
Custom Intrusion Rules

The following topics describe how to use the intrusion rules editor:

• Custom Intrusion Rules Overview, on page 1
• License Requirements for the Intrusion Rule Editor, on page 2
• Requirements and Prerequisites for the Intrusion Rule Editor, on page 2
• Rule Anatomy, on page 2
• Custom Rule Creation, on page 14
• Searching for Rules, on page 19
• Rule Filtering on the Intrusion Rules Editor Page, on page 20
• Keywords and Arguments in Intrusion Rules, on page 23

Custom Intrusion Rules Overview
An intrusion rule is a set of keywords and arguments that the system uses to detect attempts to exploit
vulnerabilities on your network. As the system analyzes network traffic, it compares packets against the
conditions specified in each rule. If the packet data matches all the conditions specified in a rule, the rule
triggers. If a rule is an alert rule, it generates an intrusion event. If it is a pass rule, it ignores the traffic. For
a drop rule in an inline deployment, the system drops the packet and generates an event. You can view and
evaluate intrusion events from the Secure Firewall Management Center web interface.

The system provides two types of intrusion rules: shared object rules and standard text rules. The Talos
Intelligence Group can use shared object rules to detect attacks against vulnerabilities in ways that traditional
standard text rules cannot. You cannot create shared object rules. When you write your own intrusion rule,
you create a standard text rule.

You can write custom standard text rules to tune the types of events you are likely to see. Note that while this
documentation sometimes discusses rules targeted to detect specific exploits, the most successful rules target
traffic that may attempt to exploit known vulnerabilities rather than specific known exploits. By writing rules
and specifying the rule’s event message, you can more easily identify traffic that indicates attacks and policy
evasions.

When you enable a custom standard text rule in a custom intrusion policy, keep in mind that some rule
keywords and arguments require that traffic first be decoded or preprocessed in a certain way. This chapter
explains the options you must configure in your network analysis policy, which governs preprocessing. Note
that if you disable a required preprocessor, the system automatically uses it with its current settings, although
the preprocessor remains disabled in the network analysis policy web interface.

Custom Intrusion Rules
1

Make sure you use a controlled network environment to test any intrusion rules that you write before you use
the rules in a production environment. Poorly written intrusion rules may seriously affect the performance of
the system.

Caution

You can create custom intrusion rules using Snort. However, support for tuning and troubleshooting these
rules is not available currently.

Note

License Requirements for the Intrusion Rule Editor
Threat Defense License

IPS

Classic License

Protection

Requirements and Prerequisites for the Intrusion Rule Editor
Model Support

Any.

Supported Domains

Any

User Roles

• Admin

• Intrusion Admin

Rule Anatomy
All standard text rules contain two logical sections: the rule header and the rule options. The rule header
contains:

• the rule's action or type

• the protocol

• the source and destination IP addresses and netmasks

Custom Intrusion Rules
2

Custom Intrusion Rules
License Requirements for the Intrusion Rule Editor

• direction indicators showing the flow of traffic from source to destination

• the source and destination ports

The rule options section contains:

• event messages

• keywords and their parameters and arguments

• patterns that a packet’s payload must match to trigger the rule

• specifications of which parts of the packet the rules engine should inspect

The following diagram illustrates the parts of a rule:

Note that the options section of a rule is the section enclosed in parentheses. The intrusion rules editor provides
an easy-to-use interface to help you build standard text rules.

The Intrusion Rule Header
Every standard text rule and shared object rule has a rule header containing parameters and arguments. The
following illustrates parts of a rule header:

The following table describes each part of the rule header shown above.

Table 1: Rule Header Values

This Value...Example ValueRule Header Component

Generates an intrusion event when triggered.alertAction

Tests TCP traffic only.tcpProtocol

Tests traffic coming from any host that is not on your
internal network.

$EXTERNAL_NETSource IP Address

Custom Intrusion Rules
3

Custom Intrusion Rules
The Intrusion Rule Header

This Value...Example ValueRule Header Component

Tests traffic coming from any port on the originating
host.

anySource Ports

Tests external traffic (destined for the web servers on
your network).

->Operator

Tests traffic to be delivered to any host specified as
a web server on your internal network.

$HTTP_SERVERSDestination IP Address

Tests traffic delivered to an HTTP port on your
internal network.

$HTTP_PORTSDestination Ports

The previous example uses default variables, as do most intrusion rules.Note

Related Topics
Variable Set

Intrusion Rule Header Action
Each rule header includes a parameter that specifies the action the system takes when a packet triggers a rule.
Rules with the action set to alert generate an intrusion event against the packet that triggered the rule and log
the details of that packet. Rules with the action set to pass do not generate an event against, or log the details
of, the packet that triggered the rule.

In an inline deployment, rules with the rule state set to Drop and Generate Events generate an intrusion event
against the packet that triggered the rule. Also, if you apply a drop rule in a passive deployment, the rule acts
as an alert rule.

Note

By default, pass rules override alert rules. You can create pass rules to prevent packets that meet criteria
defined in the pass rule from triggering the alert rule in specific situations, rather than disabling the alert rule.
For example, you might want a rule that looks for attempts to log into an FTP server as the user “anonymous”
to remain active. However, if your network has one or more legitimate anonymous FTP servers, you could
write and activate a pass rule that specifies that, for those specific servers, anonymous users do not trigger
the original rule.

Within the intrusion rules editor, you select the rule type from the Action list.

Intrusion Rule Header Protocol
In each rule header, you must specify the protocol of the traffic the rule inspects. You can specify the following
network protocols for analysis:

• ICMP (Internet Control Message Protocol)

• IP (Internet Protocol)

Custom Intrusion Rules
4

Custom Intrusion Rules
Intrusion Rule Header Action

management-center-device-config-73_chapter31.pdf#nameddest=unique_1220

The system ignores port definitions in an intrusion rule header when the protocol
is set to ip.

Note

• TCP (Transmission Control Protocol)

• UDP (User Datagram Protocol)

Use IP as the protocol type to examine all protocols assigned by IANA, including TCP, UDP, ICMP, IGMP,
and many more.

You cannot currently write rules that match patterns in the next header (for example, the TCP header) in an
IP payload. Instead, content matches begin with the last decoded protocol. As a workaround, you can match
patterns in TCP headers by using rule options.

Note

Within the Intrusion Rules editor, you select the protocol type from the Protocol list.

Related Topics
Intrusion Rule Header Protocol, on page 4

Intrusion Rule Header Direction
Within the rule header, you can specify the direction that the packet must travel for the rule to inspect it. The
following table describes these options.

Table 2: Directional Options in Rule Headers

To Test...Use...

only traffic from the specified source IP address to the specified destination IP addressDirectional

all traffic traveling between the specified source and destination IP addressesBidirectional

Intrusion Rule Header Source and Destination IP Addresses
Restricting packet inspection to the packets originating from specific IP addresses or destined to a specific IP
address reduces the amount of packet inspection the system must perform. This also reduces false positives
by making the rule more specific and removing the possibility of the rule triggering against packets whose
source and destination IP addresses do not indicate suspicious behavior.

The system recognizes only IP addresses and does not accept host names for source or destination IP addresses.Tip

Within the intrusion rules editor, you specify source and destination IP addresses in the Source IPs and
Destination IPs fields.

When writing standard text rules, you can specify IPv4 and IPv6 addresses in a variety of ways, depending
on your needs. You can specify a single IP address, any, IP address lists, CIDR notation, prefix lengths, or a

Custom Intrusion Rules
5

Custom Intrusion Rules
Intrusion Rule Header Direction

network variable. Additionally, you can indicate that you want to exclude a specific IP address or set of IP
addresses. When specifying IPv6 addresses, you can use any addressing convention defined in RFC 4291.

IP Address Syntax in Intrusion Rules

The following table summarizes the various ways you can specify source and destination IP addresses.

Table 3: Source/Destination IP Address Syntax

ExampleUse...To Specify...

anyanyany IP address

192.168.1.1

2001:db8::abcd

the IP address

Note that you would not mix IPv4 and IPv6 source and destination
addresses in the same rule.

a specific IP address

[192.168.1.1,192.168.1.15]

[2001:db8::b3ff, 2001:db8::0202]

brackets ([]) to enclose the IP addresses and commas to separate
them

a list of IP addresses

192.168.1.0/24

2001:db8::/32

IPv4 CIDR block or IPv6 address prefix notationa block of IP addresses

!192.168.1.15

!2001:db8::0202:b3ff:fe1e

the ! character before the IP address or addresses you want to
negate

anything except a
specific IP address or set
of addresses

[10.0.0/8,

!10.2.3.4, !10.1.0.0/16]

[2001:db8::/32, !2001:db8::8329,

!2001:db8::0202]

a block of addresses followed by a list of negated addresses or
blocks

anything in a block of IP
addresses except one or
more specific IP
addresses

$HOME_NETthe variable name, in uppercase letters, preceded by $

Note that preprocessor rules can trigger events regardless of the
hosts defined by network variables used in intrusion rules.

IP addresses defined by
a network variable

!$HOME_NETthe variable name, in uppercase letters, preceded by !$all IP addresses except
addresses defined by an
IP address variable

The following descritptions provide additional information on some of the IP address entry methods.

Any IP Address

You can specify the word any as a rule source or destination IP address to indicate any IPv4 or IPv6 address.

For example, the following rule uses the argument any in the Source IPs and Destination IPs fields and
evaluates packets with any IPv4 or IPv6 source or destination address:

alert tcp any any -> any any

You can also specify :: to indicate any IPv6 address.

Custom Intrusion Rules
6

Custom Intrusion Rules
IP Address Syntax in Intrusion Rules

Multiple IP Addresses

You can list individual IP addresses by separating the IP addresses with commas and, optionally, by surrounding
non-negated lists with brackets, as shown in the following example:

[192.168.1.100,192.168.1.103,192.168.1.105]

You can list IPv4 and IPv6 addresses alone or in any combination, as shown in the following example:

[192.168.1.100,2001:db8::1234,192.168.1.105]

Note that surrounding an IP address list with brackets, which was required in earlier software releases, is not
required. Note also that, optionally, you can enter lists with a space before or after each comma.

You must surround negated lists with brackets.Note

You can also use IPv4 Classless Inter-Domain Routing (CIDR) notation or IPv6 prefix lengths to specify
address blocks. For example:

• 192.168.1.0/24 specifies the IPv4 addresses in the 192.168.1.0 network with a subnet mask of
255.255.255.0, that is, 192.168.1.0 through 192.168.1.255.

• 2001:db8::/32 specifies the IPv6 addresses in the 2001:db8:: network with a prefix length of 32 bits, that
is, 2001:db8:: through 2001:db8:ffff:ffff:ffff:ffff:ffff:ffff.

If you need to specify a block of IP addresses but cannot express it using CIDR or prefix length notation alone,
you can use CIDR blocks and prefix lengths in an IP address list.

Tip

IP Addresses Negation

You can use an exclamation point (!) to negate a specified IP address. That is, you can match any IP address
with the exception of the specified IP address or addresses. For example, !192.168.1.1 specifies any IP
address other than 192.168.1.1, and !2001:db8:ca2e::fa4c specifies any IP address other than
2001:db8:ca2e::fa4c.

To negate a list of IP addresses, place ! before a bracketed list of IP addresses. For example,
![192.168.1.1,192.168.1.5] would define any IP address other than 192.168.1.1 or 192.168.1.5.

You must use brackets to negate a list of IP addresses.Note

Be careful when using the negation character with IP address lists. For example, if you use
[!192.168.1.1,!192.168.1.5] to match any address that is not 192.168.1.1 or 192.168.1.5, the system
interprets this syntax as “anything that is not 192.168.1.1, or anything that is not 192.168.1.5.”

Because 192.168.1.5 is not 192.168.1.1, and 192.168.1.1 is not 192.168.1.5, both IP addresses match the IP
address value of [!192.168.1.1,!192.168.1.5], and it is essentially the same as using “any.”

Instead, use ![192.168.1.1,192.168.1.5]. The system interprets this as “not 192.168.1.1 and not
192.168.1.5,” which matches any IP address other than those listed between brackets.

Custom Intrusion Rules
7

Custom Intrusion Rules
IP Address Syntax in Intrusion Rules

Note that you cannot logically use negation with any which, if negated, would indicate no address.

Related Topics
Variable Set

Intrusion Rule Header Source and Destination Ports
Within the intrusion rules editor, you specify source and destination ports in the Source Port and Destination
Port fields.

Port Syntax in Intrusion Rules

The system uses a specific type of syntax to define the port numbers used in rule headers.

The system ignores port definitions in an intrusion rule header when the protocol is set to ip.Note

You can list ports by separating the ports with commas, as shown in the following example:

80, 8080, 8138, 8600-9000, !8650-8675

Optionally, the following example shows how you can surround a port list with brackets, which was required
in previous software versions but is no longer required:

[80, 8080, 8138, 8600-9000, !8650-8675]

Note that you must surround negated port lists in brackets, as shown in the following example:

![20, 22, 23]

The following table summarizes the syntax you can use:

Table 4: Source/Destination Port Syntax

ExampleUseTo Specify...

anyanyany port

80the port numbera specific port

80-443a dash between the first and last port number in the rangea range of ports

-21
a dash before the port numberall ports less than or equal to a specific

port

80-
a dash after the port numberall ports greater than or equal to a

specific port

!20
the ! character before the port, port list, or range of ports you
want to negate

Note that you can logically use negation with all port designations
except any, which if negated would indicate no port.

all ports except a specific port or range
of ports

$HTTP_PORTSthe variable name, in uppercase letter, preceded by $all ports defined by a port variable

Custom Intrusion Rules
8

Custom Intrusion Rules
Intrusion Rule Header Source and Destination Ports

management-center-device-config-73_chapter31.pdf#nameddest=unique_1220

ExampleUseTo Specify...

!$HTTP_PORTSthe variable name, in uppercase letter, preceded by !$all ports except ports defined by a port
variable

Intrusion Event Details
As you construct a standard text rule, you can include contextual information that describes the vulnerability
that the rule detects in exploit attempts. You can also include external references to vulnerability databases
and define the priority that the event holds in your organization. When analysts see the event, they then have
information about the priority, exploit, and known mitigation readily available.

Message

You can specify meaningful text that appears as a message when the rule triggers. The message gives immediate
insight into the nature of the vulnerability that the rule detects attempts to exploit. You can use any printable
standard ASCII characters except curly braces ({}). The system strips quotes that completely surround the
message.

You must specify a rule message. Also, the message cannot consist of white space only, one or more quotation
marks only, one or more apostrophes only, or any combination of just white space, quotation marks, or
apostrophes.

Tip

To define the event message in the intrusion rules editor, you enter the event message in the Message field.

Classification

For each rule, you can specify an attack classification that appears in the packet display of the event. The
following table lists the name and number for each classification.

Table 5: Rule Classifications

DescriptionClassification NameNumber

Not Suspicious Trafficnot-suspicious1

Unknown Trafficunknown2

Potentially Bad Trafficbad-unknown3

Attempted Information Leakattempted-recon4

Information Leaksuccessful-recon-limited5

Large Scale Information Leaksuccessful-recon-largescale6

Attempted Denial of Serviceattempted-dos7

Denial of Servicesuccessful-dos8

Attempted User Privilege Gainattempted-user9

Custom Intrusion Rules
9

Custom Intrusion Rules
Intrusion Event Details

DescriptionClassification NameNumber

Unsuccessful User Privilege Gainunsuccessful-user10

Successful User Privilege Gainsuccessful-user11

Attempted Administrator Privilege Gainattempted-admin12

Successful Administrator Privilege Gainsuccessful-admin13

Decode of an RPC Queryrpc-portmap-decode14

Executable Code was Detectedshellcode-detect15

A Suspicious String was Detectedstring-detect16

A Suspicious Filename was Detectedsuspicious-filename-detect17

An Attempted Login Using a Suspicious Username
was Detected

suspicious-login18

A System Call was Detectedsystem-call-detect19

A TCP Connection was Detectedtcp-connection20

A Network Trojan was Detectedtrojan-activity21

A Client was Using an Unusual Portunusual-client-port-connection22

Detection of a Network Scannetwork-scan23

Detection of a Denial of Service Attackdenial-of-service24

Detection of a Non-Standard Protocol or Eventnon-standard-protocol25

Generic Protocol Command Decodeprotocol-command-decode26

Access to a Potentially Vulnerable Web Applicationweb-application-activity27

Web Application Attackweb-application-attack28

Misc Activitymisc-activity29

Misc Attackmisc-attack30

Generic ICMP Eventicmp-event31

Inappropriate Content was Detectedinappropriate-content32

Potential Corporate Privacy Violationpolicy-violation33

Attempt to Login By a Default Username and
Password

default-login-attempt34

Sensitive Datasdf35

Known malware command and control trafficmalware-cnc36

Custom Intrusion Rules
10

Custom Intrusion Rules
Intrusion Event Details

DescriptionClassification NameNumber

Known client side exploit attemptclient-side-exploit37

Known malicious file or file based exploitfile-format38

Custom Classification

If you want more customized content for the packet display description of the events generated by a rule you
define, you can create a custom classification.

DescriptionArgument

The name of the classification. The page is difficult to read if
you use more than 40 characters. The following characters are
not supported: <>()\'"&$; and the space character.

Classification Name

A description of the classification. You can use alphanumeric
characters and spaces. The following characters are not supported:
<>()\'"&$;

Classification Description

High, medium, or low.Priority

Custom Priority

By default, the priority of a rule derives from the event classification for the rule. However, you can override
the classification priority for a rule by adding the priority keyword to the rule and selecting a high, medium,
or low priority. For example, to assign a high priority for a rule that detects web application attacks, add the
priority keyword to the rule and select high as the priority.

Custom Reference

You can use the reference keyword to add references to external web sites and additional information about
the event. Adding a reference provides analysts with an immediately available resource to help them identify
why the packet triggered a rule. The following table lists some of the external systems that can provide data
on known exploits and attacks.

Table 6: External Attack Identification Systems

Example IDDescriptionSystem ID

8550
Bugtraq page

bugtraq

2020-9607
Common Vulnerabilities and
Exposure IDcve

98574
McAfee page

mcafee

www.example.com?exploit=14
Website reference

url

MS11-082
Microsoft security bulletin

msb

Custom Intrusion Rules
11

Custom Intrusion Rules
Intrusion Event Details

Example IDDescriptionSystem ID

10039
Nessus page

nessus

intranet/exploits/exploit=14

Note that you can use secure-url with any secure
website.

Secure Website Reference
(https://...)secure-url

You specify a reference by entering a reference value, as follows:

id_system,id

where id_system is the system being used as a prefix, and id is the CVE ID number, Arachnids ID, or URL
(without http://).

For example, to specify the Adobe Acrobat and Reader issue documented in CVE-2020-9607, enter the value:

cve,2020-9607

Note the following when adding references to a rule:

• Do not use a space after the comma.

• Do not use uppercase letters in the system ID.

Related Topics
Adding a Custom Classification, on page 12
Defining an Event Priority, on page 13
Defining an Event Reference, on page 13

Adding a Custom Classification

Procedure

Step 1 While creating or editing a rule, choose Edit Classifications from the Classification drop-down list (Objects >
Intrusion Rules > Create Rules > Edit Classifications).

If View Classifications displays instead, the configuration belongs to an ancestor domain, or you do not have
permission to modify the configuration.

Step 2 Enter a Classification Name and Classification Description as described in Intrusion Event Details, on page
9.

Step 3 Choose a priority for the classification from the Priority drop-down list.
Step 4 Click Add.
Step 5 Click Done.

Custom Intrusion Rules
12

Custom Intrusion Rules
Adding a Custom Classification

What to do next

• Continue with creating or editing the rule. See Writing New Rules, on page 14 or Modifying Existing
Rules, on page 15 for more information.

Related Topics
Custom Rule Creation, on page 14

Defining an Event Priority

Procedure

Step 1 While creating or editing a rule, choose priority from the Detection Options drop-down list.
Step 2 Click Add Option.
Step 3 Choose a value from the priority drop-down list.
Step 4 Click Save.

What to do next

• Continue with creating or editing the rule. See Writing New Rules, on page 14 or Modifying Existing
Rules, on page 15 for more information.

Related Topics
Custom Rule Creation, on page 14

Defining an Event Reference

Procedure

Step 1 While creating or editing a rule, choose reference from the Detection Options drop-down list.
Step 2 Click Add Option.
Step 3 Enter a value in the reference field as described in Intrusion Event Details, on page 9.
Step 4 Click Save.

What to do next

• Continue with creating or editing the rule. See Writing New Rules, on page 14 or Modifying Existing
Rules, on page 15 for more information.

Related Topics
Custom Rule Creation, on page 14

Custom Intrusion Rules
13

Custom Intrusion Rules
Defining an Event Priority

Custom Rule Creation
You can create a custom intrusion rule by:

• creating your own standard text rules

• saving existing standard text rules as new

• saving system-provided shared object rules as new

• importing a local rule file

The system saves the custom rule in the local rule category, regardless of the method you used to create it.

When you create a custom intrusion rule, the system assigns it a unique rule number, which has the format
GID:SID:Rev. The elements of this number are:

GID

Generator ID. For all standard text rules, this value is 1 (Global domain or legacy GID) or 1000 - 2000
(descendant domains). For all shared object rules you save as new, this value is 1.

SID

Snort ID. Indicates whether the rule is a local rule of a system rule. When you create a new rule, the
system assigns the next available SID for a local rule.

SID numbers for local rules start at 1000000, and the SID for each new local rule is incremented by one.

Rev

The revision number. For a new rule, the revision number is one. Each time you modify a custom rule
the revision number increments by one.

In a custom standard text rule, you set the rule header settings and the rule keywords and arguments. You can
use the rule header settings to focus the rule to only match traffic using a specific protocol and traveling to or
from specific IP addresses or ports.

In a custom system-provided standard text rule or shared object rule, you are limited to modifying rule header
information such as the source and destination ports and IP addresses. You cannot modify the rule keywords
or arguments.

Modifying header information for a shared object rule and saving your changes creates a new instance of the
rule with a generator ID (GID) of 1 (Global domain) or 1000 - 2000 (descendant domains) and the next
available SID for a custom rule. The system links the new instance of the shared object rule to the reserved
soid keyword, which maps the rule you create to the rule created by the Talos Intelligence Group. You can
delete instances of a shared object rule that you create, but you cannot delete shared object rules created by
Talos.

Writing New Rules

Procedure

Step 1 Choose Objects > Intrusion Rules.

Custom Intrusion Rules
14

Custom Intrusion Rules
Custom Rule Creation

Step 2 Click Create Rule.
Step 3 Enter a value in the Message field.
Step 4 Choose a value from each of the following drop-down lists:

• Classification
• Action
• Protocol
• Direction

Step 5 Enter values in the following fields:

• Source IPs
• Destination IPs
• Source Port
• Destination Port

The system uses the value any if you do not specify a value for these fields.

Step 6 Choose a value from the Detection Options drop-down list.
Step 7 Click Add Option.
Step 8 Enter any arguments for the keyword you added.
Step 9 Optionally, repeat steps 6 to 8.
Step 10 If you added multiple keywords, you can:

• Reorder keywords — Click the up or down arrow next to the keyword you want to move.
• Delete a keyword — Click the X next to that keyword.

Step 11 Click Save As New.

What to do next

• Enable your new or changed rules within the appropriate intrusion policy.

• Deploy configuration changes; see Deploy Configuration Changes.

Modifying Existing Rules
You can save system-provided rules and rules belonging to ancestor domains as new custom rules in the local
rule category, which you can then modify.

Procedure

Step 1 Access the intrusion rules using either of the following methods:

• Choose Policies > Access Control heading > Intrusion.

Click Snort 2 Version next to the policy you want to edit and click Rules.

• Choose Objects > Intrusion Rules.

Custom Intrusion Rules
15

Custom Intrusion Rules
Modifying Existing Rules

management-center-device-config-73_chapter4.pdf#nameddest=unique_43

Step 2 Locate the rule you want to modify. You have the following choices:

• Navigate through the folders to the rule.
• Search for the rule; see Searching for Rules, on page 19.
• Filter for the group to which the rule belongs; see Filtering Rules, on page 22.

Step 3 Click Edit () next to the rule or, in the case of search results, click the rule message.

If View () appears instead, the configuration belongs to an ancestor domain, or you do not have permission
to modify the configuration.

Step 4 Modify the rule as appropriate for the rule type.

Note
Do not modify the protocol for a shared object rule; doing so would render the rule ineffective.

Step 5 You have the following choices:

• Click Save if you are editing a custom rule and want to overwrite the current version of that rule.
• Click Save As New if you are editing a system-provided rule or any rule belonging to an ancestor domain,

or if you are editing a custom rule and want to save the changes as a new rule.

What to do next

• If you want to use the local modification of the rule instead of the system-provided rule, deactivate the
system-provided rule by using the procedures at Intrusion Rule States and activate the local rule.

• Deploy configuration changes; see Deploy Configuration Changes.

Related Topics
Searching for Rules, on page 19
Rule Filtering on the Intrusion Rules Editor Page, on page 20

Viewing Rule Documentation
From the Rule Edit page, you can view rule documentation supplied by the Talos Intelligence Group. While
viewing, you can click Rule Documentation and other external references to view additional information
provided by Talos. You can also click Context Explorer to view contextual information for events generated
by the rule.

Procedure

Step 1 Access an intrusion rule using either of the following methods:

• Choose Policies > Access Control heading > Intrusion.

Click Snort 2 Version next to the policy you want to edit and click Rules.

• Choose Objects > Intrusion Rules.

Custom Intrusion Rules
16

Custom Intrusion Rules
Viewing Rule Documentation

management-center-device-config-73_chapter52.pdf#nameddest=unique_1761
management-center-device-config-73_chapter4.pdf#nameddest=unique_43

Step 2 Locate the rule you want to view. You have the following choices:

• Navigate through the folders to the rule.
• Search for the rule; see Searching for Rules, on page 19.
• Filter for the group to which the rule belongs; see Filtering Rules, on page 22.

Step 3 Click Edit () next to the rule or, in the case of search results, click the rule message.

If View () appears instead, the configuration belongs to an ancestor domain, or you do not have permission
to modify the configuration.

Step 4 Click View Documentation.
Step 5 Optionally, click any of the following links:

• Rule Documentation —to view detailed rule specifics.
• Other external references—see Keyword Filtering, on page 21 and Custom Reference in Intrusion Event

Details, on page 9 for information on available external references.
• Context Explorer—see The Intrusion Information Section in the Cisco Secure Firewall Management

Center Administration Guide for information on viewing contextual data for the rule in the context
explorer.

Tip
Selecting an external link closes the documentation pop-up window; to exit the rule edit page without modifying
the rule, select any menu path.

Adding Comments to Intrusion Rules
You can add comments to any intrusion rule. Such comments can be helpful to provide context and additional
information about the rule and the exploit or policy violation it identifies.

Procedure

Step 1 Access the intrusion rules using either of the following methods:

• Choose Policies > Access Control heading > Intrusion.

Click Snort 2 Version next to the policy you want to edit and click Rules.

• Choose Objects > Intrusion Rules.

Step 2 Locate the rule you want to annotate. You have the following choices:

• Navigate through the folders to the rule.
• Search for the rule; see Searching for Rules, on page 19.
• Filter for the group where the rule belongs; see Filtering Rules, on page 22.

Step 3 Click Edit () next to the rule or, in the case of search results, click the rule message.

If View () appears next to a rule instead, the rule belongs to an ancestor policy, or you do not have permission
to modify the rule.

Custom Intrusion Rules
17

Custom Intrusion Rules
Adding Comments to Intrusion Rules

http://www.cisco.com/go/firepower-config
http://www.cisco.com/go/firepower-config

Step 4 Click Rule Comment.
Step 5 Enter your comment in the text box.
Step 6 Click Add Comment.

Tip
You can also add and view rule comments in an intrusion event’s packet view.

What to do next

• Continue with creating or editing the rule. See Writing New Rules, on page 14 or Modifying Existing
Rules, on page 15 for more information.

Related Topics
Searching for Rules, on page 19

Deleting Custom Rules
You can delete custom rules if the rules are not currently enabled in an intrusion policy. You cannot delete
either standard text rules or shared object rules provided by the system.

The system stores deleted rules in the deleted category, and you can use a deleted rule as the basis for a new
rule. The Rules page in an intrusion policy does not display the deleted category, so you cannot enable deleted
custom rules.

Custom rules include shared object rules that you save with modified header information. The system also
saves these in the local rule category and lists them with a GID of 1 (Global domain or legacy GID) or 1000
- 2000 (descendant domains). You can delete your modified version of a shared object rule, but you cannot
delete the original shared object rule.

Tip

Procedure

Step 1 Access the intrusion rules using either of the following methods:

• Choose Policies > Access Control heading > Intrusion.

Click Snort 2 Version next to the policy you want to edit and click Rules.

• Choose Objects > Intrusion Rules.

Step 2 You have two choices:

• Delete all local rules — Click Delete Local Rules, then click OK.

• Delete a single rule — Choose Local Rules from the Group Rules By drop-down, click Delete ()
next to a rule you want to delete, and click OK to confirm the deletion.

Custom Intrusion Rules
18

Custom Intrusion Rules
Deleting Custom Rules

Related Topics
Intrusion Rule States

Searching for Rules
The system provides thousands of standard text rules, and the Talos Intelligence Group continues to add rules
as new vulnerabilities and exploits are discovered. You can easily search for specific rules so that you can
activate, deactivate, or edit them.

Procedure

Step 1 Access the intrusion rules using either of the following methods:

• Choose Policies > Access Control heading > Intrusion.

Click Snort 2 Version next to the policy you want to edit and click Rules.

• Choose Objects > Intrusion Rules.

Step 2 Click Search on the toolbar.
Step 3 Add search criteria.
Step 4 Click Search.

What to do next

• If you want to view or edit a located rule (or a copy of the rule, if it is a system rule), click the hyperlinked
rule message. See Writing New Rules, on page 14 or Modifying Existing Rules, on page 15 for more
information.

Search Criteria for Intrusion Rules
The following table describes the available search options:

Table 7: Rule Search Criteria

DescriptionOption

To search for a single rule based on Snort ID (SID), enter an SID number. To search for multiple rules,
enter a comma-separated list of SID numbers. This field has an 80-character limit.

Signature ID

To search for standard text rules, select 1. To search for shared object rules, select 3.Generator ID

To search for a rule with a specific message, enter a single word from the rule message in the Message
field. For example, to search for DNS exploits, you would enter DNS, or to search for buffer overflow
exploits, enter overflow.

Message

To search rules that evaluate traffic of a specific protocol, select the protocol. If you do not select a
protocol, search results contain rules for all protocols.

Protocol

Custom Intrusion Rules
19

Custom Intrusion Rules
Searching for Rules

management-center-device-config-73_chapter52.pdf#nameddest=unique_1761

DescriptionOption

To search for rules that inspect packets originating from a specified port, enter a source port number or
a port-related variable.

Source Port

To search for rules that inspect packets destined for a specific port, enter a destination port number or a
port-related variable.

Destination Port

To search for rules that inspect packets originating from a specified IP address, enter a source IP address
or an IP address-related variable.

Source IP

To search for rules that inspect packets destined for a specified IP address, enter a destination IP address
or an IP address-related variable.

Destination IP

To search for specific keywords, you can use the keyword search options. You select a keyword and enter
a keyword value for which to search. You can also precede the keyword value with an exclamation point
(!) to match any value other than the specified value.

Keyword

To search for rules in a specific category, select the category from the Category list.Category

To search for rules that have a specific classification, select the classification name from the Classification
list.

Classification

To search for rules within a specific policy and a specific rule state, select the policy from the first Rule
State list, and choose a state from the second list to search for rules set to Generate Events, Drop and
Generate Events, or Disabled.

Rule State

Rule Filtering on the Intrusion Rules Editor Page
You can filter the rules on the intrusion rules editor page to display a subset of rules. This can be useful, for
example, when you want to modify a rule or change its state but have difficulty finding it among the thousands
of rules available.

When you enter a filter, the page displays any folder that includes at least one matching rule, or a message
when no rule matches.

Filtering Guidelines
Your filter can include special keywords and their arguments, character strings, and literal character strings
in quotes, with spaces separating multiple filter conditions. A filter cannot include regular expressions, wild
card characters, or any special operator such as a negation character (!), a greater than symbol (>), less than
symbol (<), and so on.

All keywords, keyword arguments, and character strings are case-insensitive. Except for the gid and sid

keywords, all arguments and strings are treated as partial strings. Arguments for gid and sid return only exact
matches.

You can expand a folder on the original, unfiltered page and the folder remains expanded when the subsequent
filter returns matches in that folder. This can be useful when the rule you want to find is in a folder that contains
a large number of rules.

Custom Intrusion Rules
20

Custom Intrusion Rules
Rule Filtering on the Intrusion Rules Editor Page

You cannot constrain a filter with a subsequent filter. Any filter you enter searches the entire rules database
and returns all matching rules. When you enter a filter while the page still displays the result of a previous
filter, the page clears and returns the result of the new filter instead.

You can use the same features with rules in a filtered or unfiltered list. For example, you can edit rules in a
filtered or unfiltered list on the intrusion rules editor page. You can also use any of the options in the context
menu for the page.

Filtering may take significantly longer when the combined total of rules in all sub-groups is large because
rules appear in multiple categories, even when the total number of unique rules is much smaller.

Tip

Keyword Filtering
Each rule filter can include one or more keywords in the format:

keyword:argument

where keyword is one of the keywords in the following table and argument is a single, case-insensitive,
alphanumeric string to search for in the specific field or fields relevant to the keyword.

Arguments for all keywords except gid and sid are treated as partial strings. For example, the argument 123
returns "12345", "41235", "45123", and so on. The arguments for gid and sid return only exact matches;
for example, sid:3080 returns only SID 3080.

You can search for a partial SID by filtering with one or more character strings.Tip

The following table describes the specific filtering keywords and arguments you can use to filter rules.

Table 8: Rule Filter Keywords

ExampleDescriptionKeyword

arachnids:181
Returns one or more rules based on all or part of the Arachnids ID in a rule
reference.arachnids

bugtraq:2120
Returns one or more rules based on all or part of the Bugtraq ID in a rule
reference.bugtraq

cve:2003-0109
Returns one or more rules based on all or part of the CVE number in a rule
reference.cve

gid:3
The argument 1 returns standard text rules. The argument 3 returns shared
object rules.gid

mcafee:10566
Returns one or more rules based on all or part of the McAfee ID in a rule
reference.mcafee

msg:chat
Returns one or more rules based on all or part of the rule Message field,
also known as the event message.msg

Custom Intrusion Rules
21

Custom Intrusion Rules
Keyword Filtering

ExampleDescriptionKeyword

nessus:10737
Returns one or more rules based on all or part of the Nessus ID in a rule
reference.nessus

ref:MS03-039
Returns one or more rules based on all or part of a single alphanumeric
string in a rule reference or in the rule Message field.ref

sid:235
Returns the rule with the exact Snort ID.

sid

url:faqs.org
Returns one or more rules based on all or part of the URL in a rule reference.

url

Related Topics
Defining an Event Reference, on page 13
Intrusion Event Details, on page 9

Character String Filtering
Each rule filter can include one or more alphanumeric character strings. Character strings search the rule
Message field, Snort ID (SID), and Generator ID (GID). For example, the string 123 returns the strings
"Lotus123", "123mania", and so on in the rule message, and also returns SID 6123, SID 12375, and so on.

All character strings are case-insensitive and are treated as partial strings. For example, any of the strings
ADMIN, admin, or Admin return "admin", "CFADMIN", "Administrator" and so on.

You can enclose character strings in quotes to return exact matches. For example, the literal string "overflow

attempt" in quotes returns only that exact string, whereas a filter comprised of the two strings overflow and
attempt without quotes returns "overflow attempt", "overflow multipacket attempt", "overflow with

evasion attempt", and so on.

Related Topics
Intrusion Event Details, on page 9

Combination Keyword and Character String Filtering
You can narrow filter results by entering any combination of keywords, character strings, or both, separated
by spaces. The result includes any rule that matches all the filter conditions.

You can enter multiple filter conditions in any order. For example, each of the following filters returns the
same rules:

• url:at login attempt cve:200

• login attempt cve:200 url:at

• login cve:200 attempt url:at

Filtering Rules
On the Intrusion Rules page, you can filter rules into subsets so you can more easily find specific rules. You
can then use any of the page features, including choosing any of the features available in the context menu.

Custom Intrusion Rules
22

Custom Intrusion Rules
Character String Filtering

Rule filtering can be particularly useful to locate a specific rule to edit.

Procedure

Step 1 Access the intrusion rules using either of the following methods:

• Choose Policies > Access Control heading > Intrusion.

Click Snort 2 Version next to the policy you want to edit and click Rules.

• Choose Objects > Intrusion Rules.

Step 2 Prior to filtering, you have the following choices:

• Expand any rule group you want to expand. Some rule groups also have sub-groups that you can expand.

Expanding a group on the original, unfiltered page can be useful when you expect that a rule might be
in that group. The group remains expanded when the subsequent filter results in a match in that folder,

and when you return to the original, unfiltered page by clicking filter Clear ().

• Choose a different grouping method from the Group Rules By drop-down list.

Step 3 Enter filter constraints in the text box next to Filter () under the Group Rules By list.
Step 4 Press Enter.

Note

Clear the current filtered list by clicking filter Clear ().

Keywords and Arguments in Intrusion Rules
Using the rules language, you can specify the behavior of a rule by combining keywords. Keywords and their
associated values (called arguments) dictate how the system evaluates packets and packet-related values that
the rules engine tests. The system currently supports keywords that allow you to perform inspection functions,
such as content matching, protocol-specific pattern matching, and state-specific matching. You can define up
to 100 arguments per keyword, and combine any number of compatible keywords to create highly specific
rules. This helps decrease the chance of false positives and false negatives and focus the intrusion information
you receive.

Note that you can also use adaptive profile updates in passive deployments to dynamically adapt active rule
processing for specific packets based on rule metadata and host information.

Keywords described in this section are listed under Detection Options in the rules editor.

Related Topics
About Adaptive Profiles

Custom Intrusion Rules
23

Custom Intrusion Rules
Keywords and Arguments in Intrusion Rules

management-center-device-config-73_chapter82.pdf#nameddest=unique_1810

The content and protected_content Keywords
Use the content keyword or the protected_content keyword to specify content that you want to detect in
a packet.

You should almost always follow a content or protected_content keyword by modifiers that indicate where
the content should be searched for, whether the search is case sensitive, and other options.

Note that all content matches must be true for the rule to trigger an event, that is, each content match has an
AND relationship with the others.

Note also that, in an inline deployment, you can set up rules that match malicious content and then replace it
with your own text string of equal length.

content

When you use the content keyword, the rules engine searches the packet payload or stream for that string.
For example, if you enter /bin/sh as the value for one of the content keywords, the rules engine searches
the packet payload for the string /bin/sh.

Match content using either an ASCII string, hexadecimal content (binary byte code), or a combination of both.
Surround hexadecimal content with pipe characters (|) in the keyword value. For example, you can mix
hexadecimal content and ASCII content using something that looks like |90C8 C0FF FFFF|/bin/sh.

You can specify multiple content matches in a single rule. To do this, use additional instances of the content

keyword. For each content match, you can indicate that content matches must be found in the packet payload
or stream for the rule to trigger.

You may invalidate your intrusion policy if you create a rule that includes only one content keyword and
that keyword has the Not option selected.

Caution

protected_content

The protected_content keyword allows you to encode your search content string before configuring the
rule argument. The original rule author uses a hash function (SHA-512, SHA-256, or MD5) to encode the
string before configuring the keyword.

When you use the protected_content keyword instead of the content keyword, there is no change to how
the rules engine searches the packet payload or stream for that string and most of the keyword options function
as expected. The following table summarizes the exceptions, where the protected_content keyword options
differ from the content keyword options.

Table 9: protected_content Option Exceptions

DescriptionOption

New option for the protected_content rule keyword.Hash Type

Not supportedCase Insensitive

Not supportedWithin

Not supportedDepth

Custom Intrusion Rules
24

Custom Intrusion Rules
The content and protected_content Keywords

DescriptionOption

New option for the protected_content rule keyword.Length

Not supportedUse Fast Pattern Matcher

Not supportedFast Pattern Matcher Only

Not supportedFast Pattern Matcher Offset and Length

Cisco recommends that you include at least one content keyword in rules that include a protected_content
keyword to ensure that the rules engine uses the fast pattern matcher, which increases processing speed and
improves performance. Position the content keyword before the protected_content keyword in the rule.
Note that the rules engine uses the fast pattern matcher when a rule includes at least one content keyword,
regardless of whether you enable the content keyword Use Fast Pattern Matcher argument.

You may invalidate your intrusion policy if you create a rule that includes only one protected_content

keyword and that keyword has the Not option selected.
Caution

Related Topics
Custom Rule Creation, on page 14
Basic content and protected_content Keyword Arguments, on page 25
The replace Keyword, on page 35

Basic content and protected_content Keyword Arguments
You can constrain the location and case-sensitivity of content searches with parameters that modify the content
or protected_content keyword. Configure options that modify the content or protected_content keyword
to specify the content for which you want to search.

Case Insensitive

This option is not supported when configuring the protected_content keyword.Note

You can instruct the rules engine to ignore case when searching for content matches in ASCII strings. To
make your search case-insensitive, check Case Insensitive when specifying a content search.

Hash Type

This option is only configurable with the protected_content keyword.Note

Use the Hash Type drop-down to identify the hash function you used to encode your search string. The system
supports SHA-512, SHA-256, and MD5 hashing for protected_content search strings. If the length of your
hashed content does not match the selected hash type, the system does not save the rule.

Custom Intrusion Rules
25

Custom Intrusion Rules
Basic content and protected_content Keyword Arguments

The system automatically selects the Cisco-set default value. When Default is selected, no specific hash
function is written into the rule and the system assumes SHA-512 for the hash function.

Raw Data

The Raw Data option instructs the rules engine to analyze the original packet payload before analyzing the
normalized payload data (decoded by a network analysis policy) and does not use an argument value. You
can use this keyword when analyzing telnet traffic to check the telnet negotiation options in the payload before
normalization.

You cannot use the Raw Data option together in the same content or protected_content keyword with
any HTTP content option.

You can configure the HTTP Inspect preprocessor Client Flow Depth and Server Flow Depth options to
determine whether raw data is inspected in HTTP traffic, and how much raw data is inspected.

Tip

Not

Select the Not option to search for content that does not match the specified content. If you create a rule that
includes a content or protected_content keyword with the Not option selected, you must also include in
the rule at least one other content or protected_content keyword without the Not option selected.

Do not create a rule that includes only one content or protected_content keyword if that keyword has the
Not option selected. You may invalidate your intrusion policy.

Caution

For example, SMTP rule 1:2541:9 includes three content keywords, one of which has the Not option selected.
A custom rule based on this rule would be invalid if you removed all of the content keywords except the one
with the Not option selected. Adding such a rule to your intrusion policy could invalidate the policy.

You cannot select the Not check box and the Use Fast Pattern Matcher check box with the same content

keyword.
Tip

content and protected_content Keyword Search Locations
You can use search location options to specify where to begin searching for the specified content and how
far to continue searching.

Permitted Combinations: content Search Location Arguments

You can use either of two content location pairs to specify where to begin searching for the specified content
and how far to continue searching, as follows:

• Use Offset and Depth together to search relative to the beginning of the packet payload.

• Use Distance and Within together to search relative to the current search location.

When you specify only one of a pair, the default for the other option in the pair is assumed.

Custom Intrusion Rules
26

Custom Intrusion Rules
content and protected_content Keyword Search Locations

You cannot mix the Offset and Depth options with the Distance and Within options. For example, you cannot
pair Offset and Within. You can use any number of location options in a rule.

When no location is specified, the defaults for Offset and Depth are assumed; that is, the content search starts
at the beginning of the packet payload and continues to the end of the packet.

You can also use an existing byte_extract variable to specify the value for a location option.

You can use any number of location options in a rule.Tip

Related Topics
The byte_extract Keyword, on page 40

Permitted Combinations: protected_content Search Location Arguments

Use the required Length protected_content location option in combination with either the Offset or Distance
location option to specify where to begin searching for the specified content and how far to continue searching,
as follows:

• Use Length and Offset together to search for the protected string relative to the beginning of the packet
payload.

• Use Length and Distance together to search for the protected string relative to the current search location.

You cannot mix the Offset and Distance options within a single keyword configuration, but you can use any
number of location options in a rule.

Tip

When no location is specified, the defaults are assumed; that is, the content search starts at the beginning of
the packet payload and continues to the end of the packet.

You can also use an existing byte_extract variable to specify the value for a location option.

Related Topics
The byte_extract Keyword, on page 40

content and protected_content Search Location Arguments

Depth

This option is only supported when configuring the content keyword.Note

Specifies the maximum content search depth, in bytes, from the beginning of the offset value, or if no offset
is configured, from the beginning of the packet payload.

For example, in a rule with a content value of cgi-bin/phf, and offset value of 3, and a depth value of 22,
the rule starts searching for a match to the cgi-bin/phf string at byte 3, and stops after processing 22 bytes
(byte 25) in packets that meet the parameters specified by the rule header.

You must specify a value that is greater than or equal to the length of the specified content, up to a maximum
of 65535 bytes. You cannot specify a value of 0.

Custom Intrusion Rules
27

Custom Intrusion Rules
Permitted Combinations: protected_content Search Location Arguments

The default depth is to search to the end of the packet.

Distance

Instructs the rules engine to identify subsequent content matches that occur a specified number of bytes after
the previous successful content match.

Because the distance counter starts at byte 0, specify one less than the number of bytes you want to move
forward from the last successful content match. For example, if you specify 4, the search begins at the fifth
byte.

You can specify a value of -65535 to 65535 bytes. If you specify a negative Distance value, the byte you
start searching on may fall outside the beginning of a packet. Any calculations will take into account the bytes
outside the packet, even though the search actually starts on the first byte in the packet. For example, if the
current location in the packet is the fifth byte, and the next content rule option specifies a Distance value of
-10 and a Within value of 20, the search starts at the beginning of the payload and the Within option is adjusted
to 15.

The default distance is 0, meaning the current location in the packet subsequent to the last content match.

Length

This option is only supported when configuring the protected_content keyword.Note

The Length protected_content keyword option indicates the length, in bytes, of the unlashed search string.

For example, if you used the content Sample1 to generate a secure hash, use 7 for the Length value. You must
enter a value in this field.

Offset

Specifies in bytes where in the packet payload to start searching for content relative to the beginning of the
packet payload. You can specify a value of 65535 to 65535 bytes.

Because the offset counter starts at byte 0, specify one less than the number of bytes you want to move forward
from the beginning of the packet payload. For example, if you specify 7, the search begins at the eighth byte.

The default offset is 0, meaning the beginning of the packet.

Within

This option is only supported when configuring the content keyword.Note

The Within option indicates that, to trigger the rule, the next content match must occur within the specified
number of bytes after the end of the last successful content match. For example, if you specify a Within value
of 8, the next content match must occur within the next eight bytes of the packet payload or it does not meet
the criteria that triggers the rule.

You can specify a value that is greater than or equal to the length of the specified content, up to a maximum
of 65535 bytes.

The default for Within is to search to the end of the packet.

Custom Intrusion Rules
28

Custom Intrusion Rules
content and protected_content Search Location Arguments

Overview: HTTP content and protected_content Keyword Arguments
HTTP content or protected_content keyword options let you specify where to search for content matches
within an HTTP message decoded by the HTTP Inspect preprocessor.

Two options search status fields in HTTP responses:

• HTTP Status Code

• HTTP Status Message

Note that although the rules engine searches the raw, unnormalized status fields, these options are listed here
separately to simplify explanation below of the restrictions to consider when combining other raw HTTP
fields and normalized HTTP fields.

Five options search normalized fields in HTTP requests, responses, or both, as appropriate :

• HTTP URI

• HTTP Method

• HTTP Header

• HTTP Cookie

• HTTP Client Body

Three options search raw (unnormalized) non-status fields in HTTP requests, responses, or both, as appropriate:

• HTTP Raw URI

• HTTP Raw Header

• HTTP Raw Cookie

Use the following guidelines when selecting HTTP content options:

• HTTP content options apply only to TCP traffic.

• To avoid a negative impact on performance, select only those parts of the message where the specified
content might appear.

For example, when traffic is likely to include large cookies such as those in shopping cart messages, you
might search for the specified content in the HTTP header but not in HTTP cookies.

• To take advantage of HTTP Inspect preprocessor normalization, and to improve performance, any
HTTP-related rule you create should at a minimum include at least one content or protected_content
keyword with an HTTP URI, HTTP Method, HTTP Header, or HTTP Client Body option selected.

• You cannot use the replace keyword in conjunction with HTTP content or protected_content keyword
options.

You can specify a single normalized HTTP option or status field, or use normalized HTTP options and status
fields in any combination to target a content area to match. However, note the following restrictions when
using HTTP field options:

• You cannot use the Raw Data option together in the same content or protected_content keyword
with any HTTP option.

Custom Intrusion Rules
29

Custom Intrusion Rules
Overview: HTTP content and protected_content Keyword Arguments

• You cannot use a raw HTTP field option (HTTP Raw URI, HTTP Raw Header, or HTTP Raw Cookie)
together in the same content or protected_content keyword with its normalized counterpart (HTTP
URI, HTTP Header, or HTTP Cookie, respectively).

• You cannot select Use Fast Pattern Matcher in combination with one or more of the following HTTP
field options:

HTTP Raw URI, HTTP Raw Header, HTTP Raw Cookie, HTTP Cookie, HTTP Method, HTTP
Status Message, or HTTP Status Code

However, you can include the options above in a content or protected_content keyword that also uses
the fast pattern matcher to search one of the following normalized fields:

HTTP URI, HTTP Header, or HTTP Client Body

For example, if you select HTTP Cookie, HTTP Header, and Use Fast Pattern Matcher, the rules
engine searches for content in both the HTTP cookie and the HTTP header, but the fast pattern matcher
is applied only to the HTTP header, not to the HTTP cookie.

• When you combine restricted and unrestricted options, the fast pattern matcher searches only the
unrestricted fields you specify to test whether to pass the rule to the intrusion rules editor for complete
evaluation, including evaluation of the restricted fields.

Related Topics
content Keyword Fast Pattern Matcher Arguments, on page 32

HTTP content and protected_content Keyword Arguments

HTTP URI

Select this option to search for content matches in the normalized request URI field.

Note that you cannot use this option in combination with the pcre keyword HTTP URI (U) option to search
the same content.

A pipelined HTTP request packet contains multiple URIs. When HTTP URI is selected and the rules engine
detects a pipelined HTTP request packet, the rules engine searches all URIs in the packet for a content match.

Note

HTTP Raw URI

Select this option to search for content matches in the normalized request URI field.

Note that you cannot use this option in combination with the pcre keyword HTTP URI (U) option to search
the same content.

A pipelined HTTP request packet contains multiple URIs. When HTTP URI is selected and the rules engine
detects a pipelined HTTP request packet, the rules engine searches all URIs in the packet for a content match.

Note

Custom Intrusion Rules
30

Custom Intrusion Rules
HTTP content and protected_content Keyword Arguments

HTTP Method

Select this option to search for content matches in the request method field, which identifies the action such
as GET and POST to take on the resource identified in the URI.

HTTP Header

Select this option to search for content matches in the normalized header field, except for cookies, in HTTP
requests; also in responses when the HTTP Inspect preprocessor Inspect HTTP Responses option is enabled.

Note that you cannot use this option in combination with the pcre keyword HTTP header (H) option to search
the same content.

HTTP Raw Header

Select this option to search for content matches in the raw header field, except for cookies, in HTTP requests;
also in responses when the HTTP Inspect preprocessor Inspect HTTP Responses option is enabled.

Note that you cannot use this option in combination with the pcre keyword HTTP raw header (D) option to
search the same content.

HTTP Cookie

Select this option to search for content matches in any cookie identified in a normalized HTTP client request
header; also in response set-cookie data when the HTTP Inspect preprocessor Inspect HTTP Responses
option is enabled. Note that the system treats cookies included in the message body as body content.

You must enable the HTTP Inspect preprocessor Inspect HTTP Cookies option to search only the cookie
for a match; otherwise, the rules engine searches the entire header, including the cookie.

Note the following:

• You cannot use this option in combination with the pcre keyword HTTP cookie (C) option to search the
same content.

• The Cookie: and Set-Cookie: header names, leading spaces on the header line, and the CRLF that
terminates the header line are inspected as part of the header and not as part of the cookie.

HTTP Raw Cookie

Select this option to search for content matches in any cookie identified in a raw HTTP client request header;
also in response set-cookie data when the HTTP Inspect preprocessor Inspect HTTP Responses option is
enabled; note that the system treats cookies included in the message body as body content.

You must enable the HTTP Inspect preprocessor Inspect HTTP Cookies option to search only the cookie
for a match; otherwise, the rules engine searches the entire header, including the cookie.

Note the following:

• You cannot use this option in combination with the pcre keyword HTTP raw cookie (K) option to search
the same content.

• The Cookie: and Set-Cookie: header names, leading spaces on the header line, and the CRLF that
terminates the header line are inspected as part of the header and not as part of the cookie.

Custom Intrusion Rules
31

Custom Intrusion Rules
HTTP content and protected_content Keyword Arguments

HTTP Client Body

Select this option to search for content matches in the message body in an HTTP client request.

Note that for this option to function, you must specify a value of 0 to 65535 for the HTTP Inspect preprocessor
HTTP Client Body Extraction Depth option.

HTTP Status Code

Select this option to search for content matches in the 3-digit status code in an HTTP response.

You must enable the HTTP Inspect preprocessor Inspect HTTP Responses option for this option to return
a match.

HTTP Status Message

Select this option to search for content matches in the textual description that accompanies the status code in
an HTTP response.

You must enable the HTTP Inspect preprocessor Inspect HTTP Responses option for this option to return
a match.

Related Topics
pcre Modifier Options, on page 48
Server-Level HTTP Normalization Options

Overview: content Keyword Fast Pattern Matcher

These options are not supported when configuring the protected_content keyword.Note

The fast pattern matcher quickly determines which rules to evaluate before passing a packet to the rules engine.
This initial determination improves performance by significantly reducing the number of rules used in packet
evaluation.

By default, the fast pattern matcher searches packets for the longest content specified in a rule; this is to
eliminate as much as possible needless evaluation of a rule. Consider the following example rule fragment:
alert tcp any any -> any 80 (msg:"Exploit"; content:"GET";

http_method; nocase; content:"/exploit.cgi"; http_uri;

nocase;)

Almost all HTTP client requests contain the content GET, but few will contain the content /exploit.cgi.
Using GET as the fast pattern content would cause the rules engine to evaluate this rule in most cases and would
rarely result in a match. However, most client GET requests would not be evaluated using /exploit.cgi, thus
increasing performance.

The rules engine evaluates the packet against the rule only when the fast pattern matcher detects the specified
content. For example, if one content keyword in a rule specifies the content short, another specifies longer,
and a third specifies longest, the fast pattern matcher will use the content longest and the rule will be
evaluated only if the rules engine finds longest in the payload.

content Keyword Fast Pattern Matcher Arguments

Use Fast Pattern Matcher

Custom Intrusion Rules
32

Custom Intrusion Rules
Overview: content Keyword Fast Pattern Matcher

management-center-device-config-73_chapter78.pdf#nameddest=unique_1823

Use this option to specify a shorter search pattern for the fast pattern matcher to use. Ideally, the pattern you
specify is less likely to be found in the packet than the longest pattern and, therefore, more specifically identifies
the targeted exploit.

Note the following restrictions when selecting Use Fast Pattern Matcher and other options in the same
content keyword:

• You can specify Use Fast Pattern Matcher only one time per rule.

• You cannot use Distance, Within, Offset, or Depth when you select Use Fast Pattern Matcher in
combination with Not.

• You cannot select Use Fast Pattern Matcher in combination with any of the following HTTP field options:

HTTP Raw URI, HTTP Raw Header, HTTP Raw Cookie, HTTP Cookie, HTTP Method, HTTP
Status Message, or HTTP Status Code

However, you can include the options above in a content keyword that also uses the fast pattern matcher
to search one of the following normalized fields:

HTTP URI, HTTP Header, or HTTP Client Body

For example, if you select HTTP Cookie, HTTP Header, and Use Fast Pattern Matcher, the rules
engine searches for content in both the HTTP cookie and the HTTP header, but the fast pattern matcher
is applied only to the HTTP header, not to the HTTP cookie.

Note that you cannot use a raw HTTP field option (HTTP Raw URI, HTTP Raw Header, or HTTP
Raw Cookie) together in the same content keyword with its normalized counterpart (HTTP URI,
HTTP Header, or HTTP Cookie, respectively).

When you combine restricted and unrestricted options, the fast pattern matcher searches only the
unrestricted fields you specify to test whether to pass the packet to the rules engine for complete evaluation,
including evaluation of the restricted fields.

• Optionally, when you select Use Fast Pattern Matcher you can also select Fast Pattern Matcher Only
or Fast Pattern Matcher Offset and Length, but not both.

• You cannot use the fast pattern matcher when inspecting Base64 data.

Fast Pattern Matcher Only

This option allows you to use the content keyword only as a fast pattern matcher option and not as a rule
option. You can use this option to conserve resources when rules engine evaluation of the specified content
is not necessary. For example, consider a case where a rule requires only that the content 12345 be anywhere
in the payload. When the fast pattern matcher detects the pattern, the packet can be evaluated against additional
keywords in the rule. There is no need for the rules engine to reevaluate the packet to determine if it includes
the pattern 12345.

You would not use this option when the rule contains other conditions relative to the specified content. For
example, you would not use this option to search for the content 1234 if another rule condition sought to
determine if abcd occurs before 1234. In this case, the rules engine could not determine the relative location
because specifying Fast Pattern Matcher Only instructs the rules engine not to search for the specified
content.

Note the following conditions when using this option:

Custom Intrusion Rules
33

Custom Intrusion Rules
content Keyword Fast Pattern Matcher Arguments

• The specified content is location-independent; that is, it may occur anywhere in the payload; thus, you
cannot use positional options (Distance, Within, Offset, Depth, or Fast Pattern Matcher Offset and
Length).

• You cannot use this option in combination with Not.

• You cannot use this option in combination with Fast Pattern Matcher Offset and Length.

• The specified content will be treated as case-insensitive, because all patterns are inserted into the fast
pattern matcher in a case-insensitive manner; this is handled automatically, so it is not necessary to select
Case Insensitive when you select this option.

• You should not immediately follow a content keyword that uses the Fast Pattern Matcher Only option
with the following keywords, which set the search location relative to the current search location:

• isdataat

• pcre

• content when Distance or Within is selected

• content when HTTP URI is selected

• asn1

• byte_jump

• byte_test

• byte_math

• byte_extract

• base64_decode

Fast Pattern Matcher Offset and Length

The Fast Pattern Matcher Offset and Length option allows you to specify a portion of the content to search.
This can reduce memory consumption in cases where the pattern is very long and only a portion of the pattern
is sufficient to identify the rule as a likely match. When a rule is selected by the fast pattern matcher, the entire
pattern is evaluated against the rule.

You determine the portion for the fast pattern matcher to use by specifying in bytes where to begin the search
(offset) and how far into the content (length) to search, using the syntax:

offset,length

For example, for the content:

1234567

if you specify the number of offset and length bytes as:

1,5

the fast pattern matcher searches only for the content 23456.

Note that you cannot use this option together with Fast Pattern Matcher Only.

Custom Intrusion Rules
34

Custom Intrusion Rules
content Keyword Fast Pattern Matcher Arguments

Related Topics
Overview: HTTP content and protected_content Keyword Arguments, on page 29
The base64_decode and base64_data Keywords, on page 112

The replace Keyword
You can use the replace keyword in an inline deployment to replace specified content or to replace content
in SSL traffic detected by the Cisco SSL Appliance.

To use the replace keyword, construct a custom standard text rule that uses the content keyword to look for
a specific string. Then use the replace keyword to specify a string to replace the content. The replace value
and content value must be the same length.

You cannot use the replace keyword to replace hashed content in a protected_content keyword.Note

Optionally, you can enclose the replacement string in quotation marks for backward compatibility with previous
software versions. If you do not include quotation marks, they are added to the rule automatically so the rule
is syntactically correct. To include a leading or trailing quotation mark as part of the replacement text, you
must use a backslash to escape it, as shown in the following example:

"replacement text plus \"quotation\" marks""

A rule can contain multiple replace keywords, but only one per content keyword. Only the first instance of
the content found by the rule is replaced.

The following are example uses of the replace keyword:

• If the system detects an incoming packet that contains an exploit, you can replace the malicious string
with a harmless one. Sometimes this technique is more successful than simply dropping the offending
packet. In some attack scenarios, the attacker simply resends the dropped packet until it bypasses your
network defenses or floods your network. By substituting one string for another rather than dropping the
packet, you may trick the attacker into believing that the attack was launched against a target that was
not vulnerable.

• If you are concerned about reconnaissance attacks that try to learn whether you are running a vulnerable
version of, for example, a web server, then you can detect the outgoing packet and replace the banner
with your own text.

Make sure that you set the rule state to Generate Events in the inline intrusion policy where you want to use
the replace rule; setting the rule to Drop and Generate events would cause the packet to drop, which would
prevent replacing the content.

Note

As part of the string replacement process, the system automatically updates the packet checksums so that the
destination host can receive the packet without error.

Note that you cannot use the replace keyword in combination with HTTP request message content keyword
options.

Custom Intrusion Rules
35

Custom Intrusion Rules
The replace Keyword

Related Topics
The content and protected_content Keywords, on page 24
Overview: HTTP content and protected_content Keyword Arguments, on page 29

The byte_jump Keyword
The byte_jump keyword calculates the number of bytes defined in a specified byte segment, and then skips
that number of bytes within the packet, either forward from the end of the specified byte segment, or from
the beginning or end of the packet payload, or from a point relative to the last content match, depending on
the options you specify. This is useful in packets where a specific segment of bytes describe the number of
bytes included in variable data within the packet.

The following table describes the arguments required by the byte_jump keyword.

Table 10: Required byte_jump Arguments

DescriptionArgument

The number of bytes to pick up from the packet.

If used without DCE/RPC, the allowed values are 0 to 10, with the following
restrictions:

• If used with the From End argument, bytes can be 0. If Bytes is 0, the extracted
value is 0.

• If you specify a number of bytes other than 1, 2, or 4, you must specify a Number
Type (hexadecimal, octal, or decimal.)

If used with DCE/RPC, allowed values are 1, 2, and 4.

Bytes

The number of bytes into the payload to start processing. The offset counter starts at
byte 0, so calculate the offset value by subtracting 1 from the number of bytes you
want to jump forward from the beginning of the packet payload or the last successful
content match.

You can specify -65535 to 65535 bytes.

You can also use an existing byte_extract variable or byte_math result to specify
the value for this argument.

Offset

The following table describes options you can use to define how the system interprets the values you specified
for the required arguments.

Table 11: Additional Optional byte_jump Arguments

DescriptionArgument

Makes the offset relative to the last pattern found in the last successful content match.Relative

Rounds the number of converted bytes up to the next 32-bit boundary.Align

Custom Intrusion Rules
36

Custom Intrusion Rules
The byte_jump Keyword

DescriptionArgument

Indicates the value by which the rules engine should multiply the byte_jump value
obtained from the packet to get the final byte_jump value.

That is, instead of skipping the number of bytes defined in a specified byte segment,
the rules engine skips that number of bytes multiplied by an integer you specify with
the Multiplier argument.

Multiplier

The number of bytes -65535 through 65535 to skip forward or backward after applying
other byte_jump arguments. A positive value skips forward and a negative value skips
backward. Leave the field blank or enter 0 to disable.

Note that some byte_jump arguments do not apply when you select the DCE/RPC
argument.

Post Jump Offset

Indicates that the rules engine should skip the specified number of bytes in the payload
starting from the beginning of the packet payload, instead of from the current position
in the packet.

From Beginning

The jump will originate from the byte that follows the last byte of the buffer.From End

Applies the specified hexadecimal bitmask using the AND operator to the bytes
extracted from the Bytes argument.

A bitmask can be 1 to 4 bytes.

The result will be right-shifted by the number of bits equal to the number of trailing
zeros in the mask.

Bitmask

You can specify only one of DCE/RPC, Endian, or Number Type.

If you want to define how the byte_jump keyword calculates the bytes, you can choose from the arguments
described in the following table. If you do not select a byte-ordering argument, the rules engine uses big endian
byte order.

Table 12: Byte-Ordering byte_jump Arguments

DescriptionArgument

Processes data in big endian byte order, which is the default network byte order.Big Endian

Processes data in little endian byte order.Little Endian

Specifies a byte_jump keyword for traffic processed by the DCE/RPC preprocessor.

The DCE/RPC preprocessor determines big endian or little endian byte order, and the
Number Type and Endian arguments do not apply.

When you enable this argument, you can also use byte_jump in conjunction with other
specific DCE/RPC keywords.

DCE/RPC

Define how the system views string data in a packet by using one of the arguments in the following table.

Custom Intrusion Rules
37

Custom Intrusion Rules
The byte_jump Keyword

Table 13: Number Type Arguments

DescriptionArgument

Represents converted string data in hexadecimal format.Hexadecimal String

Represents converted string data in decimal format.Decimal String

Represents converted string data in octal format.Octal String

For example, if the values you set for byte_jump are as follows:

• Bytes = 4

• Offset = 12

• Relative enabled

• Align enabled

the rules engine calculates the number described in the four bytes that appear 13 bytes after the last successful
content match, and skips ahead that number of bytes in the packet. For instance, if the four calculated bytes
in a specific packet were 00 00 00 1F, the rules engine would convert this to 31. Because align is specified
(which instructs the engine to move to the next 32-bit boundary), the rules engine skips ahead 32 bytes in the
packet.

Alternately, if the values you set for byte_jump are as follows:

• Bytes = 4

• Offset = 12

• From Beginning enabled

• Multiplier = 2

the rules engine calculates the number described in the four bytes that appear 13 bytes after the beginning of
the packet. Then, the engine multiplies that number by two to obtain the total number of bytes to skip. For
instance, if the four calculated bytes in a specific packet were 00 00 00 1F, the rules engine would convert
this to 31, then multiply it by two to get 62. Because From Beginning is enabled, the rules engine skips the
first 63 bytes in the packet.

Related Topics
The byte_extract Keyword, on page 40
DCE/RPC Keywords, on page 72

The byte_test Keyword
The byte_test keyword tests the specified byte segment against the Value argument and its operator.

The following table describes the required arguments for the byte_test keyword.

Custom Intrusion Rules
38

Custom Intrusion Rules
The byte_test Keyword

Table 14: Required byte_test Arguments

DescriptionArgument

The number of bytes to calculate from the packet.

If used without DCE/RPC, the allowed values are 1 to 10. However, if you specify a
number of bytes other than 1, 2, or 4, you must specify a Number Type (hexadecimal,
octal, or decimal.).

If used with DCE/RPC, allowed values are 1, 2, and 4.

Bytes

Value to test, including its operator.

Supported operators: <, >, =, !, &, ^, !>, !<, !=, !&, or !^.

For example, if you specify !1024, byte_test would convert the specified number,
and if it did not equal 1024, it would generate an event (if all other keyword parameters
matched).

Note that ! and != are equivalent.

You can also use an existing byte_extract variable or byte_math result to specify
the value for this argument.

Value

The number of bytes into the payload to start processing. The offset counter starts at
byte 0, so calculate the offset value by subtracting 1 from the number of bytes you
want to count forward from the beginning of the packet payload or the last successful
content match.

You can use an existing byte_extract variable or byte_math result to specify the
value for this argument.

Offset

You can further define how the system uses byte_test arguments with the arguments described in the following
table.

Table 15: Additional Optional byte_test Arguments

DescriptionArgument

Applies the specified hexadecimal bitmask using the AND operator to the bytes extracted from the Bytes
argument.

A bitmask can be 1 to 4 bytes.

The result will be right-shifted by the number of bits equal to the number of trailing zeros in the mask.

Bitmask

Makes the offset relative to the last successful pattern match.Relative

You can specify only one of DCE/RPC, Endian, or Number Type.

To define how the byte_test keyword calculates the bytes it tests, choose from the arguments in the following
table. If you do not select a byte-ordering argument, the rules engine uses big endian byte order.

Custom Intrusion Rules
39

Custom Intrusion Rules
The byte_test Keyword

Table 16: Byte-Ordering byte_test Arguments

DescriptionArgument

Processes data in big endian byte order, which is the default network byte order.Big Endian

Processes data in little endian byte order.Little Endian

Specifies a byte_test keyword for traffic processed by the DCE/RPC preprocessor.

The DCE/RPC preprocessor determines big endian or little endian byte order, and the
Number Type and Endian arguments do not apply.

When you enable this argument, you can also use byte_test in conjunction with other
specific DCE/RPC keywords.

DCE/RPC

You can define how the system views string data in a packet by using one of the arguments in the following
table.

Table 17: Number Type byte-test Arguments

DescriptionArgument

Represents converted string data in hexadecimal format.Hexadecimal String

Represents converted string data in decimal format.Decimal String

Represents converted string data in octal format.Octal String

For example, if the value for byte_test is specified as the following:

• Bytes = 4

• Operator and Value > 128

• Offset = 8

• Relative enabled

The rules engine calculates the number described in the four bytes that appear 9 bytes away from (relative to)
the last successful content match, and, if the calculated number is larger than 128 bytes, the rule is triggered.

Related Topics
The byte_extract Keyword, on page 40
DCE/RPC Keywords, on page 72

The byte_extract Keyword
You can use the byte_extract keyword to read a specified number of bytes from a packet into a variable.
You can then use the variable later in the same rule as the value for specific arguments in certain other detection
keywords.

This is useful, for example, for extracting data size from packets where a specific segment of bytes describes
the number of bytes included in data within the packet. For example, a specific segment of bytes might say
that subsequent data is comprised of four bytes; you can extract the data size of four bytes to use as your
variable value.

Custom Intrusion Rules
40

Custom Intrusion Rules
The byte_extract Keyword

You can use byte_extract to create up to two separate variables in a rule concurrently. You can redefine a
byte_extract variable any number of times; entering a new byte_extract keyword with the same variable
name and a different variable definition overwrites the previous definition of that variable.

The following table describes the arguments required by the byte_extract keyword.

Table 18: Required byte_extract Arguments

DescriptionArgument

The number of bytes to pick up from the packet.

If you specify a number of bytes other than 1, 2, or 4, you must specify a Number Type
(hexadecimal, octal, or decimal.)

Bytes to Extract

The number of bytes into the payload to begin extracting data. You can specify -65535
to 65535 bytes. The offset counter starts at byte 0, so calculate the offset value by
subtracting 1 from the number of bytes you want to count forward. For example, specify
7 to count forward 8 bytes. The rules engine counts forward from the beginning of the
packet payload or, if you also specify Relative, after the last successful content match.
Note that you can specify negative numbers only when you also specify Relative.

You can use an existing byte_math result to specify the value for this argument.

Offset

The variable name to use in arguments for other detection keywords. You can specify
an alphanumeric string that must begin with a letter.

Variable Name

To further define how the system locates the data to extract, you can use the arguments described in the
following table.

Table 19: Additional Optional byte_extract Arguments

DescriptionArgument

A multiplier for the value extracted from the packet. You can specify 0 to 65535. If
you do not specify a multiplier, the default value is 1.

Multiplier

Rounds the extracted value to the nearest 2-byte or 4-byte boundary. When you also
select Multiplier, the system applies the multiplier before the alignment.

Align

Makes Offset relative to the end of the last successful content match instead of the
beginning of the payload.

Relative

Applies the specified hexadecimal bitmask using the AND operator to the bytes
extracted from the Bytes to Extract argument.

A bitmask can be 1 to 4 bytes.

The result will be right-shifted by the number of bits equal to the number of trailing
zeros in the mask.

Bitmask

You can specify only one of DCE/RPC, Endian, or Number Type.

To define how the byte_extract keyword calculates the bytes it tests, you can choose from the arguments
in the following table. If you do not select a byte-ordering argument, the rules engine uses big endian byte
order.

Custom Intrusion Rules
41

Custom Intrusion Rules
The byte_extract Keyword

Table 20: Byte-Ordering byte_extract Arguments

DescriptionArgument

Processes data in big endian byte order, which is the default network byte order.Big Endian

Processes data in little endian byte order.Little Endian

Specifies a byte_extract keyword for traffic processed by the DCE/RPC preprocessor.

The DCE/RPC preprocessor determines big endian or little endian byte order, and the
Number Type and Endian arguments do not apply.

When you enable this argument, you can also use byte_extract in conjunction with
other specific DCE/RPC keywords.

DCE/RPC

You can specify a number type to read data as an ASCII string. To define how the system views string data
in a packet, you can select one of the arguments in the following table.

Table 21: Number Type byte_extract arguments

DescriptionArgument

Reads extracted string data in hexadecimal format.Hexadecimal String

Reads extracted string data in decimal format.Decimal String

Reads extracted string data in octal format.Octal String

For example, if the value for byte_extract is specified as the following:

• Bytes to Extract = 4

• Variable Name = var

• Offset = 8

• Relative = enabled

the rules engine reads the number described in the four bytes that appear 9 bytes away from (relative to) the
last successful content match into a variable named var, which you can specify later in the rule as the value
for certain keyword arguments.

The following table lists the keyword arguments where you can specify a variable defined in the byte_extract
keyword.

Table 22: Arguments Accepting a byte_extract Variable

ArgumentKeyword

Depth, Offset, Distance, Withincontent

Offsetbyte_jump

Offset, Valuebyte_test

RValue, Offsetbyte_math

Custom Intrusion Rules
42

Custom Intrusion Rules
The byte_extract Keyword

ArgumentKeyword

Offsetisdataat

Related Topics
The DCE/RPC Preprocessor
DCE/RPC Keywords, on page 72
Basic content and protected_content Keyword Arguments, on page 25
The byte_jump Keyword, on page 36
The byte_test Keyword, on page 38
Packet Characteristics, on page 95

The byte_math Keyword
The byte_math keyword performs a mathematical operation on an extracted value and a specified value or
existing variable, and stores the outcome in a new resulting variable. You can then use the resulting variable
as an argument in other keywords.

You can use multiple byte_math keywords in a rule to perform multiple byte_math operations.

The following table describes the arguments required by the byte_math keyword.

Table 23: Required byte_math Arguments

DescriptionArgument

The number of bytes to calculate from the packet.

If used without DCE/RPC, the allowed values are 1 to 10:

• Bytes can be 1 to 10 when the operator is +, -. *, or /.

• Bytes can be 1 to 4 when the operator is << or >>.

• If you specify a number of bytes other than 1, 2, or 4, you must specify a Number
Type (hexadecimal, octal, or decimal.)

If used with DCE/RPC, allowed values are 1, 2, and 4.

Bytes

The number of bytes into the payload to start processing. The offset counter starts at
byte 0, so calculate the offset value by subtracting 1 from the number of bytes you
want to jump forward from the beginning of the packet payload or (if you specified
Relative) from the last successful content match.

You can specify -65535 to 65535 bytes.

You can also specify the byte_extract variable here.

Offset

+, -, *, /, <<, or >>Operator

The value following the operator. This can be an unsigned integer or a variable passed
from byte_extract.

RValue

Custom Intrusion Rules
43

Custom Intrusion Rules
The byte_math Keyword

management-center-device-config-73_chapter78.pdf#nameddest=unique_1829

DescriptionArgument

The name of the variable into which the result of the byte_math calculation will be
stored. You can use this variable as an argument in other keywords.

This value is stored as an unsigned integer.

This variable name:

• Must use alphanumeric characters

• Must not begin with a number

• May include special characters supported by the Microsoft filename/variable
name convention

• Cannot consist entirely of special characters

Result Variable

The following table describes options you can use to define how the system interprets the values you specified
for the required arguments.

Table 24: Additional Optional byte_math Arguments

DescriptionArgument

Makes the offset relative to the last pattern found in the last successful content match
instead of the beginning of the payload.

Relative

Applies the specified hexadecimal bitmask using the AND operator to the bytes
extracted from the Bytes argument.

A bitmask can be 1 to 4 bytes.

The result will be right-shifted by the number of bits equal to the number of trailing
zeros in the mask.

Bitmask

You can specify only one of DCE/RPC, Endian, or Number Type.

If you want to define how the byte_math keyword calculates the bytes, you can choose from the arguments
described in the following table. If you do not select a byte-ordering argument, the rules engine uses big endian
byte order.

Table 25: Byte-Ordering byte_math Arguments

DescriptionArgument

Processes data in big endian byte order, which is the default network byte order.Big Endian

Processes data in little endian byte order.Little Endian

Specifies a byte_math keyword for traffic processed by the DCE/RPC preprocessor.

The DCE/RPC preprocessor determines big endian or little endian byte order, and the
Number Type and Endian arguments do not apply.

When you enable this argument, you can also use byte_math in conjunction with other
specific DCE/RPC keywords.

DCE/RPC

Custom Intrusion Rules
44

Custom Intrusion Rules
The byte_math Keyword

Define how the system views string data in a packet by using one of the arguments in the following table.

Table 26: Number Type Arguments

DescriptionArgument

Represents string data in hexadecimal format.Hexadecimal String

Represents string data in decimal format.Decimal String

Represents string data in octal format.Octal String

For example, if the values you set for byte_math are as follows:

• Bytes = 2

• Offset = 0

• Operator = *

• RValue = height

• Result Variable = area

the rules engine extracts the number described in the first two bytes in the packet and multiplies it by the
RValue (which uses the existing variable, height) to create the new variable, area.

Table 27: Arguments Accepting a byte_math Variable

ArgumentKeyword

Offsetbyte_jump

Offset, Valuebyte_test

Offsetbyte_extract

Offsetisdataat

Overview: The pcre Keyword
The pcre keyword allows you to use Perl-compatible regular expressions (PCRE) to inspect packet payloads
for specified content. You can use PCRE to avoid writing multiple rules to match slight variations of the same
content.

Regular expressions are useful when searching for content that could be displayed in a variety of ways. The
content may have different attributes that you want to account for in your attempt to locate it within a packet’s
payload.

Note that the regular expression syntax used in intrusion rules is a subset of the full regular expression library
and varies in some ways from the syntax used in commands in the full library. When adding a pcre keyword
using the intrusion rules editor, enter the full value in the following format:

!/pcre/ ismxAEGRBUIPHDMCKSY

where:

Custom Intrusion Rules
45

Custom Intrusion Rules
Overview: The pcre Keyword

• ! is an optional negation (use this if you want to match patterns that do not match the regular expression).

• /pcre/ is a Perl-compatible regular expression.

• ismxAEGRBUIPHDMCKSY is any combination of modifier options.

Also note that you must escape the characters listed in the following table for the rules engine to interpret
them correctly when you use them in a PCRE to search for specific content in a packet payload.

Table 28: Escaped PCRE Characters

or Hex code...with a backslash...You must escape...

\x23\## (hash mark)

\x3B\;; (semicolon)

\x7C\|| (vertical bar)

\x3A\:: (colon)

You can also use m?regex?, where ? is a delimiter other than /. You may want to use this in situations where
you need to match a forward slash within a regular expression and do not want to escape it with a backslash.
For example, you might use m?regex? ismxAEGRBUIPHDMCKSY where regex is your Perl-compatible regular
expression and ismxAEGRBUIPHDMCKSY is any combination of modifier options.

Optionally, you can surround your Perl-compatible regular expression with quote characters, for example,
pcre_expression or “pcre_expression“.The option of using quotes accommodates experienced users accustomed
to previous versions when quotes were required instead of optional. The intrusion rules editor does not display
quotation marks when you display a rule after saving it.

Tip

pcre Syntax
The pcre keyword accepts standard Perl-compatible regular expression (PCRE) syntax. The following sections
describe that syntax.

While this section describes the basic syntax you may use for PCRE, you may want to consult an online
reference or book dedicated to Perl and PCRE for more advanced information.

Tip

Metacharacters

Metacharacters are literal characters that have special meaning within regular expressions. When you use
them within a regular expression, you must ��escape” them by preceding them with a backslash.

The following table describes the metacharacters you can use with PCRE and gives examples of each.

Custom Intrusion Rules
46

Custom Intrusion Rules
pcre Syntax

Table 29: PCRE Metacharacters

ExampleDescriptionMetacharacter

abc. matches abcd, abc1, abc#, and so on.Matches any character except newlines. If s is used as a
modifying option, it also includes newline characters.

.

abc* matches abc, abcc, abccc, abccccc, and so on.Matches zero or more occurrences of a character or
expression.

*

abc? matches abc.Matches zero or one occurrence of a character or
expression.

?

abc+ matches abc, abcc, abccc, abccccc, and so on.Matches one or more occurrences of a character or
expression.

+

(abc)+ matches abc, abcabc, abcabcabc and so on.Groups expressions.()

a{4,6} matches aaaa, aaaaa, or aaaaaa.

(ab){2} matches abab.

Specifies a limit for the number of matches for a character
or expression. If you want to set a lower and upper limit,
separate the lower limit and upper limit with a comma.

{}

[abc123] matches a or b or c, and so on.Allows you to define character classes, and matches any
character or combination of characters described in the set.

[]

^in matches the “in” in info, but not in bin. [^a] matches
anything that does not contain a.

Matches content at the beginning of a string. Also used for
negation, if used within a character class.

^

ce$ matches the “ce” in announce, but not cent.Matches content at the end of a string.$

(MAILTO|HELP) matches MAILTO or HELP.Indicates an OR expression.|

\. matches a period, * matches an asterisk, \\ matches a
backslash and so on. \d matches the numeric characters,
\w matches alphanumeric characters, and so on.

Allows you to use metacharacters as actual characters and
is also used to specify a predefined character class.

\

Character Classes

Character classes include alphabetic characters, numeric characters, alphanumeric characters, and white space
characters. While you can create your own character classes within brackets, you can use the predefined
classes as shortcuts for different types of character types. When used without additional qualifiers, a character
class matches a single digit or character.

The following table describes and provides examples of the predefined character classes accepted by PCRE.

Table 30: PCRE Character Classes

Character
Class
Definition

DescriptionCharacter
Class

[0-9]Matches a numeric character (“digit”).\d

[^0-9]Matches anything that is not an numeric character.\D

Custom Intrusion Rules
47

Custom Intrusion Rules
pcre Syntax

Character
Class
Definition

DescriptionCharacter
Class

[a-zA-Z0-9_]Matches an alphanumeric character (“word”).\w

[^a-zA-Z0-9_]Matches anything that is not an alphanumeric character.\W

[\r\t\n\f]Matches white space characters, including spaces, carriage returns, tabs, newlines,
and form feeds.

\s

[^ \r\t\n\f]Matches anything that is not a white space character.\S

pcre Modifier Options
You can use modifying options after you specify regular expression syntax in the pcre keyword’s value.
These modifiers perform Perl, PCRE, and Snort-specific processing functions. Modifiers always appear at
the end of the PCRE value, and appear in the following format:

/pcre/ismxAEGRBUIPHDMCKSY

where ismxAEGRBUPHMC can include any of the modifying options that appear in the following tables.

Optionally, you can surround the regular expression and any modifying options with quotes, for example,
“/pcre/ismxAEGRBUIPHDMCKSY”. The option of using quotes accommodates experienced users accustomed
to previous versions when quotes were required instead of optional. The intrusion rules editor does not display
quotation marks when you display a rule after saving it.

Tip

The following table describes options you can use to perform Perl processing functions.

Table 31: Perl-Related Post Regular Expression Options

DescriptionOption

Makes the regular expression case-insensitive.i

The dot character (.) describes all characters except the newline or \n character. You can use "s" as an
option to override this and have the dot character match all characters, including the newline character.

s

By default, a string is treated as a single line of characters, and ^ and $ match the beginning and ending
of a specific string. When you use "m" as an option, ^ and $ match content immediately before or after
any newline character in the buffer, as well as at the beginning or end of the buffer.

m

Ignores white space data characters that may appear within the pattern, except when escaped (preceded
by a backslash) or included inside a character class.

x

The following table describes the PCRE modifiers you can use after the regular expression.

Custom Intrusion Rules
48

Custom Intrusion Rules
pcre Modifier Options

Table 32: PCRE-Related Post Regular Expression Options

DescriptionOption

The pattern must match at the beginning of the string (same as using ^ in a regular
expression).

A

Sets $ to match only at the end of the subject string. (Without E, $ also matches
immediately before the final character if it is a newline, but not before any other newline
characters).

E

By default, * + and ? are “greedy,” which means that if two or more matches are found,
they will choose the longest match. Use the G character to change this so that these
characters always choose the first match unless followed by a question mark character
(?). For example, *? +? and ?? would be greedy in a construct using the G modifier,
and any incidences of *, +, or ? without the additional question mark will not be greedy.

G

The following table describes the Snort-specific modifiers that you can use after the regular expression.

.

Table 33: Snort-Specific Post Regular Expression Modifiers

DescriptionOption

Searches for matching content relative to the end of the last match found by the rules
engine.

R

Searches for the content within data before it is decoded by a preprocessor (this option
is similar to using the Raw Data argument with the content or protected_content
keyword).

B

Searches for the content within the URI of a normalized HTTP request message decoded
by the HTTP Inspect preprocessor. Note that you cannot use this option in combination
with the content or protected_content keyword HTTP URI option to search the
same content.

Note that a pipelined HTTP request packet contains multiple URIs. A PCRE expression
that includes the U option causes the rules engine to search for a content match only
in the first URI in a pipelined HTTP request packet. To search all URIs in the packet,
use the content or protected_content keyword with HTTP URI selected, either
with or without an accompanying PCRE expression that uses the U option.

U

Searches for the content within the URI of a raw HTTP request message decoded by
the HTTP Inspect preprocessor. Note that you cannot use this option in combination
with the content or protected_content keyword HTTP Raw URI option to search
the same content

I

Searches for the content within the body of a normalized HTTP request message
decoded by the HTTP Inspect preprocessor.

P

Custom Intrusion Rules
49

Custom Intrusion Rules
pcre Modifier Options

DescriptionOption

Searches for the content within the header, excluding cookies, of an HTTP request or
response message decoded by the HTTP Inspect preprocessor. Note that you cannot
use this option in combination with the content or protected_content keyword
HTTP Header option to search the same content.

H

Searches for the content within the header, excluding cookies, of a raw HTTP request
or response message decoded by the HTTP Inspect preprocessor. Note that you cannot
use this option in combination with the content or protected_content keyword
HTTP Raw Header option to search the same content.

D

Searches for the content within the method field of a normalized HTTP request message
decoded by the HTTP Inspect preprocessor; the method field identifies the action such
as GET, PUT, CONNECT, and so on to take on the resource identified in the URI.

M

When the HTTP Inspect preprocessor Inspect HTTP Cookies option is enabled,
searches for the normalized content within any cookie in an HTTP request header, and
also within any set-cookie in an HTTP response header when the preprocessor Inspect
HTTP Responses option is enabled. When Inspect HTTP Cookies is not enabled,
searches the entire header, including the cookie or set-cookie data.

Note the following:

• Cookies included in the message body are treated as body content.

• You cannot use this option in combination with the content or
protected_content keyword HTTP Cookie option to search the same content.

• The Cookie: and Set-Cookie: header names, leading spaces on the header line,
and the CRLF that terminates the header line are inspected as part of the header
and not as part of the cookie.

C

When the HTTP Inspect preprocessor Inspect HTTP Cookies option is enabled,
searches for the raw content within any cookie in an HTTP request header, and also
within any set-cookie in an HTTP response header when the preprocessor Inspect
HTTP Responses option is enabled. When Inspect HTTP Cookies is not enabled,
searches the entire header, including the cookie or set-cookie data.

Note the following:

• Cookies included in the message body are treated as body content.

• You cannot use this option in combination with the content or
protected_content keyword HTTP Raw Cookie option to search the same
content.

• The Cookie: and Set-Cookie: header names, leading spaces on the header line,
and the CRLF that terminates the header line are inspected as part of the header
and not as part of the cookie.

K

Searches the 3-digit status code in an HTTP response.S

Searches the textual description that accompanies the status code in an HTTP response.Y

Custom Intrusion Rules
50

Custom Intrusion Rules
pcre Modifier Options

Do not use the U option in combination with the R option. This could cause performance problems. Also, do
not use the U option in combination with any other HTTP content option (I, P, H, D, M, C, K, S, or Y).

Note

Related Topics
Overview: HTTP content and protected_content Keyword Arguments, on page 29

pcre Example Keyword Values
The following examples show values that you could enter for pcre, with descriptions of what each example
would match.

• /feedback[(\d{0,1})]?\.cgi/U

This example searches packet payload for feedback, followed by zero or one numeric character, followed by
.cgi, and located only in URI data.

This example would match:

• feedback.cgi

• feedback1.cgi

• feedback2.cgi

• feedback3.cgi

This example would not match:

• feedbacka.cgi

• feedback11.cgi

• feedback21.cgi

• feedbackzb.cgi

• /^ez(\w{3,5})\.cgi/iU

This example searches packet payload for ez at the beginning of a string, followed by a word of 3 to 5 letters,
followed by .cgi. The search is case-insensitive and only searches URI data.

This example would match:

• EZBoard.cgi

• ezman.cgi

• ezadmin.cgi

• EZAdmin.cgi

This example would not match:

• ezez.cgi

• fez.cgi

Custom Intrusion Rules
51

Custom Intrusion Rules
pcre Example Keyword Values

• abcezboard.cgi

• ezboardman.cgi

• /mail(file|seek)\.cgi/U

This example searches packet payload for mail, followed by either file or seek, in URI data.

This example would match:

• mailfile.cgi

• mailseek.cgi

This example would not match:

• MailFile.cgi

• mailfilefile.cgi

• m?http\\x3a\x2f\x2f.*(\n|\t)+?U

This example searches packet payload for URI content for a tab or newline character in an HTTP request,
after any number of characters. This example uses m?regex? to avoid using http\:\/\/ in the expression.
Note that the colon is preceded by a backslash.

This example would match:

• http://www.example.com?scriptvar=x&othervar=\n\..\..

• http://www.example.com?scriptvar=\t

This example would not match:

• ftp://ftp.example.com?scriptvar=&othervar=\n\..\..

• http://www.example.com?scriptvar=|/bin/sh -i|

• m?http\\x3a\x2f\x2f.*=\|.*\|+?sU

This example searches packet payload for a URL with any number of characters, including newlines, followed
by an equal sign, and pipe characters that contain any number of characters or white space. This example uses
m?regex? to avoid using http\:\/\/ in the expression.

This example would match:

• http://www.example.com?value=|/bin/sh/ -i|

• http://www.example.com?input=|cat /etc/passwd|

This example would not match:

• ftp://ftp.example.com?value=|/bin/sh/ -i|

• http://www.example.com?value=x&input?|cat /etc/passwd|

• /[0-9a-f]{2}\:[0-9a-f]{2}\:[0-9a-f]{2}\:[0-9a-f]{2}\:[0-9a-f]{2}\:[0-9a-f]{2}/i

Custom Intrusion Rules
52

Custom Intrusion Rules
pcre Example Keyword Values

This example searches packet payload for any MAC address. Note that it escapes the colon characters with
backslashes.

The metadata Keyword
You can use the metadata keyword to add your own descriptive information to a rule. You can also use the
metadata keyword with service arguments to identify applications and ports in network traffic. You can use
the information you add to organize or identify rules in ways that suit your needs, and you can search rules
for information you add and for service arguments.

The system validates metadata based on the argument format:

key value

where key and value provide a combined description separated by a space. This is the format used by the Talos
Intelligence Group for adding metadata to rules provided by Cisco.

Alternatively, you can also use the format:

key = value

For example, you could use the key value format to identify rules by author and date, using a category and
sub-category as follows:

author SnortGuru_20050406

You can use multiple metadata keywords in a rule. You can also use commas to separate multiple key value
arguments in a single metadata keyword, as seen in the following example:
author SnortGuru_20050406, revised_by SnortUser1_20050707,

revised_by SnortUser2_20061003,

revised_by SnortUser1_20070123

You are not limited to using a key value or key=value format; however, you should be aware of limitations
resulting from validation based on these formats.

Restricted Characters to Avoid

Note the following character restrictions:

• Do not use a semicolon (;) or colon (:).

• The system interprets a comma as a separator for multiple key value or key=value arguments. For example:

key value,key value,key value

• The system interprets the equal to (=) character or space character as separators between key and value.
For example:

key value

key=value

All other characters are permitted.

Custom Intrusion Rules
53

Custom Intrusion Rules
The metadata Keyword

Reserved Metadata to Avoid

Avoid using the following words in a metadata keyword, either as a single argument or as the key in a key
value argument; these are reserved for use by Talos:

application
engine
impact_flag
os
policy
rule-type
rule-flushing
soid

Contact Support for assistance in adding restricted metadata to local rules that might not otherwise function
as expected.

Note

Impact Level 1

You can use the following reserved key value argument in a metadata keyword:

impact_flag red

This key value argument sets the impact flag to red (level 1) for a local rule you import or a custom rule you
create using the intrusion rules editor.

Note that when Talos includes the impact_flag red argument in a rule provided by Cisco, Talos has determined
that a packet triggering the rule indicates that the source or destination host is potentially compromised by a
virus, trojan, or other piece of malicious software.

Service Metadata
The system detects applications running on the hosts in your network and inserts application protocol
information into your network traffic; it does this regardless of the configuration of your discovery policy.
You can use metadata keyword service arguments in a TCP or UDP rule to match application protocols and
ports in your network traffic. You can combine one or more service application arguments in a rule with a
single port argument.

Service Applications

You can use the metadata keyword with service as the key and an application as the value to match packets
with the identified application protocol. For example, the following key value argument in a metadata keyword
associates the rule with HTTP traffic:
service http

You can identify multiple applications separated by commas. For example:
service http, service smtp, service ftp

Adaptive profiling must be enabled (its default state) as described in Configuring Adaptive Profiles for
intrusion rules to use service metadata.

Caution

Custom Intrusion Rules
54

Custom Intrusion Rules
Service Metadata

management-center-device-config-73_chapter82.pdf#nameddest=unique_1547

The following table describes the most common application values used with the service keyword.

Contact Support for assistance if you have difficulty identifying applications not in the table.Note

Table 34: service Values

DescriptionValue

Concurrent Versions Systemcvs

Distributed Computing Environment/Remote Procedure Calls Systemdcerpc

Domain Name Systemdns

Finger user information protocolfinger

File Transfer Protocolftp

File Transfer Protocol (Data Channel)ftp-data

Hypertext Transfer Protocolhttp

Internet Message Access Protocolimap

Internet Security Association and Key Management Protocolisakmp

My Structured Query Languagemysql

NETBIOS Datagram Servicenetbios-dgm

NETBIOS Name Servicenetbios-ns

NETBIOS Session Servicenetbios-ssn

Network News Transfer Protocolnntp

Oracle Net Servicesoracle

OS Shellshell

Post Office Protocol, version 2pop2

Post Office Protocol, version 3pop3

Simple Mail Transfer Protocolsmtp

Simple Network Management Protocolsnmp

Secure Shell network protocolssh

Sun Remote Procedure Call Protocolsunrpc

Telnet network protocoltelnet

Custom Intrusion Rules
55

Custom Intrusion Rules
Service Metadata

DescriptionValue

Trivial File Transfer Protocoltftp

X Window Systemx11

Service Ports

You can use the metadata keyword with service as the key and a specified port argument as the value to
define how the rule matches ports in combination with applications.

You can specify any of the port values in the table below, one value per rule.

Table 35: service Port Values

DescriptionValue

The system applies the rule if either of the following conditions is met:

• The packet application is known and matches the rule application.

• The packet application is unknown and packet ports match the rule ports.

The else-ports and unknown values produce the default behavior that the system uses
when service specifies an application protocol with no port modifier.

else-ports or
unknown

The system applies the rule if the packet application is known and matches the rule
application, and the packet port matches the ports in the rule header. You cannot use
and-ports in a rule that does not specify an application.

and-ports

The system applies the rule if any of the following conditions are met:

• The packet application is known and matches the rule application.

• The packet application is unknown and packet port matches the rule ports.

• The packet application does not match the rule application and packet ports match
the rule ports.

• The rule does not specify an application and packet ports match the rule ports.

or-ports

Note the following:

• You must include a service application argument with the service and-ports argument.

• If a rule specifies more than one of the values in the table above, the system applies the last one that
appears in the rule.

• Port and application arguments can be in any order.

Except for the and-ports value, you can include a service port argument with or without one or more service
application arguments. For example:
service or-ports, service http, service smtp

Custom Intrusion Rules
56

Custom Intrusion Rules
Service Metadata

Applications and Ports in Traffic

The diagrams below illustrate the application and port combinations that intrusion rules support, and the
results of applying these rule constraints to packet data.

Host application protocol else source/destination ports:

Host application protocol and source/destination ports:

Custom Intrusion Rules
57

Custom Intrusion Rules
Service Metadata

Host application protocol or source/destination ports:

Example Matches

The following sample rules using the metadata keyword with service arguments are shown with examples
of data they match and do not match:

• alert tcp any any -> any [80,8080] (metadata:service and-ports, service http, service

smtp;)

Example Non-MatchesExample Matches

• POP3 traffic on ports 80 or 8080

• Traffic of unknown application on ports 80 or
8080

• HTTP traffic on port 9999

• HTTP traffic over TCP port 80

• HTTP traffic over TCP port 8080

• SMTP traffic over TCP port 80

• SMTP traffic over TCP port 8080

• alert tcp any any -> any [80,8080] (metadata:service or-ports, service http;)

Example Non-MatchesExample Matches

• Non-HTTP and non-SMTP traffic on ports
other than 80 or 8080

• HTTP traffic on any port

• SMTP traffic on port 80

• SMTP traffic on port 8080

• Traffic of unknown application on port 80 and
8080

Custom Intrusion Rules
58

Custom Intrusion Rules
Service Metadata

• Any of the following rules:

• alert tcp any any -> any [80,8080] metadata:service else-ports, service http;)

• alert tcp any any -> any [80,8080] metadata:service unknown, service http;)

• alert tcp any any -> any [80,8080] metadata:service http;)

Example Non-MatchesExample Matches

• SMTP traffic on ports 80 or 8080

• POP3 traffic on ports 80 or 8080

• HTTP traffic on any port

• port 80 if packet application is unknown

• port 8080 if packet application is unknown

Metadata Search Guidelines
To search for rules that use the metadata keyword, select the metadata keyword on the rules Search page
and, optionally, type any portion of the metadata. For example, you can type:

• search to display all rules where you have used search for key.

• search http to display all rules where you have used search for key and http for value.

• author snortguru to display all rules where you have used author for key and SnortGuru for value.

• author s to display all rules where you have used author for key and any terms such as SnortGuru or
SnortUser1 or SnortUser2 for value.

When you search for both key and value , use the same connecting operator
(equal to [=] or a space character) in searches that is used in the key value argument
in the rule; searches return different results depending on whether you follow key
with equal to (=) or a space character.

Tip

Note that regardless of the format you use to add metadata, the system interprets your metadata search term
as all or part of a key value or key=value argument. For example, the following would be valid metadata that
does not follow a key value or key=value format:

ab cd ef gh

However, the system would interpret each space in the example as a separator between a key and value . Thus,
you could successfully locate a rule containing the example metadata using any of the following searches for
juxtaposed and single terms:

cd ef
ef gh
ef

but you would not locate the rule using the following search, which the system would interpret as a single key
value argument:

Custom Intrusion Rules
59

Custom Intrusion Rules
Metadata Search Guidelines

ab ef

Related Topics
Searching for Rules, on page 19

IP Header Values
You can use keywords to identify possible attacks or security policy violations in the IP headers of packets.

fragbits

The fragbits keyword inspects the fragment and reserved bits in the IP header. You can check each packet
for the Reserved Bit, the More Fragments bit, and the Don't Fragment bit in any combination.

Table 36: Fragbits Argument Values

DescriptionArgument

Reserved bitR

More Fragments bitM

Don’t Fragment bitD

To further refine a rule using the fragbits keyword, you can specify any operator described in the following
table after the argument value in the rule.

Table 37: Fragbit Operators

DescriptionOperator

The packet must match against all specified bits.plus sign (+)

The packet can match against any of the specified bits.asterisk (*)

The packet meets the criteria if none of the specified bits are set.exclamation point (!)

For example, to generate an event against packets that have the Reserved Bit set (and possibly any other bits),
use R+ as the fragbits value.

id

The id keyword tests the IP header fragment identification field against the value you specify in the keyword’s
argument. Some denial-of-service tools and scanners set this field to a specific number that is easy to detect.
For example, in SID 630, which detects a Synscan portscan, the id value is set to 39426, the static value used
as the ID number in packets transmitted by the scanner.

id argument values must be numeric.Note

Custom Intrusion Rules
60

Custom Intrusion Rules
IP Header Values

ipopts

The IPopts keyword allows you to search packets for specified IP header options. The following table lists
the available argument values.

Table 38: IPoption Arguments

DescriptionArgument

record routerr

end of listeol

no operationnop

time stampts

IP security optionsec

loose source routinglsrr

strict source routingssrr

stream identifiersatid

Analysts most frequently watch for strict and loose source routing because these options may be an indication
of a spoofed source IP address.

ip_proto

The ip_proto keyword allows you to identify packets with the IP protocol specified as the keyword’s value.
You can specify the IP protocols as a number, 0 through 255. You can combine these numbers with the
following operators: <, >, or !. For example, to inspect traffic with any protocol that is not ICMP, use !1 as
a value to the ip_proto keyword. You can also use the ip_proto keyword multiple times in a single rule;
note, however, that the rules engine interprets multiple instances of the keyword as having a Boolean AND
relationship. For example, if you create a rule containing ip_proto:!3; ip_proto:!6, the rule ignores traffic
using the GGP protocol AND the TCP protocol.

tos

Some networks use the type of service (ToS) value to set precedence for packets traveling on that network.
The tos keyword allows you to test the packet’s IP header ToS value against the value you specify as the
keyword’s argument. Rules using the tos keyword will trigger on packets whose ToS is set to the specified
value and that meet the rest of the criteria set forth in the rule.

Argument values for tos must be numeric.Note

The ToS field has been deprecated in the IP header protocol and replaced with the Differentiated Services
Code Point (DSCP) field.

Custom Intrusion Rules
61

Custom Intrusion Rules
IP Header Values

ttl

A packet’s time-to-live (ttl) value indicates how many hops it can make before it is dropped. You can use the
ttl keyword to test the packet’s IP header ttl value against the value, or range of values, you specify as the
keyword’s argument. It may be helpful to set the ttl keyword parameter to a low value such as 0 or 1, as low
time-to-live values are sometimes indicative of a traceroute or intrusion evasion attempt. (Note, though, that
the appropriate value for this keyword depends on your managed device placement and network topology.)
Use syntax as follows:

• Use an integer from 0 to 255 to set a specific value for the TTL value. You can also precede the value
with an equal (=) sign (for example, you can specify 5 or =5).

• Use a hyphen (-) to specify a range of TTL values (for example, 0-2 specifies all values 0 through 2,
-5 specifies all values 0 through 5, and 5- specifies all values 5 through 255).

• Use the greater than (>) sign to specify TTL values greater than a specific value (for example, >3 specifies
all values greater than 3).

• Use the greater than and equal to signs (>=) to specify TTL values greater than or equal to a specific
value (for example, >=3 specifies all values greater than or equal to 3).

• Use the less than (<) sign to specify TTL values less than a specific value (for example, <3 specifies all
values less than 3).

• Use the less than and equal to signs (<=) to specify TTL values less than or equal to a specific value (for
example, <=3 specifies all values less than or equal to 3).

ICMP Header Values
The system supports keywords that you can use to identify attacks and security policy violations in the headers
of ICMP packets. Note, however, that predefined rules exist that detect most ICMP types and codes. Consider
enabling an existing rule or creating a local rule based on an existing rule; you may be able to find a rule that
meets your needs more quickly than if you build an ICMP rule from scratch.

icmp_id and icmp_seq

The ICMP identification and sequence numbers help associate ICMP replies with ICMP requests. In normal
traffic, these values are dynamically assigned to packets. Some covert channel and Distributed Denial of
Server (DDoS) programs use static ICMP ID and sequence values. The following keywords allow you to
identify ICMP packets with static values.

DefinitionKeyword

Inspects an ICMP echo request or reply packet's ICMP ID number. Use a numeric
value that corresponds with the ICMP ID number as the argument for the icmp_id

keyword.

icmp_id

The icmp_seq keyword inspects an ICMP echo request or reply packet's ICMP
sequence. Use a numeric value that corresponds with the ICMP sequence number as
the argument for the icmp_seq keyword.

icmp_seq

Custom Intrusion Rules
62

Custom Intrusion Rules
ICMP Header Values

itype

Use the itype keyword to look for packets with specific ICMP message type values. You can specify either
a valid ICMP type value or an invalid ICMP type value to test for different types of traffic. For example,
attackers may set ICMP type values out of range to cause denial of service and flooding attacks.

You can specify a range for the itype argument value using less than (<) and greater than (>).

For example:

• <35

• >36

• 3<>55

icode

ICMP messages sometimes include a code value that provides details when a destination is unreachable.

You can use the icode keyword to identify packets with specific ICMP code values. You can choose to specify
either a valid ICMP code value or an invalid ICMP code value to test for different types of traffic.

You can specify a range for the icode argument value using less than (<) and greater than (>).

For example:

• to find values less than 35, specify <35.

• to find values greater than 36, specify >36.

• to find values between 3 and 55, specify 3<>55.

You can use the icode and itype keywords together to identify traffic that matches both. For example, to
identify ICMP traffic that contains an ICMP Destination Unreachable code type with an ICMP Port Unreachable
code type, specify an itype keyword with a value of 3 (for Destination Unreachable) and an icode keyword
with a value of 3 (for Port Unreachable).

Tip

TCP Header Values and Stream Size
The system supports keywords that are designed to identify attacks attempted using TCP headers of packets
and TCP stream size.

ack

You can use the ack keyword to compare a value against a packet’s TCP acknowledgment number. The rule
triggers if a packet’s TCP acknowledgment number matches the value specified for the ack keyword.

Argument values for ack must be numeric.

flags

You can use the flags keyword to specify any combination of TCP flags that, when set in an inspected packet,
cause the rule to trigger.

Custom Intrusion Rules
63

Custom Intrusion Rules
TCP Header Values and Stream Size

In situations where you would traditionally use A+ as the value for flags, you should instead use the flow

keyword with a value of established. Generally, you should use the flow keyword with a value of stateless
when using flags to ensure that all combinations of flags are detected.

Note

You can either check for or ignore the values described in the following table for the flag keyword.

Table 39: flag Arguments

TCP FlagArgument

Acknowledges data.Ack

Data should be sent in this packet.Psh

A new connection.Syn

Packet contains urgent data.Urg

A closed connection.Fin

An aborted connection.Rst

An ECN congestion window has been reduced. This was formerly the R1 argument,
which is still supported for backward compatibility.

CWR

ECN echo. This was formerly the R2 argument, which is still supported for backward
compatibility.

ECE

When using the flags keyword, you can use an operator to indicate how the system performs matches against
multiple flags. The following table describes these operators.

Table 40: Operators Used with flags

ExampleDescriptionOperator

Select Urg and all to specify that a packet must contain the Urgent
flag and may contain any other flags.

The packet must contain all specified
flags.

all

Select Ack, Psh, and any to specify that either or both the Ack and
Psh flags must be set to trigger the rule, and that other flags may
also be set on a packet.

The packet can contain any of the
specified flags.

any

Select Urg and not to specify that the Urgent flag is not set on
packets that trigger this rule.

The packet must not contain the
specified flag set.

not

flow

You can use the flow keyword to select packets for inspection by a rule based on session characteristics. The
flow keyword allows you to specify the direction of the traffic flow to which a rule applies, applying rules to
either the client flow or server flow. To specify how the flow keyword inspects your packets, you can set the

Custom Intrusion Rules
64

Custom Intrusion Rules
TCP Header Values and Stream Size

direction of traffic you want analyzed, the state of packets inspected, and whether the packets are part of a
rebuilt stream.

Stateful inspection of packets occurs when rules are processed. If you want a TCP rule to ignore stateless
traffic (traffic without an established session context), you must add the flow keyword to the rule and select
the Established argument for the keyword. If you want a UDP rule to ignore stateless traffic, you must add
the flow keyword to the rule and select either the Established argument or a directional argument, or both.
This causes the TCP or UDP rule to perform stateful inspection of a packet.

When you add a directional argument, the rules engine inspects only those packets that have an established
state with a flow that matches the direction specified. For example, if you add the flow keyword with the
established argument and the From Client argument to a rule that triggers when a TCP or UDP connection
is detected, the rules engine only inspects packets that are sent from the client.

For maximum performance, always include a flow keyword in a TCP rule or a UDP session rule.Tip

The following table describes the stream-related arguments you can specify for the flow keyword:

Table 41: State-Related flow Arguments

DescriptionArgument

Triggers on established connections.Established

Triggers regardless of the state of the stream processor.Stateless

The following table describes the directional options you can specify for the flow keyword:

Table 42: flow Directional Arguments

DescriptionArgument

Triggers on server responses.To Client

Triggers on client responses.To Server

Triggers on client responses.From Client

Triggers on server responses.From Server

Notice that From Server and To Client perform the same function, as do To Server and From Client. These
options exist to add context and readability to the rule. For example, if you create a rule designed to detect an
attack from a server to a client, use From Server. But, if you create a rule designed to detect an attack from
the client to the server, use From Client.

The following table describes the stream-related arguments you can specify for the flow keyword:

Table 43: Stream-Related flow Arguments

DescriptionArgument

Does not trigger on rebuilt stream packets.Ignore Stream Traffic

Triggers only on rebuilt stream packets.Only Stream Traffic

Custom Intrusion Rules
65

Custom Intrusion Rules
TCP Header Values and Stream Size

For example, you can use To Server, Established, Only Stream Traffic as the value for the flow

keyword to detect traffic, traveling from a client to the server in an established session, that has been
reassembled by the stream preprocessor.

seq

The seq keyword allows you to specify a static sequence number value. Packets whose sequence number
matches the specified argument trigger the rule containing the keyword. While this keyword is used rarely,
it is helpful in identifying attacks and network scans that use generated packets with static sequence numbers.

window

You can use the window keyword to specify the TCP window size you are interested in. A rule containing this
keyword triggers whenever it encounters a packet with the specified TCP window size. While this keyword
is used rarely, it is helpful in identifying attacks and network scans that use generated packets with static TCP
window sizes.

stream_size

You can use the stream_size keyword in conjunction with the stream preprocessor to determine the size in
bytes of a TCP stream, using the format:

direction,operator,bytes

where bytes is number of bytes. You must separate each option in the argument with a comma (,).

The following table describes the case-insensitive directional options you can specify for the stream_size

keyword:

Table 44: stream_size Keyword Directional Arguments

DescriptionArgument

triggers on a stream from the client matching the specified stream size.client

triggers on a stream from the server matching the specified stream size.server

triggers on traffic from the client and traffic from the server both matching the specified
stream size.

For example, the argument both, >, 200 would trigger when traffic from the client
is greater than 200 bytes AND traffic from the server is greater than 200 bytes.

both

triggers on traffic from either the client or the server matching the specified stream
size, whichever occurs first.

For example, the argument either, >, 200 would trigger when traffic from the client
is greater than 200 bytes OR traffic from the server is greater than 200 bytes.

either

The following table describes the operators you can use with the stream_size keyword:

Custom Intrusion Rules
66

Custom Intrusion Rules
TCP Header Values and Stream Size

Table 45: stream_size Keyword Argument Operators

DescriptionOperator

equal to=

not equal to!=

greater than>

less than<

greater than or equal to>=

less than or equal to<=

For example, you could use client, >=, 5001216 as the argument for the stream_size keyword to detect
a TCP stream traveling from a client to a server and greater than or equal to 5001216 bytes.

The stream_reassembly Keyword
You can use the stream_reassemble keyword to enable or disable TCP stream reassembly for a single
connection when inspected traffic on the connection matches the conditions of the rule. Optionally, you can
use this keyword multiple times in a rule.

Use the following syntax to enable or disable stream reassembly:

enable|disable, server|client|both, option, option

The following table describes the optional arguments you can use with the stream_reassemble keyword.

Table 46: stream_reassemble Optional Arguments

DescriptionArgument

Generate no events regardless of any other detection options specified in the rule.noalert

Ignore the rest of the connection traffic when there is a match.fastpath

For example, the following rule disables TCP client-side stream reassembly without generating an event on
the connection where a 200 OK status code is detected in an HTTP response:

alert tcp any 80 -> any any (flow:to_client, established; content: “200 OK”;
stream_reassemble:disable, client, noalert

SSL Keywords
You can use SSL rule keywords to invoke the Secure Sockets Layer (SSL) preprocessor and extract information
about SSL version and session state from packets in an encrypted session.

When a client and server communicate to establish an encrypted session using SSL or Transport Layer Security
(TLS), they exchange handshake messages. Although the data transmitted in the session is encrypted, the
handshake messages are not.

Custom Intrusion Rules
67

Custom Intrusion Rules
The stream_reassembly Keyword

The SSL preprocessor extracts state and version information from specific handshake fields. Two fields within
the handshake indicate the version of SSL or TLS used to encrypt the session and the stage of the handshake.

ssl_state

The ssl_state keyword can be used to match against state information for an encrypted session. To check
for two or more SSL versions used simultaneously, use multiple ssl_version keywords in a rule.

When a rule uses the ssl_state keyword, the rules engine invokes the SSL preprocessor to check traffic for
SSL state information.

For example, to detect an attacker’s attempt to cause a buffer overflow on a server by sending a ClientHello

message with an overly long challenge length and too much data, you could use the ssl_state keyword with
client_hello as an argument then check for abnormally large packets.

Use a comma-separated list to specify multiple arguments for the SSL state. When you list multiple arguments,
the system evaluates them using the OR operator. For example, if you specify client_hello and server_hello

as arguments, the system evaluates the rule against traffic that has a client_hello OR a server_hello.

You can also negate any argument; for example:

!client_hello, !unknown

To ensure the connection has reached each of a set of states, multiple rules using the ssl_state rule option
should be used. The ssl_state keyword takes the following identifiers as arguments:

Table 47: ssl_state Arguments

PurposeArgument

Matches against a handshake message with ClientHello as the message type, where
the client requests an encrypted session.

client_hello

Matches against a handshake message with ServerHello as the message type, where
the server responds to the client’s request for an encrypted session.

server_hello

Matches against a handshake message with ClientKeyExchange as the message type,
where the client transmits a key to the server to confirm receipt of a key from the
server.

client_keyx

Matches against a handshake message with ServerKeyExchange as the message type,
where the client transmits a key to the server to confirm receipt of a key from the
server.

server_keyx

Matches against any handshake message type.unknown

ssl_version

The ssl_version keyword can be used to match against version information for an encrypted session. When
a rule uses the ssl_version keyword, the rules engine invokes the SSL preprocessor to check traffic for SSL
version information.

For example, if you know there is a buffer overflow vulnerability in SSL version 2, you could use the
ssl_version keyword with the sslv2 argument to identify traffic using that version of SSL.

Custom Intrusion Rules
68

Custom Intrusion Rules
SSL Keywords

Use a comma-separated list to specify multiple arguments for the SSL version. When you list multiple
arguments, the system evaluates them using the OR operator. For example, if you wanted to identify any
encrypted traffic that was not using SSLv2, you could add ssl_version:ssl_v3,tls1.0,tls1.1,tls1.2 to
a rule. The rule would evaluate any traffic using SSL Version 3, TLS Version 1.0, TLS Version 1.1, or TLS
Version 1.2.

The ssl_version keyword takes the following SSL/TLS version identifiers as arguments:

Table 48: ssl_version Arguments

PurposeArgument

Matches against traffic encoded using Secure Sockets Layer (SSL) Version 2.sslv2

Matches against traffic encoded using Secure Sockets Layer (SSL) Version 3.sslv3

Matches against traffic encoded using Transport Layer Security (TLS) Version 1.0.tls1.0

Matches against traffic encoded using Transport Layer Security (TLS) Version 1.1.tls1.1

Matches against traffic encoded using Transport Layer Security (TLS) Version 1.2.tls1.2

The appid Keyword
You can use the appid keyword to identify the application protocol, client application, or web application in
a packet. For example, you could target a specific application that you know is susceptible to a specific
vulnerability.

Within the appid keyword of an intrusion rule, click Configure AppID to select one or more applications
that you want to detect.

Browsing the Available Applications

When you first start to build the condition, the Available Applications list is unconstrained and displays
every application the system detects, 100 per page:

• To page through the applications, click the arrows underneath the list.

• To display a pop-up window with summary information about the application’s characteristics, as well

as Internet search links that you can follow, click Information () next to an application.

Using Application Filters

To help you find the applications you want to match, you can constrain the Available Applications list in
the following ways:

• To search for applications, click the Search by name prompt above the list, then type a name. The list
updates as you type to display matching applications.

• To constrain the applications by applying a filter, use the Application Filters list. The Available
Applications list updates as you apply filters. For your convenience, the system uses an Unlock icon to
mark applications that the system can identify only in decrypted traffic—not encrypted or unencrypted.

Custom Intrusion Rules
69

Custom Intrusion Rules
The appid Keyword

If you select one or more filters in the Application Filters list and also search the Available Applications list,
your selections and the search-filtered Available Applications list are combined using an AND operation.

Note

Selecting Applications

To select a single application, select it and click Add to Rule. To select all applications in the current
constrained view, right-click and select Select All.

Application Layer Protocol Values
Although preprocessors perform most of the normalization and inspection of application layer protocol values,
you can continue to inspect application layer values using various preprocessor options.

The RPC Keyword
The rpc keyword identifies Open Network Computing Remote Procedure Call (ONC RPC) services in TCP
or UDP packets. This allows you to detect attempts to identify the RPC programs on a host. Intruders can use
an RPC portmapper to determine if any of the RPC services running on your network can be exploited. They
can also attempt to access other ports running RPC without using portmapper. The following table lists the
arguments that the rpc keyword accepts.

Table 49: rpc Keyword Arguments

DescriptionArgument

The RPC application numberapplication

The RPC procedure invokedprocedure

The RPC versionversion

To specify the arguments for the rpc keyword, use the following syntax:

application,procedure,version

where application is the RPC application number, procedure is the RPC procedure number, and version is the
RPC version number. You must specify all arguments for the rpc keyword — if you are not able to specify
one of the arguments, replace it with an asterisk (*).

For example, to search for RPC portmapper (which is the RPC application indicated by the number 100000),
with any procedure or version, use 100000,*,* as the arguments.

The ASN.1 Keyword
The asn1 keyword allows you to decode a packet or a portion of a packet, looking for various malicious
encodings.

The following table describes the arguments for the asn1 keyword.

Custom Intrusion Rules
70

Custom Intrusion Rules
Application Layer Protocol Values

Table 50: asn.1 Keyword Arguments

DescriptionArgument

Detects invalid, remotely exploitable bitstring encodings.Bitstring Overflow

Detects a double ASCII encoding that is larger than a standard buffer. This is known to be an exploitable
function in Microsoft Windows, but it is unknown at this time which services may be exploitable.

Double Overflow

Detects ASN.1 type lengths greater than the supplied argument. For example, if you set the Oversize
Length to 500, any ASN.1 type greater than 500 triggers the rule.

Oversize Length

Sets an absolute offset from the beginning of the packet payload. (Remember that the offset counter starts
at byte 0.) For example, if you want to decode SNMP packets, set Absolute Offset to 0 and do not set a
Relative Offset. Absolute Offset may be positive or negative.

Absolute Offset

This is the relative offset from the last successful content match, pcre, or byte_jump. To decode an ASN.1
sequence right after the content "foo", set Relative Offset to 0, and do not set an Absolute Offset. Relative
Offset may be positive or negative. (Remember that the offset counter starts at 0.)

Relative Offset

For example, there is a known vulnerability in the Microsoft ASN.1 Library that creates a buffer overflow,
allowing an attacker to exploit the condition with a specially crafted authentication packet. When the system
decodes the asn.1 data, exploit code in the packet could execute on the host with system-level privileges or
could cause a DoS condition. The following rule uses the asn1 keyword to detect attempts to exploit this
vulnerability:
alert tcp $EXTERNAL_NET any -> $HOME_NET 445

(flow:to_server, established; content:”|FF|SMB|73|”;

nocase; offset:4; depth:5;

asn1:bitstring_overflow,double_overflow,oversize_length 100,

relative_offset 54;)

The above rule generates an event against TCP traffic traveling from any IP address defined in the
$EXTERNAL_NET variable, from any port, to any IP address defined in the $HOME_NET variable using
port 445. In addition, it only executes the rule on established TCP connections to servers. The rule then tests
for specific content in specific locations. Finally, the rule uses the asn1 keyword to detect bitstring encodings
and double ASCII encodings and to identify asn.1 type lengths over 100 bytes in length starting 55 bytes from
the end of the last successful content match. (Remember that the offset counter starts at byte 0.)

The urilen Keyword
You can use the urilen keyword in conjunction with the HTTP Inspect preprocessor to inspect HTTP traffic
for URIs of a specific length, less than a maximum length, greater than a minimum length, or within a specified
range.

After the HTTP Inspect preprocessor normalizes and inspects the packet, the rules engine evaluates the packet
against the rule and determines whether the URI matches the length condition specified by the urilen keyword.
You can use this keyword to detect exploits that attempt to take advantage of URI length vulnerabilities, for
example, by creating a buffer overflow that allows the attacker to cause a DoS condition or execute code on
the host with system-level privileges.

Note the following when using the urilen keyword in a rule:

Custom Intrusion Rules
71

Custom Intrusion Rules
The urilen Keyword

• In practice, you always use the urilen keyword in combination with the flow:established keyword
and one or more other keywords.

• The rule protocol is always TCP.

• Target ports are always HTTP ports.

You specify the URI length using a decimal number of bytes, less than (<) and greater than (>).

For example:

• specify 5 to detect a URI 5 bytes long.

• specify < 5 (separated by one space character) to detect a URI less than 5 bytes long.

• specify > 5 (separated by one space character) to detect a URI greater than 5 bytes long.

• specify 3 <> 5 (with one space character before and after <>) to detect a URI between 3 and 5 bytes
long inclusive.

For example, there is a known vulnerability in Novell’s server monitoring and diagnostics utility iMonitor
version 2.4, which comes with eDirectory version 8.8. A packet containing an excessively long URI creates
a buffer overflow, allowing an attacker to exploit the condition with a specially crafted packet that could
execute on the host with system-level privileges or could cause a DoS condition. The following rule uses the
urilen keyword to detect attempts to exploit this vulnerability:
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS

(msg:"EXPLOIT eDirectory 8.8 Long URI iMonitor buffer

overflow attempt"; flow:to_server,established;

urilen:> 8192; uricontent:"/nds/"; nocase;

classtype:attempted-admin; sid:x; rev:1;)

The above rule generates an event against TCP traffic traveling from any IP address defined in the
$EXTERNAL_NET variable, from any port, to any IP address defined in the $HOME_NET variable using
the ports defined in the $HTTP_PORTS variable. In addition, packets are evaluated against the rule only on
established TCP connections to servers. The rule uses the urilen keyword to detect any URI over 8192 bytes
in length. Finally, the rule searches the URI for the specific case-insensitive content /nds/.

Related Topics
Intrusion Rule Header Protocol, on page 4
Intrusion Rule Header Source and Destination Ports, on page 8
Predefined Default Variables

DCE/RPC Keywords
The three DCE/RPC keywords described in the following table allow you to monitor DCE/RPC session traffic
for exploits. When the system processes rules with these keywords, it invokes the DCE/RPC preprocessor.

Table 51: DCE/RPC Keywords

To detect...In this way...Use...

packets identifying a specific DCE/RPC servicealonedce_iface

Custom Intrusion Rules
72

Custom Intrusion Rules
DCE/RPC Keywords

management-center-device-config-73_chapter31.pdf#nameddest=unique_1224

To detect...In this way...Use...

packets identifying specific DCE/RPC service
operations

preceded by dce_ifacedce_opnum

stub data defining a specific operation request or
response

preceded by dce_iface +
dce_opnum

dce_stub_data

Note in the table that you should always precede dce_opnum with dce_iface, and you should always precede
dce_stub_data with dce_iface + dce_opnum.

You can also use these DCE/RPC keywords in combination with other rule keywords. Note that for DCE/RPC
rules, you use the byte_jump, byte_test, and byte_extract keywords with their DCE/RPC arguments
selected.

Cisco recommends that you include at least one content keyword in rules that include DCE/RPC keywords
to ensure that the rules engine uses the fast pattern matcher, which increases processing speed and improves
performance. Note that the rules engine uses the fast pattern matcher when a rule includes at least one content
keyword, regardless of whether you enable the content keyword Use Fast Pattern Matcher argument.

You can use the DCE/RPC version and adjoining header information as the matching content in the following
cases:

• the rule does not include another content keyword

• the rule contains another content keyword, but the DCE/RPC version and adjoining information represent
a more unique pattern than the other content

For example, the DCE/RPC version and adjoining information are more likely to be unique than a single
byte of content.

You should end qualifying rules with one of the following version and adjoining information content matches:

• For connection-oriented DCE/RPC rules, use the content |05 00 00| (for major version 05, minor version
00, and the request PDU (protocol data unit) type 00).

• For connectionless DCE/RPC rules, use the content |04 00| (for version 04, and the request PDU type
00).

In either case, position the content keyword for version and adjoining information as the last keyword in the
rule to invoke the fast pattern matcher without repeating processing already completed by the DCE/RPC
preprocessor. Note that placing the content keyword at the end of the rule applies to version content used as
a device to invoke the fast pattern matcher, and not necessarily to other content matches in the rule.

Related Topics
The DCE/RPC Preprocessor
The content and protected_content Keywords, on page 24
content Keyword Fast Pattern Matcher Arguments, on page 32
Overview: The byte_jump and byte_test Keywords
The byte_extract Keyword, on page 40

dce_iface

You can use the dce_iface keyword to identify a specific DCE/RPC service.

Custom Intrusion Rules
73

Custom Intrusion Rules
dce_iface

management-center-device-config-73_chapter78.pdf#nameddest=unique_1829

Optionally, you can also use dce_iface in combination with the dce_opnum and dce_stub_data keywords
to further limit the DCE/RPC traffic to inspect.

A fixed, sixteen-byte Universally Unique Identifier (UUID) identifies the application interface assigned to
each DCE/RPC service. For example, the UUID 4b324fc8-670-01d3-1278-5a47bf6ee188 identifies the
DCE/RPC lanmanserver service, also known as the srvsvc service, which provides numerous management
functions for sharing peer-to-peer printers, files, and SMB named pipes. The DCE/RPC preprocessor uses
the UUID and associated header values to track DCE/RPC sessions.

The interface UUID is comprised of five hexadecimal strings separated by hyphens:

<4hexbytes>-<2hexbytes>-<2hexbytes>-<2hexbytes>-<6hexbytes>

You specify the interface by entering the entire UUID including hyphens, as seen in the following UUID for
the netlogon interface:

12345678-1234-abcd-ef00-01234567cffb

Note that you must specify the first three strings in the UUID in big endian byte order. Although published
interface listings and protocol analyzers typically display UUIDs in the correct byte order, you might encounter
a need to rearrange the UUID byte order before entering it. Consider the following messenger service UUID
shown as it might sometimes be displayed in raw ASCII text with the first three strings in little endian byte
order:

f8 91 7b 5a 00 ff d0 11 a9 b2 00 c0 4f b6 e6 fc

You would specify the same UUID for the dce_iface keyword by inserting hyphens and putting the first
three strings in big endian byte order as follows:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

Although a DCE/RPC session can include requests to multiple interfaces, you should include only one
dce_iface keyword in a rule. Create additional rules to detect additional interfaces.

DCE/RPC application interfaces also have interface version numbers. You can optionally specify an interface
version with an operator indicating that the version equals, does not equal, is less than, or greater than the
specified value.

Both connection-oriented and connectionless DCE/RPC can be fragmented in addition to any TCP segmentation
or IP fragmentation. Typically, it is not useful to associate any DCE/RPC fragment other than the first with
the specified interface, and doing so may result in a large number of false positives. However, for flexibility
you can optionally evaluate all fragments against the specified interface.

The following table summarizes the dce_iface keyword arguments.

Table 52: dce_iface Arguments

DescriptionArgument

The UUID, including hyphens, that identifies the application interface of the specific
service that you want to detect in DCE/RPC traffic. Any request associated with the
specified interface would match the interface UUID.

Interface UUID

Optionally, the application interface version number 0 to 65535 and an operator
indicating whether to detect a version greater than (>), less than (<), equal to (=), or
not equal to (!) the specified value.

Version

Custom Intrusion Rules
74

Custom Intrusion Rules
dce_iface

DescriptionArgument

Optionally, enable to match against the interface in all associated DCE/RPC fragments
and, if specified, on the interface version. This argument is disabled by default,
indicating that the keyword matches only if the first fragment or the entire unfragmented
packet is associated with the specified interface. Note that enabling this argument may
result in false positives.

All Fragments

The dce_opnum Keyword

You can use the dce_opnum keyword in conjunction with the DCE/RPC preprocessor to detect packets that
identify one or more specific operations that a DCE/RPC service provides.

Client function calls request specific service functions, which are referred to in DCE/RPC specifications as
operations. An operation number (opnum) identifies a specific operation in the DCE/RPC header. It is likely
that an exploit would target a specific operation.

For example, the UUID 12345678-1234-abcd-ef00-01234567cffb identifies the interface for the netlogon
service, which provides several dozen different operations. One of these is operation 6, the
NetrServerPasswordSet operation.

You should precede a dce_opnum keyword with a dce_iface keyword to identify the service for the operation.

You can specify a single decimal value 0 to 65535 for a specific operation, a range of operations separated
by a hyphen, or a comma-separated list of operations and ranges in any order.

Any of the following examples would specify valid netlogon operation numbers:

15
15-18
15, 18-20
15, 20-22, 17
15, 18-20, 22, 24-26

The dce_stub_data Keyword

You can use the dce_stub_data keyword in conjunction with the DCE/RPC preprocessor to specify that the
rules engine should start inspection at the beginning of the stub data, regardless of any other rule options.
Packet payload rule options that follow the dce_stub_data keyword are applied relative to the stub data
buffer.

DCE/RPC stub data provides the interface between a client procedure call and the DCE/RPC run-time system,
the mechanism that provides the routines and services central to DCE/RPC. DCE/RPC exploits are identified
in the stub data portion of the DCE/RPC packet. Because stub data is associated with a specific operation or
function call, you should always precede dce_stub_data with dce_iface and dce_opnum to identify the related
service and operation.

The dce_stub_data keyword has no arguments.

SIP Keywords
Four SIP keywords allow you to monitor SIP session traffic for exploits.

Note that the SIP protocol is vulnerable to denial of service (DoS) attacks. Rules addressing these attacks can
benefit from rate-based attack prevention.

Custom Intrusion Rules
75

Custom Intrusion Rules
The dce_opnum Keyword

The sip_header Keyword

You can use the sip_header keyword to start inspection at the beginning of the extracted SIP request or
response header and restrict inspection to header fields.

The sip_header keyword has no arguments.

The following example rule fragment points to the SIP header and matches the CSeq header field:

alert udp any any -> any 5060 (sip_header; content:"CSeq";)

Related Topics
Dynamic Intrusion Rule States
Rate-Based Attack Prevention

The sip_body Keyword

You can use the sip_body keyword to start inspection at the beginning of the extracted SIP request or response
message body and restrict inspection to the message body.

The sip_body keyword has no arguments.

The following example rule fragment points to the SIP message body and matches a specific IP address in
the c (connection information) field in extracted SDP data:

alert udp any any -> any 5060 (sip_body; content:"c=IN 192.168.12.14";)

Note that rules are not limited to searching for SDP content. The SIP preprocessor extracts the entire message
body and makes it available to the rules engine.

The sip_method Keyword

A method field in each SIP request identifies the purpose of the request. You can use the sip_method keyword
to test SIP requests for specific methods. Separate multiple methods with commas.

You can specify any of the following currently defined SIP methods:

ack, benotify, bye, cancel, do, info, invite, join, message, notify, options, prack,
publish, quath, refer, register, service, sprack, subscribe, unsubscribe, update

Methods are case-insensitive. You can separate multiple methods with commas.

Because new SIP methods might be defined in the future, you can also specify a custom method, that is, a
method that is not a currently defined SIP method. Accepted field values are defined in RFC 2616, which
allows all characters except control characters and separators such as =, (, and }. See RFC 2616 for the
complete list of excluded separators. When the system encounters a specified custom method in traffic, it will
inspect the packet header but not the message.

The system supports up to 32 methods, including the 21 currently defined methods and an additional 11
methods. The system ignores any undefined methods that you might configure. Note that the 32 total methods
includes methods specified using the Methods to Check SIP preprocessor option.

You can specify only one method when you use negation. For example:

!invite

Note, however, that multiple sip_method keywords in a rule are linked with an AND operation. For example,
to test for all extracted methods except invite and cancel, you would use two negated sip_method keywords:

Custom Intrusion Rules
76

Custom Intrusion Rules
The sip_header Keyword

management-center-device-config-73_chapter52.pdf#nameddest=unique_1774
management-center-device-config-73_chapter81.pdf#nameddest=unique_1854

sip_method: !invite
sip_method: !cancel

Cisco recommends that you include at least one content keyword in rules that include the sip_method keyword
to ensure that the rules engine uses the fast pattern matcher, which increases processing speed and improves
performance. Note that the rules engine uses the fast pattern matcher when a rule includes at least one content
keyword, regardless of whether you enable the content keyword Use Fast Pattern Matcher argument.

Related Topics
SIP Preprocessor Options
The content and protected_content Keywords, on page 24
content Keyword Fast Pattern Matcher Arguments, on page 32

The sip_stat_code Keyword

A three-digit status code in each SIP response indicates the outcome of the requested action. You can use the
sip_stat_code keyword to test SIP responses for specific status codes.

You can specify a one-digit response-type number 1-9, a specific three-digit number 100-999, or a
comma-separated list of any combination of either. A list matches if any single number in the list matches the
code in the SIP response.

The following table describes the SIP status code values you can specify.

Table 53: sip_stat_code Values

Detects...For example...Specify...To detect...

189189the three-digit status codea specific status code

1xx; that is, 100,
101, 102, and so on

1the single digitany three-digit code that begins
with a specified single digit

222 plus 300, 301,
302, and so on

222, 3any comma-separated
combination of specific codes
and single digits

a list of values

Note also that the rules engine does not use the fast pattern matcher to search for the value specify using the
sip_stat_code keyword, regardless of whether your rule includes a content keyword.

GTP Keywords
Three GSRP Tunneling Protocol (GTP) keywords allow you to inspect the GTP command channel for GTP
version, message type, and information elements. You cannot use GTP keywords in combination with other
intrusion rule keywords such as content or byte_jump. You must use the gtp_version keyword in each rule
that uses the gtp_info or gtp_type keyword.

The gtp_version Keyword

You can use the gtp_version keyword to inspect GTP control messages for GTP version 0, 1, or 2.

Because different GTP versions define different message types and information elements, you must use
gtp_version when you use the gtp_type or gtp_info keyword. You can specify the value 0, 1, or 2.

Custom Intrusion Rules
77

Custom Intrusion Rules
The sip_stat_code Keyword

management-center-device-config-73_chapter78.pdf#nameddest=unique_1857

The gtp_type Keyword

Each GTP message is identified by a message type, which is comprised of both a numeric value and a string.
You can use the gtp_type keyword to inspect traffic for specific GTP message types. Because different GTP
versions define different message types and information elements, you must also use gtp_version when you
use the gtp_type or gtp_info keyword.

You can specify a defined decimal value for a message type, a defined string, or a comma-separated list of
either or both in any combination, as seen in the following example:

10, 11, echo_request

The system uses an OR operation to match each value or string that you list. The order in which you list values
and strings does not matter. Any single value or string in the list matches the keyword. You receive an error
if you attempt to save a rule that includes an unrecognized string or an out-of-range value.

Note in the table that different GTP versions sometimes use different values for the same message type. For
example, the sgsn_context_request message type has a value of 50 in GTPv0 and GTPv1, but a value of
130 in GTPv2.

The gtp_type keyword matches different values depending on the version number in the packet. In the example
above, the keyword matches the message type value 50 in a GTPv0 or GTPv1 packet and the value 130 in a
GTPv2 packet. The keyword does not match a packet when the message type value in the packet is not a
known value for the version specified in the packet.

If you specify an integer for the message type, the keyword matches if the message type in the keyword
matches the value in the GTP packet, regardless of the version specified in the packet.

The following table lists the defined values and strings recognized by the system for each GTP message type.

Table 54: GTP Message Types

Version 2Version 1Version 0Value

echo_requestecho_requestecho_request1

echo_responseecho_responseecho_response2

version_not_supportedversion_not_supportedversion_not_supported3

N/Anode_alive_requestnode_alive_request4

N/Anode_alive_responsenode_alive_response5

N/Aredirection_requestredirection_request6

N/Aredirection_responseredirection_response7

N/Acreate_pdp_context_requestcreate_pdp_context_request16

N/Acreate_pdp_context_responsecreate_pdp_context_response17

N/Aupdate_pdp_context_requestupdate_pdp_context_request18

N/Aupdate_pdp_context_responseupdate_pdp_context_response19

N/Adelete_pdp_context_requestdelete_pdp_context_request20

Custom Intrusion Rules
78

Custom Intrusion Rules
The gtp_type Keyword

Version 2Version 1Version 0Value

N/Adelete_pdp_context_responsedelete_pdp_context_response21

N/Ainit_pdp_context_activation_requestcreate_aa_pdp_context_request22

N/Ainit_pdp_context_activation_responsecreate_aa_pdp_context_response23

N/AN/Adelete_aa_pdp_context_request24

N/AN/Adelete_aa_pdp_context_response25

N/Aerror_indicationerror_indication26

N/Apdu_notification_requestpdu_notification_request27

N/Apdu_notification_responsepdu_notification_response28

N/Apdu_notification_reject_requestpdu_notification_reject_request29

N/Apdu_notification_reject_responsepdu_notification_reject_response30

N/Asupported_ext_header_notificationN/A31

create_session_requestsend_routing_info_requestsend_routing_info_request32

create_session_responsesend_routing_info_responsesend_routing_info_response33

modify_bearer_requestfailure_report_requestfailure_report_request34

modify_bearer_responsefailure_report_responsefailure_report_response35

delete_session_requestnote_ms_present_requestnote_ms_present_request36

delete_session_responsenote_ms_present_responsenote_ms_present_response37

change_notification_requestN/AN/A38

change_notification_responseN/AN/A39

N/Aidentification_requestidentification_request48

N/Aidentification_responseidentification_response49

N/Asgsn_context_requestsgsn_context_request50

N/Asgsn_context_responsesgsn_context_response51

N/Asgsn_context_acksgsn_context_ack52

N/Aforward_relocation_requestN/A53

N/Aforward_relocation_responseN/A54

N/Aforward_relocation_completeN/A55

N/Arelocation_cancel_requestN/A56

Custom Intrusion Rules
79

Custom Intrusion Rules
The gtp_type Keyword

Version 2Version 1Version 0Value

N/Arelocation_cancel_responseN/A57

N/Aforward_srns_contexN/A58

N/Aforward_relocation_complete_ackN/A59

N/Aforward_srns_contex_ackN/A60

modify_bearer_commandN/AN/A64

modify_bearer_failure_indicationN/AN/A65

delete_bearer_commandN/AN/A66

delete_bearer_failure_indicationN/AN/A67

bearer_resource_commandN/AN/A68

bearer_resource_failure_indicationN/AN/A69

downlink_failure_indicationran_info_relayN/A70

trace_session_activationN/AN/A71

trace_session_deactivationN/AN/A72

stop_paging_indicationN/AN/A73

create_bearer_requestN/AN/A95

create_bearer_responsembms_notification_requestN/A96

update_bearer_requestmbms_notification_responseN/A97

update_bearer_responsembms_notification_reject_requestN/A98

delete_bearer_requestmbms_notification_reject_responseN/A99

delete_bearer_responsecreate_mbms_context_requestN/A100

delete_pdn_requestcreate_mbms_context_responseN/A101

delete_pdn_responseupdate_mbms_context_requestN/A102

N/Aupdate_mbms_context_responseN/A103

N/Adelete_mbms_context_requestN/A104

N/Adelete_mbms_context_responseN/A105

N/Ambms_register_requestN/A112

N/Ambms_register_responseN/A113

N/Ambms_deregister_requestN/A114

Custom Intrusion Rules
80

Custom Intrusion Rules
The gtp_type Keyword

Version 2Version 1Version 0Value

N/Ambms_deregister_responseN/A115

N/Ambms_session_start_requestN/A116

N/Ambms_session_start_responseN/A117

N/Ambms_session_stop_requestN/A118

N/Ambms_session_stop_responseN/A119

N/Ambms_session_update_requestN/A120

N/Ambms_session_update_responseN/A121

identification_requestms_info_change_requestN/A128

identification_responsems_info_change_responseN/A129

sgsn_context_requestN/AN/A130

sgsn_context_responseN/AN/A131

sgsn_context_ackN/AN/A132

forward_relocation_requestN/AN/A133

forward_relocation_responseN/AN/A134

forward_relocation_completeN/AN/A135

forward_relocation_complete_ackN/AN/A136

forward_accessN/AN/A137

forward_access_ackN/AN/A138

relocation_cancel_requestN/AN/A139

relocation_cancel_responseN/AN/A140

configuration_transfer_tunnelN/AN/A141

detachN/AN/A149

detach_ackN/AN/A150

cs_pagingN/AN/A151

ran_info_relayN/AN/A152

alert_mmeN/AN/A153

alert_mme_ackN/AN/A154

ue_activityN/AN/A155

Custom Intrusion Rules
81

Custom Intrusion Rules
The gtp_type Keyword

Version 2Version 1Version 0Value

ue_activity_ackN/AN/A156

create_forward_tunnel_requestN/AN/A160

create_forward_tunnel_responseN/AN/A161

suspendN/AN/A162

suspend_ackN/AN/A163

resumeN/AN/A164

resume_ackN/AN/A165

create_indirect_forward_tunnel_requestN/AN/A166

create_indirect_forward_tunnel_responseN/AN/A167

delete_indirect_forward_tunnel_requestN/AN/A168

delete_indirect_forward_tunnel_responseN/AN/A169

release_access_bearer_requestN/AN/A170

release_access_bearer_responseN/AN/A171

downlink_dataN/AN/A176

downlink_data_ackN/AN/A177

pgw_restartN/AN/A179

pgw_restart_ackN/AN/A180

update_pdn_requestN/AN/A200

update_pdn_responseN/AN/A201

modify_access_bearer_requestN/AN/A211

modify_access_bearer_responseN/AN/A212

mbms_session_start_requestN/AN/A231

mbms_session_start_responseN/AN/A232

mbms_session_update_requestN/AN/A233

mbms_session_update_responseN/AN/A234

mbms_session_stop_requestN/AN/A235

mbms_session_stop_responseN/AN/A236

N/Adata_record_transfer_requestdata_record_transfer_request240

Custom Intrusion Rules
82

Custom Intrusion Rules
The gtp_type Keyword

Version 2Version 1Version 0Value

N/Adata_record_transfer_responsedata_record_transfer_response241

N/Aend_markerN/A254

N/Apdupdu255

The gtp_info Keyword

A GTP message can include multiple information elements, each of which is identified by both a defined
numeric value and a defined string. You can use the gtp_info keyword to start inspection at the beginning
of a specified information element, and restrict inspection to the specified information element. Because
different GTP versions define different message types and information elements, you must also use gtp_version
when you use this keyword.

You can specify either the defined decimal value or the defined string for an information element. You can
specify a single value or string, and you can use multiple gtp_info keywords in a rule to inspect multiple
information elements.

When a message includes multiple information elements of the same type, all are inspected for a match. When
information elements occur in an invalid order, only the last instance is inspected.

Note that different GTP versions sometimes use different values for the same information element. For
example, the cause information element has a value of 1 in GTPv0 and GTPv1, but a value of 2 in GTPv2.

The gtp_info keyword matches different values depending on the version number in the packet. In the example
above, the keyword matches the information element value 1 in a GTPv0 or GTPv1 packet and the value 2
in a GTPv2 packet. The keyword does not match a packet when the information element value in the packet
is not a known value for the version specified in the packet.

If you specify an integer for the information element, the keyword matches if the message type in the keyword
matches the value in the GTP packet, regardless of the version specified in the packet.

The following table lists the values and strings recognized by the system for each GTP information element.

Table 55: GTP Information Elements

Version 2Version 1Version 0Value

imsicausecause1

causeimsiimsi2

recoveryrairai3

N/Atllitlli4

N/Ap_tmsip_tmsi5

N/AN/Aqos6

N/Arecording_requiredrecording_required8

N/Aauthenticationauthentication9

Custom Intrusion Rules
83

Custom Intrusion Rules
The gtp_info Keyword

Version 2Version 1Version 0Value

N/Amap_causemap_cause11

N/Ap_tmsi_sigp_tmsi_sig12

N/Ams_validatedms_validated13

N/Arecoveryrecovery14

N/Aselection_modeselection_mode15

N/Ateid_1flow_label_data_116

N/Ateid_controlflow_label_signalling17

N/Ateid_2flow_label_data_218

N/Ateardown_indms_unreachable19

N/AnsapiN/A20

N/AranapN/A21

N/Arab_contextN/A22

N/Aradio_priority_smsN/A23

N/Aradio_priorityN/A24

N/Apacket_flow_idN/A25

N/Acharging_charN/A26

N/Atrace_refN/A27

N/Atrace_typeN/A28

N/Ams_unreachableN/A29

apnN/AN/A71

ambrN/AN/A72

ebiN/AN/A73

ip_addrN/AN/A74

meiN/AN/A75

msisdnN/AN/A76

indicationN/AN/A77

pcoN/AN/A78

paaN/AN/A79

Custom Intrusion Rules
84

Custom Intrusion Rules
The gtp_info Keyword

Version 2Version 1Version 0Value

bearer_qosN/AN/A80

flow_qosN/AN/A80

rat_typeN/AN/A82

serving_networkN/AN/A83

bearer_tftN/AN/A84

tadN/AN/A85

uliN/AN/A86

f_teidN/AN/A87

tmsiN/AN/A88

cn_idN/AN/A89

s103pdfN/AN/A90

s1udfN/AN/A91

delay_valueN/AN/A92

bearer_contextN/AN/A93

charging_idN/AN/A94

charging_charN/AN/A95

trace_infoN/AN/A96

bearer_flagN/AN/A97

pdn_typeN/AN/A99

ptiN/AN/A100

drx_parameterN/AN/A101

gsm_key_triN/AN/A103

umts_key_cipher_quinN/AN/A104

gsm_key_cipher_quinN/AN/A105

umts_key_quinN/AN/A106

eps_quadN/AN/A107

umts_key_quad_quinN/AN/A108

pdn_connectionN/AN/A109

Custom Intrusion Rules
85

Custom Intrusion Rules
The gtp_info Keyword

Version 2Version 1Version 0Value

pdn_numberN/AN/A110

p_tmsiN/AN/A111

p_tmsi_sigN/AN/A112

hop_counterN/AN/A113

ue_time_zoneN/AN/A114

trace_refN/AN/A115

complete_request_msgN/AN/A116

gutiN/AN/A117

f_containerN/AN/A118

f_causeN/AN/A119

plmn_idN/AN/A120

target_idN/AN/A121

packet_flow_idN/AN/A123

rab_contexN/AN/A124

src_rnc_pdcpN/AN/A125

udp_src_portN/AN/A126

apn_restrictioncharge_idcharge_id127

selection_modeend_user_addressend_user_address128

src_idmm_contextmm_context129

N/Apdp_contextpdp_context130

change_report_actionapnapn131

fq_csidprotocol_configprotocol_config132

channelgsngsn133

emlpp_primsisdnmsisdn134

node_typeqosN/A135

fqdnauthentication_quN/A136

titftN/A137

mbms_session_durationtarget_idN/A138

Custom Intrusion Rules
86

Custom Intrusion Rules
The gtp_info Keyword

Version 2Version 1Version 0Value

mbms_service_areautran_transN/A139

mbms_session_idrab_setupN/A140

mbms_flow_idext_headerN/A141

mbms_ip_multicasttrigger_idN/A142

mbms_distribution_ackomc_idN/A143

rfsp_indexran_transN/A144

ucipdp_context_priN/A145

csg_infoaddi_rab_setupN/A146

csg_idsgsn_numberN/A147

cmicommon_flagN/A148

service_indicatorapn_restrictionN/A149

detach_typeradio_priority_lcsN/A150

ldnrat_typeN/A151

node_featureuser_loc_infoN/A152

mbms_time_to_transferms_time_zoneN/A153

throttlingimei_svN/A154

arpcamelN/A155

epc_timermbms_ue_contextN/A156

signalling_priority_indicationtmp_mobile_group_idN/A157

tmgirim_routing_addrN/A158

mm_srvccmbms_configN/A159

flags_srvccmbms_service_areaN/A160

nmbrsrc_rnc_pdcpN/A161

N/Aaddi_trace_infoN/A162

N/Ahop_counterN/A163

N/Aplmn_idN/A164

N/Ambms_session_idN/A165

N/Ambms_2g3g_indicatorN/A166

Custom Intrusion Rules
87

Custom Intrusion Rules
The gtp_info Keyword

Version 2Version 1Version 0Value

N/Aenhanced_nsapiN/A167

N/Ambms_session_durationN/A168

N/Aaddi_mbms_trace_infoN/A169

N/Ambms_session_repetition_numN/A170

N/Ambms_time_to_dataN/A171

N/AbssN/A173

N/Acell_idN/A174

N/Apdu_numN/A175

N/Ambms_bearer_capabN/A177

N/Arim_routing_discN/A178

N/Alist_pfcN/A179

N/Aps_xidN/A180

N/Ams_info_change_reportN/A181

N/Adirect_tunnel_flagsN/A182

N/Acorrelation_idN/A183

N/Abearer_control_modeN/A184

N/Ambms_flow_idN/A185

N/Ambms_ip_multicastN/A186

N/Ambms_distribution_ackN/A187

N/Areliable_inter_rat_handoverN/A188

N/Arfsp_indexN/A189

N/AfqdnN/A190

N/Aevolved_allocation1N/A191

N/Aevolved_allocation2N/A192

N/Aextended_flagsN/A193

N/AuciN/A194

N/Acsg_infoN/A195

N/Acsg_idN/A196

Custom Intrusion Rules
88

Custom Intrusion Rules
The gtp_info Keyword

Version 2Version 1Version 0Value

N/AcmiN/A197

N/Aapn_ambrN/A198

N/Aue_networkN/A199

N/Aue_ambrN/A200

N/Aapn_ambr_nsapiN/A201

N/Aggsn_backoff_timerN/A202

N/Asignalling_priority_indicationN/A203

N/Asignalling_priority_indication_nsapiN/A204

N/Ahigh_bitrateN/A205

N/Amax_mbrN/A206

N/Acharging_gateway_addrcharging_gateway_addr251

private_extensionprivate_extensionprivate_extension255

SCADA Keywords
The rules engine uses Modbus, DNP3, CIP, and S7Commplus rules to access certain protocol fields.

Modbus Keywords
You can use Modbus keywords alone or in combination with other keywords such as content and byte_jump.

modbus_data

You can use the modbus_data keyword to point to the beginning of the Data field in a Modbus request or
response.

modbus_func

You can use the modbus_func keyword to match against the Function Code field in a Modbus application
layer request or response header. You can specify either a single defined decimal value or a single defined
string for a Modbus function code.

The following table lists the defined values and strings recognized by the system for Modbus function codes.

Table 56: Modbus Function Codes

StringValue

read_coils1

read_discrete_inputs2

Custom Intrusion Rules
89

Custom Intrusion Rules
SCADA Keywords

StringValue

read_holding_registers3

read_input_registers4

write_single_coil5

write_single_register6

read_exception_status7

diagnostics8

get_comm_event_counter11

get_comm_event_log12

write_multiple_coils15

write_multiple_registers16

report_slave_id17

read_file_record20

write_file_record21

mask_write_register22

read_write_multiple_registers23

read_fifo_queue24

encapsulated_interface_transport43

modbus_unit

You can use the modbus_unit keyword to match a single decimal value against the Unit ID field in a Modbus
request or response header.

DNP3 Keywords
You can use DNP3 keywords alone or in combination with other keywords such as content and byte_jump.

dnp3_data

You can use the dnp3_data keyword to point to the beginning of reassembled DNP3 application layer fragments.

The DNP3 preprocessor reassembles link layer frames into application layer fragments. The dnp3_data

keyword points to the beginning of each application layer fragment; other rule options can match against the
reassembled data within fragments without separating the data and adding checksums every 16 bytes.

Custom Intrusion Rules
90

Custom Intrusion Rules
DNP3 Keywords

dnp3_func

You can use the dnp3_func keyword to match against the Function Code field in a DNP3 application layer
request or response header. You can specify either a single defined decimal value or a single defined string
for a DNP3 function code.

The following table lists the defined values and strings recognized by the system for DNP3 function codes.

Table 57: DNP3 Function Codes

StringValue

confirm0

read1

write2

select3

operate4

direct_operate5

direct_operate_nr6

immed_freeze7

immed_freeze_nr8

freeze_clear9

freeze_clear_nr10

freeze_at_time11

freeze_at_time_nr12

cold_restart13

warm_restart14

initialize_data15

initialize_appl16

start_appl17

stop_appl18

save_config19

enable_unsolicited20

disable_unsolicited21

assign_class22

Custom Intrusion Rules
91

Custom Intrusion Rules
DNP3 Keywords

StringValue

delay_measure23

record_current_time24

open_file25

close_file26

delete_file27

get_file_info28

authenticate_file29

abort_file30

activate_config31

authenticate_req32

authenticate_err33

response129

unsolicited_response130

authenticate_resp131

dnp3_ind

You can use the dnp3_ind keyword to match against flags in the Internal Indications field in a DNP3 application
layer response header.

You can specify the string for a single known flag or a comma-separated list of flags, as seen in the following
example:

class_1_events, class_2_events

When you specify multiple flags, the keyword matches against any flag in the list. To detect a combination
of flags, use the dnp3_ind keyword multiple times in a rule.

The following list provides the string syntax recognized by the system for defined DNP3 internal indications
flags.

class_1_events
class_2_events
class_3_events
need_time
local_control
device_trouble
device_restart
no_func_code_support
object_unknown
parameter_error
event_buffer_overflow

Custom Intrusion Rules
92

Custom Intrusion Rules
DNP3 Keywords

already_executing
config_corrupt
reserved_2
reserved_1

dnp3_obj

You can use the dnp3_obj keyword to match against DNP3 object headers in a request or response.

DNP3 data is comprised of a series of DNP3 objects of different types such as analog input, binary input, and
so on. Each type is identified with a group such as analog input group, binary input group, and so on, each of
which can be identified by a decimal value. The objects in each group are further identified by an object
variation such as 16-bit integers, 32-bit integers, short floating point, and so on, each of which specifies the
data format of the object. Each type of object variation can also be identified by a decimal value.

You identify object headers by specifying the decimal number for the type of object header group and the
decimal number for the type of object variation. The combination of the two defines a specific type of DNP3
object.

CIP and ENIP Keywords
You can use the following keywords alone or in combination to create custom intrusion rules that identify
attacks against CIP and ENIP traffic detected by the CIP preprocessor. For configurable keywords, specify a
single integer within the allowed range. See The CIP Preprocessor for more information.

Table 58:

RangeMatches against...This keyword...

0 - 65535the Object Class/Instance Attribute field in a CIP
message. Specify a single defined integer value.

cip_attribute

0 - 65535the Object Class field in a CIP message. Specify
a single defined integer value.

cip_class

0 - 65535the Object Class in Connection Path. Specify a
single integer value.

cip_conn_path_class

0 - 4284927295the Instance ID field in a CIP message. Specify
a single integer value.

cip_instance

N/Athe service request message.cip_req

N/Athe service response message.cip_rsp

0 - 127the Service field in a CIP service request
message. Specify a single integer value.

cip_service

0 - 255the Status field in a CIP service response
message. Specify a single integer value.

cip_status

0 - 65535the Command Code in EthNet/IP header. Specify
a single integer value.

enip_command

N/Athe EthNet/IP request message.enip_req

Custom Intrusion Rules
93

Custom Intrusion Rules
CIP and ENIP Keywords

management-center-device-config-73_chapter79.pdf#nameddest=unique_1867

RangeMatches against...This keyword...

N/Athe EthNet/IP response message.enip_rsp

S7Commplus Keywords
You can use the S7Commplus keywords alone or in combination to create custom intrusion rules that identify
attacks against traffic detected by the S7Commplus preprocessor. For configurable keywords, specify a single
known value or a single integer within the allowed range. See The S7Commplus Preprocessor for more
information.

Note the following:

• Multiple S7commplus keywords in the same rule are AND-ed.

• Using multiple s7commplus_func or s7commplus_opcode keywords in the same rule negates the rule and
it will never match traffic. To search for multiple values with these keywords, create multiple rules.

s7commplus_content

Before using a content or protected_content keyword in an S7Commplus intrusion rule, use the
s7commplus_content keyword to position the cursor to the beginning of the packet payload. See The content
and protected_content Keywords, on page 24 for more information.

s7commplus_func

Use the s7commplus_func keyword to match against one of the following values in an S7Commplus header:

• explore

• createobject

• deleteobject

• setvariable

• getlink

• setmultivar

• getmultivar

• beginsequence

• endsequence

• invoke

• getvarsubstr

• 0x0 through 0xFFF

Note that numeric expressions allow for additional values.

s7commplus_opcode

Use the s7commplus_opcode keyword to match against one of the following values in an S7Commplus header:

Custom Intrusion Rules
94

Custom Intrusion Rules
S7Commplus Keywords

management-center-device-config-73_chapter79.pdf#nameddest=unique_1869

• request

• response

• notification

• response2

• 0x0 through 0xFF

Note that numeric expressions allow for additional values.

Packet Characteristics
You can write rules that only generate events against packets with specific packet characteristics.

dsize

The dsize keyword tests the packet payload size. With it, you can use the greater than and less than operators
(< and >) to specify a range of values. You can use the following syntax to specify ranges:

>number_of_bytes
<number_of_bytes
number_of_bytes<>number_of_bytes

For example, to indicate a packet size greater than 400 bytes, use >400 as the dtype value. To indicate a packet
size of less than 500 bytes, use <500. To specify that the rule trigger against any packet between 400 and 500
bytes inclusive, use 400<>500.

The dsize keyword tests packets before they are decoded by any preprocessors.Caution

isdataat

The isdataat keyword instructs the rules engine to verify that data resides at a specific location in the payload.

The following table lists the arguments you can use with the isdataat keyword.

Table 59: isdataat Arguments

DescriptionTypeArgument

The specific location in the payload. For example, to test that data appears at byte 50 in the
packet payload, you would specify 50 as the offset value. A ! modifier negates the results
of the isdataat test; it alerts if a certain amount of data is not present within the payload.

You can also use an existing byte_extract variable or byte_math result to specify the value
for this argument.

RequiredOffset

Makes the location relative to the last successful content match. If you specify a relative
location, note that the counter starts at byte 0, so calculate the location by subtracting 1 from
the number of bytes you want to move forward from the last successful content match. For
example, to specify that the data must appear at the ninth byte after the last successful content
match, you would specify a relative offset of 8.

OptionalRelative

Custom Intrusion Rules
95

Custom Intrusion Rules
Packet Characteristics

DescriptionTypeArgument

Specifies that the data is located in the original packet payload before decoding or application
layer normalization by any Firepower System preprocessor. You can use this argument with
Relative if the previous content match was in the raw packet data.

OptionalRaw Data

For example, in a rule searching for the content foo, if the value for isdataat is specified as the following:

• Offset = !10

• Relative = enabled

The system alerts if the rules engine does not detect 10 bytes after foo before the payload ends.

sameip

The sameip keyword tests that a packet’s source and destination IP addresses are the same. It does not take
an argument.

fragoffset

The fragoffset keyword tests the offset of a fragmented packet. This is useful because some exploits (such
as WinNuke denial-of-service attacks) use hand-generated packet fragments that have specific offsets.

For example, to test whether the offset of a fragmented packet is 31337 bytes, specify 31337 as the fragoffset
value.

You can use the following operators when specifying arguments for the fragoffset keyword.

Table 60: fragoffset Keyword Argument Operators

DescriptionOperator

not!

greater than>

less than<

Note that you cannot use the not (!) operator in combination with < or >.

cvs

The cvs keyword tests Concurrent Versions System (CVS) traffic for malformed CVS entries. An attacker
can use a malformed entry to force a heap overflow and execute malicious code on the CVS server. This
keyword can be used to identify attacks against two known CVS vulnerabilities: CVE-2004-0396 (CVS 1.11.x
up to 1.11.15, and 1.12.x up to 1.12.7) and CVS-2004-0414 (CVS 1.12.x through 1.12.8, and 1.11.x through
1.11.16). The cvs keyword checks for a well-formed entry, and generates alerts when a malformed entry is
detected.

Your rule should include the ports where CVS runs. In addition, any ports where traffic may occur should be
added to the list of ports for stream reassembly in your TCP policies so state can be maintained for CVS
sessions. The TCP ports 2401 (pserver) and 514 (rsh) are included in the list of client ports where stream
reassembly occurs. However, note that if your server runs as an xinetd server (i.e., pserver), it can run on
any TCP port. Add any non-standard ports to the stream reassembly Client Ports list.

Custom Intrusion Rules
96

Custom Intrusion Rules
Packet Characteristics

Related Topics
The byte_extract Keyword, on page 40
TCP Stream Preprocessing Options

Active Response Keywords
The resp and react keywords provide two approaches to initiating active responses. An intrusion rule that
contains either keyword initiates a single active response when a packet triggers the rule. Active response
keywords initiate active responses to close TCP connections in response to triggered TCP rules or UDP
sessions in response to triggered UDP rules. See Active Responses in Intrusion Drop Rules. Active responses
are not intended to take the place of a firewall for a number of reasons, including that an attacker may have
chosen to ignore or circumvent active responses.

Active responses are supported in inline, including routed or transparent, deployments. For example, in
response to the react keyword in an inline deployment, the system can insert a TCP reset (RST) packet
directly into the traffic for each end of the connection, which normally should close the connection. Active
responses are not supported or suited for passive deployments.

Because active responses can be routed back, the system does not allow TCP resets to initiate TCP resets; this
prevents an unending sequence of active responses. The system also does not allow ICMP unreachable packets
to initiate ICMP unreachable packets in keeping with standard practice.

You can configure the TCP stream preprocessor to detect additional traffic on a TCP connection after an
intrusion rule has triggered an active response. When the preprocessor detects additional traffic, it sends
additional active responses up to a specified maximum to both ends of the connection or session. See Maximum
Active Responses and Minimum Response Seconds in Advanced Transport/Network Preprocessor Options.

Related Topics
Active Responses in Intrusion Drop Rules

The resp Keyword
You can use the resp keyword to actively respond to TCP connections or UDP sessions, depending on whether
you specify the TCP or UDP protocol in the rule header.

Keyword arguments allow you to specify the packet direction and whether to use TCP reset (RST) packets
or ICMP unreachable packets as active responses.

You can use any of the TCP reset or ICMP unreachable arguments to close TCP connections. You should use
only ICMP unreachable arguments to close UDP sessions.

Different TCP reset arguments also allow you to target active responses to the packet source, destination, or
both. All ICMP unreachable arguments target the packet source and allow you to specify whether to use an
ICMP network, host, or port unreachable packet, or all three.

The following table lists the arguments you can use with the resp keyword to specify exactly what you want
the system to do when the rule triggers.

Table 61: resp Arguments

DescriptionArgument

Directs a TCP reset packet to the endpoint that sent the packet that triggered the rule. Alternatively, you
can specify rst_snd, which is supported for backward compatibility.

reset_source

Custom Intrusion Rules
97

Custom Intrusion Rules
Active Response Keywords

management-center-device-config-73_chapter80.pdf#nameddest=unique_1870
management-center-device-config-73_chapter80.pdf#nameddest=unique_1872
management-center-device-config-73_chapter80.pdf#nameddest=unique_1873
management-center-device-config-73_chapter80.pdf#nameddest=unique_1872

DescriptionArgument

Directs a TCP reset packet to the intended destination endpoint of the packet that triggered the rule.
Alternatively, you can specify rst_rcv, which is supported for backward compatibility.

reset_dest

Directs a TCP reset packet to both the sending and receiving endpoints. Alternatively, you can specify
rst_all, which is supported for backward compatibility.

reset_both

Directs an ICMP network unreachable message to the sender.icmp_net

Directs an ICMP host unreachable message to the sender.icmp_host

Directs an ICMP port unreachable message to the sender. This argument is used to terminate UDP traffic.icmp_port

Directs the following ICMP messages to the sender:

• network unreachable

• host unreachable

• port unreachable

icmp_all

For example, to configure a rule to reset both sides of a connection when a rule is triggered, use reset_both

as the value for the resp keyword.

You can use a comma-separated list to specify multiple arguments as follows:

argument,argument,argument

The react Keyword
You can use the react keyword to send a default HTML page to the TCP connection client when a packet
triggers the rule; after sending the HTML page, the system uses TCP reset packets to initiate active responses
to both ends of the connection. The react keyword does not trigger active responses for UDP traffic.

Optionally, you can specify the following argument:

msg

When a packet triggers a react rule that uses the msg argument, the HTML page includes the rule event
message.

If you do not specify the msg argument, the HTML page includes the following message:

You are attempting to access a forbidden site.
Consult your system administrator for details.

Because active responses can be routed back, ensure that the HTML response page does not trigger a react

rule; this could result in an unending sequence of active responses. Cisco recommends that you test react
rules extensively before activating them in a production environment.

Note

Related Topics
Rule Anatomy, on page 2

Custom Intrusion Rules
98

Custom Intrusion Rules
The react Keyword

The detection_filter Keyword
You can use the detection_filter keyword to prevent a rule from generating events unless a specified
number of packets trigger the rule within a specified time. This can stop the rule from prematurely generating
events. For example, two or three failed login attempts within a few seconds could be expected behavior, but
a large number of attempts within the same time could indicate a brute force attack.

The detection_filter keyword requires arguments that define whether the system tracks the source or
destination IP address, the number of times the detection criteria must be met before triggering an event, and
how long to continue the count.

Use the following syntax to delay the triggering of events:

track by_src/by_dst, count count, seconds number_of_seconds

The track argument specifies whether to use the packet’s source or destination IP address when counting the
number of packets that meet the rule’s detection criteria. Select from the argument values described in the
following table to specify how the system tracks event instances.

Table 62: detection_filter Track Arguments

DescriptionArgument

Detection criteria count by source IP address.by_src

Detection criteria count by destination IP address.by_dst

The count argument specifies the number of packets that must trigger the rule for the specified IP address
within the specified time before the rule generates an event.

The seconds argument specifies the number of seconds within which the specified number of packets must
trigger the rule before the rule generates an event.

Consider the case of a rule that searches packets for the content foo and uses the detection_filter keyword
with the following arguments:

track by_src, count 10, seconds 20

In the example, the rule will not generate an event until it has detected foo in 10 packets within 20 seconds
from a given source IP address. If the system detects only 7 packets containing foo within the first 20 seconds,
no event is generated. However, if foo occurs 40 times in the first 20 seconds, the rule generates 30 events
and the count begins again when 20 seconds have elapsed.

Comparing the threshold and detection_filter Keywords

The detection_filter keyword replaces the deprecated threshold keyword. The threshold keyword is
still supported for backward compatibility and operates the same as thresholds that you set within an intrusion
policy.

The detection_filter keyword is a detection feature that is applied before a packet triggers a rule. The rule
does not generate an event for triggering packets detected before the specified packet count and, in an inline
deployment, does not drop those packets if the rule is set to drop packets. Conversely, the rule does generate
events for packets that trigger the rule and occur after the specified packet count and, in an inline deployment,
drops those packets if the rule is set to drop packets.

Custom Intrusion Rules
99

Custom Intrusion Rules
The detection_filter Keyword

Thresholding is an event notification feature that does not result in a detection action. It is applied after a
packet triggers an event. In an inline deployment, a rule that is set to drop packets drops all packets that trigger
the rule, independent of the rule threshold.

Note that you can use the detection_filter keyword in any combination with the intrusion event thresholding,
intrusion event suppression, and rate-based attack prevention features in an intrusion policy. Note also that
policy validation fails if you enable an imported local rule that uses the deprecated threshold keyword in
combination with the intrusion event thresholding feature in an intrusion policy.

Related Topics
Intrusion Event Thresholds
Intrusion Policy Suppression Configuration
Setting a Dynamic Rule State from the Rules Page

The tag Keyword
Use the tag keyword to tell the system to log additional traffic for the host or session. Use the following
syntax when specifying the type and amount of traffic you want to capture using the tag keyword:

tagging_type, count, metric, optional_direction

The next three tables describe the other available arguments.

You can choose from two types of tagging. The following table describes the two types of tagging. Note that
the session tag argument type causes the system to log packets from the same session as if they came from
different sessions if you configure only rule header options in the intrusion rule. To group packets from the
same session together, configure one or more rule options (such as a flag keyword or content keyword)
within the same intrusion rule.

Table 63: Tag Arguments

DescriptionArgument

Logs packets in the session that triggered the rule.session

Logs packets from the host that sent the packet that triggered the rule. You can add a
directional modifier to log only the traffic coming from the host (src) or going to the
host (dst).

host

To indicate how much traffic you want to log, use the following argument:

Table 64: Count Argument

DescriptionArgument

The number of packets or seconds you want to log after the rule triggers.

This unit of measure is specified with the metric argument, which follows the count
argument.

count

Select the metric you want to use to log by time or volume of traffic from those described in the following
table.

Custom Intrusion Rules
100

Custom Intrusion Rules
The tag Keyword

management-center-device-config-73_chapter52.pdf#nameddest=unique_1765
management-center-device-config-73_chapter52.pdf#nameddest=unique_1770
management-center-device-config-73_chapter52.pdf#nameddest=unique_1776

High-bandwidth networks can see thousands of packets per second, and tagging a large number of packets
may seriously affect performance, so make sure you tune this setting for your network environment.

Caution

Table 65: Logging Metrics Arguments

DescriptionArgument

Logs the number of packets specified by the count after the rule triggers.packets

Logs traffic for the number of seconds specified by the count after the rule triggers.seconds

For example, when a rule with the following tag keyword value triggers:

host, 30, seconds, dst

all packets that are transmitted from the client to the host for the next 30 seconds are logged.

The flowbits Keyword
Use the flowbits keyword to assign state names to sessions. By analyzing subsequent packets in a session
according to the previously named state, the system can detect and alert on exploits that span multiple packets
in a single session.

The flowbits state name is a user-defined label assigned to packets in a specific part of a session. You can
label packets with state names based on packet content to help distinguish malicious packets from those you
do not want to alert on. You can define up to 1024 state names per managed device. For example, if you want
to alert on malicious packets that you know only occur after a successful login, you can use the flowbits

keyword to filter out the packets that constitute an initial login attempt so you can focus only on the malicious
packets. You can do this by first creating a rule that labels all packets in the session that have an established
login with a logged_in state, then creating a second rule where flowbits checks for packets with the state
you set in the first rule and acts only on those packets.

An optional group name allows you to include a state name in a group of states. A state name can belong to
several groups. States not associated with a group are not mutually exclusive, so a rule that triggers and sets
a state that is not associated with a group does not affect other currently set states.

flowbits Keyword Options
The following table describes the various combinations of operators, states, and groups available to the
flowbits keyword. Note that state names can contain alphanumeric characters, periods (.), underscores (_),
and dashes (-).

Table 66: flowbits Options

DescriptionGroupState OptionOperator

Sets the specified state for a packet. Sets the state in the specified
group if a group is defined.

optional
state_nameset

Sets the specified states for a packet. Sets the states in the specified
group if a group is defined.

optional
state_name&state_nameset

Custom Intrusion Rules
101

Custom Intrusion Rules
The flowbits Keyword

DescriptionGroupState OptionOperator

Sets the specified state in the specified group for a packet, and
unsets all other states in the group.

mandatory
state_namesetx

Sets the specified states in the specified group for a packet, and
unsets all other states in the group.

mandatory
state_name&state_namesetx

Unsets the specified state for a packet.no group
state_nameunset

Unsets the specified states for a packet.no group
state_name&state_nameunset

Unsets all the states in the specified group.mandatory
allunset

Unsets the specified state if it is set, and sets the specified state
if it is unset.

no group
state_nametoggle

Unsets the specified states if they are set, and sets the specified
states if they are unset.

no group
state_name&state_nametoggle

Unsets all states set in the specified group, and sets all states unset
in the specified group.

mandatory
alltoggle

Determines if the specified state is set in the packet.no group
state_nameisset

Determines if the specified states are set in the packet.no group
state_name&state_nameisset

Determines if any of the specified states are set in the packet.no group
state_name|state_nameisset

Determines if any state is set in the specified group.mandatory
anyisset

Determines if all states are set in the specified group.mandatory
allisset

Determines if the specified state is not set in the packet.no group
state_nameisnotset

Determines if the specified states are not set in the packet.no group
state_name&state_nameisnotset

Determines if any of the specified states is not set in the packet.no group
state_name|state_nameisnotset

Determines if any state is not set in the packet.mandatory
anyisnotset

Determines if all states are not set in the packet.mandatory
allisnotset

Unsets all states for all packets. Unsets all states in a group if a
group is specified.

optional(no state)
reset

Custom Intrusion Rules
102

Custom Intrusion Rules
flowbits Keyword Options

DescriptionGroupState OptionOperator

Use this in conjunction with any other operator to suppress event
generation.

no group(no state)
noalert

Guidelines for Using the flowbits Keyword
Note the following when using the flowbits keyword:

• When using the setx operator, the specified state can only belong to the specified group, and not to any
other group.

• You can define the setx operator multiple times, specifying different states and the same group with
each instance.

• When you use the setx operator and specify a group, you cannot use the set, toggle, or unset operators
on that specified group.

• The isset and isnotset operators evaluate for the specified state regardless of whether the state is in a
group.

• During intrusion policy saves, intrusion policy reapplies, and access control policy applies (regardless
of whether the access control policy references one intrusion policy or multiple intrusion policies), if
you enable a rule that contains the isset or isnotset operator without a specified group, and you do
not enable at least one rule that affects flowbits assignment (set, setx, unset, toggle) for the
corresponding state name and protocol, all rules that affect flowbits assignment for the corresponding
state name are enabled.

• During intrusion policy saves, intrusion policy reapplies, and access control policy applies (regardless
of whether the access control policy references one intrusion policy or multiple intrusion policies), if
you enable a rule that contains the isset or isnotset operator with a specified group, all rules that affect
flowbits assignment (set, setx, unset, toggle) and define a corresponding group name are also enabled.

flowbits Keyword Examples
This section provides three examples that use the flowbits keyword.

flowbits Keyword Example: A Configuration Using state_name

This is an example of a flowbits configuration using state_name.

Consider the IMAP vulnerability described in CVE ID 2000-0284. This vulnerability exists in an implementation
of IMAP, specifically in the LIST, LSUB, RENAME, FIND, and COPY commands. However, to take
advantage of the vulnerability, the attacker must be logged into the IMAP server. Because the LOGIN
confirmation from the IMAP server and the exploit that follows are necessarily in different packets, it is
difficult to construct non-flow-based rules that catch this exploit. Using the flowbits keyword, you can
cflowbitonstruct a series of rules that track whether the user is logged into the IMAP server and, if so, generate
an event if one of the attacks is detected. If the user is not logged in, the attack cannot exploit the vulnerability
and no event is generated.

The two rule fragments that follow illustrate this example. The first rule fragment looks for an IMAP login
confirmation from the IMAP server:

alert tcp any 143 -> any any (msg:"IMAP login"; content:"OK

Custom Intrusion Rules
103

Custom Intrusion Rules
Guidelines for Using the flowbits Keyword

LOGIN"; flowbits:set,logged_in; flowbits:noalert;)

The following diagram illustrates the effect of the flowbits keyword in the preceding rule fragment:

Note that flowbits:set sets a state of logged_in, while flowbits:noalert suppresses the alert because you
are likely to see many innocuous login sessions on an IMAP server.

The next rule fragment looks for a LIST string, but does not generate an event unless the logged_in state has
been set as a result of some previous packet in the session:

alert tcp any any -> any 143 (msg:"IMAP LIST";

content:"LIST"; flowbits:isset,logged_in;)

The following diagram illustrates the effect of the flowbits keyword in the preceding rule fragment:

Custom Intrusion Rules
104

Custom Intrusion Rules
flowbits Keyword Example: A Configuration Using state_name

In this case, if a previous packet has caused a rule containing the first fragment to trigger, then a rule containing
the second fragment triggers and generates an event.

flowbits Keyword Example: A Configuration Resulting in False Positive Events

Including different state names that are set in different rules in a group can prevent false positive events that
might otherwise occur when content in a subsequent packet matches a rule whose state is no longer valid. The
following example illustrates how you can get false positives when you do not include multiple state names
in a group.

Consider the case where the following three rule fragments trigger in the order shown during a single session:

(msg:"JPEG transfer";
content:"image/";pcre:"/^Content-?Type\x3a(\s*|\s*\r?\n\s+)image\x2fp?jpe?g/smi";
?flowbits:set,http.jpeg; flowbits:noalert;)

The following diagram illustrates the effect of the flowbits keyword in the preceding rule fragment:

Custom Intrusion Rules
105

Custom Intrusion Rules
flowbits Keyword Example: A Configuration Resulting in False Positive Events

The content and pcre keywords in the first rule fragment match a JPEG file download,
flowbits:set,http.jpeg sets the http.jpeg flowbits state, and flowbits:noalert stops the rule from
generating events. No event is generated because the rule’s purpose is to detect the file download and set the
flowbits state so one or more companion rules can test for the state name in combination with malicious
content and generate events when malicious content is detected.

The next rule fragment detects a GIF file download subsequent to the JPEG file download above:

(msg:"GIF transfer"; content:"image/";
pcre:"/^Content-?Type\x3a(\s*|\s*\r?\n\s+)image\x2fgif/smi";
?flowbits:set,http.jpg,image_downloads; flowbits:noalert;)

The following diagram illustrates the effect of the flowbits keyword in the preceding rule fragment:

The content and pcre keywords in the second rule match the GIF file download, flowbits:set,http.jpg
sets the http.jpg flowbit state, and flowbits:noalert stops the rule from generating an event. Note that the
http.jpeg state set by the first rule fragment is still set even though it is no longer needed; this is because the
JPEG download must have ended if a subsequent GIF download has been detected.

The third rule fragment is a companion to the first rule fragment:

(msg:"JPEG exploit";?flowbits:isset,http.jpeg;content:"|FF|";
pcre:"?/\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/";)

The following diagram illustrates the effect of the flowbits keyword in the preceding rule fragment:

In the third rule fragment, flowbits:isset,http.jpeg determines that the now-irrelevant http.jpeg state
is set, and content and pcre match content that would be malicious in a JPEG file but not in a GIF file. The
third rule fragment results in a false positive event for a nonexistent exploit in a JPEG file.

Custom Intrusion Rules
106

Custom Intrusion Rules
flowbits Keyword Example: A Configuration Resulting in False Positive Events

flowbits Keyword Example: A Configuration for Preventing False Positive Events

The following example illustrates how including state names in a group and using the setx operator can
prevent false positives.

Consider the same case as the previous example, except that the first two rules now include their two different
state names in the same state group.

(msg:"JPEG transfer";
content:"image/";pcre:"/^Content-?Type\x3a(\s*|\s*\r?\n\s+)image\x2fp?jpe?g/smi";
?flowbits:setx,http.jpeg,image_downloads; flowbits:noalert;)

The following diagram illustrates the effect of the flowbits keyword in the preceding rule fragment:

When the first rule fragment detects a JPEG file download, the flowbits:setx,http.jpeg,image_downloads
keyword sets the flowbits state to http.jpeg and includes the state in the image_downloads group.

The next rule then detects a subsequent GIF file download:

(msg:"GIF transfer"; content:"image/";
pcre:"/^Content-?Type\x3a(\s*|\s*\r?\n\s+)image\x2fgif/smi";
?flowbits:setx,http.jpg,image_downloads; flowbits:noalert;)

The following diagram illustrates the effect of the flowbits keyword in the preceding rule fragment:

When the second rule fragment matches the GIF download, the flowbits:setx,http.jpg,image_downloads
keyword sets the http.jpg flowbits state and unsets http.jpeg, the other state in the group.

The third rule fragment does not result in a false positive:

(msg:"JPEG exploit"; ?flowbits:isset,http.jpeg;content:"|FF|";
pcre:"/?\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/";)

The following diagram illustrates the effect of the flowbits keyword in the preceding rule fragment:

Custom Intrusion Rules
107

Custom Intrusion Rules
flowbits Keyword Example: A Configuration for Preventing False Positive Events

Because flowbits:isset,http.jpeg is false, the rules engine stops processing the rule and no event is
generated, thus avoiding a false positive even in a case where content in the GIF file matches exploit content
for a JPEG file.

The http_encode Keyword
You can use the http_encode keyword to generate events on the type of encoding in an HTTP request or
response before normalization, either in the HTTP URI, in non-cookie data in an HTTP header, in cookies in
HTTP requests headers, or set-cookie data in HTTP responses.

You must configure the HTTP Inspect preprocessor to inspect HTTP responses and HTTP cookies to return
matches for rules using the http_encode keyword.

Also, you must enable both the decoding and alerting option for each specific encoding type in your HTTP
Inspect preprocessor configuration so the http_encode keyword in an intrusion rule can trigger events on that
encoding type.

The following table describes the encoding types this option can generate events for in HTTP URIs, headers,
cookies, and set-cookies:

Table 67: http_encode Encoding Types

DescriptionEncoding Type

Detects UTF-8 encoding in the specified location when this encoding type is enabled
for decoding by the HTTP Inspect preprocessor.

utf8

Detects double encoding in the specified location when this encoding type is enabled
for decoding by the HTTP Inspect preprocessor.

double_encode

Detects non-ASCII characters in the specified location when non-ASCII characters
are detected but the detected encoding type is not enabled.

non_ascii

Detects Microsoft %u encoding in the specified location when this encoding type is
enabled for decoding by the HTTP Inspect preprocessor.

uencode

Detects bare byte encoding in the specified location when this encoding type is enabled
for decoding by the HTTP Inspect preprocessor.

bare_byte

Related Topics
The HTTP Inspect Preprocessor
Server-Level HTTP Normalization Options

Custom Intrusion Rules
108

Custom Intrusion Rules
The http_encode Keyword

management-center-device-config-73_chapter78.pdf#nameddest=unique_1885
management-center-device-config-73_chapter78.pdf#nameddest=unique_1823

http_encode Keyword Syntax

Encoding Location

Specifies whether to search for the specified encoding type in an HTTP URI, header, or cookie, including a
set-cookie.

Encoding Type

Specifies one or more encoding types using one of the following formats:

encode_type
encode_type|encode_type|encode_type...

where encode_type is one of the following:

utf8
double_encode
non_ascii
uencode
bare_byte.

Note that you cannot use the negation (!) and OR (|) operators together.

http_encode Keyword example: Using Two http_endcode Keywords to Search for Two Encodings
The following example uses two http_encode keywords in the same rule to search the HTTP URI for UTF-8
AND Microsoft IIS %u encoding:

First, the http_encode keyword:

• Encoding Location: HTTP URI

• Encoding Type: utf8

Then, the additional http_encode keyword:

• Encoding Location: HTTP URI

• Encoding Type: uencode

Overview: The file_type and file_group Keywords
The file_type and file_group keywords allow you to detect files transmitted via FTP, HTTP, SMTP, IMAP,
POP3, and NetBIOS-ssn (SMB) based on their type and version. Do not use more than one file_type or
file_group keyword in a single intrusion rule.

Updating your vulnerability database (VDB) populates the intrusion rules editor with the most up-to-date file
types, versions, and groups.

Tip

Custom Intrusion Rules
109

Custom Intrusion Rules
http_encode Keyword Syntax

The system does not automatically enable preprocessors to accomodate the file_type and file_group

keywords.
Note

You must enable specific preprocessors if you want to generate events and, in an inline deployment, drop
offending packets for traffic matching your file_type or file_group keywords.

Table 68: file_type and file_group Intrusion Event Generation

Required Preprocessor or Preprocessor OptionProtocol

FTP/Telnet preprocessor and the Normalize TCP Payload inline normalization
preprocessor option

FTP

HTTP Inspect preprocessor to generate intrusion events in HTTP trafficHTTP

SMTP preprocessor to generate intrusion events in HTTP trafficSMTP

IMAP preprocessorIMAP

POP preprocessorPOP3

The DCE/RPC preprocessor and the SMB File Inspection DCE/RPC preprocessor
option

Netbios-ssn (SMB)

Related Topics
The FTP/Telnet Decoder
The Inline Normalization Preprocessor
The HTTP Inspect Preprocessor
The SMTP Preprocessor
The IMAP Preprocessor
The POP Preprocessor
The DCE/RPC Preprocessor

The file_type and file_group Keywords

file_type

The file_type keyword allows you to specify the file type and version of a file detected in traffic. File type
arguments (for example, JPEG and PDF) identify the format of the file you want to find in traffic.

Do not use the file_type keyword with another file_type or file_group keyword in the same intrusion
rule.

Note

The system selects Any Version by default, but some file types allow you to select version options (for
example, PDF version 1.7) to identify specific file type versions you want to find in traffic.

Custom Intrusion Rules
110

Custom Intrusion Rules
The file_type and file_group Keywords

management-center-device-config-73_chapter78.pdf#nameddest=unique_1889
management-center-device-config-73_chapter80.pdf#nameddest=unique_1890
management-center-device-config-73_chapter78.pdf#nameddest=unique_1885
management-center-device-config-73_chapter78.pdf#nameddest=unique_1891
management-center-device-config-73_chapter78.pdf#nameddest=unique_1892
management-center-device-config-73_chapter78.pdf#nameddest=unique_1893
management-center-device-config-73_chapter78.pdf#nameddest=unique_1829

file_group

The file_group keyword allows you to select a Cisco-defined group of similar file types to find in traffic
(for example, multimedia or audio). File groups also include Cisco-defined versions for each file type in the
group.

Do not use the file_group keyword with another file_group or file_type keyword in the same intrusion
rule.

Note

The file_data Keyword
The file_data keyword provides a pointer that serves as a reference for the positional arguments available
for other keywords such as content, byte_jump, byte_test, and pcre. The detected traffic determines the
type of data the file_data keyword points to. You can use the file_data keyword to point to the beginning
of the following payload types:

• HTTP response body

To inspect HTTP response packets, the HTTP Inspect preprocessor must be enabled and you must
configure the preprocessor to inspect HTTP responses. The file_data keyword matches if the HTTP
Inspect preprocessor detects HTTP response body data.

• Uncompressed gzip file data

To inspect uncompressed gzip files in the HTTP response body, the HTTP Inspect preprocessor must be
enabled and you must configure the preprocessor to inspect HTTP responses and to decompress
gzip-compressed files in the HTTP response body. For more information, see the Inspect HTTP
Responses and Inspect Compressed Data Server-Level HTTP Normalization options. The file_data

keyword matches if the HTTP Inspect preprocessor detects uncompressed gzip data in the HTTP response
body.

• Normalized JavaScript

To inspect normalized JavaScript data, the HTTP Inspect preprocessor must be enabled and you must
configure the preprocessor to inspect HTTP responses. The file_data keyword matches if the HTTP
Inspect preprocessor detects JavaScript in response body data.

• SMTP payload

To inspect the SMTP payload, the SMTP preprocessor must be enabled. The file_data keyword matches
if the SMTP preprocessor detects SMTP data.

• Encoded email attachments in SMTP, POP, or IMAP traffic

To inspect email attachments in SMTP, POP, or IMAP traffic, the SMTP, POP, or IMAP preprocessor,
respectively, must be enabled, alone or in any combination. Then, for each enabled preprocessor, you
must ensure that the preprocessor is configured to decode each attachment encoding type that you want
decoded. The attachment decoding options that you can configure for each preprocessor are: Base64
Decoding Depth, 7-Bit/8-Bit/Binary Decoding Depth, Quoted-Printable Decoding Depth, and
Unix-to-Unix Decoding Depth.

You can use multiple file_data keywords in a rule.

Custom Intrusion Rules
111

Custom Intrusion Rules
The file_data Keyword

Related Topics
The HTTP Inspect Preprocessor
Server-Level HTTP Normalization Options
The SMTP Preprocessor
The IMAP Preprocessor

The pkt_data Keyword
The pkt_data keyword provides a pointer that serves as a reference for the positional arguments available
for other keywords such as content, byte_jump, byte_test, and pcre.

When normalized FTP, telnet, or SMTP traffic is detected, the pkt_data keyword points to the beginning of
the normalized packet payload. When other traffic is detected, the pkt_data keyword points to the beginning
of the raw TCP or UDP payload.

The following normalization options must be enabled for the system to normalize the corresponding traffic
for inspection by intrusion rules:

• Enable the FTP & Telnet preprocessor Detect Telnet Escape codes within FTP commands option to
normalize FTP traffic for inspection.

• Enable the FTP & Telnet preprocessor Normalize telnet option to normalize telnet traffic for inspection.

• Enable the SMTP preprocessor Normalize option to normalize SMTP traffic for inspection.

You can use multiple pkt_data keywords in a rule.

Related Topics
Client-Level FTP Options
Telnet Options
SMTP Preprocessor Options

The base64_decode and base64_data Keywords
You can use the base64_decode and base64_data keywords in combination to instruct the rules engine to
decode and inspect specified data as Base64 data. This can be useful, for example, for inspecting
Base64-encoded HTTP Authentication request headers and Base64-encoded data in HTTP PUT and POST
requests.

These keywords are particularly useful for decoding and inspecting Base64 data in HTTP requests. However,
you can also use them with any protocol such as SMTP that uses the space and tab characters the same way
HTTP uses these characters to extend a lengthy header line over multiple lines. When this line extension,
which is known as folding, is not present in a protocol that uses it, inspection ends at any carriage return or
line feed that is not followed with a space or tab.

base64_decode

The base64_decode keyword instructs the rules engine to decode packet data as Base64 data. Optional
arguments let you specify the number of bytes to decode and where in the data to begin decoding.

You can use the base64_decode keyword once in a rule; it must precede at least one instance of the base64_data
keyword.

Custom Intrusion Rules
112

Custom Intrusion Rules
The pkt_data Keyword

management-center-device-config-73_chapter78.pdf#nameddest=unique_1885
management-center-device-config-73_chapter78.pdf#nameddest=unique_1823
management-center-device-config-73_chapter78.pdf#nameddest=unique_1891
management-center-device-config-73_chapter78.pdf#nameddest=unique_1892
management-center-device-config-73_chapter78.pdf#nameddest=unique_1897
management-center-device-config-73_chapter78.pdf#nameddest=unique_1898
management-center-device-config-73_chapter78.pdf#nameddest=unique_1899

Before decoding Base64 data, the rules engine unfolds lengthy headers that are folded across multiple lines.
Decoding ends when the rules engine encounters any the following:

• the end of a header line

• the specified number of bytes to decode

• the end of the packet

The following table describes the arguments you can use with the base64_decode keyword.

Table 69: Optional base64_decode Arguments

DescriptionArgument

Specifies the number of bytes to decode. When not specified, decoding continues to
the end of a header line or the end of the packet payload, whichever comes first. You
can specify a positive, non-zero value.

Bytes

Determines the offset relative to the start of the packet payload or, when you also
specify Relative, relative to the current inspection location. You can specify a positive,
non-zero value.

Offset

Specifies inspection relative to the current inspection location.Relative

base64_data

The base64_data keyword provides a reference for inspecting Base64 data decoded using the base64_decode
keyword. The base64_data keyword sets inspection to begin at the start of the decoded Base64 data. Optionally,
you can then use the positional arguments available for other keywords such as content or byte_test to
further specify the location to inspect.

You must use the base64_data keyword at least once after using the base64_decode keyword; optionally,
you can use base64_data multiple times to return to the beginning of the decoded Base64 data.

Note the following when inspecting Base64 data:

• You cannot use the fast pattern matcher.

• If you interrupt Base64 inspection in a rule with an intervening HTTP content argument, you must insert
another base64_data keyword in the rule before further inspecting Base64 data.

Related Topics
Overview: HTTP content and protected_content Keyword Arguments, on page 29
content Keyword Fast Pattern Matcher Arguments, on page 32

Custom Intrusion Rules
113

Custom Intrusion Rules
The base64_decode and base64_data Keywords

Custom Intrusion Rules
114

Custom Intrusion Rules
The base64_decode and base64_data Keywords

	Custom Intrusion Rules
	Custom Intrusion Rules Overview
	License Requirements for the Intrusion Rule Editor
	Requirements and Prerequisites for the Intrusion Rule Editor
	Rule Anatomy
	The Intrusion Rule Header
	Intrusion Rule Header Action
	Intrusion Rule Header Protocol
	Intrusion Rule Header Direction
	Intrusion Rule Header Source and Destination IP Addresses
	IP Address Syntax in Intrusion Rules

	Intrusion Rule Header Source and Destination Ports
	Port Syntax in Intrusion Rules

	Intrusion Event Details
	Adding a Custom Classification
	Defining an Event Priority
	Defining an Event Reference

	Custom Rule Creation
	Writing New Rules
	Modifying Existing Rules
	Viewing Rule Documentation
	Adding Comments to Intrusion Rules
	Deleting Custom Rules

	Searching for Rules
	Search Criteria for Intrusion Rules

	Rule Filtering on the Intrusion Rules Editor Page
	Filtering Guidelines
	Keyword Filtering
	Character String Filtering
	Combination Keyword and Character String Filtering
	Filtering Rules

	Keywords and Arguments in Intrusion Rules
	The content and protected_content Keywords
	Basic content and protected_content Keyword Arguments
	content and protected_content Keyword Search Locations
	Permitted Combinations: content Search Location Arguments
	Permitted Combinations: protected_content Search Location Arguments
	content and protected_content Search Location Arguments

	Overview: HTTP content and protected_content Keyword Arguments
	HTTP content and protected_content Keyword Arguments

	Overview: content Keyword Fast Pattern Matcher
	content Keyword Fast Pattern Matcher Arguments

	The replace Keyword
	The byte_jump Keyword
	The byte_test Keyword
	The byte_extract Keyword
	The byte_math Keyword
	Overview: The pcre Keyword
	pcre Syntax
	pcre Modifier Options
	pcre Example Keyword Values

	The metadata Keyword
	Service Metadata
	Metadata Search Guidelines

	IP Header Values
	ICMP Header Values
	TCP Header Values and Stream Size
	The stream_reassembly Keyword
	SSL Keywords
	The appid Keyword
	Application Layer Protocol Values
	The RPC Keyword
	The ASN.1 Keyword
	The urilen Keyword
	DCE/RPC Keywords
	dce_iface
	The dce_opnum Keyword
	The dce_stub_data Keyword

	SIP Keywords
	The sip_header Keyword
	The sip_body Keyword
	The sip_method Keyword
	The sip_stat_code Keyword

	GTP Keywords
	The gtp_version Keyword
	The gtp_type Keyword
	The gtp_info Keyword

	SCADA Keywords
	Modbus Keywords
	DNP3 Keywords
	CIP and ENIP Keywords
	S7Commplus Keywords

	Packet Characteristics
	Active Response Keywords
	The resp Keyword
	The react Keyword

	The detection_filter Keyword
	The tag Keyword
	The flowbits Keyword
	flowbits Keyword Options
	Guidelines for Using the flowbits Keyword
	flowbits Keyword Examples
	flowbits Keyword Example: A Configuration Using state_name
	flowbits Keyword Example: A Configuration Resulting in False Positive Events
	flowbits Keyword Example: A Configuration for Preventing False Positive Events

	The http_encode Keyword
	http_encode Keyword Syntax
	http_encode Keyword example: Using Two http_endcode Keywords to Search for Two Encodings

	Overview: The file_type and file_group Keywords
	The file_type and file_group Keywords

	The file_data Keyword
	The pkt_data Keyword
	The base64_decode and base64_data Keywords

