Cisco ISE Features

- Cisco ISE Overview, on page 1
- Key Functions, on page 2
- Identity-Based Network Access, on page 2
- Support for Multiple Deployment Scenarios, on page 3
- Basic User Authentication and Authorization, on page 3
- Policy Sets, on page 4
- Support for Common Access Card Functions, on page 4
- Client Posture Assessment, on page 5
- Mobile Device Manager Interoperability with Cisco ISE, on page 5
- Profiled Endpoints on the Network, on page 5
- pxGrid Persona, on page 6
- TACACS+ Device Administration, on page 6
- Support for SXP, on page 6
- Third Party Device Support, on page 6
- Telemetry, on page 7
- IPv6 Support, on page 7
- Location Based Authorization, on page 12
- Cisco ISE Certificate Authority, on page 12
- Support for Active Directory Multidomain Forests, on page 13
- Support for SAnet Devices, on page 13
- Support for Automatic Failover for the Administration Node, on page 13
- GUI-Based Upgrade, on page 14
- Technical Support Tunnel for Advanced Troubleshooting, on page 14

Cisco ISE Overview

Cisco ISE is a security policy management platform that provides secure access to network resources. Cisco ISE functions as a policy decision point and enables enterprises to ensure compliance, enhance infrastructure security, and streamline service operations. Cisco ISE allows enterprises to gather real-time contextual information from networks, users, and devices. The administrator can then use that information to make governance decisions by tying identity to various network elements, including access switches, wireless LAN controllers (WLCs), Virtual Private Network (VPN) gateways, and data center switches. Cisco ISE acts as the policy manager in the Cisco TrustSec solution and supports TrustSec software-defined segmentation.
Key Functions

Cisco ISE is a consolidated policy-based access control system that incorporates a superset of features available in existing Cisco policy platforms. Cisco ISE performs the following functions:

- Combines authentication, authorization, accounting (AAA), posture, and profiler into one appliance
- Provides for comprehensive guest access management for Cisco ISE administrators, sanctioned sponsor administrators, or both
- Enforces endpoint compliance by providing comprehensive client provisioning measures and assessing the device posture for all endpoints that access the network, including 802.1X environments
- Provides support for discovery, profiling, policy-based placement, and monitoring of endpoint devices on the network
- Enables consistent policy in centralized and distributed deployments that allows services to be delivered where they are needed
- Employs advanced enforcement capabilities including Trustsec through the use of Security Group Tags (SGTs) and Security Group Access Control Lists (SGACLs)
- Supports scalability to support a number of deployment scenarios from small office to large enterprise environments
- Facilitates TACACS-enabled device administration through its Work Center. The Work Center menu contains all the device administration pages, which acts as a single start point for ISE administrators. However, pages such as Users, User Identity Groups, Network Devices, Default Network Devices, Network Device Groups, Authentication and Authorization Conditions, are shared with other menu options.

Identity-Based Network Access

The Cisco ISE solution provides context-aware identity management in the following areas:

- Cisco ISE determines whether users are accessing the network on an authorized, policy-compliant device.
- Cisco ISE establishes user identity, location, and access history, which can be used for compliance and reporting.
- Cisco ISE assigns services based on the assigned user role, group, and associated policy (job role, location, device type, and so on).
• Cisco ISE grants authenticated users with access to specific segments of the network, or specific applications and services, or both, based on authentication results.

Support for Multiple Deployment Scenarios

Cisco ISE can be deployed across an enterprise infrastructure, supporting 802.1X wired, wireless, and Virtual Private Networks (VPNs).

The Cisco ISE architecture supports both standalone and distributed (also known as “high-availability” or “redundant”) deployments where one machine assumes the primary role and another “backup” machine assumes the secondary role. Cisco ISE features distinct configurable personas, services, and roles, which allow you to create and apply Cisco ISE services where they are needed in the network. The result is a comprehensive Cisco ISE deployment that operates as a fully functional and integrated system.

Cisco ISE nodes can be deployed with one or more of the Administration, Monitoring, and Policy Service personas—each one performing a different vital part in your overall network policy management topology. Installing Cisco ISE with an Administration persona allows you to configure and manage your network from a centralized portal to promote efficiency and ease of use.

Basic User Authentication and Authorization

User authentication policies in Cisco ISE enable you to provide authentication for a number of user login session types using a variety of standard authentication protocols including, but not limited to, Password Authentication Protocol (PAP), Challenge-Handshake Authentication Protocol (CHAP), Protected Extensible Authentication Protocol (PEAP), and Extensible Authentication Protocol (EAP). Cisco ISE specifies the allowable protocol(s) that are available to the network devices on which the user tries to authenticate and specifies the identity sources from which user authentication is validated.

Cisco ISE allows for a wide range of variables within authorization policies to ensure that only authorized users can access the appropriate resources when they access the network. The initial release of Cisco ISE supports only RADIUS-governed access to the internal network and its resources.

At the most fundamental level, Cisco ISE supports 802.1X, MAC authentication bypass (MAB), and browser-based Web authentication login for basic user authentication and access via both wired and wireless networks. Upon receiving an authentication request, the “outer part” of the authentication policy is used to select the set of protocols that are allowed when processing the request. Then, the “inner part” of the authentication policy is used to select the identity source that is used to authenticate the request. The identity source may consist of a specific identity store or an identity store sequence that lists a set of accessible identities until the user receives a definitive authorization response.

Once authentication succeeds, the session flow proceeds to the authorization policy. (There are also options available that allow Cisco ISE to process the authorization policy even when the authentication did not succeed.) Cisco ISE enables you to configure behavior for “authentication failed,” “user not found,” and “process failed” cases, and also to decide whether to reject the request, drop the request (no response is issued), or continue to the authorization policy. In cases where Cisco ISE continues to perform authorization, you can use the “AuthenticationStatus” attribute in the “NetworkAccess” dictionary to incorporate the authentication result as part of the authorization policy.

The authorization policy result is Cisco ISE assigning an authorization profile that might also involve a downloadable ACL specifying traffic management on the network policy enforcement device. The downloadable
ACL specifies the RADIUS attributes that are returned during authentication and that define the user access privileges granted once authenticated by Cisco ISE.

Note

Cisco ISE processes the attributes in the following order while identifying the Authentication session for the incoming accounting packet:

- For Cisco devices:
 1. Class/State
 2. audit-session-id

- For third party devices:
 1. Class/State
 2. Calling-Station-ID
 3. If the authentication session cannot be identified, Cisco ISE creates a new session ID based on the Calling-Station-ID, NAS-Port, and NAS-IP-Address.

Policy Sets

Network access policies are consolidated together under Policy Sets, which can be accessed from **Policy > Policy Sets**. Each policy set is a container defined on the top level of the policy hierarchy, under which all relevant Authentication and Authorization policy and policy exception rules for that set are configured. Multiple rules can be defined for both authentication and authorization, all based on conditions. Conditions and additional related configurations can also be easily accessed and reused directly from the Policy Set interface.

Support for Common Access Card Functions

Cisco ISE supports U.S. government users who authenticate themselves using Common Access Card (CAC) authentication devices. A CAC is an identification badge with an electronic chip containing a set of X.509 client certificates that identify a particular employee of, for example, the U.S. Department of Defense (DoD). Access via the CAC requires a card reader into which the user inserts the card and enters a PIN. The certificates from the card are then transferred into the Windows certificate store, where they are available to applications such as the local browser running Cisco ISE.

Benefits of using a CAC card to authenticate include these:

- Common Access Card X.509 certificates are the identity source for 802.1X EAP-TLS authentication.
- Common Access Card X.509 certificates are also the identity source for authentication and authorization to Cisco ISE administration.

Cisco ISE only supports login to the Admin portal. It does not support CAC authentication for the following access methods:

- You cannot use CAC authentication login to manage the Cisco ISE Command Line Interface.
Client Posture Assessment

To ensure that the imposed network security measures remain relevant and effective, Cisco ISE enables you to validate and maintain security capabilities on any client machine that accesses the protected network. By employing posture policies that are designed to ensure that the most up-to-date security settings or applications are available on client machines, the Cisco ISE administrator can ensure that any client machine that accesses the network meets, and continues to meet, the defined security standards for enterprise network access. Posture compliance reports provide Cisco ISE with a snapshot of the compliance level of the client machine at the time of user login, as well as any time a periodic reassessment occurs.

Posture assessment and compliance occurs using one of the following agent types available in Cisco ISE:

- AnyConnect ISE Agent—A persistent agent that can be installed on Windows or Mac OS X client to perform posture compliance functions.
- Cisco Temporal Agent—A temporary executable file that is run on the client to check the compliance status. The agent is removed from the client machine after the login session is terminated. By default, the agent resides in the Cisco ISE ISO image, and is uploaded to Cisco ISE during installation.

Mobile Device Manager Interoperability with Cisco ISE

Mobile Device Management (MDM) servers secure, monitor, manage, and support mobile devices deployed across mobile operators, service providers, and enterprises. MDM enforces policy on endpoints, but it cannot force users to register their device or force remediation. ISE retrieves policies from the MDM server, and enforces those policies when users register their devices. If the ISE device policy requires MDM, and the device is not compliant with MDM, then ISE redirects the user to the MDM on-boarding portal, and prompts the user to update the device for network access. ISE can also allow internet-only access to users who decline MDM compliance.

Profiled Endpoints on the Network

The Profiler service assists in identifying, locating, and determining the capabilities of all endpoints on your network (known as identities in Cisco ISE), regardless of their device types, to ensure and maintain appropriate access to your enterprise network. The Cisco ISE Profiler function uses a number of probes to collect attributes for all endpoints on your network, and pass them to the Profiler analyzer, where the known endpoints are classified according to their associated policies and identity groups.

The Profiler Feed service allows administrators to retrieve new and updated endpoint profiling policies and the updated OUI database as a feed from a designated Cisco feed server through a subscription into Cisco ISE.
pxGrid Persona

Cisco pxGrid is used to enable the sharing of contextual-based information from Cisco ISE session directory to other policy network systems such as Cisco Adaptive Security Appliance (ASA). The pxGrid framework can also be used to exchange policy and configuration data between nodes like sharing tags and policy objects between ISE and third party vendors, and for non-ISE related information exchanges such as threat information.

TACACS+ Device Administration

Cisco ISE supports device administration using the Terminal Access Controller Access-Control System (TACACS+) security protocol to control and audit the configuration of network devices. The network devices are configured to query ISE for authentication and authorization of device administrator actions, and send accounting messages for ISE to log the actions. It facilitates granular control of who can access which network device and change the associated network settings. An ISE administrator can create policy sets that allow TACACS results, such as command sets and shell profiles, to be selected in authorization policy rules in a device administration access service. The ISE Monitoring node provides enhanced reports related to device administration. The Work Center menu contains all the device administration pages, which acts as a single start point for ISE administrators.

ISE requires a Device Administration license to use TACACS+.

Support for SXP

Source Group Tag (SGT) Exchange Protocol (SXP) is used to propagate the SGTs across network devices that do not have hardware support for TrustSec. SXP is used to transport an endpoint's SGT along with the IP address from one SGT-aware network device to another.

To enable SXP service on a node, check the Enable SXP Service check box in the General Node Settings page. You must also specify the interface to be used for SXP service.

Each SXP connection has one peer designated as SXP speaker and the other peer as SXP listener. The peers can also be configured in a bi-directional mode where each of them act as both speaker and listener. Connections can be initiated by either peers, but mapping information is always propagated from a speaker to a listener.

Third Party Device Support

Cisco ISE supports some third-party network access devices (NADs) through the use of network device profiles. These profiles define the capabilities that Cisco ISE uses to enable flows such as Guest, BYOD, MAB, and Posture.

Cisco ISE includes predefined profiles for network devices from the following vendors:

- Cisco—Wired and Wireless
- Aruba—Wireless
- HP—Wired and Wireless
- Motorola—Wireless
• Brocade—Wired
• Alcatel—Wired
• Ruckus—Wireless

You can also create profiles for additional third-party network device that does not have a predefined profile. AnyConnect client provisioning and posture discovery do not mandate CoA and URL redirection.

If you have deployed non-Cisco NADs prior to Release 2.0 and created policy rules/RADIUS dictionaries to use them, after upgrade these will continue to work as usual.

Telemetry

After installation, when you log in to the Admin portal for the first time, the Cisco ISE Telemetry banner appears on screen. Using this feature, Cisco ISE securely collects non-sensitive information about your deployment, network access devices, profiler, and other services that you are using. The data that is collected will be used to provide better services and additional features in forthcoming releases. By default, the telemetry feature is enabled. You can choose to disable it from the Admin portal.

IPv6 Support

From Cisco ISE, Release 2.0 onwards, the following IPv6 capabilities are supported:

- Support for IPv6-Enabled Endpoints: Cisco ISE can detect, manage, and secure IPv6 traffic from endpoints. You can configure authorization profiles and policies in Cisco ISE using IPv6 attributes to process requests from IPv6-enabled endpoints and ensure that the endpoint is compliant.

- IPv6 Support in Reports: Reports in Release 2.0 support IPv6 values. The Live Session and Live Authentication pages also support IPv6 values.

 - ipv6 address-To allow for static IPv6 address configuration per network interface
 - ipv6 enable-To enable or disable IPv6 on all network interfaces
 - ipv6 route-To configure IPv6 static routes
 - ip host-To allow for adding IPv6 addresses in host local table
 - show IPv6 route-To display IPv6 routes

From Cisco ISE 2.6 onwards, the following IPv6 capabilities are supported:

- Cisco ISE Admin GUI and CLI access support IPv6.
- IPv6 NTP server support.
- IPv6-based DNS server support.
- IPv6-based external repositories support
- IPv6-based admin users reporting for Login/Logout, Password and Operational changes.
- SNMP servers support over IPv6.
- IPv6-based Access Control Lists (ACLs), Airespace ACLs, Dynamic Access Control Lists (DACLs) support.
- IPv6-based Active Directory integration with Cisco ISE.
- IPv6 address or hostname to connect with External Restful Service (ERS).
- IPv6-based external syslog targets support.
- Connect to Radius servers with an IPv6 address.

Refer to the Cisco Identity Services Engine CLI Reference Guide for your release of ISE for more information about these commands.

IPv6 Support Comparisons

The following tables show the IPv6 support for different versions of Cisco ISE.

Cisco ISE Node Management

<table>
<thead>
<tr>
<th>Feature</th>
<th>2.4</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 for eth0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IPv6 and IPv4 for eth0 (setup wizard and CLI support)</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>IPv4 or IPv6 for eth1, eth2 or eth3 interfaces</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Manage (modify, add, remove, bond) IPv4 address via CLI for any interface</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Manage (modify, add, remove or bond) IPv6 address via CLI for any interface</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>SSH IPv6</td>
<td>–</td>
<td>✓ (IPv4 or IPv6)</td>
</tr>
<tr>
<td>Cisco ISE Admin GUI access over IPv4</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cisco ISE Admin GUI access over IPv6</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Restrict Admin GUI or CLI access by IP address</td>
<td>– (Only IPv4)</td>
<td>✓ (IPv4 or IPv6)</td>
</tr>
<tr>
<td>CLI CDP visibility</td>
<td>– (Only IPv4)</td>
<td>✓ (IPv4 or IPv6)</td>
</tr>
<tr>
<td>Cisco ISE Node Management (registration, manual-sync, replication, and so on)</td>
<td>– (Only IPv4)</td>
<td>– (Only IPv4)</td>
</tr>
<tr>
<td>Multiple IPv6 addresses on any interface during Cisco ISE installation</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

NTP Support

- The Primary PAN's NTP configuration is not replicated to secondary nodes in Cisco ISE, Release 2.4 and Release 2.6.
- You can configure different NTP servers on each node while deploying Cisco ISE, Release 2.4 and Release 2.6.
• You can configure a Cisco ISE node with an IPv4, IPv6, FQDN, or any mix of these host identifiers to connect to an NTP server.

• The administrator can configure NTP authentication keys, and associate those keys with primary, secondary, or tertiary NTP servers over IPv4 or IPv6, by marking them trusted.

• When Cisco ISE cannot sync with all the configured NTP servers (IPv4 or IPv6), Cisco ISE, Release 2.4 and Release 2.6 raises the alarm **NTP Sync Failure**.

• When the NTP service on Cisco ISE is not working, Cisco ISE Release 2.4 and Release 2.6 raises the alarm **NTP Service Failure**.

IPv6 Support Comparisons

<table>
<thead>
<tr>
<th>Feature</th>
<th>2.4</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP server with IPv4</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NTP server with IPv6</td>
<td>✓</td>
<td>✓ (limited)</td>
</tr>
<tr>
<td>NTP server with FQDN</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Primary, secondary, and tertiary NTP servers with IPv4</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Primary, secondary, and tertiary NTP servers with IPv6</td>
<td>✓</td>
<td>✓ (limited)</td>
</tr>
<tr>
<td>Primary, secondary, and tertiary NTP servers with FQDN</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NTP server configuration sync between CLI and GUI</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Raise NTP Alarms if all NTP servers are configured</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Raise NTP alarms if the service is affected</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NTP fallback mechanism from primary to secondary, then secondary to tertiary NTP servers</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NTP authentication</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

SNMP

• Cisco ISE supports NMS and SNMP servers. NMS configuration is only from the CLI.

• You can configure an IPv4-based or an IPv6-based SNMP servers.

• You can configure a connection to an IPv4-based or IPv6-based SNMP server hosted with v1, v2c, or v3.

• You can configure connections to multiple SNMP servers. You can mix IPv4 and IPv6 SNMP servers.

• Cisco ISE can send TRAPS or MIBs information over IPv6. For example, CDP IPv6 info to IPv4 or IPv6 SNMP servers.

<table>
<thead>
<tr>
<th>Feature</th>
<th>2.4</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP servers (IPv4) from CLI</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SNMP servers (IPv6) from CLI</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>SNMP server hosted on IPv4 server with v1, v2c, and v3 compatibility</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
SNMP Server Support

<table>
<thead>
<tr>
<th>Feature</th>
<th>IPv6 with v1, v2c, or v3 compatibility</th>
<th>–</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>– SNMP server hosted on IPv6 with v1, v2c, or v3 compatibility</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>– Configure an SNMP server from GUI.</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>– SNMP queries snmp-get, getmany, and getBulk from an IPv4 SNMP server to a Cisco ISE node</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>– SNMP queries snmp-get, getmany, and getBulk over IPv6 to a Cisco ISE node</td>
<td>–</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>– Traps sent to an IPv4 SNMP server</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>– Traps sent to an IPv6 SNMP server</td>
<td>–</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>– Traps or MIBs with IPv6 details sent to an IPv4 or an IPv6 SNMP server</td>
<td>–</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>– Multiple SNMP servers</td>
<td>✓ (only over IPv4)</td>
<td>✓ (IPv4 or IPv6)</td>
<td></td>
</tr>
</tbody>
</table>

DNS

<table>
<thead>
<tr>
<th>Feature</th>
<th>2.4</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 DNS server by the setup wizard</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IPv6 DNS server by the setup wizard</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>IPv4 DNS server by the CLI</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IPv6 DNS servers by the CLI</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Combination of IPv4 and IPv6 DNS servers</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Static hostnames with IPv6 addresses</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Failover between DNS servers</td>
<td>✓ within IPv4 based DNS servers</td>
<td>✓ irrespective of whether the DNS server is IPv4 or IPv6 based</td>
</tr>
</tbody>
</table>

External Repositories Support in 2.4 Vs 2.6

<table>
<thead>
<tr>
<th>Feature</th>
<th>2.4</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 repositories</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IPv6 repositories</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>FQDN repositories</td>
<td>✓ must resolve to IPv4</td>
<td>✓ resolve to IPv4 or IPv6</td>
</tr>
</tbody>
</table>

External Repositories Support Matrix

<table>
<thead>
<tr>
<th>Repository Type</th>
<th>Config Backup.</th>
<th>Config Restore</th>
<th>Upgrade</th>
<th>Operational Backup</th>
<th>Operational Restore</th>
<th>Support Bundle</th>
<th>Validate from GUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP (GUI or CLI)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SFTP (GUI or CLI)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TFTP (GUI or CLI)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>HTTP (UI or CLI)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HTTPS (GUI or CLI)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NFS (GUI or CLI)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

External Repositories

Repositories configured with an FQDN communicate over IPv4 or IPv6 based on whether:

- Cisco ISE is dual stack.
- The FQDN of external repository resolves to IPv4, IPv6 or both.

<table>
<thead>
<tr>
<th>IP Configuration on Cisco ISE</th>
<th>IP Config on Repository</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco ISE with IPv4 only</td>
<td>Repository with IPv4 only</td>
<td>✓</td>
</tr>
<tr>
<td>Repository with IPv6 only</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Repository with dual stack</td>
<td>✓ and communicates over IPv4</td>
<td></td>
</tr>
<tr>
<td>Cisco ISE with dual stack</td>
<td>Repository with IPv4 only</td>
<td>✓ and communicates over IPv4</td>
</tr>
<tr>
<td>Repository with IPv6 only</td>
<td>✓ and communicates over IPv6</td>
<td></td>
</tr>
<tr>
<td>Repository with dual stack</td>
<td>✓ and communicates over IPv6</td>
<td></td>
</tr>
<tr>
<td>Cisco ISE with IPv6 only</td>
<td>Repository with IPv4 only</td>
<td>NA; as Cisco ISE can have dual stack or IPv4 alone</td>
</tr>
<tr>
<td>Repository with IPv6 only</td>
<td>NA; as Cisco ISE can have dual stack or IPv4 only</td>
<td></td>
</tr>
<tr>
<td>Repository with dual stack</td>
<td>NA; as Cisco ISE can have dual stack or IPv4 only</td>
<td></td>
</tr>
<tr>
<td>Cisco ISE with IPv4 only</td>
<td>FQDN resolves to IPv4</td>
<td>Cisco ISE communicates over IPv4 (legacy)</td>
</tr>
<tr>
<td>FQDN resolves to IPv6</td>
<td>Can not communicate</td>
<td></td>
</tr>
<tr>
<td>Cisco ISE with dual stack</td>
<td>FQDN resolves to IPv4 and IPv6</td>
<td>✓ and communicates over IPv6</td>
</tr>
<tr>
<td>FQDN resolves to IPv6</td>
<td>✓ and communicates over IPv6</td>
<td></td>
</tr>
</tbody>
</table>

Access Control Lists And Dynamic Access Control Lists

From Cisco ISE, Release 2.6, you can define Access Control Lists (ACLs), Dynamic Access Control Lists (DACLs) and Cisco Airespace ACLs with IPv6 addresses.

External Restful Service Portal

You can connect to the IPv6 Active Directory from Cisco ISE.

Syslog Client or Logging Targets

You can configure IPv6-based syslog targets
Posture
You can access RADIUS servers with an IPv6 address.

Location Based Authorization
Cisco ISE integrates with Cisco Mobility Services Engine (MSE) to introduce physical location-based authorization. Cisco ISE uses information from MSE to provide differentiated network access based on the actual location of the user, as reported by MSE.

With this feature, you can use the endpoint location information to provide network access when a user is in an appropriate zone. You can also add the endpoint location as an additional attribute for policies to define more granulated policy authorization sets based on device location. You can configure conditions within authorization rules that use location-based attributes, for example:

MSE.Location Equals LND_Campus1:Building1:Floor2:SecureZone

You can define the location hierarchy (campus/building/floor structure) and configure the secure and non-secure zones using the Cisco Prime Infrastructure application. After defining the location hierarchy, you must synchronize the location hierarchy data with the MSE servers.

The Location Tree is created by using the location data retrieved from the MSE instances. You can select the location entries that are exposed to the authorization policy by using the Location Tree.

Cisco ISE Certificate Authority
Cisco ISE provides a native Certificate Authority (CA) that issues and manages digital certificates for endpoints from a centralized console to allow employees to connect to the company's network using their personal devices. Cisco ISE CA supports standalone and subordinate deployments.

Certificate Provisioning Portal
Cisco ISE offers a Certificate Provisioning portal that allows employees to request certificates for devices that cannot go through the onboarding flow. For example, devices such as point-of-sale terminals cannot go through the BYOD flow and need to be issued certificates manually. The Certificate Provisioning portal allows a privileged set of users to upload a certificate request for such devices, generate key pairs (if required), and download the certificate. Employees can access this portal and request for a single certificate or make a bulk certificate request using a CSV file.

Certificate Template Extension
The Cisco ISE Internal CA includes an extension to represent the certificate template that was used to create the endpoint certificate. All endpoint certificates issued by the internal CA contain a certificate template name extension. This extension represents the certificate template that was used to create that endpoint certificate. You can use the CERTIFICATE: Template Name attribute in authorization policy conditions and assign appropriate access privileges based on the results of the evaluation.
Cisco ISE Internal CA Issues Certificates to ASA VPN Users

The internal ISE CA can issue certificates to client machines that connect over ASA VPN. ISE uses the Simple Certificate Enrollment Protocol (SCEP) for enrollment and to provision certificates from Cisco ISE to the client machines.

Support for Active Directory Multidomain Forests

Cisco ISE supports Active Directory with multidomain forests. Cisco ISE connects to a single domain, but can access resources from the other domains in the Active Directory forest if trust relationships are established between the domain to which Cisco ISE is connected and the other domains.

Support for SAnet Devices

Cisco ISE provides limited support for Session Aware Networking (SAnet), a session management framework on the switches that provides more consistent and flexible management of access-sessions, including visibility, authentication, and authorization. SAnet defines the notion of a service template which is an authorization object accepted both by ISE as well as by the device. This is in contradistinction to Cisco ISE authorization profiles which are containers of RADIUS authorization attributes that are merged and flattened into a list of attributes before they are sent to the device. Similarly, SAnet service templates are also containers of RADIUS authorization attributes but they are not flattened into a list before sending to the device. Instead, Cisco ISE sends the name of the service template and the device downloads the content (RADIUS attributes) if it does not already have a cached or statically defined version of it. In addition, Cisco ISE sends CoA notifications to the device if the definition of a service template has changed, that is, if a RADIUS attribute was added, removed or changed.

Cisco ISE implements service templates as authorization profiles that contain a special flag that marks them as “Service Template” compatible. This way the service template, which is also an authorization profile, can be used in a single policy statement that will support sessions connecting from SAnet capable devices as well as legacy devices.

Support for Automatic Failover for the Administration Node

Cisco ISE supports automatic failover for the Administration persona. To enable the auto-failover feature, at least two nodes in your distributed setup should assume the Administration persona and one node should assume the non-Administration persona. If the Primary Administration Node (PAN) goes down, an automatic promotion of the Secondary Administration Node is initiated. For this, a non-administration secondary node is designated as the health check node for each of the administration nodes. The health check node checks the health of PAN at configured intervals. If the health check response received for the PAN health is not good due to being down or not reachable, health check node initiates the promotion of the Secondary Administration Node to take over the primary role after waiting for the configured threshold value. There are some features that are unavailable after auto-failover of the Secondary Administrative Node. Cisco ISE does not support fallback to the original PAN. Refer to the High Availability for the Administration Nodes section for more information.
GUI-Based Upgrade

Cisco ISE offers a GUI-based centralized upgrade from the Admin portal. The upgrade process is much simplified and the progress of the upgrade and the status of the nodes are displayed on screen.

Note
The GUI-based upgrade is applicable only if you are upgrading from Release 2.0 to a higher release or if you are upgrading a Limited Availability Release of Cisco ISE 2.0 to the General Availability Release.

Technical Support Tunnel for Advanced Troubleshooting

Cisco ISE uses the Cisco IronPort Tunnel infrastructure to create a secure tunnel for Cisco technical support engineers to connect to an ISE server in your deployment and troubleshoot issues with the system. Cisco ISE uses SSH to create the secure connection through the tunnel. As an administrator, you can control the tunnel access; you can choose when and how long to grant access to the support engineer. Cisco Customer Support cannot establish the tunnel without your intervention. You will receive notification about the service logins. You can disable the tunnel connection at any point of time.