any risks and errors.

If you choose to override an inspector configuration from the **Actions** drop-down menu, you need to construct a JSON file for the network analysis policy overrides and upload the file.

For overriding an inspector configuration in the network analysis policy, you must upload only the changes that you require. You should not upload the entire configuration because it makes the overrides sticky in nature and therefore, any subsequent changes to the default values or configuration as part of the LSP updates would not be applied.

Here are the examples for various scenarios:

Enabling a Singleton Inspector when the Default State in the Base Policy is Disabled

```
{
  "rate_filter": {
    "enabled": true,
    "type": "singleton",
    "data": []
  }
}
```

Disabling a Singleton Inspector when the Default State in the Base Policy is Enabled

```
{
  "rate_filter": {
    "enabled": false,
    "type": "singleton",
    "data": []
  }
}
```

Enabling a Multiton Inspector when the Default State in the Base Policy is Disabled

```
{
  "ssh": {
    "enabled": true,
    "type": "multiton",
    "instances": []
  }
}
```

Disabling a Multiton Inspector when the Default State in the Base Policy is Enabled

```
{
  "ssh": {
```

```

        "enabled": false,
        "type": "multiton",
        "instances": []
    },
    "iec104": {
        "type": "multiton",
        "enabled": false,
        "instances": []
    }
}
}

```

Overriding the Default Value of Specific Setting(s) for Singleton Inspector

```

{
    "normalizer": {
        "enabled": true,
        "type": "singleton",
        "data": {
            "tcp": {
                "block": true
            },
            "ip6": true
        }
    }
}

```

Overriding Specific Setting(s) of a Default Instance (where Instance Name Matches with Inspector Type) in Multiton Inspector

```

{
    "http_inspect": {
        "enabled": true,
        "type": "multiton",
        "instances": [
            {
                "data": {
                    "unzip": false
                },
                "name": "http_inspect"
            }
        ]
    }
}

```

Adding Binder Rule for a Default Instance with Required Changes

Note Default binder rules can't be edited, they are always appended at the end.

```

{
    "binder": {
        "enabled": true,
        "type": "binder",
        "rules": [
            {
                "use": {
                    "type": "http_inspect"
                },
                "when": {
                    "role": "server",

```

Examples of Custom Network Analysis Policy Configuration

```
        "service": "http",
        "dst_nets": "10.1.1.0/24"
    }
}
]
}
}
```

Adding a New Custom Instance

Note Corresponding binder rule entry must be defined in the binder inspector.

```

    "telnet": {
        "enabled": true,
        "type": "multiton",
        "instances": [
            {
                "name": "telnet_my_instance",
                "data": {
                    "encrypted_traffic": true
                }
            }
        ]
    },
    "binder": {
        "enabled": true,
        "type": "binder",
        "rules": [
            {
                "when": {
                    "role": "any",
                    "service": "telnet"
                },
                "use": {
                    "type": "telnet",
                    "name": "telnet_my_instance"
                }
            }
        ]
    }
}

```

Overriding a Singleton Instance, Multiton Default Instance, and Creating a New Multiton Instance in a Single JSON Override

Example to show the following in a single JSON override:

- Overriding a Singleton instance (`normalizer` inspector)
- Overriding a Multiton default instance (`http_inspect` inspector)
- Creating a new Multiton instance (`telnet` inspector)

```
{  
  "normalizer": {  
    "enabled": true,  
    "type": "singleton",  
    "data": {
```

```
        "tcp": {
            "block": true
        },
        "ip6": true
    }
},
"http_inspect": {
    "enabled": true,
    "type": "multiton",
    "instances": [
        {
            "data": {
                "unzip": false,
                "xff_headers": "x-forwarded-for true-client-ip x-another-forwarding-header"
            },
            "name": "http_inspect"
        }
    ]
},
"telnet": {
    "enabled": true,
    "type": "multiton",
    "instances": [
        {
            "name": "telnet_my_instance",
            "data": {
                "encrypted_traffic": true
            }
        }
    ]
},
"binder": {
    "enabled": true,
    "type": "binder",
    "rules": [
        {
            "when": {
                "role": "any",
                "service": "telnet"
            },
            "use": {
                "type": "telnet",
                "name": "telnet_my_instance"
            }
        },
        {
            "use": {
                "type": "http_inspect"
            },
            "when": {
                "role": "server",
                "service": "http",
                "dst_nets": "10.1.1.0/24"
            }
        }
    ]
}
```


Note You don't need to give the **name** attribute for the default instance in binder rules.

Configuring arp_spoof

Example for configuring `arp_spoof`:

The `arp_spoof` inspector does not have any default configurations for any attributes. This demonstrates the case where you can provide the overrides.

```
{
  "arp_spoof": {
    "type": "singleton",
    "data": {
      "hosts": [
        {
          "ip": "1.1.1.1",
          "mac": "ff:0f:f1:0f:0f:ff"
        },
        {
          "ip": "2.2.2.2",
          "mac": "ff:0f:f2:0f:0f:ff"
        }
      ],
      "enabled": true
    }
  }
}
```

Configuring rate_filter

```
{
  "rate_filter": {
    "data": [
      {
        "apply_to": "[10.1.2.100, 10.1.2.101]",
        "count": 5,
        "gid": 135,
        "new_action": "alert",
        "seconds": 1,
        "sid": 1,
        "timeout": 5,
        "track": "by_src"
      }
    ],
    "enabled": true,
    "type": "singleton"
  }
}
```

Configuring Binder Rules when Multi-Hierarchy Network Analysis Policy is Used

This example illustrates adding a new custom instance in child policy and the way binder rules should be written. Binder rules are defined as a list and therefore, it is important to pick up the rules defined in the parent policy and build the new rules on top of it as rules will not be merged automatically. The binder rules available in child policy are a source of truth in totality.

On the Firewall Threat Defense, the default Cisco Talos policy rules are appended on these user-defined overrides.

Parent Policy:

We have defined a custom instance by the name `telnet_parent_instance` and the corresponding binder rule.

```
{
  "telnet": {
    "type": "multiton",
    "instances": [
      {
        "data": {
          "normalize": true,
          "encrypted_traffic": true
        },
        "name": "telnet_parent_instance"
      }
    ],
    "enabled": true
  },
  "binder": {
    "enabled": true,
    "type": "binder",
    "rules": [
      {
        "when": {
          "role": "any",
          "service": "telnet"
        },
        "use": {
          "type": "telnet",
          "name": "telnet_parent_instance"
        }
      }
    ]
  }
}
```

Child Policy:

This network analysis policy has the aforementioned policy as its base policy. We have defined a custom instance by the name **telnet_child_instance** and have also defined the binder rules for this instance. The binder rules from parent policy need to be copied here, and then child policy binder rules can be prepended or appended on top of it based on the nature of the rule.

```
{
  "telnet": {
    "type": "multiton",
    "instances": [
      {
        "data": {
          "normalize": true,
          "encrypted_traffic": false
        },
        "name": "telnet_child_instance"
      }
    ],
    "enabled": true
  },
  "binder": {
    "enabled": true,
    "type": "binder",
    "rules": [
      {
        "when": {
          "role": "any",
          "service": "telnet",
          "nets": "10.2.2.0/24"
        },
        "use": {

```

Examples of Custom Network Analysis Policy Configuration

```

        "type": "telnet",
        "name": "telnet_child_instance"
    }
},
{
    "when": {
        "role": "any",
        "service": "telnet"
    },
    "use": {
        "type": "telnet",
        "name": "telnet_parent_instance"
    }
}
]
}
}

```

Configuring List Inspector Attribute in General

While changing overrides for any attribute of type list, it is important to pass the full contents rather than partial override. This means if a base policy attributes are defined as:

```

{
    "list-attribute": [
        {
            "entry1": {
                "key1": "value1"
            }
        },
        {
            "entry2": {
                "key2": "value2"
            }
        }
    ]
}

```

If you want to modify **value1** to **value1-new**, the override payload must look like the following:

Correct Way:

```

{
    "list-attribute": [
        {
            "entry1": {
                "key1": "value1-new"
            }
        },
        {
            "entry2": {
                "key2": "value2"
            }
        }
    ]
}

```

Incorrect Way:

```

{
    "list-attribute": [
        {
            "entry1": {
                "key1": "value1-new"
            }
        }
    ]
}

```

```

        }
    ]
}

```

You can understand this configuration by taking the trimmed values of the `alt_max_command_line_len` attribute in the `smtp` inspector. Suppose the default (base) policy configuration for `smtp` inspector is as follows:

```

{
  "smtp": {
    "type": "multiton",
    "instances": [
      {
        "name": "smtp",
        "data": {
          "decompress_zip": false,
          "normalize_cmds": "ATRN AUTH BDAT CHUNKING DATA DEBUG EHLO
EMAL ESAM ESND ESOM ETRN EVFY EXPN HELO HELP IDENT MAIL
NOOP ONEX QUEU QUIT RCPT RSET SAML SEND SOML STARTTLS TICK
TIME TURN TURNME VERB VRFY X-ADAT XADR XAUTH XCIR X-DRCP X-
ERCP XEXCH50 X-EXCH50 X-EXPS XGEN XLICENSE X-LINK2STATE XQUE
XSTA XTRN XUSR",
          "ignore_data": false,
          "max_command_line_len": 512,
          "max_header_line_len": 1000,
          "log_rcptto": false,
          "decompress_swf": false,
          "max_response_line_len": 512,
          "b64_decode_depth": -1,
          "max_auth_command_line_len": 1000,
          "log_email_hdrs": false,
          "xlink2state": "alert",
          "binary_data_cmds": "BDAT XEXCH50",
          "auth_cmds": "AUTH XAUTH X-EXPS",
          "log_filename": false,
          "uu_decode_depth": -1,
          "ignore_tls_data": false,
          "data_cmds": "DATA",
          "bitenc_decode_depth": -1,
          "alt_max_command_line_len": [
            {
              "length": 255,
              "command": "ATRN"
            },
            {
              "command": "AUTH",
              "length": 246
            },
            {
              "length": 255,
              "command": "BDAT"
            },
            {
              "length": 246,
              "command": "DATA"
            }
          ],
          "log_mailfrom": false,
          "decompress_pdf": false,
          "normalize": "none",
          "email_hdrs_log_depth": 1464,
          "valid_cmds": "ATRN AUTH BDAT CHUNKING DATA DEBUG EHLO
EMAL ESAM ESND ESOM ETRN EVFY EXPN HELO HELP IDENT MAIL
NOOP ONEX QUEU QUIT RCPT RSET SAML SEND SOML STARTTLS TICK
TIME TURN TURNME VERB VRFY X-ADAT XADR XAUTH XCIR X-DRCP X-
ERCP XEXCH50 X-EXCH50 X-EXPS XGEN XLICENSE X-LINK2STATE XQUE
XSTA XTRN XUSR"
        }
      ]
    ]
}

```

Examples of Custom Network Analysis Policy Configuration

```

        TIME TURN TURNME VERB VRFY X-ADAT XADR XAUTH XCIR X-DRCP X-
        ERCP XEXCH50 X-EXCH50 X-EXPS XGEN XLICENSE X-LINK2STATE XQUE
        XSTA XTRN XUSR",
        "qp_decode_depth": -1
    }
}
],
"enabled": true
}
}

```

Now, if you want to add two more objects to the `alt_max_command_line_len` list:

```

{
  "length": 246,
  "command": "XEXCH50"
},
{
  "length": 246,
  "command": "X-EXPS"
}

```

Then the custom network analysis policy override JSON would look like the following:

```

{
  "smtp": {
    "type": "multiton",
    "instances": [
      {
        "name": "smtp",
        "data": {
          "alt_max_command_line_len": [
            {
              "length": 255,
              "command": "ATRN"
            },
            {
              "command": "AUTH",
              "length": 246
            },
            {
              "length": 255,
              "command": "BDAT"
            },
            {
              "length": 246,
              "command": "DATA"
            },
            {
              "length": 246,
              "command": "XEXCH50"
            },
            {
              "length": 246,
              "command": "X-EXPS"
            }
          ]
        }
      }
    ],
    "enabled": true
  }
}

```

Configuring Overrides when Multi-Hierarchy Network Analysis Policy is used in Multiton Inspector

This example illustrates overriding attributes in child policy and how the merged configuration will be used in the child policy for any instance. Any overrides defined in the child policy will be merged with the parent policy. Thus, if attribute1 and attribute2 are overridden in parent policy and attribute2 and attribute3 are overridden in the child policy, the merged configurations are for child policy. This means that attribute1 (defined in parent policy), attribute2 (defined in child policy), and attribute3 (defined in child policy) will be configured on the device.

Parent Policy:

Here we have defined a custom instance by the name **telnet_parent_instance** and overridden 2 attributes namely, **normalize** and **encrypted_traffic** in the custom instance.

```
{
  "telnet": {
    "type": "multiton",
    "instances": [
      {
        "data": {
          "normalize": true,
          "encrypted_traffic": false
        },
        "name": "telnet_parent_instance"
      }
    ],
    "enabled": true
  },
  "binder": {
    "enabled": true,
    "type": "binder",
    "rules": [
      {
        "when": {
          "role": "any",
          "service": "telnet"
        },
        "use": {
          "type": "telnet",
          "name": "telnet_parent_instance"
        }
      }
    ]
  }
}
```

Child Policy:

This network analysis policy has the aforementioned policy as its base policy. We have overridden attribute **encrypted_traffic** from parent policy and also overridden new attribute **ayt_attack_thresh**.

```
{
  "telnet": {
    "type": "multiton",
    "instances": [
      {
        "data": {
          "encrypted_traffic": true,
          "ayt_attack_thresh": 1
        },
        "name": "telnet_parent_instance"
      }
    ],
    "enabled": true
  }
}
```

Examples of Custom Network Analysis Policy Configuration

```

    }
}
```

With the above policy JSON, when you deploy the network analysis policy the following merged JSON will be configured on the device.

```

{
  "telnet": {
    "type": "multiton",
    "instances": [
      {
        "data": {
          "normalize": true,
          "encrypted_traffic": true,
          "ayt_attack_thresh": 1
        },
        "name": "telnet_parent_instance"
      }
    ],
    "enabled": true
  },
  "binder": {
    "enabled": true,
    "type": "binder",
    "rules": [
      {
        "when": {
          "role": "any",
          "service": "telnet"
        },
        "use": {
          "type": "telnet",
          "name": "telnet_parent_instance"
        }
      }
    ]
  }
}
```

This example illustrates details for the custom network analysis policy. The same behavior is also exhibited in the default instance. Also, a similar merging would be done for Singleton inspectors.

Removing all the Inspector Overrides for the Network Analysis Policy:

Whenever you want to remove all the overrides for a specific network analysis policy, you can upload an empty JSON. While uploading the overrides, choose the option **Replace inspector overrides**.

```
{
}
```

Related Topics

- [Snort 3 Definitions and Terminologies for Network Analysis Policy](#), on page 99
- [Network Analysis Policy Mapping](#), on page 106
- [Custom Network Analysis Policy Creation for Snort 3](#), on page 101
- [Search for an Inspector on the Network Analysis Policy Page](#), on page 108
- [Copy the Inspector Configuration](#), on page 109
- [Customize the Network Analysis Policy](#), on page 109
- [View the List of Inspectors with Overrides](#), on page 114

Network Analysis Policy Settings and Cached Changes

When you create a new network analysis policy, it has the same settings as its base policy.

When tailoring a network analysis policy, especially when disabling inspectors, keep in mind that some inspectors and intrusion rules require that traffic first be decoded or preprocessed in a certain way. If you disable a required inspector, the system automatically uses it with its current settings, although the inspector remains disabled in the network analysis policy web interface.

Note Because preprocessing and intrusion inspection are so closely related, the network analysis and intrusion policies examining a single packet **must** complement each other. Tailoring preprocessing, especially using multiple custom network analysis policies, is an **advanced** task.

The system caches one network analysis policy per user. While editing a network analysis policy, if you select any menu or other path to another page, your changes stay in the system cache even if you leave the page.

Generate Snort 3 Recommendations

Snort 3 Rule Recommendations

Rule recommendations automatically tune your intrusion policy with rules that are specific to the host environment. You can enable additional rules or tune the current rule set by disabling rules for the vulnerabilities that are not present in your network. For more information, see [Overview of Secure Firewall Recommended Rules, on page 68](#).

How does it work?

The management center builds a database of hosts on your network with details such as the IP address, hostname, operating system, services, users, and client applications through passive discovery. Based on this information, the system maps vulnerabilities to each discovered host. The Recommendations feature uses this host database to determine the rules that apply to your environment.

In Snort 3, there are four security levels, each corresponding to a specific Talos policy. They are:

- Level 1—Connectivity Over Security
- Level 2—Balanced Security and Connectivity
- Level 3—Security Over Connectivity
- Level 4—Maximum Detection

Check the **Accept Recommendations to Disable Rules** check box to disable rules for vulnerabilities not found on the hosts in your network. Check this option only if you have to trim your rule set because of a high number of alerts, or to improve inspection performance.

Benefits

- By configuring recommendations, you can tailor your intrusion policy to detect specific types of threats more effectively using rules that are specific to the host environment.

Sample Business Scenario

- Recommendations contribute to a more efficient and effective incident response process by reducing false positives and false negatives.

Sample Business Scenario

A large corporate network uses Snort 3 as its primary intrusion detection and prevention system. In a rapidly evolving threat landscape, robust network security measures must be adopted. The security team wants to enhance their incident response capabilities. One of the ways to do that is to generate recommendations or rule sets based on the vulnerabilities detected in the host network. This helps to optimize their intrusion policies, thereby safeguarding the network more effectively.

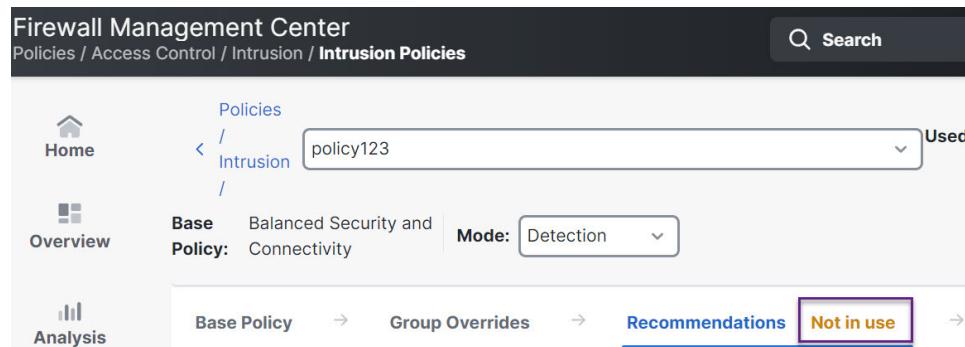
Best Practices

- You must have quality accurate host data.

Because of the passive nature of Network Discovery, your threat defense devices must be positioned as close as possible to your protected hosts. This allows the threat defense devices to watch network traffic to and from these hosts, giving you an accurate data about applications, services, and vulnerabilities present on your network.

- Devices should have visibility to East-West as well as North-South traffic flows to build an accurate host profile.
- You can create a scheduled task to update recommendations automatically.

Prerequisites


- Ensure that hosts are present in the system to generate recommendations.
- Protected networks configured for recommendations should map to the hosts present in the system.

Generate Snort 3 Recommendations

Procedure

Step 1	Choose Policies > Access Control heading > Intrusion .
Step 2	Click the Snort 3 Version button of the corresponding intrusion policy.
Step 3	Click the Recommendations (Not in Use) layer to configure the rule recommendations.

In the **Cisco Recommended Rules** window, you can set the security level.

Cisco Recommended Rules

Security Level (Click to select)

Accept Recommendation to Disable Rules i

No Impact—No new rules will be enabled and no existing rules will be disabled.
To increase protections, please select a higher Security Level.

Protected Networks i

Cancel **Generate** **Generate and Apply**

Step 4 Click to select the security level.

Step 5 (Optional) Check the **Accept Recommendation to Disable Rules** check box to disable the rules written for vulnerabilities not found on the hosts in your network.

Use this option, only if you have to trim your rule set because of a high number of alerts or to improve inspection performance.

Step 6 From the **Protected Networks** drop-down list, choose the network objects that must be examined by the recommendations. By default, any IPv4 or IPv6 networks are selected if you do not make a selection.

Click **Add +** to create a new network object of type **Host** or **Network** and click **Save**.

Step 7 Generate and apply recommendations:

- **Generate**—Generates the recommendations for an intrusion policy. This action lists the rules under **Recommended Rules (Not in use)**.
- **Generate and Apply**—Generates and applies the recommendations for an intrusion policy. This action lists the rules under **Recommended Rules (Not in use)**.

Recommendations are generated successfully. A new recommendation tab appears with all the recommended rules and their corresponding recommended actions. Rule action preset filters are also available for this tab, in addition to new recommendations.

Step 8 Verify the recommendations and then apply them accordingly:

Generate Snort 3 Recommendations

- **Accept**—Applies the previously generated recommendations for an intrusion policy.
- **Refresh**—Regenerates and updates the rule recommendations for an intrusion policy.
- **Edit**—Opens the **Recommendations** dialog box where you can provide the recommendation input values and then generate the recommendations.
- **Discard**—Either reverts or removes the applied recommended rules from the policy; also removes the **Recommendations** tab.

Base Policy → Group Overrides → **Recommendations** → Rule Overrides | Summary

Recommendations [Back To Top](#)

Firepower recommends 0 rules state settings for 1 network [Generated on 2025-01-15 05:40:58 EST](#)

Accept **Refresh** **Edit** **Discard**

Under **All Rules**, the Recommended Rules section displays the recommended rules.

→ **Recommendations** → Rule Overrides → Summary [Back To Top](#)

Recommended Rules

Firepower recommends 12 rules state settings for 2 networks [Generated on 2023-09-26 12:26:08 EDT](#)

Rule Action [Search by CVE, SID, Reference Info, or Rule Message](#)

12 rules Preset Filters: [0 Alert rules](#) | [12 Block rules](#) | [0 Disabled rules](#) | [0 Overridden rules](#) | [New recommendations](#)

GID:SID	Info	Rule Action	Assigned Groups
1:56421	SERVER-WEBAPP Cisco Security Manager...	Block	Server/Web Applications
1:56422	SERVER-WEBAPP Cisco Security Manager...	Block	Server/Web Applications
1:56420	SERVER-WEBAPP Cisco Security Manager...	Block	Server/Web Applications

Step 9 To effectively use recommendations, they must be updated periodically. Follow these steps:

- Choose **System** (grid icon) > **Tools** > **Scheduling**.
- Click **Add Task**.
- Choose **Cisco Recommended Rules** from the **Job Type** drop-down list.
- Update the required fields, as needed.

New Task

Job Type (Cisco Recommended Rules must first be configured in the selected [policies](#))

Schedule task to run Once Recurring

Start On America/New York

Repeat Every Hours Days Weeks Months

Run At

Repeat On Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Job Name

Policies All Policies

FTL Intrusion

e. Click Save.

What to do next

Deploy configuration changes. See [Deploy Configuration Changes, on page 26](#).

CHAPTER 6

Advanced Access Control Settings for Network Analysis and Intrusion Policies

The following topics describe how to configure advanced settings for network analysis and intrusion policies:

- [About Advanced Access Control Settings for Network Analysis and Intrusion Policies, on page 135](#)
- [Requirements and Prerequisites for Advanced Access Control Settings for Network Analysis and Intrusion Policies, on page 135](#)
- [Inspection of Packets That Pass Before Traffic Is Identified, on page 136](#)
- [Advanced Settings for Network Analysis Policies, on page 138](#)

About Advanced Access Control Settings for Network Analysis and Intrusion Policies

Many of the advanced settings in an access control policy govern intrusion detection and prevention configurations that require specific expertise to configure. Advanced settings typically require little or no modification and are not common to every deployment.

Note Snort 2 is not supported on threat defense Version 7.7. For information on Snort 2 features that are supported in versions earlier than 7.7, refer to the [Firewall Management Center](#) guide that matches your Firewall Threat Defense version.

Requirements and Prerequisites for Advanced Access Control Settings for Network Analysis and Intrusion Policies

Model support

Any.

Inspection of Packets That Pass Before Traffic Is Identified**Supported domains**

Any

User roles

- Admin
- Access Admin
- Network Admin

Inspection of Packets That Pass Before Traffic Is Identified

For some features, including URL filtering, application detection, rate limiting, and Intelligent Application Bypass, a few packets must pass in order for the connection to be established, and to enable the system to identify the traffic and determine which access control rule (if any) will handle that traffic.

You must explicitly configure your access control policy to inspect these packets, prevent them from reaching their destination, and generate any events.

As soon as the system identifies the access control rule or default action that should handle the connection, the remaining packets in the connection are handled and inspected accordingly.

Best Practices for Handling Packets That Pass Before Traffic Identification

- The default action specified for an access control policy is NOT applied to these packets.
- Instead, use the following guidelines to choose a value for the **Intrusion Policy used before Access Control rule is determined** setting in the Advanced settings of the access control policy.
 - You can choose a system-created or custom intrusion policy. For example, you can choose **Balanced Security and Connectivity**.
 - For performance reasons, unless you have good reason to do otherwise, this setting should match the default action set for your access control policy.
 - If your system does not perform intrusion inspection (for example, in a discovery-only deployment), select **No Rules Active**. The system will not inspect these initial packets, and they will be allowed to pass.
 - By default, this setting uses the default variable set. Ensure that this is suitable for your purposes. For information, see [Variable Set](#).
 - The network analysis policy associated with the first matching network analysis rule preprocesses traffic for the policy you select. If there are no network analysis rules, or none match, the default network analysis policy is used.

Specify a Policy to Handle Packets That Pass Before Traffic Identification

Note

This setting is sometimes referred to as the *default intrusion policy*. (This is distinct from the default action for an access control policy.)

Caution

Changing the total number of intrusion policies used by an access control policy restarts the Snort process when you deploy configuration changes, temporarily interrupting traffic inspection. Whether traffic drops during this interruption or passes without further inspection depends on how the assigned device handles traffic. See [Snort Restart Traffic Behavior](#) for more information. You change the the total number of intrusion policies by adding an intrusion policy that is not currently used, or by removing the last instance of an intrusion policy. You can use an intrusion policy in an access control rule, as the default action, or as the default intrusion policy.

Before you begin

Review best practices for these settings. See [Best Practices for Handling Packets That Pass Before Traffic Identification, on page 136](#).

Procedure

Step 1 In the access control policy editor, click **Advanced**, then click **Edit** (e) next to the **Network Analysis and Intrusion Policies** section.

If **View** (v) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 2 Select an intrusion policy from the **Intrusion Policy used before Access Control rule is determined** drop-down list.

If you choose a user-created policy, you can click **Edit** (span style="font-size: 1.5em;">e) to edit the policy in a new window. You cannot edit system-provided policies.

Step 3 Optionally, select a different variable set from the **Intrusion Policy Variable Set** drop-down list. You can also select **Edit** (span style="font-size: 1.5em;">e) next to the variable set to create and edit variable sets. If you do not change the variable set, the system uses a default set.

Step 4 Click **OK**.

Step 5 Click **Save** to save the policy.

What to do next

- Deploy configuration changes.

Related Topics

[Variable Set](#)

Advanced Settings for Network Analysis Policies

Network analysis policies govern how traffic is decoded and preprocessed so that it can be further evaluated, especially for anomalous traffic that might signal an intrusion attempt. This traffic preprocessing occurs after Security Intelligence matching and traffic decryption, but before intrusion policies inspect packets in detail. By default, the system-provided Balanced Security and Connectivity network analysis policy is the default network analysis policy.

Tip The system-provided Balanced Security and Connectivity network analysis policy and the Balanced Security and Connectivity intrusion policy work together and can both be updated in intrusion rule updates. However, the network analysis policy governs mostly preprocessing options, whereas the intrusion policy governs mostly intrusion rules.

A simple way to tune preprocessing is to create and use a custom network analysis policy as the default. For advanced users with complex deployments, you can create multiple network analysis policies, each tailored to preprocess traffic differently. Then, you can configure the system to use those policies to govern the preprocessing of traffic using different security zones, networks, or VLANs.

To accomplish this, you add custom *network analysis rules* to your access control policy. A network analysis rule is simply a set of configurations and conditions that specifies how you preprocess traffic that matches those qualifications. You create and edit network analysis rules in the advanced options in an existing access control policy. Each rule belongs to only one policy.

Each rule has:

- a set of rule conditions that identifies the specific traffic you want to preprocess
- an associated network analysis policy that you want to use to preprocess traffic that meets all the rules' conditions

When it is time for the system to preprocess traffic, it matches packets to network analysis rules in top-down order by rule number. Traffic that does not match any network analysis rules is preprocessed by the default network analysis policy.

Setting the Default Network Analysis Policy

You can choose a system- or user-created policy.

Note If you disable a preprocessor but the system needs to evaluate preprocessed packets against an enabled intrusion or preprocessor rule, the system automatically enables and uses the preprocessor although it remains disabled in the network analysis policy web interface. Tailoring preprocessing, especially using multiple custom network analysis policies, is an **advanced** task. Because preprocessing and intrusion inspection are so closely related, you **must** be careful that you allow the network analysis and intrusion policies examining a single packet to complement each other.

Procedure

Step 1 In the access control policy editor, click **Advanced**, then click **Edit** (🔗) next to the Network Analysis and Intrusion Policies section.

If **View** (🕒) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 2 From the **Default Network Analysis Policy** drop-down list, select a default network analysis policy.

If you choose a user-created policy, you can click **Edit** (🔗) to edit the policy in a new window. You cannot edit system-provided policies.

Caution

Changing the total number of network analysis policies used by an access control policy restarts the Snort process when you deploy configuration changes, temporarily interrupting traffic inspection. Whether traffic drops during this interruption or passes without further inspection depends on how the assigned device handles traffic. See [Snort Restart Traffic Behavior](#) for more information. You change the total number of network analysis policies by adding a policy that is not currently used, or by removing the last instance of a network analysis policy. You can use a network analysis policy with network analysis rules or as the default network analysis policy.

Step 3 Click **OK**.

Step 4 Click **Save** to save the policy.

What to do next

- Deploy configuration changes.

Related Topics

[Limitations of Custom Policies](#)

Network Analysis Rules

Within your access control policy's advanced settings, you can use network analysis rules to tailor preprocessing configurations to network traffic.

Network analysis rules are numbered, starting at 1. When it is time for the system to preprocess traffic, it matches packets to network analysis rules in top-down order by ascending rule number, and preprocesses traffic according to the first rule where all the rule's conditions match.

You can add zone, network, and VLAN tag conditions to a rule. If you do not configure a particular condition for a rule, the system does not match traffic based on that criterion. For example, a rule with a network condition but no zone condition evaluates traffic based on its source or destination IP address, regardless of its ingress or egress interface. Traffic that does not match any network analysis rules is preprocessed by the default network analysis policy.

Network Analysis Policy Rule Conditions

Rule conditions enable you to fine-tune your network analysis policy to target the users and networks you want to control. See one of the following sections for more information.

Related Topics

[Security zone rule conditions](#), on page 140

[Network rule conditions](#), on page 140

[VLAN tags rule conditions](#), on page 141

Security zone rule conditions

Security zones segment your network to help you manage, classify, and decrypt traffic flow by grouping interfaces across multiple devices.

Security zones control or decrypt traffic by its source and destination security zones. If you add both source and destination zones to a zone condition, matching traffic must originate from an interface in one of the source zones and leave through an interface in one of the destination zones.

Just as all interfaces in a zone must be of the same type (all inline, passive, switched, or routed), all zones used in a zone condition must be of the same type. Because devices deployed passively do not transmit traffic, you cannot use a zone with passive interfaces as a destination zone.

Minimize the number of matching criteria whenever possible, especially those for security zones, network objects, and port objects. When you specify multiple criteria, the system must match against *every* combination of the contents of the criteria you specify.

Tip Constraining rules by zone is one of the best ways to improve system performance. If a rule does not apply to traffic through any of device's interfaces, that rule does not affect that device's performance.

Security zone conditions and multitenancy

In a multidomain deployment, a zone created in an ancestor domain can contain interfaces that reside on devices in different domains. When you configure a zone condition in an descendant domain, your configurations apply to only the interfaces you can see.

Network rule conditions

Networks control or decrypt traffic by its source and destination IP address, using inner headers. Tunnel rules, which use outer headers, have tunnel endpoint conditions instead of network conditions.

You can use predefined objects to build network conditions, or manually specify individual IP addresses or address blocks.

Minimize the number of matching criteria whenever possible, especially those for security zones, network objects, and port objects. When you specify multiple criteria, the system must match against *every* combination of the contents of the criteria you specify.

Note You *cannot* use FDQN network objects in identity rules.

VLAN tags rule conditions

Note VLAN tags in access rules only apply to inline sets. Access rules with VLAN tags do not match traffic on firewall interfaces.

VLAN rule conditions control VLAN-tagged traffic, including Q-in-Q (stacked VLAN) traffic. The system uses the innermost VLAN tag to filter VLAN traffic, with the exception of the prefilter policy, which uses the outermost VLAN tag in its rules.

Note the following Q-in-Q support:

- Firewall Threat Defense on Firepower 4100/9300—Does not support Q-in-Q (supports only one VLAN tag).
- Firewall Threat Defense on all other models:
 - Inline sets and passive interfaces—Supports Q-in-Q, up to 2 VLAN tags.
 - Firewall interfaces—Does not support Q-in-Q (supports only one VLAN tag).

You can use predefined objects to build VLAN conditions, or manually enter any VLAN tag from 1 to 4094. Use a hyphen to specify a range of VLAN tags.

In a cluster, if you encounter problems with VLAN matching, edit the access control policy advanced options, Transport/Network Preprocessor Settings, and select the **Ignore the VLAN header when tracking connections** option.

Configuring Network Analysis Rules

Procedure

Step 1 In the access control policy editor, click **Advanced**, then click **Edit** (🔗) next to the Network Analysis and Intrusion Policies section.

If **View** (👁) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Tip

Click **Network Analysis Policy List** to view and edit existing custom network analysis policies.

Step 2 Next to **Network Analysis Rules**, click the statement that indicates how many custom rules you have.

Step 3 Click **Add Rule**.

Step 4 Configure the rule's conditions by clicking the conditions you want to add.

Step 5 Click **Network Analysis** and choose the **Network Analysis Policy** you want to use to preprocess the traffic matching this rule.

Click **Edit** (🔗) to edit a custom policy in a new window. You cannot edit system-provided policies.

Caution

Changing the total number of network analysis policies used by an access control policy restarts the Snort process when you deploy configuration changes, temporarily interrupting traffic inspection. Whether traffic drops during this interruption or passes without further inspection depends on how the assigned device handles traffic. See [Snort Restart Traffic Behavior](#) for more information. You change the total number of network analysis policies by adding a policy that is not currently used, or by removing the last instance of a network analysis policy. You can use a network analysis policy with network analysis rules or as the default network analysis policy.

Step 6 Click **Add**.

What to do next

- Deploy configuration changes.

Managing Network Analysis Rules

A network analysis rule is simply a set of configurations and conditions that specifies how you preprocess traffic that matches those qualifications. You create and edit network analysis rules in the advanced options in an existing access control policy. Each rule belongs to only one policy.

Procedure

Step 1 In the access control policy editor, click **Advanced**, then click **Edit** (🔗) next to the Intrusion and Network Analysis Policies section.

If **View** (👁) appears instead, settings are inherited from an ancestor policy, or you do not have permission to modify the settings. If the configuration is unlocked, uncheck **Inherit from base policy** to enable editing.

Step 2 Next to **Network Analysis Rules**, click the statement that indicates how many custom rules you have.

Step 3 Edit your custom rules. You have the following options:

- To edit a rule's conditions, or change the network analysis policy invoked by the rule, click **Edit** (🔗) next to the rule.
- To change a rule's order of evaluation, click and drag the rule to the correct location. To select multiple rules, use the Shift and Ctrl keys.
- To delete a rule, click **Delete** (🗑) next to the rule.

Tip

Right-clicking a rule displays a context menu that allows you to cut, copy, paste, edit, delete, and add new network analysis rules.

Step 4 Click **OK**.

Step 5 Click **Save** to save the policy.

What to do next

- Deploy configuration changes.

