Cisco Intrusion Prevention System
Appliance and Module Installation Guide
for IPS 6.1

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-15170-01
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If the equipment causes interference to radio or television reception, which can be determined by turning the equipment off and on, users are encouraged to try to correct the interference by using one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Modifications to this product not authorized by Cisco could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Cisco Intrusion Prevention System Appliance and Module Installation Guide for IPS 6.1
© 2008-2012 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface xiii

Contents xiii
Audience xiii
Comply with Local and National Electrical Codes xiii
Conventions xv
Related Documentation xvi
Obtaining Documentation and Submitting a Service Request xvi

CHAPTER 1

Introducing the Sensor 1-1

How the Sensor Functions 1-1
Capturing Network Traffic 1-1
Your Network Topology 1-3
Correctly Deploying the Sensor 1-3
Tuning the IPS 1-3
Sensor Interfaces 1-4
Understanding Sensor Interfaces 1-4
Command and Control Interface 1-5
Sensing Interfaces 1-6
Interface Support 1-6
TCP Reset Interfaces 1-9
Interface Restrictions 1-10
Interface Modes 1-12
Promiscuous Mode 1-12
Inline Interface Pair Mode 1-13
Inline VLAN Pair Mode 1-13
VLAN Group Mode 1-13
Deploying VLAN Groups 1-14
Supported Sensors 1-15
IPS Appliances 1-16
Introducing the IPS Appliance 1-17
Appliance Restrictions 1-17
Connecting an Appliance to a Terminal Server 1-17
IPS Modules 1-18
Introducing AIM-IPS 1-19
Contents

Introducing NME-IPS 1-20
Introducing AIP-SSM 1-21
Introducing IDSM-2 1-23

Time Sources and the Sensor 1-24
The Sensor and Time Sources 1-24
Synchronizing IPS Module System Clocks with the Parent Device System Clock 1-26
Verifying the Sensor is Synchronized with the NTP Server 1-27
Correcting the Time on the Sensor 1-27

Installation Preparation 1-28
Site and Safety Guidelines 1-28
Site Guidelines 1-29
Rack Configuration Guidelines 1-29
Electrical Safety Guidelines 1-29
Power Supply Guidelines 1-30
Working in an ESD Environment 1-31

Cable Pinouts 1-32
10/100BaseT and 10/100/1000BaseT Connectors 1-32
Console Port (RJ-45) 1-33
RJ-45 to DB-9 or DB-25 1-34

CHAPTER 2
Installing IPS-4240 and IPS-4255 2-1
Introducing IPS-4240 and IPS-4255 2-1
Front and Back Panel Features 2-2
Specifications 2-4
Connecting IPS-4240 to a Cisco 7200 Series Router 2-5
Accessories 2-5
Important Safety Instructions 2-5
Rack Mounting 2-6
Installing IPS-4240 and IPS-4255 2-7
Installing IPS-4240-DC 2-10

CHAPTER 3
Installing IPS-4260 3-1
Introducing IPS-4260 3-1
Supported Interface Cards 3-2
Hardware Bypass 3-4
4GE Bypass Interface Card 3-4
Hardware Bypass Configuration Restrictions 3-5
Hardware Bypass Link Status Changes and Drops 3-6
Front and Back Panel Features 3-6
Specifications 3-9
Accessories 3-9
Important Safety Instructions 3-10
Rack Mounting 3-10
 Installing IPS-4260 in a 4-Post Rack 3-10
 Installing IPS-4260 in a 2-Post Rack 3-13
Installing IPS-4260 3-15
Removing and Replacing the Chassis Cover 3-18
Installing and Removing Interface Cards 3-20
Installing and Removing the Power Supply 3-22

CHAPTER 4
Installing IPS 4270-20 4-1
Introducing IPS 4270-20 4-2
Supported Interface Cards 4-3
Hardware Bypass 4-5
 4GE Bypass Interface Card 4-5
 Hardware Bypass Configuration Restrictions 4-6
 Hardware Bypass Link Status Changes and Drops 4-6
Front and Back Panel Features 4-7
Diagnostic Panel 4-13
Specifications 4-14
Accessories 4-15
Important Safety Instructions 4-15
Installing the Rail System Kit 4-15
 Understanding the Rail System Kit 4-16
 Rail System Kit Contents 4-16
 Space and Airflow Requirements 4-17
 Installing IPS 4270-20 in the Rack 4-17
 Extending IPS 4270-20 from the Rack 4-26
 Installing the Cable Management Arm 4-29
 Converting the Cable Management Arm 4-32
Installing IPS 4270-20 4-35
Removing and Replacing the Chassis Cover 4-39
Accessing the Diagnostic Panel 4-42
Installing and Removing Interface Cards 4-43
Installing and Removing the Power Supply 4-45
Installing and Removing Fans 4-50
Troubleshooting Loose Connections 4-52

CHAPTER 5
Installing AIM-IPS 5-1
Specifications 5-1
Before Installing AIM-IPS 5-2
Software and Hardware Requirements 5-2
Interoperability With Other IPS Modules 5-3
Restrictions 5-3
Hardware Interfaces 5-4
Installation and Removal Instructions 5-5
Verifying Installation 5-6

CHAPTER 6
Installing AIP-SSM 6-1
Specifications 6-1
Memory Specifications 6-2
Hardware and Software Requirements 6-2
Indicators 6-2
Installation and Removal Instructions 6-3
Installing AIP-SSM 6-3
Verifying the Status of AIP-SSM 6-4
Removing AIP-SSM 6-5

CHAPTER 7
Installing IDSM-2 7-1
Specifications 7-1
Software and Hardware Requirements 7-2
Minimum Supported IDSM-2 Configurations 7-2
Using the TCP Reset Interface 7-3
Front Panel Features 7-3
Installation and Removal Instructions 7-4
Required Tools 7-4
Slot Assignments 7-5
Installing IDSM-2 7-5
Verifying Installation 7-9
Removing IDSM-2 7-10
Enabling Full Memory Tests 7-12
Catalyst Software 7-12
Contents

- **Cisco IOS Software** 7-13
- **Resetting IDSM-2** 7-13
- **Catalyst Software** 7-13
- **Cisco IOS Software** 7-14
- **Powering IDSM-2 On and Off** 7-15
- **Catalyst Software** 7-15
- **Cisco IOS Software** 7-15

Chapter 8

Installing NME-IPS 8-1
- Specifications 8-1
- Before Installing NME-IPS 8-2
- Software and Hardware Requirements 8-2
- Interoperability With Other IPS Modules 8-3
- Restrictions 8-3
- Hardware Interfaces 8-4
- Installation and Removal Instructions 8-5
- Verifying Installation 8-5

Chapter 9

Initializing the Sensor 9-1
- Understanding Initialization 9-1
- Simplified Setup Mode 9-1
- System Configuration Dialog 9-2
- Basic Sensor Setup 9-3
- Advanced Setup 9-6
 - Advanced Setup for the Appliance 9-7
 - Advanced Setup for AIM-IPS 9-13
 - Advanced Setup for AIP-SSM 9-16
 - Advanced Setup for IDSM-2 9-20
 - Advanced Setup for NME-IPS 9-25
- Verifying Initialization 9-28

Chapter 10

Logging In to the Sensor 10-1
- Supported User Roles 10-1
- Logging In to the Appliance 10-2
- Connecting an Appliance to a Terminal Server 10-3
- Logging In to AIM-IPS 10-4
 - AIM-IPS and the session Command 10-4
Sessioning In to AIM-IPS 10-5
Logging In to AIP-SSM 10-6
Logging In to IDSM-2 10-7
Logging In to NME-IPS 10-9
 NME-IPS and the session Command 10-9
 Sessioning In to NME-IPS 10-9
Logging In to the Sensor 10-11

CHAPTER 11

Obtaining Software 11-1
 Obtaining Cisco IPS Software 11-1
 IPS Software Versioning 11-3
 Software Release Examples 11-6
Upgrading Cisco IPS Software to 6.1 11-7
Accessing IPS Documentation 11-9
Cisco Security Intelligence Operations 11-9
 Obtaining a License Key From Cisco.com 11-10
 Understanding Licensing 11-10
 Service Programs for IPS Products 11-11
 Obtaining and Installing the License Key Using IDM 11-12
 Obtaining and Installing the License Key Using the CLI 11-13

CHAPTER 12

Upgrading, Downgrading, and Installing System Images 12-1
 Upgrades, Downgrades, and System Images 12-1
 Supported FTP and HTTP/HTTPS Servers 12-2
Upgrading the Sensor 12-2
 IPS 6.1 Upgrade Files 12-2
 upgrade Command and Options 12-3
 Using the upgrade Command 12-4
 Upgrading the Recovery Partition 12-5
Configuring Automatic Upgrades 12-6
 Automatic Upgrades 12-6
 auto-upgrade Command and Options 12-7
 Using the auto-upgrade Command 12-8
Downgrading the Sensor 12-10
Recovering the Application Partition 12-10
 Application Partition 12-10
 Using the recover Command 12-11
Time and the Sensor A-16
 Time Sources and the Sensor A-16
 Synchronizing IPS Module Clocks with Parent Device Clocks A-18
 Verifying the Sensor is Synchronized with the NTP Server A-18
 Correcting Time on the Sensor A-19
Advantages and Restrictions of Virtualization A-19
Supported MIBs A-20
When to Disable Anomaly Detection A-20
Troubleshooting External Product Interfaces A-21
 External Product Interfaces Issues A-21
 External Product Interfaces Troubleshooting Tips A-22
Troubleshooting the 4200 Series Appliance A-23
 Hardware Bypass Link Status Changes and Drops A-23
Troubleshooting Loose Connections A-24
Analysis Engine is Busy A-24
Connecting IPS-4240 to a Cisco 7200 Series Router A-25
Communication Problems A-25
 Cannot Access the Sensor CLI Through Telnet or SSH A-25
 Correcting a Misconfigured Access List A-27
 Duplicate IP Address Shuts Interface Down A-28
SensorApp and Alerting A-29
 SensorApp Not Running A-30
 Physical Connectivity, SPAN, or VACL Port Issue A-31
 Unable to See Alerts A-33
 Sensor Not Seeing Packets A-34
 Cleaning Up a Corrupted SensorApp Configuration A-36
Blocking A-37
 Troubleshooting Blocking A-37
 Verifying ARC is Running A-38
 Verifying ARC Connections are Active A-39
 Device Access Issues A-40
 Verifying the Interfaces and Directions on the Network Device A-42
 Enabling SSH Connections to the Network Device A-43
 Blocking Not Occurring for a Signature A-43
 Verifying the Master Blocking Sensor Configuration A-44
Logging A-46
 Understanding Debug Logging A-46
 Enabling Debug Logging A-46
 Zone Names A-50
Contents

Directing cidLog Messages to SysLog A-50
TCP Reset Not Occurring for a Signature A-51
Software Upgrades A-53
 Upgrading to 6.x A-53
 Which Updates to Apply and Their Prerequisites A-53
 Issues With Automatic Update A-54
 Updating a Sensor with the Update Stored on the Sensor A-55
Troubleshooting IDM A-55
 Cannot Launch IDM - Loading Java Applet Failed A-56
 Cannot Launch IDM - Analysis Engine Busy A-56
 IDM, Remote Manager, or Sensing Interfaces Cannot Access Sensor A-57
 Signatures Not Producing Alerts A-58
Troubleshooting IME A-58
 Time Synchronization on IME and the Sensor A-58
 Not Supported Error Message A-59
Troubleshooting IDSM-2 A-59
 Diagnosing IDSM-2 Problems A-59
 Minimum Supported IDSM-2 Configurations A-60
 Switch Commands for Troubleshooting A-61
 Status LED Off A-61
 Status LED On But IDSM-2 Does Not Come Online A-63
 Cannot Communicate With IDSM-2 Command and Control Port A-64
 Using the TCP Reset Interface A-65
 Connecting a Serial Cable to IDSM-2 A-66
Troubleshooting AIP-SSM A-66
 Health and Status Information A-66
 Failover Scenarios A-68
 AIP-SSM and the Data Plane A-70
 AIM-IPS and the Normalizer Engine A-70
 TCP Reset Differences Between IPS Appliances and AIP-SSM A-71
Troubleshooting AIM-IPS and NME-IPS A-71
 Interoperability With Other IPS Network Modules A-71
Gathering Information A-72
 Health and Network Security Information A-72
 Tech Support Information A-73
 Understanding the show tech-support Command A-73
 Displaying Tech Support Information A-73
 Tech Support Command Output A-74
 Version Information A-76
Preface

Published: April 21, 2008, OL-15170-01
Revised: September 3, 2012

Contents

This guide describes how to install appliances and modules that support Cisco IPS 6.1. It includes a glossary that contains expanded acronyms and pertinent IPS terms. It is part of the documentation set for Cisco Intrusion Prevention System 6.1. Use this guide in conjunction with the documents listed in Related Documentation, page xvi. This preface contains the following topics:

• Audience, page xiii
• Comply with Local and National Electrical Codes, page xiii
• Conventions, page xv
• Related Documentation, page xvi
• Obtaining Documentation and Submitting a Service Request, page xvi

Audience

This guide is for experienced network security administrators who install and maintain Cisco IPS sensors, including the supported IPS appliances and modules.

Comply with Local and National Electrical Codes

Warning
Installation of the equipment must comply with local and national electrical codes. Statement 1074

Waarschuwing
Bij installatie van de apparatuur moet worden voldaan aan de lokale en nationale elektriciteitsvoorschriften.

Varoitus
Laitteisto tulee asentaa paikallisten ja kansallisten sähkömääräysten mukaisesti.
<table>
<thead>
<tr>
<th>Language</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td>L’équipement doit être installé conformément aux normes électricques nationales et locales.</td>
</tr>
<tr>
<td>Warning</td>
<td>Die Installation der Geräte muss den Sicherheitsstandards entsprechen.</td>
</tr>
<tr>
<td>Avvertenza</td>
<td>L'installazione dell'impianto deve essere conforme ai codici elettrici locali e nazionali.</td>
</tr>
<tr>
<td>Advarsel</td>
<td>Installasjon av utstyret må samsvre med lokale og nasjonale elektrisitetsforskrifter.</td>
</tr>
<tr>
<td>Aviso</td>
<td>A instalação do equipamento deve estar em conformidade com os códigos elétricos locais e nacionais.</td>
</tr>
<tr>
<td>¡Advertencia!</td>
<td>La instalación del equipo debe cumplir con las normativas de electricidad locales y nacionales.</td>
</tr>
<tr>
<td>Warning!</td>
<td>Installation av utrustningen måste ske i enlighet med gällande elinstallationsföreskrifter.</td>
</tr>
<tr>
<td>Предупреждение</td>
<td>Установка оборудования должна соответствовать местным и национальным электротехническим нормам.</td>
</tr>
<tr>
<td>警告</td>
<td>设备安装必须符合本地与本国电气法规。</td>
</tr>
<tr>
<td>警告</td>
<td>機器の取り付けは地域および国内の電気工事規定に遵守する必要があります。</td>
</tr>
<tr>
<td>주의</td>
<td>현지 및 국가 점기 규정에 따라 장비를 설치해야 합니다.</td>
</tr>
<tr>
<td>Aviso</td>
<td>A instalação do equipamento deve estar em conformidade com os códigos elétricos nacionais.</td>
</tr>
<tr>
<td>Upozornění</td>
<td>Instalace zařízení musí splňovat příslušné místní a státní elektrotechnické normy.</td>
</tr>
<tr>
<td>אזהרה</td>
<td>התקנות המוזר חיבת לא יobsolete את חוקי החשמל הממלכתיים והאזרחיים.</td>
</tr>
<tr>
<td>Ostrzeżenie</td>
<td>Instalacja sprzętu musi być zgodna z lokalnymi i krajowymi normami elektrycznymi.</td>
</tr>
<tr>
<td>Upozornenie</td>
<td>Inštalácia zariadenia sa musí vykonať v súlade s miestnymi a národnými predpismi pre inštaláciu elektrických zariadení.</td>
</tr>
</tbody>
</table>
Conventions

This document has the following conventions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands, keywords, special terminology, and options that should be selected during procedures</td>
<td>boldface font</td>
</tr>
<tr>
<td>Variables for which you supply values and new or important terminology</td>
<td>italic font</td>
</tr>
<tr>
<td>Displayed session and system information, paths, and filenames</td>
<td>screen font</td>
</tr>
<tr>
<td>Information you enter</td>
<td>boldface screen font</td>
</tr>
<tr>
<td>Variables you enter</td>
<td>italic screen font</td>
</tr>
<tr>
<td>Menu items and button names</td>
<td>boldface font</td>
</tr>
<tr>
<td>Indicates menu items to select, in the order you select them.</td>
<td>Option > Network Preferences</td>
</tr>
</tbody>
</table>

Note

Means *reader take note*. Notes identify important information that you should reflect upon before continuing, contain helpful suggestions, or provide references to materials not contained in the document.

Caution

Means *reader be careful*. In this situation, you might do something that could result in equipment damage, loss of data, or a potential breach in your network security.

Tip

Identifies information to help you get the most benefit from your product.

Warning

Identifies information that you must heed to prevent damaging yourself, the state of software, or equipment. Warnings identify definite security breaches that will result if the information presented is not followed carefully.
Related Documentation

For more information on Cisco IPS 6.1, refer to the following documentation found at this URL:

- Documentation Roadmap for Cisco Intrusion Prevention System 6.1
- Release Notes for Cisco Intrusion Prevention System 6.1
- Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
- Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
- Cisco Intrusion Prevention System Command Reference 6.1
- Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1
- Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as an RSS feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service. Cisco currently supports RSS Version 2.0.
Introducing the Sensor

This chapter introduces the sensor and provides information you should know before you install the sensor. In this guide, the term sensor refers to all models unless noted otherwise. For a complete list of supported sensors and their model numbers, see Supported Sensors, page 1-15. This chapter contains the following sections:

- How the Sensor Functions, page 1-1
- Supported Sensors, page 1-15
- IPS Appliances, page 1-16
- IPS Modules, page 1-18
- Time Sources and the Sensor, page 1-24
- Installation Preparation, page 1-28
- Site and Safety Guidelines, page 1-28
- Cable Pinouts, page 1-32

How the Sensor Functions

This section describes how the sensor functions, and contains the following topics:

- Capturing Network Traffic, page 1-1
- Your Network Topology, page 1-3
- Correctly Deploying the Sensor, page 1-3
- Tuning the IPS, page 1-3
- Sensor Interfaces, page 1-4
- Interface Modes, page 1-12

Capturing Network Traffic

The sensor can operate in either promiscuous or inline mode. Figure 1-1 on page 1-2 shows how you can deploy a combination of sensors operating in both inline (IPS) and promiscuous (IDS) modes to protect your network.
The command and control interface is always Ethernet. This interface has an assigned IP address, which allows it to communicate with the manager workstation or network devices (Cisco switches, routers, and firewalls). Because this interface is visible on the network, you should use encryption to maintain data privacy. SSH is used to protect the CLI and TLS/SSL is used to protect the manager workstation. SSH and TLS/SSL are enabled by default on the manager workstations.

When responding to attacks, the sensor can do the following:

- **Insert TCP resets via the sensing interface.**

 Note You should select the TCP reset action only on signatures associated with a TCP-based service. If selected as an action on non-TCP-based services, no action is taken. Additionally, TCP resets are not guaranteed to tear down an offending session because of limitations in the TCP protocol.

- **Make ACL changes on switches, routers, and firewalls that the sensor manages.**

 Note ACLs may block only future traffic, not current traffic.
How the Sensor Functions

- Generate IP session logs, session replay, and trigger packets display.

 IP session logs are used to gather information about unauthorized use. IP log files are written when events occur that you have configured the appliance to look for.

- Implement multiple packet drop actions to stop worms and viruses.

Your Network Topology

Before you deploy and configure your sensors, you should understand the following about your network:

- The size and complexity of your network.
- Connections between your network and other networks (and the Internet).
- The amount and type of network traffic on your network.

This knowledge will help you determine how many sensors are required, the hardware configuration for each sensor (for example, the size and type of network interface cards), and how many managers are needed.

Correctly Deploying the Sensor

You should always position the IPS sensor behind a perimeter-filtering device, such as a firewall or adaptive security appliance. The perimeter device filters traffic to match your security policy thus allowing acceptable traffic into your network. Correct placement significantly reduces the number of alerts, which increases the amount of actionable data you can use to investigate security violations. If you position the IPS sensor on the edge of your network in front of a firewall, your sensor will produce alerts on every single scan and attempted attack even if they have no significance to your network implementation. You will receive hundreds, thousands, or even millions of alerts (in a large enterprise environment) that are not really critical or actionable in your environment. Analyzing this type of data is time consuming and costly.

Tuning the IPS

Tuning the IPS ensures that the alerts you see reflect true actionable information. Without tuning the IPS, it is difficult to do security research or forensics on your network because you will have thousands of benign events, also known as false positives. False positives are a by-product of all IPS devices, but they occur much less frequently in Cisco IPS devices since Cisco IPS devices are stateful, normalized, and use vulnerability signatures for attack evaluation. Cisco IPS devices also provide risk rating, which identifies high risk events, and policy-based management, which lets you deploy rules to enforce IPS signature actions based on risk rating.

Follow these tips when tuning your IPS sensors:

- Place your sensor on your network behind a perimeter-filtering device.

 Proper sensor placement can reduce the number of alerts you need to examine by several thousands a day.

- Deploy the sensor with the default signatures in place.

 The default signature set provides you with a very high security protection posture. The Cisco signature team has spent many hours on testing the defaults to give your sensor the highest protection. If you think that you have lost these defaults, you can restore them.
How the Sensor Functions

Chapter 1 Introducing the Sensor

Make sure that the event action override is set to drop packets with a risk rating greater than 90. This is the default and ensures that high risk alerts are stopped immediately.

Filter out known false positives caused by specialized software, such as vulnerability scanner and load balancers by one of the following methods:
 – You can configure the sensor to ignore the alerts from the IP addresses of the scanner and load balancer.
 – You can configure the sensor to allow these alerts and then use IME to filter out the false positives.

Filter the Informational alerts.
These low priority events notifications could indicate that another device is doing reconnaissance on a device protected by the IPS. Research the source IP addresses from these Informational alerts to determine what the source is.

Analyze the remaining actionable alerts:
 – Research the alert.
 – Fix the attack source.
 – Fix the destination host.
 – Modify the IPS policy to provide more information.

For More Information
 • For a detailed description of risk rating, refer to Calculating the Risk Rating.
 • For information on Cisco signatures for IDM and IME, refer to Defining Signatures, and for the CLI, refer to Defining Signatures.
 • For detailed information on event action overrides, for IDM and IME, refer to Configuring Event Action Overrides, and for the CLI, refer to Configuring Event Action Overrides.
 • For information on using Cisco IME, refer to Installing and Using Cisco Intrusion Prevention System Manager Express 6.1.

Sensor Interfaces

This section describes the sensor interfaces, and contains the following topics:
 • Understanding Sensor Interfaces, page 1-4
 • Command and Control Interface, page 1-5
 • Sensing Interfaces, page 1-6
 • Interface Support, page 1-6
 • TCP Reset Interfaces, page 1-9
 • Interface Restrictions, page 1-10

Understanding Sensor Interfaces

The sensor interfaces are named according to the maximum speed and physical location of the interface. The physical location consists of a port number and a slot number. All interfaces that are built-in on the sensor motherboard are in slot 0, and the interface card expansion slots are numbered beginning with slot 1 for the bottom slot with the slot numbers increasing from bottom to top (except for IPS 4270-20,
where the ports are numbered from top to bottom). Interfaces with a given slot are numbered beginning with port 0 for the right port with the port numbers increasing from right to left. For example, GigabitEthernet2/1 supports a maximum speed of 1 Gigabit and is the second-from-the-right interface in the second-from-the-bottom interface card expansion slot. IPS-4240, IPS-4255, IPS-4260, and IPS 4270-20 are exceptions to this rule. The command and control interface on these sensors is called Management0/0 rather than GigabitEthernet0/0. IPS 4270-20 has an additional interface called Management0/1, which is reserved for future use.

There are three interface roles:

- Command and control
- Sensing
- Alternate TCP reset

There are restrictions on which roles you can assign to specific interfaces and some interfaces have multiple roles. You can configure any sensing interface to any other sensing interface as its TCP reset interface. The TCP reset interface can also serve as an IDS (promiscuous) sensing interface at the same time. The following restrictions apply:

- Because AIM-IPS, AIP-SSM, and NME-IPS only have one sensing interface, you cannot configure a TCP reset interface.
- Because of hardware limitations on the Catalyst switch, both of the IDSM-2 sensing interfaces are permanently configured to use System0/1 as the TCP reset interface.
- The TCP reset interface that is assigned to a sensing interface has no effect in inline interface or inline VLAN pair mode, because TCP resets are always sent on the sensing interfaces in those modes.

Each physical interface can be divided into VLAN group subinterfaces, each of which consists of a group of VLANs on that interface.

Command and Control Interface

The command and control interface has an IP address and is used for configuring the sensor. It receives security and status events from the sensor and queries the sensor for statistics.

The command and control interface is permanently enabled. It is permanently mapped to a specific physical interface, which depends on the specific model of sensor. You cannot use the command and control interface as either a sensing or alternate TCP reset interface.

Table 1-1 lists the command and control interfaces for each sensor.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Command and Control Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-IPS</td>
<td>Management0/0</td>
</tr>
<tr>
<td>AIP-SSM-10</td>
<td>GigabitEthernet0/0</td>
</tr>
<tr>
<td>AIP-SSM-20</td>
<td>GigabitEthernet0/0</td>
</tr>
<tr>
<td>AIP-SSM-40</td>
<td>GigabitEthernet0/0</td>
</tr>
<tr>
<td>IDSM-2</td>
<td>GigabitEthernet0/2</td>
</tr>
<tr>
<td>IPS-4240</td>
<td>Management0/0</td>
</tr>
</tbody>
</table>
Sensing Interfaces

Sensing interfaces are used by the sensor to analyze traffic for security violations. A sensor has one or more sensing interfaces depending on the sensor. Sensing interfaces can operate individually in promiscuous mode or you can pair them to create inline interfaces.

Note

On appliances, all sensing interfaces are disabled by default. You must enable them to use them. On modules, the sensing interfaces are permanently enabled.

Some appliances support optional interface cards that add sensing interfaces to the sensor. You must insert or remove these optional cards while the sensor is powered off. The sensor detects the addition or removal of a supported interface card. If you remove an optional interface card, some of the interface configuration is deleted, such as the speed, duplex, description string, enabled/disabled state of the interface, and any inline interface pairings. These settings are restored to their default settings when the card is reinstalled. However, the assignment of promiscuous and inline interfaces to the Analysis Engine is not deleted from the Analysis Engine configuration, but is ignored until those cards are reinserted and you create the inline interface pairs again.

Interface Support

Table 1-2 describes the interface support for appliances and modules running Cisco IPS 6.1.

<table>
<thead>
<tr>
<th>Base Chassis</th>
<th>Added Interface Cards</th>
<th>Interfaces Supporting Inline VLAN Pairs (Sensing Ports)</th>
<th>Combinations Supporting Inline Interface Pairs</th>
<th>Interfaces Not Supporting Inline (Command and Control Port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-IPS</td>
<td>—</td>
<td>GigabitEthernet0/1 by <code>ids-service-module</code> command in the router configuration instead of VLAN pair or inline interface pair</td>
<td>GigabitEthernet0/1 by <code>ids-service-module</code> command in the router configuration instead of VLAN pair or inline interface pair</td>
<td>Management0/0</td>
</tr>
<tr>
<td>AIP-SSM-10</td>
<td>—</td>
<td>GigabitEthernet0/1 by security context instead of VLAN pair or inline interface pair</td>
<td>GigabitEthernet0/1 by security context instead of VLAN pair or inline interface pair</td>
<td>GigabitEthernet0/0</td>
</tr>
</tbody>
</table>
Table 1-2 Interface Support (continued)

<table>
<thead>
<tr>
<th>Base Chassis</th>
<th>Added Interface Cards</th>
<th>Interfaces Supporting Inline VLAN Pairs (Sensing Ports)</th>
<th>Combinations Supporting Inline Interface Pairs</th>
<th>Interfaces Not Supporting Inline (Command and Control Port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIP-SSM-20</td>
<td>—</td>
<td>GigabitEthernet0/1 by security context instead of VLAN pair or inline interface pair</td>
<td>GigabitEthernet0/1 by security context instead of VLAN pair or inline interface pair</td>
<td>GigabitEthernet0/0</td>
</tr>
<tr>
<td>AIP-SSM-40</td>
<td>—</td>
<td>GigabitEthernet0/1 by security context instead of VLAN pair or inline interface pair</td>
<td>GigabitEthernet0/1 by security context instead of VLAN pair or inline interface pair</td>
<td>GigabitEthernet0/0</td>
</tr>
</tbody>
</table>
| IDSM-2 | — | GigabitEthernet0/7
GigabitEthernet0/8 | 0/7<->0/8 | GigabitEthernet0/2 |
| IPS-4240 | — | GigabitEthernet0/0
GigabitEthernet0/1
GigabitEthernet0/2
GigabitEthernet0/3 | 0/0<->0/1
0/0<->0/2
0/0<->0/3
0/1<->0/2
0/1<->0/3
0/2<->0/3 | Management0/0 |
| IPS-4255 | — | GigabitEthernet0/0
GigabitEthernet0/1
GigabitEthernet0/2
GigabitEthernet0/3 | 0/0<->0/1
0/0<->0/2
0/0<->0/3
0/1<->0/2
0/1<->0/3
0/2<->0/3 | Management0/0 |
| IPS-4260 | — | GigabitEthernet0/1 | N/A | Management0/0 |
| IPS-4260 4GE-BP | 4GE-BP | GigabitEthernet0/1 | 2/0<->2/1
2/2<->2/3 | Management0/0 |
| IPS-4260 2SX | 2SX | GigabitEthernet0/1 | All sensing ports can be paired together | Management0/0 |
| IPS-4260 | 2SX | GigabitEthernet0/1 | All sensing ports can be paired together | Management0/0 |
Table 1-2 Interface Support (continued)

<table>
<thead>
<tr>
<th>Base Chassis</th>
<th>Added Interface Cards</th>
<th>Interfaces Supporting Inline VLAN Pairs (Sensing Ports)</th>
<th>Combinations Supporting Inline Interface Pairs</th>
<th>Interfaces Not Supporting Inline (Command and Control Port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS-4260</td>
<td>10GE</td>
<td>GigabitEthernet0/1</td>
<td>2/0<->2/1²</td>
<td>Management0/0</td>
</tr>
<tr>
<td></td>
<td>Slot 1</td>
<td>TenGigabitEthernet2/0 TenGigabitEthernet2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPS 4270-20</td>
<td>—</td>
<td>GigabitEthernet0/1</td>
<td>N/A</td>
<td>Management0/0 Management0/1³</td>
</tr>
<tr>
<td></td>
<td>Slot 1</td>
<td>GigabitEthernet3/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>GigabitEthernet4/0 GigabitEthernet4/1</td>
<td>4/0<->4/1 4/2<->4/3</td>
<td>Management0/0 Management0/1⁶</td>
</tr>
<tr>
<td>IPS 4270-20</td>
<td>2SX</td>
<td>GigabitEthernet3/0 GigabitEthernet3/1</td>
<td>All sensing ports can be paired together</td>
<td>Management0/0 Management0/1⁶</td>
</tr>
<tr>
<td></td>
<td>Slot 1</td>
<td>GigabitEthernet3/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>GigabitEthernet4/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPS 4270-20</td>
<td>10GE</td>
<td>TenGigabitEthernet5/0 TenGigabitEthernet5/1</td>
<td>All sensing ports can be paired together</td>
<td>Management0/0 Management0/1⁷</td>
</tr>
<tr>
<td></td>
<td>Slot 1</td>
<td>TenGigabitEthernet5/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>TenGigabitEthernet7/0 TenGigabitEthernet7/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NME-IPS</td>
<td>—</td>
<td>GigabitEthernet0/1 by <code>ids-service-module</code> command in</td>
<td>GigabitEthernet0/1 by <code>ids-service-module</code> command in the router configuration instead</td>
<td>Management0/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the router configuration instead of VLAN pair or inline interface pair</td>
<td>the router configuration instead of VLAN pair or inline interface pair</td>
<td></td>
</tr>
</tbody>
</table>

1. To disable hardware bypass, pair the interfaces in any other combination (2/0<->2/2 and 2/1<->2/3, for example).
2. To disable hardware bypass, pair the interfaces in any other combination (2/0<->2/2 and 2/1<->2/3, for example).
3. Reserved for future use.
4. To disable hardware bypass, pair the interfaces in any other combination (2/0<->2/2 and 2/1<->2/3, for example).
5. Reserved for future use.
6. Reserved for future use.
7. Reserved for future use.
IPS-4260 supports a mixture of 4GE-BP, 2SX, and 10GE cards. IPS 4270-20 also supports a mixture of 4GE-BP, 2SX, and 10GE cards up to a total of either six cards, or sixteen total ports, which ever is reached first, but is limited to only two 10GE card in the mix of cards.

TCP Reset Interfaces

This section explains the TCP reset interfaces and when to use them. It contains the following topics:

- Understanding Alternate TCP Reset Interfaces, page 1-9
- Designating the Alternate TCP Reset Interface, page 1-10

Understanding Alternate TCP Reset Interfaces

The alternate TCP reset interface setting is ignored in inline interface or inline VLAN pair mode, because resets are sent inline in these modes.

You can configure sensors to send TCP reset packets to try to reset a network connection between an attacker host and its intended target host. In some installations when the interface is operating in promiscuous mode, the sensor may not be able to send the TCP reset packets over the same sensing interface on which the attack was detected. In such cases, you can associate the sensing interface with an alternate TCP reset interface and any TCP resets that would otherwise be sent on the sensing interface when it is operating in promiscuous mode are instead sent out on the associated alternate TCP reset interface.

If a sensing interface is associated with an alternate TCP reset interface, that association applies when the sensor is configured for promiscuous mode but is ignored when the sensing interface is configured for inline mode.

With the exception of IDSM-2, any sensing interface can serve as the alternate TCP reset interface for another sensing interface. The alternate TCP reset interface on IDSM-2 is fixed because of hardware limitation.

Table 1-3 lists the alternate TCP reset interfaces.

Table 1-3 Alternate TCP Reset Interfaces

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Alternate TCP Reset Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-IPS</td>
<td>None</td>
</tr>
<tr>
<td>AIP-SSM-10</td>
<td>None</td>
</tr>
<tr>
<td>AIP-SSM-20</td>
<td>None</td>
</tr>
<tr>
<td>AIP-SSM-40</td>
<td>None</td>
</tr>
<tr>
<td>IDSM-2</td>
<td>System0/1(^1)</td>
</tr>
<tr>
<td>IPS-4240</td>
<td>Any sensing interface</td>
</tr>
<tr>
<td>IPS-4255</td>
<td>Any sensing interface</td>
</tr>
<tr>
<td>IPS-4260</td>
<td>Any sensing interface</td>
</tr>
</tbody>
</table>
Chapter 1 Introducing the Sensor

How the Sensor Functions

Designating the Alternate TCP Reset Interface

You need to designate an alternate TCP reset interface in the following situations:

- When a switch is being monitored with either SPAN or VACL capture and the switch does not accept incoming packets on the SPAN or VACL capture port.
- When a switch is being monitored with either SPAN or VACL capture for multiple VLANs, and the switch does not accept incoming packets with 802.1q headers.

Note

The TCP resets need 802.1q headers to tell which VLAN the resets should be sent on.

- When a network tap is used for monitoring a connection.

Note

Taps do not permit incoming traffic from the sensor.

You can only assign a sensing interface as an alternate TCP reset interface. You cannot configure the management interface as an alternate TCP reset interface.

Interface Restrictions

The following restrictions apply to configuring interfaces on the sensor:

- Physical Interfaces
 - On modules (AIM-IPS, AIP-SSM, IDSM-2, and NME-IPS), all backplane interfaces have fixed speed, duplex, and state settings. These settings are protected in the default configuration on all backplane interfaces.
 - For nonbackplane FastEthernet interfaces the valid speed settings are 10 Mbps, 100 Mbps, and auto. Valid duplex settings are full, half, and auto.
 - For Gigabit copper interfaces (1000-TX on IPS-4240, IPS-4255, IPS-4260, and IPS 4270-20), valid speed settings are 10 Mbps, 100 Mbps, 1000 Mbps, and auto. Valid duplex settings are full, half, and auto.
 - For Gigabit (copper or fiber) interfaces, if the speed is configured for 1000 Mbps, the only valid duplex setting is auto.
 - The command and control interface cannot also serve as a sensing interface.

Table 1-3 Alternate TCP Reset Interfaces (continued)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Alternate TCP Reset Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS 4270-20</td>
<td>Any sensing interface</td>
</tr>
<tr>
<td>NME-IPS</td>
<td>None</td>
</tr>
</tbody>
</table>

1. This is an internal interface on the Catalyst backplane.
• Inline Interface Pairs
 – Inline interface pairs can contain any combination of sensing interfaces regardless of the physical interface type (copper versus fiber), speed, or duplex settings of the interface. However, pairing interfaces of different media type, speeds, and duplex settings may not be fully tested or supported.
 – The command and control interface cannot be a member of an inline interface pair.
 – You cannot pair a physical interface with itself in an inline interface pair.
 – A physical interface can be a member of only one inline interface pair.
 – You can only configure bypass mode and create inline interface pairs on sensor platforms that support inline mode.
 – A physical interface cannot be a member of an inline interface pair unless the subinterface mode of the physical interface is none.

• Inline VLAN Pairs
 – You cannot pair a VLAN with itself.
 – You cannot use the default VLAN as one of the paired VLANs in an inline VLAN pair.
 – For a given sensing interface, a VLAN can be a member of only one inline VLAN pair. However, a given VLAN can be a member of an inline VLAN pair on more than one sensing interface.
 – The order in which you specify the VLANs in an inline VLAN pair is not significant.
 – A sensing interface in inline VLAN pair mode can have from 1 to 255 inline VLAN pairs.

• Alternate TCP Reset Interface
 – You can only assign the alternate TCP reset interface to a sensing interface. You cannot configure the command and control interface as an alternate TCP reset interface. The alternate TCP reset interface option is set to none as the default and is protected for all interfaces except the sensing interfaces.
 – You can assign the same physical interface as an alternate TCP reset interface for multiple sensing interfaces.
 – A physical interface can serve as both a sensing interface and an alternate TCP reset interface.
 – The command and control interface cannot serve as the alternate TCP reset interface for a sensing interface.
 – A sensing interface cannot serve as its own alternate TCP reset interface.
 – You can only configure interfaces that are capable of TCP resets as alternate TCP reset interfaces.

 Note The exception to this restriction is the IDSM-2. The alternate TCP reset interface assignments for both sensing interfaces is System0/1 (protected).

• VLAN Groups
 – You can configure any single interface for promiscuous, inline interface pair, or inline VLAN pair mode, but no combination of these modes is allowed.
 – You cannot add a VLAN to more than one group on each interface.
 – You cannot add a VLAN group to multiple virtual sensors.
Interface Modes

The following section describes the interface modes, and contains the following topics:

- Promiscuous Mode, page 1-12
- Inline Interface Pair Mode, page 1-13
- Inline VLAN Pair Mode, page 1-13
- VLAN Group Mode, page 1-13
- Deploying VLAN Groups, page 1-14

Promiscuous Mode

In promiscuous mode, packets do not flow through the sensor. The sensor analyzes a copy of the monitored traffic rather than the actual forwarded packet. The advantage of operating in promiscuous mode is that the sensor does not affect the packet flow with the forwarded traffic. The disadvantage of operating in promiscuous mode, however, is the sensor cannot stop malicious traffic from reaching its intended target for certain types of attacks, such as atomic attacks (single-packet attacks). The response actions implemented by promiscuous sensor devices are post-event responses and often require assistance from other networking devices, for example, routers and firewalls, to respond to an attack. While such response actions can prevent some classes of attacks, in atomic attacks the single packet has the chance of reaching the target system before the promiscuous-based sensor can apply an ACL modification on a managed device (such as a firewall, switch, or router).

By default, all sensing interfaces are in promiscuous mode. To change an interface from Inline Interface mode to promiscuous mode, delete any inline interface that contains that interface and delete any inline VLAN pair subinterfaces of that interface from the interface configuration.
Inline Interface Pair Mode

Operating in inline interface pair mode puts the IPS directly into the traffic flow and affects packet-forwarding rates making them slower by adding latency. This allows the sensor to stop attacks by dropping malicious traffic before it reaches the intended target, thus providing a protective service. Not only is the inline device processing information on Layers 3 and 4, but it is also analyzing the contents and payload of the packets for more sophisticated embedded attacks (Layers 3 to 7). This deeper analysis lets the system identify and stop and/or block attacks that would normally pass through a traditional firewall device.

In inline interface pair mode, a packet comes in through the first interface of the pair on the sensor and out the second interface of the pair. The packet is sent to the second interface of the pair unless that packet is being denied or modified by a signature.

Note
You can configure AIM-IPS, AIP-SSM, and NME-IPS to operate inline even though these modules have only one sensing interface.

Note
If the paired interfaces are connected to the same switch, you should configure them on the switch as access ports with different access VLANs for the two ports. Otherwise, traffic does not flow through the inline interface.

Inline VLAN Pair Mode

You can associate VLANs in pairs on a physical interface. This is known as inline VLAN pair mode. Packets received on one of the paired VLANs are analyzed and then forwarded to the other VLAN in the pair.

Note
Inline VLAN pairs are supported on all sensors that are compatible with Cisco IPS 6.1 except AIM-IPS, AIP-SSM, and NME-IPS.

Inline VLAN pair mode is an active sensing mode where a sensing interface acts as an 802.1q trunk port, and the sensor performs VLAN bridging between pairs of VLANs on the trunk. The sensor inspects the traffic it receives on each VLAN in each pair, and can either forward the packets on the other VLAN in the pair, or drop the packet if an intrusion attempt is detected. You can configure an IPS sensor to simultaneously bridge up to 255 VLAN pairs on each sensing interface. The sensor replaces the VLAN ID field in the 802.1q header of each received packet with the ID of the egress VLAN on which the sensor forwards the packet. The sensor drops all packets received on any VLANs that are not assigned to inline VLAN pairs.

VLAN Group Mode

You can divide each physical interface or inline interface into VLAN group subinterfaces, each of which consists of a group of VLANs on that interface. Analysis Engine supports multiple virtual sensors, each of which can monitor one or more of these interfaces. This lets you apply multiple policies to the same sensor. The advantage is that now you can use a sensor with only a few interfaces as if it had many interfaces.
You cannot divide physical interfaces that are in inline VLAN pairs into VLAN groups.

VLAN group subinterfaces associate a set of VLANs with a physical or inline interface. No VLAN can be a member of more than one VLAN group subinterface. Each VLAN group subinterface is identified by a number between 1 and 255.

Subinterface 0 is a reserved subinterface number used to represent the entire unvirtualized physical or logical interface. You cannot create, delete, or modify subinterface 0 and no statistics are reported for it.

An unassigned VLAN group is maintained that contains all VLANs that are not specifically assigned to another VLAN group. You cannot directly specify the VLANs that are in the unassigned group. When a VLAN is added to or deleted from another VLAN group subinterface, the unassigned group is updated.

Packets in the native VLAN of an 802.1q trunk do not normally have 802.1q encapsulation headers to identify the VLAN number to which the packets belong. A default VLAN variable is associated with each physical interface and you should set this variable to the VLAN number of the native VLAN or to 0. The value 0 indicates that the native VLAN is either unknown or you do not care if it is specified. If the default VLAN setting is 0, the following occurs:

• Any alerts triggered by packets without 802.1q encapsulation have a VLAN value of 0 reported in the alert.
• Non-802.1q encapsulated traffic is associated with the unassigned VLAN group and it is not possible to assign the native VLAN to any other VLAN group.

You can configure a port on a switch as either an access port or a trunk port. On an access port, all traffic is in a single VLAN is called the access VLAN. On a trunk port, multiple VLANs can be carried over the port, and each packet has a special header attached called the 802.1q header that contains the VLAN ID. This header is commonly referred as the VLAN tag. However, a trunk port has a special VLAN called the native VLAN. Packets in the native VLAN do not have the 802.1q headers attached. IDSM-2 can read the 802.1q headers for all nonnative traffic to determine the VLAN ID for that packet. However, IDSM-2 does not know which VLAN is configured as the native VLAN for the port in the switch configuration, so it does not know what VLAN the native packets are in. Therefore, you must tell IDSM-2 which VLAN is the native VLAN for that port. Then IDSM-2 treats any untagged packets as if they were tagged with the native VLAN ID.

Deploying VLAN Groups

Because a VLAN group of an inline pair does not translate the VLAN ID, an inline paired interface must exist between two switches to use VLAN groups on a logical interface. For an appliance, you can connect the two pairs to the same switch, make them access ports, and then set the access VLANs for the two ports differently. In this configuration, the sensor connects between two VLANs, because each of the two ports is in access mode and carries only one VLAN. In this case the two ports must be in different VLANs, and the sensor bridges the two VLANs, monitoring any traffic that flows between the two VLANs. The IDSM2 also operates in this manner, because its two data ports are always connected to the same switch.

You can also connect appliances between two switches. There are two variations. In the first variation, the two ports are configured as access ports, so they carry a single VLAN. In this way, the sensor bridges a single VLAN between the two switches.
In the second variation, the two ports are configured as trunk ports, so they can carry multiple VLANs. In this configuration, the sensor bridges multiple VLANs between the two switches. Because multiple VLANs are carried over the inline interface pair, the VLANs can be divided into groups and each group can be assigned to a virtual sensor. The second variation does not apply to the IDSM2 because it cannot be connected in this way.

For More Information
For information on how to configure IDSM-2, refer to Configuring IDSM-2.

Supported Sensors

Caution

Installing the most recent software (version 6.1) on unsupported sensors may yield unpredictable results. We do not support software installed on unsupported platforms.

Table 1-4 lists the sensors (IPS appliances and modules) that are supported by Cisco IPS 6.1.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Part Number</th>
<th>Optional Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPS-4240</td>
<td>IPS-4240-K9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>IPS-4240-DC-K9</td>
<td>—</td>
</tr>
<tr>
<td>IPS-4255</td>
<td>IPS-4255-K9</td>
<td>—</td>
</tr>
<tr>
<td>IPS-4260</td>
<td>IPS-4260-K9</td>
<td>IPS-4GE-BP-INT=</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPS-2SX-INT=</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPS-2X10GE-SR-INT=</td>
</tr>
<tr>
<td></td>
<td>Ips-4260-4GE-BP-K9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Ips-4260-2SX-K9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Ips-4260-2X10GE-SR-K9</td>
<td>—</td>
</tr>
<tr>
<td>IPS 4270-20</td>
<td>IPS-4270-K9</td>
<td>IPS-4GE-BP-INT=</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPS-2SX-INT=</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPS-2X10GE-SR-INT=</td>
</tr>
<tr>
<td></td>
<td>Ips-4270-4GE-BP-K9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Ips-4270-2SX-K9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Ips-4270-2X10GE-SR-K9</td>
<td>—</td>
</tr>
<tr>
<td>Modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-IPS</td>
<td>AIM-IPS-K9</td>
<td>—</td>
</tr>
<tr>
<td>AIP-SSM-10</td>
<td>ASA-SSM-AIP-10-K9</td>
<td>—</td>
</tr>
<tr>
<td>AIP-SSM-20</td>
<td>ASA-SSM-AIP-20-K9</td>
<td>—</td>
</tr>
<tr>
<td>AIP-SSM-40</td>
<td>ASA-SSM-AIP-40-K9</td>
<td>—</td>
</tr>
<tr>
<td>IDSM-2</td>
<td>WS-SVC-IDSM2-K9</td>
<td>—</td>
</tr>
<tr>
<td>NME-IPS</td>
<td>NM-IPS-K9</td>
<td>—</td>
</tr>
</tbody>
</table>
IPS Appliances

This section describes the Cisco 4200 series appliance, and contains the following topics:

- Introducing the IPS Appliance, page 1-17
- Appliance Restrictions, page 1-17
- Connecting an Appliance to a Terminal Server, page 1-17
Introducing the IPS Appliance

The IPS appliance is a high-performance, plug-and-play device. The appliance is a component of the IPS, a network-based, real-time intrusion prevention system.

You can use the IPS CLI, IDM, IME, ASDM, or CSM to configure the appliance. For a list of IPS documents and how to access them, refer to Documentation Roadmap for Cisco Intrusion Prevention System 6.1.

You can configure the appliance to respond to recognized signatures as it captures and analyzes network traffic. These responses include logging the event, forwarding the event to the manager, performing a TCP reset, generating an IP log, capturing the alert trigger packet, and reconfiguring a router. The appliance offer significant protection to your network by helping to detect, classify, and stop threats including worms, spyware and adware, network viruses, and application abuse.

After being installed at key points in the network, the appliance monitors and performs real-time analysis of network traffic by looking for anomalies and misuse based on an extensive, embedded signature library. When the system detects unauthorized activity, appliances can terminate the specific connection, permanently block the attacking host, log the incident, and send an alert to the manager. Other legitimate connections continue to operate independently without interruption.

Appliances are optimized for specific data rates and are packaged in Ethernet, Fast Ethernet, and Gigabit Ethernet configurations. In switched environments, appliances must be connected to the switch’s SPAN port or VACL capture port.

The Cisco IPS 4200 series appliances provide the following:

- Protection of multiple network subnets through the use of up to eight interfaces
- Simultaneous, dual operation in both promiscuous and inline modes
- A wide array of performance options—from 80 Mbps to multiple gigabits
- Embedded web-based management solutions packaged with the sensor

For More Information
For a list of supported appliances, see Supported Sensors, page 1-15.

Appliance Restrictions

The following restrictions apply to using and operating the appliance:

- The appliance is not a general purpose workstation.
- Cisco Systems prohibits using the appliance for anything other than operating Cisco IPS.
- Cisco Systems prohibits modifying or installing any hardware or software in the appliance that is not part of the normal operation of the Cisco IPS.

Connecting an Appliance to a Terminal Server

A terminal server is a router with multiple, low speed, asynchronous ports that are connected to other serial devices. You can use terminal servers to remotely manage network equipment, including appliances.
To set up a Cisco terminal server with RJ-45 or hydra cable assembly connections, follow these steps:

Step 1 Connect to a terminal server using one of the following methods:
- For terminal servers with RJ-45 connections, connect a 180 rollover cable from the console port on the appliance to a port on the terminal server.
- For hydra cable assemblies, connect a straight-through patch cable from the console port on the appliance to a port on the terminal server.

Step 2 Configure the line and port on the terminal server.
In enable mode, enter the following configuration, where # is the line number of the port to be configured:

```plaintext
config t
line #
login
transport input all
stopbits 1
flowcontrol hardware
speed 9600
exit
exit
wr mem
```

Step 3 Be sure to properly close a terminal session to avoid unauthorized access to the appliance.
If a terminal session is not stopped properly, that is, if it does not receive an exit(0) signal from the application that initiated the session, the terminal session can remain open. When terminal sessions are not stopped properly, authentication is not performed on the next session that is opened on the serial port.

⚠️ **Caution**
Always exit your session and return to a login prompt before terminating the application used to establish the connection.

⚠️ **Caution**
If a connection is dropped or terminated by accident, you should reestablish the connection and exit normally to prevent unauthorized access to the appliance.

IPS Modules

This section describes the IPS modules, and contains the following topics:

- Introducing AIM-IPS, page 1-19
- Introducing NME-IPS, page 1-20
- Introducing AIP-SSM, page 1-21
- Introducing IDSM-2, page 1-23
Introducing AIM-IPS

Cisco Intrusion Prevention System Advanced Integration Module (AIM-IPS) integrates and brings inline Cisco IPS functionality to Cisco access routers. You can install AIM-IPS in Cisco 1841, 2800 series, and 3800 series routers.

Figure 1-2 demonstrates the integration of IPS and the branch office router.

Figure 1-2 AIM-IPS and the Branch Router

AIM-IPS has its own operating system, Cisco IPS software, startup, and run-time configurations. You launch and configure AIM-IPS through the router by means of a configuration session on the module. After the session, you return to the router CLI and clear the session.

AIM-IPS has a backplane interface, which means that all management traffic passes through the router interface rather than a dedicated port on the module. AIM-IPS does not have an external FastEthernet interface for handling management traffic. Management traffic includes all communications between applications, such as IDM, IME, CSM, and CS-MARS, and the servers on the module for exchange of IPS events, IP logs, configuration, and control messages.

AIM-IPS plugs in to a connector on the motherboard of the router and requires no external interfaces or connections. Figure 1-3 on page 1-20 shows AIM-IPS.
Figure 1-3 AIM-IPS

For More Information
- For a list of supported router and AIM-IPS combinations, see Software and Hardware Requirements, page 5-2.
- For information on installing AIM-IPS, see Installation and Removal Instructions, page 5-5.
- For more information about sessioning to AIM-IPS, see Logging In to AIM-IPS, page 10-4.

Introducing NME-IPS

Cisco Intrusion Prevention System Network Module (NME-IPS) integrates and brings inline Cisco IPS functionality to Cisco access routers. You can install NME-IPS in any one of the network module slots in the 2800 and 3800 series router.

NME-IPS has its own operating system, Cisco IPS software, startup, and run-time configurations. You launch and configure the modules through the router by means of a configuration session on the modules. After the session, you return to the router CLI and clear the session.

For NME-IPS, all management traffic passes through the external FastEthernet interface on the module. Management traffic includes all communications between applications, such as IDM, IME, CSM, and CS-MARS, and the servers on the module for exchange of IPS events, IP logs, configuration, and control messages.
NME-IPS installs in any slot in the 2800 and 3800 series access routers. Figure 1-4 shows NME-IPS.

Figure 1-4 NME-IPS

For More Information
- For a list of supported router and NME-IPS combinations, see Software and Hardware Requirements, page 8-2.
- For information on installing NME-IPS, see Installation and Removal Instructions, page 8-5.
- For more information about sessioning to NME-IPS, see Logging In to NME-IPS, page 10-9.

Introducing AIP-SSM

The Cisco ASA Advanced Inspection and Prevention Security Services Module (AIP-SSM) is the IPS plug-in module in the Cisco ASA 5500 series adaptive security appliance (adaptive security appliance). The adaptive security appliance software integrates firewall, VPN, and intrusion detection and prevention capabilities in a single platform.

There are three models of AIP-SSM:
- ASA-SSM-AIP-10-K9
 - Supports 150 Mbps of IPS throughput when installed in ASA 5510
 - Supports 225 Mbps of IPS throughput when installed in ASA 5520
- ASA-SSM-AIP-20-K9
 - Supports 375 Mbps of IPS throughput when installed in ASA 5520
 - Supports 500 Mbps of IPS throughput when installed in ASA 5540
- ASA-SSM-AIP-40-K9
 - Supports 450 Mbps of IPS throughput on the ASA 5520
 - Supports 650 Mbps IPS throughput on ASA 5540
AIP-SSM runs advanced IPS software that provides further security inspection either in inline mode or promiscuous mode. The adaptive security appliance diverts packets to AIP-SSM just before the packet exits the egress interface (or before VPN encryption occurs, if configured) and after other firewall policies are applied. For example, packets that are blocked by an access list are not forwarded to AIP-SSM.

In promiscuous mode, the IPS receives packets over the GigabitEthernet interface, examines them for intrusive behavior, and generates alerts based on a positive result of the examination. In inline mode, there is the additional step of sending all packets, which did not result in an intrusion, back out the GigabitEthernet interface. The adaptive security appliance with AIP-SSM in a typical DMZ configuration. A DMZ is a separate network located in the neutral zone between a private (inside) network and a public (outside) network. The web server is on the DMZ interface, and HTTP clients from both the inside and outside networks can access the web server securely.

In Figure 1-6 on page 1-23 an HTTP client (10.10.10.10) on the inside network initiates HTTP communications with the DMZ web server (30.30.30.30). HTTP access to the DMZ web server is provided for all clients on the Internet; all other communications are denied. The network is configured to use an IP pool (a range of IP addresses available to the DMZ interface) of addresses between 30.30.30.50 and 30.30.30.60.
Introducing IDSM-2

The Cisco Catalyst 6500 Series Intrusion Detection System Services Module (IDSM-2) is a switching module that performs intrusion prevention in the Catalyst 6500 series switch and 7600 series router. You can use the CLI or IDSM to configure IDSM-2. You can configure IDSM-2 for promiscuous or inline mode.

IDSM-2 performs network sensing—real-time monitoring of network packets through packet capture and analysis. IDSM-2 captures network packets and then reassembles and compares the packet data against attack signatures indicating typical intrusion activity. Network traffic is either copied to IDSM-2 based on security VACLs in the switch or is copied to IDSM-2 through the SPAN port feature of the switch. These methods route user-specified traffic to IDSM-2 based on switch ports, VLANs, or traffic type to be inspected (Figure 1-7 on page 1-24).
IDSM-2 searches for patterns of misuse by examining either the data portion and/or the header portion of network packets. Content-based attacks contain potentially malicious data in the packet payload, whereas, context-based attacks contain potentially malicious data in the packet headers.

You can configure IDSM-2 to generate an alert when it detects potential attacks. Additionally, you can configure IDSM-2 to transmit TCP resets on the source VLAN, generate an IP log, and/or initiate blocking countermeasures on a firewall or other managed device. Alerts are generated by IDSM-2 through the Catalyst 6500 series switch backplane to the IPS manager, where they are logged or displayed on a graphical user interface.

For More Information
- For more information on installing IDSM-2, see Installing IDSM-2, page 7-5.
- For more information on configuring IDSM-2 to receive IPS traffic, refer to Configuring IDSM-2.

Time Sources and the Sensor

This section explains the importance of having a reliable time source for the sensors and how to correct the time if there is an error. It contains the following topics:
- The Sensor and Time Sources, page 1-24
- Synchronizing IPS Module System Clocks with the Parent Device System Clock, page 1-26
- Correcting the Time on the Sensor, page 1-27

The Sensor and Time Sources

The sensor requires a reliable time source. All events (alerts) must have the correct UTC and local time stamp, otherwise, you cannot correctly analyze the logs after an attack. When you initialize the sensor, you set up the time zones and summertime settings.
Here is a summary of ways to set the time on sensors:

- **For appliances**
 - Use the `clock set` command to set the time. This is the default.
 - Use NTP
 You can configure the appliance to get its time from an NTP time synchronization source. You need the NTP server IP address, the NTP key ID, and the NTP key value. You can set up NTP on the appliance during initialization or you can configure NTP through the CLI, IDM, IME, or ASDM.

 Note We recommend that you use an NTP time synchronization source.

- **For IDSM-2**
 - The IDSM-2 can automatically synchronize its clock with the switch time. This is the default.

 Note The UTC time is synchronized between the switch and the IDSM-2. The time zone and summertime settings are not synchronized between the switch and the IDSM-2.

 Caution Be sure to set the time zone and summertime settings on both the switch and IDSM-2 to ensure that the UTC time settings are correct. The local time of IDSM-2 could be incorrect if the time zone and/or summertime settings do not match between IDSM-2 and the switch.

 - Use NTP
 You can configure IDSM-2 to get its time from an NTP time synchronization source. You need the NTP server IP address, the NTP key ID, and the NTP key value. You can configure IDSM-2 to use NTP during initialization or you can set up NTP through the CLI, IDM, IME, or ASDM.

 Note We recommend that you use an NTP time synchronization source.

- **For AIM-IPS and NME-IPS**
 - AIM-IPS and NME-IPS can automatically synchronize their clock with the clock in the router chassis in which they are installed (parent router). This is the default.

 Note The UTC time is synchronized between the parent router and AIM-IPS and NME-IPS. The time zone and summertime settings are not synchronized between the parent router and AIM-IPS and NME-IPS.

 Caution Be sure to set the time zone and summertime settings on both the parent router and AIM-IPS and NME-IPS to ensure that the UTC time settings are correct. The local time of AIM-IPS and NME-IPS could be incorrect if the time zone and/or summertime settings do not match between AIM-IPS and NME-IPS and the router.
Use NTP

You can configure AIM-IPS and NME-IPS to get their time from an NTP time synchronization source, such as a Cisco router, other than the parent router. You need the NTP server IP address, the NTP key ID, and the NTP key value. You can configure AIM-IPS and NME-IPS to use NTP during initialization or you can set up NTP through the CLI, IDM, IME, or ASDM.

Note

We recommend that you use an NTP time synchronization source.

Note

AIM-IPS and NME-IPS can also use unauthenticated NTP.

For AIP-SSM

- AIP-SSM can automatically synchronize its clock with the clock in the adaptive security appliance in which it is installed. This is the default.

Note

The UTC time is synchronized between the adaptive security appliance and AIP-SSM. The time zone and summertime settings are not synchronized between the adaptive security appliance and AIP-SSM.

Caution

Be sure to set the time zone and summertime settings on both the adaptive security appliance and AIP-SSM to ensure that the UTC time settings are correct. The local time of AIP-SSM could be incorrect if the time zone and/or summertime settings do not match between AIP-SSM and the adaptive security appliance.

- Use NTP

You can configure AIP-SSM to get its time from an NTP time synchronization source, such as a Cisco router other than the parent router. You need the NTP server IP address, the NTP key ID, and the NTP key value. You can configure AIP-SSM to use NTP during initialization or you can set up NTP through the CLI, IDM, IME, or ASDM.

Note

We recommend that you use an NTP time synchronization source.

Synchronizing IPS Module System Clocks with the Parent Device System Clock

All IPS modules (AIM-IPS, AIP-SSM, IDSM-2, and NME-IPS) synchronize their system clocks to the parent chassis clock (switch, router, or security appliance) each time the module boots up and any time the parent chassis clock is set. The module clock and parent chassis clock tend to drift apart over time. The difference can be as much as several seconds per day. To avoid this problem, make sure that both the module clock and the parent clock are synchronized to an external NTP server. If only the module clock or only the parent chassis clock is synchronized to an NTP server, the time drift occurs.
Verifying the Sensor is Synchronized with the NTP Server

In Cisco IPS, you cannot apply an incorrect NTP configuration, such as an invalid NTP key value or ID, to the sensor. If you try to apply an incorrect configuration, you receive an error message. To verify the NTP configuration, use the `show statistics host` command to gather sensor statistics. The NTP statistics section provides NTP statistics including feedback on sensor synchronization with the NTP server.

To verify the NTP configuration, follow these steps:

Step 1 Log in to the sensor.

Step 2 Generate the host statistics:

```
sensor# show statistics host
...
NTP Statistics
remote       refid     st t  when poll reach delay  offset  jitter
11.22.33.44  CHU_AUDIO(1)  8 u   36   64  1   0.536   0.069   0.001
LOCAL(0)    73.78.73.84     5 l   35   64  1   0.000    0.000   0.001
ind assID status  conf reach auth condition  last_event cnt
1 10372  f014   yes   yes   ok     reject   reachable  1
2 10373  9014   yes   yes  none    reject   reachable  1
status = Not Synchronized
...
```

Step 3 Generate the hosts statistics again after a few minutes:

```
sensor# show statistics host
...
NTP Statistics
remote       refid     st t  when poll reach delay  offset  jitter
*11.22.33.44  CHU_AUDIO(1)  8 u   22   64  377  0.518   37.975  33.465
LOCAL(0)    73.78.73.84     5 l   22   64  377  0.000    0.000   0.001
ind assID status  conf reach auth condition  last_event cnt
1 10372  f624   yes   yes   ok  sys.peer   reachable  2
2 10373  9024   yes   yes none    reject   reachable  2
status = Synchronized
```

Step 4 If the status continues to read Not Synchronized, check with the NTP server administrator to make sure the NTP server is configured correctly.

Correcting the Time on the Sensor

If you set the time incorrectly, your stored events will have the incorrect time because they are stamped with the time the event was created.

The Event Store time stamp is always based on UTC time. If during the original sensor setup, you set the time incorrectly by specifying 8:00 p.m. rather than 8:00 a.m., when you do correct the error, the corrected time will be set backwards. New events might have times older than old events.
For example, if during the initial setup, you configure the sensor as central time with daylight saving time enabled and the local time is 8:04 p.m., the time is displayed as 20:04:37 CDT and has an offset from UTC of -5 hours (01:04:37 UTC, the next day). A week later at 9:00 a.m., you discover the error: the clock shows 21:00:23 CDT. You then change the time to 9:00 a.m. and now the clock shows 09:01:33 CDT. Because the offset from UTC has not changed, it requires that the UTC time now be 14:01:33 UTC, which creates the time stamp problem.

To ensure the integrity of the time stamp on the event records, you must clear the event archive of the older events by using the `clear events` command.

Note

You cannot remove individual events.

For More Information

For the procedure for clearing events, refer to Clearing Events from Event Store.

Installation Preparation

To prepare for installing sensors, follow these steps:

Step 1

Review the safety precautions outlined in *Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor*.

Step 2

To familiarize yourself with the IPS and related documentation and where to find it on Cisco.com, read *Documentation Roadmap for Cisco Intrusion Prevention System 6.1*.

Step 3

Before proceeding with sensor installation, read the *Release Notes for Cisco Intrusion Prevention System 6.1*.

Step 4

Unpack the sensor.

Step 5

Place the sensor in an ESD-controlled environment.

Step 6

Place the sensor on a stable work surface.

Step 7

In this book, *Installing and Using Cisco Intrusion Prevention System Sensors and Modules 6.1*, see the chapter that pertains to your sensor model.

For More Information

For ESD guidelines, see Electrical Safety Guidelines, page 1-29.

Site and Safety Guidelines

This section describes site guidelines and safety precautions to take when working with electricity, with power supplies, and in an ESD environment. It contains the following topics:

- Site Guidelines, page 1-29
- Rack Configuration Guidelines, page 1-29
- Electrical Safety Guidelines, page 1-29
Site Guidelines

Place the appliance on a desktop or mount it in a rack. The location of the appliance and the layout of the equipment rack or wiring room are extremely important for proper system operation. Equipment placed too close together, inadequate ventilation, and inaccessible panels can cause system malfunctions and shutdowns, and can make appliance maintenance difficult.

When planning the site layout and equipment locations, keep in mind the following precautions to help avoid equipment failures and reduce the possibility of environmentally-caused shutdowns. If you are experiencing shutdowns or unusually high errors with your existing equipment, these precautions may help you isolate the cause of failures and prevent future problems.

- Electrical equipment generates heat. Ambient air temperature might not be adequate to cool equipment to acceptable operating temperatures without adequate circulation. Make sure that the room in which you operate your system has adequate air circulation.
- Always follow the ESD-prevention procedures to avoid damage to equipment. Damage from static discharge can cause immediate or intermittent equipment failure.
- Make sure that the chassis top panel is secure. The chassis is designed to allow cooling air to flow effectively within it. An open chassis allows air leaks, which can interrupt and redirect the flow of cooling air from the internal components.

Rack Configuration Guidelines

Follow these guidelines to plan your equipment rack configuration:

- Enclosed racks must have adequate ventilation. Make sure the rack is not overly congested because each chassis generates heat. An enclosed rack should have louvered sides and a fan to provide cooling air.
- When mounting a chassis in an open rack, make sure the rack frame does not block the intake or exhaust ports. If the chassis is installed on slides, check the position of the chassis when it is seated all the way into the rack.
- In an enclosed rack with a ventilation fan in the top, excessive heat generated by equipment near the bottom of the rack can be drawn upward and into the intake ports of the equipment above it in the rack. Make sure you provide adequate ventilation for equipment at the bottom of the rack.
- Baffles can help to isolate exhaust air from intake air, which also helps to draw cooling air through the chassis. The best placement of the baffles depends on the airflow patterns in the rack. Experiment with different arrangements to position the baffles effectively.

Electrical Safety Guidelines

[Warning] Before working on a chassis or working near power supplies, unplug the power cord on AC units; disconnect the power at the circuit breaker on DC units.
Follow these guidelines when working on equipment powered by electricity:

- Before beginning procedures that require access to the interior of the chassis, locate the emergency power-off switch for the room in which you are working. Then, if an electrical accident occurs, you can act quickly to turn off the power.
- Do not work alone if potentially hazardous conditions exist anywhere in your work space.
- Never assume that power is disconnected from a circuit; always check the circuit.
- Look carefully for possible hazards in your work area, such as moist floors, ungrounded power extension cables, frayed power cords, and missing safety grounds.
- If an electrical accident occurs, proceed as follows:
 - Use caution; do not become a victim yourself.
 - Disconnect power from the system.
 - If possible, send another person to get medical aid. Otherwise, assess the condition of the victim and then call for help.
 - Determine if the person needs rescue breathing or external cardiac compressions; then take appropriate action.
- Use the chassis within its marked electrical ratings and product usage instructions.
- Install the sensor in compliance with local and national electrical codes as listed in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.
- The sensor models equipped with AC-input power supplies are shipped with a 3-wire electrical cord with a grounding-type plug that fits only a grounding-type power outlet. This is a safety feature that you should not circumvent. Equipment grounding should comply with local and national electrical codes.
- The sensor models equipped with DC-input power supplies must be terminated with the DC input wiring on a DC source capable of supplying at least 15 amps. A 15-amp circuit breaker is required at the 48 VDC facility power source. An easily accessible disconnect device should be incorporated into the facility wiring. Be sure to connect the grounding wire conduit to a solid earth ground. We recommend that you use a Listed closed-loop ring to terminate the ground conductor at the ground stud. The DC return connection to this system is to remain isolated from the system frame and chassis.

Other DC power guidelines are listed in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.

Power Supply Guidelines

Follow these guidelines for power supplies:

- Check the power at the site before installing the chassis to ensure that the power is free of spikes and noise. Install a power conditioner if necessary, to ensure proper voltages and power levels in the source voltage.
- Install proper grounding for the site to avoid damage from lightning and power surges.
- The following applies to a chassis equipped with an AC-input power supply:
 - The chassis does not have a user-selectable operating range. Refer to the label on the chassis for the correct AC-input power requirement.
Several types of AC-input power supply cords are available; make sure you have the correct type for your site.

- Install a UPS for your site.
- Install proper site-grounding facilities to guard against damage from lightning or power surges.

The following applies to a chassis equipped with a DC-input power supply:

- Each DC-input power supply requires dedicated 15-amp service.
- For DC power cables, we recommend a minimum of 14 AWG wire cable.
- The DC return connection to this system is to remain isolated from the system frame and chassis.

Working in an ESD Environment

Work on ESD-sensitive parts only at an approved static-safe station on a grounded static dissipative work surface, for example, an ESD workbench or static dissipative mat.

To remove and replace components in a sensor, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remove all static-generating items from your work area.</td>
</tr>
<tr>
<td>2</td>
<td>Use a static dissipative work surface and wrist strap.</td>
</tr>
<tr>
<td>Note</td>
<td>Disposable wrist straps, typically those included with an upgrade part, are designed for one time use.</td>
</tr>
<tr>
<td>3</td>
<td>Attach the wrist strap to your wrist and to the terminal on the work surface. If you are using a disposable wrist strap, connect the wrist strap directly to an unpainted metal surface of the chassis.</td>
</tr>
<tr>
<td>4</td>
<td>Connect the work surface to the chassis using a grounding cable and alligator clip.</td>
</tr>
</tbody>
</table>
Cable Pinouts

This section describes pinout information for 10/100/1000BaseT, console, and RJ 45 to DB 9 ports, and the MGMT 10/100 Ethernet port. It contains the following topics:

- 10/100BaseT and 10/100/1000BaseT Connectors, page 1-32
- Console Port (RJ-45), page 1-33
- RJ-45 to DB-9 or DB-25, page 1-34

10/100BaseT and 10/100/1000BaseT Connectors

Sensors support 10/100/1000BaseT ports. You must use at least a Category 5 cable for 100/1000Base-TX operations. You can use a Category 3 cable for 10Base-TX operations.

Some sensors support 10/100BaseT (IDS-4210, IDS-4215, and the optional 4FE card) while others support 10/100/1000BaseT (IDS-4235, IDS-4250-TX, IPS-4240, and IPS-4255). This only applies to the copper appliances. The fiber appliances support 1000Base-SX only.

The 10/100/1000BaseT ports use standard RJ-45 connectors and support MDI and MDI-X connectors. Ethernet ports normally use MDI connectors and Ethernet ports on a hub normally use MDI-X connectors. An Ethernet straight-through cable is used to connect an MDI to an MDI-X port. A cross-over cable is used to connect an MDI to an MDI port, or an MDI-X to an MDI-X port.
Figure 1-8 shows the 10/100BaseT (RJ-45) port pinouts.

Figure 1-8 10/100 Port Pinouts

<table>
<thead>
<tr>
<th>Pin</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TD+</td>
</tr>
<tr>
<td>2</td>
<td>TD-</td>
</tr>
<tr>
<td>3</td>
<td>RD+</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>RD-</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
</tr>
</tbody>
</table>

Figure 1-9 shows the 10/100/1000BaseT (RJ-45) port pinouts.

Figure 1-9 10/100/1000 Port Pinouts

<table>
<thead>
<tr>
<th>Pin</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TP0+</td>
</tr>
<tr>
<td>2</td>
<td>TP0-</td>
</tr>
<tr>
<td>3</td>
<td>TP1+</td>
</tr>
<tr>
<td>4</td>
<td>TP2+</td>
</tr>
<tr>
<td>5</td>
<td>TP2-</td>
</tr>
<tr>
<td>6</td>
<td>TP1-</td>
</tr>
<tr>
<td>7</td>
<td>TP3+</td>
</tr>
<tr>
<td>8</td>
<td>TP3-</td>
</tr>
</tbody>
</table>

Console Port (RJ-45)

Cisco products use the following types of RJ-45 cables:

- Straight-through
- Cross-over
- Rolled (console)

Note Cisco does not provide these cables; however, they are widely available from other sources.
Figure 1-10 shows the RJ 45 cable.

![RJ-45 Cable](image)

To identify the RJ-45 cable type, hold the two ends of the cable next to each other so that you can see the colored wires inside the ends, as shown in Figure 1-11.

![RJ-45 Cable Identification](image)

Examine the sequence of colored wires to determine the type of RJ-45 cable, as follows:

- Straight-through—The colored wires are in the same sequence at both ends of the cable.
- Cross-over—The first (far left) colored wire at one end of the cable is the third colored wire at the other end of the cable.
- Rolled—The colored wires are in the opposite sequence at either end of the cable.

RJ-45 to DB-9 or DB-25

Table 1-5 lists the cable pinouts for RJ-45 to DB-9 or DB-25.

<table>
<thead>
<tr>
<th>Signal</th>
<th>RJ-45 Pin</th>
<th>DB-9/DB-25 Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DTR</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>TxD</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 1-5 Cable Pinouts for RJ-45 to DB-9 or DB-25

<table>
<thead>
<tr>
<th>Signal</th>
<th>RJ-45 Pin</th>
<th>DB-9/DB-25 Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>RxD</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DSR</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CTS</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Introducing IPS-4240 and IPS-4255

IPS-4240 and IPS-4255 deliver high port density in a small form factor. They use a compact flash device for storage rather than the hard-disk drives used in other sensor models.

IPS-4240 replaces IDS-4235. There are four 10/100/1000 copper sensing interfaces. IPS-4240 is available with either AC or DC power. It monitors up to 250 Mbps of aggregate network traffic on multiple sensing interfaces and is inline ready. The 250-Mbps performance is traffic combined from all four sensing interfaces.

The 250-Mbps performance for IPS-4240 is based on the following conditions:

- 2500 new TCP connections per second
- 2500 HTTP transactions per second
- Average packet size of 445 bytes
- Running Cisco IPS 5.1 or later
IPS-4255 replaces IDS-4250-TX. There are four 10/100/1000 copper sensing interfaces. It monitors up to 600 Mbps of aggregate network traffic on multiple sensing interfaces and is also inline ready. The 600-Mbps performance is traffic combined from all four sensing interfaces.

The 600-Mbps performance for IPS-4255 is based on the following conditions:

- 6000 new TCP connections per second
- 6000 HTTP transactions per second
- Average packet size of 445 bytes
- Running Cisco IPS 5.1 or later

Note

IPS-4240 and the IPS-4255 do not support redundant power supplies.

Front and Back Panel Features

Note

Although the graphics show IPS-4240, the IPS-4255 has the same front and back panel features and indicators.

This section describes the IPS-4240 and IPS-4255 front and back panel features and indicators. **Figure 2-1** shows the front view of IPS-4240 and IPS-4255.

Figure 2-1 IPS-4240/IPS-4255 Front Panel Features

Table 2-1 describes the front panel indicators on IPS-4240 and IPS-4255.

Table 2-1 Front Panel Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Off indicates no power. Green when the power supply is running.</td>
</tr>
<tr>
<td>Status</td>
<td>Blinks green while the power-up diagnostics are running or the system is booting. Solid green when the system has passed power-up diagnostics. Solid amber when the power-up diagnostics have failed.</td>
</tr>
<tr>
<td>Flash</td>
<td>Off when the compact flash device is not being accessed. Blinks green when the compact flash device is being accessed.</td>
</tr>
</tbody>
</table>
Figure 2-2 shows the back view of the IPS-4240 and IPS-4255.

Figure 2-2
IPS-4240 and IPS-4255 Back Panel Features

![Back Panel Features Diagram]

Figure 2-3 shows the four built-in Ethernet ports, which have two indicators per port.

Figure 2-3
Ethernet Port Indicators

![Ethernet Port Indicators Diagram]

Table 2-2 lists the back panel indicators.

Table 2-2
Back Panel Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td>Green solid</td>
<td>Physical link</td>
</tr>
<tr>
<td></td>
<td>Green blinking</td>
<td>Network activity</td>
</tr>
<tr>
<td>Right side</td>
<td>Not lit</td>
<td>10 Mbps</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>100 Mbps</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>1000 Mbps</td>
</tr>
</tbody>
</table>
Specifications

Table 2-3 lists the specifications for IPS-4240 and IPS-4255.

Table 2-3 IPS-4240 and IPS-4255 Specifications

<table>
<thead>
<tr>
<th>Dimensions and Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1.75 in. (4.45 cm)</td>
</tr>
<tr>
<td>Width</td>
<td>17.5 in. (44.45 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>14.5 in. (36.83 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>20.0 lb (9.07 kg)</td>
</tr>
<tr>
<td>Form factor</td>
<td>1 RU, standard 19-inch rack-mountable</td>
</tr>
<tr>
<td>Expansion</td>
<td>One chassis expansion slot (not used)</td>
</tr>
</tbody>
</table>

Power

Autoswitching	100V to 240V AC
Frequency	47 to 63 Hz, single phase
Operating current	3.0 A
Steady state	150 W
Maximum peak	190 W
Maximum heat dissipation	648 BTU/hr, full power usage (65 W)

Environment

Temperature	Operating +32°F to +104°F (+0°C to +40°C) Nonoperating -13°F to +158°F (-25°C to +70°C)
Relative humidity	Operating 5% to 95% (noncondensing) Nonoperating 5% to 95% (noncondensing)
Altitude	Operating 0 to 9843 ft (3000 m) Nonoperating 0 to 15,000 ft (4750 m)
Shock	Operating 1.14 m/sec (45 in./sec) ½ sine input Nonoperating 30 G
Vibration	0.41 Grms2 (3 to 500 Hz) random input
Acoustic noise	60 dBa (maximum)
Connecting IPS-4240 to a Cisco 7200 Series Router

When an IPS-4240 is connected directly to a 7200 series router and both the IPS-4240 and the router interfaces are hard-coded to speed 100 with duplex Full, the connection does not work. If you set IPS-4240 to speed Auto and duplex Auto, it connects to the router but only at speed 100 and duplex Half. To connect correctly at speed 100 and duplex Full, set the interfaces of both IPS-4240 and the router to speed Auto and duplex Auto. Also, if either interface is hard-coded, you must make the connection using a crossover cable.

Accessories

IPS-4240 and IPS-4255 accessories kit contains the following:

- DB25 connector
- DB9 connector
- Rack mounting kit—screws, washers, and metal bracket
- RJ45 console cable
- Two 6-ft Ethernet cables

Important Safety Instructions

⚠️ IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.

Statement 1071

SAVE THESE INSTRUCTIONS

⚠️ Warning

Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

Statement 1030
Rack Mounting

To rack mount IPS-4240 and IPS-4255, follow these steps:

Step 1 Attach the bracket to the appliance using the supplied screws.

You can attach the brackets to the holes near the front of the appliance.

Note The top hole on the left bracket is a banana jack you can use for ESD grounding purposes when you are servicing the system. You can use the two threaded holes to mount a ground lug to ground the chassis.
Step 2 Use the supplied screws to attach the appliance to the equipment rack.

Step 3 To remove the appliance from the rack, remove the screws that attach the appliance to the rack, and then remove the appliance.

__Installing IPS-4240 and IPS-4255__

Warning

Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

Statement 1030

Caution

Follow proper safety procedures when performing these steps by reading the safety warnings in *Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor*.
To install IPS-4240 and IPS-4255 on the network, follow these steps:

Step 1 Position the appliance on the network.

Step 2 Attach the grounding lug to the side of the appliance.

Note
Use 8-32 screws to connect a copper standard barrel grounding lug to the holes. The appliance requires a lug where the distance between the center of each hole is 0.56 inches. The ground lug must be NRTL listed or recognized. In addition, the copper conductor (wires) must be used and the copper conductor must comply with the NEC code for ampacity. A lug is not supplied with the appliance.

Step 3 Place the appliance in a rack, if you are rack mounting it.

Step 4 Attach the power cord to the appliance and plug it in to a power source (a UPS is recommended).

Step 5 Connect the cable as shown in Step 6 so that you have either a DB-9 or DB-25 connector on one end as required by the serial port for your computer, and the other end is the RJ-45 connector.

Note
Use the console port to connect to a computer to enter configuration commands. Locate the serial cable from the accessory kit. The serial cable assembly consists of a 180/rollover cable with RJ-45 connectors (DB-9 connector adapter PN 74-0495-01 and DB-25 connector adapter PN 29-0810-01).

Note
You can use a 180/rollover or straight-through patch cable to connect the appliance to a port on a terminal server with RJ-45 or hydra cable assembly connections. Connect the appropriate cable from the console port on the appliance to a port on the terminal server.
Step 6 Connect the RJ-45 connector to the console port and connect the other end to the DB-9 or DB-25 connector on your computer.

Step 7 Attach the network cables.

- GigabitEthernet0/0, GigabitEthernet0/1, GigabitEthernet0/2, and GigabitEthernet0/3 (from right to left) are sensing ports.
- Management0/0 is the command and control port.

Caution Management and console ports are privileged administrative ports. Connecting them to an untrusted network can create security concerns.

Step 8 Power on the appliance.
Step 9 Initialize the appliance.
Step 10 Upgrade the appliance with the most recent Cisco IPS software.

You are now ready to configure intrusion prevention on the appliance.
Installing IPS-4240-DC

The IPS-4240-DC-K9 (NEBS-compliant) model equipped with DC-input power supply must be terminated with the DC input wiring on a DC source capable of supplying at least 15 amps. A 15-amp circuit breaker is required at the 48 VDC facility power source. An easily accessible disconnect device should be incorporated into the facility wiring.

Warning

Before performing any of the following procedures, ensure that power is removed from the DC circuit. To ensure that all power is OFF, locate the circuit breaker on the panel board that services the DC circuit, switch the circuit breaker to the OFF position, and tape the switch handle of the circuit breaker in the OFF position.

Note

The DC return connection should remain isolated from the system frame and chassis (DC-I). This equipment is suitable for connection to intra-building wiring only.

Warning

Only trained and qualified personnel should be allowed to install, replace, or service this equipment. Statement 1030
To install IPS-4240-DC, follow these steps:

Step 1 Position IPS-4240-DC on the network.
Step 2 Attach the grounding lug to the side of the appliance.

Note Use 8-32 screws to connect a copper standard barrel grounding lug to the holes. The appliance requires a lug where the distance between the center of each hole is 0.56 inches. The ground lug must be NRTL listed or recognized. In addition, the copper conductor (wires) must be used and the copper conductor must comply with the NEC code for ampacity. A lug is not supplied with the appliance.

Step 3 Place the appliance in a rack, if you are rack mounting it.
Step 4 Terminate the DC input wiring on a DC source capable of supplying at least 15 amps.
A 15-amp circuit breaker is required at the 48-VDC facility power source. An easily accessible disconnect device should be incorporated into the facility wiring.

Step 5 Locate the DC-input terminal box.
Step 6 Power off IPS-4240-DC.
Make sure that power is removed from the DC circuit. To make sure all power is OFF, locate the circuit breaker on the panel board that services the DC circuit, switch the circuit breaker to the OFF position, and tape the switch handle of the circuit breaker in the OFF position.

Step 7 Remove the DC power supply plastic shield.
Step 8 Strip the ends of the wires for insertion into the power connect lugs on IPS-4240-DC.

Step 9 Insert the ground wire into the connector for the earth ground and tighten the screw on the connector. Using the same method as for the ground wire, connect the negative wire and then the positive wire.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Negative</td>
<td>2</td>
<td>Positive</td>
<td>3</td>
<td>Ground</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Negative</td>
<td>6</td>
<td>Positive</td>
<td>7</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>
Note: The DC return connection to this system is to remain isolated from the system frame and chassis.

Step 10: After wiring the DC power supply, remove the tape from the circuit breaker switch handle and reinstate power by moving the handle of the circuit breaker to the ON position.

Step 11: Replace the DC power supply plastic shield.

Step 12: Power on IPS-4240-DC from the switch at the back of the chassis.

Note: If you need to power cycle IPS-4240-DC, wait at least 5 seconds between powering it off and powering it back on.

Step 13: Initialize IPS-4240-DC.

Step 14: Upgrade IPS-4240-DC with the most recent Cisco IPS software.

You are now ready to configure intrusion prevention on the appliance.

For More Information:
- DC power guidelines are listed in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.
- For more information on working with electrical power and in an ESD environment, see Site and Safety Guidelines, page 1-28.
- For the procedure for placing IPS-4250-DC in a rack, see Rack Mounting, page 2-6.
- For the procedure for using the setup command to initialize IPS-4250-DC, see Basic Sensor Setup, page 9-3.
- For the procedure for updating IPS-4250-DC with the most recent Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
- For the procedures for configuring intrusion prevention on your sensor, refer to the following guides:
 - Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
 - Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 - Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1
Installing IPS-4260

Note
All IPS platforms allow ten concurrent log in sessions.

This chapter describes IPS-4260 and how to install it. It also describes the accessories and how to install them. This chapter contains the following sections:

- Introducing IPS-4260, page 3-1
- Supported Interface Cards, page 3-2
- Hardware Bypass, page 3-4
- Front and Back Panel Features, page 3-6
- Specifications, page 3-9
- Accessories, page 3-9
- Important Safety Instructions, page 3-10
- Rack Mounting, page 3-10
- Installing IPS-4260, page 3-15
- Removing and Replacing the Chassis Cover, page 3-18
- Installing and Removing Interface Cards, page 3-20
- Installing and Removing the Power Supply, page 3-22

Caution
The BIOS on IPS-4260 is specific to IPS-4260 and must only be upgraded under instructions from Cisco with BIOS files obtained from the Cisco website. Installing a non-Cisco or third-party BIOS on IPS-4260 voids the warranty. For more information on how to obtain instructions and BIOS files from the Cisco website, see Obtaining Cisco IPS Software, page 11-1.

Introducing IPS-4260

IPS-4260 delivers 1 Gigabit of intrusion prevention performance. You can use IPS-4260 to protect both Gigabit subnets and aggregated traffic traversing switches from multiple subnets. IPS-4260 is a purpose-built device that has support for both copper and fiber NIC environments thus providing flexibility of deployment in any environment.
IPS-4260 has two built-in Gigabit Ethernet network ports and six expansion slots. The network port numbers increase from right to left and the expansion slot numbers increase from bottom to top and from right to left as shown in Figure 3-5 on page 3-7. Slots 2 and 3 are PCI-Express connectors and the other expansion slots are PCI-X slots. Slots 1 through 3 are full-height slots and slots 4 through 6 are half-height slots. The built-in management port is called Management0/0 and the built-in sensing interface is Gigabit-Ethernet0/1.

Note

Only expansion slots 2 and 3 are supported at this time.

For improved reliability, IPS-4260 uses a flash device for storage rather than a hard-disk drive. IPS-4260 supports two optional network interface cards, the 2SX Fiber card, and the 4GE bypass interface card that contains the hardware-bypass feature. Initially IPS-4260 supports only the built-in interfaces and these two interface cards.

IPS-4260 monitors greater than 1 Gbps of aggregate network traffic on multiple sensing interfaces and is also inline ready. The 1-Gbps performance is traffic combined from all sensing interfaces.

The 1-Gbps performance for IPS-4260 is based on the following conditions:
- 10,000 new TCP connections per second
- 100,000 HTTP transactions per second
- Average packet size of 450 bytes
- IPS 6.1 software

IPS-4260 replaces IDS-4250-XL. It supports both copper and fiber interfaces. IPS-4260 ships with one power supply, but it supports redundant power supplies. IPS-4260 operates in load-sharing mode when the optional redundant power supply is installed.

Note

On IPS sensors with multiple processors (for example, the IPS 4260 and IPS 4270-20), packets may be captured out of order in the IP logs and by the `packet` command. Because the packets are not processed using a single processor, the packets can become out of sync when received from multiple processors.

For More Information
- For more information on sensor interfaces, see Sensor Interfaces, page 1-4.
- For more information on the 4GE bypass interface card, see Hardware Bypass, page 3-4.
- For more information on installing and removing the power supply, see Installing and Removing the Power Supply, page 3-22.

Supported Interface Cards

IPS-4260 supports three interface cards: the 4GE bypass interface card, the 2SX interface card, and the 10GE interface card.

4GE Bypass Interface Card

The 4GE bypass interface card (part numbers IPS-4GE-BP-INT and IPS-4GE-BP-INT+) provides four 10/100/1000BASE-T (4GE) monitoring interfaces. The IPS-4260 supports up to two 4GE bypass interfaces for a total of eight GE bypass interfaces. The 4GE bypass interface card supports hardware bypass.
Figure 3-1 shows the 4GE bypass interface card.

Figure 3-1 4GE Bypass Interface Card

![4GE Bypass Interface Card](image)

2SX Interface Card

The 2SX interface card (part numbers IPS-2SX-INT and IPS-2SX-INT=) provides two 1000BASE-SX (fiber) monitoring interfaces. The IPS-4260 supports up to two 2SX interface cards for a total of four SX interfaces.

The 2SX card ports require a multi-mode fiber cable with an LC connector to connect to the SX interface of the sensor. The 2SX interface card does not support hardware bypass.

Figure 3-2 shows the 2SX interface card.

![2SX Interface Card](image)

10GE Interface Card

The 10GE interface card (part numbers IPS-2X10GE-SR-INT and IPS-2X10GE-SR-INT=) provides two 10000 Base-SX (fiber) interfaces. The IPS-4260 supports one 10GE interface card for a total of two 10GE fiber interfaces.

The card ports require a multi-mode fiber cable with an LC connector to connect to the SX interface of IPS-4260. The 10GE interface card does not support hardware bypass.
Figure 3-3 shows the 10GE interface card.

Figure 3-3 10GE Interface Card

GigabitEthernet *slot_number/port_number* is the expansion card interface naming convention for IPS-4260. The slot number is shown to the right of the slot in the chassis and the port number is numbered from right to left starting with 0.

For More Information

For the procedure for installing and removing interface cards, see Installing and Removing Interface Cards, page 3-20.

Hardware Bypass

This section describes the 4GE bypass interface card and its configuration restrictions. It contains the following topics:

- 4GE Bypass Interface Card, page 3-4
- Hardware Bypass Configuration Restrictions, page 3-5
- Hardware Bypass Link Status Changes and Drops, page 3-6

4GE Bypass Interface Card

IPS-4260 supports the 4-port GigabitEthernet card (part number IPS-4GE-BP-INT=) with hardware bypass. This 4GE bypass interface card supports hardware bypass only between ports 0 and 1 and between ports 2 and 3.

Note

To disable hardware bypass, pair the interfaces in any other combination, for example 2/0<->2/2 and 2/1<->2/3.

Hardware bypass complements the existing software bypass feature in Cisco IPS 6.1. The following conditions apply to hardware bypass and software bypass:

- When bypass is set to OFF, software bypass is not active.

For each inline interface for which hardware bypass is available, the component interfaces are set to disable the fail-open capability. If SensorApp fails, the sensor is powered off, reset, or if the NIC interface drivers fail or are unloaded, the paired interfaces enter the fail-closed state (no traffic flows through inline interface or inline VLAN subinterfaces).
When bypass is set to ON, software bypass is active. Software bypass forwards packets between the paired physical interfaces in each inline interface and between the paired VLANs in each inline VLAN subinterface. For each inline interface on which hardware bypass is available, the component interfaces are set to standby mode. If the sensor is powered off, reset, or if the NIC interfaces fail or are unloaded, those paired interfaces enter fail-open state in hardware (traffic flows unimpeded through inline interface). Any other inline interfaces enter fail-closed state.

When bypass is set to AUTO (traffic flows without inspection), software bypass is activated if sensorApp fails. For each inline interface on which hardware bypass is available, the component interfaces are set to standby mode. If the sensor is powered off, reset, or if the NIC interfaces fail or are unloaded, those paired interfaces enter fail-open state in hardware. Any other inline interfaces enter the fail-closed state.

To test fail-over, set the bypass mode to ON or AUTO, create one or more inline interfaces and power down the sensor and verify that traffic still flows through the inline path.

For More Information
For the procedure for installing and removing the 4GE bypass interface card, see Installing and Removing Interface Cards, page 3-20.

Hardware Bypass Configuration Restrictions

To use the hardware bypass feature on the 4GE bypass interface card, you must pair interfaces to support the hardware design of the card. If you create an inline interface that pairs a hardware-bypass-capable interface with an interface that violates one or more of the hardware-bypass configuration restrictions, hardware bypass is deactivated on the inline interface and you receive a warning message similar to the following:

Hardware bypass functionality is not available on Inline-interface pair0. Physical-interface GigabitEthernet2/0 is capable of performing hardware bypass only when paired with GigabitEthernet2/1, and both interfaces are enabled and configured with the same speed and duplex settings.

The following configuration restrictions apply to hardware bypass:

- The 4-port bypass card is only supported on IPS-4260.
- Fail-open hardware bypass only works on inline interfaces (interface pairs), not on inline VLAN pairs.
- Fail-open hardware bypass is available on an inline interface if all of the following conditions are met:
 - Both of the physical interfaces support hardware bypass.
 - Both of the physical interfaces are on the same interface card.
 - The two physical interfaces are associated in hardware as a bypass pair.
 - The speed and duplex settings are identical on the physical interfaces.
 - Both of the interfaces are administratively enabled.
• Autonegotiation must be set on MDI/X switch ports connected to IPS-4260.

You must configure both the sensor ports and the switch ports for autonegotiation for hardware bypass to work. The switch ports must support MDI/X, which automatically reverses the transmit and receive lines if necessary to correct any cabling problems. The sensor is only guaranteed to operate correctly with the switch if both of them are configured for identical speed and duplex, which means that the sensor must be set for autonegotiation too.

Hardware Bypass Link Status Changes and Drops

Properly configuring and deploying hardware bypass protects against complete link failure if the IPS appliance experiences a power loss, critical hardware failure, or is rebooted; however, a link status change still occurs when hardware bypass engages (and again when it disengages).

During engagement, the interface card disconnects both physical connections from itself and bridges them together. The interfaces of the connected devices can then negotiate the link and traffic forwarding can resume. Once the appliance is back online, hardware bypass disengages and the interface card interrupts the bypass and reconnects the links back to itself. The interface card then negotiates both links and traffic resumes.

There is no built-in way to completely avoid link status changes and drops. However, you can greatly reduce the interruption time (in some cases to sub-second times) by doing the following:

• Make sure you use CAT 5e/6-certified cabling for all connections.
• Make sure the interfaces of the connected devices are configured to match the interfaces of the appliance for speed/duplex negotiation (auto/auto).
• Enable portfast on connected switchports to reduce spanning-tree forwarding delays.

Front and Back Panel Features

This section describes the IPS-4260 front and back panel features and indicators.

Figure 3-4 shows the front view of IPS-4260.
There are three switches on the front panel of IPS-4260:

- **Power**—Toggles the system power.
- **Reset**—Resets the system.
- **ID**—Toggles the system ID indicator.

Table 3-1 describes the front panel indicators on IPS-4260.

Table 3-1 Front Panel Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID (blue)</td>
<td>Continuously lit when activated by the front panel ID switch.</td>
</tr>
<tr>
<td>NIC (green)</td>
<td>Indicates activity on either the GigabitEthernetO/1 or MGMT interfaces.</td>
</tr>
<tr>
<td>Power (green)</td>
<td>When continuously lit, indicates DC power. The indicator is off when power is turned off or the power source is disrupted.</td>
</tr>
<tr>
<td>Flash (green/amber)</td>
<td>Off when the compact flash device is not being accessed. Blinks green when the compact flash device is being accessed. Solid amber when a device has failed.</td>
</tr>
<tr>
<td>Status (green/amber)</td>
<td>Blinks green while the power-up diagnostics are running or the system is booting. Solid green when the system has passed power-up diagnostics. Solid amber when the power-up diagnostics have failed.</td>
</tr>
</tbody>
</table>

Figure 3-5 shows the back view of the IPS-4260.

Figure 3-5 IPS-4260 Back Panel Features

![IPS-4260 Back Panel Features Diagram](image-url)
Figure 3-6 shows the two built-in Ethernet ports, which have two indicators per port.

Figure 3-6 Ethernet Port Indicators

![Ethernet Port Indicators Diagram]

Table 3-2 lists the back panel indicators.

Table 3-2 Back Panel Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left side</td>
<td>Green solid</td>
<td>Physical link</td>
</tr>
<tr>
<td></td>
<td>Green blinking</td>
<td>Network activity</td>
</tr>
<tr>
<td>Right side</td>
<td>Not lit</td>
<td>10 Mbps</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>100 Mbps</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>1000 Mbps</td>
</tr>
</tbody>
</table>

Table 3-3 describes the power supply indicator.

Table 3-3 Power Supply Indicators

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No AC power to all power supplies.</td>
</tr>
<tr>
<td>Green solid</td>
<td>Output on and ok.</td>
</tr>
<tr>
<td>Green blinking</td>
<td>AC present, only 5Vsb on (power supply off).</td>
</tr>
<tr>
<td>Amber</td>
<td>No AC power to this power supply (for 1+1 configuration) or power supply</td>
</tr>
<tr>
<td></td>
<td>critical event causing a shutdown: failure, fuse blown (1+1 only), OCP 12</td>
</tr>
<tr>
<td></td>
<td>V, OVP 12 V, or fan failed.</td>
</tr>
<tr>
<td>Amber blinking</td>
<td>Power supply warning events where the power supply continues to operate:</td>
</tr>
<tr>
<td></td>
<td>high temperature, high power/high current, or slow fan.</td>
</tr>
</tbody>
</table>
Specifications

Table 3-4 lists the specifications for IPS-4260.

Table 3-4 IPS-4260 Specifications

<table>
<thead>
<tr>
<th>Dimensions and Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>3.45 in. (87.6 cm)</td>
</tr>
<tr>
<td>Width</td>
<td>17.14 in. (435.3 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>20 in. (508 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>20.0 lb (9.07 kg)</td>
</tr>
<tr>
<td>Form factor</td>
<td>2 RU, standard 19-inch rack-mountable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoswitching</td>
<td>100V to 240V AC</td>
</tr>
<tr>
<td>Frequency</td>
<td>47 to 63 Hz, single phase</td>
</tr>
<tr>
<td>Operating current</td>
<td>8.9 A</td>
</tr>
<tr>
<td>Steady state</td>
<td>588 W max continuous</td>
</tr>
<tr>
<td>Maximum peak</td>
<td>657 W</td>
</tr>
<tr>
<td>Maximum heat dissipation</td>
<td>648 BTU/hr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Operating +32°F to +104°F (+0°C to +40°C) Nonoperating -104°F to +158°F (-40°C to +70°C)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Operating 10% to 85% (noncondensing) Nonoperating 5% to 95% (noncondensing)</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating 0 to 9843 ft (3000 m) Nonoperating 0 to 15,000 ft (4750 m)</td>
</tr>
<tr>
<td>Shock</td>
<td>Operating Half-sine 2 G, 11 ms pulse, 100 pulses Nonoperating 25 G, 170 inches/sec delta V</td>
</tr>
<tr>
<td>Vibration</td>
<td>2.2 Grms, 10 minutes per axis on all three axes</td>
</tr>
</tbody>
</table>

Accessories

IPS-4260 accessories kit contains the following:

- DB25 connector
- DB9 connector
- Rack mounting kit—screws, washers, and metal bracket
- RJ45 console cable
- Two 6-ft Ethernet cables
Important Safety Instructions

Warning

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device. Statement 1071

SAVE THESE INSTRUCTIONS

Warning

Only trained and qualified personnel should be allowed to install, replace, or service this equipment. Statement 1030

Rack Mounting

You can rack mount IPS-4260 in a 2- or 4-post rack. This section describes how to rack mount IPS-4260 and contains the following topics:

- Installing IPS-4260 in a 4-Post Rack, page 3-10
- Installing IPS-4260 in a 2-Post Rack, page 3-13

Installing IPS-4260 in a 4-Post Rack

To rack mount IPS-4260 in a 4-post rack, follow these steps:

Step 1 Attach each inner rail to each side of the chassis with three 8-32x1/4” SEMS screws.
Step 2 Attach the front-tab mounting bracket to the chassis with two 8-32x1/4’ SEMS screws. You can flip the bracket to push the system forward in the rack.

Step 3 Using the four inner studs, install the mounting brackets to the outer rail with four 8-32 KEPS nuts. Insert four thread covers over the four outer studs on each side.
Step 4 Install the two outer rail subassemblies in the rack using eight 10-32x1/2” SEMS screws. You can use four bar nuts if necessary.

Note Adjust the mounting brackets based on rack depth.

Step 5 Slide IPS-4260 into the rack making sure the inner rail is aligned with the outer rail.

Step 6 Install two 10-32x1/2” SEMS screws to hold the front-tab mounting bracket to the rail.
Installing IPS-4260 in a 2-Post Rack

To rack mount IPS-4260 in a 2-post rack, follow these steps:

Step 1
Attach the inner rail to each side of the chassis with three 8-32x1/4” SEMS screws.

Step 2
Using the four inner studs, install the mounting brackets to the outer rail with four 8-32 KEPS nuts. Insert four thread covers over the four outer studs on each side.
Step 3 Install the two outer rail subassemblies in the rack using twelve 10-32x1/2” SEMS screws or whatever rack hardware is necessary.

Note Adjust the mounting brackets based on the rack-channel depth.

Step 4 Slide IPS-4260 into the rack making sure the inner rail is aligned with the outer rail.
Step 5 Install four 8-32x7/16” SEMS screws through the clearance slots in the side of each outer rail assembly into the inner rail.

Installing IPS-4260

⚠️ Warning

Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

Statement 1030

⚠️ Caution

Follow proper safety procedures when performing these steps by reading the safety warnings in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.
To install IPS-4260 on the network, follow these steps:

Step 1 Position IPS-4260 on the network.

Step 2 Attach the grounding lugs to the back of IPS-4260.

Note Use 8-32 locknuts to connect a copper standard barrel grounding lug to the holes. The appliance requires a lug where the distance between the center of each hole is 0.56 inches. The ground lug must be NRTL listed or recognized. In addition, the copper conductor (wires) must be used and the copper conductor must comply with the NEC code for ampacity. A lug is not supplied with the appliance.

Step 3 Place IPS-4260 in a rack, if you are rack mounting it.

Step 4 Attach the power cord to IPS-4260 and plug it in to a power source (a UPS is recommended).

Step 5 Connect the cable as shown in Step 6 so that you have either a DB-9 or DB-25 connector on one end as required by the serial port for your computer, and the other end is the RJ-45 connector.

Note Use the console port to connect to a computer to enter configuration commands. Locate the serial cable from the accessory kit. The serial cable assembly consists of a 180/rollover cable with RJ-45 connectors (DB-9 connector adapter PN 74-0495-01 and DB-25 connector adapter PN 29-0810-01).

Note You can use a 180/rollover or straight-through patch cable to connect the appliance to a port on a terminal server with RJ-45 or hydra cable assembly connections. Connect the appropriate cable from the console port on the appliance to a port on the terminal server.
Step 6 Connect the RJ-45 connector to the console port and connect the other end to the DB-9 or DB-25 connector on your computer.

Step 7 Attach the network cables.

IPS-4260 has the following interfaces:
- GigabitEthernet0/1 (GE 0/1) is the sensing port.
- Management0/0 (MGMT) is the command and control port.
- GigabitEthernet{slot_number/port_number} through GigabitEthernet{slot_number/port_number} are the additional expansion port slots.

Caution Management and console ports are privileged administrative ports. Connecting them to an untrusted network can create security concerns.

Step 8 Power on IPS-4260.
Step 9 Initialize IPS-4260.

Step 10 Upgrade IPS-4260 with the most recent Cisco IPS software.

You are now ready to configure intrusion prevention on IPS-4260.

For More Information

- For more information on working with electrical power and in an ESD environment, see Site and Safety Guidelines, page 1-28.
- For the procedure for installing IPS-4260 in a rack, see Rack Mounting, page 3-10.
- For the instructions for setting up a terminal server, see Connecting an Appliance to a Terminal Server, page 1-17.
- For the procedure for using the setup command to initialize IPS-4260, see Chapter 9, “Initializing the Sensor.”
- For the procedure for obtaining and installing the most recent IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
- For the procedures for configuring intrusion prevention, refer to the following documents:
 - Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
 - Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 - Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1

Removing and Replacing the Chassis Cover

Warning

This product relies on the building’s installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than 120 VAC, 20 A U.S. (240 VAC, 16-20 A International). Statement 1005

Warning

This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor. Contact the appropriate electrical inspection authority or an electrician if you are uncertain that suitable grounding is available. Statement 1024

Warning

Blank faceplates and cover panels serve three important functions: they prevent exposure to hazardous voltages and currents inside the chassis; they contain electromagnetic interference (EMI) that might disrupt other equipment; and they direct the flow of cooling air through the chassis. Do not operate the system unless all cards, faceplates, front covers, and rear covers are in place. Statement 1029

Warning

This unit might have more than one power supply connection. All connections must be removed to de-energize the unit. Statement 1028
Chapter 3 Installing IPS-4260

Removing and Replacing the Chassis Cover

Caution
Follow proper safety procedures when removing and replacing the chassis cover by reading the safety warnings in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.

Note
Removing the appliance chassis cover does not affect your Cisco warranty. Upgrading IPS-4260 does not require any special tools and does not create any radio frequency leaks.

To remove and replace the chassis cover, follow these steps:

Step 1 Log in to the CLI.
Step 2 Prepare IPS-4260 to be powered off:

```plaintext
sensor# reset powerdown
```
Wait for the power down message before continuing with Step 3.

Note You can also power down IPS-4260 using IDM or IME.

Step 3 Power off IPS-4260.
Step 4 Remove the power cord and other cables from IPS-4260.
Step 5 If rack-mounted, remove IPS-4260 from the rack.
Step 6 Make sure IPS-4260 is in an ESD-controlled environment.
Step 7 Press the blue button on the top of the chassis cover and slide the chassis cover back.

Caution Do not operate IPS-4260 without the chassis cover installed. The chassis cover protects the internal components, prevents electrical shorts, and provides proper air flow for cooling the electronic components.

Step 8 To replace the chassis cover, position it at the back of the chassis and slide it on until it snaps into place.
Step 9 Reattach the power cord and other cables to IPS-4260.
Installing and Removing Interface Cards

Caution
Follow proper safety procedures when performing these steps by reading the safety warnings in *Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor*.

IPS-4260 has 6 expansion card slots, three full-height and three half-height slots. You can install the optional network interface cards in the two top full-height slots, slots 2 and 3. IPS-4260 supports up to two network interface cards.

Note
IPS 4260 supports only one 10GE fiber interface card, which you can install in either of the supported slots (slots 2 and 3).

Note
We recommend that you install the 4GE bypass interface card in slot 2 if you are installing only one 4GE bypass card. This improves accessibility to the RJ45 cable connectors.

To install and remove interface cards, follow these steps:

Step 1
Log in to the CLI.

Step 2
Prepare IPS-4260 to be powered off:

```
sensor# reset powerdown
```

Wait for the power down message before continuing with Step 3.

Note
You can also power down IPS-4260 using IDM or IME.

Step 3
Power off IPS-4260.

Step 4
Remove the power cable and other cables from IPS-4260.

Step 5
If rack-mounted, remove IPS-4260 from the rack.

Step 6
Make sure IPS-4260 is in an ESD-controlled environment.
Step 7 Remove the chassis cover.

Step 8 Remove the card carrier by pulling up on the two blue release tabs. Use equal pressure and lift the card carrier out of the chassis.

Step 9 With a screw driver, remove the screw from the desired slot cover.

Step 10 Remove the slot cover by pressing on it from inside the chassis.

If the card is full length, use a screw driver to remove the blue thumb screw from the card support at the back of the card carrier.

Step 11 Carefully align the interface card with the PCI-Express connector and alignment grooves for the appropriate slot. Apply firm even pressure until the card is fully seated in the connector.

Step 12 Reinstall the slot cover screw to hold the card to the carrier. If necessary, reinstall the card support at the back of the card carrier.
Installing and Removing the Power Supply

IPS-4260 ships with one power supply, but you can order it with two power supplies so that you have a redundant power supply.

To install and remove power supplies, follow these steps:

Step 1 Log in to the CLI.

Step 2 Prepare IPS-4260 to be powered off:

```
sensor# reset powerdown
```

Wait for the power down message before continuing with Step 3.

Note You can also power down IPS-4260 using IDM or IME.

Step 3 Power off IPS-4260.

Step 4 Remove the power cable and other cables from IPS-4260.

Note Power supplies are hot-swappable. You can replace a power supply while IPS-4260 is running, if you are replacing a redundant power supply.
Step 5 Squeeze the tabs to remove the filler plate.

Step 6 Install the power supply.

Step 7 To remove the power supply, push down the green tab and pull out the power supply.

Step 8 After installing or removing the power supply, replace the power cord and other cables.

Step 9 Power on IPS-4260.
For More Information

For the IDM procedure for resetting IPS-4260, refer to Rebooting the Sensor; for the IME procedure for resetting IPS-4260, refer to Rebooting the Sensor.
Note

All IPS platforms allow ten concurrent log in sessions.

This chapter describes IPS 4270-20 and how to install it. It also describes the accessories and how to install them. This chapter contains the following sections:

- Introducing IPS 4270-20, page 4-2
- Supported Interface Cards, page 4-3
- Hardware Bypass, page 4-5
- Front and Back Panel Features, page 4-7
- Diagnostic Panel, page 4-13
- Specifications, page 4-14
- Accessories, page 4-15
- Important Safety Instructions, page 4-15
- Installing the Rail System Kit, page 4-15
- Installing IPS 4270-20, page 4-35
- Removing and Replacing the Chassis Cover, page 4-39
- Accessing the Diagnostic Panel, page 4-42
- Installing and Removing Interface Cards, page 4-43
- Installing and Removing the Power Supply, page 4-45
- Installing and Removing Fans, page 4-50
- Troubleshooting Loose Connections, page 4-52

Caution

The BIOS on IPS 4270-20 is specific to IPS 4270-20 and must only be upgraded under instructions from Cisco with BIOS files obtained from the Cisco website. Installing a non-Cisco or third-party BIOS on IPS 4270-20 voids the warranty. For more information on how to obtain instructions and BIOS files from the Cisco website, see Obtaining Cisco IPS Software, page 11-1.
Introducing IPS 4270-20

IPS 4270-20 delivers up to 4 Gbps of performance in media-rich environments and 2 Gbps in transactional environments enabling you to protect fully saturated Gigabit networks and aggregate network traffic on multiple sensing interfaces. IPS 4270-20 is also inline ready and has support for both copper and fiber NICs thus providing flexibility of deployment in any environment.

Media-rich environments are characterized by content, such as that seen on popular websites with video and file transfer. Transactional environments are characterized by connections, such as E-commerce, instant messaging, and voice. Figure 4-1 demonstrates the spectrum of media-rich and transactional environments.

![Figure 4-1 Media-rich and Transactional Environments](image)

IPS 4270-20 has two built-in GigabitEthernet network ports and nine expansion slots. The network port numbers are numbered from top to bottom beginning with 0 and the expansion slot numbers increase from right to left. The two built-in GigabitEthernet ports are used for management and are called Management0/0 and Management0/1. Management0/1 is reserved for future use. Slots 1 and 2 are reserved for future use. You can populate slots 3 through 8 with supported network interface cards. Slot 9 is populated by a RAID controller card and is not available for use by network interface cards. The sensing interfaces are called GigabitEthernet.

Because of the multiple interfaces on IPS 4270-20, it can cover multiple subnets, each of which have bandwidth requirements in the multi-T3 range or Gigabit range, and the multiple interfaces can be connected directly to the additional monitoring interfaces without needing to SPAN the traffic through a switch.

For improved reliability, IPS 4270-20 uses a compact flash device for storage rather than a hard-disk drive. IPS 4270-20 supports two optional network interface cards, the 2SX interface card with fiber-optic ports, and the 4GE bypass interface card with copper ports that contains the hardware-bypass feature. Initially IPS 4270-20 supports only the built-in interfaces and these two interface cards.

IPS 4270-20 supports a maximum of 16 sensing ports. Any additional configured ports will not be monitored and will not appear in the IPS configuration or statistics and no inline traffic will be forwarded on or between these ports. You receive the following error if you exceed the number of supported ports:

The number of installed network interfaces exceeds the limit of 16. The excess interfaces are ignored.

Note

If you add a new interface card that exceeds the limit, one or more of the previous sensing interfaces may become disabled.

IPS 4270-20 ships with two power supplies, thus supporting a redundant power supply configuration. IPS 4270-20 operates in load-sharing mode when the redundant power supply is installed.
Note

On IPS sensors with multiple processors (for example, the IPS 4260 and IPS 4270-20), packets may be captured out of order in the IP logs and by the packet command. Because the packets are not processed using a single processor, the packets can become out of sync when received from multiple processors.

For More Information

- For more information on sensor interfaces, see Sensor Interfaces, page 1-4.
- For more information on the supported interface cards, see Supported Interface Cards, page 4-3.
- For more information on the 4GE bypass interface card, see Hardware Bypass, page 4-5.
- For more information about the power supplies, see Installing and Removing the Power Supply, page 4-45.

Supported Interface Cards

IPS 4270-20 supports three interface cards: the 4GE bypass interface card, the 2SX interface card, and the 10GE interface card.

4GE Bypass Interface Card

The 4GE bypass interface card (part numbers IPS-4GE-BP-INT and IPS-4GE-BP-INT=) provides four 10/100/1000BASE-T (4GE) monitoring interfaces. The IPS 4270-20 supports up to four 4GE bypass interface cards for a total of sixteen GE bypass interfaces. The 4GE bypass interface card supports hardware bypass.

Figure 4-2 shows the 4GE bypass interface card.

Figure 4-2 4GE Bypass Interface Card
2SX Interface Card

The 2SX interface card (part numbers IPS-2SX-INT and IPS-2SX-INT=) provides two 1000BASE-SX (fiber) monitoring interfaces. The IPS 4270-20 supports up to six 2SX interface cards for a total of twelve SX interfaces.

The 2SX card ports require a multi-mode fiber cable with an LC connector to connect to the SX interface of the sensor. The 2SX interface card does not support hardware bypass.

Figure 4-3 shows the 2SX interface card.

Figure 4-3 2SX Interface Card

10GE Interface Card

The 10GE interface card (part numbers IPS-2X10GE-SR-INT and IPS-2X10GE-SR-INT=) provides two 10000 Base-SX (fiber) interfaces. The IPS 4270-20 supports up to two 10GE interface cards for a total of four 10GE fiber interfaces.

The card ports require a multi-mode fiber cable with an LC connector to connect to the SX interface of IPS 4270-20. The 10GE interface card does not support hardware bypass.

Figure 4-4 shows the 10GE interface card.

Figure 4-4 10GE Interface Card

GigabitEthernet slot_number/port_number is the expansion card interface naming convention for IPS 4270-20. The slot number is shown above the slot in the chassis and the port number is numbered from top to bottom starting with 0.
For More Information
For the procedure for installing and removing interface cards, see Installing and Removing Interface Cards, page 4-43

Hardware Bypass

This section describes the 4GE bypass interface card and its configuration restrictions. It contains the following topics:

- 4GE Bypass Interface Card, page 4-5
- Hardware Bypass Configuration Restrictions, page 4-6
- Hardware Bypass Link Status Changes and Drops, page 4-6

4GE Bypass Interface Card

IPS 4270-20 supports the 4-port GigabitEthernet card (part number IPS-4GE-BP-INT=) with hardware bypass. This 4GE bypass interface card supports hardware bypass only between ports 0 and 1 and between ports 2 and 3.

Note

To disable hardware bypass, pair the interfaces in any other combination, for example 2/0<>2/2 and 2/1<>2/3.

Hardware bypass complements the existing software bypass feature in Cisco IPS 6.1. The following conditions apply to hardware bypass and software bypass:

- When bypass is set to OFF, software bypass is not active.
 For each inline interface for which hardware bypass is available, the component interfaces are set to disable the fail-open capability. If SensorApp fails, the sensor is powered off, reset, or if the NIC interface drivers fail or are unloaded, the paired interfaces enter the fail-closed state (no traffic flows through inline interface or inline VLAN subinterfaces).

- When bypass is set to ON, software bypass is active.
 Software bypass forwards packets between the paired physical interfaces in each inline interface and between the paired VLANs in each inline VLAN subinterface. For each inline interface on which hardware bypass is available, the component interfaces are set to standby mode. If the sensor is powered off, reset, or if the NIC interfaces fail or are unloaded, those paired interfaces enter fail-open state in hardware (traffic flows unimpeded through inline interface). Any other inline interfaces enter fail-closed state.

- When bypass is set to AUTO (traffic flows without inspection), software bypass is activated if sensorApp fails.
 For each inline interface on which hardware bypass is available, the component interfaces are set to standby mode. If the sensor is powered off, reset, or if the NIC interfaces fail or are unloaded, those paired interfaces enter fail-open state in hardware. Any other inline interfaces enter the fail-closed state.
To test fail-over, set the bypass mode to ON or AUTO, create one or more inline interfaces and power down the sensor and verify that traffic still flows through the inline path.

For More Information
For the procedure for installing and removing the 4GE bypass interface card, see Installing and Removing Interface Cards, page 4-43.

Hardware Bypass Configuration Restrictions

To use the hardware bypass feature on the 4GE bypass interface card, you must pair interfaces to support the hardware design of the card. If you create an inline interface that pairs a hardware-bypass-capable interface with an interface that violates one or more of the hardware-bypass configuration restrictions, hardware bypass is deactivated on the inline interface and you receive a warning message similar to the following:

Hardware bypass functionality is not available on Inline-interface pair0.
Physical-interface GigabitEthernet2/0 is capable of performing hardware bypass only when paired with GigabitEthernet2/1, and both interfaces are enabled and configured with the same speed and duplex settings.

The following configuration restrictions apply to hardware bypass:

- The 4-port bypass card is only supported on IPS 4270-20.
- Fail-open hardware bypass only works on inline interfaces (interface pairs), not on inline VLAN pairs.
- Fail-open hardware bypass is available on an inline interface if all of the following conditions are met:
 - Both of the physical interfaces support hardware bypass.
 - Both of the physical interfaces are on the same interface card.
 - The two physical interfaces are associated in hardware as a bypass pair.
 - The speed and duplex settings are identical on the physical interfaces.
 - Both of the interfaces are administratively enabled.
- Autonegotiation must be set on MDI/X switch ports connected to IPS 4270-20.
 You must configure both the sensor ports and the switch ports for autonegotiation for hardware bypass to work. The switch ports must support MDI/X, which automatically reverses the transmit and receive lines if necessary to correct any cabling problems. The sensor is only guaranteed to operate correctly with the switch if both of them are configured for identical speed and duplex, which means that the sensor must be set for autonegotiation too.

Hardware Bypass Link Status Changes and Drops

Properly configuring and deploying hardware bypass protects against complete link failure if the IPS appliance experiences a power loss, critical hardware failure, or is rebooted; however, a link status change still occurs when hardware bypass engages (and again when it disengages).
During engagement, the interface card disconnects both physical connections from itself and bridges them together. The interfaces of the connected devices can then negotiate the link and traffic forwarding can resume. Once the appliance is back online, hardware bypass disengages and the interface card interrupts the bypass and reconnects the links back to itself. The interface card then negotiates both links and traffic resumes.

There is no built-in way to completely avoid link status changes and drops. However, you can greatly reduce the interruption time (in some cases to sub-second times) by doing the following:

- Make sure you use CAT 5e/6-certified cabling for all connections.
- Make sure the interfaces of the connected devices are configured to match the interfaces of the appliance for speed/duplex negotiation (auto/auto).
- Enable portfast on connected switchports to reduce spanning-tree forwarding delays.

Front and Back Panel Features

This section describes the IPS 4270-20 front and back panel features and indicators. Figure 4-5 shows the front view of IPS 4270-20.

Figure 4-5 IPS 4270-20 Front View
Figure 4-6 shows the front panel switches and indicators.

Figure 4-6 IPS 4270-20 Front Panel Switches and Indicators

Table 4-1 describes the front panel switches and indicators on IPS 4270-20.

Table 4-1 Front Panel Switches and Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID switch and indicator</td>
<td>Toggles the system ID indicator, which assists with chassis location in a rack:</td>
</tr>
<tr>
<td></td>
<td>• Blue—Activated</td>
</tr>
<tr>
<td></td>
<td>• Off—Deactivated</td>
</tr>
<tr>
<td></td>
<td>Note The ID switch is activated by a switch on the front of the chassis.</td>
</tr>
<tr>
<td>Internal system health indicator</td>
<td>Indicates internal system health:</td>
</tr>
<tr>
<td></td>
<td>• Green—System on</td>
</tr>
<tr>
<td></td>
<td>• Flashing amber—System health degraded</td>
</tr>
<tr>
<td></td>
<td>• Flashing red—System health critical</td>
</tr>
<tr>
<td></td>
<td>• Off—System off</td>
</tr>
<tr>
<td>Power status indicator</td>
<td>Indicates the power supply status:</td>
</tr>
<tr>
<td></td>
<td>• Green—Power supply on</td>
</tr>
<tr>
<td></td>
<td>• Flashing amber—Power supply health degraded</td>
</tr>
<tr>
<td></td>
<td>• Flashing red—Power supply health critical</td>
</tr>
<tr>
<td></td>
<td>• Off—Power supply off</td>
</tr>
<tr>
<td>MGMT0/0 indicator</td>
<td>Indicates the status of the management port:</td>
</tr>
<tr>
<td></td>
<td>• Green—Linked to network</td>
</tr>
<tr>
<td></td>
<td>• Flashing green—Linked with activity on the network</td>
</tr>
<tr>
<td></td>
<td>• Off—No network connection</td>
</tr>
</tbody>
</table>
Table 4-1 Front Panel Switches and Indicators (continued)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT0/1 indicator</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>Power switch and</td>
<td>Turns power on and off:</td>
</tr>
<tr>
<td>indicator</td>
<td>• Amber—System has AC power and is in standby mode</td>
</tr>
<tr>
<td></td>
<td>• Green—System has AC power and is turned on</td>
</tr>
<tr>
<td></td>
<td>• Off—System has no AC power</td>
</tr>
</tbody>
</table>

Figure 4-7 shows the back view of IPS 4270-20.
Figure 4-8 shows the built-in Ethernet port, which has two indicators per port, and the power supply indicators.

Figure 4-8 Ethernet Port Indicators

![Ethernet Port Indicators Diagram]

Table 4-2 describes the Ethernet port indicators.

Table 4-2 Ethernet Port Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Indicator (Green)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>On or flashing</td>
<td>Network activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No network activity</td>
</tr>
<tr>
<td>Link</td>
<td>On</td>
<td>Linked to network</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Not linked to network</td>
</tr>
</tbody>
</table>
Table 4-3 describes the power supply indicators.

<table>
<thead>
<tr>
<th>Fail Indicator 1</th>
<th>Power Indicator 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber</td>
<td>Off</td>
<td>No AC power to any power supply</td>
</tr>
<tr>
<td>Flashing</td>
<td>Off</td>
<td>Power supply failure (over current)</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>No AC power to this power supply</td>
</tr>
<tr>
<td>Off</td>
<td>Flashing</td>
<td>• AC power present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Standby mode</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Normal</td>
</tr>
</tbody>
</table>
Figure 4-9 shows the internal components of IPS 4270-20.

Figure 4-9 IPS 4270-20 Internal Components
Diagnostic Panel

The front panel health indicators only indicate the current hardware status. The Diagnostic Panel indicators identify components experiencing an error, event, or failure. All indicators are off unless one of the component fails.

Note

When you remove the chassis cover to view the Diagnostic Panel, leave IPS 4270-20 powered on. Powering off IPS 4270-20 clears the Diagnostic Panel indicators.

Figure 4-10 shows the Diagnostic Panel.

Table 4-4 lists the indicators that display health status for each component:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1</td>
<td>Power supply (primary)</td>
</tr>
<tr>
<td>PS2</td>
<td>Power supply (optional)</td>
</tr>
<tr>
<td>CPU BD (power fault)</td>
<td>Processor memory module board</td>
</tr>
<tr>
<td>I/O BD</td>
<td>System board</td>
</tr>
<tr>
<td>NMI</td>
<td>System NMI switch</td>
</tr>
<tr>
<td>Slot X</td>
<td>Expansion slot</td>
</tr>
<tr>
<td>CPU BD (interlock error)</td>
<td>System board</td>
</tr>
<tr>
<td>PPM X</td>
<td>Processor power module</td>
</tr>
<tr>
<td>1A-32D</td>
<td>DIMM Slot</td>
</tr>
<tr>
<td>PROC X</td>
<td>Processor</td>
</tr>
<tr>
<td>FAN X</td>
<td>Fan</td>
</tr>
</tbody>
</table>
Specifications

Table 4-5 lists the specifications for IPS 4270-20.

<table>
<thead>
<tr>
<th>Dimensions and Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>6.94 in. (17.6 cm)</td>
</tr>
<tr>
<td>Width</td>
<td>19.0 in. (46.3 cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>26.5 in. (67.3 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>80 lb (36.3 kg)</td>
</tr>
<tr>
<td>Form factor</td>
<td>4 RU, standard 19-inch rack-mountable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated input voltage</td>
<td>100 to 127 VAC</td>
</tr>
<tr>
<td></td>
<td>200 to 240 VAC</td>
</tr>
<tr>
<td>Rated input frequency</td>
<td>50 to 60 Hz</td>
</tr>
<tr>
<td>Rated input power</td>
<td>1161W @ 100 VAC</td>
</tr>
<tr>
<td></td>
<td>1598W @ 200 VAC</td>
</tr>
<tr>
<td>Rated input current</td>
<td>12A (100 VAC)</td>
</tr>
<tr>
<td></td>
<td>8A (200 VAC)</td>
</tr>
<tr>
<td>Maximum heat dissipation</td>
<td>3960 BTU/hr (100 VAC)</td>
</tr>
<tr>
<td></td>
<td>5450 BTU/hr (200 VAC)</td>
</tr>
<tr>
<td>Power supply output</td>
<td>910 W (low line)</td>
</tr>
<tr>
<td></td>
<td>1300 W (high line)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Operating 50 to 95°F (10 to 35°C)¹</td>
</tr>
<tr>
<td></td>
<td>Nonoperating -40°F to 158°F (-40°C to 70°C)</td>
</tr>
<tr>
<td>Maximum wet bulb temperature</td>
<td>82.4°F (28°C)</td>
</tr>
<tr>
<td>Relative humidity (noncondensing)</td>
<td>Operating 10% to 90%</td>
</tr>
<tr>
<td></td>
<td>Nonoperating 5% to 95%</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating 0 to 10,000 ft (3050 m)</td>
</tr>
<tr>
<td></td>
<td>Nonoperating 0 to 30,000 ft (9144 m)</td>
</tr>
<tr>
<td>Shock</td>
<td>Operating Half-sine 2 G, 11 ms pulse, 100 pulses</td>
</tr>
<tr>
<td></td>
<td>Nonoperating 25 G, 170 inches/sec delta V</td>
</tr>
<tr>
<td>Vibration</td>
<td>2.2 Grms, 10 minutes per axis on all three axes</td>
</tr>
</tbody>
</table>

¹ At sea level with an altitude derating of 1.8°F per every 1000 ft (1.0°C per every 3.0m) above sea level to a maximum of 10,000 ft (3050 m). No direct sustained sunlight.
Accessories

The IPS 4270-20 accessories kit contains the following:

- DB-9 connector
- DB-9/RJ-45 console cable
- Two Ethernet RJ-45 cables
- Documentation Roadmap for Cisco Intrusion Prevention System

Important Safety Instructions

Warning IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.

Statement 1071

SAVE THESE INSTRUCTIONS

Warning Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

Statement 1030

Installing the Rail System Kit

You can install IPS 4270-20 in a 4-post rack. This section describes how to install IPS 4270-20 in a rack, and contains the following sections:

- Understanding the Rail System Kit, page 4-16
- Rail System Kit Contents, page 4-16
- Space and Airflow Requirements, page 4-17
- Installing IPS 4270-20 in the Rack, page 4-17
- Extending IPS 4270-20 from the Rack, page 4-26
- Installing the Cable Management Arm, page 4-29
- Converting the Cable Management Arm, page 4-32
Understanding the Rail System Kit

This rail system supports a variety of products that can be installed in round-, square-, or threaded-hole racks. The following illustration shows the three rack hole types. Use Figure 4-11 to identify your rack type and then follow the installation steps accordingly.

![Figure 4-11 Round-, Square-, and Threaded-Hole Racks](image)

No tools are required for the round- and square-hole racks. You may need screws that fit the threaded-hole rack and a driver for those screws. You need a standard screwdriver to remove the round- and square-hole studs from the slide assemblies when you install the security appliance in a threaded-whole rack.

This rail system supports a minimum rack depth of 24 in. (60.96 cm) and a maximum rack depth of 36.5 in. (92.71 cm).

Rail System Kit Contents

The rail system kit contains the following items:

- Two slide assemblies
- Two chassis rails
- Four Velcro straps
- Six zip ties
- One cable management arm
- A package of miscellaneous parts (screws, and so forth)
- One cable management arm stop bracket
Space and Airflow Requirements

To allow for servicing and adequate airflow, follow these space and airflow requirements when choosing where to place a rack:

- Leave a minimum clearance of 25 in. (63.5 cm) in front of the rack.
- Leave a minimum clearance of 30 in. (76.2 cm) behind the rack.
- Leave a minimum clearance of 48 in. (121.9 cm) from the back of the rack to the back of another rack or row of racks.

IPS 4270-20 draws in cool air through the front and expels warm air through the back. The front and back rack doors must be adequately ventilated to allow ambient room air to enter the chassis and the back must be adequately ventilated to allow warm air to escape from the chassis.

Installing IPS 4270-20 in the Rack

Warning

To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:

- This unit should be mounted at the bottom of the rack if it is the only unit in the rack.
- When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
- If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack. Statement 1006

Warning

This procedure requires two or more people to position IPS 4270-20 on the slide assemblies before pushing it in to the rack.
To install IPS 4270-20 in the rack, follow these steps:

Step 1 Attach the chassis side rail to IPS 4270-20 by aligning the chassis rail to the stud on IPS 4270-20, pressing the chassis side rail in to the stud, and then sliding the chassis side rail backwards until you hear the latch catch.

Note The tapered end of the chassis side rail should be at the back of IPS 4270-20. The chassis side rail is held in place by the inner latch.

Step 2 Repeat Step 1 for each chassis side rail.
Step 3 To remove the chassis side rail, lift the latch, and slide the rail forward.
Step 4 If you are installing IPS 4270-20 in a shallow rack, one that is less than 28.5 in. (72.39 cm), remove the screw from the inside of the slide assembly before continuing with Step 5.

Step 5 Attach the slide assemblies to the rack.

For round- and square-hole racks:

a. Line up the studs on the slide assembly with the holes on the inside of the rack and snap in to place.

b. Adjust the slide assembly lengthwise to fit the rack.

 The spring latch locks the slide assembly into position.
c. Repeat for each slide assembly.
 Make sure the slide assemblies line up with each other in the rack.

d. Lift the spring latch to release the slide assembly if you need to reposition it.
For threaded-hole racks:

a. Remove the eight round- or square-hole studs on each slide assembly using a standard screwdriver.

Note

You may need a pair of pliers to hold the retaining nut.
b. Line up the bracket on the slide assembly with the rack holes, install two screws (top and bottom) on each end of the slide assembly.

c. Repeat for each slide assembly.
Step 6 Extend the slide assemblies out of the rack.
Step 7 Align the chassis side rails on IPS 4270-20 with the slide assembly on both sides of the rack, release the blue slide tab (by either pulling the tab forward or pushing the tab back), and carefully push IPS 4270-20 in to place.

Caution Keep IPS 4270-20 parallel to the floor as you slide it into the rails. Tilting IPS 4270-20 up or down can damage the slide rails.

Step 8 If you are using the cable management arm, install it before you connect and route any cables.

Note You may also need longer cables when the arm is installed (an extra length of around 3 feet is required).
Step 9 Install the electrical cables at the back of IPS 4270-20.

For More Information
- For the procedure for installing the cable management arm, see Installing the Cable Management Arm, page 4-29.
- For information on installing connections to IPS 4270-20, see Installing IPS 4270-20, page 4-35.

Extending IPS 4270-20 from the Rack

You can extend IPS 4270-20 from the rack for service or removal.

Caution
You can only extend IPS 4270-20 from the rack if the cable management arm is correctly installed with the cables routed through it or if all cables are disconnected from the back of the chassis. Otherwise, you risk damage to the cables and a possible shock hazard if the power cables get caught between the chassis and the rack.
To extend IPS 4270-20 from the rack, follow these steps:

Step 1 Pull the quick-release levers on each side of the front bezel of IPS 4270-20 to release it from the rack and extend it on the rack rails until the rail-release latches engage.

Note The release latches lock in place when the rails are fully extended.

Step 2 After performing the installation or maintenance procedure, slide IPS 4270-20 into the rack by pressing the rail-release latches.
Step 3 To completely remove IPS 4270-20 from the rack, disconnect the cables from the back of IPS 4270-20, push the release tab in the middle of the slide assembly forward, and pull IPS 4270-20 from the rack.
Installing the Cable Management Arm

Note
To hinge the cable management arm on the back right-hand side of the rack, see *Converting the Cable Management Arm, page 4-32.*

To install the cable management arm, follow these steps:

Step 1
Align the slide bracket on the cable management arm with the stud on the back of IPS 4270-20 and align the two studs at the back of the chassis side rail, then slide down and lock in to place.
Step 2 Attach the cable trough to the back of the rack by pushing the lower metal tab on the cable management arm into the slide assembly, then lifting the spring pin to lock it in place.

Caution Make sure the metal tab is on the outside of the upper part of the cable management arm.

Note When properly installed, the cable management arm is attached to IPS 4270-20 and the rack rail.
Step 3 Route the cables through the cable trough and secure the cables with the Velcro straps and black tie wraps.

Note After you route the cables through the cable management arm, make sure the cables are not pulled tight when IPS 4270-20 is fully extended.

Caution Do not use the straps and zip ties to tie the two parts of the cable management arm together.
Step 4 Attach the cable management arm stop bracket to the ride side of the back of the rack by inserting the stop bracket into the cable management arm bracket.

Converting the Cable Management Arm

Note The cable management arm is designed for ambidextrous use. You can convert the cable management arm from a left-hand swing to a right-hand swing.

Note Make sure to orient the management arm with the cable trough facing upward.
To convert the cable management arm swing, follow these steps:

Step 1 Pull up the spring pin and slide the bracket off the cable management arm.
Step 2 Remove the bottom sliding bracket and flip it over to the top of the bracket aligning the studs.
Step 3 On the other side of the sliding bracket, align the spring pin with the studs and key holes, and slide until the pin snaps in to place.

Note The sliding bracket only fits one way because the hole for the spring pin is offset.

Installing IPS 4270-20

Caution Follow proper safety procedures when performing these steps by reading the safety warnings in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.
Warning IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.

Statement 1071

SAVE THESE INSTRUCTIONS

Warning Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

Statement 1030

To install IPS 4270-20 on the network, follow these steps:

Step 1
Position IPS 4270-20 on the network.

Step 2
Install IPS 4270-20 in a rack, if you are rack mounting it.

Step 3
Connect the cable as shown in Step 4 so that you have either a DB-9 connector on one end as required by the serial port for your computer, and the other end is the RJ-45 connector.

Note Use the console port to connect to a computer to enter configuration commands. Locate the serial cable from the accessory kit. The serial cable assembly consists of a 180/rollover cable with RJ-45 connectors (DB-9 connector adapter PN 74-0495-01).

Note You can use a 180/rollover or straight-through patch cable to connect the appliance to a port on a terminal server with RJ-45 or hydra cable assembly connections. Connect the appropriate cable from the console port on the appliance to a port on the terminal server.
Step 4 Connect the RJ-45 to DB-9 adapter connector to the console port and connect the other end to the DB-9 connector on your computer.
Step 5 Attach the network cables.

IPS 4270-20 has the following interfaces:
- Management0/0 (MGMT0/0) is the command and control port.
- GigabitEthernet slot_number/port_number through GigabitEthernet slot_number/port_number are the expansion ports.

Caution Management and console ports are privileged administrative ports. Connecting them to an untrusted network can create security concerns.

Step 6 Attach the power cables (there are two power supplies) to IPS 4270-20 and plug them in to a power source (a UPS is recommended).

Step 7 Power on IPS 4270-20.

Step 8 Initialize IPS 4270-20.

Step 9 Upgrade IPS 4270-20 with the most recent Cisco IPS software.
You are now ready to configure intrusion prevention on IPS 4270-20.

For More Information
- For more information on working with electrical power and in an ESD environment, see Site and Safety Guidelines, page 1-28.
- For more information on the best place to position your sensor on the network, see Your Network Topology, page 1-3.
• For the procedure for installing IPS 4270-20 in a rack, see Installing IPS 4270-20 in the Rack, page 4-17.
• For the instructions for setting up a terminal server, see Connecting an Appliance to a Terminal Server, page 1-17.
• For the procedure for using the setup command to initialize IPS 4270-20, see Initializing the Sensor, page 9-1.
• For the procedure for obtaining the most recent Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.
• For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
• To configure intrusion prevention, refer to the following documents:
 – Installing and Using Cisco Intrusion Prevention System Device Manager Version 6.1
 – Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 – Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1

Removing and Replacing the Chassis Cover

Caution

Follow proper safety procedures when performing these steps by reading the safety warnings in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.

Warning

This product relies on the building’s installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than 120 VAC, 20 A U.S. (240 VAC, 16-20 A International). Statement 1005

Warning

This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor. Contact the appropriate electrical inspection authority or an electrician if you are uncertain that suitable grounding is available. Statement 1024

Warning

Blank faceplates and cover panels serve three important functions: they prevent exposure to hazardous voltages and currents inside the chassis; they contain electromagnetic interference (EMI) that might disrupt other equipment; and they direct the flow of cooling air through the chassis. Do not operate the system unless all cards, faceplates, front covers, and rear covers are in place. Statement 1029

Warning

This unit might have more than one power supply connection. All connections must be removed to de-energize the unit. Statement 1028
Removing the appliance chassis cover does not affect your Cisco warranty. Upgrading IPS 4270-20 does not require any special tools and does not create any radio frequency leaks.

Do not operate IPS 4270-20 for long periods with the chassis cover open or removed. Operating it in this manner results in improper airflow and improper cooling that can lead to thermal damage.

To remove and replace the chassis cover, follow these steps:

Step 1 Log in to the CLI.

Step 2 Prepare IPS 4270-20 to be powered off:

```
sensor# reset powerdown
```

Wait for the power down message before continuing with Step 3.

You can also power down IPS 4270-20 using IDM or IME.

Step 3 Power off IPS 4270-20.

Step 4 Remove both power cables from IPS 4270-20.

Step 5 Extend IPS 4270-20 out of the rack if it is rack-mounted.

Step 6 Make sure IPS 4270-20 is in an ESD-controlled environment.

Step 7 If the locking latch is locked, use the T-15 Torx screwdriver located on the back of the chassis to unlock it. Turn the locking screw a quarter of a turn counterclockwise to unlock it.
Step 8 Lift up the cover latch on the top of the chassis.

Step 9 Slide the chassis cover back and up to remove it.

Caution Do not operate IPS 4270-20 without the chassis cover installed. The chassis cover protects the internal components, prevents electrical shorts, and provides proper air flow for cooling the electronic components.
Step 10 To replace the chassis cover, position it on top of the chassis and slide it on. Push down on the cover latch to lock into place.

Note Make sure the chassis cover is securely locked in to place before powering up IPS 4270-20.

Step 11 Reattach the power cables to IPS 4270-20.

Step 12 Reinstall IPS 4270-20 in a rack, on a desktop, or on a table, or extend it back in to the rack.

Step 13 Power on IPS 4270-20.

For More Information
- For the procedure extending IPS 4270-20 from the rack, see Extending IPS 4270-20 from the Rack, page 4-26.
- For more information on working in an ESD-controlled environment, see Site and Safety Guidelines, page 1-28.
- For the procedure for powering down IPS 4270-20 using IDM, refer to Rebooting the Sensor, for IME, refer to Rebooting the Sensor.
- For an illustration of the screwdriver and where it is located, see Figure 4-7 on page 4-9.
- For the procedure for installing the power cables on IPS 4270-20, see Installing IPS 4270-20, page 4-35.
- If you are reinstalling IPS 4270-20 in a rack, see Installing the Rail System Kit, page 4-15.

Accessing the Diagnostic Panel

Note When you remove the chassis cover to view the Diagnostic Panel, leave IPS 4270-20 powered on. Powering off IPS 4270-20 clears the Diagnostic Panel indicators.

To access the Diagnostic Panel, follow these steps:

Step 1 Extend IPS 4270-20 from the rack.

Step 2 Remove the chassis cover.

Step 3 Locate the Diagnostic Panel.

Follow the instructions in this chapter to remove and install failed components. For aid in troubleshooting, use the internal health indicators information when contacting TAC.
For More Information

- For the procedure for extending IPS 4270-20 from the rack, see Extending IPS 4270-20 from the Rack, page 4-26.
- For the procedure for removing the chassis cover, see Removing and Replacing the Chassis Cover, page 4-39.
- For the location of the Diagnostic Panel, see Figure 4-9 on page 4-12.
- For information on what internal health information each indicator displays on the Diagnostic Panel, see Diagnostic Panel, page 4-13.

Installing and Removing Interface Cards

Caution
Follow proper safety procedures when performing these steps by reading the safety warnings in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.

IPS 4270-20 has nine expansion card slots. Slots 1 and 2 are PCI-X slots and are reserved for future use. Slots 3 through 9 are PCI-Express slots. All slots are full-height slots. Slot 9 is populated by a RAID controller card and is not available for use by network interface cards.

Note
IPS 4270-20 supports two 10GE fiber interface cards, which you can install in any of the supported six slots (slots 3 to 8).

Caution
To prevent damage to IPS 4270-20 or the expansion cards, power down IPS 4270-20 and remove all AC power cables before removing or installing expansion cards.

Caution
To prevent improper cooling and thermal damage, do not operate IPS 4270-20 unless all expansion slots have a cover or a card installed.

To install and remove interface cards, follow these steps:

Step 1 Log in to the CLI.

Step 2 Prepare IPS 4270-20 to be powered off:

```
sensor# reset powerdown
```

Wait for the power down message before continuing with Step 3.

Note You can also power down IPS 4270-20 using IDM or IME.

Step 3 Power off IPS 4270-20.

Step 4 Remove the power cables from IPS 4270-20.

Step 5 If rack-mounted, extend IPS 4270-20 from the rack.
Step 6 Make sure IPS 4270-20 is in an ESD-controlled environment.

Step 7 Remove the chassis cover.

Step 8 To unlock the expansion card slot, push down on the center part of the blue tab and open the latch.

Step 9 To uninstall a card, lift the card out of the socket. To install a card, position the card so that its connector lines up over the socket on the motherboard and push the card down into the socket. Press down on the outer edge of the blue tab to lock the card in place.

Note To remove full-length expansion cards, unlock the retaining clip. To install full-length expansion cards, lock the retaining clip.

Step 10 Replace the chassis cover.

Step 11 Slide the server back in to the rack by pressing the server rail-release handles.

Step 12 Reconnect the power cables to IPS 4270-20.

Step 13 Power on IPS 4270-20.
For More Information

- For an illustration of the expansion card slots, see Figure 4-7 on page 4-9.
- For an illustration of the supported interface cards, see Supported Interface Cards, page 4-3.
- For the procedure for powering down IPS 4270-20 using IDM, refer to Rebooting the Sensor, for IME, refer to Rebooting the Sensor.
- For the procedure for extending IPS 4270-20 from the rack, see Extending IPS 4270-20 from the Rack, page 4-26.
- For more information on working in an ESD-controlled environment, see Site and Safety Guidelines, page 1-28.
- For the procedure for removing the chassis cover, see Removing and Replacing the Chassis Cover, page 4-39.

Installing and Removing the Power Supply

Caution
Follow proper safety procedures when performing these steps by reading the safety warnings in Regulatory Compliance and Safety Information for the Cisco Intrusion Prevention System 4200 Series Appliance Sensor.

IPS 4270-20 ships with two hot-pluggable power supplies, thus providing a redundant power supply configuration. You can install or replace either power supply without powering down IPS 4270-20, as long as one power supply is active and functioning correctly.

Caution
If only one power supply is installed, do not remove the power supply unless IPS 4270-20 has been powered down. Removing the only operational power supply causes an immediate power loss.

To install and remove power supplies, follow these steps:

Step 1 Log in to the CLI.

Note Power supplies are hot-pluggable. You can replace a power supply while IPS 4270-20 is running, if you are replacing a redundant power supply.

Step 2 Prepare IPS 4270-20 to be powered off (if you only have one active, functioning power supply):

```
sensor# reset powerdown
```

Wait for the power down message before continuing with Step 3.

Note You can also power down IPS 4270-20 using IDM or IME.

Step 3 Power off IPS 4270-20 (if you only have one active, functioning power supply).

Step 4 Remove the power cables from IPS 4270-20.
Step 5 Use the T-15 Torx screwdriver that shipped with IPS 4270-20 to remove the shipping screw. The T-15 Torx screwdriver is located to the right of power supply.
Step 6 Remove the power supply by pulling it away from the chassis.
Step 7 Install the power supply. Make sure the handle is open and slide the power supply into the bay.
Step 8 Lock the power supply handle.

Step 9 Reconnect the power cables.

Be sure that the power supply indicator is green and the front panel health indicator is green.

Note Make sure the two power supplies are powered by separate AC power sources so that IPS 4270-20 is always available.

Step 10 Power on IPS 4270-20.

For More Information
- For the procedure for powering down IPS 4270-20 using IDM, refer to Rebooting the Sensor, for IME, refer to Rebooting the Sensor.
- For an illustration of the screwdriver and where it is located, see Figure 4-7 on page 4-9.
Installing and Removing Fans

There are six fans in IPS 4270-20. IPS 4270-20 supports redundant hot-pluggable fans in a 5 + 1 configuration to provide proper airflow.

Figure 4-12 shows the fan, its connector, and its indicator.

The fan indicators provide the following information:

- Green—Operating normally
- Amber—Failed
- Off—No power

To install and remove fans in IPS 4270-20, follow these steps:

Step 1 Extend the server from the rack.

Step 2 Remove the chassis cover.

Step 3 Identify the failed fan by locating an amber indicator on top of the failed fan or a lighted FAN X indicator on the Diagnostic Panel.
Step 4 Remove the failed fan by grasping the red plastic handle and pulling up.

Note Remove and replace one fan at a time. If IPS 4270-20 detects two failed fans, it shuts down to avoid thermal damage.

Step 5 Install a new fan by positioning the fan over the slot so that the connector below the fan indicator lines up with the connection on the motherboard. Push down until the fan clicks in to place.

Step 6 Make sure the indicator on each fan is green.

Note If the front panel internal system health indicator is not green after you install a fan, reseat the fan.

Step 7 Replace the chassis cover.

Step 8 Slide IPS 4270-20 back in to the rack by pressing the rail-release handles.

Step 9 Power on IPS 4270-20.

For More Information

- For the fan locations, see Figure 4-9 on page 4-12.
- For the procedure for extending IPS 4270-20 from the rack, see Extending IPS 4270-20 from the Rack, page 4-26.
- For more information about the Diagnostic Panel, see Diagnostic Panel, page 4-13.
- For the procedure for removing the chassis cover, see Removing and Replacing the Chassis Cover, page 4-39.
Troubleshooting Loose Connections

Perform the following actions to troubleshoot loose connections on a sensor:

- Make sure all power cords are securely connected.
- Make sure all cables are properly aligned and securely connected for all external and internal components.
- Remove and check all data and power cables for damage. Make sure no cables have bent pins or damaged connectors.
- Make sure each device is properly seated.
- If a device has latches, make sure they are completely closed and locked.
- Check any interlock or interconnect indicators that indicate a component is not connected properly.
- If problems continue, remove and reinstall each device, checking the connectors and sockets for bent pins or other damage.
Installing AIM-IPS

Note
All IPS platforms allow ten concurrent log in sessions.

This chapter describes how to install AIM-IPS. It contains the following sections:

- Specifications, page 5-1
- Before Installing AIM-IPS, page 5-2
- Software and Hardware Requirements, page 5-2
- Interoperability With Other IPS Modules, page 5-3
- Restrictions, page 5-3
- Hardware Interfaces, page 5-4
- Installation and Removal Instructions, page 5-5
- Verifying Installation, page 5-6

Specifications

Table 5-1 lists the specifications for AIM-IPS.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D)</td>
<td>0.85 x 3.25 x 5.25 in. (2.16 x 8.26 x 13.34 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>4 oz (113.41 cg) (maximum)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>+32° to +104°F (+0° to +40°C)</td>
</tr>
<tr>
<td>Nonoperating temperature</td>
<td>–40° to +185°F (–40° to +85°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95% noncondensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>0 to 10,000 ft (0 to 3,000 m)</td>
</tr>
<tr>
<td>Memory</td>
<td>1 GB</td>
</tr>
<tr>
<td>eUSB</td>
<td>512 MB</td>
</tr>
</tbody>
</table>
Before Installing AIM-IPS

Follow these recommendations before installing AIM-IPS:

- Upgrade or downgrade software when you can take all applications that run on the router out of service or offline.
- Make sure that you have the correct router and software for the module.
- For safety and regulatory information, read *Cisco Network Modules and Interface Cards Regulatory Compliance and Safety Information*.
- Make a note of the location of the module in the router (slot_number/port_number). The slot value is 0, and the port number field specifies the physical slot number for AIM-IPS (0/IDS-Sensor port).

Note After you install the module, you can get this information by using the `show running-config` command. You need the module slot number to configure the interfaces on the module.

For More Information

- For the supported routers and software, see *Software and Hardware Requirements, page 5-2*.
- For more information, refer to *Setting Up Interfaces on AIM-IPS and the Router*.

Software and Hardware Requirements

The router and AIM-IPS have the following software and hardware requirements:

- The router must be running Cisco IOS release 12.4(15)XY or 12.4(20)T or later.

Note Use the `show version` command in the router CLI to determine which Cisco IOS release your router is running.

- The module must be running IPS 6.0(3) or later.

Note Use the `service-module IDS-Sensor slot/port status` command in the IOS CLI to determine which IPS release your sensor is running. Or use the `show version` command in the module CLI.

- Supported routers:
 - Cisco 1841 and 2801
 - Cisco 2800 series (2811, 2821, and 2851)
 - Cisco 3800 series (3825 and 3845)

Note The Cisco routers support up to one AIM-IPS per platform.
• Supported Cisco IOS Feature Sets:
 – Cisco IOS Advanced Security
 – Cisco IOS Advanced IP Services
 – Cisco IOS Advanced Enterprise Services

Interoperability With Other IPS Modules

The Cisco access routers only support one IDS/IPS module per router. If you have more than one
IDS/IPS module installed, the most capable card is enabled. The most capable hierarchy is:

1. NME-IPS
2. AIM-IPS
3. NM-CIDS

This means, for example, that if all modules are installed, NME-IPS disables all other modules. AIM-IPS
disables all NM-CIDS. If there are multiple modules with the same level of capability, the first one
discovered is enabled and all others are disabled.

You cannot bring up, enable, or configure a disabled module. To bring up a less capable module, you
must remove the more capable module from the router and reboot. Disabled modules are reported in the
show diag command output. The state of the module is reported as present but disabled.

If the most capable module slot and port do not match the interface ids slot/port configuration
command, the most capable module is disabled with the following warning:
The module in slot x will be disabled and configuration ignored.

The correct slot/port number are displayed so that you can change the configuration.

Caution
You cannot upgrade an NM-CIDS to NME-IPS. For more information on NM-CIDS, refer to Introducing
NM-CIDS and Installing NM-CIDS.

Restrictions

The following restrictions apply to AIM-IPS:

• Do not deploy IOS IPS and AIM-IPS at the same time.

• When AIM-IPS is used with an IOS firewall, make sure SYN flood prevention is done by the IOS
 firewall.

 AIM-IPS and the IOS firewall complement each other’s abilities to create security zones in the
 network and inspect traffic in those zones. Because AIM-IPS and the IOS firewall operate
 independently, sometimes they are unaware of the other’s activities. In this situation, the IOS
 firewall is the best defense against a SYN flood attack.

• The Cisco access routers only support one IDS/IPS per router.

Caution
When you reload the router, AIM-IPS also reloads. To ensure that there is no loss of data on AIM-IPS,
make sure you shut down the module using the shutdown command before you use the reload command
to reboot the router.
For More Information
For more information on which modules work with each other, see Interoperability With Other IPS Modules, page 5-3.

Hardware Interfaces

Figure 5-1 shows the router and AIM-IPS interfaces used for internal communication. You can configure the router interfaces through the Cisco IOS CLI and the AIM-IPS interfaces through the IPS CLI, IDM, IME, or CSM.

Figure 5-1 AIM-IPS and Router Interfaces

1. **Router interface to AIM-IPS (IDS-Sensor 0/1)**
 Uses the Cisco OS CLI to configure the IP address of the router interface that connects to AIM-IPS. This router IP address is used as the default router IP address when you configure Cisco IPS on AIM-IPS.

2. **AIM-IPS interface to router (GigabitEthernet0/1)**
 Configure the command and control interface using the IPS CLI, IDM, IME, or CSM.

3. **Router interface to external link.**

Note
You need two IP addresses to configure AIM-IPS. AIM-IPS has a command and control IP address that you configure through the Cisco IPS CLI. You also assign an IP address to the router for its internal interface (IDS-Sensor 0/x) to AIM-IPS. This IP address belongs to the router itself and is used for routing traffic to the command and control interface of AIM-IPS. It is used as the default router IP address when you set up the AIM-IPS command and control interface.
For More Information

- For more information on the IPS CLI, refer to Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1.
- For more information on IDM, refer to Installing and Using Cisco Intrusion Prevention System Device Manager Version 6.1.
- For more information on IME, refer to Installing and Using Cisco Intrusion Prevention System Manager Express 6.1.

Installation and Removal Instructions

For instructions on how to install and remove AIM-IPS, refer to the following documents:

- Cisco 1800 Series Hardware Installation Guide (Modular)
 For instructions, refer to “Installing and Upgrading Internal Modules in Cisco 1800 Series Routers (Modular).”
- Cisco 2800 Series Hardware Installation
 For instructions, refer to “Installing and Upgrading Internal Modules in Cisco 2800 Series Routers.”
- Cisco 3800 Series Hardware Installation
 For instructions, refer to “Installing and Upgrading Internal Components in Cisco 3800 Series Routers.”

Perform the following tasks after installing AIM-IPS:

1. Verify that AIM-IPS is installed properly.
2. After you install AIM-IPS, you must initialize it.
3. After you initialize AIM-IPS, you should make sure you have the latest IPS software.

For More Information

- For the procedure for verifying that AIM-IPS is installed properly, see Verifying Installation, page 5-6.
- For the procedure for using the setup command to initialize AIM-IPS, see Initializing the Sensor, page 9-1.
- For more information about obtaining the most recent Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure to configure AIM-IPS to receive IPS traffic, refer to Setting Up Interfaces on AIM-IPS and the Router.
- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
Verifying Installation

Use the `show inventory` command in privileged EXEC mode to verify the installation of AIM-IPS.

Note
You can also use this command to find the serial number of your AIM-IPS for use in troubleshooting with TAC. The serial number appears in the PID line, for example, SN: FOC11372M9X.

To verify the installation of AIM-IPS, follow these steps:

Step 1 Log in to the router.

Step 2 Enter privileged EXEC mode on the router:

```
router> enable
```

Step 3 Verify that AIM-IPS is part of the router inventory:

```
router# show inventory
NAME: "3825 chassis", DESCR: "3825 chassis"
PID: CISCO3825 , VID: V01 , SN: FTX1009C3KT

NAME: "Cisco Intrusion Prevention System AIM in AIM slot: 1", DESCR: "Cisco Intrusion Prevention"
PID: AIM-IPS-K9 , VID: V01 , SN: FOC11372M9X
```

```
router#
```
Installing AIP-SSM

All IPS platforms allow ten concurrent log in sessions.

This chapter describes how to install AIP-SSM. It contains the following sections:

- Specifications, page 6-1
- Memory Specifications, page 6-2
- Hardware and Software Requirements, page 6-2
- Indicators, page 6-2
- Installation and Removal Instructions, page 6-3

Specifications

Table 6-1 lists the specifications for AIP-SSM:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D)</td>
<td>1.70 x 6.80 x 11.00 inches</td>
</tr>
<tr>
<td>Weight</td>
<td>Minimum: 2.50 lb</td>
</tr>
<tr>
<td></td>
<td>Maximum: 3.00 lb</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>+32° to +104°F (+0° to +40°C)</td>
</tr>
<tr>
<td>Nonoperative temperature</td>
<td>−40° to +167°F (−40° to +75°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>10% to 90%, noncondensing</td>
</tr>
</tbody>
</table>

1. 2.70 lb for 45 c heatsink, approximately 3.00 lb for the 55c maximum
Memory Specifications

Table 6-2 lists the memory specifications for AIP-SSM.

<table>
<thead>
<tr>
<th>Model</th>
<th>CPU</th>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA-SSM-AIP-10-K9</td>
<td>2.0 GHz Celeron</td>
<td>1.0 GB</td>
</tr>
<tr>
<td>ASA-SSM-AIP-20-K9</td>
<td>2.4 GHz Pentium 4</td>
<td>2.0 GB</td>
</tr>
</tbody>
</table>

Hardware and Software Requirements

AIP-SSM has the following hardware and software requirements:

- Cisco ASA 5500 series adaptive security appliance
 - ASA 5510 (ASA-SSM-AIP-10-K9)
 - ASA 5520 (ASA-SSM-AIP-10-K9 and ASA-SSM-AIP-20-K9)
 - ASA 5540 (ASA-SSM-AIP-20-K9)
- Cisco Adaptive Security Appliance Software 7.0 or later
- Cisco Intrusion Prevention System Software 5.0(2) or later
- DES or 3DES-enabled

Indicators

Figure 6-1 shows the AIP-SSM indicators.

Table 6-3 describes the AIP-SSM indicators.

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PWR</td>
<td>Green</td>
<td>On</td>
</tr>
</tbody>
</table>
Installation and Removal Instructions

This section describes how to install and remove AIP-SSM, and contains the following topics:

- Installing AIP-SSM, page 6-3
- Verifying the Status of AIP-SSM, page 6-4
- Removing AIP-SSM, page 6-5

Installing AIP-SSM

To install AIP-SSM, follow these steps:

Step 1 Power off the adaptive security appliance.

Step 2 Locate the grounding strap from the accessory kit and fasten it to your wrist so that it contacts your bare skin. Attach the other end to the chassis.

Step 3 Remove the two screws at the left back end of the chassis, and remove the slot cover.

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>STATUS Green</td>
<td>Flashing</td>
<td>The system is booting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid</td>
<td>The system has passed power-up diagnostics.</td>
</tr>
<tr>
<td>3</td>
<td>LINK/ACT Green</td>
<td>Solid</td>
<td>There is Ethernet link.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing</td>
<td>There is Ethernet activity.</td>
</tr>
<tr>
<td>4</td>
<td>SPEED Green, Amber</td>
<td>100 MB</td>
<td>There is network activity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 MB (GigabitEthernet)</td>
<td>There is network activity.</td>
</tr>
</tbody>
</table>

Table 6-3 AIP-SSM Indicators (continued)
Installation and Removal Instructions

Chapter 6 Installing AIP-SSM

Step 4 Insert AIP-SSM through the slot opening.

Step 5 Attach the screws to secure AIP-SSM to the chassis.

Step 6 Power on the adaptive security appliance by pushing the power switch at the back of the chassis.

Step 7 Check the indicators.
If AIP-SSM is properly installed, the POWER indicator is solid green and the STATUS indicator is flashing green. You can also verify that AIP-SSM is online using the `show module` command.

Step 8 Initialize AIP-SSM.

Step 9 Install the most recent Cisco IPS software.

Step 10 Configure AIP-SSM to receive IPS traffic.

For More Information

- For more information about ESD, see Working in an ESD Environment, page 1-31.
- For the procedure for verifying that AIP-SSM is properly installed, see Verifying the Status of AIP-SSM, page 6-4.
- For the procedure for using the `setup` command to initialize AIP-SSM, see Chapter 9, “Initializing the Sensor.”
- For the procedure for obtaining the latest Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure for configuring AIP-SSM to receive IPS traffic, refer to Configuring AIP-SSM.
- For the procedure for using HTTPS to log in to IDM or ASDM, refer to Logging In to IDM.

Verifying the Status of AIP-SSM

You can use the `show module` command to verify that AIP-SSM is up and running.

To verify the status of AIP-SSM, follow these steps:

Step 1 Log in to the adaptive security appliance.
Step 2 Verify the status of AIP-SSM:

```
asa# show module 1
                      Mod Card Type                                    Model              Serial No.
--- ------------------------------ -------------------------- ---------------------
 1 ASA 5500 Series Security Services Module-20 ASA-SSM-20 P2B000005D0

Mod MAC Address Range     Hw Version  Fw Version  Sw Version
```
If the status reads Up, AIP-SSM has been properly installed.

The following values are valid for the Status field:

- **Initializing**—AIP-SSM is being detected and the control communication is being initialized by the system.
- **Up**—AIP-SSM has completed initialization by the system.
- **Unresponsive**—The system encountered an error communicating with AIP-SSM.
- **Reloading**—AIP-SSM is reloading.
- **Shutting Down**—AIP-SSM is shutting down.
- **Down**—AIP-SSM is shut down.
- **Recover**—AIP-SSM is attempting to download a recovery image.

Removing AIP-SSM

To remove AIP-SSM, follow these steps:

Step 1 Shut down AIP-SSM:

```
asahw-module module 1 shutdown
```

Step 2 Press Enter to confirm.

Step 3 Verify if AIP-SSM is down by checking the indicators.

Step 4 Power off the adaptive security appliance.

Step 5 Locate the grounding strap from the accessory kit and fasten it to your wrist so that it contacts your bare skin. Attach the other end to the chassis.

Step 6 Remove the two screws at the left back end of the chassis, and remove the slot cover.

Step 7 Remove AIP-SSM and set it aside.

Step 8 If you need to replace the existing AIP-SSM, insert the new AIP-SSM through the slot opening.

Note Do not replace AIP-SSM with a different model. The the adaptive security appliance will not recognize it.

Step 9 Attach the screws to secure AIP-SSM to the chassis.

Step 10 Power on the adaptive security appliance.

Step 11 Reset AIP-SSM:
hostname# hw-module module 1 reset
Reset module in slot 1? [confirm]

Step 12 Press Enter to confirm.

Step 13 Check the indicators to see if AIP-SSM is properly installed.

If AIP-SSM is properly installed, the POWER indicator is solid green and the STATUS indicator is flashing green. Or you can verify installation using the show module command.

For More Information
- For more information on ESD, see Working in an ESD Environment, page 1-31.
- For the procedure for verifying whether AIP-SSM is properly installed, see Verifying the Status of AIP-SSM, page 6-4.
Installing IDSM-2

Note

All IPS platforms allow ten concurrent log in sessions.

This chapter lists the software and hardware requirements of IDSM-2, and describes how to remove and install it. It contains the following sections:

- Specifications, page 7-1
- Software and Hardware Requirements, page 7-2
- Minimum Supported IDSM-2 Configurations, page 7-2
- Using the TCP Reset Interface, page 7-3
- Front Panel Features, page 7-3
- Installation and Removal Instructions, page 7-4
- Enabling Full Memory Tests, page 7-12
- Resetting IDSM-2, page 7-13
- Powering IDSM-2 On and Off, page 7-15

Specifications

Table 7-1 lists the specifications for IDSM-2.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D)</td>
<td>1.18 x 15.51 x 16.34 in. (30 x 394 x 415 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>Minimum: 3 lb (1.36 kg)</td>
</tr>
<tr>
<td></td>
<td>Maximum: 5 lb (2.27 kg)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>+32° to +104°F (+0° to +40°C)</td>
</tr>
<tr>
<td>Nonoperating temperature</td>
<td>−40° to +167°F (−40° to +75°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>10% to 90%, noncondensing</td>
</tr>
</tbody>
</table>
Software and Hardware Requirements

The following are the IDSM-2 software and hardware requirements:

- Catalyst software release 7.5(1) or later with Supervisor Engine 1A with MSFC2
- Catalyst software release 7.5(1) or later with Supervisor Engine 2 with MSFC2 or PFC2
- Cisco IOS software release 12.2(14)SY with Supervisor Engine 2 with MSFC2
- Cisco IOS software release 12.1(19)E or later with Supervisor Engine 2 with MSFC2
- Cisco IOS software release 12.1(19)E1 or later with Supervisor Engine 1A with MSFC2
- Cisco IOS software release 12.2(14)SX1 with Supervisor Engine 720
- Cisco IDS software release 4.0 or later
- Any Catalyst 6500 series switch chassis or 7600 router

Minimum Supported IDSM-2 Configurations

Note: The following matrix is not intended to recommend any particular version, but rather lists the earliest supported versions.

Table 7-2 lists the minimum supported configurations for IDSM-2.

Table 7-2 Minimum Catalyst 6500 Software Version for IDSM-2 Feature Support

<table>
<thead>
<tr>
<th>Catalyst/IDSM-2 Feature</th>
<th>Catalyst Software</th>
<th>Cisco IOS Software</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sup1</td>
<td>Sup2</td>
</tr>
<tr>
<td>SPAN</td>
<td>7.5(1)</td>
<td>7.5(1)</td>
</tr>
<tr>
<td>VACL capture¹</td>
<td>7.5(1)</td>
<td>7.5(1)</td>
</tr>
<tr>
<td>ECLB with VACL capture²</td>
<td>8.5(1)</td>
<td>8.5(1)</td>
</tr>
<tr>
<td>Inline interface pairs</td>
<td>8.4(1)</td>
<td>8.4(1)</td>
</tr>
<tr>
<td>ECLB with inline interface pairs</td>
<td>8.5(1)</td>
<td>8.5(1)</td>
</tr>
<tr>
<td>Inline VLAN pairs</td>
<td>8.4(1)</td>
<td>8.4(1)</td>
</tr>
<tr>
<td>ECLB with inline VLAN pairs</td>
<td>8.5(1)</td>
<td>8.5(1)</td>
</tr>
</tbody>
</table>

1. Requires PFC2/3 or MSFC2/3.
2. Requires PFC2/3 or MSFC2/3.
Using the TCP Reset Interface

The IDSM-2 has a TCP reset interface—port 1. The IDSM-2 has a specific TCP reset interface because it cannot send TCP resets on its sensing ports.

If you have reset problems with the IDSM-2, and the switch is running Catalyst software, try the following:

- If the sensing ports are access ports (a single VLAN), you need to configure the reset port to be in the same VLAN.
- If the sensing ports are dot1q trunk ports (multi-VLAN), the sensing ports and reset port all must have the same native VLAN, and the reset port must trunk all the VLANs being trunked by both the sensing ports.

Note

In Cisco IOS when the IDSM-2 is in promiscuous mode, the IDSM-2 ports are always dot1q trunk ports (even when monitoring only 1 VLAN), and the TCP reset port is automatically set to a trunk port and is not configurable.

Front Panel Features

IDSM-2 has a status indicator and a Shutdown button. Figure 7-1 shows the front panel features.

![IDSM-2 Front Panel](image)

Table 7-3 describes the IDSM-2 states as indicated by the status indicator.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>All diagnostics tests pass—IDSM-2 is operational.</td>
</tr>
<tr>
<td>Red</td>
<td>A diagnostics test other than an individual port test failed.</td>
</tr>
<tr>
<td>Amber</td>
<td>IDSM-2 is running through its boot and self-test diagnostics sequence, or IDSM-2 is disabled, or IDSM-2 is in the shutdown state.</td>
</tr>
<tr>
<td>Off</td>
<td>IDSM-2 power is off.</td>
</tr>
</tbody>
</table>

To prevent corruption of IDSM-2, you must use the `shutdown` command to shut it down properly. For instructions on properly shutting down IDSM-2, see Step 1 of Removing IDSM-2, page 7-10. If IDSM-2 does not respond, firmly press the Shutdown button on the faceplate and wait for the Status indicator to turn amber. The shutdown procedure may take several minutes.
Caution
Do not remove IDSM-2 from the switch until the module shuts down completely. Removing the module without going through a shutdown procedure can corrupt the application partition on the module and result in data loss.

Installation and Removal Instructions

All Catalyst 6500 series switches support hot swapping, which lets you install, remove, replace, and rearrange modules without turning off the system power to the switch. When the system detects that a module has been installed or removed, it runs diagnostic and discovery routines, acknowledges the presence or absence of the module, and resumes system operation with no operator intervention.

Caution
You must first shut down IDSM-2 before removing it from a Catalyst 6500 series switch. For the procedure for removing an IDSM-2 from a Catalyst 6500 series switch, see Removing IDSM-2, page 7-10.

This section contains the following topics:

- Required Tools, page 7-4
- Slot Assignments, page 7-5
- Installing IDSM-2, page 7-5
- Verifying Installation, page 7-9
- Removing IDSM-2, page 7-10

Required Tools

Note
You must have at least one supervisor engine running in the Catalyst 6500 series switch with IDSM-2.

You need the following tools to install IDSM-2 in the Catalyst 6500 series switches:

- Flat-blade screwdriver
- Wrist strap or other grounding device
- Antistatic mat or antistatic foam
 Whenever you handle IDSM-2, always use a wrist strap or other grounding device to prevent serious damage from ESD.

Warning
Only trained and qualified personnel should be allowed to install, replace, or service this equipment. Statement 1030

For More Information

- For more information on the supervisor engine, refer to the Catalyst 6500 Series Switch Installation Guide.
- For more information on ESD, see Working in an ESD Environment, page 1-31.
Slot Assignments

Note
The Catalyst 6509-NEB switch has vertical slots numbered 1 to 9 from right to left. Install IDSM-2 with the component side facing to the right.

The Catalyst 6006 and 6506 switch chassis each have six slots. The Catalyst 6009 and 6509 switch chassis each have nine slots. The Catalyst 6513 switch chassis has 13 slots. You can install IDSM-2 in the following ways:
- You can install IDSM-2 in any slot that is not used by the supervisor engine.
- You can install up to eight IDSM-2s in a single chassis.

Caution
Install module filler plates (blank module carriers) in the empty slots to maintain consistent airflow through the switch chassis.

Note
IDSM-2 works with any supervisor engine using SPAN, but the copy capture feature with security VACLs requires that the supervisor engine has the PFC or the MSFC option.

Installing IDSM-2

To install IDSM-2 in the Catalyst 6500 series switch, follow these steps:

Step 1
Make sure that you take necessary ESD precautions.

Warning
During this procedure, wear grounding wrist straps to avoid ESD damage to the card. Do not touch the backplane with your hand or any metal tool, or you could shock yourself.

Step 2
Choose a slot for IDSM-2.

Note
You can install IDSM-2 in any slot that is not reserved for a supervisor engine or other module. Refer to your switch documentation for information about which slots are reserved for the supervisor engine or other modules.

Step 3
Remove the installation screws (use a screwdriver, if necessary) that secure the filler plate to the desired slot.
Step 4 Remove the filler plate by prying it out carefully.

Warning Blank faceplates and cover panels serve three important functions: they prevent exposure to hazardous voltages and currents inside the chassis; they contain electromagnetic interference (EMI) that might disrupt other equipment; and they direct the flow of cooling air through the chassis. Do not operate the system unless all cards, faceplates, front covers, and rear covers are in place. Statement 1029

Step 5 Hold the IDSM-2 with one hand, and place your other hand under the IDSM-2 carrier to support it.

Caution Do not touch the printed circuit boards or connector pins on the IDSM-2.
Step 6 Place IDSM-2 in the slot by aligning the notch on the sides of the IDSM-2 carrier with the groove in the slot.

Step 7 Keeping IDSM-2 at a 90-degree orientation to the backplane, carefully push it into the slot until the notches on both ejector levers engage the chassis sides.

Step 8 Using the thumb and forefinger of each hand, simultaneously pivot in both ejector levers to fully seat IDSM-2 in the backplane connector.
Caution
Always use the ejector levers when installing or removing IDSM-2. A module that is partially seated in the backplane causes the system to halt and subsequently crash.

Note
If you perform a hot swap, the console displays the message Module x has been inserted. This message does not appear, however, if you are connected to the Catalyst 6500 series switch through a Telnet session.

Step 9
Use a screwdriver to tighten the installation screws on the left and right ends of IDSM-2.

Step 10
Verify that you have correctly installed IDSM-2 and can bring it online.

Step 11
Initialize IDSM-2.

Step 12
Configure the switch for command and control access to IDSM-2.

Step 13
Upgrade IDSM-2 to the most recent Cisco IDS software.

Step 14
Set up IDSM-2 to capture IPS traffic. You are now ready to configure IDSM-2 for intrusion prevention.

For More Information
- For more information on ESD-controlled environments, see Working in an ESD Environment, page 1-31.
- For the procedure for verifying IDSM-2 installation, see Verifying Installation, page 7-9.
- For the procedure for using the setup command to initialize IDSM-2, see Chapter 9, “Initializing the Sensor.”
- For the procedure for configuring the switch for command and control access to IDSM-2, refer to Configuring the Catalyst 6500 Series Switch for Command and Control Access to the IDSM-2.
- For the procedure for obtaining and installing the most recent IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure for configuring IDSM-2 to capture IPS traffic, refer to Configuring IDSM-2.
- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
- For the procedures for configuring intrusion prevention on your sensor, refer to the following documents:
 - Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
 - Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 - Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1
Verifying Installation

Use the `show module` command to verify that the switch acknowledges IDSM-2 and has brought it online. To verify the installation, follow these steps:

Step 1 Log in to the console.

Step 2 For Catalyst software:

```
  console> (enable) show module
```

<table>
<thead>
<tr>
<th>Mod</th>
<th>Slot</th>
<th>Ports</th>
<th>Module-Type</th>
<th>Model</th>
<th>Sub Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1000BaseX Supervisor</td>
<td>WS-X6K-SUP1A-2GE</td>
<td>yes ok</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>48</td>
<td>Multilayer Switch Feature</td>
<td>WS-F6K-MSFC</td>
<td>no ok</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1000BaseT Ethernet</td>
<td>WS-X6248-RJ-45</td>
<td>no ok</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>1000BaseX Ethernet</td>
<td>WS-X6516A-GBIC</td>
<td>no ok</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>Intrusion Detection Mod</td>
<td>WS-SVC-IDSM2</td>
<td>yes ok</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>Module-Name</th>
<th>Serial-Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SAD041308AN</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SAD04120BBB</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SAD03475400</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SAD073906RC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SAL0751QYN0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SAD062004LV</td>
<td></td>
</tr>
</tbody>
</table>

Step 3 For Cisco IOS software:

```
  router# show module
```

<table>
<thead>
<tr>
<th>Mod</th>
<th>Ports</th>
<th>Card Type</th>
<th>Model</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>48 port 10/100 mb RJ-45 ethernet</td>
<td>WS-X6248-RJ-45</td>
<td>SAD0401012S</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>48 port 10/100 mb RJ-45</td>
<td>WS-X6348-RJ-45</td>
<td>SAL04483QBL</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>SFM-capable 48 port 10/100/1000mb RJ-45</td>
<td>WS-X6548-GE-TX</td>
<td>SAD073906GH</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>SFM-capable 16 port 1000mb GBIC</td>
<td>WS-X6516A-GBIC</td>
<td>SAL0740MMYJ</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Supervisor Engine 720 (Active)</td>
<td>WS-SUP720-3BLX</td>
<td>SAD08320L2T</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1 port 10-Gigabit Ethernet Module</td>
<td>WS-X6502-10GE</td>
<td>SAD071903BT</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>Anomaly Detector Module</td>
<td>WS-SVC-ADM-1-K9</td>
<td>SAD084104JR</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>Intrusion Detection System</td>
<td>WS-SVC-IDSM2</td>
<td>SAD05380608</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>Intrusion Detection System</td>
<td>WS-SVC-IDSM-2</td>
<td>SAD072405D8</td>
</tr>
</tbody>
</table>
Chapter 7 - Installing IDSM-2

Installation and Removal Instructions

Mod MAC addresses

<table>
<thead>
<tr>
<th>Mod</th>
<th>MAC addresses</th>
<th>Hw</th>
<th>Fw</th>
<th>Sw</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00d0.d328.e2ac to 00d0.d328.e2db</td>
<td>1.1</td>
<td>4.2(0.24)VAI</td>
<td>8.5(0.46)ROC</td>
<td>Ok</td>
</tr>
<tr>
<td>2</td>
<td>0003.6c14.e1d0 to 0003.6c14.e1ff</td>
<td>1.4</td>
<td>5.4(2)</td>
<td>8.5(0.46)ROC</td>
<td>Ok</td>
</tr>
<tr>
<td>3</td>
<td>000d.29f6.7a80 to 000d.29f6.7aaf</td>
<td>5.0</td>
<td>7.2(1)</td>
<td>8.5(0.46)ROC</td>
<td>Ok</td>
</tr>
<tr>
<td>6</td>
<td>000d.ed23.1658 to 000d.ed23.1667</td>
<td>1.0</td>
<td>7.2(1)</td>
<td>8.5(0.46)ROC</td>
<td>Ok</td>
</tr>
<tr>
<td>7</td>
<td>0011.21a1.1398 to 0011.21a1.139b</td>
<td>4.0</td>
<td>8.1(3)</td>
<td>12.2(PIKESPE</td>
<td>Ok</td>
</tr>
<tr>
<td>9</td>
<td>000d.29c1.41bc to 000d.29c1.41bc</td>
<td>1.3</td>
<td>Unknown</td>
<td>Unknown</td>
<td>PwrDown</td>
</tr>
<tr>
<td>10</td>
<td>000b.fcf8.2ca8 to 000b.fcf8.2caf</td>
<td>0.101</td>
<td>7.2(1)</td>
<td>4.0(0.25)</td>
<td>Ok</td>
</tr>
<tr>
<td>11</td>
<td>00e0.b0ff.3340 to 00e0.b0ff.3347</td>
<td>0.102</td>
<td>7.2(0.67)</td>
<td>5.0(1)</td>
<td>Ok</td>
</tr>
<tr>
<td>13</td>
<td>0003.feab.c850 to 0003.feab.c857</td>
<td>4.0</td>
<td>7.2(1)</td>
<td>5.0(1)</td>
<td>Ok</td>
</tr>
</tbody>
</table>

Mod Sub-Module

<table>
<thead>
<tr>
<th>Mod</th>
<th>Sub-Module</th>
<th>Model</th>
<th>Serial</th>
<th>Hw</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Policy Feature Card 3</td>
<td>WS-F6K-PFC3BXL</td>
<td>SAD083305A1</td>
<td>1.3</td>
<td>Ok</td>
</tr>
<tr>
<td>7</td>
<td>MSFC3 Daughterboard</td>
<td>WS-SUP720</td>
<td>SAD083206JX</td>
<td>2.1</td>
<td>Ok</td>
</tr>
<tr>
<td>11</td>
<td>IDS 2 accelerator board</td>
<td>WS-SVC-IDSUPG</td>
<td></td>
<td>2.0</td>
<td>Ok</td>
</tr>
<tr>
<td>13</td>
<td>IDS 2 accelerator board</td>
<td>WS-SVC-IDSUPG</td>
<td>0347331976</td>
<td>2.0</td>
<td>Ok</td>
</tr>
</tbody>
</table>

Mod Online Diag Status

<table>
<thead>
<tr>
<th>Mod</th>
<th>Online Diag Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Pass</td>
</tr>
<tr>
<td></td>
<td>2 Pass</td>
</tr>
<tr>
<td></td>
<td>3 Pass</td>
</tr>
<tr>
<td></td>
<td>6 Pass</td>
</tr>
<tr>
<td></td>
<td>7 Pass</td>
</tr>
<tr>
<td></td>
<td>9 Unknown</td>
</tr>
<tr>
<td>10</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>11</td>
<td>Pass</td>
</tr>
<tr>
<td>13</td>
<td>Pass</td>
</tr>
</tbody>
</table>

router#

Note

It is normal for the status to read other when IDSM-2 is first installed. After IDSM-2 completes the diagnostics routines and comes online, the status reads ok. Allow up to 5 minutes for IDSM-2 to come online.

Removing IDSM-2

Warning

Only trained and qualified personnel should be allowed to install, replace, or service this equipment. Statement 1030

Caution

Before removing IDSM-2, be sure to perform the shutdown procedure. If IDSM-2 is not shut down correctly, you could corrupt the software.

Warning

During this procedure, wear grounding wrist straps to avoid ESD damage to the card. Do not touch the backplane with your hand or any metal tool, or you could shock yourself.
This procedure describes how to remove IDSM-2 from the Catalyst 6500 series switch. To remove IDSM-2, follow these steps:

Step 1 Shut down IDSM-2 by one of these methods:
- Log in to the IDSM-2 CLI and enter `reset powerdown`.

 Note The `reset powerdown` command performs a shut down but does not remove power from IDSM-2. To remove power from IDSM-2, use the `set module power down module_number` command.

- Log in to the switch CLI and enter one of the following commands:
 - For Catalyst software:
 `set module shutdown module_number`
 - For Cisco IOS software:
 `hw-module module module_number shutdown`

- Shut down IDSM-2 through IDM.
- Press the Shutdown button.

 Note Shutdown may take several minutes.

Caution If IDSM-2 is removed from the switch chassis without first being shut down, or the chassis loses power, you may need to reset IDSM-2 more than once. If the module fails to respond after three reset attempts, boot the maintenance partition, and perform the instructions for restoring the application partition.

Step 2 Verify that IDSM-2 shuts down. Do not remove IDSM-2 until the status indicator is amber or off.

Step 3 Use a screwdriver to loosen the installation screws at the left and right sides of IDSM-2.

Step 4 Grasp the left and right ejector levers and simultaneously pull the left lever to the left and the right lever to the right to release IDSM-2 from the backplane connector.

Step 5 As you pull IDSM-2 out of the slot, place one hand under the carrier to support it.

 Caution Do not touch the printed circuit boards or connector pins.

Step 6 Carefully pull IDSM-2 straight out of the slot, keeping your other hand under the carrier to guide it.

 Note Keep IDSM-2 at a 90-degree orientation to the backplane (horizontal to the floor).

Step 7 Place IDSM-2 on an antistatic mat or antistatic foam.

Step 8 If the slot is to remain empty, install a filler plate (part number 800-00292-01) to keep dust out of the chassis and to maintain proper airflow through the module compartment.
Enabling Full Memory Tests

When IDSM-2 initially boots, by default it runs a partial memory test. You can enable a full memory test in Catalyst software and Cisco IOS software. This section describes how to enable memory tests, and contains the following topics:

- Catalyst Software, page 7-12
- Cisco IOS Software, page 7-13

Catalyst Software

Use the `set boot device boot_sequence module_number mem-test-full` command to enable a full memory test. The full memory test takes about 12 minutes. To enable a full memory test, follow these steps:

Step 1 Log in to the console.

Step 2 Enter privileged mode:

```
console> enable
```

Step 3 Enable the full memory test:

```
console> (enable) set boot dev cf:1 3 mem-test-full
Device BOOT variable = cf:1
Memory-test set to FULL
Warning: Device list is not verified but still set in the boot string.
```

```
console> (enable) set boot dev hdd:1 3 mem-test-full
Device BOOT variable = hdd:1
Memory-test set to FULL
Warning: Device list is not verified but still set in the boot string.
```

For More Information

- For more information on ESD-controlled environments, see Working in an ESD Environment, page 1-31.
- For the procedure for resetting IDSM-2, see Resetting IDSM-2, page 7-13.
- For the procedure for restoring the application partition, see Installing the IDSM-2 System Image, page 12-26.
- For the procedure for powering IDSM-2 up and down, see Powering IDSM-2 On and Off, page 7-15.

Warning Blank faceplates and cover panels serve three important functions: they prevent exposure to hazardous voltages and currents inside the chassis; they contain electromagnetic interference (EMI) that might disrupt other equipment; and they direct the flow of cooling air through the chassis. Do not operate the system unless all cards, faceplates, front covers, and rear covers are in place. Statement 1029
The `set boot device` command can either contain `cf:1` or `hdd:1`.

Step 4
Reset IDSM-2. The full memory test runs.

Note
A full memory test takes more time to complete than a partial memory test.

Cisco IOS Software

Use the `hw-module module module_number reset mem-test-full` command to enable a full memory test. The full memory test takes about 12 minutes. To enable a full memory test, follow these steps:

Step 1
Log in to the console.

Step 2
Enter privileged mode:

```
router# hw-module module 9 reset mem-test-full
Device BOOT variable for reset = <empty>
Warning: Device list is not verified.
Proceed with reload of module?[confirm]
% reset issued for module 9
router#
```

Step 3
Reset IDSM-2. The full memory test runs.

Note
A full memory test takes more time to complete than a partial memory test.

Resetting IDSM-2

If for some reason you cannot communicate with IDSM-2 through SSH, Telnet, or the switch `session` command, you must reset IDSM-2 from the switch console. The reset process requires several minutes. This section describes how to reset IDSM-2, and contains the following topics:

- Catalyst Software, page 7-13
- Cisco IOS Software, page 7-14

Catalyst Software

To reset IDSM-2 from the CLI, follow these steps:

Step 1
Log in to the console.

Step 2
Enter privileged mode:
Step 3
Reset IDSM-2 to the application partition or the maintenance partition:

```
console> (enable) reset module_number [hdd:1 | cf:1]
```

Note
If you do not specify either the application partition (hdd:1 the default) or the maintenance partition (cf:1), IDSM-2 uses the boot device variable.

Example:

```
console> (enable) reset 3
2003 Feb 01 00:18:23 %SYS-5-MOD_RESET: Module 3 reset from console/
Resetting module 3... This may take several minutes.
2003 Feb 01 00:20:03 %SYS-5-MOD_OK: Module 3 is online.
```

Caution
If IDSM-2 is removed from the switch chassis without first being shut down, or the chassis loses power, you may need to reset IDSM-2 more than once. If IDSM-2 fails to respond after three reset attempts, boot the maintenance partition, and perform the instructions for restoring the application partition.

Cisco IOS Software

Use the `hw-module module slot_number reset [hdd:1 | cf:1]` command in EXEC mode to reset IDSM-2. The reset process takes several minutes. IDSM-2 boots into the boot partition you specify. If you do not specify the boot string, the default boot string is used.

To reset IDSM-2 from the CLI, follow these steps:

Step 1
Log in to the console.

Step 2
Reset IDSM-2:

```
router# hw-module module module-number reset [hdd:1 | cf:1]
```

Note
If you do not specify either the application partition (hdd:1 the default) or the maintenance partition (cf:1), IDSM-2 uses the boot device variable.

Example:

```
router# hw-module module 8 reset
Device BOOT variable for reset =
Warning: Device list is not verified.
Proceed with reload of module? [confirm]
% reset issued for module 8
```
Powering IDSM-2 On and Off

You can remove and restore power to IDSM-2 through the switch CLI. This section describes how to power IDSM-2 on and off through the switch CLI, and contains the following sections:

- Catalyst Software, page 7-15
- Cisco IOS Software, page 7-15

Catalyst Software

Note
The IDSM-2 CLI reset powerdown command performs a shut down, but does not remove power from IDSM-2.

Once you power off IDSM-2, you must power it on through the switch CLI. To power IDSM-2 on and off from the switch CLI, follow these steps:

Step 1
Log in to the console.

Step 2
Enter privileged mode:
console> enable

Step 3
Power on IDSM-2:
console> (enable) set module power up module_number

Step 4
Power off IDSM-2:
console> (enable) set module power down module_number

Cisco IOS Software

Note
The IDSM-2 CLI reset powerdown command performs a shut down, but does not remove power from IDSM-2.

Once you power off IDSM-2, you must power it on through the switch CLI. To power IDSM-2 on and off from the switch CLI, follow these steps:

Step 1
Log in to the console.

Step 2
Enter configure terminal mode:
router# configure terminal

Step 3
Power on IDSM-2:
router(config)# power enable module module_number
Step 4 Power off IDSM-2:

 router(config)# no power enable module module_number
Installing NME-IPS

Note

All IPS platforms allow ten concurrent login sessions.

This chapter describes how to install NME-IPS. It contains the following sections:

- Specifications, page 8-1
- Before Installing NME-IPS, page 8-2
- Software and Hardware Requirements, page 8-2
- Interoperability With Other IPS Modules, page 8-3
- Restrictions, page 8-3
- Hardware Interfaces, page 8-4
- Installation and Removal Instructions, page 8-5
- Verifying Installation, page 8-5

Specifications

Table 8-1 lists the specifications for NME-IPS.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H x W x D)</td>
<td>1.55 x 7.10 x 7.2 in. (3.9 x 18.0 x 19.3 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>1 lb (0.45 kg) (maximum)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>+32° to +104°F (+0° to +40°C)</td>
</tr>
<tr>
<td>Nonoperating temperature</td>
<td>–40° to +185°F (–40° to +85°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95% noncondensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>0 to 10,000 ft (0 to 3,000 m)</td>
</tr>
<tr>
<td>Memory</td>
<td>2 GB</td>
</tr>
<tr>
<td>eUSB</td>
<td>512 MB</td>
</tr>
</tbody>
</table>
Before Installing NME-IPS

Follow these recommendations before installing NME-IPS:

- Upgrade or downgrade software when you can take all applications that run on the router out of service or offline.
- Make sure that you have the correct router and software for the module.
- For safety and regulatory information, read Cisco Network Modules and Interface Cards Regulatory Compliance and Safety Information.
- Make a note of the location of the module in the router (slot_number/port_number). The port value is 0, and the slot number field specifies the physical slot number for NME-IPS (slot_number/IDS-Sensor 0).

Note
After you install the module, you can get this information by using the show running-config command. You need the module slot number to configure the interfaces on the module.

For More Information
- For the supported routers and software, see Software and Hardware Requirements, page 8-2.
- For more information, refer to Setting Up Interfaces on NME-IPS and the Router.

Software and Hardware Requirements

The router and NME-IPS have the following software and hardware requirements:

- The router must be running Cisco IOS release 12.4(20)YA or 12.4(22)T or later.

Note
Use the show version command in the router CLI to determine which Cisco IOS release your router is running.

- The module must be running IPS 6.1(1) or later.

Note
Use the service-module IDS-Sensor slot/port status command in the IOS CLI to determine which IPS release your sensor is running. Or use the show version command in the module CLI.

- Supported routers:
 - Cisco 2800 series (2811, 2821, and 2851)
 - Cisco 3800 series (3825 and 3845)

Note
The Cisco routers support up to one NME-IPS per platform.
Interoperability With Other IPS Modules

The Cisco access routers only support one IDS/IPS module per router. If you have more than one IDS/IPS module installed, the most capable card is enabled. The most capable hierarchy is:

1. NME-IPS
2. AIM-IPS
3. NM-CIDS

This means, for example, that if all modules are installed, NME-IPS disables all other modules. AIM-IPS disables all NM-CIDS. If there are multiple modules with the same level of capability, the first one discovered is enabled and all others are disabled.

You cannot bring up, enable, or configure a disabled module. To bring up a less capable module, you must remove the more capable module from the router and reboot. Disabled modules are reported in the `show diag` command output. The state of the module is reported as present but disabled.

If the most capable module slot and port do not match the `interface ids slot/port` configuration command, the most capable module is disabled with the following warning:

The module in slot x will be disabled and configuration ignored.

The correct slot/port number are displayed so that you can change the configuration.

Caution

You cannot upgrade an NM-CIDS to NME-IPS. For more information on NM-CIDS, refer to Introducing NM-CIDS and Installing NM-CIDS.

Restrictions

The following restrictions apply to NME-IPS:

- Do not deploy IOS IPS and NME-IPS at the same time.
- When NME-IPS is used with an IOS firewall, make sure SYN flood prevention is done by the IOS firewall.

NME-IPS and the IOS firewall complement each other’s abilities to create security zones in the network and inspect traffic in those zones. Because NME-IPS and the IOS firewall operate independently, sometimes they are unaware of the other’s activities. In this situation, the IOS firewall is the best defense against a SYN flood attack.

- The Cisco access routers only support one IDS/IPS per router.
Caution

When you reload the router, NME-IPS also reloads. To ensure that there is no loss of data on NME-IPS, make sure you shut down the module using the **shutdown** command before you use the **reload** command to reboot the router.

For More Information

- For more information on how NME-IPS functions with other IPS modules, see Interoperability With Other IPS Modules, page 8-3.
- For more information about shutting down NME-IPS, refer to Rebooting, Resetting, and Shutting Down NME-IPS.

Hardware Interfaces

Figure 8-1 shows the router and NME-IPS interfaces used for internal and external communication. You can configure the router interfaces through the Cisco IOS CLI and the NME-IPS interfaces through the IPS CLI, IDM, IME, or CSM.

Figure 8-1 NME-IPS and Router Interfaces

1. **Router interface to external link**
 - Configure the standard router settings using the Cisco IOS CLI.

2. **Router interface to NME-IPS (ids-sensor x/0)**
 - Configure the IP address and default gateway router of NME-IPS using the Cisco IOS CLI.

3. **NME-IPS interface to router (GigabitEthernet0/1)**
 - Configure the interface as inline or promiscuous using the Cisco IOS CLI.

4. **NME-IPS interface to external link (Management0/1)**
 - Configure the command and control interface using the IPS CLI, IDM, IME, or CSM.
For More Information

- For more information on the IPS CLI, refer to Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1.
- For more information on IDM, refer to Installing and Using Cisco Intrusion Prevention System Device Manager 6.1.
- For more information on IME, refer to Installing and Using Cisco Intrusion Prevention System Manager Express 6.1.

Installation and Removal Instructions

For instructions on how to install and remove NME-IPS, refer to Installing Cisco Network Modules in Cisco Access Routers.

To comply with the Telcordia GR-1089 NEBS standard for electromagnetic compatibility and safety, connect NME-IPS only to intrabuilding or nonexposed wiring or cabling. The intrabuilding cable must be shielded and the shield must be grounded at both ends.

For More Information

- For the procedure for verifying that NME-IPS is installed properly, see Verifying Installation, page 8-5.
- For the procedure for using the setup command to initialize NME-IPS, see Initializing the Sensor, page 9-1.
- For more information about obtaining the most recent Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure to configure NME-IPS to receive IPS traffic, refer to Setting Up Interfaces on NME-IPS and the Router.
- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
- For the procedures for configuring intrusion prevention on your sensor, refer to the following documents:
 - Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
 - Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 - Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1

Verifying Installation

Use the show inventory command in privileged EXEC mode to verify the installation of NME-IPS. You can also use this command to find the serial number of your NME-IPS for use in troubleshooting with TAC. The serial number appears in the PID line, for example, SN: FHH1117001R.
To verify the installation of NME-IPS, follow these steps:

Step 1 Log in to the router.

Step 2 Enter privileged EXEC mode on the router:

```
router> enable
```

Step 3 Verify that NME-IPS is part of the router inventory:

```
router# show inventory
NAME: "3845 chassis", DESC: "3845 chassis"
PID: CISCO3845 , VID: V01 , SN: FTX1002C255

NAME: "c3845 Motherboard with Gigabit Ethernet on Slot 0", DESC: "c3845 Motherboard with Gigabit Ethernet"
PID: CISCO3845-MB , VID: V03 , SN: FOC09514J4Y

NAME: "4 Port FE Switch on Slot 0 SubSlot 0", DESC: "4 Port FE Switch"
PID: HWIC-4ESW , VID: V01 , SN: FOC1102394U

NAME: "High Speed WAN Interface Card - 1 Port Gigabit Ethernet on Slot 0 SubSlot 3", DESC: "High Speed WAN Interface Card - 1 Port Gigabit Ethernet"
PID: HWIC-1GE-SFP , VID: V01 , SN: FOC10164DAR

NAME: "1000BASE-T SFP", DESC: "1000BASE-T SFP"
PID: SP7041 , VID: C , SN: 00000MTC101608RB

NAME: "Cisco Intrusion Prevention System NM on Slot 2", DESC: "Cisco Intrusion Prevention System NM"
PID: NME-IPS-K9 , VID: V01 , SN: FHH1117001R
```

```
router#
```
Initializing the Sensor

This chapter describes how to use the setup command to initialize the sensor, and contains the following sections:

- Understanding Initialization, page 9-1
- Simplified Setup Mode, page 9-1
- System Configuration Dialog, page 9-2
- Basic Sensor Setup, page 9-3
- Advanced Setup, page 9-6
- Verifying Initialization, page 9-28

Understanding Initialization

Note

You must be administrator to use the setup command.

After you install the sensor on your network, you must use the setup command to initialize it so that you can communicate with it over the network. With the setup command, you configure basic sensor settings, including the hostname, IP interfaces, access control lists, and time settings. You can continue using Advanced Setup in the CLI to enable Telnet, configure the Web server, and assign and enable virtual sensors and interfaces, or you can use the Startup Wizard in IDM or IME.

Simplified Setup Mode

The sensor automatically calls the setup command when you connect to the sensor using a console cable and the sensor basic network settings have not yet been configured. The sensor does not call automatic setup under the following conditions:

- When initialization has already been successfully completed.
- If you have recovered or downgraded the sensor.
- If you have set the host configuration to default after successfully configuring the sensor using automatic setup.
When you enter the **setup** command, an interactive dialog called the System Configuration Dialog appears on the system console screen. The System Configuration Dialog guides you through the configuration process. The values shown in brackets next to each prompt are the default values last set.

System Configuration Dialog

When you enter the **setup** command, an interactive dialog called the System Configuration Dialog appears on the system console screen. The System Configuration Dialog guides you through the configuration process. The values shown in brackets next to each prompt are the current values.

You must go through the entire System Configuration Dialog until you come to the option that you want to change. To accept default settings for items that you do not want to change, press **Enter**.

To return to the EXEC prompt without making changes and without going through the entire System Configuration Dialog, press **Ctrl-C**.

The System Configuration Dialog also provides help text for each prompt. To access the help text, enter `?` at a prompt.

When you complete your changes, the System Configuration Dialog shows you the configuration that you created during the setup session. It also asks you if you want to use this configuration. If you enter **yes**, the configuration is saved. If you enter **no**, the configuration is not saved and the process begins again. There is no default for this prompt; you must enter either **yes** or **no**.

You can configure daylight savings time either in recurring mode or date mode. If you choose recurring mode, the start and end days are based on week, day, month, and time. If you choose date mode, the start and end days are based on month, day, year, and time. Choosing disable turns off daylight savings time.

Note

You only need to set the date and time in the System Configuration Dialog if the system is an appliance and is NOT using NTP.

Note

The System Configuration Dialog is an interactive dialog. The default settings are displayed.

Example 9-1 shows a sample System Configuration Dialog.

Example 9-1 Example System Configuration Dialog

--- Basic Setup ---

--- System Configuration Dialog ---

At any point you may enter a question mark `?` for help. Use `ctrl-c` to abort configuration dialog at any prompt. Default settings are in square brackets `[]`.

Setup Configuration last modified:

Enter host name[sensor]:

Basic Sensor Setup

You can perform basic sensor setup using the `setup` command, and then finish setting up the sensor using the CLI, IDM, or IME.

To perform basic sensor setup using the `setup` command, follow these steps:

Step 1 Log in to the sensor using an account with administrator privileges.

Note Both the default username and password are `cisco`.

Step 2 The first time you log in to the sensor you are prompted to change the default password.

Passwords must be at least eight characters long and be strong, that is, not be a dictionary word. After you change the password, basic setup begins.

Step 3 Enter the `setup` command.

The System Configuration Dialog is displayed.

Step 4 Specify the hostname.

The hostname is a case-sensitive character string up to 64 characters. Numbers, “_” and “.” are valid, but spaces are not acceptable. The default is `sensor`.

Step 5 Specify the IP interface.
The IP interface is in the form of IP Address/Netmask, Gateway: X.X.X.X/nn, Y.Y.Y.Y, where X.X.X.X specifies the sensor IP address as a 32-bit address written as 4 octets separated by periods, nn specifies the number of bits in the netmask, and Y.Y.Y.Y specifies the default gateway as a 32-bit address written as 4 octets separated by periods.

Step 6
Enter **yes** to modify the network access list.

a. If you want to delete an entry, enter the number of the entry and press **Enter**, or press **Enter** to get to the Permit line.

b. Enter the IP address and netmask of the network you want to add to the access list.

 For example, 10.0.0.0/8 permits all IP addresses on the 10.0.0.0 network (10.0.0.0-10.255.255.255) and 10.1.1.0/24 permits only the IP addresses on the 10.1.1.0 subnet (10.1.1.0-10.1.1.255). If you want to permit access to a single IP address than the entire network, use a 32-bit netmask. For example, 10.1.1.1/32 permits just the 10.1.1.1 address.

c. Repeat Step b until you have added all networks that you want to add to the access list, and then press **Enter** at a blank permit line to go to the next step.

Step 7
Enter **yes** to modify the system clock settings.

a. Enter **yes** to modify summertime settings.

 Note Summertime is also known as DST. If your location does not use Summertime, go to Step m.

b. Enter **yes** to choose the USA summertime defaults, or enter **no** and choose recurring, date, or disable to specify how you want to configure summertime settings. The default is recurring.

c. If you chose recurring, specify the month you want to start summertime settings.

 Valid entries are january, february, march, april, may, june, july, august, september, october, november, and december. The default is march.

d. Specify the week you want to start summertime settings. Valid entries are first, second, third, fourth, fifth, and last. The default is second.

e. Specify the day you want to start summertime settings.

 Valid entries are sunday, monday, tuesday, wednesday, thursday, friday, and saturday. The default is sunday.

f. Specify the time you want to start summertime settings. The default is 02:00:00.

 Note The default recurring summertime parameters are correct for time zones in the United States. The default values specify a start time of 2:00 a.m. on the second Sunday in March, and a stop time of 2:00 a.m. on the first Sunday in November. The default summertime offset is 60 minutes.

g. Specify the month you want summertime settings to end.

 Valid entries are january, february, march, april, may, june, july, august, september, october, november, and december. The default is november.

h. Specify the week you want the summertime settings to end.

 Valid entries are first, second, third, fourth, fifth, and last. The default is first.

i. Specify the day you want the summertime settings to end.
Valid entries are sunday, monday, tuesday, wednesday, thursday, friday, and saturday. The default is sunday.

j. Specify the time you want summertime settings to end. The default is 02:00:00.

k. Specify the DST zone.

The zone name is a character string up to 24 characters long in the pattern \[A-Za-z0-9()+.:_/\-]$.

l. Specify the summertime offset.

Specify the summertime offset from UTC in minutes (negative numbers represent time zones west of the Prime Meridian). The default is 60.

m. Enter \textbf{yes} to modify the system time zone.

n. Specify the standard time zone name.

The zone name is a character string up to 24 characters long.

o. Specify the standard time zone offset.

Specify the standard time zone offset from UTC in minutes (negative numbers represent time zones west of the Prime Meridian). The default is 0.

p. Enter \textbf{yes} if you want to use NTP.

To use authenticated NTP, you need the NTP server IP address, the NTP key ID, and the NTP key value. If you do not have those at this time, you can configure NTP later. Otherwise, you can choose unauthenticated NTP.

The following completed configuration appears:

- service host
- network-settings
- host-ip 10.89.143.126/24, 10.89.143.254
- host-name sensor126
- telnet-option disabled
- access-list 10.0.0.0/8
- ftp-timeout 300
- no login-banner-text
- exit
- time-zone-settings
- offset -360
- standard-time-zone-name CST
- exit
- summertime-option recurring
- offset 60
- summertime-zone-name CDT
- start-summertime
- month march
- week-of-month second
- day-of-week sunday
- time-of-day 02:00:00
- exit
- end-summertime
- month november
- week-of-month first
- day-of-week sunday
- time-of-day 02:00:00
- exit
- exit
- ntp-option enabled
- ntp-keys 1 md5-key 8675309
- ntp-servers 10.89.143.92 key-id 1
- exit
exit

[0] Go to the command prompt without saving this config.
[1] Return to setup without saving this config.
[2] Save this configuration and exit setup.

Step 8 Enter 2 to save the configuration (or 3 to continue with advanced setup using the CLI, IDM, or IME).

Enter your selection[2]: 2
Configuration Saved.

Step 9 Enter yes to reboot the sensor.

Step 10 After reboot, log in to the sensor, and display the self-signed X.509 certificate (needed by TLS):

sensor# show tls fingerprint

Step 11 Write down the certificate fingerprints.
You need the fingerprints to check the authenticity of the certificate when using HTTPS to connect to this appliance with a web browser.

Step 12 Apply the most recent service pack and signature update.
You are now ready to configure your sensor for intrusion prevention.

For More Information

- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
- For the procedure for obtaining the most recent IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedures for configuring intrusion prevention on your sensor, refer to the following documents:
 - Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
 - Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 - Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1

Advanced Setup

This section describes how to continue with Advanced Setup in the CLI for the various Cisco IPS platforms. It contains the following sections:

- Advanced Setup for the Appliance, page 9-7
- Advanced Setup for AIM-IPS, page 9-13
- Advanced Setup for AIP-SSM, page 9-16
The interfaces change according to the appliance model, but the prompts are the same for all models.

Advanced Setup for the Appliance

To continue with advanced setup for the appliance, follow these steps:

Step 1 Log in to the appliance using an account with administrator privileges.

Step 2 Enter the `setup` command.

Step 3 Enter `3` to access advanced setup.

Step 4 Specify the Telnet server status. The default is disabled.

Step 5 Specify the web server port.

Step 6 Enter `yes` to modify the interface and virtual sensor configuration.

The current interface configuration appears:

```
Current interface configuration
Command control: Management0/0
Unassigned:
  Promiscuous:
    GigabitEthernet0/0
    GigabitEthernet0/1
    GigabitEthernet0/2
    GigabitEthernet0/3

Virtual Sensor: vs0
  Anomaly Detection: ad0
  Event Action Rules: rules0
  Signature Definitions: sig0

Virtual Sensor: vs1
  Anomaly Detection: ad0
  Event Action Rules: rules0
```
Signature Definitions: sig0

Virtual Sensor: vs2
Anomaly Detection: ad0
Event Action Rules: rules0
Signature Definitions: sig0

[1] Edit Interface Configuration
[3] Display configuration

Option:

Step 7
Enter 1 to edit the interface configuration.

Note
The following options let you create and delete interfaces. You assign the interfaces to virtual sensors in the virtual sensor configuration. If you are using promiscuous mode for your interfaces and are not subdividing them by VLAN, no additional configuration is necessary.

The following options appear:

Option:

Step 8
Enter 2 to add inline VLAN pairs.

Caution
The new VLAN pair is not automatically added to a virtual sensor.

The list of available interfaces is displayed:

Available Interfaces
[1] GigabitEthernet0/0
[2] GigabitEthernet0/1
[3] GigabitEthernet0/2
[4] GigabitEthernet0/3

Option:

Step 9
Enter 1 to add an inline VLAN pair to GigabitEthernet0/0, for example:

Inline Vlan Pairs for GigabitEthernet0/0
None

Step 10
Enter a subinterface number and description:

Subinterface Number:
Description[Created via setup by user asmith]:

Step 11
Enter numbers for VLAN 1 and 2:

Vlan1[]: 200
Vlan2[]: 300

Step 12
Press **Enter** to return to the available interfaces menu.
Note
Entering a carriage return at a prompt without a value returns you to the previous menu.

[1] GigabitEthernet0/0
[2] GigabitEthernet0/1
[3] GigabitEthernet0/2
[4] GigabitEthernet0/3
Option:

Note
At this point, you can configure another interface, for example, GigabitEthernet0/1, for inline VLAN pair.

Step 13 Press Enter to return to the top-level interface editing menu.

The following options appear:

Option:

Step 14 Enter 4 to add an inline interface pair.

The following options appear:

Available Interfaces
 GigabitEthernet0/1
 GigabitEthernet0/2
 GigabitEthernet0/3

Step 15 Enter the pair name, description, and which interfaces you want to pair:

Pair name: newPair
Description[Created via setup by user asmith:
Interface1[]: GigabitEthernet0/1
Interface2[]: GigabitEthernet0/2
Pair name:

Step 16 Press Enter to return to the top-level interface editing menu.

The following options appear:

Option:

Step 17 Press Enter to return to the top-level editing menu.

The following options appear:

[1] Edit Interface Configuration
[3] Display configuration
Option:
Step 18 Enter 2 to edit the virtual sensor configuration.

The following options appear:

- [1] Remove virtual sensor.

Option:

Step 19 Enter 2 to modify the virtual sensor configuration, vs0.

The following options appear:

Virtual Sensor: vs0
 Anomaly Detection: ad0
 Event Action Rules: rules0
 Signature Definitions: sig0

No Interfaces to remove.

Unassigned:
 Promiscuous:
 [1] GigabitEthernet0/3
 [2] GigabitEthernet0/0
 Inline Vlan Pair:
 [3] GigabitEthernet0/0:1 (Vlans: 200, 300)
 Inline Interface Pair:
 [4] newPair (GigabitEthernet0/1, GigabitEthernet0/2)

Add Interface:

Step 20 Enter 3 to add inline VLAN pair GigabitEthernet0/0:1.

Step 21 Enter 4 to add inline interface pair NewPair.

Step 22 Press Enter to return to the top-level virtual sensor menu.

The following options appear:

Virtual Sensor: vs0
 Anomaly Detection: ad0
 Event Action Rules: rules0
 Signature Definitions: sig0
 Inline Vlan Pair:
 GigabitEthernet0/0:1 (Vlans: 200, 300)
 Inline Interface Pair:
 newPair (GigabitEthernet0/1, GigabitEthernet0/2)

- [1] Remove virtual sensor.

Option: GigabitEthernet0/1, GigabitEthernet0/2

Add Interface:

Step 23 Press Enter to return to the top-level interface and virtual sensor configuration menu.

The following options appear:

- [1] Edit Interface Configuration
- [3] Display configuration

Option:
Chapter 9 Initializing the Sensor

Advanced Setup

Step 24 Enter **yes** if you want to modify the default threat prevention settings.

Note The sensor comes with a built-in override to add the deny packet event action to high risk rating alerts. If you do not want this protection, disable automatic threat prevention.

The following appears:

Virtual sensor newVs is configured to prevent high risk threats in inline mode. (Risk Rating 90-100)

Virtual sensor vs0 is configured to prevent high risk threats in inline mode. (Risk Rating 90-100)

Do you want to disable automatic threat prevention on all virtual sensors?[no]:

Step 25 Enter **yes** to disable automatic threat prevention on all virtual sensors.

Step 26 Press **Enter** to exit the interface and virtual sensor configuration.

The following completed configuration appears:

The following configuration was entered.

```
service host
network-settings
host-ip 10.1.9.201/24,10.1.9.1
host-name sensor
telnet-option disabled
ftp-timeout 300
no login-banner-text
exit
time-zone-settings
offset 0
standard-time-zone-name UTC
exit
summertime-option disabled
ntp-option disabled
exit
service web-server
port 342
exit
service interface
physical-interfaces GigabitEthernet0/0
admin-state enabled
subinterface-type inline-vlan-pair
subinterface 1
description Created via setup by user asmith
vlan1 200
vlan2 300
exit
exit
exit
physical-interfaces GigabitEthernet0/1
admin-state enabled
exit
physical-interfaces GigabitEthernet0/2
admin-state enabled
exit
physical-interfaces GigabitEthernet0/0
admin-state enabled
exit
inline-interfaces newPair
description Created via setup by user asmith
interface1 GigabitEthernet0/1
interface2 GigabitEthernet0/2
exit
```
exit
service analysis-engine
virtual-sensor newVs
description Created via setup by user cisco
signature-definition newSig
event-action-rules rules0
anomaly-detection
anomaly-detection-name ad0
operational-mode inactive
exit
physical-interface GigabitEthernet0/0
exit
virtual-sensor vs0
physical-interface GigabitEthernet0/1 subinterface-number 1
logical-interface newPair
service event-action-rules rules0
overrides deny-packet-inline
override-item-status Disabled
risk-rating-range 90-100
exit
exit

[0] Go to the command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration and exit setup.

Step 27 Enter 2 to save the configuration.
 Enter your selection[2]: 2
 Configuration Saved.

Step 28 Reboot the appliance:
 sensor# reset
 Warning: Executing this command will stop all applications and reboot the node.
 Continue with reset? []:

Step 29 Enter yes to continue the reboot.

Step 30 Apply the most recent service pack and signature update.
 You are now ready to configure your appliance for intrusion prevention.

For More Information
- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
- For the procedure for obtaining the most recent IPS software, see Obtaining Cisco IPS Software, page 11-1
- For the procedures for configuring intrusion prevention on your sensor, refer to the following documents:
 - Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
 - Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 - Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1
Advanced Setup for AIM-IPS

To continue with advanced setup for AIM-IPS, follow these steps:

Step 1 Session in to AIM-IPS using an account with administrator privileges:


```
router# service-module ids-sensor 0/0 session
Trying 10.1.9.1, 2322 ... Open

sensor login: cisco
Password: ********
```

Step 2 Enter the setup command.

The System Configuration Dialog is displayed.

Step 3 Enter 3 to access advanced setup.

Step 4 Specify the Telnet server status.

You can disable or enable Telnet services. The default is disabled.

Step 5 Specify the web server port.

The web server port is the TCP port used by the web server (1 to 65535). The default is 443.

Note The web server is configured to use TLS/SSL encryption by default. Setting the port to 80 does not disable the encryption.

Step 6 Enter yes to modify the interface and virtual sensor configuration.

You may receive a warning that Analysis Engine is initializing and you cannot modify the virtual sensor configuration at this time. Press the space bar to receive the following menu:

```
[0] Go to the command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration and exit setup.
```

Enter your selection[2]:

If you receive the warning that Analysis Engine is initializing, enter 2 to save your configuration thus far and exit setup. You can then reenter setup and press Enter until you are back to the interface and virtual sensor menu.

Step 7 Enter 2 to modify the virtual sensor configuration.

``` Modify interface/virtual sensor configuration?[no]: yes
Current interface configuration
Command control: Management0/0
Unassigned:
   Monitored:
      GigabitEthernet0/1

Virtual Sensor: vs0
Anomaly Detection: ad0
Event Action Rules: rules0
Signature Definitions: sig0
```

[1] Edit Interface Configuration
[3] Display configuration
Step 8 Enter 2 to edit the virtual sensor vs0 configuration.

The following appears:

Virtual Sensor: vs0
 Anomaly Detection: ad0
 Event Action Rules: rules0
 Signature Definitions: sig0

No Interfaces to remove.

Unassigned:
 Monitored:
 [1] GigabitEthernet0/1
Add Interface:

Step 9 Enter 1 to add GigabitEthernet0/1 to virtual sensor vs0.

Add Interface: 1

Virtual Sensor: vs0
 Anomaly Detection: ad0
 Event Action Rules: rules0
 Signature Definitions: sig0
 Monitored:
 GigabitEthernet0/1

[1] Edit Interface Configuration
[3] Display configuration

Option:

Step 10 Press Enter to exit the interface and virtual sensor configuration menu.

The following option appears:

Modify default threat prevention settings?[no]:

Step 11 Enter yes if you want to modify the default threat prevention settings:

Note The sensor comes with a built-in override to add the deny packet event action to high risk rating alerts. If you do not want this protection, disable automatic threat prevention.

The following appears:

Virtual sensor newVs is configured to prevent high risk threats in inline mode. (Risk Rating 90-100)
Virtual sensor vs0 is configured to prevent high risk threats in inline mode. (Risk Rating 90-100)

Do you want to disable automatic threat prevention on all virtual sensors?[no]:

Step 12 Enter yes to disable automatic threat prevention on all virtual sensors.

The following completed configuration appears:

The following configuration was entered:

 service host
 network-settings
 host-ip 10.1.9.201/24,10.1.9.1
 host-name aim-ips
telnet-option disabled
Advanced Setup

access-list 10.0.0.0/8
access-list 64.0.0.0/8
ftp-timeout 300
no login-banner-text
exit
time-zone-settings
offset 0
standard-time-zone-name UTC
exit
summertime-option disabled
ntp-option disabled
exit
service web-server
port 443
exit
service analysis-engine
virtual-sensor vs0
physical-interface GigabitEthernet0/1
exit
exit
service event-action-rules rules0
overrides deny-packet-inline
override-item-status Disabled
risk-rating-range 90-100
exit
exit

[0] Go to the command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration and exit setup.

Step 13 Enter 2 to save the configuration.

Enter your selection[2]: 2
Configuration Saved.

Step 14 Reboot AIM-IPS.

aim-ips# reset
Warning: Executing this command will stop all applications and reboot the node. Continue with reset? []:

Step 15 Enter yes to continue the reboot.

Step 16 Apply the most recent service pack and signature update.

You are now ready to configure your AIM-IPS for intrusion prevention.

For More Information

- For the procedure for using HTTPS to log in to IDM, refer to [Logging In to IDM](#).
- For the procedure for obtaining the most recent IPS software, see [Obtaining Cisco IPS Software](#), page 11-1.
• For the procedures for configuring intrusion prevention on your sensor, refer to the following documents:
 – *Installing and Using Cisco Intrusion Prevention System Device Manager 6.1*
 – *Installing and Using Cisco Intrusion Prevention System Manager Express 6.1*
 – *Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1*

Advanced Setup for AIP-SSM

To continue with advanced setup for AIP-SSM, follow these steps:

Step 1
Session in to AIP-SSM using an account with administrator privileges:

```
asa# session 1
```

Step 2
Enter the `setup` command.
The System Configuration Dialog is displayed.

Step 3
Enter 3 to access advanced setup.

Step 4
Specify the Telnet server status.
You can disable or enable Telnet services. The default is disabled.

Step 5
Specify the web server port.
The web server port is the TCP port used by the web server (1 to 65535). The default is 443.

- **Note**
The web server is configured to use TLS/SSL encryption by default. Setting the port to 80 does not disable the encryption.

Step 6
Enter `yes` to modify the interface and virtual sensor configuration.

The current interface configuration appears:

```
Current interface configuration
Command control: GigabitEthernet0/0
Unassigned:  
Monitored:  
    GigabitEthernet0/1

Virtual Sensor: vs0
Anomaly Detection: ad0
Event Action Rules: rules0
Signature Definitions: sig0
```

```
[1] Edit Interface Configuration
[3] Display configuration
Option:
```

Step 7
Enter 1 to edit the interface configuration.
Note

You do not need to configure interfaces on AIP-SSM. You should ignore the Modify interface default-vlan setting. The separation of traffic across virtual sensors is configured differently for AIP-SSM than for other sensors.

The following option appears:

Option:

Step 8

Press Enter to return to the top-level interface and virtual sensor configuration menu.

The following options appear:

[1] Edit Interface Configuration
[3] Display configuration
Option:

Step 9

Enter 2 to edit the virtual sensor configuration.

Option:

Step 10

Enter 2 to modify the virtual sensor vs0 configuration.

The following appears:

Virtual Sensor: vs0
- Anomaly Detection: ad0
- Event Action Rules: rules0
- Signature Definitions: sig0

No Interfaces to remove.

Unassigned:
Monitored:
[1] GigabitEthernet0/1
Add Interface:

Step 11

Enter 1 to add GigabitEthernet0/1 to virtual sensor vs0.

Note

With ASA 7.2 and earlier, one virtual sensor is supported. The virtual sensor to which GigabitEthernet0/1 is assigned is used for monitoring packets coming from the adaptive security appliance. We recommend that you assign GigabitEthernet0/1 to vs0, but you can assign it to another virtual sensor if you want to.

Note

With ASA 7.2.3 and later running IPS 6.0 or later, multiple virtual sensors are supported. The ASA 7.2.3 can direct packets to specific virtual sensors or can send packets to be monitored by a default virtual sensor. The default virtual sensor is the virtual sensor to which you assign GigabitEthernet0/1. We recommend that you assign GigabitEthernet0/1 to vs0, but you can assign it to another virtual sensor if you want to.

Step 12

Press Enter to return to the main virtual sensor menu.

Step 13

Enter 3 to create a virtual sensor.
The following option appears:

Name[]:

Step 14 Enter a name and description for your virtual sensor.

Name[]: newVs
Description[Created via setup by user cisco]: New Sensor
Anomaly Detection Configuration
[1] ad0
[2] Create a new anomaly detection configuration
Option[2]:

Step 15 Enter 1 to use the existing anomaly-detection configuration, ad0.

The following options appear:

Signature Definition Configuration
[1] sig0
[2] Create a new signature definition configuration
Option[2]:

Step 16 Enter 2 to create a signature-definition configuration file.

Step 17 Enter the signature-definition configuration name, newSig.

The following options appear:

Event Action Rules Configuration
[1] rules0
[2] Create a new event action rules configuration
Option[2]:

Step 18 Enter 1 to use the existing event-action-rules configuration, rules0.

Note If GigabitEthernet0/1 has not been assigned to vs0, you are prompted to assign it to the new virtual sensor.

Note With ASA 7.2 and earlier, one virtual sensor is supported. The virtual sensor to which GigabitEthernet0/1 is assigned is used for monitoring packets coming from the adaptive security appliance. We recommend that you assign GigabitEthernet0/1 to vs0, but you can assign it to another virtual sensor if you want to.

Note With ASA 7.2.3 and later with IPS 6.0, multiple virtual sensors are supported. The ASA 7.2.3 can direct packets to specific virtual sensors or can send packets to be monitored by a default virtual sensor. The default virtual sensor is the virtual sensor to which you assign GigabitEthernet0/1. We recommend that you assign GigabitEthernet0/1 to vs0, but you can assign it to another virtual sensor if you want to.

The following options appear:

Virtual Sensor: newVs
Anomaly Detection: ad0
Event Action Rules: rules0
Signature Definitions: newSig
Monitored: GigabitEthernet0/1
Chapter 9 Initializing the Sensor

Advanced Setup

Option:

Step 19 Press Enter to exit the interface and virtual sensor configuration menu.

The following option appears:

Modify default threat prevention settings?[no]:

Step 20 Enter yes if you want to modify the default threat prevention settings:

Note The sensor comes with a built-in override to add the deny packet event action to high risk rating alerts. If you do not want this protection, disable automatic threat prevention.

The following appears:

Virtual sensor newVs is configured to prevent high risk threats in inline mode. (Risk Rating 90-100)
Virtual sensor vs0 is configured to prevent high risk threats in inline mode. (Risk Rating 90-100)
Do you want to disable automatic threat prevention on all virtual sensors?[no]:

Step 21 Enter yes to disable automatic threat prevention on all virtual sensors.

The following completed configuration appears:

The following configuration was entered.

```
service host
network-settings
host-ip 10.1.9.201/24, 10.1.9.1
host-name aip-ssm
telnet-option disabled
access-list 10.0.0.0/8
access-list 64.0.0.0/8
ftp-timeout 300
no login-banner-text
exit
time-zone-settings
offset 0
standard-time-zone-name UTC
exit
summertime-option disabled
ntp-option disabled
exit
service web-server
port 342
exit
service analysis-engine
virtual-sensor newVs
description New Sensor
signature-definition newSig
event-action-rules rules0
anomaly-detection
anomaly-detection-name ad0
exit
physical-interfaces GigabitEthernet0/1
exit
exit
service event-action-rules rules0
```
overrides deny-packet-inline
override-item-status Disabled
risk-rating-range 90-100
exit
exit

[0] Go to the command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration and exit setup.

Step 22 Enter 2 to save the configuration.
Enter your selection[2]: 2
Configuration Saved.

Step 23 Reboot AIP-SSM.
aip-ssm# reset
Warning: Executing this command will stop all applications and reboot the node.
Continue with reset? []:

Step 24 Enter yes to continue the reboot.

Step 25 Apply the most recent service pack and signature update.
You are now ready to configure your AIP-SSM for intrusion prevention.

For More Information
• For the procedure for using HTTPS to log in to IDM or ASDM, refer to Logging In to IDM.
• For the procedure for obtaining the most recent IPS software, see Obtaining Cisco IPS Software, page 11-1.
• For the procedures for configuring intrusion prevention on your sensor, refer to the following documents:
 – Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
 – Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 – Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1

Advanced Setup for IDSM-2

To continue with advanced setup for IDSM-2, follow these steps:

Step 1 Session in to IDSM-2 using an account with administrator privileges:
• For Catalyst software:
 console> enable
 console> (enable) session module_number
• For Cisco IOS software:
 router# session slot slot_number processor 1

Step 2 Enter the setup command.
The System Configuration Dialog is displayed.

Step 3 Enter 3 to access advanced setup.

Step 4 Specify the Telnet server status.

You can disable or enable Telnet services. The default is disabled.

Step 5 Specify the web server port.

The web server port is the TCP port used by the web server (1 to 65535). The default is 443.

Note The web server is configured to use TLS/SSL encryption by default. Setting the port to 80 does not disable the encryption.

Step 6 Enter yes to modify the interface and virtual sensor configuration.

The current interface configuration appears:

Current interface configuration
Command control: GigabitEthernet0/2
Unassigned:
Promiscuous:
GigabitEthernet0/7
GigabitEthernet0/8

Virtual Sensor: vs0
Anomaly Detection: ad0
Event Action Rules: rules0
Signature Definitions: sig0

[1] Edit Interface Configuration
[3] Display configuration

Option:

Step 7 Enter 1 to edit the interface configuration.

Note The following options let you create and delete interfaces. You assign the interfaces to virtual sensors in the virtual sensor configuration. If you are using promiscuous mode for your interfaces and are not subdividing them by VLAN, no additional configuration is necessary.

Note The IDSM-2 does not support the Add/Modify Inline Interface Pair Vlan Groups option. When running an inline interface pair the two IDSM-2 data ports are configured as access ports or a trunk port carrying only the native VLAN. The packets do not have 802.1q headers and cannot be separated by VLAN. To monitor multiple VLANs inline, use Inline VLAN Pairs.

The following options appear:

Option:

Step 8 Enter 3 to add promiscuous VLAN groups.
The list of available interfaces is displayed:

Available Interfaces
[1] GigabitEthernet0/7
[2] GigabitEthernet0/8

Option:

Step 9 Enter 2 to add VLAN groups to GigabitEthernet0/8.

Promiscuous Vlan Groups for GigabitEthernet0/8
None
Subinterface Number:

a. Enter 10 to add subinterface 10.

Subinterface Number: 10
Description [Created via setup by user asmith]:
Select vlans:
Option:

b. Enter 1 to assign all unassigned VLANs to subinterface 10.

Subinterface Number:

c. Enter 9 to add subinterface 9.

Subinterface Number: 9
Description [Created via setup by user asmith]:
Vlans[]:

d. Enter 1-100 to assign VLANs 1-100 to subinterface 9.

Note This removes VLANs 1-100 from the unassigned VLANs contained in subinterface 10.

e. Repeat Steps c and d until you have added all VLAN groups.

f. Press Enter at a blank subinterface line to return to list of interfaces available for VLAN groups.

The following options appear:

[1] GigabitEthernet0/7
[2] GigabitEthernet0/8

Option:

Step 10 Press Enter to return to the top-level interface configuration menu.

The following options appear:

Option:

Step 11 Press Enter to return to the top-level menu.

The following options appear:

[1] Edit Interface Configuration
[3] Display configuration

Option:
Step 12 Enter 2 to edit the virtual sensor configuration.

The following option appears:

1. Remove vs
2. Modify "vs0"
3. Create new vs

Option:

Step 13 Enter 2 to modify the virtual sensor vs0 configuration.

The following options appear:

Virtual Sensor: vs0
 Anomaly Detection: ad0
 Event Action Rules: rules0
 Signature Definitions: sig0

No Interfaces to remove.

Unassigned:
 Promiscuous:
 [1] GigabitEthernet0/7

Step 14 Enter 2 to add VLAN group GigabitEthernet0/8:10 to the virtual sensor vs0.

Promiscuous Vlan Groups:
 [2] GigabitEthernet0/8:10 (Vlans: unassigned)
 [3] GigabitEthernet0/8:9 (Vlans: 1-100)

Add Interface:

Step 15 Press Enter to return to the top-level virtual sensor configuration menu.

The following options appear:

Virtual Sensor: vs0
 Anomaly Detection: ad0
 Event Action Rules: rules0
 Signature Definitions: sig0
 Promiscuous Vlan Groups:
 GigabitEthernet0/8:10 (Vlans: unassigned)
 GigabitEthernet0/8:9 (Vlans: 1-100)

1. Remove vs
2. Modify "vs0"
3. Create new vs

Option:

Step 16 Press Enter to return to the top-level interface and virtual sensor configuration menu.

The following options appear:

1. Edit Interface Configuration
2. Edit Virtual Sensor Configuration
3. Display configuration

Option:

Step 17 Press Enter to exit the interface and virtual sensor configuration menu.

Step 18 Enter yes if you want to modify the default threat prevention settings:

Note The sensor comes with a built-in override to add the deny packet event action to high risk rating alerts. If you do not want this protection, disable automatic threat prevention.
The following appears:

Virtual sensor vs0 is configured to prevent high risk threats in inline mode.
(Risk Rating 90-100)
Do you want to disable automatic threat prevention on all virtual sensors?[no]:

Step 19 Enter yes to disable automatic threat prevention on all virtual sensors.

The following completed configuration appears:

The following configuration was entered.
service host
network-settings
host-ip 10.1.9.201/24,10.1.9.1
host-name idsm-2
telnet-option disabled
ftp-timeout 300
no login-banner-text
exit
time-zone-settings
offset 0
standard-time-zone-name UTC
exit
summertime-option disabled
ntp-option disabled
exit
service web-server
port 342
exit
service interface
physical-interfaces GigabitEthernet0/8
admin-state enabled
subinterface-type vlan-group
subinterface 9
description Created via setup by user asmith
vlans range 1-100
exit
subinterface 10
description Created via setup by user asmith
vlans unassigned
exit
exit
exit
exit
service analysis-engine
virtual-sensor vs0
description Created via setup by user cisco
signature-definition sig0
event-action-rules rules0
anomaly-detection
anomaly-detection-name ad0
operational-mode inactive
exit
physical-interface GigabitEthernet0/8 subinterface-number 9
physical-interface GigabitEthernet0/8 subinterface-number 10
service event-action-rules rules0
overrides deny-packet-inline
override-item-status Disabled
risk-rating-range 90-100
exit

[0] Go to the command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration and exit setup.
Step 20 Enter 2 to save the configuration.

Enter your selection[2]: 2
Configuration Saved.

Step 21 Reboot IDSM-2:

```bash
idsm-2# reset
```
Warning: Executing this command will stop all applications and reboot the node.
Continue with reset? [n]:

Step 22 Enter yes to continue the reboot.

Step 23 Apply the most recent service pack and signature update.

You are now ready to configure your IDSM-2 for intrusion prevention.

For More Information

- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
- For the procedure for obtaining the most recent IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedures for configuring intrusion prevention on your sensor, refer to the following documents:
 - *Installing and Using Cisco Intrusion Prevention System Device Manager 6.1*
 - *Installing and Using Cisco Intrusion Prevention System Manager Express 6.1*
 - *Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1*

Advanced Setup for NME-IPS

To continue with advanced setup for NME-IPS, follow these steps:

Step 1 Session in to NME-IPS using an account with administrator privileges:

```bash
router# service-module ids-sensor 1/0 session
```
Trying 10.1.9.1, 2322 ... Open

* Sensor login: cisco
 * Password: ********

Step 2 Enter the setup command.

The System Configuration Dialog is displayed.

Step 3 Enter 3 to access advanced setup.

Step 4 Specify the Telnet server status.

You can disable or enable Telnet services. The default is disabled.

Step 5 Specify the web server port.

The web server port is the TCP port used by the web server (1 to 65535). The default is 443.
Step 6 Enter yes to modify the interface and virtual sensor configuration.

You may receive a warning that Analysis Engine is initializing and you cannot modify the virtual sensor configuration at this time. Press the space bar to receive the following menu:

[0] Go to the command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration and exit setup.

Enter your selection[2]:

If you receive the warning that Analysis Engine is initializing, enter 2 to save your configuration thus far and exit setup. You can then reenter setup and press Enter until you are back to the interface and virtual sensor menu.

Step 7 Enter 2 to modify the virtual sensor configuration.

Modify interface/virtual sensor configuration?[no]: yes
Current interface configuration
Command control: Management0/1
Unassigned:
Monitored:
 GigabitEthernet0/1

Virtual Sensor: vs0
Anomaly Detection: ad0
Event Action Rules: rules0
Signature Definitions: sig0

[1] Edit Interface Configuration
[3] Display configuration
Option:

Step 8 Enter 2 to edit the virtual sensor vs0 configuration.

The following appears:

Virtual Sensor: vs0
Anomaly Detection: ad0
Event Action Rules: rules0
Signature Definitions: sig0

No Interfaces to remove.

Unassigned:
Monitored:
 [1] GigabitEthernet0/1
Add Interface:

Step 9 Enter 1 to add GigabitEthernet0/1 to virtual sensor vs0.

Add Interface: 1

Virtual Sensor: vs0
Anomaly Detection: ad0
Event Action Rules: rules0
Signature Definitions: sig0
Monitored:
 GigabitEthernet0/1
Step 10 Press **Enter** to exit the interface and virtual sensor configuration menu.

The following option appears:

Modify default threat prevention settings?[no]:

Step 11 Enter **yes** if you want to modify the default threat prevention settings:

Note The sensor comes with a built-in override to add the deny packet event action to high risk rating alerts. If you do not want this protection, disable automatic threat prevention.

The following appears:

Virtual sensor vs0 is configured to prevent high risk threats in inline mode.
(Risk Rating 90-100)
Do you want to disable automatic threat prevention on all virtual sensors?[no]:

Step 12 Enter **yes** if you want to disable automatic threat prevention on all virtual sensors; otherwise, press **Enter** to accept the default of no.

The following completed configuration appears:

The following configuration was entered.

```plaintext
service host	network-settings
host-ip 192.168.1.2/24,192.168.1.1
host-name nme-ips
telnet-option enabled
access-list 10.0.0.0/8
access-list 64.0.0.0/8
ftp-timeout 300
no login-banner-text
exit
time-zone-settings
offset 0
standard-time-zone-name UTC
exit
summertime-option disabled
ntp-option disabled
exit
service web-server
port 443
exit
service analysis-engine
virtual-sensor vs0
physical-interface GigabitEthernet0/1
exit
exit
service event-action-rules rules0
overrides
override-item-status Enabled
risk-rating-range 90-100
exit
exit
```

[0] Go to the command prompt without saving this config.
Verifying Initialization

To verify that you initialized your sensor, follow these steps:

Step 1 Log in to the sensor.

Step 2 View your configuration:

```
sensor# show configuration
!-------------------------------------------------
! Current configuration last modified Fri Mar 28 19:24:58 2008
!-------------------------------------------------
! Version 6.1(1)
! Host:
!     Realm Keys          key1.0
! Signature Definition:
!     Signature Update    S310.0   2007-12-05
!     Virus Update        V1.2     2005-11-24
!-------------------------------------------------
service interface
exit
!-------------------------------------------------
```

For More Information

- For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
- For the procedure for obtaining the most recent IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedures for configuring intrusion prevention on your sensor, refer to the following documents:
 - Installing and Using Cisco Intrusion Prevention System Device Manager 6.1
 - Installing and Using Cisco Intrusion Prevention System Manager Express 6.1
 - Configuring the Cisco Intrusion Prevention System Sensor Using the Command Line Interface 6.1
Step 3 Display the self-signed X.509 certificate (needed by TLS):

```bash
sensor# show tls fingerprint
```
Step 4 Write down the certificate fingerprints.
You need the fingerprints to check the authenticity of the certificate when connecting to this sensor with
a web browser.

For More Information
For the procedure for using HTTPS to log in to IDM, refer to Logging In to IDM.
Supported User Roles

You can log in with the following user privileges:

- Administrator
- Operator
- Viewer
- Service

The service role does not have direct access to the CLI. Service account users are logged directly into a bash shell. Use this account for support and troubleshooting purposes only. Unauthorized modifications are not supported and will require the sensor to be reimaged to guarantee proper operation. You can create only one user with the service role.

When you log in to the service account, you receive the following warning:

```
************************************************************************************
UNAUTHORIZED ACCESS TO THIS NETWORK DEVICE IS PROHIBITED.
This account is intended to be used for support and troubleshooting purposes only.
Unauthorized modifications are not supported and will require this device to be re-imaged to guarantee proper operation.
************************************************************************************
```
Logging In to the Appliance

Note
The service role is a special role that allows you to bypass the CLI if needed. Only a user with administrator privileges can edit the service account.

Note
For IPS 5.0 and later, you can no longer remove the cisco account. You can disable it using the no password cisco command, but you cannot remove it. To use the no password cisco command, there must be another administrator account on the sensor. Removing the cisco account through the service account is not supported. If you remove the cisco account through the service account, the sensor most likely will not boot up, so to recover the sensor you must reinstall the sensor system image.

For More Information
For the procedure for creating the service account, see Creating the Service Account, page A-5.

Logging In to the Appliance

Note
You must initialize the appliance (run the setup command) from the console. After networking is configured, SSH and Telnet are available.

You can log in to the appliance from a console port.

To log in to the appliance, follow these steps:

Step 1
Connect a console port to the sensor to log in to the appliance.

Step 2
Enter your username and password at the login prompt:

Note
The default username and password are both cisco. You are prompted to change them the first time you log in to the appliance. You must first enter the UNIX password, which is cisco. Then you must enter the new password twice.

login: cisco
Password:

NOTICE
This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wl/export/crypto/tool/stqrqg.html

If you require further assistance please contact us by sending email to export@cisco.com.

LICENSE NOTICE
There is no license key installed on the system.
Please go to http://www.cisco.com/go/license to obtain a new license or install a license.

ips-4240#

For More Information

- For the procedure for connecting an appliance to a terminal server, see Connecting an Appliance to a Terminal Server, page 10-3.
- For the procedure for using the `setup` command to initialize the appliance, see Advanced Setup for the Appliance, page 9-7

Connecting an Appliance to a Terminal Server

A terminal server is a router with multiple, low speed, asynchronous ports that are connected to other serial devices. You can use terminal servers to remotely manage network equipment, including appliances.

To set up a Cisco terminal server with RJ-45 or hydra cable assembly connections, follow these steps:

Step 1 Connect to a terminal server using one of the following methods:

- For terminal servers with RJ-45 connections, connect a 180 rollover cable from the console port on the appliance to a port on the terminal server.
- For hydra cable assemblies, connect a straight-through patch cable from the console port on the appliance to a port on the terminal server.

Step 2 Configure the line and port on the terminal server.

In enable mode, enter the following configuration, where # is the line number of the port to be configured:

```
config t
line #
login
transport input all
stopbits 1
flowcontrol hardware
speed 9600
exit
exit
wr mem
```

Step 3 Be sure to properly close a terminal session to avoid unauthorized access to the appliance.

If a terminal session is not stopped properly, that is, if it does not receive an exit(0) signal from the application that initiated the session, the terminal session can remain open. When terminal sessions are not stopped properly, authentication is not performed on the next session that is opened on the serial port.

Caution Always exit your session and return to a login prompt before terminating the application used to establish the connection.
Caution

If a connection is dropped or terminated by accident, you should reestablish the connection and exit normally to prevent unauthorized access to the appliance.

Logging In to AIM-IPS

This section describes how to use the session command to log in to AIM-IPS, and contains the following topics:

- AIM-IPS and the session Command, page 10-4
- Sessioning In to AIM-IPS, page 10-5

AIM-IPS and the session Command

Because AIM-IPS does not have an external console port, console access to AIM-IPS is enabled when you issue the `service-module ids-sensor slot/port session` command on the router, or when you initiate a Telnet connection into the router with the slot number corresponding to the AIM-IPS port number. The lack of an external console port means that the initial bootup configuration is possible only through the router.

When you issue the `service-module ids-sensor slot/port session` command, you create a console session with AIM-IPS, in which you can issue any IPS configuration commands. After completing work in the session and exiting the IPS CLI, you are returned to the Cisco IOS CLI.

The `session` command starts a reverse Telnet connection using the IP address of the IDS-Sensor interface. The IDS-Sensor interface is an interface between AIM-IPS and the router. You must assign an IP address to the IDS-Sensor interface before invoking the `session` command. Assigning a routable IP address can make the IDS-Sensor interface itself vulnerable to attacks, because AIM-IPS is visible on the network through that routable IP address, meaning you can communicate with AIM-IPS outside the router. To counter this vulnerability, assign an unnumbered IP address to the IDS-Sensor interface. Then the AIM-IPS IP address is only used locally between the router and AIM-IPS, and is isolated for the purposes of sessioning in to AIM-IPS.

Note

Before you install your application software or reimage the module, opening a session brings up the bootloader. After you install the software, opening a session brings up the application.

Caution

If you session to the module and perform large console transfers, character traffic may be lost unless the host console interface speed is set to 115200/bps or higher. Use the `show running config` command to check that the speed is set to 115200/bps.

For More Information

For the procedure for configuring an unnumbered IP address interface for AIM-IPS, refer to Using an Unnumbered IP Address Interface.
Sessioning In to AIM-IPS

Note
You must initialize AIM-IPS (run the `setup` command) from the router. After networking is configured, SSH and Telnet are available.

Use the `service-module ids-sensor slot/port session` command to establish a session from AIM-IPS to the module. Press `Ctrl-Shift-6`, then `x`, to return a session prompt to a router prompt, that is, to go from the AIM-IPS prompt back to the router prompt. Press `Enter` on a blank line to go back to the session prompt, which is also the router prompt. You should only suspend a session to the router if you will be returning to the session after executing router commands. If you do not plan on returning to the AIM-IPS session, you should close the session rather than suspend it.

When you close a session, you are logged completely out of the AIM-IPS CLI and a new session connection requires a username and password to log in. A suspended session leaves you logged in to the CLI. When you connect with the `session` command, you can go back to the same CLI without having to provide your username and password.

Note
Telnet clients vary. In some cases, you may have to press `Ctrl-6 + x`. The control character is specified as `^^`, `Ctrl-~`, or ASCII value 30 (hex 1E).

Caution
If you use the `disconnect` command to leave the session, the session remains running. The open session can be exploited by someone wanting to take advantage of a connection that is still in place.

To open and close sessions to AIM-IPS, follow these steps:

Step 1 Log in to the router.

Step 2 Check the status of AIM-IPS to make sure it is running:

```
router# service-module ids-sensor 0/1 status
Service Module is Cisco IDS-Sensor0/1
Service Module supports session via TTY line 322
Service Module is in Steady state
Getting status from the Service Module, please wait..
Cisco Systems Intrusion Prevention System Network Module
  Software version:  6.1(1)E1
  Model:             AIM-IPS
  Memory:            443508 KB
  Mgmt IP addr:      10.89.148.196
  Mgmt web ports:    443
  Mgmt TLS enabled:  true

router#
```

Step 3 Open a session from the router to AIM-IPS:

```
router# service-module ids-sensor 0/1 session
Trying 10.89.148.196, 2322 ... Open
```

Step 4 Exit, or suspend and close the module session.

```
* sensor# exit
```
Chapter 10 Logging In to the Sensor

Logging In to AIP-SSM

Note You must initialize AIP-SSM (run the setup command) from the ASA 5500 series adaptive security appliance. After networking is configured, SSH and Telnet are available.

You log in to AIP-SSM from the ASA 5500 series adaptive security appliance.

To session in to AIP-SSM from the ASA 5500 series adaptive security appliance, follow these steps:

Step 1 Log in to the ASA 5500 series adaptive security appliance.

Note If the ASA 5500 series adaptive security appliance is operating in multi-mode, use the change system command to get to the system level prompt before continuing.

Step 2 Session to AIP-SSM:

```bash
asa# session 1
Opening command session with slot 1.
Connected to slot 1. Escape character sequence is 'CTRL-^X'.
```

For More Information
For the procedure for using the setup command to initialize AIM-IPS, see Advanced Setup for AIM-IPS, page 9-13
You have 60 seconds to log in before the session times out.

Step 3 Enter your username and password at the login prompt:

```plaintext
login: cisco
Password: ***NOTICE***
This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

***LICENSE NOTICE***
There is no license key installed on the system. Please go to http://www.cisco.com/go/license to obtain a new license or install a license.
```

```plaintext
aip-ssm#
```

Step 4 To escape from a session and return to the ASA 5500 series adaptive security appliance prompt, do one of the following:

- Enter `exit`.
- Press `CTRL-Shift-6-x` (represented as `CTRL^X`).

For More Information
For the procedure for using the `setup` command to initialize AIP-SSM, see Advanced Setup for AIP-SSM, page 9-16

Logging In to IDSM-2

Note You must initialize IDSM-2 (run the `setup` command) from the switch. After networking is configured, SSH and Telnet are available.
You log in to IDSM-2 from the switch.
To session in to IDSM-2, follow these steps:

Step 1 Session to IDSM-2 from the switch:
- For Catalyst Software:
  ```
  console> (enable) session slot_number
  ```
- For Cisco IOS software:
  ```
  router# session slot_number processor 1
  ```

Step 2 Enter your username and password at the login prompt:

Note The default username and password are both cisco. You are prompted to change them the first time you log in to IDSM-2. You must first enter the UNIX password, which is cisco. Then you must enter the new password twice.

```plaintext
login: cisco
Password: ***NOTICE***
This product contains cryptographic features and is subject to United States 
and local country laws governing import, export, transfer and use. Delivery 
of Cisco cryptographic products does not imply third-party authority to import, 
export, distribute or use encryption. Importers, exporters, distributors and 
users are responsible for compliance with U.S. and local country laws. By using 
this product you agree to comply with applicable laws and regulations. If you 
are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: 

If you require further assistance please contact us by sending email to 
export@cisco.com.

***LICENSE NOTICE***
There is no license key installed on the system. 
Please go to http://www.cisco.com/go/license 
to obtain a new license or install a license.
idsm-2#
```

For More Information
For the procedure for using the setup command to initialize IDSM-2, see Advanced Setup for IDSM-2, page 9-20.
Logging In to NME-IPS

This section describes how to use the session command to log in to NME-IPS, and contains the following topics:

- NME-IPS and the session Command, page 10-9
- Sessioning In to NME-IPS, page 10-9

NME-IPS and the session Command

Because NME-IPS does not have an external console port, console access to NME-IPS is enabled when you issue the service-module ids-sensor slot/port session command on the router, or when you initiate a Telnet connection into the router with the slot number corresponding to the NME-IPS port number. The lack of an external console port means that the initial bootup configuration is possible only through the router.

When you issue the service-module ids-sensor slot/port session command, you create a console session with NME-IPS, in which you can issue any IPS configuration commands. After completing work in the session and exiting the IPS CLI, you are returned to the Cisco IOS CLI.

The session command starts a reverse Telnet connection using the IP address of the IDS-Sensor interface. The IDS-Sensor interface is an interface between NME-IPS and the router. You must assign an IP address to the IDS-Sensor interface before invoking the session command. Assigning a routable IP address can make the IDS-Sensor interface itself vulnerable to attacks, because NME-IPS is visible on the network through that routable IP address, meaning you can communicate with NME-IPS outside the router. To counter this vulnerability, assign an unnumbered IP address to the IDS-Sensor interface. Then the NME-IPS IP address is only used locally between the router and NME-IPS, and is isolated for the purposes of sessioning in to NME-IPS.

Note

Before you install your application software or reimage the module, opening a session brings up the bootloader. After you install the software, opening a session brings up the application.

Caution

If you session to the module and perform large console transfers, character traffic may be lost unless the host console interface speed is set to 115200/bps or higher. Use the show running config command to check that the speed is set to 115200/bps.

For More Information

For the procedure for configuring monitoring interfaces for NME-IPS, refer to Configuring Monitoring Interfaces.

Sessioning In to NME-IPS

Note

You must initialize NME-IPS (run the setup command) from the router. After networking is configured, SSH and Telnet are available.
Use the `service-module ids-sensor slot/port session` command to establish a session from NME-IPS to the module. Press **Ctrl-Shift-6**, then `x`, to return a session prompt to a router prompt, that is, to go from the NME-IPS prompt back to the router prompt. Press **Enter** on a blank line to go back to the session prompt, which is also the router prompt. You should only suspend a session to the router if you will be returning to the session after executing router commands. If you do not plan on returning to the NME-IPS session, you should close the session rather than suspend it.

When you close a session, you are logged completely out of the NME-IPS CLI and a new session connection requires a username and password to log in. A suspended session leaves you logged in to the CLI. When you connect with the `session` command, you can go back to the same CLI without having to provide your username and password.

Note
Telnet clients vary. In some cases, you may have to press **Ctrl-6 + x**. The control character is specified as ^^, Ctrl-^, or ASCII value 30 (hex 1E).

Caution
If you use the `disconnect` command to leave the session, the session remains running. The open session can be exploited by someone wanting to take advantage of a connection that is still in place.

To open and close sessions to NME-IPS, follow these steps:

Step 1
Log in to the router.

Step 2
Check the status of NME-IPS to make sure it is running:

```
router# service-module ids-sensor 1/0 status
Service Module is Cisco IDS-Sensor1/0
Service Module supports session via TTY line 130
Service Module is in Steady state
Service Module heartbeat-reset is disabled
Getting status from the Service Module, please wait..
Cisco Systems Intrusion Prevention System Network Module
 Software version: 6.1(1)E1
 Model:             NME-IPS
 Memory:            443508 KB
 Mgmt IP addr:      10.89.148.195
 Mgmt web ports:    443
 Mgmt TLS enabled:  true
```

Step 3
Open a session from the router to NME-IPS:

```
router# service-module ids-sensor 1/0 session
Trying 10.89.148.196, 2322 ... Open
```

Step 4
Exit, or suspend and close the module session.

```
sensor# exit
```

Note
If you are in submodes of the IPS CLI, you must exit all submodes. Enter `exit` until the sensor login prompt appears.
Caution Failing to close a session properly makes it possible for others to exploit a connection that is still in place. Remember to enter `exit` at the `router#` prompt to close the Cisco IOS session completely.

- To suspend and close the session to NME-IPS, press `Ctrl-Shift` and press `6`. Release all keys, and then press `x`.

Note When you are finished with a session, you need to return to the router to establish the association between a session (the IPS application) and the router interfaces you want to monitor.

Step 5 Disconnect from the router:
```
router# disconnect
```

Step 6 Press `Enter` to confirm the disconnection:
```
router# Closing connection to 10.89.148.196 [confirm] <Enter>
```

For More Information

For the procedure for using the `setup` command to initialize NME-IPS, see Advanced Setup for NME-IPS, page 9-25

Logging In to the Sensor

Note After you have initialized the sensor using the `setup` command and enabled Telnet, you can use SSH or Telnet to log in to the sensor.

To log in to the sensor, follow these steps:

Step 1 To log in to the sensor over the network using SSH or Telnet:
```
ssh sensor_ip_address
telnet sensor_ip_address
```

Step 2 Enter your username and password at the login prompt:
```
login: *******
Password: *******
***NOTICE***
```

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrqg.html
If you require further assistance please contact us by sending email to export@cisco.com.

LICENSE NOTICE
There is no license key installed on the system. Please go to http://www.cisco.com/go/license to obtain a new license or install a license.
sensor#
Obtaining Software

This chapter provides information on obtaining Cisco IPS software for the sensor. It contains the following sections:

- Obtaining Cisco IPS Software, page 11-1
- IPS Software Versioning, page 11-3
- Software Release Examples, page 11-6
- Upgrading Cisco IPS Software to 6.1, page 11-7
- Accessing IPS Documentation, page 11-9
- Cisco Security Intelligence Operations, page 11-9
- Obtaining a License Key From Cisco.com, page 11-10

Obtaining Cisco IPS Software

You can download the latest Cisco IPS software from Cisco.com. You must have an account with cryptographic access before you can download software and you must be logged into Cisco.com to access the software download site. You can sign up for IPS Alert Bulletins to receive information on the latest software releases.

Caution

The BIOS on Cisco IPS sensors is specific to Cisco IPS sensors and must only be upgraded under instructions from Cisco with BIOS files obtained from the Cisco website. Installing a non-Cisco or third-party BIOS on Cisco IPS sensors voids the warranty.

You can find major and minor updates, service packs, signature and signature engine updates, system and recovery files, firmware upgrades, and readmes on the Download Software site on Cisco.com. Signature updates are posted to Cisco.com approximately every week, more often if needed. Service packs are posted to Cisco.com as needed. Major and minor updates are also posted periodically. Check Cisco.com regularly for the latest IPS software.

Note

You must be logged in to Cisco.com to download software. You must have an active IPS maintenance contract and a Cisco.com password to download software. Beginning with Cisco IPS 5.x, you must have a license to apply signature updates.
Download IPS Software

To download software on Cisco.com, follow these steps:

Step 1 Log in to Cisco.com.

Step 2 From the Support drop-down menu, choose **Download Software**.

Step 3 Under Select a Software Product Category, choose **Security Software**.

Step 4 Choose **Intrusion Prevention System** (IPS).

Step 5 Enter your username and password.

Step 6 In the Download Software window, choose **IPS Appliances > Cisco Intrusion Prevention System** and then click the version you want to download.

Note
You must have an IPS subscription service license to download software.

Step 7 Click the type of software file you need.

The available files appear in a list in the right side of the window. You can sort by file name, file size, memory, and release date. And you can access the Release Notes and other product documentation.

Step 8 Click the file you want to download.

The file details appear.

Step 9 Verify that it is the correct file, and click **Download**.

Step 10 Click **Agree** to accept the software download rules.

The first time you download a file from Cisco.com, you must fill in the Encryption Software Export Distribution Authorization form before you can download the software.

- Fill out the form and click **Submit**.

- Read the policy and click **I Accept**.

 The Encryption Software Export/Distribution Form appears.

If you previously filled out the Encryption Software Export Distribution Authorization form, and read and accepted the Cisco Systems Inc. Encryption Software Usage Handling and Distribution Policy, these forms are not displayed again.

The File Download dialog box appears.

Step 11 Open the file or save it to your computer.

Step 12 Follow the instructions in the Readme to install the update.

Note
Major and minor updates, service packs, recovery files, signature and signature engine updates are the same for all sensors. System image files are unique per platform.
IPS Software Versioning

When you download IPS software images from Cisco.com, you should understand the versioning scheme so that you know which files are base files, which are cumulative, and which are incremental.

Major Update
A major update contains new functionality or an architectural change in the product. For example, the Cisco IPS 6.0 base version includes everything (except deprecated features) since the previous major release (the minor update features, service pack fixes, and signature updates) plus any new changes. Major update 6.0(1) requires 5.x. With each major update there are corresponding system and recovery packages.

Note
The 6.0(1) major update is only used to upgrade 5.x sensors to 6.0(1). If you are reinstalling 6.0(1) on a sensor that already has 6.0(1) installed, use the system image or recovery procedures rather than the major update.

Minor Update
A minor update is incremental to the major version. Minor updates are also base versions for service packs. The first minor update for 6.0 is 6.1(1). Minor updates are released for minor enhancements to the product. Minor updates contain all previous minor features (except deprecated features), service pack fixes, signature updates since the last major version, and the new minor features being released. You can install the minor updates on the previous major or minor version (and often even on earlier versions). The minimum supported version needed to upgrade to the newest minor version is listed in the Readme that accompanies the minor update. With each minor update there are corresponding system and recovery packages.

Service Pack
A service pack is cumulative following a base version release (minor or major). Service packs are used for the release of defect fixes with no new enhancements. Service packs contain all service pack fixes since the last base version (minor or major) and the new defect fixes being released. Service packs require the minor version. The minimum supported version needed to upgrade to the newest service pack is listed in the Readme that accompanies the service pack. Service packs also include the latest engine update. For example, if service pack 6.0(3) is released, and E3 is the latest engine level, the service pack is released as 6.0(3)E3.

Patch Release
A patch release is used to address defects that are identified in the upgrade binaries after a software release. Rather than waiting until the next major or minor update, or service pack to address these defects, a patch can be posted. Patches include all prior patch releases within the associated service pack level. The patches roll into the next official major or minor update, or service pack.

Before you can install a patch release, the most recent major or minor update, or service pack must be installed. For example, patch release 5.0(1p1) requires 5.0(1).
Note

Upgrading to a newer patch does not require you to uninstall the old patch. For example, you can upgrade from patch 5.0(1p1) to 5.0(1p2) without first uninstalling 5.0(1p1).

Figure 11-1 illustrates what each part of the IPS software file represents for major and minor updates, service packs, and patch releases.

![IPS Software File Name for Major and Minor Updates, Service Packs, and Patch Releases]

Signature Update

A signature update is a package file containing a set of rules designed to recognize malicious network activities. Signature updates are released independently from other software updates. Each time a major or minor update is released, you can install signature updates on the new version and the next oldest version for a period of at least six months. Signature updates are dependent on a required signature engine version. Because of this, a *req* designator lists the signature engine required to support a particular signature update.

Figure 11-2 illustrates what each part of the IPS software file represents for signature updates.

![IPS Software File Name for Signature Updates]
Signature Engine Update

A signature engine update is an executable file containing binary code to support new signature updates. Signature engine files require a specific service pack, which is also identified by the req designator. Figure 11-3 illustrates what each part of the IPS software file represents for signature engine updates.

Figure 11-3 IPS Software File Name for Signature Engine Updates

Recovery and System Image Files

Recovery and system image files contain separate versions for the installer and the underlying application. The installer version contains a major and minor version field. The major version is incremented by one of any major changes to the image installer, for example, switching from .tar to rpm or changing kernels. The minor version can be incremented by any one of the following:

- Minor change to the installer, for example, a user prompt added.
- Repackages require the installer minor version to be incremented by one if the image file must be repackaged to address a defect or problem with the installer.

Figure 11-4 illustrates what each part of the IPS software file represents for recovery and system image files.

Figure 11-4 IPS Software File Name for Recovery and System Image Files
Software Release Examples

Table 11-1 lists platform-independent Cisco IPS 6.x software release examples. Refer to the Readmes that accompany the software files for detailed instructions on how to install the files.

Table 11-1 Platform-Independent Release Examples

<table>
<thead>
<tr>
<th>Release</th>
<th>Target Frequency</th>
<th>Identifier</th>
<th>Example Version</th>
<th>Example Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature update¹</td>
<td>Weekly</td>
<td>sig</td>
<td>S700</td>
<td>IPS-sig-S700-req-E1.pkg</td>
</tr>
<tr>
<td>Signature engine update²</td>
<td>As needed</td>
<td>engine</td>
<td>E1</td>
<td>IPS-engine-E1-req-6.1-3.pkg</td>
</tr>
<tr>
<td>Service packs³</td>
<td>Semi-annually or as needed</td>
<td>—</td>
<td>6.1(3)</td>
<td>IPS-K9-6.1-3-E1.pkg</td>
</tr>
<tr>
<td>Minor version update⁴</td>
<td>Annually</td>
<td>—</td>
<td>6.1(1)</td>
<td>IPS-K9-6.1-1-E1.pkg</td>
</tr>
<tr>
<td>Major version update⁵</td>
<td>Annually</td>
<td>—</td>
<td>6.0(1)</td>
<td>IPS-K9-6.0-1-E1.pkg</td>
</tr>
<tr>
<td>Patch release⁶</td>
<td>As needed</td>
<td>patch</td>
<td>6.0(1p1)</td>
<td>IPS-K9-patch-6.0-1pl-E1.pkg</td>
</tr>
<tr>
<td>Recovery package⁷</td>
<td>Annually or as needed</td>
<td>r</td>
<td>1.1-6.0(1)</td>
<td>IPS-K9-r-1.1-a-6.0-1-E1.pkg</td>
</tr>
</tbody>
</table>

1. Signature updates include the latest cumulative IPS signatures.
2. Signature engine updates add new engines or engine parameters that are used by new signatures in later signature updates.
3. Service packs include defect fixes.
4. Minor versions include new minor version features and/or minor version functionality.
5. Major versions include new major version functionality or new architecture.
6. Patch releases are for interim fixes.
7. The r 1.1 can be revised to r 1.2 if it is necessary to release a new recovery package that contains the same underlying application image. If there are defect fixes for the installer, for example, the underlying application version may still be 6.0(1), but the recovery partition image will be r 1.2.

Table 11-2 describes platform-dependent software release examples.

Table 11-2 Platform-Dependent Release Examples

<table>
<thead>
<tr>
<th>Release</th>
<th>Target Frequency</th>
<th>Identifier</th>
<th>Supported Platform</th>
<th>Example Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>System image¹</td>
<td>Annually</td>
<td>sys</td>
<td>Separate file for each sensor platform</td>
<td>IPS-4240-K9-sys-1.1-a-6.1-1-E1.img</td>
</tr>
<tr>
<td>Maintenance partition image²</td>
<td>Annually</td>
<td>mp</td>
<td>IDSM-2</td>
<td>c6svc-mp.2-1-2.bin.gz</td>
</tr>
<tr>
<td>Bootloader</td>
<td>As needed</td>
<td>bl</td>
<td>AIM-IPS NME-IPS</td>
<td>pse_aim_x.y.z.bin, pse_nm_x.y.z.bin (where x, y, z is the release number)</td>
</tr>
<tr>
<td>Mini-kernel</td>
<td>As needed</td>
<td>mini-kernel</td>
<td>AIM-IPS NME-IPS</td>
<td>pse_mini_kernel_1.1.10.64.bz2</td>
</tr>
</tbody>
</table>

1. The system image includes the combined recovery and application image used to reimage an entire sensor.
2. The maintenance partition image includes the full image for the IDSM-2 maintenance partition. The file is installed from but does not affect the IDSM-2 application partition.

Table 11-3 describes the platform identifiers used in platform-specific names.

<table>
<thead>
<tr>
<th>Sensor Family</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS-4240 series</td>
<td>4240</td>
</tr>
<tr>
<td>IPS-4255 series</td>
<td>4255</td>
</tr>
<tr>
<td>IPS-4260 series</td>
<td>4260</td>
</tr>
<tr>
<td>IPS 4270-20 series</td>
<td>4270_20</td>
</tr>
<tr>
<td>IDS module for Catalyst 6K</td>
<td>IDSM2</td>
</tr>
<tr>
<td>IPS network module</td>
<td>AIM</td>
</tr>
<tr>
<td></td>
<td>NME</td>
</tr>
<tr>
<td>AIP-SSM</td>
<td>SSM_10</td>
</tr>
<tr>
<td></td>
<td>SSM_20</td>
</tr>
<tr>
<td></td>
<td>SSM_40</td>
</tr>
</tbody>
</table>

For More Information

For instructions on how to access these files on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.

Upgrading Cisco IPS Software to 6.1

Observe the following when upgrading your sensor:

- The minimum required version for upgrading to 6.1(1) is 5.0(1) or later, which is available as a download from Cisco.com.
- Use the IPS-AIM-K9-6.1-1-E1.pkg upgrade file to upgrade AIM-IPS. Use the IPS-NME-K9-6.1-1-E1.pkg upgrade file to upgrade NME-IPS. For all other supported sensors, use the IPS-K9-6.1-1-E1.pkg upgrade file.
- After you upgrade any IPS software on your sensor, you must restart the IDM to see the latest software features.
- If you configured Auto Update for your sensor, copy the Cisco IPS 6.1(1)E1 update to the directory on the server that your sensor polls for updates. If you install an update on your sensor and the sensor is unusable after it reboots, you must reimage your sensor.
- If you are using automatic upgrade with AIM-IPS, NME-IPS, and other IPS appliances or modules, make sure you put both the 6.1(1) upgrade file, IPS-K9-6.1-1-E1.pkg, the AIM-IPS upgrade file, IPS-AIM-K9-6.1-1-E1.pkg, and the NME-IPS upgrade file, IPS-NME-K9-6.1-1-E1.pkg, on the automatic update server so that AIM-IPS and NME-IPS can correctly detect which file needs to be automatically downloaded and installed. If you only put the 6.1(1) upgrade file, IPS-K9-6.1-1-E1.pkg, on the automatic update server, AIM-IPS and NME-IPS will download and try to install it, which is the incorrect file these modules.
You can reimage your sensor in the following ways:

- For all sensors, use the `recover` command.
- For IPS-4240, IPS-4255, IPS-4260, and IPS 4270-20, use the ROMMON to restore the system image.
- For AIM-IPS and NME-IPS, use the bootloader.
- For IDSM-2, reimage the application partition from the maintenance partition.

Note You cannot upgrade the IDSM (WS-X6381) to IPS 6.x. You must replace your IDSM (WS-X6381) with IDSM-2 (WS-SVC-IDSM2-K9), which supports version 6.1(1)E1.

- For AIP-SSM, reimage from the adaptive security appliance using the `hw-module module 1 recover configure/boot` command.

Caution When you install the system image for your sensor, all accounts are removed and the default account and password are reset to `cisco`.

For More Information

- For the procedure for accessing downloads on Cisco.com, see *Obtaining Cisco IPS Software*, page 11-1.
- For the procedure for using the `upgrade` command to upgrade the sensor, see *Upgrading the Sensor*, page 12-2.
- For the procedure for configuring automatic upgrades on the sensor, see *Configuring Automatic Upgrades*, page 12-6.
- For the procedure for using the `recover` command, see *Recovering the Application Partition*, page 12-10.
- For the procedures for using ROMMON to restore the system image, see *Installing the IPS-4240 and IPS-4255 System Images*, page 12-14, *Installing the IPS-4260 System Image*, page 12-17, and *Installing the IPS 4270-20 System Image*, page 12-19.
- For the procedure for restoring the AIM-IPS system image, see *Installing the AIM-IPS System Image*, page 12-21.
- For the procedure for using the `hw-module module 1 recover configure/boot` command to reimage AIP-SSM, see *Installing the AIP-SSM System Image*, page 12-24.
- For the procedure for reimagining the IDSM-2 application partition from the maintenance partition, see *Installing the IDSM-2 System Image*, page 12-26.
- For the procedure for restoring the NME-IPS system image, see *Installing the NME-IPS System Image*, page 12-38.
Accessing IPS Documentation

You can find IPS documentation at this URL:

Or to access IPS documentation from Cisco.com, follow these steps:

Step 1 Log in to Cisco.com.

Step 2 Click Support.

Step 3 Under Support at the bottom of the page, click Documentation.

Step 4 Choose Products > Security > Intrusion Prevention System (IPS) > IPS Appliances > Cisco IPS 4200 Series Sensors. The Cisco IPS 4200 Series Sensors page appears. All of the most up-to-date IPS documentation is on this page.

Note Although you will see references to other IPS documentation sites on Cisco.com, this is the site with the most complete and up-to-date IPS documentation.

Step 5 Click one of the following categories to access Cisco IPS documentation:

- **Download Software**—Takes you to the Download Software site.

 Note You must be logged into Cisco.com to access the software download site.

- **Release and General Information**—Contains documentation roadmaps and release notes.
- **Reference Guides**—Contains command references and technical references.
- **Design**—Contains design guide and design tech notes.
- **Install and Upgrade**—Contains hardware installation and regulatory guides.
- **Configure**—Contains configuration guides for IPS CLI, IDM, and IME.
- **Troubleshoot and Alerts**—Contains TAC tech notes and field notices.

Cisco Security Intelligence Operations

The Cisco Security Intelligence Operations site on Cisco.com provides intelligence reports about current vulnerabilities and security threats. It also has reports on other security topics that help you protect your network and deploy your security systems to reduce organizational risk.

You should be aware of the most recent security threats so that you can most effectively secure and manage your network. Cisco Security Intelligence Operations contains the top ten intelligence reports listed by date, severity, urgency, and whether there is a new signature available to deal with the threat.

Cisco Security Intelligence Operations contains a Security News section that lists security articles of interest. There are related security tools and links.

You can access Cisco Security Intelligence Operations at this URL:
http://tools.cisco.com/security/center/home.x
Understanding Licensing

Although the sensor functions without the license key, you must have a license key to obtain signature updates. To obtain a license key, you must have the following:

- Cisco Service for IPS service contract

 Contact your reseller, Cisco service or product sales to purchase a contract.

- Your IPS device serial number

 To find the IPS device serial number in IDM or IME, for IDM choose Configuration > Sensor Management > Licensing, and for IME choose Configuration > sensor_name > Sensor Management > Licensing, or in the CLI use the show version command.

- Valid Cisco.com username and password

Trial license keys are also available. If you cannot get your sensor licensed because of problems with your contract, you can obtain a 60-day trial license that supports signature updates that require licensing.

You can obtain a license key from the Cisco.com licensing server, which is then delivered to the sensor. Or, you can update the license key from a license key provided in a local file. Go to http://www.cisco.com/go/license and click IPS Signature Subscription Service to apply for a license key.

You can view the status of the license key in these places:

- IDM Home window Licensing section on the Health tab
- IDM Licensing pane (Configuration > Licensing)
- IME Home page in the Device Details section on the Licensing tab
- License Notice at CLI login

Whenever you start IDM, IME, or the CLI, you are informed of your license status—whether you have a trial, invalid, or expired license key. With no license key, an invalid license key, or an expired license key, you can continue to use IDM, IME, and the CLI, but you cannot download signature updates.

If you already have a valid license on the sensor, you can click Download on the License pane to download a copy of your license key to the computer that IDM or IME is running on and save it to a local file. You can then replace a lost or corrupted license, or reinstall your license after you have reimaged the sensor.
Chapter 11 Obtaining Software

Service Programs for IPS Products

You must have a Cisco Services for IPS service contract for any IPS product so that you can download a license key and obtain the latest IPS signature updates. If you have a direct relationship with Cisco Systems, contact your account manager or service account manager to purchase the Cisco Services for IPS service contract. If you do not have a direct relationship with Cisco Systems, you can purchase the service account from a one-tier or two-tier partner.

When you purchase the following IPS products you must also purchase a Cisco Services for IPS service contract:

- IPS-4240
- IPS-4255
- IPS-4260
- IPS 4270-20
- AIM-IPS
- IDSM-2
- NME-IPS

When you purchase an ASA 5500 series adaptive security appliance product that does not contain IPS, you must purchase a SMARTnet contract.

Note

SMARTnet provides operating system updates, access to Cisco.com, access to TAC, and hardware replacement NBD on site.

When you purchase an ASA 5500 series adaptive security appliance product that ships with AIP-SSM installed, or if you purchase AIP-SSM to add to your ASA 5500 series adaptive security appliance product, you must purchase the Cisco Services for IPS service contract.

Note

Cisco Services for IPS provides IPS signature updates, operating system updates, access to Cisco.com, access to TAC, and hardware replacement NBD on site.

For example, if you purchased an ASA-5510 and then later wanted to add IPS and purchased an ASA-SSM-AIP-10-K9, you must now purchase the Cisco Services for IPS service contract. After you have the Cisco Services for IPS service contract, you must also have your product serial number to apply for the license key.

Caution

If you ever send your product for RMA, the serial number will change. You must then get a new license key for the new serial number.
Obtaining and Installing the License Key Using IDM

Note
In addition to a valid Cisco.com username and password, you must also have a Cisco Services for IPS service contract before you can apply for a license key.

To obtain and install the license key, follow these steps:

Step 1
Log in to IDM or IME using an account with administrator privileges.

Step 2
For IDM choose Configuration > Sensor Management > Licensing. For IME choose Configuration > sensor_name > Sensor Management > Licensing.

The Licensing pane displays the status of the current license. If you have already installed your license, you can click Download to save it if needed.

Step 3
Obtain a license key by doing one of the following:

- Click the Cisco.com radio button to obtain the license from Cisco.com.

 IDM or IME contacts the license server on Cisco.com and sends the server the serial number to obtain the license key. This is the default method. Go to Step 4.

- Click the License File radio button to use a license file.

 To use this option, you must apply for a license key at this URL: www.cisco.com/go/license.

 The license key is sent to you in e-mail and you save it to a drive that IDM or IME can access. This option is useful if your computer cannot access Cisco.com. Go to Step 7.

Step 4
Click Update License, and in the Licensing dialog box, click Yes to continue.

The Status dialog box informs you that the sensor is trying to connect to Cisco.com. An Information dialog box confirms that the license key has been updated.

Step 5
Click OK.

Step 6
Go to www.cisco.com/go/license.

Step 7
Fill in the required fields.

Caution
You must have the correct IPS device serial number because the license key only functions on the device with that number.

Your license key will be sent to the e-mail address you specified.

Step 8
Save the license key to a hard-disk drive or a network drive that the client running IDM or IME can access.

Step 9
Log in to IDM or IME.

Step 10
For IDM choose Configuration > Sensor Management > Licensing. For IME choose Configuration > sensor_name > Sensor Management > Licensing.

Step 11
Under Update License, click the License File radio button.

Step 12
In the Local File Path field, specify the path to the license file or click Browse Local to browse to the file.
Chapter 11 Obtaining Software

Step 13 Browse to the license file and click **Open**.

Step 14 Click **Update License**.

For More Information

For more information about obtaining a Cisco Services for IPS service contract, see *Service Programs for IPS Products*, page 11-11.

Obtaining and Installing the License Key Using the CLI

Use the `copy source-url license_file_name license-key` command to copy the license key to your sensor. The following options apply:

- **source-url**—The location of the source file to be copied. It can be a URL or keyword.
- **destination-url**—The location of the destination file to be copied. It can be a URL or a keyword.
- **license-key**—The subscription license file.
- **license_file_name**—The name of the license file you receive.

Note

You cannot install an older license key over a newer license key.

The exact format of the source and destination URLs varies according to the file. Here are the valid types:

- **ftp**—Source or destination URL for an FTP network server. The syntax for this prefix is:
 - `ftp://[username@]location/relativeDirectory/filename`
 - `ftp://[username@]location/absoluteDirectory/filename`

- **scp**—Source or destination URL for the SCP network server. The syntax for this prefix is:
 - `scp://[username@]location/relativeDirectory/filename`
 - `scp://[username@]location/absoluteDirectory/filename`

 Note If you use FTP or SCP protocol, you are prompted for a password. If you use SCP protocol, you must add the remote host to the SSH known hosts list.

- **http**—Source URL for the web server. The syntax for this prefix is:
 - `http://[username@]location/directory/filename`

- **https**—Source URL for the web server. The syntax for this prefix is:
 - `https://[username@]location/directory/filename`

 Note If you use HTTPS protocol, the remote host must be a TLS trusted host.
Installing the License Key
To install the license key, follow these steps:

Step 1
Apply for the license key at this URL: www.cisco.com/go/license.

Note
In addition to a valid Cisco.com username and password, you must also have a Cisco Services for IPS service contract before you can apply for a license key.

Step 2
Fill in the required fields.

Note
You must have the correct IPS device serial number because the license key only functions on the device with that number.

Your Cisco IPS Signature Subscription Service license key will be sent by e-mail to the e-mail address you specified.

Step 3
Save the license key to a system that has a web server, FTP server, or SCP server.

Step 4
Log in to the CLI using an account with administrator privileges.

Step 5
Copy the license key to the sensor:

```
sensor# copy scp://user@10.89.147.3://tftpboot/dev.lic license-key
Password: *******
```

Step 6
Verify the sensor is licensed:

```
sensor# show version
Application Partition:
Cisco Intrusion Prevention System, Version 6.1(1)E1
```

Host:
- Realm Keys: key1.0
- Signature Definition:
 - Signature Update: S391.0 (2008-04-16)
 - Virus Update: V1.2 (2005-11-24)
- OS Version: 2.4.30-IDS-smp-bigphys
- Platform: ASA-SSM-20
- Serial Number: P300000220
- Sensor up-time is 3 days.
- Using 1031888896 out of 2093682688 bytes of available memory (49% usage)
- System is using 17.8M out of 29.0M bytes of available disk space (61% usage)
- Application-data is using 52.4M out of 166.6M bytes of available disk space (33% usage)
- Boot is using 37.8M out of 68.5M bytes of available disk space (58% usage)

Upgrade History:
- IPS-K9-6.1-1-E1 15:36:05 UTC Thu Apr 24 2008
- Recovery Partition Version 1.1 - 6.1(1)E1
- Host Certificate Valid from: 25-Apr-2008 to 26-Apr-2010
sensor#

Step 7 Copy your license key from a sensor to a server to keep a backup copy of the license:

sensor# copy license-key scp://user@10.89.147.3://tftpboot/dev.lic
Password: ********
sensor#

For More Information

- For the procedure for adding a remote host to the SSH known hosts list, for IDM refer to *Defining Known Hosts Keys*, for IME refer to *Defining Known Host Keys*, and for the CLI refer to *Adding Hosts to the SSH Known Hosts List*.
- For the procedure for adding a remote host to the trusted hosts list, for IDM refer to *Adding Trusted Hosts*, for IME refer to *Adding Trusted Hosts*, and for the CLI refer to *Adding TLS Trusted Hosts*.
- For more information about obtaining a Cisco Services for IPS service contract, see *Service Programs for IPS Products*, page 11-11.
Upgrading, Downgrading, and Installing System Images

This chapter describes how to upgrade, downgrade, and install system images. It contains the following sections:

- Upgrades, Downgrades, and System Images, page 12-1
- Supported FTP and HTTP/HTTPS Servers, page 12-2
- Upgrading the Sensor, page 12-2
- Configuring Automatic Upgrades, page 12-6
- Downgrading the Sensor, page 12-10
- Recovering the Application Partition, page 12-10
- Installing System Images, page 12-12

Upgrades, Downgrades, and System Images

Note
After you upgrade any IPS software on your sensor, you must restart the IDM to see the latest software features.

You can upgrade and downgrade the software on the sensor. Upgrading applies a service pack, signature update, signature engine update, minor version, major version, or recovery partition file. Downgrading removes the last applied service pack or signature update from the sensor.

Caution
You cannot use the `downgrade` command to go from Cisco IPS 6.1 to 6.0. To revert to 6.0, you must reimage the sensor.

You can recover the application partition image on your sensor if it becomes unusable. Using the `recover` command lets you retain your host settings while other settings revert to the factory defaults.

To install a new system image on the sensor, use ROMMON, the bootloader file, or the maintenance partition depending on which platform you have.

When you install a new system image on your sensor, all accounts are removed and the default cisco account is reset to use the default password `cisco`. After installing the system image, you must initialize the sensor again.
Chapter 12 Upgrading, Downgrading, and Installing System Images

After you reimage and initialize your sensor, upgrade your sensor with the most recent service pack, signature update, signature engine update, minor update, major update, and recovery partition file.

For More Information
- For the procedure for initializing the sensor, see Chapter 9, “Initializing the Sensor.”
- For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.

Supported FTP and HTTP/HTTPS Servers

The following FTP servers are supported for IPS software updates:
- WU-FTPD 2.6.2 (Linux)
- Solaris 2.8
- Sambar 6.0 (Windows 2000)
- Serv-U 5.0 (Windows 2000)
- MS IIS 5.0 (Windows 2000)

The following HTTP/HTTPS servers are supported for IPS software updates:
- CMS - Apache Server (Tomcat)
- CMS - Apache Server (JRun)

For More Information
- For the procedure for downloading IPS software updates from Cisco.com, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure for configuring automatic updates, see Configuring Automatic Upgrades, page 12-6.

Upgrading the Sensor

This section explains how to use the upgrade command to upgrade the software on the sensor. It contains the following topics:
- IPS 6.1 Upgrade Files, page 12-2
- upgrade Command and Options, page 12-3
- Using the upgrade Command, page 12-4
- Upgrading the Recovery Partition, page 12-5

IPS 6.1 Upgrade Files

The following files are part of Cisco IPS 6.1(1)E1:
- Readme
 - IPS-6.1-1-E1.readme.txt
Chapter 12 Upgrading, Downgrading, and Installing System Images

Upgrading the Sensor

• Minor Version Upgrade File
 – IPS-K9-6.1-1-E1.pkg
 – IPS-AIM-K9-6.1-1-E1.pkg
• System Image Files
 – IPS-4240-K9-sys-1.1-a-6.1-1-E1.img
 – IPS-4255-K9-sys-1.1-a-6.1-1-E1.img
 – IPS-4260-K9-sys-1.1-a-6.1-1-E1.img
 – IPS-4270-K9-sys-1.1-a-6.1-1-E1.img
 – WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1-E1.bin.gz
 – IPS-SSM_10-K9-sys-1.1-a-6.1-1-E1.img
 – IPS-SSM_20-K9-sys-1.1-a-6.1-1-E1.img
 – IPS-SSM_40-K9-sys-1.1-a-6.1-1-E1.img
 – IPS-AIM-K9-sys-1.1-a-6.1-1-E1.img
 – IPS-NME-K9-sys-1.1-a-6.1-1-E2.img
• Recovery Image Files
 – IPS-K9-r-1.1-a-6.1-1-E1.pkg
 – IPS-AIM-K9-r-1.1-a-6.1-1-E1.pkg
 – IPS-NME-K9-r-1.1-a-6.1-1-E2.pkg

For the procedure for obtaining these files on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.

upgrade Command and Options

Use the `upgrade source-url` command to apply service pack, signature update, engine update, minor version, major version, or recovery partition file upgrades.

The following options apply:

• `source-url`—The location of the source file to be copied.
 – ftp—Source URL for an FTP network server. The syntax for this prefix is:
 `ftp://[username@]location/relativeDirectory/filename`
 `ftp://[username@]location//absoluteDirectory/filename`
 Note You are prompted for a password.
 – scp—Source URL for the SCP network server. The syntax for this prefix is:
 `scp://[username@]location/relativeDirectory/filename`
 `scp://[username@]location//absoluteDirectory/filename`
 Note You are prompted for a password.
 – http—Source URL for the web server. The syntax for this prefix is:
Chapter 12 Upgrading, Downgrading, and Installing System Images

Upgrading the Sensor

http://[//username@]location/directory/filename

Note The directory specification should be an absolute path to the desired file.

- Source URL for the web server. The syntax for this prefix is:
 https://[//username@]location/directory/filename

Note The directory specification should be an absolute path to the desired file.

Using the upgrade Command

To upgrade the sensor, follow these steps:

Step 1 Download the appropriate file (for example, IPS-K9-6.1-1-E1.pkg) to an FTP, SCP, HTTP, or HTTPS server that is accessible from your sensor.

Note You must log in to Cisco.com using an account with cryptographic privileges to download the file. Do not change the filename. You must preserve the original filename for the sensor to accept the update.

Step 2 Log in to the CLI using an account with administrator privileges.

Step 3 Enter configuration mode.

 sensor# configure terminal

Step 4 Upgrade the sensor.

 sensor(config)# upgrade url/IPS-K9-6.1-1-E1.pkg

 The URL points to where the update file is located, for example, to retrieve the update using FTP, enter the following:

 sensor(config)# upgrade ftp://username@ip_address//directory/IPS-K9-6.1-1-E1.pkg

Step 5 Enter the password when prompted.

 Enter password: ********

Step 6 Enter yes to complete the upgrade.

Note Major updates, minor updates, and service packs may force a restart of the IPS processes or even force a reboot of the sensor to complete installation.
Chapter 12 Upgrading, Downgrading, and Installing System Images

Upgrading the Sensor

Note
The operating system is reimaged and all files that have been placed on the sensor through the service account are removed.

For More Information
- For a list of supported FTP and HTTP/HTTPS servers, see Supported FTP and HTTP/HTTPS Servers, page 12-2.
- For the procedure for locating software on Cisco.com and obtaining an account with cryptographic privilege, see Obtaining Cisco IPS Software, page 11-1.

Upgrading the Recovery Partition

Use the upgrade command to upgrade the recovery partition with the most recent version so that it is ready if you need to recover the application partition on your sensor.

Note
Recovery partition images are generated for major and minor updates and only in rare situations for service packs or signature updates.

Note
AIM-IPS and NME-IPS have unique recovery images (IPS-AIM-K9-r-1.1-a-6.1-1-E1.pkg and IPS-NME-K9-r-1.1-a-6.1-1-E2.pkg) that you must use to upgrade the recovery partition.

To upgrade the recovery partition on your sensor, follow these steps:

Step 1
Download the recovery partition image file (IPS-K9-r-1.1-a-6.1-1.pkg) to an FTP, SCP, HTTP, or HTTPS server that is accessible from your sensor.

Caution
Some browsers add an extension to the filename. The filename of the saved file must match what is displayed on the download page or you cannot use it to upgrade the recovery partition.

Step 2
Log in to the CLI using an account with administrator privileges.

Step 3
Enter configuration mode.

sensor# configure terminal

Step 4
Upgrade the recovery partition.

sensor(config)# upgrade scp://user@server_ipaddress//upgrade_path/IPS-K9-r-1.1-a-6.1-1-E1.pkg

sensor(config)# upgrade ftp://user@server_ipaddress//upgrade_path/IPS-K9-r-1.1-a-6.1-1-E1.pkg

Step 5
Enter the server password.
The upgrade process begins.
Configuring Automatic Upgrades

This section describes how to configure the sensor to automatically look for upgrades in the upgrade directory. It contains the following topics:

- Automatic Upgrades, page 12-6
- auto-upgrade Command and Options, page 12-7
- Using the auto-upgrade Command, page 12-8

Automatic Upgrades

You can configure the sensor to look for new upgrade files in your upgrade directory automatically. For example, several sensors can point to the same remote FTP server directory with different update schedules, such as every 24 hours, or Monday, Wednesday, and Friday at 11:00 pm.

You specify the following information to schedule automatic upgrades:

- Server IP address
- Path of the directory on the file server where the sensor checks for upgrade files
- File copy protocol (SCP or FTP)
- Username and password
- Upgrade schedule

You must download the software upgrade from Cisco.com and copy it to the upgrade directory before the sensor can poll for automatic upgrades.

For More Information
For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.
auto-upgrade Command and Options

Use the auto-upgrade-option enabled command in the service host submode to configure automatic upgrades.

The following options apply:

- **cisco-server**—Enables automatic signature and engine updates from Cisco.com.
- **cisco-url**—The Cisco server locator service.
 You do not need to change this unless the www.cisco.com IP address changes.
- **default**—Sets the value back to the system default setting.
- **directory**—Directory where upgrade files are located on the file server.
 A leading ‘/’ indicates an absolute path.
- **file-copy-protocol**—File copy protocol used to download files from the file server. The valid values are ftp or scp.

 Note If you use SCP, you must use the ssh host-key command to add the server to the SSH known hosts list so the sensor can communicate with it through SSH.
- **ip-address**—IP address of the file server.
- **password**—User password for Cisco server authentication.
- **schedule-option**—Schedules when Cisco server automatic upgrades occur. Calendar scheduling starts upgrades at specific times on specific days. Periodic scheduling starts upgrades at specific periodic intervals.
 - **calendar-schedule**—Configure the days of the week and times of day that automatic upgrades will be performed.
 - **days-of-week**—Days of the week on which auto-upgrades will be performed. You can select multiple days: sunday through saturday are the valid values.
 - **no**—Removes an entry or selection setting.
 - **times-of-day**—Times of day at which auto-upgrades will begin. You can select multiple times. The valid value is hh:mm[:ss].
 - **periodic-schedule**—Configure the time that the first automatic upgrade should occur, and how long to wait between automatic upgrades.
 - **interval**—The number of hours to wait between automatic upgrades. Valid values are 0 to 8760.
 - **start-time**—The time of day to start the first automatic upgrade. The valid value is hh:mm[:ss].
- **user-name**—Username for server authentication.
- **user-server**—Enables automatic upgrades from a user-defined server.

For More Information

For the procedure for adding a remote host to the SSH known hosts list, for IDM refer to Defining Known Hosts Keys, for IME refer to Defining Known Host Keys, and for the CLI refer to Adding Hosts to the SSH Known Hosts List.
Chapter 12 Upgrading, Downgrading, and Installing System Images

Configuring Automatic Upgrades

Using the auto-upgrade Command

If you get an unauthorized error message while configuring an automatic update, make sure you have the correct ports open on any firewalls between the sensor and Cisco.com. For example, you need 198.133.219.25 port 443 for the initial automatic update connection to www.cisco.com, and you need 198.133.219.243 port 80 to download the chosen package from a Cisco file server. The IP address may change for the Cisco file server, but you can find it in the lastDownloadAttempt section in the output of the `show statistics host` command.

If you use SCP, you must use the `ssh host-key` command to add the server to the SSH known hosts list so the sensor can communicate with it through SSH.

To check the status of the last automatic update or the next scheduled automatic update, run the `show statistics host` command and check the Auto Update Statistics section.

To schedule automatic upgrades, follow these steps:

Step 1 Log in to the CLI using an account with administrator privileges.

Step 2 Enter automatic upgrade submode.

```
sensor# configure terminal
sensor(config)# service host
sensor(config-host)# auto-upgrade
sensor(config-host-aut)#
```

Step 3 Configure the sensor to automatically look for new upgrades either on Cisco.com or on your file server:

a. On Cisco.com:

```
sensor(config-host-aut)# cisco-server enabled
```

Continue with Step 4.

b. From your server:

```
sensor(config-host-aut)# user-server enabled
```

c. Specify the IP address of the file server:

```
sensor(config-host-ena)# ip-address 10.1.1.1
```

d. Specify the directory where the upgrade files are located on the file server:

```
sensor(config-host-ena)# directory /tftpboot/sensor_updates
```

e. Specify the file server protocol:

```
sensor(config-host-ena)# file-copy-protocol ftp
```

Step 4 Specify the username for authentication.

```
sensor(config-host-ena)# user-name tester
```
Configuring Automatic Upgrades

Step 5 Specify the password of the user.

```bash
sensor(config-hos-ena)# password
Enter password: ********
Re-enter password: ********
```

Step 6 Specify the scheduling:

a. For calendar scheduling, which starts upgrades at specific times on specific day:

```bash
sensor(config-hos-ena)# schedule-option calendar-schedule
sensor(config-hos-ena-cal)# days-of-week sunday
sensor(config-hos-ena-cal)# times-of-day 12:00:00
```

b. For periodic scheduling, which starts upgrades at specific periodic intervals:

```bash
sensor(config-hos-ena)# schedule-option periodic-schedule
sensor(config-hos-ena-per)# interval 24
sensor(config-hos-ena-per)# start-time 13:00:00
```

Step 7 Verify the settings.

```bash
sensor(config-hos-ena)# show settings
enabled
-----------------------------------------------
schedule-option
-----------------------------------------------
periodic-schedule
-----------------------------------------------
start-time: 13:00:00
interval: 24 hours
-----------------------------------------------
-----------------------------------------------
ip-address: 10.1.1.1
directory: /tftpboot/update/6.1_dummy_updates
user-name: tester
password: <hidden>
file-copy-protocol: ftp default: scp
-----------------------------------------------
sensor(config-hos-ena)#
```

Step 8 Exit automatic upgrade submode.

```bash
sensor(config-hos-ena)# exit
sensor(config-hos)# exit
Apply Changes:?[yes]:
```

Step 9 Press Enter to apply the changes or type no to discard them.

For More Information

- For a list of supported FTP and HTTP/HTTPS servers, see Supported FTP and HTTP/HTTPS Servers, page 12-2.

- For the procedure for adding a remote host to the trusted hosts list, for IDM refer to Adding Trusted Hosts, for IME refer to Adding Trusted Hosts, and for the CLI, refer to Adding TLS Trusted Hosts.
Downgrading the Sensor

Use the `downgrade` command to remove the last applied service pack or signature upgrade from the sensor.

⚠️ Caution

You cannot use the `downgrade` command to go from Cisco IPS 6.1 to 6.0. To revert to 6.0, you must reimage the sensor. You can only use the `downgrade` command to downgrade from the latest service pack or signature update.

To remove the last applied service pack or signature update from the sensor, follow these steps:

Step 1
Log in to the sensor using an account with administrator privileges.

Step 2
Enter global configuration mode.

```
sensor# configure terminal
```

Step 3
Downgrade the sensor.

```
sensor(config)# downgrade
```

Warning: Executing this command will reboot the system and downgrade to IPS-K9-sp.6.0-2-E1.pkg. Configuration changes made since the last upgrade will be lost and the system may be rebooted. Continue with downgrade?:

Step 4
Enter `yes` to continue with the downgrade.

Step 5
If there is no recently applied service pack or signature update, the `downgrade` command is not available.

```
sensor(config)# downgrade
No downgrade available.
sensor(config)#
```

Recovering the Application Partition

This section explains how to recover the application partition, and contains the following topics:

- Application Partition, page 12-10
- Using the `recover` Command, page 12-11

Application Partition

You can recover the application partition image for the appliance if it becomes unusable. Some network configuration information is retained when you use this method, which lets you have network access after the recovery is performed.

Use the `recover application-partition` command to boot to the recovery partition, which automatically recovers the application partition on your appliance.
Chapter 12 Upgrading, Downgrading, and Installing System Images

Recovering the Application Partition

Note
If you have upgraded your recovery partition to the most recent version before you recover the application partition image, you can install the most up-to-date software image.

Because you can execute the `recover application-partition` command through a Telnet or SSH connection, we recommend using this command to recover sensors that are installed at remote locations.

Note
When you reconnect to the sensor after recovery, you must log in with the default username and password `cisco`.

For More Information
For the procedure for upgrading the recovery partition to the most recent version, see Upgrading the Recovery Partition, page 12-5.

Using the recover Command

To recover the application partition image, follow these steps:

Step 1
Download the recovery partition image file (IPS-K9-r-1.1-a-6.1-1-E1.pkg) to an FTP, HTTP, or HTTPS server that is accessible from your sensor.

Step 2
Log in to the CLI using an account with administrator privileges.

Step 3
Enter configuration mode.
```
sensor# configure terminal
```

Note
To upgrade the recovery partition the sensor must already be running IPS 6.1(1) or later.

Step 4
Recover the application partition image.
```
sensor(config)# recover application-partition
Warning: Executing this command will stop all applications and re-image the node to version 6.1(1)E1. All configuration changes except for network settings will be reset to default.
Continue with recovery? []:
```

Step 5
Enter yes to continue.

Shutdown begins immediately after you execute the `recover` command. Shutdown can take a while, and you will still have access to the CLI, but access will be terminated without warning.

The application partition is reimaged using the image stored on the recovery partition. You must now initialize the appliance with the `setup` command. The IP address, netmask, access lists, time zone, and offset are saved and applied to the reimaged application partition. If you executed the `recover application-partition` command remotely, you can SSH to the sensor with the default username and password (`cisco/cisco`) and then initialize the sensor again with the `setup` command. You cannot use Telnet until you initialize the sensor because Telnet is disabled by default.
Installing System Images

This section contains the procedures for installing system images on the appliances and modules. It contains the following topics:

- Understanding ROMMON, page 12-12
- Supported TFTP Servers, page 12-13
- Connecting an Appliance to a Terminal Server, page 12-13
- Installing the IPS-4240 and IPS-4255 System Images, page 12-14
- Installing the IPS-4260 System Image, page 12-17
- Installing the IPS 4270-20 System Image, page 12-19
- Installing the AIM-IPS System Image, page 12-21
- Installing the AIP-SSM System Image, page 12-24
- Installing the IDSM-2 System Image, page 12-26
- Installing the NME-IPS System Image, page 12-38

Caution

All user configuration settings are lost when you install the system image. Before trying to recover the sensor by installing the system image, try to recover by using the `recover application-partition` command or by selecting the recovery partition during sensor bootup.

Understanding ROMMON

Some Cisco sensors include a preboot CLI called ROMMON, which lets you boot images on sensors where the image on the primary device is missing, corrupt, or otherwise unable to boot the normal application. ROMMON is particularly useful for recovering remote sensors as long as the serial console port is available.

Access to ROMMON is available only through the serial console port, a Cisco-standard asynchronous RS-232C DTE available in an RJ-45F connector on the sensor chassis. The serial port is configured for 9600 baud, 8 data bits, 1 stop bit, no parity, and no flow control.

For More Information

For the procedure for using a terminal server, see Connecting an Appliance to a Terminal Server, page 12-13.
Supported TFTP Servers

ROMMON uses TFTP to download an image and launch it. TFTP does not address network issues such as latency or error recovery. It does implement a limited packet integrity check so that packets arriving in sequence with the correct integrity value have an extremely low probability of error. But TFTP does not offer pipelining so the total transfer time is equal to the number of packets to be transferred times the network average RTT. Because of this limitation, we recommend that the TFTP server be located on the same LAN segment as the sensor. Any network with an RTT less than a 100 milliseconds should provide reliable delivery of the image. Be aware that some TFTP servers limit the maximum file size that can be transferred to ~32 MB.

Connecting an Appliance to a Terminal Server

A terminal server is a router with multiple, low speed, asynchronous ports that are connected to other serial devices. You can use terminal servers to remotely manage network equipment, including appliances.

To set up a Cisco terminal server with RJ-45 or hydra cable assembly connections, follow these steps:

Step 1 Connect to a terminal server using one of the following methods:
- For terminal servers with RJ-45 connections, connect a 180 rollover cable from the console port on the appliance to a port on the terminal server.
- For hydra cable assemblies, connect a straight-through patch cable from the console port on the appliance to a port on the terminal server.

Step 2 Configure the line and port on the terminal server.

In enable mode, enter the following configuration, where # is the line number of the port to be configured:

```plaintext
config t
line #
login
transport input all
stopbits 1
flowcontrol hardware
speed 9600
exit
exit
wr mem
```

Step 3 Be sure to properly close a terminal session to avoid unauthorized access to the appliance.

If a terminal session is not stopped properly, that is, if it does not receive an exit(0) signal from the application that initiated the session, the terminal session can remain open. When terminal sessions are not stopped properly, authentication is not performed on the next session that is opened on the serial port.

Caution Always exit your session and return to a login prompt before terminating the application used to establish the connection.
Installing System Images

Caution
If a connection is dropped or terminated by accident, you should reestablish the connection and exit normally to prevent unauthorized access to the appliance.

Installing the IPS-4240 and IPS-4255 System Images

You can install the IPS-4240 and IPS-4255 system image by using the ROMMON on the appliance to TFTP the system image onto the compact flash device.

Note
This procedure is for IPS-4240, but is also applicable to IPS-4255. The system image for IPS-4255 has “4255” in the filename.

To install the IPS-4240 and IPS-4255 system image, follow these steps:

Step 1
Download the IPS-4240 system image file (IPS-4240-K9-sys-1.1-a-6.1-1-E1.img) to the tftp root directory of a TFTP server that is accessible from your IPS-4240.

Note
Make sure you can access the TFTP server location from the network connected to the Ethernet port of your IPS-4240.

Step 2
Boot IPS-4240.

The console display resembles the following:

Booting system, please wait...

CISCO SYSTEMS
Embedded BIOS Version 1.0(5)0 09/14/04 12:23:35.90

Low Memory: 631 KB
High Memory: 2048 MB
PCI Device Table.
Bus Dev Func VendID DevID Class Irq
00 00 00 8086 2578 Host Bridge
00 01 00 8086 2579 PCI-to-PCI Bridge
00 03 00 8086 257B PCI-to-PCI Bridge
00 1C 00 8086 25AE PCI-to-PCI Bridge
00 1D 00 8086 25A9 Serial Bus 11
00 1D 01 8086 25AA Serial Bus 10
00 1D 04 8086 25AB System
00 1D 05 8086 25AC IRQ Controller
00 1D 07 8086 25AD Serial Bus 9
00 1E 00 8086 244E PCI-to-PCI Bridge
00 1F 00 8086 25A1 ISA Bridge
00 1F 02 8086 25A3 IDE Controller 11
00 1F 03 8086 25A4 Serial Bus 5
00 1F 05 8086 25A6 Audio 5
02 01 00 8086 1075 Ethernet 11
03 01 00 177D 0003 Encrypt/Decrypt 9
03 02 00 8086 1079 Ethernet 9
03 02 01 8086 1079 Ethernet 9

This installation guide is intended for use with Cisco Intrusion Prevention System Appliance and Module.
Chapter 12 Upgrading, Downgrading, and Installing System Images

Installing System Images

03 03 00 8086 1079 Ethernet 9
03 03 01 8086 1079 Ethernet 9
04 02 00 8086 1209 Ethernet 11
04 03 00 8086 1209 Ethernet 5

Evaluating BIOS Options ...
Launch BIOS Extension to setup ROMMON

Cisco Systems ROMMON Version (1.0(5)0) #1: Tue Sep 14 12:20:30 PDT 2004
Platform IPS-4240-K9
Management0/0
MAC Address: 0000.c0ff.ee01

Step 3 Press Break or Esc at the following prompt while the system is booting to interrupt boot. Press the spacebar to begin boot immediately.

Note You have ten seconds to press Break or Esc.

Use BREAK or ESC to interrupt boot.
Use SPACE to begin boot immediately.

The system enters ROMMON mode. The rommon> prompt appears.

Step 4 Check the current network settings.

rommon> set

The output on the configured system resembles the following.

ROMMON Variable Settings:
 ADDRESS=0.0.0.0
 SERVER=0.0.0.0
 GATEWAY=0.0.0.0
 PORT=Management0/0
 VLAN=untagged
 IMAGE=
 CONFIG=

The variables have the following definitions:

- Address—Local IP address of IPS-4240
- Server—TFTP server IP address where the application image is stored
- Gateway—Gateway IP address used by IPS-4240
- Port—Ethernet interface used for IPS-4240 management
- VLAN—VLAN ID number (leave as untagged)
- Image—System image file/path name
- Config—Unused by these platforms

Note Not all values are required to establish network connectivity. The address, server, gateway, and image values are required. If you are not sure of the settings needed for your local environment, contact your system administrator.
Step 5 If necessary, change the interface used for the TFTP download.

```plaintext
rommon> PORT=interface_name
```

Note The default interface used for TFTP downloads is Management0/0, which corresponds to the MGMT interface of IPS-4240.

Step 6 If necessary, assign an IP address for the local port on IPS-4240.

```plaintext
rommon> ADDRESS=ip_address
```

Note Use the same IP address that is assigned to IPS-4240.

Step 7 If necessary, assign the TFTP server IP address.

```plaintext
rommon> SERVER=ip_address
```

Step 8 If necessary, assign the gateway IP address.

```plaintext
rommon> GATEWAY=ip_address
```

Step 9 Verify that you have access to the TFTP server by pinging it from your local Ethernet port with one of the following commands.

```plaintext
rommon> ping server_ip_address
rommon> ping server
```

Step 10 If necessary define the path and filename on the TFTP file server from which you are downloading the image.

```plaintext
rommon> IMAGE=path/file_name
```

Caution Make sure that you enter the `IMAGE` command in all uppercase. You can enter the other ROMMON commands in either lower case or upper case, but the `IMAGE` command specifically must be all uppercase.

UNIX example

```plaintext
rommon> IMAGE=/system_images/IPS-4240-K9-sys-1.1-a-6.1-1-E1.img
```

Note The path is relative to the default tftpboot directory of the UNIX TFTP server. Images located in the default tftpboot directory do not have any directory names or slashes in the `IMAGE` specification.

Windows example

```plaintext
rommon> IMAGE=\system_images\IPS-4240-K9-sys-1.1-a-6.1-1-E1.img
```

Step 11 Enter `set` and press `Enter` to verify the network settings.

Note You can use the `sync` command to store these settings in NVRAM so they are maintained across boots. Otherwise, you must enter this information each time you want to boot an image from ROMMON.
Step 12 Download and install the system image:

rommon> tftp

Caution To avoid corrupting the system image, do not remove power from IPS-4240 while the system image is being installed.

Note If the network settings are correct, the system downloads and boots the specified image on IPS-4240. Be sure to use the IPS-4240 image.

For More Information
- For a list of supported TFTP servers, see Supported TFTP Servers, page 12-13.
- For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.

Installing the IPS-4260 System Image

You can install the IPS-4260 system image by using the ROMMON on the appliance to TFTP the system image onto the flash device.

To install the IPS-4260 system image, follow these steps:

Step 1 Download the IPS-4260 system image file (IPS-4260-K9-sys-1.1-a-6.1-1-E1.img) to the tftp root directory of a TFTP server that is accessible from your IPS-4260.

Make sure you can access the TFTP server location from the network connected to your IPS-4260 Ethernet port.

Step 2 Boot IPS-4260.

Step 3 Press Ctrl-R at the following prompt while the system is booting.

Evaluating Run Options...

Note You have five seconds to press Ctrl-R.

The console display resembles the following:

Assuming IPS-4260-K9 Platform
2 Ethernet Interfaces detected

Cisco Systems ROMMON Version (1.0(11)rc) #26: Mon Mar 13 18:05:54 CST 2006

Platform IPS-4260-K9
Management0/0
Link is UP
MAC Address: 0004.23cc.6047

Use ? for help.
Installing System Images

Step 4 If necessary, change the port used for the TFTP download.

```
rommon #1> interface name
```

The port in use is listed just after the platform identification. In the example, port Management0/0 is being used.

Note The default port used for TFTP downloads is Management0/0, which corresponds with the command and control (MGMT) interface of the IPS-4260.

Note Ports Management0/0 (MGMT) and GigabitEthernet0/1 (GE 0/1) are labeled on the back of the chassis.

Step 5 Specify an IP address for the local port on IPS-4260.

```
rommon> address ip_address
```

Note Use the same IP address that is assigned to IPS-4260.

Step 6 Specify the TFTP server IP address.

```
rommon> server ip_address
```

Step 7 Specify the gateway IP address.

```
rommon> gateway ip_address
```

Step 8 Verify that you have access to the TFTP server by pinging it from the local Ethernet port.

```
rommon> ping server_ip_address
rommon> ping server
```

Step 9 Specify the path and filename on the TFTP file server from which you are downloading the image.

```
rommon> file path/filename
```

UNIX example

```
rommon> file /system_images/IPS-4260-K9-sys-1.1-a-6.1-1-E1.img
```

Note The path is relative to the default tftpboot directory of the UNIX TFTP server. Images located in the default tftpboot directory do not have any directory names or slashes in the file location.

Windows example

```
rommon> file <tftpboot_directory>IPS-4260-K9-sys-1.1-a-6.1-1-E1.img
```

Step 10 Download and install the system image.

```
rommon> tftp
```
Chapter 12 Upgrading, Downgrading, and Installing System Images

Installing System Images

Note
IPS-4260 reboots once during the reimaging process. Do not remove power from IPS-4260 during the update process or the upgrade can become corrupted.

For More Information
- For a list of supported TFTP servers, see Supported TFTP Servers, page 12-13.
- For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.

Installing the IPS 4270-20 System Image

You can install the IPS 4270-20 system image by using the ROMMON on the appliance to TFTP the system image onto the compact flash device.

To install the IPS 4270-20 system image, follow these steps:

Step 1 Download the IPS 4270-20 system image file (IPS4270-20-K9-sys-1.1-a-6.1-1-E1.img) to the tftp root directory of a TFTP server that is accessible from your IPS 4270-20.

Note Make sure you can access the TFTP server location from the network connected to the Ethernet port of your IPS 4270-20.

Step 2 Boot IPS 4270-20.

The console display resembles the following:

Booting system, please wait...
Cisco Systems ROMMON Version (1.0(12)10) #7: Thu Jun 21 13:50:04 CDT 2007
ft_id_update: Invalid ID-PROM Controller Type (0x5df)
ft_id_update: Defaulting to Controller Type (0x5c2)

Note The controller type errors are a known issue and can be disregarded.

Step 3 Press Break or Esc at the following prompt while the system is booting to interrupt boot. Press the spacebar to begin boot immediately.

Note You have ten seconds to press Break or Esc.

Use BREAK or ESC to interrupt boot.
Use SPACE to begin boot immediately.

The system enters ROMMON mode. The rommon> prompt appears.

Step 4 Check the current network settings.

rommon> set
The output on the configured system resembles the following:

```
ROMMON Variable Settings:
ADDRESS=0.0.0.0
SERVER=0.0.0.0
GATEWAY=0.0.0.0
PORT=Management0/0
VLAN=untagged
IMAGE=
CONFIG=
LINKTIMEOUT=20
PKTTIMEOUT=2
RETRY=20
```

The variables have the following definitions:
- **Address**—Local IP address of IPS 4270-20
- **Server**—TFTP server IP address where the application image is stored
- **Gateway**—Gateway IP address used by IPS 4270-20
- **Port**—Ethernet interface used for IPS 4270-20 management
- **VLAN**—VLAN ID number (leave as untagged)
- **Image**—System image file/path name
- **Config**—Unused by these platforms

Note Not all values are required to establish network connectivity. The address, server, gateway, and image values are required. If you are not sure of the settings needed for your local environment, contact your system administrator.

Step 5 If necessary, assign an IP address for the local port on IPS 4270-20.

```
rommon> ADDRESS=ip_address
```

Note Use the same IP address that is assigned to IPS 4270-20.

Step 6 If necessary, assign the TFTP server IP address.

```
rommon> SERVER=ip_address
```

Step 7 If necessary, assign the gateway IP address.

```
rommon> GATEWAY=ip_address
```

Step 8 Verify that you have access to the TFTP server by pinging it from your local Ethernet port with one of the following commands:

```
rommon> ping server_ip_address
rommon> ping server
```

Step 9 If necessary define the path and filename on the TFTP file server from which you are downloading the image.

```
rommon> IMAGE=path/file_name
```

UNIX example

```
rommon> IMAGE=/system_images/IPS4270-20-K9-sys-1.1-a-6.1-1-E1.img
```
Installing System Images

Note
The path is relative to the UNIX TFTP server default tftpboot directory. Images located in the default tftpboot directory do not have any directory names or slashes in the IMAGE specification.

Windows example
rommon> IMAGE=\system_images\IPS4270-20-K9-sys-1.1-a-6.1-1-E1.img

Step 10 Enter set and press Enter to verify the network settings.

Note
You can use the sync command to store these settings in NVRAM so they are maintained across boots. Otherwise, you must enter this information each time you want to boot an image from ROMMON.

Step 11 Download and install the system image.
rommon> tftp

Caution
To avoid corrupting the system image, do not remove power from IPS 4270-20 while the system image is being installed.

Note
If the network settings are correct, the system downloads and boots the specified image on IPS 4270-20. Be sure to use the IPS 4270-20 image.

For More Information
- For a list of supported TFTP servers, see Supported TFTP Servers, page 12-13.
- For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.

Installing the AIM-IPS System Image

To install the AIM-IPS system image, follow these steps:

Step 1 Download the AIM-IPS system image file (IPS-AIM-K9-sys-1.1-6.1-1-E1.img), and place it on a TFTP server relative to the tftp root directory.

Note
Make sure the network is configured so that AIM-IPS can access the TFTP server.

If no TFTP server is available, you can configure the router to operate as a TFTP server.

router# copy tftp: flash:
routere# configure terminal
router(config)# tftp-server flash:IPS-AIM-K9-sys-1.1-6.0-3-E1.img
router(config)# exit
router#
Installing System Images

Chapter 12 Upgrading, Downgrading, and Installing System Images

Step 2 Disable the heartbeat reset.

```
router# service-module IDS-Sensor 0/slot_number heartbeat-reset disable
```

Note Disabling the heartbeat reset prevents the router from resetting the module during system image installation if the process takes too long.

Step 3 Session to AIM-IPS.

```
router# service-module IDS-Sensor 0/slot_number session
```

Note Use the `show configuration | include interface IDS-Sensor` command to determine the AIM-IPS slot number.

Step 4 Suspend the session by pressing `Shift-Ctrl-6 X`.

You should see the `router#` prompt. If you do not see this prompt, try `Ctrl-6 X`.

Step 5 Reset AIM-IPS.

```
router# service-module IDS-Sensor 0/slot_number reset
```

You are prompted to confirm the `reset` command.

Step 6 Press `Enter` to confirm.

Step 7 Press `Enter` to resume the suspended session.

After displaying its version, the bootloader displays this prompt for 15 seconds:

```
Please enter ‘***’ to change boot configuration:
```

Step 8 Enter `***` during the 15-second delay.

The bootloader prompt appears.

Step 9 Press `Enter` to session back to AIM-IPS.

Step 10 Configure the bootloader.

```
ServicesEngine bootloader> config
```

IP Address [10.89.148.188]>
Subnet mask [255.255.255.0]>
TFTP server [10.89.150.74]>
Gateway [10.89.148.254]>
Default boot [disk]>
Number cores [2]>
ServicesEngine boot-loader >

For each prompt, enter a value or accept the previously stored input that appears inside square brackets by pressing `Enter`.

Note The gateway IP address must match the IP address of the IDS-Sensor slot/port interface.
If you set up the module interfaces using the **unnumbered** command, the gateway IP address should be the IP address of the other router interface being used as part of the unnumbered command.

The pathname for the AIM-IPS image is full but relative to the tftp server root directory (typically /tftpboot).

Step 11
Start the bootloader.

```
ServicesEngine bootloader> upgrade
```

Step 12
Follow the bootloader instructions to install the software (choose option 1 and follow the wizard instructions).

Note
In the following example, the AIM-IPS IP address is 10.1.9.201. The imaging process accesses the AIM-IPS image from the router TFTP server at IP address 10.1.9.1.

Example

Booting from flash...please wait.
Please enter '****' to change boot configuration:
11 ****
```
ServicesEngine boot-loader Version : 1.1.0
ServicesEngine boot-loader > config

IP Address [10.1.9.201]>
Subnet mask [255.255.255.0]>
TFTP server [10.1.9.1]>
Gateway [10.1.9.1]>
Default boot [disk]>
Number cores [2]> 
ServicesEngine boot-loader > upgrade
```

Cisco Systems, Inc.
Services engine upgrade utility for AIM-IPS

Main menu
1 - Download application image and write to USB Drive
2 - Download bootloader and write to flash
3 - Download minikernel and write to flash
r - Exit and reset card
x - Exit
Selection [123rx]
Download recovery image via tftp and install on USB Drive
TFTP server [10.1.9.1]>
full pathname of recovery image []:IPS-AIM-K9-sys-1.1-6.0-3-E1.img
Ready to begin
Are you sure [Y/N]
Returning TRUE
Press <CTRL-C> to abort.
octeth1: Up 1Gbs Full duplex, (port 1)
octeth0: Down 10Mbs Half duplex, (port 0)
Using octeth1 device
TFTP from server 10.1.9.1; our IP address is 10.1.9.201
Filename 'IPS-AIM-K9-sys-1.1-6.0-3-E1.img'.
Load address: 0x21000000
Installing System Images

Installing System Images

Loading: ###
###
###
###
###
###
###
###
###
###
######
32 MB received
###
#######################
done

Step 13 Suspend the session by pressing Shift-Ctrl-6 X.
You should see the router# prompt. If you do not see this prompt, try Ctrl-6 X.

Step 14 From the router CLI, clear the session.
router# service-module interface ids-sensor 0/slot_number session clear

Step 15 Enable the heartbeat reset.
router# service-module IDS-sensor 0/slot_number heartbeat-reset enable

For More Information
- For a list of supported TFTP servers, see Supported TFTP Servers, page 12-13.
- For the procedure for obtaining the most recent IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure for setting up an unnumbered IP address, refer to Using an Unnumbered IP Address Interface.

Installing the AIP-SSM System Image

This section describes how to install the AIP-SSM system image, and contains the following topics:
- Reimaging AIP-SSM, page 12-24
- Reimaging AIP-SSM Using the recover configure/boot Command, page 12-25

Reimaging AIP-SSM

You can reimage the AIP-SSM in one of the following ways:
- From ASA using the hw-module module 1 recover configure/boot command.
- Recovering the application image from the sensor CLI using the recover application-partition command.
- Upgrading the recovery image from the sensor CLI using the upgrade command.
Reimaging AIP-SSM Using the recover configure/boot Command

To install the AIP-SSM system image, follow these steps:

Step 1 Log in to the ASA.

Step 2 Enter enable mode.

```
asa# enable
```

Step 3 Configure the recovery settings for AIP-SSM.

```
asa (enable)# hw-module module 1 recover configure
```

Note If you make an error in the recovery configuration, use the `hw-module module 1 recover stop` command to stop the system reimaging and then you can correct the configuration.

Step 4 Specify the TFTP URL for the system image.

Example

```
Image URL [tftp://0.0.0.0/]: tftp://10.89.146.1/IPS-SSM-K9-sys-1.1-a-6.1-1-E1.img
```

Step 5 Specify the command and control interface of AIP-SSM.

Note The port IP address is the management IP address of AIP-SSM.

Example

```
Port IP Address [0.0.0.0]: 10.89.149.231
```

Step 6 Leave the VLAN ID at 0.

```
VLAN ID [0]:
```

Step 7 Specify the default gateway of AIP-SSM.

Example

```
Gateway IP Address [0.0.0.0]: 10.89.149.254
```
Step 8 Execute the recovery.

```
asa# hw-module module 1 recover boot
```

Step 9 Periodically check the recovery until it is complete.

Note The status reads **Recovery** during recovery and reads **Up** when reimaging is complete.

```
asa# show module 1
```

<table>
<thead>
<tr>
<th>Mod</th>
<th>Card Type</th>
<th>Model</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ASA 5540 Adaptive Security Appliance</td>
<td>ASA5540</td>
<td>P2B000000019</td>
</tr>
<tr>
<td>1</td>
<td>ASA 5500 Series Security Services Module-20</td>
<td>ASA-SSM-20</td>
<td>P1D0000004F4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>MAC Address Range</th>
<th>Hw Version</th>
<th>Fw Version</th>
<th>Sw Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000b.fcf8.7b1c to 000b.fcf8.7b20</td>
<td>0.2</td>
<td>1.0(7)2</td>
<td>7.0(0)82</td>
</tr>
<tr>
<td>1</td>
<td>000b.fcf8.011e to 000b.fcf8.011e</td>
<td>0.1</td>
<td>1.0(7)2</td>
<td>5.0(0.22)S129.0</td>
</tr>
</tbody>
</table>

Note To debug any errors that may happen in the recovery process, use the **debug module-boot** command to enable debugging of the system reimaging process.

Step 10 Session to AIP-SSM and initialize AIP-SSM with the **setup** command.

For More Information

- For a list of recommended TFTP servers, see Supported TFTP Servers, page 12-13.
- For the procedure to use the **setup** command to initialize AIP-SSM, see Chapter 9, “Initializing the Sensor.”

Installing the IDSM-2 System Image

This section describes how to reimage IDSM-2, and contains the following topics:

- Understanding the IDSM-2 Image, page 12-27
- Installing the IDSM-2 System Image for Catalyst Software, page 12-27
- Installing the IDSM-2 System Image for Cisco IOS Software, page 12-28
- Configuring the IDSM-2 Maintenance Partition for Catalyst Software, page 12-29
- Configuring the IDSM-2 Maintenance Partition for Cisco IOS Software, page 12-33
- Upgrading the IDSM-2 Maintenance Partition for Catalyst Software, page 12-37
- Upgrading the IDSM-2 Maintenance Partition for Cisco IOS Software, page 12-37
Understanding the IDSM-2 Image

If the IDSM-2 application partition becomes unusable, you can reimage it from the maintenance partition. After you reimage the application partition of IDSM-2, you must initialize IDSM-2 using the setup command. When there is a new maintenance partition image file, you can reimage the maintenance partition from the application partition.

For More Information
For the procedure to use the setup command to initialize IDSM-2, see Chapter 9, “Initializing the Sensor.”

Installing the IDSM-2 System Image for Catalyst Software

To install the system image, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Download the IDSM-2 system image file (WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.190-E0.1.bin.gz) to the FTP root directory of an FTP server that is accessible from your IDSM-2.</td>
</tr>
<tr>
<td>2</td>
<td>Log in to the switch CLI.</td>
</tr>
<tr>
<td>3</td>
<td>Boot IDSM-2 to the maintenance partition.</td>
</tr>
<tr>
<td></td>
<td>console> (enable) reset module_number cf:1</td>
</tr>
<tr>
<td>4</td>
<td>Log in to the maintenance partition CLI.</td>
</tr>
<tr>
<td></td>
<td>login: guest</td>
</tr>
<tr>
<td></td>
<td>Password: cisco</td>
</tr>
<tr>
<td></td>
<td>Note You must configure the maintenance partition on IDSM-2.</td>
</tr>
<tr>
<td>5</td>
<td>Install the system image.</td>
</tr>
<tr>
<td></td>
<td>guest@hostname.localdomain# upgrade ftp://user@ftp server IP/directory path/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.190-E0.1.bin.gz</td>
</tr>
<tr>
<td>6</td>
<td>Specify the FTP server password. After the application partition file has been downloaded, you are asked if you want to proceed:</td>
</tr>
<tr>
<td></td>
<td>Upgrading will wipe out the contents on the hard disk. Do you want to proceed installing it [y</td>
</tr>
<tr>
<td>7</td>
<td>Enter y to continue.</td>
</tr>
<tr>
<td></td>
<td>When the application partition file has been installed, you are returned to the maintenance partition CLI.</td>
</tr>
<tr>
<td>8</td>
<td>Exit the maintenance partition CLI and return to the switch CLI.</td>
</tr>
<tr>
<td>9</td>
<td>Reboot IDSM-2 to the application partition.</td>
</tr>
<tr>
<td></td>
<td>console> (enable) reset module_number hdd:1</td>
</tr>
<tr>
<td>10</td>
<td>When IDSM-2 has rebooted, check the software version.</td>
</tr>
<tr>
<td>11</td>
<td>Log in to the application partition CLI and initialize IDSM-2.</td>
</tr>
</tbody>
</table>
Installing System Images

For More Information

- For a list of supported FTP and HTTP/HTTPS servers, see Supported FTP and HTTP/HTTPS Servers, page 12-2.
- For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure for configuration the maintenance partition on IDMS-2, see Configuring the IDSM-2 Maintenance Partition for Catalyst Software, page 12-29 and Configuring the IDSM-2 Maintenance Partition for Cisco IOS Software, page 12-33.
- For the procedure for initializing IDSM-2, see Chapter 9, “Initializing the Sensor.”

Installing the IDSM-2 System Image for Cisco IOS Software

To install the system image, follow these steps:

Step 1 Download the IDSM-2 system image file (WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.190-E0.1.bin.gz) to the FTP root directory of an FTP server that is accessible from your IDSM-2.

Step 2 Log in to the switch CLI.

Step 3 Boot IDSM-2 to the maintenance partition.

```
router# hw-module module module_number reset cf:1
```

Step 4 Session to the maintenance partition CLI.

```
router# session slot slot_number processor 1
```

Step 5 Log in to the maintenance partition CLI.

```
login: guest
Password: cisco
```

Step 6 Configure the maintenance partition interface IP address.

```
guest@localhost.localdomain# ip address ip_address netmask
```

Note Choose an address that is appropriate for the VLAN on which the IDSM-2 management interface is located based on the switch configuration.

Step 7 Configure the maintenance partition default gateway address.

```
guest@localhost.localdomain# ip gateway gateway_address
```

Step 8 Install the system image.

```
guest@hostname.localdomain# upgrade ftp://user@ftp_server_ip_address/directory_path/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.190-E0.1.bin.gz—install
```

Step 9 Specify the FTP server password.

After the application partition file has been downloaded, you are asked if you want to proceed:

```
Upgrading will wipe out the contents on the hard disk.
Do you want to proceed installing it [y|n]:
```

Step 10 Enter y to continue. When the application partition file has been installed, you are returned to the maintenance partition CLI.
Step 11 Exit the maintenance partition CLI and return to the switch CLI.

Step 12 Reboot IDSM-2 to the application partition.

```
router# hw-module module_number reset hdd:1
```

Step 13 Verify that IDSM-2 is online and that the software version is correct and that the status is ok.

```
router# show module module_number
```

Step 14 Session to the IDSM-2 application partition CLI.

```
router# session slot slot_number processor 1
```

Step 15 Initialize IDSM-2 using the `setup` command.

For More Information

- For a list of supported FTP and HTTP/HTTPS servers, see Supported FTP and HTTP/HTTPS Servers, page 12-2.
- For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.
- For the procedure for configuration the maintenance partition on IDMS-2, see Configuring the IDSM-2 Maintenance Partition for Catalyst Software, page 12-29 and Configuring the IDSM-2 Maintenance Partition for Cisco IOS Software, page 12-33.
- For the procedure for initializing IDSM-2, see Chapter 9, “Initializing the Sensor.”

Configuring the IDSM-2 Maintenance Partition for Catalyst Software

To configure the IDSM-2 maintenance partition, follow these steps:

Step 1 Log in to the switch CLI.

Step 2 Enter privileged mode.

```
console# enable
console(enable)#
```

Step 3 Reload IDSM-2.

```
console> (enable) reset module_number cf:1
```

Step 4 Session to IDSM-2.

```
console# session 9
Trying IDS-9...
Connected to IDS-9.
Escape character is '^]'.
```

Cisco Maintenance image

```
Note You cannot Telnet or SSH to the IDSM-2 maintenance partition. You must session to it from the switch CLI.
```

Step 5 Log in as user `guest` and password `cisco`.

Cisco Intrusion Prevention System Appliance and Module Installation Guide for IPS 6.1

OL-15170-01

12-29
Note You can change the guest password, but we do not recommend it. If you forget the maintenance partition guest password, and you cannot log in to the IDSM-2 application partition for some reason, IDSM-2 requires an RMA.

login: guest
Password: cisco

Maintenance image version: 2.1(2)

guest@idsm2.localdomain#

Step 6 View the IDSM-2 maintenance partition host configuration.

guest@idsm2.localdomain# show ip

IP address : 10.89.149.74
Subnet Mask : 255.255.255.128
IP Broadcast : 10.255.255.255
DNS Name : idsm2.localdomain
Default Gateway : 10.89.149.126
Nameserver(s) :

guest@idsm2.localdomain#

Step 7 Clear the IDSM-2 maintenance partition host configuration (ip address, gateway, hostname).

guest@idsm2.localdomain# clear ip
guest@localhost.localdomain# show ip

IP address : 0.0.0.0
Subnet Mask : 0.0.0.0
IP Broadcast : 0.0.0.0
DNS Name : localhost.localdomain
Default Gateway : 0.0.0.0
Nameserver(s) :

guest@localhost.localdomain#

Step 8 Configure the maintenance partition host configuration:

a. Specify the IP address:

 guest@localhost.localdomain# ip address ip_address netmask

b. Specify the default gateway:

 guest@localhost.localdomain# ip gateway gateway_ip_address

c. Specify the hostname:

 guest@localhost.localdomain# ip host hostname

Step 9 View the maintenance partition host configuration.

guest@idsm2.localdomain# show ip

IP address : 10.89.149.74
Subnet Mask : 255.255.255.128
IP Broadcast : 10.255.255.255
DNS Name : idsm2.localdomain
Default Gateway : 10.89.149.126
Nameserver(s) :
Chapter 12 Upgrading, Downgrading, and Installing System Images

Installing System Images

guest@idsm2.localdomain#

Step 10 Verify the image installed on the application partition.

guest@idsm2.localdomain# show images

<table>
<thead>
<tr>
<th>Device name</th>
<th>Partition#</th>
<th>Image name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard disk(hdd)</td>
<td>1</td>
<td>6.1(1)</td>
</tr>
</tbody>
</table>

guest@idsm2.localdomain#

Step 11 Verify the maintenance partition version (including the BIOS version).

guest@idsm2.localdomain# show version

Maintenance image version: 2.1(2)
mp.2-1-2.bin : Thu Nov 18 11:41:36 PST 2004 :
integ@kplus-build-lx.cisco.com

Line Card Number : WS-SVC-IDSM2-XL
Number of Pentium-class Processors : 2
BIOS Vendor: Phoenix Technologies Ltd.
BIOS Version: 4.0-Rel 6.0.9

Total available memory: 2012 MB
Size of compact flash: 61 MB
Size of hard disk: 19077 MB
Daughter Card Info: Falcon rev 3, FW ver 2.0.3.0 (IDS), SRAM 8 MB, SDRAM 256 MB

guest@idsm2.localdomain#

Step 12 Upgrade the application partition.

guest@idsm2.localdomain# upgrade

ftp://jsmith@10.89.146.11//RELEASES/Latest/6.1-1/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.190-E0.1.bin.gz

Downloading the image. This may take several minutes...
Password for jsmith@10.89.146.114:
500 'WS-SVC-IDSM2-K9-sys-1.1-a-6.0-0.190-E0.1.bin.gz': command not understood.

ftp://jsmith@10.89.146.11//RELEASES/Latest/6.1-1/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.190-E0.1.bin.gz (unknown size)
/tmp/upgrade.gz [] 28616K
29303086 bytes transferred in 5.34 sec (5359.02k/sec)

Upgrade file
ftp://jsmith@10.89.146.11//RELEASES/Latest/6.1-1/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.190-E0.1.bin.gz is downloaded.
Upgrading will wipe out the contents on the storage media.
Do you want to proceed installing it [y|N]:

Step 13 Enter y to proceed with the upgrade.

Proceeding with upgrade. Please do not interrupt.
If the upgrade is interrupted or fails, boot into maintenance image again and restart upgrade.

Creating IDS application image file...

Initializing the hard disk...
Applying the image, this process may take several minutes...
Performing post install, please wait...
Application image upgrade complete. You can boot the image now.

guest@idsm3.localdomain#
Step 14 Display the upgrade log.

guest@idsm3.localdomain# show log upgrade

Upgrading the line card on Fri Mar 11 21:21:53 UTC 2005
Downloaded upgrade image
ftp://jsmith@10.89.146.114//RELEASES/Latest/6.1-1/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.190-E0.1.bin.gz
Extracted the downloaded file
Proceeding with image upgrade.
Fri Mar 11 21:22:06 2005 : argv1 = 0, argv2 = 0, argv3 = 3, argv4 = 1
Fri Mar 11 21:22:07 2005 : Initializing the hard disk...
Fri Mar 11 21:22:19 2005 : Created ext2 fileSystem on '/dev/hdc1'.
Fri Mar 11 21:22:19 2005 : Applying the image, this process may take several minutes...
Fri Mar 11 21:22:20 2005 : Performing post install, please wait...
Application image upgrade complete. You can boot the image now.
Partition upgraded successfully

guest@idsm2.localdomain#

Step 15 Clear the upgrade log.

guest@idsm2.localdomain# clear log upgrade
Cleared log file successfully

Step 16 Display the upgrade log.

guest@idsm2.localdomain# show log upgrade
guest@idsm2.localdomain#

Step 17 Ping another computer.

guest@idsm2.localdomain# ping 10.89.146.114
PING 10.89.146.114 (10.89.146.114) from 10.89.149.74 : 56(84) bytes of data.
64 bytes from 10.89.146.114: icmp_seq=0 ttl=254 time=381 usec
64 bytes from 10.89.146.114: icmp_seq=1 ttl=254 time=133 usec
64 bytes from 10.89.146.114: icmp_seq=2 ttl=254 time=129 usec
64 bytes from 10.89.146.114: icmp_seq=3 ttl=254 time=141 usec
64 bytes from 10.89.146.114: icmp_seq=4 ttl=254 time=127 usec
--- 10.89.146.114 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.127/0.182/0.381/0.099 ms

guest@idsm2.localdomain#
Step 18 Reset IDSM-2.

Note You cannot specify a partition when issuing the reset command from the maintenance partition. IDSM-2 boots to whichever partition is specified in the boot device variable. If the boot device variable is blank, IDSM-2 boots to the application partition.

guest@idsm2.localdomain# reset
2005 Mar 11 21:55:46 CST -06:00 %SYS-4-MOD_SHUTDOWNSTART:Module 9 shutdown in progress. Do not remove module until shutdown completes

Broadcast message from root Fri Mar 11 21:55:47 2005...
The system is going down for system halt NOW!!

For More Information
For a list of supported FTP and HTTP/HTTPS servers, see Supported FTP and HTTP/HTTPS Servers, page 12-2.

Configuring the IDSM-2 Maintenance Partition for Cisco IOS Software

To configure the IDSM-2 maintenance partition, follow these steps:

Step 1 Log in to the switch CLI.
Step 2 Session to IDSM-2.

router# session slot 11 processor 1
The default escape character is Ctrl-^, then x.
You can also type 'exit' at the remote prompt to end the session
Trying 127.0.0.111 ... Open
Cisco Maintenance image

Note You cannot Telnet or SSH to the IDSM-2 maintenance partition. You must session to it from the switch CLI.

Step 3 Log in as user guest and password cisco.

Note You can change the guest password, but we do not recommend it. If you forget the maintenance partition guest password, and you cannot log in to the IDSM-2 application partition for some reason, you will have to RMA IDSM-2.

login: guest
password: cisco

Maintenance image version: 2.1(2)
guest@idsm2.localdomain#
Chapter 12 Upgrading, Downgrading, and Installing System Images

Installing System Images

Step 4 View the maintenance partition host configuration.

```
guest@idsm2.localdomain# show ip
IP address      : 10.89.149.74
Subnet Mask     : 255.255.255.128
IP Broadcast    : 10.255.255.255
DNS Name        : idsm2.localdomain
Default Gateway : 10.89.149.126
Nameserver(s)   :
guest@idsm2.localdomain#
```

Step 5 Clear the maintenance partition host configuration (ip address, gateway, hostname).

```
guest@idsm2.localdomain# clear ip
guest@localhost.localdomain# show ip
IP address      : 0.0.0.0
Subnet Mask     : 0.0.0.0
IP Broadcast    : 0.0.0.0
DNS Name        : localhost.localdomain
Default Gateway : 0.0.0.0
Nameserver(s)   :
guest@localhost.localdomain#
```

Step 6 Configure the maintenance partition host configuration:

a. Specify the IP address:

```
guest@localhost.localdomain# ip address ip_address netmask
```

b. Specify the default gateway:

```
guest@localhost.localdomain# ip gateway gateway_ip_address
```

c. Specify the hostname:

```
guest@localhost.localdomain# ip host hostname
```

Step 7 View the maintenance partition host configuration.

```
guest@idsm2.localdomain# show ip
IP address      : 10.89.149.74
Subnet Mask     : 255.255.255.128
IP Broadcast    : 10.255.255.255
DNS Name        : idsm2.localdomain
Default Gateway : 10.89.149.126
Nameserver(s)   :
guest@idsm2.localdomain#
```

Step 8 Verify the image installed on the application partition.

```
guest@idsm2.localdomain# show images
Device name             Partition#          Image name
-----------             ----------               ----------
Hard disk(hdd)          1                       6.1(1)
guest@idsm2.localdomain#
```

Step 9 Verify the maintenance partition version (including the BIOS version).

```
guest@idsm2.localdomain# show version
```
Chapter 12 Upgrading, Downgrading, and Installing System Images

Installing System Images

Maintenance image version: 2.1(2)
mp.2-1-2.bin : Thu Nov 18 11:41:36 PST 2004 :
integ@kplus-build-lx.cisco.com

Line Card Number : WS-SVC-IDSM2-XL
Number of Pentium-class Processors : 2
BIOS Vendor: Phoenix Technologies Ltd.
BIOS Version: 4.0-Rel 6.0.9

Total available memory: 2012 MB
Size of compact flash: 61 MB
Size of hard disk: 19077 MB
Daughter Card Info: Falcon rev 3, FW ver 2.0.3.0 (IDS), SRAM 8 MB, SDRAM 256 MB

guest@idsm2.localdomain#

Step 10 Upgrade the application partition.

guest@idsm2.localdomain# upgrade
ftp://jsmith@10.89.146.11//RELEASES/Latest/6.1-1/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1-E1.img

Downloading the image. This may take several minutes...
Password for jsmith@10.89.146.114:
500 'SIZE WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1.bin.gz': command not understood.
ftp://jsmith@10.89.146.11//RELEASES/Latest/6.1-1/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1-E1.img
(unknown size)
/tmp/upgrade.gz [] 28616K
29303086 bytes transferred in 5.34 sec (5359.02k/sec)

Upgrade file
ftp://jsmith@10.89.146.11//RELEASES/Latest/6.1-1/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1-E1.img
is downloaded.
Upgrading will wipe out the contents on the storage media.
Do you want to proceed installing it [y|N]:

Step 11 Enter y to proceed with the upgrade.

Proceeding with upgrade. Please do not interrupt.
If the upgrade is interrupted or fails, boot into maintenance image again and restart upgrade.

Creating IDS application image file...

Initializing the hard disk...
Applying the image, this process may take several minutes...
Performing post install, please wait...
Application image upgrade complete. You can boot the image now.
guest@idsm3.localdomain#

Step 12 Display the upgrade log.

guest@idsm3.localdomain# show log upgrade

Upgrading the line card on Fri Mar 11 21:21:53 UTC 2005
Downloaded upgrade image
ftp://jsmith@10.89.146.114//RELEASES/Latest/6.1-1/WS-SVC-IDSM2-K9-sys-1.1-a-6.1-1-E1.img
Extracted the downloaded file
Proceeding with image upgrade.
Fri Mar 11 21:22:06 2005 : argv1 = 0, argv2 = 0, argv3 = 3, argv4 = 1
Fri Mar 11 21:22:06 2005 : Creating IDS application image file...
Fri Mar 11 21:22:07 2005 : Initializing the hard disk...
Fri Mar 11 21:22:19 2005 : Created ext2 fileSystem on '/dev/hdc1'.
Fri Mar 11 21:22:19 2005 : Applying the image, this process may take several minutes...
Fri Mar 11 21:22:20 2005 : Performing post install, please wait...
Application image upgrade complete. You can boot the image now.
Partition upgraded successfully

guest@idsm2.localdomain#

Step 13 Clear the upgrade log.

guest@idsm2.localdomain# clear log upgrade
Cleared log file successfully

guest@idsm2.localdomain#

Step 14 Display the upgrade log.

guest@idsm2.localdomain# show log upgrade

Step 15 Ping another computer.

guest@idsm2.localdomain# ping 10.89.146.114
PING 10.89.146.114 (10.89.146.114) from 10.89.149.74 : 56(84) bytes of data.
64 bytes from 10.89.146.114: icmp_seq=0 ttl=254 time=381 usec
64 bytes from 10.89.146.114: icmp_seq=1 ttl=254 time=133 usec
64 bytes from 10.89.146.114: icmp_seq=2 ttl=254 time=129 usec
64 bytes from 10.89.146.114: icmp_seq=3 ttl=254 time=141 usec
64 bytes from 10.89.146.114: icmp_seq=4 ttl=254 time=127 usec

--- 10.89.146.114 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.127/0.182/0.381/0.099 ms

guest@idsm2.localdomain#

Step 16 Reset IDSM-2.

Note You cannot specify a partition when issuing the reset command from the maintenance partition. IDSM-2 boots to whichever partition is specified in the boot device variable. If the boot device variable is blank, IDSM-2 boots to the application partition.

guest@idsm2.localdomain# reset
guest@idsm2.localdomain#

Broadcast message from root Fri Mar 11 22:04:53 2005...

The system is going down for system halt NOW!!

[Connection to 127.0.0.111 closed by foreign host]
Upgrading the IDSM-2 Maintenance Partition for Catalyst Software

To upgrade the maintenance partition, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Download the IDSM-2 maintenance partition file (c6svc-mp.2-1-2.bin.gz) to the FTP root directory of an FTP server that is accessible from your IDSM-2.</td>
</tr>
<tr>
<td>2</td>
<td>Session to IDSM-2 from the switch.</td>
</tr>
<tr>
<td>3</td>
<td>Log in to the IDSM-2 CLI.</td>
</tr>
<tr>
<td>4</td>
<td>Enter configuration mode.</td>
</tr>
<tr>
<td>5</td>
<td>Upgrade the maintenance partition.</td>
</tr>
</tbody>
</table>

```
idsm2# configure terminal
idsm2(config)# upgrade ftp://user@ftp_server_IP_address/directory_path/c6svc-mp.2-1-2.bin.gz
```

You are asked whether you want continue.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Enter the FTP server password.</td>
</tr>
<tr>
<td>7</td>
<td>Enter y to continue.</td>
</tr>
</tbody>
</table>

The maintenance partition file is upgraded.

For More Information

- For a list of supported FTP and HTTP/HTTPS servers, see Supported FTP and HTTP/HTTPS Servers, page 12-2.
- For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.

Upgrading the IDSM-2 Maintenance Partition for Cisco IOS Software

To upgrade the maintenance partition, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Download the IDSM-2 maintenance partition file (c6svc-mp.2-1-2.bin.gz) to the FTP root directory of an FTP server that is accessible from your IDSM-2.</td>
</tr>
<tr>
<td>2</td>
<td>Log in to the switch CLI.</td>
</tr>
</tbody>
</table>
Step 3 Session into the application partition CLI.
 router# session slot slot_number processor 1

Step 4 Log in to IDSM-2.

Step 5 Enter configuration mode.
 ids2# configure terminal

Step 6 Upgrade the maintenance partition.
 ids2(config)# upgrade
 ftp://user@ftp_server_IP_address/directory_path/c6svc-mp.2-1-2.bin.gz

Step 7 Specify the FTP server password.
 Password: ********
 You are prompted to continue.
 Continue with upgrade?:

Step 8 Enter yes to continue.

For More Information
- For a list of supported FTP and HTTP/HTTPS servers, see Supported FTP and HTTP/HTTPS Servers, page 12-2.
- For the procedure for locating software on Cisco.com, see Obtaining Cisco IPS Software, page 11-1.

Installing the NME-IPS System Image

Note Use the show configuration | include interface ids-sensor command to determine the NME-IPS slot number.

To install the NME-IPS system image, follow these steps:

Step 1 Download the NME-IPS system image file (IPS-NME-K9-sys-1.1-6.1-1-E2.img), and place it on a TFTP server relative to the tftp root directory.

Note Make sure the network is configured so that NME-IPS can access the TFTP server.

If no TFTP server is available, you can configure the router to operate as a TFTP server:
 router# copy tftp: flash:
 router# configure terminal
 router(config)# tftp-server flash:IPS-NME-K9-sys-1.1-6.1-1-E2.img
 router(config)# exit
 router#

Step 2 Disable the heartbeat reset.
 router# service-module ids-sensor 1/0 heartbeat-reset disable
Chapter 12 Upgrading, Downgrading, and Installing System Images

Installing System Images

Step 3 Session to NME-IPS.

```
router# service-module ids-sensor 1/0 session
```

Step 4 Suspend the session by pressing Shift-Ctrl-6 X.

You should see the `router#` prompt. If you do not see this prompt, try Ctrl-6 X.

Step 5 Reset NME-IPS.

```
router# service-module ids-sensor 1/0 reset
```

You are prompted to confirm the `reset` command.

Step 6 Press Enter to confirm.

Step 7 Press Enter to resume the suspended session.

After displaying its version, the bootloader displays this prompt for 15 seconds:

```
Please enter ‘***’ to change boot configuration:
```

Step 8 Enter *** during the 15-second delay.

The bootloader prompt appears.

Step 9 Press Enter to session back to NME-IPS.

Step 10 Configure the bootloader.

```
ServicesEngine bootloader> config
```

IP Address [10.89.148.195]>
Subnet mask [255.255.255.0]>
TFTP server [10.89.150.74]>
Gateway [10.89.148.254]>
Default boot [disk]>
Number cores [2]>
ServicesEngine boot-loader >

For each prompt, enter a value or accept the previously stored input that appears inside square brackets by pressing Enter.

Caution The pathname for the NME-IPS image is full but relative to the tftp server root directory (typically /tftpboot).

Step 11 Start the bootloader.

```
ServicesEngine bootloader> upgrade
```

Step 12 Follow the bootloader instructions to install the software (choose option 1 and follow the wizard instructions).

Example

```
Booting from flash...please wait.
Please enter ‘***’ to change boot configuration:
12 ***
ServicesEngine boot-loader Version : 1.2.0
```
ServicesEngine boot-loader > config

IP Address [10.89.148.195]>
Subnet mask [255.255.255.0]>
TFTP server [10.89.150.74]>
Gateway [10.89.148.254]>
Default boot [disk]>
Number cores [2]>
ServicesEngine boot-loader > upgrade

Cisco Systems, Inc.
Services engine upgrade utility for NM-IPS

Main menu
1 - Download application image and write to USB Drive
2 - Download bootloader and write to flash
3 - Download minikernel and write to flash
r - Exit and reset card
x - Exit
Selection [123rx]

Download recovery image via tftp and install on USB Drive
TFTP server [10.89.150.74]>
full pathname of recovery image []:test/sensor/6.1-1-E2/IPS-NME-K9-sys-1.1-a-6.1-1-E2.img
Ready to begin
Are you sure [Y/N]
Press <CTRL-C> to abort.

octeth0: Up 1Gbs Full duplex, (port 0)
oceth1: Up 1Gbs Full duplex, (port 1)
Using octeth0 device
TFTP from server 10.89.150.74; our IP address is 10.89.148.195; sending through gateway 10.89.148.254
Filename 'test/sensor/6.1-1-E2/IPS-NME-K9-sys-1.1-a-6.1-1-E2.img'.
Load address: 0x21000000
Loading: octeth0: Down 1Gbs Half duplex, (port 0)

Step 13 Suspend the session by pressing Shift-Ctrl-6 X.
You should see the router# prompt. If you do not see this prompt, try Ctrl-6 X.

Step 14 From the router CLI, clear the session.

router# service-module interface ids-sensor 1/0 session clear
Step 15 Enable the heartbeat reset.

 router# service-module IDS-sensor 1/0 heartbeat-reset enable
Troubleshooting

This appendix contains troubleshooting tips and procedures for sensors and software. It contains the following sections:

- Bug Toolkit, page A-1
- Preventive Maintenance, page A-2
- Disaster Recovery, page A-6
- Recovering the Password, page A-8
- Time and the Sensor, page A-16
- Advantages and Restrictions of Virtualization, page A-19
- Supported MIBs, page A-20
- When to Disable Anomaly Detection, page A-20
- Troubleshooting External Product Interfaces, page A-21
- Troubleshooting the 4200 Series Appliance, page A-23
- Troubleshooting IDM, page A-55
- Troubleshooting IME, page A-58
- Troubleshooting IDSM-2, page A-59
- Troubleshooting AIP-SSM, page A-66
- Troubleshooting AIM-IPS and NME-IPS, page A-71
- Gathering Information, page A-72

Bug Toolkit

For the most complete and up-to-date list of caveats, use the Bug Toolkit to refer to the caveat release note. You can use the Bug Toolkit to search for known bugs based on software version, feature set, and keywords. The resulting matrix shows when each bug was integrated, or fixed if applicable. It also lets you save the results of a search in Bug Groups, and also create persistent Alert Agents that can feed those groups with new defect alerts.

Note

You must be logged in to Cisco.com to access the Bug Toolkit.
If you are a registered Cisco.com user, you can view the Bug Toolkit at this URL:
To become a registered cisco.com user, go to this URL:

Preventive Maintenance

This section describes how to perform preventive maintenance for your sensor, and contains the following topics:

- Understanding Preventive Maintenance, page A-2
- Creating and Using a Backup Configuration File, page A-3
- Backing Up and Restoring the Configuration File Using a Remote Server, page A-3
- Creating the Service Account, page A-5

Understanding Preventive Maintenance

The following actions will help you maintain your sensor:

- Back up a good configuration. If your current configuration becomes unusable, you can replace it with the backup version.
- Save your backup configuration to a remote system.
- Always back up your configuration before you do a manual upgrade. If you have auto upgrades configured, make sure you do periodic backups.
- Create a service account.
 A service account is needed for special debug situations directed by TAC.

⚠️ Caution

You should carefully consider whether you want to create a service account. The service account provides shell access to the system, which makes the system vulnerable. Analyze your situation to decide if you want a service account existing on the system.

For More Information

- For the procedure for backing up a configuration file, see Creating and Using a Backup Configuration File, page A-3.
- For the procedure for using a remote server to copy and restore the configuration file, see Backing Up and Restoring the Configuration File Using a Remote Server, page A-3.
- For more information about the service account, see Creating the Service Account, page A-5.
Creating and Using a Backup Configuration File

To protect your configuration, you can back up the current configuration and then display it to confirm that is the configuration you want to save. If you need to restore this configuration, you can merge the backup configuration file with the current configuration or overwrite the current configuration file with the backup configuration file.

To back up your current configuration, follow these steps:

Step 1 Log in to the CLI using an account with administrator privileges.

Step 2 Save the current configuration.

```
sensor# copy current-config backup-config
```

The current configuration is saved in a backup file.

Step 3 Display the backup configuration file.

```
sensor# more backup-config
```

The backup configuration file is displayed.

Step 4 You can either merge the backup configuration with the current configuration, or you can overwrite the current configuration.

- To merge the backup configuration into the current configuration:

  ```
sensor# copy backup-config current-config
  ```

- To overwrite the current configuration with the backup configuration:

  ```
sensor# copy /erase backup-config current-config
  ```

Back up and Restoring the Configuration File Using a Remote Server

Note

We recommend copying the current configuration file to a remote server before upgrading.

Use the `copy [/erase] source_url destination_url keyword` command to copy the configuration file to a remote server. You can then restore the current configuration from the remote server. You are prompted to back up the current configuration first.

Options

The following options apply:

- `/erase`—Erases the destination file before copying.

 This keyword only applies to the current-config; the backup-config is always overwritten. If this keyword is specified for destination current-config, the source configuration is applied to the system default configuration. If it is not specified for the destination current-config, the source configuration is merged with the current-config.

- `source_url`—The location of the source file to be copied. It can be a URL or keyword.

- `destination_url`—The location of the destination file to be copied. It can be a URL or a keyword.
Preventive Maintenance

Appendix A Troubleshooting

A-4

• **current-config**—The current running configuration. The configuration becomes persistent as the commands are entered.

• **backup-config**—The storage location for the configuration backup.

The exact format of the source and destination URLs varies according to the file. Here are the valid types:

• *ftp:*—Source or destination URL for an FTP network server. The syntax for this prefix is:

 ftp://[username@]location/relativeDirectory/filename

 ftp://[username@]location//absoluteDirectory/filename

• *scp:*—Source or destination URL for the SCP network server. The syntax for this prefix is:

 scp://[username@]location/relativeDirectory/filename

 scp://[username@]location//absoluteDirectory/filename

 Note

 If you use FTP or SCP protocol, you are prompted for a password. If you use SCP protocol, you must also add the remote host to the SSH known hosts list.

• *http:*—Source URL for the web server. The syntax for this prefix is:

 http://[username@]location/directory/filename

• *https:*—Source URL for the web server. The syntax for this prefix is:

 https://[username@]location/directory/filename

 Note

 HTTP and HTTPS prompt for a password if a username is required to access the website. If you use HTTPS protocol, the remote host must be a TLS trusted host.

Caution

Copying a configuration file from another sensor may result in errors if the sensing interfaces and virtual sensors are not configured the same.

Backing Up the Current Configuration to a Remote Server

To back up your current configuration to a remote server, follow these steps:

Step 1

Log in to the CLI using an account with administrator privileges.

Step 2

Back up the current configuration to the remote server.

```
sensor# copy current-config scp://user@192.0.2.0//configuration/cfg current-config
Password: ********
Warning: Copying over the current configuration may leave the box in an unstable state. Would you like to copy current-config to backup-config before proceeding? [yes]:
```

Step 3

Enter `yes` to copy the current configuration to a backup configuration.

```
cfg            100% |************************************************| 36124       00:00
```
Restoring the Current Configuration From a Backup File

To restore your current configuration from a backup file, follow these steps:

Step 1 Log in to the CLI using an account with administrator privileges.

Step 2 Back up the current configuration to the remote server.

```
sensor# copy scp://user@192.0.2.0//configuration/cfg current-config
```

Password: ********

Warning: Copying over the current configuration may leave the box in an unstable state.

Would you like to copy current-config to backup-config before proceeding? [yes]:

Step 3 Enter `yes` to copy the current configuration to a backup configuration.

```
cfg 100% |************************************************| 36124 00:00
```

Warning: Replacing existing network-settings may leave the box in an unstable state.

Would you like to replace existing network settings (host-ipaddress/netmask/gateway/access-list) on sensor before proceeding? [no]:

Step 4 Enter `no` to retain the currently configured hostname, IP address, subnet mask, management interface, and access list. We recommend you retain this information to preserve access to your sensor after the rest of the configuration has been restored.

For More Information

For a list of supported HTTP/HTTPS servers, see Supported FTP and HTTP/HTTPS Servers, page 12-2.

Creating the Service Account

You can create a service account for TAC to use during troubleshooting. Although more than one user can have access to the sensor, only one user can have service privileges on a sensor. The service account is for support purposes only.

Caution

Do not make modifications to the sensor through the service account except under the direction of TAC. If you use the service account to configure the sensor, your configuration is not supported by TAC. Adding services to the operating system through the service account affects proper performance and functioning of the other IPS services. TAC does not support a sensor on which additional services have been added.

Note

The root user password is synchronized to the service account password when the service account is created. To gain root access you must log in with the service account and switch to user root with the `su - root` command.

Caution

You should carefully consider whether you want to create a service account. The service account provides shell access to the system, which makes the system vulnerable. However, you can use the service account to create a password if the administrator password is lost. Analyze your situation to decide if you want a service account existing on the system.
For IPS 5.0 and later, you can no longer remove the cisco account. You can disable it using the no password cisco command, but you cannot remove it. To use the no password cisco command, there must be another administrator account on the sensor. Removing the cisco account through the service account is not supported. If you remove the cisco account through the service account, the sensor most likely will not boot up, so to recover the sensor you must reinstall the sensor system image.

To create the service account, follow these steps:

Step 1
Log in to the CLI using an account with administrator privileges.

Step 2
Enter configuration mode.

   ```
sensor# configure terminal
   ```

Step 3
Specify the parameters for the service account.

   ```
sensor(config)# user username privilege service
   ```

A valid username contains 1 to 64 alphanumeric characters. You can also use an underscore (_) or dash (-) in the username.

Step 4
Specify a password when prompted.

If a service account already exists for this sensor, the following error is displayed and no service account is created:

   ```
Error: Only one service account may exist
   ```

Step 5
Exit configuration mode.

   ```
sensor(config)# exit
   ```

When you use the service account to log in to the CLI, you receive the following warning:

   ```
****************************************************************************************
************************ WARNING *******************************************************
UNAUTHORIZED ACCESS TO THIS NETWORK DEVICE IS PROHIBITED. This account is intended to be used for support and troubleshooting purposes only. Unauthorized modifications are not supported and will require this device to be reimaged to guarantee proper operation.
****************************************************************************************

---

**Disaster Recovery**

This section provides recommendations and steps to take if you need to recover your sensor after a disaster.

Follow these recommendations so that you are ready in case of a disaster:

- If you are using the CLI, IDM, or IME for configuration, copy the current configuration from the sensor to an FTP or SCP server any time a change has been made.

- You should note the specific software version for that configuration. You can apply the copied configuration only to a sensor of the same version.

- You also need the list of user IDs that have been used on that sensor. The list of user IDs and passwords are not saved in the configuration.
When a disaster happens and you need to recover the sensor, try the following:

1. Reimage the sensor.
2. Log in to the sensor with the default user ID and password—\texttt{cisco}.

\begin{itemize}
  \item \textbf{Note} You are prompted to change the \texttt{cisco} password.
\end{itemize}

3. Initialize the sensor.
4. Upgrade the sensor to the IPS software version it had when the configuration was last saved and copied.

\begin{itemize}
  \item \textbf{Warning} Trying to copy the saved configuration without getting the sensor back to the same IPS software version it had before the disaster can cause configuration errors.
\end{itemize}

5. Copy the last saved configuration to the sensor.
6. Update clients to use the new key and certificate of the sensor.

   Reimaging changes the sensor SSH keys and HTTPS certificate, so you must add the hosts back to the SSN known hosts list.

7. Create previous users.

\begin{itemize}
  \item \textbf{For More Information} For the procedure for backing up a configuration file, see \textit{Creating and Using a Backup Configuration File}, page A-3.
  \item For the procedure for obtaining a list of the current users on the sensor, for the CLI refer to \textit{Showing User Status}, for IDM refer to \textit{Configuring Users}, and for IME refer to \textit{Configuring Users}.
  \item For the procedures for reimaging a sensor, see Chapter 12, \textit{“Upgrading, Downgrading, and Installing System Images.”}
  \item For the procedure for using the \texttt{setup} command to initialize the sensor, see Chapter 9, \textit{“Initializing the Sensor.”}
  \item For more information on obtaining IPS software and how to install it, see \textit{Obtaining Cisco IPS Software}, page 11-1.
  \item For the procedure for using a remote server to copy and restore the a configuration file, see \textit{Backing Up and Restoring the Configuration File Using a Remote Server}, page A-3.
  \item For the procedure for adding hosts to the SSH known hosts list, for the CLI refer to \textit{Adding Hosts to the SSH Known Hosts List}, for IDM refer to \textit{Defining Known Host Keys}, and for IME refer to \textit{Defining Known Host Keys}.
  \item For the procedure for adding users, for the CLI refer to \textit{Adding and Removing Users}, for IDM refer to \textit{Configuring Users}, and for IME refer to \textit{Configuring Users}.
\end{itemize}
Recovering the Password

For most IPS platforms, you can now recover the password on the sensor rather than using the service account or reimaging the sensor. This section describes how to recover the password for the various IPS platforms. It contains the following topics:

- Understanding Password Recovery, page A-8
- Password Recovery for Appliances, page A-8
- Password Recovery for AIM-IPS, page A-10
- Password Recovery for AIP-SSM, page A-11
- Password Recovery for IDSM-2, page A-13
- Password Recovery for NME-IPS, page A-14
- Disabling Password Recovery, page A-14
- Verifying the State of Password Recovery, page A-15
- Troubleshooting Password Recovery, page A-16

Understanding Password Recovery

Password recovery implementations vary according to IPS platform requirements. Password recovery is implemented only for the cisco administrative account and is enabled by default. The IPS administrator can then recover user passwords for other accounts using the CLI. The cisco user password reverts to cisco and must be changed after the next login.

Note

Administrators may need to disable the password recovery feature for security reasons.

Table A-1 lists the password recovery methods according to platform.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Description</th>
<th>Recovery Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200 series sensors</td>
<td>Standalone IPS appliances</td>
<td>GRUB prompt or ROMMON</td>
</tr>
<tr>
<td>AIM-IPS NME-IPS</td>
<td>Router IPS modules</td>
<td>Bootloader command</td>
</tr>
<tr>
<td>AIP-SSM</td>
<td>ASA 5500 series adaptive security appliance modules</td>
<td>ASA CLI command</td>
</tr>
<tr>
<td>IDSM-2</td>
<td>Switch IPS module</td>
<td>Password recovery image file</td>
</tr>
</tbody>
</table>

Password Recovery for Appliances

This section describes the two ways to recover the password for appliances. It contains the following topics:

- Using the GRUB Menu, page A-9
Using the GRUB Menu

For 4200 series appliances, the password recovery is found in the GRUB menu, which appears during bootup. When the GRUB menu appears, press any key to pause the boot process.

**Note**
You must have a terminal server or direct serial connection to the appliance to use the GRUB menu to recover the password.

To recover the password on appliances, follow these steps:

**Step 1**
Reboot the appliance.

The following menu appears:

```
GNU GRUB version 0.94 (632K lower / 523264K upper memory)

0: Cisco IPS
1: Cisco IPS Recovery
2: Cisco IPS Clear Password (cisco)

```

Use the ^ and v keys to select which entry is highlighted.
Press enter to boot the selected OS, 'e' to edit the Commands before booting, or 'c' for a command-line.

Highlighted entry is 0:

**Step 2**
Press any key to pause the boot process.

**Step 3**
Choose 2: Cisco IPS Clear Password (cisco).

The password is reset to **cisco**. You can change the password the next time you log in to the CLI.

Using ROMMON

For IPS-4240 and IPS-4255 you can use the ROMMON to recover the password. To access the ROMMON CLI, reboot the sensor from a terminal server or direct connection and interrupt the boot process.

To recover the password using the ROMMON CLI, follow these steps:

**Step 1**
Reboot the appliance.

**Step 2**
To interrupt the boot process, press **ESC** or **Control-R** (terminal server) or send a **BREAK** command (direct connection).

The boot code either pauses for 10 seconds or displays something similar to one of the following:

- Evaluating boot options
- Use BREAK or ESC to interrupt boot

**Step 3**
Enter the following commands to reset the password:

```
confreg 0x7
```
Password Recovery for AIM-IPS

To recover the password for AIM-IPS, use the clear password command. You must have console access to AIM-IPS and administrative access to the router.

To recover the password for AIM-IPS, follow these steps:

**Step 1** Log in to the router.

**Step 2** Enter privileged EXEC mode on the router.

```
router> enable
```

**Step 3** Confirm the module slot number in your router.

```
router# show run | include ids-sensor
interface IDS-Sensor0/0
router#
```

**Step 4** Session in to AIM-IPS.

```
router# service-module ids-sensor slot/port session
```

Example

```
router# service-module ids-sensor 0/0 session
```

**Step 5** Press Control-shift-6 followed by x to navigate to the router CLI.

**Step 6** Reset AIM-IPS from the router console.

```
router# service-module ids-sensor 0/0 reset
```

**Step 7** Press Enter to return to the router console.

**Step 8** When prompted for boot options, enter *** quickly. You are now in the bootloader.
**Step 9** Clear the password.

```
ServicesEngine boot-loader# clear password
```

AIM-IPS reboots. The password is reset to `cisco`. Log in to the CLI with username `cisco` and password `cisco`. You can then change the password.

---

**Password Recovery for AIP-SSM**

You can reset the password to the default (`cisco`) for the AIP-SSM using the CLI or the ASDM. Resetting the password causes it to reboot. IPS services are not available during a reboot.

**Note**

To reset the password, you must have ASA 7.2.2 or later.

Use the `hw-module module slot_number password-reset` command to reset the password to the default `cisco`. If the module in the specified slot has an IPS version that does not support password recovery, the following error message is displayed:

```
ERROR: the module in slot <n> does not support password recovery.
```

**Resetting the Password Using the CLI**

To reset the password on the AIP-SSM, follow these steps:

**Step 1** Log into the adaptive security appliance and enter the following command to verify the module slot number:

```
asa# show module
```

<table>
<thead>
<tr>
<th>Mod</th>
<th>Card Type</th>
<th>Model</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ASA 5510 Adaptive Security Appliance</td>
<td>ASA5510</td>
<td>JMX1135L097</td>
</tr>
<tr>
<td>1</td>
<td>ASA 5500 Series Security Services Module-40</td>
<td>ASA-SSM-40</td>
<td>JAF1214AMRL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>MAC Address Range</th>
<th>Hw Version</th>
<th>Fw Version</th>
<th>Sw Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>001b.d5e8.e0c8 to 001b.d5e8.e0cc</td>
<td>2.0</td>
<td>1.0(11)2</td>
<td>8.4(3)</td>
</tr>
<tr>
<td>1</td>
<td>001e.f737.205f to 001e.f737.205f</td>
<td>1.0</td>
<td>1.0(14)5</td>
<td>7.0(7)E4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>SSM Application Name</th>
<th>Status</th>
<th>SSM Application Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IPS</td>
<td>Up</td>
<td>7.0(7)E4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>Status</th>
<th>Data Plane Status</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Up</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Step 2** Reset the password for module 1.

```
asa# hw-module module 1 password-reset
Reset the password on module in slot 1? [confirm]
```

**Step 3** Press Enter to confirm.

Password-Reset issued for slot 1.

**Step 4** Verify the status of the module. Once the status reads Up, you can session to the AIP-SSM.
Recovering the Password

Step 5  Session to the AIP-SSM.

asa# session 1
Opening command session with slot 1.
Connected to slot 1. Escape character sequence is 'CTRL-^X'.

Step 6  Enter the default username (cisco) and password (cisco) at the login prompt.

login: cisco
Password: cisco
You are required to change your password immediately (password aged)
Changing password for cisco.
(current) password: cisco

Step 7  Enter your new password twice.

New password: new password
Retype new password: new password

***NOTICE***
This product contains cryptographic features and is subject to United States and local
country laws governing import, export, transfer and use. Delivery of Cisco cryptographic
products does not imply third-party authority to import, export, distribute or use
encryption. Importers, exporters, distributors and users are responsible for compliance
with U.S. and local country laws. By using this product you agree to comply with
applicable laws and regulations. If you are unable to comply with U.S. and local laws,
return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at:

If you require further assistance please contact us by sending email to export@cisco.com.

***LICENSE NOTICE***
There is no license key installed on this IPS platform. The system will continue to
operate with the currently installed signature set. A valid license must be obtained in
order to apply signature updates. Please go to http://www.cisco.com/go/license to obtain a
new license or install a license.
aip_ssm#
Using the ASDM

To reset the password in the ASDM, follow these steps:

**Step 1**
From the ASDM menu bar, choose Tools > IPS Password Reset.

*Note* This option does not appear in the menu if there is no IPS present.

**Step 2**
In the IPS Password Reset confirmation dialog box, click OK to reset the password to the default (cisco).

A dialog box displays the success or failure of the password reset. If the reset fails, make sure you have the correct ASA and IPS software versions.

**Step 3**
Click Close to close the dialog box. The sensor reboots.

Password Recovery for IDSM-2

To recover the password for the IDSM-2, you must install a special password recovery image file. This installation only resets the password, all other configuration remains intact. The password recovery image is version-dependent and can be found on the Cisco Download Software site. For IPS 6.x, download WS-SVC-IDSM2-K9-a-6.0-password-recovery.bin.gz. For IPS 7.x, download WS-SVC-IDSM2-K9-a-7.0-password-recovery.bin.gz.

FTP is the only supported protocol for image installations, so make sure you put the password recovery image file on an FTP server that is accessible to the switch. You must have administrative access to the Cisco 6500 series switch to recover the password on the IDSM-2.

During the password recovery image installation, the following message appears:

Upgrading will wipe out the contents on the hard disk.
Do you want to proceed installing it [y|n]:

This message is in error. Installing the password recovery image does not remove any configuration, it only resets the login account.

Once you have downloaded the password recovery image file, follow the instructions to install the system image file but substitute the password recovery image file for the system image file. The IDSM-2 should reboot in to the primary partition after installing the recovery image file. If it does not, enter the following command from the switch:

```
hw-module module module_number reset hdd:1
```

*Note* The password is reset to cisco. Log in to the CLI with username cisco and password cisco. You can then change the password.

For More Information

- For the procedure for installing system images on the IDSM-2, see Installing the IDSM-2 System Image, page 12-26.
- For more information on downloading Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.
Password Recovery for NME-IPS

To recover the password for NME-IPS, use the `clear password` command. You must have console access to NME-IPS and administrative access to the router. To recover the password for NME-IPS, follow these steps:

**Step 1** Log in to the router.

**Step 2** Enter privileged EXEC mode on the router.

```
router> enable
```

**Step 3** Confirm the module slot number in your router.

```
router# show run | include ids-sensor
interface IDS-Sensor1/0
router#
```

**Step 4** Session in to NME-IPS.

```
router# service-module ids-sensor slot/port session
```

Example

```
router# service-module ids-sensor 1/0 session
```

**Step 5** Press Control-shift-6 followed by x to navigate to the router CLI.

**Step 6** Reset NME-IPS from the router console.

```
router# service-module ids-sensor 1/0 reset
```

**Step 7** Press Enter to return to the router console.

**Step 8** When prompted for boot options, enter *** quickly. You are now in the bootloader.

**Step 9** Clear the password.

```
ServicesEngine boot-loader# clear password
```

NME-IPS reboots. The password is reset to cisco. Log in to the CLI with username cisco and password cisco. You can then change the password.

Disabling Password Recovery

**Caution**

If you try to recover the password on a sensor on which password recovery is disabled, the process proceeds with no errors or warnings; however, the password is not reset. If you cannot log in to the sensor because you have forgotten the password, and password recovery is set to disabled, you must reimage your sensor.
Password recovery is enabled by default. You can disable password recovery through the CLI, IDM, or IME.

**Disabling Password Recovery Using the CLI**

To disable password recovery in the CLI, follow these steps:

**Step 1** Log in to the CLI using an account with administrator privileges.

**Step 2** Enter global configuration mode.

```plaintext
sensor# configure terminal
```

**Step 3** Enter host mode.

```plaintext
sensor(config)# service host
```

**Step 4** Disable password recovery.

```plaintext
sensor(config-hos)# password-recovery disallowed
```

**Disabling Password Recovery Using IDM or IME**

To disable password recovery in IDM or IME, follow these steps:

**Step 1** Log in to IDM or IME using an account with administrator privileges.

**Step 2** Choose Configuration > Sensor Setup > Network.

**Step 3** To disable password recovery, uncheck the Allow Password Recovery check box.

**Verifying the State of Password Recovery**

Use the `show settings | include password` command to verify whether password recovery is enabled. To verify whether password recovery is enabled, follow these steps:

**Step 1** Log in to the CLI.

**Step 2** Enter service host submode.

```plaintext
sensor# configure terminal
sensor (config)# service host
sensor (config-hos)#
```

**Step 3** Verify the state of password recovery by using the `include` keyword to show settings in a filtered output.

```plaintext
sensor(config-hos)# show settings | include password
 password-recovery: allowed <defaulted>
sensor(config-hos)#
```
Troubleshooting Password Recovery

When you troubleshoot password recovery, pay attention to the following:

- You cannot determine whether password recovery has been disabled in the sensor configuration from the ROMMON prompt, GRUB menu, switch CLI, or router CLI. If you attempt password recovery, it always appears to succeed. If it has been disabled, the password is not reset to cisco. The only option is to reimage the sensor.
- You can disable password recovery in the host configuration. For the platforms that use external mechanisms, such as the AIM-IPS and NME-IPS bootloader, ROMMON, and the maintenance partition for IDSM-2, although you can run commands to clear the password, if password recovery is disabled in the IPS, the IPS detects that password recovery is not allowed and rejects the external request.
- To check the state of password recovery, use the show settings | include password command.
- When performing password recovery on IDSM-2, you see the following message: Upgrading will wipe out the contents on the storage media. You can ignore this message. Only the password is reset when you use the specified password recovery image.

Time and the Sensor

This section describes how to maintain accurate time on the sensor, and contains the following topics:

- Time Sources and the Sensor, page A-16
- Synchronizing IPS Module Clocks with Parent Device Clocks, page A-18
- Verifying the Sensor is Synchronized with the NTP Server, page A-18
- Correcting Time on the Sensor, page A-19

Time Sources and the Sensor

The sensor requires a reliable time source. All events (alerts) must have the correct UTC and local time stamp, otherwise, you cannot correctly analyze the logs after an attack. When you initialize the sensor, you set up the time zones and summertime settings.

Note: We recommend that you use an NTP server. You can use authenticated or unauthenticated NTP. For authenticated NTP, you must obtain the NTP server IP address, NTP server key ID, and the key value from the NTP server. You can set up NTP during initialization or you can configure NTP through the CLI, IDM, IME, or ASDM.

Here is a summary of ways to set the time on sensors:

- For appliances
  - Use the clock set command to set the time. This is the default.
  - Use NTP—You can configure the appliance to get its time from an NTP time synchronization source.
For IDSM-2

- The IDSM-2 can automatically synchronize its clock with the switch time. This is the default. The UTC time is synchronized between the switch and the IDSM-2. The time zone and summertime settings are not synchronized between the switch and the IDSM-2.

Note
Be sure to set the time zone and summertime settings on both the switch and IDSM-2 to ensure that the UTC time settings are correct. The local time of IDSM-2 could be incorrect if the time zone and/or summertime settings do not match between IDSM-2 and the switch.

- Use NTP—You can configure IDSM-2 to get its time from an NTP time synchronization source.

For AIM-IPS and NME-IPS

- AIM-IPS and NME-IPS can automatically synchronize their clock with the clock in the router chassis in which they are installed (parent router). This is the default. The UTC time is synchronized between the parent router and AIM-IPS and NME-IPS. The time zone and summertime settings are not synchronized between the parent router and AIM-IPS and NME-IPS.

Note
Be sure to set the time zone and summertime settings on both the parent router and AIM-IPS and NME-IPS to ensure that the UTC time settings are correct. The local time of AIM-IPS and NME-IPS could be incorrect if the time zone and/or summertime settings do not match between AIM-IPS and NME-IPS and the router.

- Use NTP—You can configure AIM-IPS and NME-IPS to get their time from an NTP time synchronization source, such as a Cisco router, other than the parent router.

For AIP-SSM

- AIP-SSM can automatically synchronize its clock with the clock in the adaptive security appliance in which it is installed. This is the default. The UTC time is synchronized between the adaptive security appliance and AIP-SSM. The time zone and summertime settings are not synchronized between the adaptive security appliance and AIP-SSM.

Note
Be sure to set the time zone and summertime settings on both the adaptive security appliance and AIP-SSM to ensure that the UTC time settings are correct. The local time of AIP-SSM could be incorrect if the time zone and/or summertime settings do not match between AIP-SSM and the adaptive security appliance.

- Use NTP—You can configure AIP-SSM to get its time from an NTP time synchronization source, such as a Cisco router other than the parent router.

For More Information

For the procedure for configuring NTP, for the CLI refer to Configuring NTP, for IDM refer to Configuring NTP, and for IME refer to Configuring NTP.
Synchronizing IPS Module Clocks with Parent Device Clocks

All IPS modules (AIM-IPS, AIP-SSM, IDSM-2, and NME-IPS) synchronize their system clocks to the parent chassis clock (switch, router, or security appliance) each time the module boots up and any time the parent chassis clock is set. The module clock and parent chassis clock tend to drift apart over time. The difference can be as much as several seconds per day. To avoid this problem, make sure that both the module clock and the parent clock are synchronized to an external NTP server. If only the module clock or only the parent chassis clock is synchronized to an NTP server, the time drift occurs.

Verifying the Sensor is Synchronized with the NTP Server

In IPS 6.1, you cannot apply an incorrect NTP configuration, such as an invalid NTP key value or ID, to the sensor. If you try to apply an incorrect configuration, you receive an error message. To verify the NTP configuration, use the `show statistics host` command to gather sensor statistics. The NTP statistics section provides feedback on sensor synchronization with the NTP server.

To verify the NTP configuration, follow these steps:

**Step 1** Log in to the sensor.

**Step 2** Generate the host statistics.

```
sensor# show statistics host

NTP Statistics
remote refid st when poll reach delay offset jitter
11.22.33.44 CHU_AUDIO(1) 8 u 36 64 1 0.536 0.069 0.001
LOCAL(0) 73.78.73.84 5 l 35 64 1 0.000 0.000 0.001

ind assID status conf reach auth condition last_event cnt
1 10372 f624 yes yes ok sys.peer reachable 2
2 10373 9024 yes yes none reject reachable 2
status = Synchronized
```

**Step 3** Generate the hosts statistics again after a few minutes.

```
sensor# show statistics host

NTP Statistics
remote refid st when poll reach delay offset jitter
*11.22.33.44 CHU_AUDIO(1) 8 u 22 64 377 0.518 37.975 33.465
LOCAL(0) 73.78.73.84 5 l 22 64 377 0.000 0.000 0.001

ind assID status conf reach auth condition last_event cnt
1 10372 f624 yes yes ok sys.peer reachable 2
2 10373 9024 yes yes none reject reachable 2
status = Synchronized
```

**Step 4** If the status continues to read Not Synchronized, check with the NTP server administrator to make sure the NTP server is configured correctly.
Correcting Time on the Sensor

If you set the time incorrectly, your stored events will have the incorrect time because they are stamped with the time the event was created.

The Event Store time stamp is always based on UTC time. If during the original sensor setup, you set the time incorrectly by specifying 8:00 p.m. rather than 8:00 a.m., when you do correct the error, the corrected time will be set backwards. New events might have times older than old events.

For example, if during the initial setup, you configure the sensor as central time with daylight saving time enabled and the local time is 8:04 p.m., the time is displayed as 20:04:37 CDT and has an offset from UTC of -5 hours (01:04:37 UTC, the next day). A week later at 9:00 a.m., you discover the error: the clock shows 21:00:23 CDT. You then change the time to 9:00 a.m. and now the clock shows 09:01:33 CDT. Because the offset from UTC has not changed, it requires that the UTC time now be 14:01:33 UTC, which creates the time stamp problem.

To ensure the integrity of the time stamp on the event records, you must clear the event archive of the older events by using the `clear events` command.

Note

You cannot remove individual events.

For More Information

For the procedure for clearing events, see Clearing Events, page A-94.

Advantages and Restrictions of Virtualization

To avoid configuration problems on your sensor, make sure you understand the advantages and restrictions of virtualization on your sensor.

Virtualization has the following advantages:

- You can apply different configurations to different sets of traffic.
- You can monitor two networks with overlapping IP spaces with one sensor.
- You can monitor both inside and outside of a firewall or NAT device.

Virtualization has the following restrictions:

- You must assign both sides of asymmetric traffic to the same virtual sensor.
- Using VACL capture or SPAN (promiscuous monitoring) is inconsistent with regard to VLAN tagging, which causes problems with VLAN groups.
  - When using Cisco IOS software, a VACL capture port or a SPAN target does not always receive tagged packets even if it is configured for trunking.
  - When using the MSFC, fast path switching of learned routes changes the behavior of VACL captures and SPAN.
- Persistent store is limited.

Virtualization has the following traffic capture requirements:

- The virtual sensor must receive traffic that has 802.1q headers (other than traffic on the native VLAN of the capture port).
- The sensor must see both directions of traffic in the same VLAN group in the same virtual sensor for any given sensor.
The following sensors support virtualization:

- IPS-4240
- IPS-4255
- IPS-4260
- IPS 4270-20
- AIP-SSM

IDSM-2 supports virtualization with the exception of VLAN groups on inline interface pairs. AIM-IPS and NME-IPS do not support virtualization.

### Supported MIBs

To avoid problems with configuring SNMP, be aware of the MIBs that are supported on the sensor.

The following private MIBs are supported on the sensor:

- CISCO-CIDS-MIB
- CISCO-ENHANCED-MEMPOOL-MIB
- CISCO-ENTITY-ALARM-MIB

You can obtain these private Cisco MIBs under the heading SNMP v2 MIBs at this URL:


**Note**  
MIB II is available on the sensor, but we do not support it. We know that some elements are not correct (for example, the packet counts from the IF MIB on the sensing interfaces). While you can use elements from MIB II, we do not guarantee that they all provide correct information. We fully support the other listed MIBs and their output is correct.

**Note**  
CISCO-PROCESS-MIB is available on the sensor, but we do not support it. We know that some elements are not available. While you can use elements from CISCO-PROCESS-MIB, we do not guarantee that they all provide correct information. We fully support the other listed MIBs and their output is correct.

### When to Disable Anomaly Detection

If you have your sensor configured to see only one direction of traffic, you should disable anomaly detection. Otherwise, you will receive many alerts, because anomaly detection sees asymmetric traffic as having incomplete connections, that is, like worm scanners, and fires alerts.

To disable anomaly detection, follow these steps:

**Step 1**  
Log in to the CLI using an account with administrator privileges.

**Step 2**  
Enter analysis engine submode:

```
sensor# configure terminal
sensor(config)# service analysis-engine
sensor(config-ana)#
```
Step 3  Enter the virtual sensor name that contains the anomaly detection policy you want to disable:

```
sensor(config-ana)# virtual-sensor vs0
sensor(config-ana-vir)#
```

Step 4  Disable anomaly detection operational mode:

```
sensor(config-ana-vir)# anomaly-detection
sensor(config-ana-vir-ano)# operational-mode inactive
sensor(config-ana-vir-ano)#
```

Step 5  Exit analysis engine submode:

```
sensor(config-ana-vir-ano)# exit
sensor(config-ana-vir)# exit
sensor(config-ana-)# exit
```

Apply Changes:?[yes]:

Step 6  Press Enter to apply your changes or enter no to discard them.

---

**For More Information**

For more information about Worms, refer to Worms.

---

**Troubleshooting External Product Interfaces**

This section lists issues that can occur with external product interfaces and provides troubleshooting tips. It contains the following topics:

- External Product Interfaces Issues, page A-21
- External Product Interfaces Troubleshooting Tips, page A-22

---

**External Product Interfaces Issues**

When the external product interface receives host posture and quarantine events, the following issues can arise:

- The sensor can store only a certain number of host records.
  - If the number of records exceeds 10,000, subsequent records are dropped.
  - If the 10,000 limit is reached and then it drops to below 9900, new records are no longer dropped.

- Hosts can change an IP address or appear to use another host IP address, for example, because of DHCP lease expiration or movement in a wireless network.
  In the case of an IP address conflict, the sensor presumes the most recent host posture event to be the most accurate.

- A network can include overlapping IP address ranges in different VLANs, but host postures do not include VLAN ID information. You can configure the sensor to ignore specified address ranges.

- A host can be unreachable from the CSA MC because it is behind a firewall. You can exclude unreachable hosts.

- The CSA MC event server allows up to ten open subscriptions by default. You can change this value. You must have an Administrative account and password to open subscriptions.
Troubleshooting External Product Interfaces

- CSA data is not virtualized; it is treated globally by the sensor.
- Host posture OS and IP addresses are integrated into POSFP storage. You can view them as imported OS profiles.
- You cannot see the quarantined hosts.
- The sensor must recognize each CSA MC host X.509 certificate. You must add them as a trusted host.
- You can configure a maximum of two external product devices.

For More Information
- For more information on external product interfaces, refer to Configuring External Product Interfaces.
- For more information on working with OS maps, for the CLI refer to Adding, Editing, Deleting, and Moving Configured OS Maps, for IDM refer to Adding, Editing, Deleting, and Moving Configured OS Maps, and for IME refer to Adding, Editing, Deleting, and Moving Configured OS Maps.
- For more information on working with OS identifications, for the CLI refer to Displaying and Clearing OS Identifications, for IDM refer to OS Identifications, and for IME refer to OS Identifications.
- For the procedure for adding trusted hosts, for the CLI refer to Adding TLS Trusted Hosts, for IDM refer to Adding Trusted Hosts, and for IME refer to Adding Trusted Hosts.

External Product Interfaces Troubleshooting Tips

To troubleshoot external product interfaces, check the following:
- Make sure the interface is active by checking the output from the `show statistics external-product-interface` command in the CLI, or choose Monitoring > Sensor Monitoring > Support Information > Statistics in IDM and check the Interface state line in the response, or choose Configuration > sensor_name > Sensor Monitoring > Support Information > Statistics in IME, and check the Interface state line in the response.
- Make sure you have added the CSA MC IP address to the trusted hosts. If you forgot to add it, add it, wait a few minutes and then check again.
- Confirm subscription login information by opening and closing a subscription on CSA MC using the browser.
- Check Event Store for CSA MC subscription errors.

For More Information
- For the procedure for adding trusted hosts:
  - For the CLI, refer to Adding TLS Trusted Hosts
  - For IDM, refer to Adding Trusted Hosts
  - For IME, refer to Adding Trusted Hosts
- For the procedure for displaying events, see Displaying Events, page A-91.
Troubleshooting the 4200 Series Appliance

Before troubleshooting the appliance, check the Caveats section of the Readme for the software version you have installed on your sensor to see if you are dealing with a known issue.

This section contains information to troubleshoot the 4200 series appliance. It contains the following topics:

- Hardware Bypass Link Status Changes and Drops, page A-23
- Troubleshooting Loose Connections, page A-24
- Analysis Engine is Busy, page A-24
- Connecting IPS-4240 to a Cisco 7200 Series Router, page A-25
- Communication Problems, page A-25
- SensorApp and Alerting, page A-29
- Blocking, page A-37
- Logging, page A-46
- TCP Reset Not Occurring for a Signature, page A-51
- Software Upgrades, page A-53

Hardware Bypass Link Status Changes and Drops

Hardware bypass is available on the 4GE bypass interface card, which is supported on IPS 4260 and IPS 4270-20.

Properly configuring and deploying hardware bypass protects against complete link failure if the IPS appliance experiences a power loss, critical hardware failure, or is rebooted; however, a link status change still occurs when hardware bypass engages (and again when it disengages).

During engagement, the interface card disconnects both physical connections from itself and bridges them together. The interfaces of the connected devices can then negotiate the link and traffic forwarding can resume. Once the appliance is back online, hardware bypass disengages and the interface card interrupts the bypass and reconnects the links back to itself. The interface card then negotiates both links and traffic resumes.

There is no built-in way to completely avoid link status changes and drops. However, you can greatly reduce the interruption time (in some cases to sub-second times) by doing the following:

- Make sure you use CAT 5e/6-certified cabling for all connections.
- Make sure the interfaces of the connected devices are configured to match the interfaces of the appliance for speed/duplex negotiation (auto/auto).
- Enable portfast on connected switchports to reduce spanning-tree forwarding delays.

For More Information

- For more information about hardware bypass on IPS-4260, see Hardware Bypass, page 3-4.
- For more information about hardware bypass on IPS 4270-20, see Hardware Bypass, page 4-5.
Troubleshooting Loose Connections

Perform the following actions to troubleshoot loose connections on a sensor:

- Make sure all power cords are securely connected.
- Make sure all cables are properly aligned and securely connected for all external and internal components.
- Remove and check all data and power cables for damage. Make sure no cables have bent pins or damaged connectors.
- Make sure each device is properly seated.
- If a device has latches, make sure they are completely closed and locked.
- Check any interlock or interconnect indicators that indicate a component is not connected properly.
- If problems continue, remove and reinstall each device, checking the connectors and sockets for bent pins or other damage.

Analysis Engine is Busy

After you reimage a sensor, Analysis Engine is busy rebuilding Regex tables and does not respond to new configurations. You can check whether Analysis Engine is busy by using the `show statistics virtual-sensor` command. You receive the following error message if Analysis Engine is busy:

```
sensor# show statistics virtual-sensor
Error: getVirtualSensorStatistics : Analysis Engine is busy rebuilding regex tables. This
may take a while.
sensor#
```

When Analysis Engine is busy rebuilding Regex tables, you receive an error message if you try to update a configuration, for example, enabling or retiring a signature:

```
sensor# configure terminal
sensor(config)# service sig sig0
sensor(config-sig)# sig 2000 0
sensor(config-sig-sig)# status enabled
sensor(config-sig-sig)# status
sensor(config-sig-sig-sta)# enabled true
sensor(config-sig-sig-sta)# retired false
sensor(config-sig-sig-sta)# exit
sensor(config-sig-sig)# exit
sensor(config-sig)# exit
Apply Changes?[yes]:
Error: editConfigDeltaSignatureDefinition : Analysis Engine is busy rebuilding regex
tables. This may take a while.
The configuration changes failed validation, no changes were applied.
Would you like to return to edit mode to correct the errors? [yes]: no
No changes were made to the configuration.
sensor(config)#
```

If you try to get the virtual sensor statistics immediately after you boot a sensor, you receive an error message. Although the sensor has rebuilt the cache files, the virtual sensor is not finished initializing.

```
sensor# show statistics virtual-sensor
sensor#
```
When you receive the errors that Analysis Engine is busy, wait a while before trying to make configuration changes. Use the `show statistics virtual-sensor` command to find out when Analysis Engine is available again.

**Connecting IPS-4240 to a Cisco 7200 Series Router**

When an IPS-4240 is connected directly to a 7200 series router and both the IPS-4240 and the router interfaces are hard-coded to speed 100 with duplex Full, the connection does not work. If you set IPS-4240 to speed Auto and duplex Auto, it connects to the router but only at speed 100 and duplex Half.

To connect correctly at speed 100 and duplex Full, set the interfaces of both IPS-4240 and the router to speed Auto and duplex Auto. Also, if either interface is hard-coded, you must make the connection using a crossover cable.

**Communication Problems**

This section helps you troubleshoot communication problems with the 4200 series sensor. It contains the following topics:

- Cannot Access the Sensor CLI Through Telnet or SSH, page A-25
- Correcting a Misconfigured Access List, page A-27
- Duplicate IP Address Shuts Interface Down, page A-28

**Cannot Access the Sensor CLI Through Telnet or SSH**

If you cannot access the sensor CLI through Telnet (if you already have it enabled) or SSH, follow these steps:

**Step 1**
Log in to the sensor CLI through a console, terminal, or module session.

**Step 2**
Make sure that the sensor management interface is enabled.

```
sensor# show interfaces
Interface Statistics
 Total Packets Received = 0
 Total Bytes Received = 0
 Missed Packet Percentage = 0
 Current Bypass Mode = Auto_off
MAC statistics from interface GigabitEthernet0/1
 Media Type = backplane
 Missed Packet Percentage = 0
 Inline Mode = Unpaired
 Pair Status = N/A
 Link Status = Up
 Link Speed = Auto_1000
 Link Duplex = Auto_Full
 Total Packets Received = 0
 Total Bytes Received = 0
 Total Multicast Packets Received = 0
 Total Broadcast Packets Received = 0
 Total Jumbo Packets Received = 0
 Total Undersize Packets Received = 0
 Total Receive Errors = 0
 Total Receive FIFO Overruns = 0
```
Troubleshooting the 4200 Series Appliance

Total Packets Transmitted = 0
Total Bytes Transmitted = 0
Total Multicast Packets Transmitted = 0
Total Broadcast Packets Transmitted = 0
Total Jumbo Packets Transmitted = 0
Total Undersize Packets Transmitted = 0
Total Transmit Errors = 0
Total Transmit FIFO Overruns = 0

MAC statistics from interface GigabitEthernet0/0
Media Type = TX
Link Status = Up
Link Speed = Auto_100
Link Duplex = Auto_Full
Total Packets Received = 944333
Total Bytes Received = 83118358
Total Multicast Packets Received = 0
Total Receive Errors = 0
Total Receive FIFO Overruns = 0
Total Packets Transmitted = 397633
Total Bytes Transmitted = 435730956
Total Transmit Errors = 0
Total Transmit FIFO Overruns = 0

sensor#

The management interface is the interface in the list with the status line Media Type = TX. If the Link Status is Down, go to Step 3. If the Link Status is Up, go to Step 5.

Step 3 Make sure the sensor IP address is unique.

sensor# setup
--- System Configuration Dialog ---

At any point you may enter a question mark '?' for help. User ctrl-c to abort configuration dialog at any prompt. Default settings are in square brackets '[]'.

Current Configuration:

service host
network-settings
host-ip 10.89.130.108/23,10.89.130.1
host-name sensor
telnet-option enabled
access-list 0.0.0.0/0
ftp-timeout 300
no login-banner-text
exit
--MORE--

If the management interface detects that another device on the network has the same IP address, it does not come up.

Step 4 Make sure the management port is connected to an active network connection.

If the management port is not connected to an active network connection, the management interface does not come up.

Step 5 Make sure the IP address of the workstation that is trying to connect to the sensor is permitted in the sensor access list.

sensor# setup
--- System Configuration Dialog ---
At any point you may enter a question mark '?' for help.  
User ctrl-c to abort configuration dialog at any prompt.  
Default settings are in square brackets '[]'.

Current Configuration:

```
service host
network-settings
 host-ip 10.89.130.108/23,10.89.130.1
 host-name sensor
 telnet-option enabled
 access-list 0.0.0.0/0
 ftp-timeout 300
 no login-banner-text
 exit
```

--MORE--

If the workstation network address is permitted in the sensor access list, go to Step 6.

**Step 6**  
Add a permit entry for the workstation network address, save the configuration, and try to connect again.

**Step 7**  
Make sure the network configuration allows the workstation to connect to the sensor.

If the sensor is protected behind a firewall and the workstation is in front of the firewall, make sure the firewall is configured to allow the workstation to access the sensor. Or if the workstation is behind a firewall that is performing network address translation on the workstation IP address, and the sensor is in front of the firewall, make sure that the sensor access list contains a permit entry for the workstation translated address.

---

**For More Information**

- For the procedure for enabling and disabling Telnet on the sensor, refer to [Enabling and Disabling Telnet](#).
- For the various ways to open a CLI session directly on the sensor, see Chapter 10, “Logging In to the Sensor.”
- For the procedure for changing the IP address, refer to [Changing the IP Address, Netmask, and Gateway](#).
- For the procedure for changing the access list, see [Correcting a Misconfigured Access List](#), page A-27.

**Correcting a Misconfigured Access List**

To correct a misconfigured access list, follow these steps:

**Step 1**  
Log in to the CLI.

**Step 2**  
View your configuration to see the access list.

```
sensor# show configuration | include access-list
access-list 10.0.0.0/8
access-list 64.0.0.0/8
sensor#
```
Step 3  Verify that the client IP address is listed in the allowed networks. If it is not, add it.

sensor# configure terminal
sensor(config)# service host
sensor(config-hos)# network-settings
sensor(config-hos-net)# access-list 171.69.70.0/24

Step 4  Verify the settings.

sensor(config-hos-net)# show settings
network-settings
-----------------------------
host-ip: 10.89.149.238/25,10.89.149.254 default: 10.1.9.201/24,10.1.9.1
host-name: sensor-238 default: sensor
telnet-option: enabled default: disabled
access-list (min: 0, max: 512, current: 3)
-----------------------------
network-address: 10.0.0.0/8
-----------------------------
network-address: 64.0.0.0/8
-----------------------------
network-address: 171.69.70.0/24
-----------------------------
-----------------------------
ftp-timeout: 300 seconds <defaulted>
login-banner-text: <defaulted>
-----------------------------

Duplicate IP Address Shuts Interface Down

If you have two newly imaged sensors with the same IP address that come up on the same network at the same time, the interface shuts down. Linux prevents the command and control interface from activating if it detects an address conflict with another host.

To verify that the sensor in question does not have an IP address conflict with another host on the network, follow these steps:

Step 1  Log in to the CLI.

Step 2  Determine whether the interface is up.

sensor# show interfaces
Interface Statistics
  Total Packets Received = 0
  Total Bytes Received = 0
  Missed Packet Percentage = 0
  Current Bypass Mode = Auto_off
MAC statistics from interface GigabitEthernet0/1
  Media Type = backplane
  Missed Packet Percentage = 0
  Inline Mode = Unpaired
  Pair Status = N/A
  Link Status = Up
  Link Speed = Auto_1000
  Link Duplex = Auto_Full
  Total Packets Received = 0
  Total Bytes Received = 0
  Total Multicast Packets Received = 0
  Total Broadcast Packets Received = 0
Total Jumbo Packets Received = 0
Total Undersize Packets Received = 0
Total Receive Errors = 0
Total Receive FIFO Overruns = 0
Total Packets Transmitted = 0
Total Bytes Transmitted = 0
Total Multicast Packets Transmitted = 0
Total Broadcast Packets Transmitted = 0
Total Jumbo Packets Transmitted = 0
Total Undersize Packets Transmitted = 0
Total Transmit Errors = 0
Total Transmit FIFO Overruns = 0

MAC statistics from interface GigabitEthernet0/0
Media Type = TX
Link Status = Up
Link Speed = Auto_100
Link Duplex = Auto_Full
Total Packets Received = 1822323
Total Bytes Received = 131098876
Total Multicast Packets Received = 20
Total Receive Errors = 0
Total Receive FIFO Overruns = 0
Total Packets Transmitted = 219260
Total Bytes Transmitted = 103668610
Total Transmit Errors = 0
Total Transmit FIFO Overruns = 0

sensor#

If the output says the command and control interface link status is down, there is a hardware issue or an IP address conflict.

**Step 3** Make sure the sensor cabling is correct.

**Step 4** Make sure the IP address is correct.

---

**For More Information**

- To make sure the sensor cabling is correct, refer to the chapter for your sensor in *Installing Cisco Intrusion Prevention System Appliances and Module 6.1*.
- For the procedure for making sure the IP address is correct, refer to *Changing the IP Address, Netmask, and Gateway*.

---

**SensorApp and Alerting**

This section helps you troubleshoot issues with SensorApp and alerting. It contains the following topics:

- SensorApp Not Running, page A-30
- Physical Connectivity, SPAN, or VACL Port Issue, page A-31
- Unable to See Alerts, page A-33
- Sensor Not Seeing Packets, page A-34
- Cleaning Up a Corrupted SensorApp Configuration, page A-36
Troubleshooting the 4200 Series Appliance

Appendix A      Troubleshooting

SensorApp Not Running

The sensing process, SensorApp, should always be running. If it is not, you do not receive any alerts. SensorApp is part of Analysis Engine, so you must make sure the Analysis Engine is running.

To make sure Analysis Engine is running, follow these steps:

**Step 1** Log in to the CLI.

**Step 2** Determine the status of the Analysis Engine service.

```
sensor# show version
Application Partition:
Cisco Intrusion Prevention System, Version 6.1(1)E1
Host:
 Realm Keys key1.0
Signature Definition:
 Signature Update S129.0 2008-04-16
 Virus Update V1.2 2005-11-24
OS Version: 2.4.30-IDS-smp-bigphys
Platform: ASA-SSM-20
Serial Number: JAB0948035P
License expired: 11-Apr-2008 UTC
Sensor up-time is 7 days.
Using 1018015744 out of 2093600768 bytes of available memory (48% usage)
system is using 17.7M out of 29.0M bytes of available disk space (61% usage)
application-data is using 39.7M out of 166.6M bytes of available disk space (25% usage)
boot is using 40.5M out of 68.5M bytes of available disk space (62% usage)
```

Upgrade History:

```
IPS-K9-6.1-1-E1 01:16:00 UTC Fri Apr 25 2008
Recovery Partition Version 1.1 - 6.1(1)E1
Host Certificate Valid from: 29-Jun-2008 to 30-Jun-2010

sensor#
```

**Step 3** If Analysis Engine is not running, look for any errors connected to it.

```
sensor# show events error fatal past 13:00:00 | include AnalysisEngine
evError: eventId=1077219258696330005 severity=warning
 originator: hostId: sensor
 appName: sensorApp
 appInstanceId: 1045
 time: 2004/02/19 19:34:20 2004/02/19 19:34:20 UTC
 errorMessage: name=errUnclassified Generating new Analysis Engine configuration file.
```

**Note** The date and time of the last restart is listed. In this example, the last restart was on 2-19-2004 at 7:34.
Step 4  Make sure you have the latest software updates.

sensor# show version
Application Partition:
Cisco Intrusion Prevention System, Version 6.1(1)E1

Host:
  Realm Keys          key1.0
Signature Definition:
  Signature Update S329.0                   2008-04-16
  Virus Update V1.2                     2005-11-24
OS Version:             2.4.30-IDS-smp-bigphys
Platform:               ASA-SSM-20
Serial Number:          JAB0948035P
License expired:        11-Apr-2008 UTC
Sensor up-time is 7 days.
Using 1018015744 out of 2093600768 bytes of available memory (48% usage)
system is using 17.7M out of 29.0M bytes of available disk space (61% usage)
application-data is using 39.7M out of 166.6M bytes of available disk space (25% usage)
boot is using 40.5M out of 68.5M bytes of available disk space (62% usage)


Upgrade History:
  IPS-K9-6.1-1-E1   01:16:00 UTC Fri Apr 25 2008
Recovery Partition Version 1.1 - 6.1(1)E1
Host Certificate Valid from: 29-Jun-2008 to 30-Jun-2010

sensor#

If you do not have the latest software updates, download them from Cisco.com.

Step 5  Read the Readme that accompanies the software upgrade for any known DDTS for SensorApp or Analysis Engine.

For More Information
  • For more information on IPS system architecture, refer to System Architecture.
  • For the procedure for obtaining the latest Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.

Physical Connectivity, SPAN, or VACL Port Issue

If the sensor is not connected properly, you do not receive any alerts.
To make sure the sensor is connected properly, follow these steps:

Step 1  Log in to the CLI.
Step 2  Make sure the interfaces are up and that the packet count is increasing.

sensor# show interfaces
Interface Statistics
Troubleshooting the 4200 Series Appliance

Total Packets Received = 0
Total Bytes Received = 0
Missed Packet Percentage = 0
Current Bypass Mode = Auto_off
MAC statistics from interface GigabitEthernet0/1
Media Type = backplane
Missed Packet Percentage = 0
Inline Mode = Unpaired
Pair Status = N/A
Link Status = Up
Link Speed = Auto_1000
Link Duplex = Auto_Full
Total Packets Received = 0
Total Bytes Received = 0
Total Multicast Packets Received = 0
Total Broadcast Packets Received = 0
Total Jumbo Packets Received = 0
Total Undersize Packets Received = 0
Total Receive Errors = 0
Total Receive FIFO Overruns = 0
Total Packets Transmitted = 0
Total Bytes Transmitted = 0
Total Multicast Packets Transmitted = 0
Total Broadcast Packets Transmitted = 0
Total Jumbo Packets Transmitted = 0
Total Undersize Packets Transmitted = 0
Total Transmit Errors = 0
Total Transmit FIFO Overruns = 0
MAC statistics from interface GigabitEthernet0/0
Media Type = TX
Link Status = Up
Link Speed = Auto_100
Link Duplex = Auto_Full
Total Packets Received = 1830137
Total Bytes Received = 131624465
Total Multicast Packets Received = 20
Total Receive Errors = 0
Total Receive FIFO Overruns = 0
Total Packets Transmitted = 220052
Total Bytes Transmitted = 103796666
Total Transmit Errors = 0
Total Transmit FIFO Overruns = 0
sensor#

Step 3  If the Link Status is down, make sure the sensing port is connected properly:
   a. Make sure the sensing port is connected properly on the appliance.
   b. Make sure the sensing port is connected to the correct SPAN or VACL capture port on IDSM-2.

Step 4  Verify the interface configuration:
   a. Make sure you have the interfaces configured properly.
   b. Verify the SPAN and VACL capture port configuration on the Cisco switch.
      Refer to your switch documentation for the procedure.

Step 5  Verify again that the interfaces are up and that the packet count is increasing.
sensor# show interfaces
For More Information

- For the procedure for properly installing the sensing interface on your sensor, refer to the chapter on your appliance in *Installing Cisco Intrusion Prevention System Appliances and Modules 6.1*.
- For the procedure for connecting SPAN and VACL capture ports on IDSM-2, refer to *Configuring IDSM-2*.
- For the procedures for configuring interfaces on your sensor, for the CLI refer to *Configuring Interfaces*, for IDM refer to *Configuring Interfaces*, and for IME refer to *Configuring Interfaces*.

Unable to See Alerts

If you are not seeing alerts, try the following:

- Make sure the signature is enabled
- Make sure the signature is not retired
- Make sure that you have Produce Alert configured as an action

**Note**

If you choose Produce Alert, but come back later and add another event action and do not add Produce Alert to the new configuration, alerts are not be sent to the Event Store. Every time you configure a signature, the new configuration overwrites the old one, so make sure you have configured all the event actions you want for each signature.

- Make sure the sensor is seeing packets
- Make sure that alerts are being generated
- Make sure the sensing interface is in a virtual sensor

To make sure you can see alerts, follow these steps:

**Step 1** Log in to the CLI.

```
sensor# configure terminal
sensor(config)# service signature-definition sig0
sensor(config-sig)# signatures 1300 0
sensor(config-sig-sig)# status
sensor(config-sig-sig-sta)# show settings
 status

 enabled: true <defaulted>
 retired: false <defaulted>

sensor(config-sig-sig-sta)#
```

**Step 2** Make sure the signature is enabled.

```
sensor# configure terminal
sensor(config)# service signature-definition sig0
sensor(config-sig)# signatures 1300 0
sensor(config-sig-sig)# status
sensor(config-sig-sig-sta)# show settings
 engine

 normalizer Signature engine

sensor(config-sig-sig-sta)#
```

**Step 3** Make sure you have Produce Alert configured.

```
sensor# configure terminal
sensor(config)# service signature-definition sig0
sensor(config-sig)# signatures 1300 0
sensor(config-sig-sig)# engine normalizer
sensor(config-sig-sig-nor)# event-action produce-alert
sensor(config-sig-sig-nor)# show settings
```

---

*Appendix A  Troubleshooting*

*Troubleshooting the 4200 Series Appliance*

*Cisco Intrusion Prevention System Appliance and Module Installation Guide for IPS 6.1*
Step 4  Make sure the sensor is seeing packets.

sensor# show interfaces FastEthernet0/1
MAC statistics from interface FastEthernet0/1
  Media Type = backplane
  Missed Packet Percentage = 0
  Inline Mode = Unpaired
  Pair Status = N/A
  Link Status = Up
  Link Speed = Auto_100
  Link Duplex = Auto_Full
  Total Packets Received = 267581
  Total Bytes Received = 24886471
  Total Multicast Packets Received = 0
  Total Broadcast Packets Received = 0
  Total Jumbo Packets Received = 0
  Total Undersize Packets Received = 0
  Total Receive Errors = 0
  Total Receive FIFO Overruns = 0
  Total Packets Transmitted = 57301
  Total Bytes Transmitted = 3441000
  Total Multicast Packets Transmitted = 0
  Total Broadcast Packets Transmitted = 0
  Total Jumbo Packets Transmitted = 0
  Total Undersize Packets Transmitted = 0
  Total Transmit Errors = 1
  Total Transmit FIFO Overruns = 0

sensor#

Step 5  Check for alerts.

sensor# show statistics virtual-sensor
SigEvent Preliminary Stage Statistics
  Number of Alerts received = 0
  Number of Alerts Consumed by AlertInterval = 0
  Number of Alerts Consumed by Event Count = 0
  Number of FireOnce First Alerts = 0
  Number of FireOnce Intermediate Alerts = 0
  Number of Summary First Alerts = 0
  Number of Summary Intermediate Alerts = 0
  Number of Regular Summary Final Alerts = 0
  Number of Global Summary Final Alerts = 0
  Number of Alerts Output for further processing = 0
alertDetails: Traffic Source: int0 ;

Sensor Not Seeing Packets

If the sensor is not seeing any packets on the network, you could have the interfaces set up incorrectly. If the sensor is not seeing packets, follow these steps:

Step 1  Log in to the CLI.

Step 2  Make sure the interfaces are up and receiving packets.

sensor# show interfaces GigabitEthernet0/1
MAC statistics from interface GigabitEthernet0/1
Step 3 If the interfaces are not up, do the following:

a. Check the cabling.

b. Enable the interface.

```bash
sensor# configure terminal
sensor(config)# service interface
sensor(config-int)# physical-interfaces GigabitEthernet0/1
sensor(config-int-phy)# admin-state enabled
sensor(config-int-phy)# show settings
<protected entry>
 name: GigabitEthernet0/1
 media-type: tx <protected>
 description: <defaulted>
 admin-state: enabled default: disabled
duplex: auto <defaulted>
speed: auto <defaulted>
alt-tcp-reset-interface
 none
 none
 none
 none

sensor(config-int-phy)#
```

Step 4 Check to see that the interface is up and receiving packets.

```bash
sensor# show interfaces
MAC statistics from interface GigabitEthernet0/1
 Media Type = TX
 Missed Packet Percentage = 0
 Inline Mode = Unpaired
 Pair Status = N/A
 Link Status = Up
 Link Speed = Auto_100
 Link Duplex = Auto_Full
 Total Packets Received = 3
```
Total Bytes Received = 900
Total Multicast Packets Received = 3
Total Broadcast Packets Received = 0
Total Jumbo Packets Received = 0
Total Undersize Packets Received = 0
Total Receive Errors = 0
Total Receive FIFO Overruns = 0
Total Packets Transmitted = 0
Total Bytes Transmitted = 0
Total Multicast Packets Transmitted = 0
Total Broadcast Packets Transmitted = 0
Total Jumbo Packets Transmitted = 0
Total Undersize Packets Transmitted = 0
Total Transmit Errors = 0
Total Transmit FIFO Overruns = 0 ...

For More Information
For information on installing the sensor properly, refer to your sensor chapter in *Installing Cisco Intrusion Prevention System Appliances and Modules 6.1*.

Cleaning Up a Corrupted SensorApp Configuration

If the SensorApp configuration has become corrupted and SensorApp cannot run, you must delete it entirely and restart SensorApp. To delete the SensorApp configuration, follow these steps:

**Step 1** Log in to the service account.
**Step 2** Su to root.
**Step 3** Stop the IPS applications.
   `/etc/init.d/cids stop`
**Step 4** Replace the virtual sensor file.
   `cp /usr/cids/idsRoot/etc/defVirtualSensorConfig.xml
   /usr/cids/idsRoot/etc/VS-Config/virtualSensor.xml`
**Step 5** Remove the cache files.
   `rm /usr/cids/idsRoot/var/virtualSensor/*.pmz`
**Step 6** Exit the service account.
**Step 7** Log in to the sensor CLI.
**Step 8** Start the IPS services.
   `sensor# cids start`
**Step 9** Log in to an account with administrator privileges.
Step 10  Reboot the sensor.

    sensor# reset
    Warning: Executing this command will stop all applications and reboot the node.
    Continue with reset? [yes]: yes
    Request Succeeded.
    sensor#

For More Information
For more information on IPS system architecture, refer to System Architecture.

Blocking

This section provides troubleshooting help for blocking and the ARC service. It contains the following topics.

- Troubleshooting Blocking, page A-37
- Verifying ARC is Running, page A-38
- Verifying ARC Connections are Active, page A-39
- Device Access Issues, page A-40
- Verifying the Interfaces and Directions on the Network Device, page A-42
- Enabling SSH Connections to the Network Device, page A-43
- Blocking Not Occurring for a Signature, page A-43
- Verifying the Master Blocking Sensor Configuration, page A-44

Troubleshooting Blocking

After you have configured ARC, you can verify if it is running properly by using the `show version` command. To verify that ARC is connecting to the network devices, use the `show statistics network-access` command.

Note

ARC was formerly known as Network Access Controller. Although the name has been changed since IPS 5.1, it still appears in IDM, IME, and the CLI as Network Access Controller, `nac`, and `network-access`.

To troubleshoot ARC, follow these steps:

1. Verify that ARC is running.
2. Verify that ARC is connecting to the network devices.
3. Verify that the Event Action is set to Block Host for specific signatures.
4. Verify that the master blocking sensor is properly configured.
For More Information

- For the procedure to verify that ARC is running, see Verifying ARC is Running, page A-38.
- For the procedure to verify that ARC is connecting, see Verifying ARC Connections are Active, page A-39.
- For the procedure to verify that the Event Action is set to Block Host, see Blocking Not Occurring for a Signature, page A-43.
- For the procedure to verify that the master blocking sensor is properly configured, see Verifying the Master Blocking Sensor Configuration, page A-44.
- For a discussion of ARC architecture, see Attack Response Controller.

Verifying ARC is Running

To verify that ARC is running, use the `show version` command. If MainApp is not running, ARC cannot run. ARC is part of MainApp. To verify that ARC is running, following these steps:

**Step 1** Log in to the CLI.

**Step 2** Verify that MainApp is running.

```
sensor# show version
Application Partition:
Cisco Intrusion Prevention System, Version 6.0(1)E1.1
Host:
 Realm Keys key1.0
Signature Definition:
 Signature Update S294.0 2007-08-02
 Virus Update V1.2 2005-11-24
OS Version: 2.4.30-IDS-smp-bigphys
Platform: ASA-SSM-20
Serial Number: P300000220
No license present
Sensor up-time is 6 days.
Using 1026641920 out of 2093682688 bytes of available memory (49% usage)
system is using 17.8M out of 29.0M bytes of available disk space (61% usage)
application-data is using 38.4M out of 166.6M bytes of available disk space (24% usage)
boot is using 38.0M out of 68.5M bytes of available disk space (58% usage)

MainApp N-2007_SEP_20_16_44 (Release) 2007-09-20T17:10:01-0500 Running
AnalysisEngine N-2007_SEP_20_16_44 (Release) 2007-09-20T17:10:01-0500 Running
CLI N-2007_SEP_20_16_44 (Release) 2007-09-20T17:10:01-0500

Upgrade History:
 IPS-K9-6.0-1-E1.1 16:44:00 UTC Thu Sep 20 2007
Recovery Partition Version 1.1 - 6.0(1)E1.1
```

**Step 3** If MainApp displays Not Running, ARC has failed. Contact the TAC.
For More Information

For more information on IPS system architecture, refer to System Architecture.

Verifying ARC Connections are Active

If the State is not Active in the ARC statistics, there is a problem. To verify that the State is Active in the statistics, follow these steps:

---

**Step 1** Log in to the CLI.

**Step 2** Verify that ARC is connecting.

Check the State section of the output to verify that all devices are connecting.

```
sensor# show statistics network-access

Current Configuration
- LogAllBlockEventsAndSensors = true
- EnableNvramWrite = false
- EnableAclLogging = false
- AllowSensorBlock = false
- BlockMaxEntries = 250
- MaxDeviceInterfaces = 250

NetDevice
- Type = Cisco
- IP = 10.89.147.54
- NATAddr = 0.0.0.0
- Communications = telnet

BlockInterface
- InterfaceName = fa0/0
- InterfaceDirection = in

State
- BlockEnable = true

NetDevice
- IP = 10.89.147.54
- AclSupport = uses Named ACLs
- Version = 12.2
- State = Active

sensor#
```

**Step 3** If ARC is not connecting, look for recurring errors.

```
sensor# show events error hh:mm:ss month day year | include : nac

Example
```

```
sensor# show events error 00:00:00 Apr 01 2007 | include : nac
```

**Step 4** Make sure you have the latest software updates.

```
sensor# show version

Application Partition:
Cisco Intrusion Prevention System, Version 6.0(1)E1.1

Host:
- Realm Keys key1.0

Signature Definition:
- Signature Update S294.0 2007-08-02
- Virus Update V1.2 2005-11-24

OS Version: 2.4.30-IDS-smp-bigphys
Platform: ASA-SSM-20
Serial Number: P300000220
```
Troubleshooting the 4200 Series Appliance

No license present
Sensor up-time is 6 days.
Using 1026641920 out of 2093682688 bytes of available memory (49% usage)
system is using 17.8M out of 29.0M bytes of available disk space (61% usage)
application-data is using 38.4M out of 166.6M bytes of available disk space (24% usage)
boot is using 38.0M out of 68.5M bytes of available disk space (58% usage)

MainApp        N-2007_SEP_20_16_44   (Release)   2007-09-20T17:10:01-0500   Running
AnalysisEngine N-2007_SEP_20_16_44   (Release)   2007-09-20T17:10:01-0500   Running
CLI            N-2007_SEP_20_16_44   (Release)   2007-09-20T17:10:01-0500

Upgrade History:

IPS-K9-6.0-1-E1.1   16:44:00 UTC Thu Sep 20 2007

Recovery Partition Version 1.1 - 6.0(1)E1.1

sensor#

Note: If you do not have the latest software updates, download them from Cisco.com.

Step 5  Read the Readme that accompanies the software upgrade for any known DDTS for ARC.
Step 6  Make sure the configuration settings for each device are correct (the username, password, and IP address).
Step 7  Make sure the interface and directions for each network device are correct.
Step 8  If the network device is using SSH-DES or SSH-3DES, make sure that you have enabled SSH connections to the device.
Step 9  Verify that each interface and direction on each controlled device is correct.

For More Information

- For the procedure for obtaining the latest Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.
- For more information about configuring devices, see Device Access Issues, page A-40.
- For the procedure for verifying the interfaces and directions for each network device, see Verifying the Interfaces and Directions on the Network Device, page A-42.
- For the procedure for enabling SSH, see Enabling SSH Connections to the Network Device, page A-43.

Device Access Issues

ARC may not be able to access the devices it is managing. Make sure the you have the correct IP address and username and password for the managed devices and the correct interface and direction configured.

Note: SSH devices must support SSH 1.5. The sensor does not support SSH 2.0.
To troubleshoot device access issues, follow these steps:

**Step 1** Log in to the CLI.

**Step 2** Verify the IP address for the managed devices.

```bash
sensor# configure terminal
sensor (config)# service network-access
sensor(config-net)# show settings
general

log-all-block-events-and-errors: true <defaulted>
enable-nvram-write: false <defaulted>
enable-acl-logging: false <defaulted>
allow-sensor-block: false <defaulted>
block-enable: true <defaulted>
block-max-entries: 250 <defaulted>
max-interfaces: 250 <defaulted>
master-blocking-sensors (min: 0, max: 100, current: 0)
never-block-hosts (min: 0, max: 250, current: 0)
never-block-networks (min: 0, max: 250, current: 0)
block-hosts (min: 0, max: 250, current: 0)
block-networks (min: 0, max: 250, current: 0)
user-profiles (min: 0, max: 250, current: 1)
profile-name: r7200
enable-password: <hidden>
password: <hidden>
username: netrangr default:

cat6k-devices (min: 0, max: 250, current: 0)
router-devices (min: 0, max: 250, current: 1)
ip-address: 10.89.147.54
communication: telnet default: ssh-3des
nat-address: 0.0.0.0 <defaulted>
profile-name: r7200
block-interfaces (min: 0, max: 100, current: 1)
interface-name: fa0/0
direction: in
pre-acl-name: <defaulted>
post-acl-name: <defaulted>
```
Step 3  Manually connect to the device to make sure you have used the correct username, password, and enable password, and to ensure that the device is reachable from the sensor.
   a. Log in to the service account.
   b. Telnet or SSH to the network device to verify the configuration.
   c. Make sure you can reach the device.
   d. Verify the username and password.

Step 4  Verify that each interface and direction on each network device is correct.

For More Information
For the procedure for verifying the interfaces and directions for each network device, see Verifying the Interfaces and Directions on the Network Device, page A-42.

Verifying the Interfaces and Directions on the Network Device

To verify that each interface and direction on each controlled device is correct, you can send a manual block to a bogus host and then check to see if deny entries exist for the blocked addresses in the ACL of the router.

Note
To perform a manual block using IDM, choose Monitoring > Sensor Monitoring > Time-Based Actions > Host Blocks. To perform a manual block using IME, choose Configuration > sensor_name > Sensor Monitoring > Time-Based Actions > Host Blocks.

To initiate a manual block to a bogus host, follow these steps:

Step 1  Enter ARC general submode.
   sensor# configure terminal
   sensor(config)# service network-access
   sensor(config-net)# general

Step 2  Start the manual block of the bogus host IP address.
   sensor(config-net-gen)# block-hosts 10.16.0.0

Step 3  Exit general submode.
   sensor(config-net-gen)# exit
   sensor(config-net)# exit
   Apply Changes: [yes]:

Step 4  Press Enter to apply the changes or type no to discard them.

Step 5  Telnet to the router and verify that a deny entry for the blocked address exists in the router ACL. Refer to the router documentation for the procedure.
Step 6  Remove the manual block by repeating Steps 1 through 4 except in Step 2 place no in front of the command.

```
sensor(config-net-gen)# no block-hosts 10.16.0.0
```

### Enabling SSH Connections to the Network Device

If you are using SSH-DES or SSH-3DES as the communication protocol for the network device, you must make sure you have enabled it on the device.

To enable SSH connections to the network device, follow these steps:

**Step 1** Log in to the CLI.

**Step 2** Enter configuration mode.

```
sensor# configure terminal
```

**Step 3** Enable SSH.

```
sensor(config)# ssh host blocking_device_ip_address
```

**Step 4** Type yes when prompted to accept the device.

### Blocking Not Occurring for a Signature

If blocking is not occurring for a specific signature, check that the event action is set to block the host.

To make sure blocking is occurring for a specific signature, follow these steps:

**Step 1** Log in to the CLI.

**Step 2** Enter signature definition submode.

```
sensor# configure terminal
sensor(config)# service signature-definition sig0
sensor(config-sig)#
```

**Step 3** Make sure the event action is set to block the host.

```
Note If you want to receive alerts, you must always add produce-alert any time you configure the event actions.
```

```
sensor(config-sig)# signatures 1300 0
sensor(config-sig-sig-nor)# engine normalizer
sensor(config-sig-sig-nor)# event-action produce-alert|request-block-host
sensor(config-sig-sig-nor)# show settings
 normalizer

 event-action: produce-alert|request-block-host default: produce-alert|deny
 -connection-inline
 edit-default-sigs-only

 default-signatures-only
```

---

This page provides troubleshooting guidelines for the Cisco Intrusion Prevention System Appliance and Module, specifically focusing on the 4200 Series. It includes instructions on how to remove manual blocks, enable SSH connections, and troubleshoot blocking not occurring for a signature.
specify-service-ports  
-----------------------------------------------  
no  
-----------------------------------------------  

specify-tcp-max-mss  
-----------------------------------------------  
no  
-----------------------------------------------  

specify-tcp-min-mss  
-----------------------------------------------  
no  
-----------------------------------------------

---MORE---

Step 4  Exit signature definition submode.

sensor(config-sig-sig-nor)# exit
sensor(config-sig-sig)# exit
sensor(config-sig)# exit
Apply Changes:?[yes]:

Step 5  Press Enter to apply the changes or type no to discard them.

Verifying the Master Blocking Sensor Configuration

To verify that a master blocking sensor is set up properly or to troubleshoot a master blocking sensor that is not set up properly, you can use the show statistics network-access command. Make sure that the forwarding sensor is set up as TLS trusted host if the remote master blocking sensor is using TLS for web access.

To verify a master blocking sensor configuration, follow these steps:

Step 1  View the ARC statistics and verify that the master blocking sensor entries are in the statistics.

sensor# show statistics network-access
Current Configuration
  AllowSensorShun = false
  ShunMaxEntries = 250
  MasterBlockingSensor
    SensorIp = 10.89.149.46
    SensorPort = 443
    UseTls = 1
  State
    ShunEnable = true
    ShunnedAddr
      Host
        IP = 122.122.122.44
        ShunMinutes = 60
        MinutesRemaining = 59

Step 2  If the master blocking sensor does not show up in the statistics, you need to add it.
Step 3  Initiate a manual block to a bogus host IP address to make sure the master blocking sensor is initiating blocks.

```
sensor# configure terminal
sensor(config)# service network-access
sensor(config-net)# general
sensor(config-net-gen)# block-hosts 10.16.0.0
```

Step 4  Exit network access general submode.

```
sensor(config-net-gen)# exit
sensor(config-net)# exit
Apply Changes?: [yes]:
```

Step 5  Press Enter to apply the changes or type no to discard them.

Step 6  Verify that the block shows up in the ARC statistics.

```
sensor# show statistics network-access
Current Configuration
 AllowSensorShun = false
 ShunMaxEntries = 100
State
 ShunEnable = true
 ShunnedAddr
 Host
 IP = 10.16.0.0
 ShunMinutes =
```

Step 7  Log in to the CLI of the master blocking sensor host, and using the show statistics network-access command, verify that the block also shows up in the master blocking sensor ARC statistics.

```
sensor# show statistics network-access
Current Configuration
 AllowSensorShun = false
 ShunMaxEntries = 250
 MasterBlockingSensor
 SensorIp = 10.89.149.46
 SensorPort = 443
 UseTls = 1
State
 ShunEnable = true
 ShunnedAddr
 Host
 IP = 10.16.0.0
 ShunMinutes = 60
 MinutesRemaining = 59
```

Step 8  If the remote master blocking sensor is using TLS for web access, make sure the forwarding sensor is configured as a TLS host.

```
sensor# configure terminal
sensor(config)# tls trust ip master_blocking_sensor_ip_address
```

---

**For More Information**

For the procedure to configure the sensor to be a master blocking sensor, for the CLI refer to Configuring the Sensor to be a Master Blocking Sensor, for IDM refer to Configuring the Master Blocking Sensor, and for IME refer to Configuring the Master Blocking Sensor.
Logging

This section describes debug logging, and contains the following topics:

- Enabling Debug Logging, page A-46
- Zone Names, page A-50
- Directing cidLog Messages to SysLog, page A-50

Understanding Debug Logging

TAC may suggest that you turn on debug logging for troubleshooting purposes. Logger controls what log messages are generated by each application by controlling the logging severity for different logging zones. By default, debug logging is not turned on.

If you enable individual zone control, each zone uses the level of logging that it is configured for. Otherwise, the same logging level is used for all zones.

Enabling Debug Logging

Caution

Enabling debug logging seriously affects performance and should only be done when instructed by TAC.

To enable debug logging, follow these steps:

1. Log in to the service account.
2. Edit the log.conf file to increase the size of the log to accommodate the additional log statements.
   vi /usr/cids/idsRoot/etc/log.conf
3. Change fileMaxSizeInK=500 to fileMaxSizeInK=5000.
4. Locate the zone and CID section of the file and set the severity to debug.
   severity=debug
5. Save the file, exit the vi editor, and exit the service account.
6. Log in to the CLI as administrator.
7. Enter master control submode.
   sensor# configure terminal
   sensor(config)# service logger
   sensor(config-log)# master-control
8. To enable debug logging for all zones.
   sensor(config-log-mas)# enable-debug true
   sensor(config-log-mas)# show settings
   master-control
   -----------------------------------------------
   enable-debug: true default: false
   individual-zone-control: false <defaulted>
   -----------------------------------------------
   sensor(config-log-mas)#
Step 9  To turn on individual zone control.

```
sensor(config-log-mas)# individual-zone-control true
sensor(config-log-mas)# show settings
```

```
master-control

enable-debug: true default: false
individual-zone-control: true default: false

sensor(config-log-mas)#
```

Step 10  Exit master zone control.

```
sensor(config-log-mas)# exit
```

Step 11  View the zone names.

```
sensor(config-log)## show settings
master-control

enable-debug: false <defaulted>
individual-zone-control: true default: false

zone-control (min: 0, max: 999999999, current: 14)

<protected entry>
zone-name: AuthenticationApp severity: warning <defaulted>
<protected entry>
zone-name: Cid severity: debug <defaulted>
<protected entry>
zone-name: Cli severity: warning <defaulted>
<protected entry>
zone-name: IdapiCtlTrans severity: warning <defaulted>
<protected entry>
zone-name: IdsEventStore severity: warning <defaulted>
<protected entry>
zone-name: MpInstaller severity: warning <defaulted>
<protected entry>
zone-name: cmgr severity: warning <defaulted>
<protected entry>
zone-name: cplane severity: warning <defaulted>
<protected entry>
zone-name: csi severity: warning <defaulted>
<protected entry>
zone-name: ctlTransSource severity: warning <defaulted>
<protected entry>
zone-name: intfc severity: warning <defaulted>
<protected entry>
zone-name: nac severity: warning <defaulted>
<protected entry>
zone-name: sensorApp severity: warning <defaulted>
<protected entry>
Step 12 Change the severity level (debug, timing, warning, or error) for a particular zone.

sensor(config-log)# zone-control IdsEventStore severity error
sensor(config-log)# show settings
 master-control

 enable-debug: true default: false
 individual-zone-control: true default: false

 zone-control (min: 0, max: 999999999, current: 14)

 <protected entry>
 zone-name: AuthenticationApp
 severity: warning <defaulted>
 <protected entry>
 zone-name: Cid
 severity: debug <defaulted>
 <protected entry>
 zone-name: Cli
 severity: warning <defaulted>
 <protected entry>
 zone-name: IdapiCtlTrans
 severity: warning <defaulted>
 <protected entry>
 zone-name: IdsEventStore
 severity: error default: warning
 <protected entry>
 zone-name: MpInstaller
 severity: warning <defaulted>
 <protected entry>
 zone-name: cmgr
 severity: warning <defaulted>
 <protected entry>
 zone-name: cplane
 severity: warning <defaulted>
 <protected entry>
 zone-name: intfc
 severity: warning <defaulted>
 <protected entry>
 zone-name: nac
 severity: warning <defaulted>
 <protected entry>
 zone-name: sensorApp
 severity: warning <defaulted>
 <protected entry>
 zone-name: tls
 severity: warning <defaulted>

sensor(config-log)#

Step 13 Turn on debugging for a particular zone.

sensor(config-log)# zone-control nac severity debug
sensor(config-log)# show settings
master-control

 enable-debug: true default: false
 individual-zone-control: true default: false

zone-control (min: 0, max: 999999999, current: 14)

<protected entry>
zone-name: AuthenticationApp
severity: warning <defaulted>
<protected entry>
zone-name: Cid
severity: debug <defaulted>
<protected entry>
zone-name: Cli
severity: warning <defaulted>
<protected entry>
zone-name: IdapiCtlTrans
severity: warning <defaulted>
<protected entry>
zone-name: IdsEventStore
severity: error default: warning
<protected entry>
zone-name: MpInstaller
severity: warning <defaulted>
<protected entry>
zone-name: cmgr
severity: warning <defaulted>
<protected entry>
zone-name: cplane
severity: warning <defaulted>
<protected entry>
zone-name: csi
severity: warning <defaulted>
<protected entry>
zone-name: ctlTransSource
severity: warning <defaulted>
<protected entry>
zone-name: intfc
severity: warning <defaulted>
<protected entry>
zone-name: nac
severity: debug default: warning
<protected entry>
zone-name: sensorApp
severity: warning <defaulted>
<protected entry>
zone-name: tls
severity: warning <defaulted>

sensor(config-log)#

Step 14 Exit the logger submode.

sensor(config-log)# exit
Apply Changes:?[yes]:

Step 15 Press **Enter** to apply changes or type **no** to discard them:
For More Information
For a list of what each zone name refers to, see Zone Names, page A-50.

Zone Names

Table A-2 lists the debug logger zone names:

<table>
<thead>
<tr>
<th>Zone Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthenticationApp</td>
<td>Authentication zone</td>
</tr>
<tr>
<td>Cid</td>
<td>General logging zone</td>
</tr>
<tr>
<td>Cli</td>
<td>CLI zone</td>
</tr>
<tr>
<td>IdapiCtlTrans</td>
<td>All control transactions zone</td>
</tr>
<tr>
<td>IdsEventStore</td>
<td>Event Store zone</td>
</tr>
<tr>
<td>MpInstaller</td>
<td>IDSM-2 master partition installer zone</td>
</tr>
<tr>
<td>cmgr</td>
<td>Card Manager service zone^1</td>
</tr>
<tr>
<td>cplane</td>
<td>Control Plane zone^2</td>
</tr>
<tr>
<td>csi</td>
<td>CIDS Servlet Interface^3</td>
</tr>
<tr>
<td>ctlTransSource</td>
<td>Outbound control transactions zone</td>
</tr>
<tr>
<td>intf</td>
<td>Interface zone</td>
</tr>
<tr>
<td>nac</td>
<td>ARC zone</td>
</tr>
<tr>
<td>sensorApp</td>
<td>AnalysisEngine zone</td>
</tr>
<tr>
<td>tls</td>
<td>SSL and TLS zone</td>
</tr>
</tbody>
</table>

^1. The Card Manager service is used on AIP-SSM to exchange control and state information between modules in the chassis.

^2. The Control Plane is the transport communications layer used by Card Manager on AIP-SSM.

^3. The CIDS servlet interface is the interface layer between the CIDS web server and the servlets.

For More Information
For more information on the IPS Logger service, refer to Logger.

Directing cidLog Messages to SysLog

It might be useful to direct cidLog messages to syslog. To direct cidLog messages to syslog, follow these steps:

Step 1
Go to the idsRoot/etc/log.conf file.

Step 2
Make the following changes:

a. Set [logApp] enabled=false

 Comment out the enabled=true because enabled=false is the default.

b. Set [drain/main] type=syslog
The following example shows the logging configuration file:

```
timemode=local
;timemode=utc

[logApp]
;enabled=true
;-------- FIFO parameters --------
fifoName=logAppFifo
tifoSizeInK=240
;-------- logApp zone and drain parameters --------
zoneAndDrainName=logApp
fileName=main.log
fileMaxSizeInK=500

[zone/Cid]
severity=warning
drain=main

[zone/IdsEventStore]
severity=debug
drain=main

[drain/main]
type=syslog
```

The syslog output is sent to the syslog facility local6 with the following correspondence to syslog message priorities:

```
LOG_DEBUG,        //   debug
LOG_INFO,             //    timing
LOG_WARNING,   //    warning
LOG_ERR,             //    error
LOG_CRIT             //     fatal
```

Note Make sure that your `/etc/syslog.conf` has that facility enabled at the proper priority.

Caution The syslog is much slower than logApp (about 50 messages per second as opposed to 1000 or so). We recommend that you enable debug severity on one zone at a time.

TCP Reset Not Occurring for a Signature

Note TCP Resets are not supported over MPLS links or the following tunnels: GRE, IPv4 in IPv4, IPv6 in IPv4, or IPv4 in IPv6.

If you do not have the event action set to reset, the TCP reset does not occur for a specific signature. To troubleshoot a reset not occurring for a specific signature, follow these steps:

Step 1 Log in to the CLI.

Step 2 Make sure the event action is set to TCP reset.
sensor# configure terminal
sensor(config)# service signature-definition sig0
sensor(config-sig)# signatures 1000 0
sensor(config-sig)# engine atomic-ip
sensor(config-sig-sig-ato)# event-action reset-tcp-connection|produce-alert
sensor(config-sig-sig-ato)# show settings
 atomic-ip

 event-action: produce-alert|reset-tcp-connection default: produce-alert
 fragment-status: any <defaulted>
 specify-l4-protocol

 no

 specify-ip-payload-length

 no

 specify-ip-header-length

 no

 specify-ip-tos

--MORE--

Step 3 Exit signature definition submode.

sensor(config-sig-sig-ato)# exit
sensor(config-sig-sig-ato)# exit
sensor(config-sig)# exit
Apply Changes?: [yes]:

Step 4 Press Enter to apply the changes or type no to discard them.

Step 5 Make sure the correct alarms are being generated.

sensor# show events alert
 evAlert: eventId=1047575239898467370 severity=medium
 originator:
 hostId: sj_4250_40
 appName: sensorApp
 appInstanceId: 1004
 signature: sigId=20000 sigName=STRING.TCP subSigId=0 version=Unknown
 addr: locality=OUT 172.16.171.19
 port: 32771
 victim:
 addr: locality=OUT 172.16.171.13 port: 23
 actions:
 tcpResetSent: true

Step 6 Make sure the switch is allowing incoming TCP reset packet from the sensor. Refer to your switch
documentation for more information.

Step 7 Make sure the resets are being sent.

root# ./tcpdump -i eth0 src host 172.16.171.19
tcpdump: WARNING: eth0: no IPv4 address assigned
tcpdump: listening on eth0
Software Upgrades

This section helps in troubleshooting software upgrades. It contains the following topics:

- Upgrading to 6.x, page A-53
- Which Updates to Apply and Their Prerequisites, page A-53
- Issues With Automatic Update, page A-54
- Updating a Sensor with the Update Stored on the Sensor, page A-55

Upgrading to 6.x

If you try to upgrade a sensor to IPS 6.x, you may receive an error that Analysis Engine is not running:

```
sensor# upgrade scp://user@10.1.1.1/upgrades/IPS-K9-6.1-1-E1.pkg
Password: ********
Warning: Executing this command will apply a major version upgrade to the application partition. The system may be rebooted to complete the upgrade.
Continue with upgrade?: yes
Error: AnalysisEngine is not running. Please reset box and attempt upgrade again.
```

If you receive this error, you must get Analysis Engine running before trying to upgrade again. This error is often caused by a defect in the currently running version. Try rebooting the sensor, and after reboot, run the `setup` command and remove the interfaces from the virtual sensor vs0. When it is not monitoring traffic, Analysis Engine usually stays up and running. You can upgrade to 6.x at this time. After the upgrade to 6.x, add the interfaces back to the virtual sensor vs0 using the `setup` command.

Or you can use the system image file to reimaging directly to IPS 6.x. You can reimaging a 5.x sensor to 6.x because the reimaging process does not check to see if Analysis Engine is running.

⚠️ Caution

Reimaging using the system image file restores all configuration defaults.

For More Information

- For more information on running the `setup` command, see Chapter 9, “Initializing the Sensor.”
- For more information on reimaging your sensor, see Chapter 12, “Upgrading, Downgrading, and Installing System Images.”

Which Updates to Apply and Their Prerequisites

You must have the correct service pack and minor and major version of the software. If you are having trouble with applying new software, make sure that you are applying the proper updates with the proper prerequisites:

- Signature updates require the minimum version and engine version listed in the filename.
- Engine updates require the major or minor version in the engine update filename.
• Service packs require the correct minor version.
• Minor versions require the correct major version.
• Major versions require the previous major version.

For More Information
For more information on how to interpret the IPS software filenames, see IPS Software Versioning, page 11-3.

Issues With Automatic Update

The following list provides suggestions for troubleshooting automatic updates:

• Run TCPDUMP
 – Create a service account. Su to root and run TCPDUMP on the command and control interface to capture packets between the sensor and the FTP server.
 – Use the upgrade command to manually upgrade the sensor.
 – Look at the TCPDUMP output for errors coming back from the FTP server.

• Make sure the sensor is in the correct directory.
The directory must be specified correctly. This has caused issues with Windows FTP servers. Sometimes an extra “/” or even two “/” are needed in front of the directory name.
To verify this, use the same FTP commands you see in the TCPDUMP output through your own FTP connection.
• You must use the Windows FTP server setup option to emulate UNIX file structure and not MS-DOS file structure.
• If you are using SCP, make sure you have added the SSH host key to the known hosts list.

Try the manual upgrade command before attempting the automatic update. If it works with the upgrade command and does not work with the automatic update, try the following:

• Determine which IPS software version your sensor has.
• Make sure the passwords are configured for automatic update. Make sure they match the same passwords used for manual update.
• Make sure that the filenames in the FTP server are exactly what you see on Downloads on Cisco.com. This includes capitalization.
 Some Windows FTP servers allow access to the file with the incorrect capitalization but the sensor ultimately rejects the file because the name has changed.
• If necessary, run TCPDUMP on automatic update. You can compare the successful manual update with the unsuccessful automatic update and troubleshoot from there.

For More Information
• For the procedure for creating the service account, refer to Creating the Service Account.
• For the procedure for reimaging your sensor, see Chapter 12, “Upgrading, Downgrading, and Installing System Images.”
• For the procedure for adding hosts to the SSH known hosts list, for the CLI refer to Adding Hosts to the SSH Known Hosts List, for IDM refer to Defining Known Host Keys, and for IME refer to Defining Known Host Keys.
For the procedure for determining the software version, see Displaying Version Information, page A-76.

Updating a Sensor with the Update Stored on the Sensor

You can store the update package in the /var directory on the sensor and update the sensor from there if you need to. To update the sensor with an update stored on the sensor, follow these steps:

Step 1 Log in to the service account.

Step 2 Obtain the update package file from Cisco.com.

Step 3 FTP or SCP the update file to the sensor /usr/cids/idsRoot/var directory.

Step 4 Set the file permissions.

```bash
chmod 644 ips_package_file_name
```

Step 5 Exit the service account.

Step 6 Log in to the sensor using an account with administrator privileges.

Step 7 Store the sensor host key.

```bash
sensor# configure terminal
sensor(config)# service ssh
sensor(config-ssh)# rsa1-keys sensor_ip_address
```

Step 8 Upgrade the sensor.

```bash
sensor(config)# upgrade scp://service@sensor_ip_address/upload/ips_package_file_name
Enter password: ******
Re-enter password: ******
```

For More Information

For the procedure for obtaining Cisco IPS software, see Obtaining Cisco IPS Software, page 11-1.

Troubleshooting IDM

Note

These procedures also apply to the IPS section of ASDM.

Note

After you upgrade any IPS software on your sensor, you must restart the IDM to see the latest software features.

This section contains troubleshooting procedures for IDM, and contains the following topics:

- Cannot Launch IDM - Loading Java Applet Failed, page A-56
- Cannot Launch IDM-Analysis Engine Busy, page A-56
- IDM, Remote Manager, or Sensing Interfaces Cannot Access Sensor, page A-57
- Signatures Not Producing Alerts, page A-58
Cannot Launch IDM - Loading Java Applet Failed

Symptom The browser displays Loading Cisco IDM. Please wait ... At the bottom left corner of the window, Loading Java Applet Failed is displayed.

Possible Cause This condition can occur if multiple Java Plug-ins (1.4.x and/or 1.3.x) are installed on the machine on which you are launching the IDM.

Recommended Action Clear the Java cache and remove temp files and clear history in the browser you are using. The result is that neither of these plug-ins will be used by default and each applet should use the correct plug-in.

To clear the cache, follow these steps:

Step 1 Close all browser windows.
Step 2 If you have Java Plug-in 1.3.x installed:
 a. Click Start > Settings > Control Panel > Java Plug-in 1.3.x.
 b. Click the Advanced tab.
 c. Under Java Runtime Environment, select JRE 1.3.x from the drop-down menu.
 d. Click the Cache tab.
 e. Click Clear.
Step 3 If you have Java Plug-in 1.4.x installed:
 a. Click Start > Settings > Control Panel > Java Plug-in 1.4.x.
 b. Click the Advanced tab.
 c. Under Java Runtime Environment, select JRE 1.3.x from the drop-down menu.
 d. Click the Cache tab.
 e. Click the Browser tab.
 f. Deselect all browser check boxes.
 g. Click Clear Cache.
Step 4 Delete the temp files and clear the history in the browser.

Cannot Launch IDM - Analysis Engine Busy

Error Message Error connecting to sensor. Failed to load sensor-errNotAvailable-Analysis Engine is busy. Exiting IDM.

Possible Cause This condition can occur if the Analysis Engine in the sensor is busy getting ready to perform a task and so does not respond to IDM.

Recommended Action Wait for a while and try again to connect.
IDM, Remote Manager, or Sensing Interfaces Cannot Access Sensor

If IDM, a remote manager, or sensing interfaces cannot access the sensor, but you can access the sensor CLI using SSH or Telnet (if enabled), follow these steps:

Step 1 Make sure the network configuration allows access to the web server port that is configured on the sensor.

```
sensor# setup

--- System Configuration Dialog ---

At any point you may enter a question mark '?' for help. User ctrl-c to abort configuration dialog at any prompt. Default settings are in square brackets '[]'.

Current Configuration:

```

service host
network-settings
host-ip 10.89.130.108/23,10.89.130.1
host-name sensor
telnet-option enabled
access-list 0.0.0.0/0
ftp-timeout 300
no login-banner-text
exit
time-zone-settings
offset 0
standard-time-zone-name UTC
exit
summertime-option disabled
ntp-option disabled
exit
service web-server
port 443
```

**Step 2** If network devices, such as routers, switches, or firewalls, are between the sensor and the workstation, make sure these devices are configured to allow the workstation to access the sensor web server port. All remote management communication is performed by the sensor web server.

**For More Information**

- For the procedure for enabling and disabling Telnet on the sensor, refer to Enabling and Disabling Telnet.
- For the procedure for configuring the web server, refer to Changing Web Server Settings.
Troubleshooting IME

This section describes troubleshooting tools for IME, and contains the following sections:

- Time Synchronization on IME and the Sensor, page A-58
- Not Supported Error Message, page A-59

Time Synchronization on IME and the Sensor

**Symptom**  
IME displays No Data Available on the Events dashboard. A historical query does not return any events; however, events are coming in to IME and they appear in the real-time event viewer.

**Possible Cause**  
The time is not synchronized between the sensor and the IME local server. The IME dashboards use a time relative to the IME local time. If these times are not synchronized, the query does not return any results. When you add a sensor to IME, it checks for the time synchronization and warns you to correct it if is in wrong. IME also displays a clock warning in Home > Devices > Device List to warn you about problems with synchronization.

**Recommended Action**  
Change the time settings on the sensor or IME local server. In most cases, the time change is required for the sensor because it is configured with the incorrect or default time.

**For More Information**  
- For more information on time and the sensor, see Time Sources and the Sensor, page A-16.
- For the procedure for changing the time on the sensor, see Correcting Time on the Sensor, page A-19.
Not Supported Error Message

**Symptom** IME displays Not Supported in the device list table and in some gadgets, and no data is included.

**Possible Cause** Click Details to see an explanation for this message. IME needs IPS 6.1 or later to obtain certain information. IME still operates with event monitoring and reporting for IPS 5.0 and later and specific IOS IPS versions, but some functions, such as health information and integrated configuration, are not available.

**Recommended Action** Upgrade to IPS 6.1.

Troubleshooting IDSM-2

**Note** IDSM-2 has the same software architecture as the 4200 series sensors. You can use the same troubleshooting tools as outlined in Troubleshooting the 4200 Series Appliance, page A-23.

This section pertains specifically to troubleshooting IDSM-2, and contains the following topics:

- Diagnosing IDSM-2 Problems, page A-59
- Minimum Supported IDSM-2 Configurations, page A-60
- Switch Commands for Troubleshooting, page A-61
- Status LED Off, page A-61
- Status LED On But IDSM-2 Does Not Come Online, page A-63
- Cannot Communicate With IDSM-2 Command and Control Port, page A-64
- Using the TCP Reset Interface, page A-65
- Connecting a Serial Cable to IDSM-2, page A-66

Diagnosing IDSM-2 Problems

Use the following list to diagnose IDSM-2 problems:

- The ribbon cable between IDSM-2 and the motherboard is loose.
  
  During physical handling of the module, the connector can come loose from the base card, and cause the daughter card and the base card to lose contact with each other. A loose ribbon cable connector causes an on-line diagnostic error on ports 7 and 8. The module cannot operate when this condition exists. For more information, refer to Partner Field Notice 29877.

- Some IDSM-2s were shipped with faulty DIMMs. For the procedure for checking IDSM-2 for faulty memory, refer to Partner Field Notice 29837.

- The hard-disk drive fails to read or write.
  
  When the hard-disk drive has been in constant use for extended periods of time (for more than 2 weeks), multiple symptoms, such as the following, can occur:
  - An inability to log in
- I/O errors to the console when doing read/write operations (the `ls` command)
- Commands do not execute properly (cannot find the path to the executable)

The switch reports that the module is ok, but if you log in to the Service account and try to execute commands, you see that the problem exists. The 4.1(4) service pack alleviates this problem, but if you reimage IDSM-2 with the 4.1(4) application partition image, you must apply the 4.1(4b) patch. For more information, refer to CSCef12198.

- SensorApp either crashes or takes 99% of the CPU when IP logging is enabled for stream-based signatures (1300 series). For the workaround, refer to CSCed32093.

- IDSM-2 appears to lock up and remote access is prohibited (SSH, Telnet, IDM, Event Server, Control Transaction Server, and IP log Server).

This defect is related to using SWAP. IDSM-2 responds to pings. Apply the 4.1(4) service pack to resolve this issue. For more information, refer to CSCed54146.

- Shortly after you upgrade IDSM-2 or you tune a signature with VMS, IDSM-2 becomes unresponsive and often produces a SensorApp core file. Apply the 4.1(4b) patch to fix this issue.

- Confirm that IDSM-2 has the supported configurations.

If you have confirmed that IDSM-2 does not suffer from any of the problems listed above and yet it appears unresponsive, for example, you cannot log in through SSH or Telnet, nor can you session to the switch, determine if IDSM-2 responds to pings and if you can log in through the service account. If you can log in, obtain a `cidDump` and any core files and contact TAC.

For More Information
- For information about the Bug Toolkit and how to access it, see Bug Toolkit, page A-1.
- For a table listing the supported IDSM-2 configurations, see Minimum Supported IDSM-2 Configurations, page A-60.

### Minimum Supported IDSM-2 Configurations

The following matrix is not intended to recommend any particular version, but rather lists the earliest supported versions.

Table A-3 lists the minimum supported configurations for IDSM-2.

<table>
<thead>
<tr>
<th>Catalyst/IDSM-2 Feature</th>
<th>Catalyst Software</th>
<th>Cisco IOS Software</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sup1</td>
<td>Sup2</td>
</tr>
<tr>
<td>SPAN</td>
<td>7.5(1)</td>
<td>7.5(1)</td>
</tr>
<tr>
<td>VACL capture(^1)</td>
<td>7.5(1)</td>
<td>7.5(1)</td>
</tr>
<tr>
<td>ECLB with VACL capture(^2)</td>
<td>8.5(1)</td>
<td>8.5(1)</td>
</tr>
<tr>
<td>Inline interface pairs</td>
<td>8.4(1)</td>
<td>8.4(1)</td>
</tr>
</tbody>
</table>

Note: The following matrix is not intended to recommend any particular version, but rather lists the earliest supported versions.
Switch Commands for Troubleshooting

The following switch commands help you troubleshoot IDSM-2:

- **show module** (Catalyst software and Cisco IOS software)
- **show version** (Catalyst software and Cisco IOS software)
- **show port** (Catalyst software)
- **show trunk** (Catalyst software)
- **show span** (Catalyst software)
- **show security acl** (Catalyst software)
- **show intrusion-detection module** (Cisco IOS software)
- **show monitor** (Cisco IOS software)
- **show vlan access-map** (Cisco IOS software)
- **show vlan filter** (Cisco IOS software)

Status LED Off

If the status indicator is off on IDSM-2, you need to turn power on to IDSM-2. To determine the status of IDSM-2, follow these steps:

**Step 1** Log in to the console.

**Step 2** Verify that IDSM-2 is online.

Catalyst Software.

```
console> enable
```

Enter password:

```
console> (enable) show module
```

```
Mod Slot Ports Module-Type Model Sub Status
--- ---- ----- ------------------------- ------------------- --- --------
1 1 2 1000BaseX Supervisor WS-X6K-SUP1A-2GE yes ok
15 1 1 Multilayer Switch Feature WS-F6K-MSFC no ok
2 2 48 10/100BaseTX Ethernet WS-X6248-RJ-45 no ok
3 3 48 10/100/1000BaseT Ethernet WS-X6548-GE-TX no ok
4 4 16 1000BaseX Ethernet WS-X6516A-GBIC no ok
6 6 8 Intrusion Detection Mod WS-SVC-IDSM2 yes ok
```
Troubleshooting IDSM-2

<table>
<thead>
<tr>
<th>Mod</th>
<th>Module-Name</th>
<th>Serial-Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SAD041308AN</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SAD04120BRB</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SAD03475400</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SAD073906RC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SAL0751QYN0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SAD062004LV</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>MAC-Address(es)</th>
<th>Hw</th>
<th>Fw</th>
<th>Sw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00-d0-c0-cc-0e-d2 to 00-d0-c0-cc-0e-d3</td>
<td>3.1</td>
<td>5.3.1</td>
<td>8.4(1)</td>
</tr>
<tr>
<td>15</td>
<td>00-30-71-34-10-00 to 00-30-71-34-13-ff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>00-30-96-2b-c7-2c to 00-30-96-2b-c7-5b</td>
<td>1.1</td>
<td>4.2(0.24)V</td>
<td>8.4(1)</td>
</tr>
<tr>
<td>3</td>
<td>00-0d-29-f6-01-98 to 00-0d-29-f6-01-c7</td>
<td>5.0</td>
<td>7.2(1)</td>
<td>8.4(1)</td>
</tr>
<tr>
<td>4</td>
<td>00-0e-83-af-15-48 to 00-0e-83-af-15-57</td>
<td>1.0</td>
<td>7.2(1)</td>
<td>8.4(1)</td>
</tr>
<tr>
<td>6</td>
<td>00-e0-00-ff-3b-80 to 00-e0-00-ff-3b-87</td>
<td>0.102</td>
<td>7.2(0.67)</td>
<td>5.0(0.30)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>Sub-Type</th>
<th>Sub-Model</th>
<th>Sub-Serial</th>
<th>Sub-Hw Sub-Sw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L3 Switching Engine</td>
<td>WS-F6K-PFC</td>
<td>SAD04130G6</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td>IDS 2 accelerator board</td>
<td>WS-SVC-IDSUPG</td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

```console
console> (enable)
Cisco IOS software.
```

```router# show module
```

<table>
<thead>
<tr>
<th>Mod</th>
<th>Ports Card Type</th>
<th>Model</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48 48 port 10/100 mb RJ-45 ethernet</td>
<td>WS-X6248-RJ-45</td>
<td>SAD0401012S</td>
</tr>
<tr>
<td>2</td>
<td>48 48 port 10/100 mb RJ45</td>
<td>WS-X6348-RJ-45</td>
<td>SAD04483QRL</td>
</tr>
<tr>
<td>3</td>
<td>48 SPM-capable 48 port 10/100/1000mb RJ45</td>
<td>WS-X6548-GE-TX</td>
<td>SAD073906GH</td>
</tr>
<tr>
<td>5</td>
<td>8 Intrusion Detection System</td>
<td>WS-SVC-IDS-2</td>
<td>SAD075105U</td>
</tr>
<tr>
<td>6</td>
<td>16 SPM-capable 16 port 1000mb GBIC</td>
<td>WS-X6516A-GBIC</td>
<td>SADL740MNYJ</td>
</tr>
<tr>
<td>7</td>
<td>2 Supervisor Engine 720 (Active)</td>
<td>WS-SUP720-3BXL</td>
<td>SAD08320LZT</td>
</tr>
<tr>
<td>9</td>
<td>1 1 port 10-Gigabit Ethernet Module</td>
<td>WS-X6502-10GE</td>
<td>SAD071903BT</td>
</tr>
<tr>
<td>11</td>
<td>8 Intrusion Detection System</td>
<td>WS-SVC-IDS-2</td>
<td>SAD05380608</td>
</tr>
<tr>
<td>13</td>
<td>8 Intrusion Detection System</td>
<td>WS-SVC-IDS-2</td>
<td>SAD072405D8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>MAC addresses</th>
<th>Hw</th>
<th>Fw</th>
<th>Sw</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00d0.d328.e2ac 00d0.d328.e2db</td>
<td>1.1</td>
<td>4.2(0.24)VAI</td>
<td>8.5(0.46)ROC</td>
<td>Ok</td>
</tr>
<tr>
<td>2</td>
<td>0003.6c14.el0d 0003.6c14.e1ff</td>
<td>1.4</td>
<td>5.4(2)</td>
<td>8.5(0.46)ROC</td>
<td>Ok</td>
</tr>
<tr>
<td>3</td>
<td>000d.29f6.7a08 000d.29f6.7aaf</td>
<td>5.0</td>
<td>7.2(1)</td>
<td>8.5(0.46)ROC</td>
<td>Ok</td>
</tr>
<tr>
<td>5</td>
<td>0003.fe2a.e863 0003.7ed3.68ed</td>
<td>4.0</td>
<td>7.2(1)</td>
<td>5.0(1.1)</td>
<td>Ok</td>
</tr>
<tr>
<td>6</td>
<td>000d.ed23.1658 000d.ed23.1667</td>
<td>1.0</td>
<td>7.2(1)</td>
<td>8.5(0.46)ROC</td>
<td>Ok</td>
</tr>
<tr>
<td>7</td>
<td>0011.21a1.1398 0011.21a1.139b</td>
<td>4.0</td>
<td>8.1(3)</td>
<td>12.2(PIKESPE)</td>
<td>Ok</td>
</tr>
<tr>
<td>9</td>
<td>000d.29c1.41bc 000d.29c1.41bc</td>
<td>1.3</td>
<td>Unknown</td>
<td>Unknown</td>
<td>PwrDown</td>
</tr>
<tr>
<td>11</td>
<td>00e0.b0ff.3340 00e0.b0ff.3347</td>
<td>0.102</td>
<td>7.2(0.67)</td>
<td>5.0(1.1)</td>
<td>Ok</td>
</tr>
<tr>
<td>13</td>
<td>0003.4abf.c850 0003.4abf.c857</td>
<td>4.0</td>
<td>7.2(1)</td>
<td>5.0(1)</td>
<td>Ok</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>Sub-Module</th>
<th>Model</th>
<th>Serial</th>
<th>Hw</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>IDS 2 accelerator board</td>
<td>WS-SVC-IDSUPG</td>
<td>SAD091E508A</td>
<td>2.0</td>
<td>Ok</td>
</tr>
<tr>
<td>7</td>
<td>Policy Feature Card 3</td>
<td>WS-F6K-PFC3BXL</td>
<td>SAD083305A1</td>
<td>1.3</td>
<td>Ok</td>
</tr>
<tr>
<td>7</td>
<td>MSFC3 Daughterboard</td>
<td>WS-SUP720</td>
<td>SAD083206JX</td>
<td>2.1</td>
<td>Ok</td>
</tr>
<tr>
<td>11</td>
<td>IDS 2 accelerator board</td>
<td>WS-SVC-IDSUPG</td>
<td></td>
<td>2.0</td>
<td>Ok</td>
</tr>
<tr>
<td>13</td>
<td>IDS 2 accelerator board</td>
<td>WS-SVC-IDSUPG</td>
<td>0347331976</td>
<td>2.0</td>
<td>Ok</td>
</tr>
</tbody>
</table>

Mod Online Diag Status
1 Pass
2 Pass
3 Pass
5 Pass
6 Pass
7 Pass
9 Unknown
11 Pass
13 Pass
router#

Note It is normal for the status to read other when IDSM-2 is first installed. After IDSM-2 completes the diagnostics routines and comes online, the status reads ok. Allow up to 5 minutes for IDSM-2 to come online.

Step 3 If the status does not read ok, turn the module on.
router# set module power up module_number

Status LED On But IDSM-2 Does Not Come Online

If the status indicator is on, but IDSM-2 does not come online, try the following troubleshooting tips:

- Reset IDSM-2.
- Make sure IDSM-2 is installed properly in the switch.
- If the hard-disk drive status has failed, reimage the application partition.

To enable IDSM-2, follow these steps:

Step 1 Log in to the console.
Step 2 Make sure IDSM-2 is enabled.
router# show module
Step 3 If the status does not read ok, enable IDSM-2.
router# set module enable module_number
Step 4 If IDSM-2 still does not come online, reset it.
router# reset module_number

Wait for about 5 minutes for IDSM-2 to come online.
Step 5 If IDSM-2 still does not come online, make sure the hardware and operating system are ok.
router# show test module_number
Step 6 If the port status reads fail, make sure IDSM-2 is firmly connected in the switch.
Step 7 If the hdd status reads fail, you must reimage the application partition.
For More Information
For the procedure for reimaging the application partition, see Chapter 12, “Upgrading, Downgrading, and Installing System Images.”

Cannot Communicate With IDSM-2 Command and Control Port

If you cannot communicate with the IDSM-2 command and control port, the command and control port may not be in the correct VLAN. To communicate with the command and control port of IDSM-2, follow these steps:

Step 1 Log in to the console.

Step 2 Make sure you can ping the command port from any other system.

Step 3 Make sure the IP address, mask, and gateway settings are correct:

```
router# show configuration
```

Step 4 Make sure the command and control port is in the correct VLAN.

Cisco IOS software.

```
cisco> (enable) show port 6/8
* = Configured MAC Address
= 802.1X Authenticated Port Name.

Port Name Status Vlan Duplex Speed Type
----- -------------------- ------- --------- ---------- ---------
6/8 connected trunk full 1000 IDS
```

```
Port Status ErrDisable Reason Port ErrDisableTimeout Action on Timeout
---- ---------- ------------------- ---------------------- -----------------
6/8 connected - Enable No Change
```

```
Port Align-Err FCS-Err Xmit-Err Rcv-Err UnderSize
----- ---------- ---------- ---------- ---------- ---------
6/8 0 0 0 0 0
```

```
Port Single-Col Multi-Coll Late-Coll Excess-Col Carri-Sen Runts Giants
----- ---------- ---------- ---------- ---------- --------- ---------
6/8 0 0 0 0 0 0
```

```
Port Last-Time-Cleared
----- --------------------------
6/8 Wed Mar 2 2005, 15:29:49
```

Idle Detection
--------------
```
cisco> (enable)
```

Cisco IOS software.

```
router# show intrusion-detection module 5 management-port state
Intrusion-detection module 5 management-port:

Switchport: Enabled
Administrative Mode: dynamic desirable
Operational Mode: static access
```
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Vlans allowed on trunk:1
Vlans allowed and active in management domain: 1
Vlans in spanning tree forwarding state and not pruned:
  1
Access Vlan = 1

router#

**Step 5**  If the command and control port is not in the correct VLAN, put it in the correct VLAN.

---

**For More Information**

For the procedure for configuring the switch for command and control access to IDSM-2, see Configuring the Catalyst 6500 Series Switch for Command and Control Access to IDSM-2.

---

**Using the TCP Reset Interface**

The IDSM2 has a TCP reset interface—port 1. The IDSM2 has a specific TCP reset interface because it cannot send TCP resets on its sensing ports.

If you have reset problems with the IDSM2, and the switch is running Catalyst software, try the following:

- If the sensing ports are access ports (a single VLAN), you need to configure the reset port to be in the same VLAN.
- If the sensing ports are dot1q trunk ports (multi-VLAN), the sensing ports and reset port all must have the same native VLAN, and the reset port must trunk all the VLANs being trunked by both the sensing ports.

**Note**  In Cisco IOS when the IDSM2 is in promiscuous mode, the IDSM2 ports are always dot1q trunk ports (even when monitoring only 1 VLAN), and the TCP reset port is automatically set to a trunk port and is not configurable.

**For More Information**

For more information, refer to Configuring IDSM-2.
Connecting a Serial Cable to IDSM-2

You can connect a serial cable directly to the serial console port on IDSM-2. This lets you bypass the switch and module network interfaces. To connect a serial cable to IDSM-2, follow these steps:

**Step 1** Locate the two RJ-45 ports on IDSM-2.
You can find them approximately in the center of the motherboard. If you are facing the module faceplate, the RJ-45 port on the right is the serial console port.

**Step 2** Connect a straight-through cable to the right port on IDSM-2, and then connect the other end of the cable to a terminal server port.

**Step 3** Configure the terminal server port to be 19200 baud, 8 bits, no parity. You can now log directly in to IDSM-2.

**Note** Connecting a serial cable to IDSM-2 works only if there is no module located above IDSM-2 in the switch chassis, because the cable has to come out through the front of the chassis.

Troubleshooting AIP-SSM

**Note** AIP-SSM has the same software architecture as the 4200 series sensors. You can use the same troubleshooting tools as outlined in Troubleshooting the 4200 Series Appliance, page A-23.

The following section contains information for troubleshooting AIP-SSM, and contains the following topics:

- Health and Status Information, page A-66
- Failover Scenarios, page A-68
- AIP-SSM and the Data Plane, page A-70
- AIM-IPS and the Normalizer Engine, page A-70
- TCP Reset Differences Between IPS Appliances and AIP-SSM, page A-71

Health and Status Information

To see the general health of AIP-SSM, use the `show module 1 details` command:

```
asa# show module 1 details
Getting details from the Service Module, please wait...
ASA 5500 Series Security Services Module-20
Model: ASA-SSM-20
Hardware version: 0.2
Serial Number: P2B000005D0
Firmware version: 1.0(10)0
Software version: 5.1(0.1)S153.0
Status: Up
Mgmt IP addr: 10.89.149.219
```
The output shows that AIP-SSM is up. If the status reads Down, you can reset AIP-SSM using the `hw-module module 1 reset` command:

```
asa# hw-module module 1 reset
```

The module in slot 1 should be shut down before resetting it or loss of configuration may occur.

```
Reset issued for module in slot 1

asa(config)# show module
```

```
<table>
<thead>
<tr>
<th>Mod Card Type</th>
<th>Model</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ASA 5520 Adaptive Security Appliance</td>
<td>ASA5520</td>
<td>P2A00000014</td>
</tr>
<tr>
<td>1 ASA 5500 Series Security Services Module-10</td>
<td>ASA-SSM-10</td>
<td>P2A0000067U</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Mod MAC Address Range</th>
<th>Hw Version</th>
<th>Fw Version</th>
<th>Sw Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>000b.fc00.7be0 to 000b.fc00.7be0</td>
<td>0.2</td>
<td>1.0(10)0</td>
<td>7.0(1)</td>
</tr>
<tr>
<td>000b.fc00.0176 to 000b.fc00.0176</td>
<td>0.2</td>
<td>1.0(10)0</td>
<td>5.1(0.1)S153.0</td>
</tr>
</tbody>
</table>
```

```
Mod Status
--- ------------------
0 Up Sys
1 Shutting Down

asa(config)# show module

```
<table>
<thead>
<tr>
<th>Mod Card Type</th>
<th>Model</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ASA 5520 Adaptive Security Appliance</td>
<td>ASA5520</td>
<td>P2A00000014</td>
</tr>
<tr>
<td>1 ASA 5500 Series Security Services Module-10</td>
<td>ASA-SSM-10</td>
<td>P2A0000067U</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Mod MAC Address Range</th>
<th>Hw Version</th>
<th>Fw Version</th>
<th>Sw Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>000b.fc00.7be0 to 000b.fc00.7be0</td>
<td>0.2</td>
<td>1.0(10)0</td>
<td>7.0(1)</td>
</tr>
<tr>
<td>000b.fc00.0176 to 000b.fc00.0176</td>
<td>0.2</td>
<td>1.0(10)0</td>
<td>5.1(0.1)S153.0</td>
</tr>
</tbody>
</table>
```

```
Mod Status
--- ------------------
0 Up Sys
1 Up

asa(config)#
```

If you have problems with recovering AIP-SSM, use the `debug module-boot` command to see the output as AIP-SSM boots. Make sure you have the correct IP address for the TFTP server and you have the correct file on the TFTP server. Then use the `hw-module module 1 recover` command again to recover AIP-SSM:

```
asa(config)# hw-module module 1 recover configure
Image URL [tftp://0.0.0.0/]: tftp://10.89.146.1/IPS-SSM-K9-sys-1.1-a-5.1-0.1.i$
Port IP Address [0.0.0.0]: 10.89.150.227
VLAN ID [0]:
Gateway IP Address [0.0.0.0]: 10.89.149.254
asa(config)# debug module-boot
debug module-boot enabled at level 1
asa(config)# hw-module module 1 recover boot
```

The module in slot 1 will be recovered. This may erase all configuration and all data on that device and attempt to download a new image for it.

```
Recover module in slot 1? [confirm]
```
Recover issued for module in slot 1
asa(config)# Slot-1 140> Cisco Systems ROMMON Version (1.0(10)0) #0: Fri Mar 25 23:02:10 PST 2005
Slot-1 141> Platform ASA-SSM-10
Slot-1 142> GigabitEthernet0/0
Slot-1 143> Link is UP
Slot-1 144> MAC Address: 000b.fc88.0176
Slot-1 145> ROMMON Variable Settings:
Slot-1 146> ADDRESS=10.89.150.227
Slot-1 147> SERVER=10.89.146.1
Slot-1 148> GATEWAY=10.89.149.254
Slot-1 149> PORT=GigabitEthernet0/0
Slot-1 150> VLAN=untagged
Slot-1 151> IMAGE=IPS-SSM-K9-sys-1.1-a-5.1-0.1.img
Slot-1 152> CONFIG=
Slot-1 153> LINKTIMEOUT=20
Slot-1 154> PKTTIMEOUT=4
Slot-1 155> RETRY=20
Slot-1 156> tftp IPS-SSM-K9-sys-1.1-a-5.1-0.1.img@10.89.146.1 via 10.89.149.254
Slot-1 157> TFTP failure: Packet verify failed after 20 retries
Slot-1 158> Rebooting due to Autoboot error ...
Slot-1 159> Rebooting....
Slot-1 160> Cisco Systems ROMMON Version (1.0(10)0) #0: Fri Mar 25 23:02:10 PST 2005
Slot-1 161> Platform ASA-SSM-10
Slot-1 162> GigabitEthernet0/0
Slot-1 163> Link is UP
Slot-1 164> MAC Address: 000b.fc88.0176
Slot-1 165> ROMMON Variable Settings:
Slot-1 166> ADDRESS=10.89.150.227
Slot-1 167> SERVER=10.89.146.1
Slot-1 168> GATEWAY=10.89.149.254
Slot-1 169> PORT=GigabitEthernet0/0
Slot-1 170> VLAN=untagged
Slot-1 171> IMAGE=IPS-SSM-K9-sys-1.1-a-5.1-0.1.img
Slot-1 172> CONFIG=
Slot-1 173> LINKTIMEOUT=20
Slot-1 174> PKTTIMEOUT=4
Slot-1 175> RETRY=20
Slot-1 176> tftp IPS-SSM-K9-sys-1.1-a-5.1-0.1.img@10.89.146.1 via 10.89.149.254

Failover Scenarios

The following failover scenarios apply to the ASA in the event of configuration changes, signature/signature engine updates, service packs, and SensorApp crashes on the AIP-SSM.

Single ASA in Fail-Open Mode

- If the ASA is configured in fail-open mode for the AIP-SSM, and the AIP-SSM experiences a configuration change or signature/signature engine update, traffic is passed through the ASA without being inspected.
- If the ASA is configured in fail-open mode for the AIP-SSM, and the AIP-SSM experiences a SensorApp crash or a service pack upgrade, traffic is passed through the ASA without being inspected.
Single ASA in Fail-Close Mode

- If the ASA is configured in fail-close mode for the AIP-SSM, and the AIP-SSM experiences a configuration change or a signature/signature engine update, traffic is stopped from passing through the ASA.
- If the ASA is configured in fail-close mode for the AIP-SSM, and the AIP-SSM experiences a SensorApp crash or a service pack upgrade, traffic is stopped from passing through the ASA.

Two ASAs in Fail-Open Mode

- If the ASAs are configured in fail-open mode and if the AIP-SSM on the active ASA experiences a configuration change or a signature/signature engine update, traffic is still passed through the active ASA without being inspected. Failover is not triggered.
- If the ASAs are configured in fail-open mode, and if the AIP-SSM on the active ASA experiences a SensorApp crash or a service pack upgrade, failover is triggered and traffic passes through the AIP-SSM that was previously the standby module.

Two ASAs in Fail-Close Mode

- If the ASAs are configured in fail-close mode, and if the AIP-SSM on the active ASA experiences a configuration change or a signature/signature engine update, traffic is stopped from passing through the active ASA. No failover is triggered.
- If the ASAs are configured in fail-close mode, and if the AIP-SSM on the active ASA experiences a SensorApp crash or a service pack upgrade, failover is triggered and traffic passes through the module that was previously the standby for the AIP-SSM.

Configuration Examples

Use the following configuration for the primary ASA:

```
interface GigabitEthernet0/7
    description LAN Failover Interface

failover
failover lan unit primary
failover lan interface folink GigabitEthernet0/7
failover interface ip folink 172.27.48.1 255.255.255.0 standby 172.27.48.2
```

Use the following configuration for the secondary ASA:

```
interface GigabitEthernet0/7
    description LAN Failover Interface

failover
failover lan unit secondary
failover lan interface folink GigabitEthernet0/7
failover interface ip folink 172.27.48.1 255.255.255.0 standby 172.27.48.2
```
AIP-SSM and the Data Plane

Symptom The AIP-SSM data plane is kept in the Up state while applying signature updates. You can check the AIP-SSM data plane status by using the `show module` command during signature updates.

Possible Cause Bypass mode is set to off. The issue is seen when updating signatures, and when you use either CSM or IDM to apply signature updates. This issue is not seen when upgrading IPS system software.

AIM-IPS and the Normalizer Engine

The majority of the features in the Normalizer engine are not used on the AIP-SSM, because the ASA itself handles the normalization. Packets on the ASA IPS modules go through a special path in the Normalizer that only reassembles fragments and puts packets in the right order for the TCP stream. The Normalizer does not do any of the normalization that is done on an inline IPS appliance, because that causes problems in the way the ASA handles the packets.

The following Normalizer engine signatures are not supported:

- 1300.0
- 1304.0
- 1305.0
- 1307.0
- 1308.0
- 1309.0
- 1311.0
- 1315.0
- 1316.0
- 1317.0
- 1330.0
- 1330.1
- 1330.2
- 1330.9
- 1330.10
- 1330.12
- 1330.14
- 1330.15
- 1330.16
- 1330.17
- 1330.18

For More Information

For detailed information about the Normalizer engine, refer to Normalizer Engine.
TCP Reset Differences Between IPS Appliances and AIP-SSM

The IPS appliance sends TCP reset packets to both the attacker and victim when reset-tcp-connection is selected. The IPS appliance sends a TCP reset packet only to the victim under the following circumstances:

- When a deny-packet-inline or deny-connection-inline is selected
- When TCP-based signatures and reset-tcp-connection have NOT been selected

In the case of the AIP-SSM, the TCP reset request is sent to the ASA, and then the ASA sends the TCP reset packets. The ASA sends TCP reset packets to both the attacker and victim when the reset-tcp-connection is selected. When deny-packet-inline or deny-connection-inline is selected, the ASA sends the TCP reset packet to either the attacker or victim depending on the configuration of the signature. Signatures configured to swap the attacker and victim when reporting the alert can cause the ASA to send the TCP reset packet to the attacker.

For More Information
For detailed information about event actions, refer to Event Actions.

Troubleshooting AIM-IPS and NME-IPS

This section contains information for troubleshooting the IPS network modules, AIM-IPS and NME-IPS. It contains the following sections:

- Interoperability With Other IPS Network Modules, page A-71

Interoperability With Other IPS Network Modules

The Cisco access routers only support one IDS/IPS module per router. If you have more than one IDS/IPS module installed, the most capable card is enabled. The most capable hierarchy is:

1. NME-IPS
2. AIM-IPS
3. NM-CIDS

This means, for example, that if all modules are installed, NME-IPS disables all other modules. AIM-IPS disables all NM-CIDS. If there are multiple modules with the same level of capability, the first one discovered is enabled and all others are disabled.

You cannot bring up, enable, or configure a disabled module. To bring up a less capable module, you must remove the more capable module from the router and reboot. Disabled modules are reported in the show diag command output. The state of the module is reported as present but disabled.

If the most capable module slot and port do not match the interface ids slot/port configuration command, the most capable module is disabled with the following warning:

The module in slot x will be disabled and configuration ignored.

The correct slot/port number are displayed so that you can change the configuration.

Caution
You cannot upgrade an NM-CIDS to NME-IPS. For more information on NM-CIDS, refer to Introducing NM-CIDS and Installing NM-CIDS.
Gathering Information

You can use the following CLI commands and scripts to gather information and diagnose the state of the sensor when problems occur. You can use the `show tech-support` command to gather all the information of the sensor, or you can use the other individual commands listed in this section for specific information.

This section describes how to gather troubleshooting information about your sensor, and contains the following topics:

- Health and Network Security Information, page A-72
- Tech Support Information, page A-73
- Version Information, page A-76
- Statistics Information, page A-78
- Interfaces Information, page A-88
- Events Information, page A-90
- cidDump Script, page A-94
- Uploading and Accessing Files on the Cisco FTP Site, page A-95

Health and Network Security Information

Use the `show health` command in privileged EXEC mode to display the overall health status information of the sensor. The health status categories are rated by red and green with red being critical.

⚠️ Caution

When the sensor is first starting, it is normal for certain health metric statuses to be red until the sensor is fully up and running.

To display the overall health status of the sensor, follow these steps:

Step 1 Log in to the CLI.

Step 2 Show the health and security status of the sensor.

```
sensor# show health
Overall Health Status             Red
Health Status for Failed Applications        Green
Health Status for Signature Updates        Green
Health Status for License Key Expiration    Red
Health Status for Running in Bypass Mode     Green
Health Status for Interfaces Being Down     Red
Health Status for the Inspection Load       Green
Health Status for the Time Since Last Event Retrieval  Green
Health Status for the Number of Missed Packets Green
Health Status for the Memory Usage         Not Enabled

Security Status for Virtual Sensor vs0     Green
sensor#
```
Tech Support Information

The `show tech-support` command is useful for capturing all sensor status and configuration information. This section describes the `show tech-support` command, and contains the following topics:

- Understanding the `show tech-support` Command, page A-73
- Displaying Tech Support Information, page A-73
- Tech Support Command Output, page A-74

Understanding the `show tech-support` Command

The `show tech-support` command captures all status and configuration information on the sensor and includes the current configuration, version information, and cidDump information. The output can be large, over 1 MB. You can transfer the output to a remote system.

Note

Always run the `show tech-support` command before contacting TAC.

For More Information

For the procedure for copying the output to a remote system, see Displaying Tech Support Information, page A-73.

Displaying Tech Support Information

Use the `show tech-support` [page] [password] [destination-url destination_url] command to display system information on the screen or have it sent to a specific URL. You can use the information as a troubleshooting tool with TAC.

The following parameters are optional:

- **page**—Displays the output, one page of information at a time. Press Enter to display the next line of output or use the spacebar to display the next page of information.
- **destination-url**—Indicates the information should be formatted as HTML and sent to the destination that follows this command. If you use this keyword, the output is not displayed on the screen.
- **destination_url**—Indicates the information should be formatted as HTML. The URL specifies where the information should be sent. If you do not use this keyword, the information is displayed on the screen.

To display tech support information, follow these steps:

Step 1 Log in to the CLI using an account with administrator privileges.

Step 2 View the output on the screen.

`sensor# show tech-support page`

The system information appears on the screen, one page at a time. Press the spacebar to view the next page or press Ctrl-C to return to the prompt.
Step 3 To send the output (in HTML format) to a file, follow these steps:

a. Enter the following command, followed by a valid destination:

```
sensor# show tech-support destination-url destination_url
```

You can specify the following destination types:

- `ftp:`—Destination URL for FTP network server. The syntax for this prefix is

 `ftp://[username@location]/relativeDirectory/filename`

 or

 `ftp://[username@location]/absoluteDirectory/filename`.

- `scp:`—Destination URL for the SCP network server. The syntax for this prefix is

 `scp://[username@location]/relativeDirectory/filename`

 or

 `scp://[username@location]/absoluteDirectory/filename`.

For example, to send the tech support output to the file `/absolute/reports/sensor1Report.html`:

```
sensor# show tech support dest ftp://csidsuser@10.2.1.2/absolute/reports/sensor1Report.html
```

The password: prompt appears.

b. Enter the password for this user account. The Generating report: message is displayed.

Tech Support Command Output

This output example shows the first part of the command and lists the information for the Interfaces, ARC, and cidDump services.

The following is an example of the `show tech-support` command output:

```
sensor# show tech-support page
```

System Status Report
This Report was generated on Mon Jun 23 19:49:30 2008.
Output from show version
Application Partition:

Cisco Intrusion Prevention System, Version 6.1(1)E2

Host:
Realm Keys key1.0
Signature Definition:
 Signature Update S340.0 2008-06-19
 Virus Update V1.4 2007-03-02
OS Version: 2.4.30-IDS-smp-bigphys
Platform: ASA-SSM-20
Serial Number: P300000220
Licensed, expires: 31-Dec-2009 UTC
Sensor up-time is 25 days.
Using 1052807168 out of 2093600768 bytes of available memory (50% usage)
system is using 17.7M out of 29.0M bytes of available disk space (61% usage)
application-data is using 41.1M out of 166.6M bytes of available disk space (26% usage)
boot is using 40.5M out of 68.5M bytes of available disk space (62% usage)

AnalysisEngine ME-2008_JUN_05_18_26 (Release) 2008-06-05T18:55:02-0500 Running

Upgrade History:

Recovery Partition Version 1.1 - 6.1(1)E1
Host Certificate Valid from: 28-May-2008 to 29-May-2010

Output from show interfaces
Interface Statistics
 Total Packets Received = 7561053
 Total Bytes Received = 620005608
 Missed Packet Percentage = 0
 Current Bypass Mode = Auto_off
MAC statistics from interface GigabitEthernet0/0
 Interface function = Command-control interface
 Description =
 Media Type = TX
 Default Vlan = 0
 Link Status = Up
 Link Speed = Auto_100
 Link Duplex = Auto_Full
 Total Packets Received = 7115688
 Total Bytes Received = 807518285
 Total Multicast Packets Received = 0
 Total Receive Errors = 0
 Total Receive FIFO Overruns = 0
 Total Packets Transmitted = 4988611
 Total Bytes Transmitted = 1004944745
 Total Transmit Errors = 0
 Total Transmit FIFO Overruns = 0
MAC statistics from interface GigabitEthernet0/1
 Interface function = Sensing interface
 Description =
 Media Type = backplane
 Default Vlan = 0
 Inline Mode = Unpaired
 Pair Status = N/A
 Hardware Bypass Capable = No
 Hardware Bypass Paired = N/A
 Link Status = Up
 Admin Enabled Status = Enabled
 Link Speed = Auto_1000
 Link Duplex = Auto_Full
 Missed Packet Percentage = 0
 Total Packets Received = 7561056
 Total Bytes Received = 620005854
 Total Multicast Packets Received = 0
 Total Broadcast Packets Received = 0
 Total Jumbo Packets Received = 0
 Total Undersize Packets Received = 0
 Total Receive Errors = 0
 Total Receive FIFO Overruns = 0
 Total Packets Transmitted = 7561056
 Total Bytes Transmitted = 620006592
 Total Multicast Packets Transmitted = 0
 Total Broadcast Packets Transmitted = 0
 Total Jumbo Packets Transmitted = 0
Total Undersize Packets Transmitted = 0
Total Transmit Errors = 0
Total Transmit FIFO Overruns = 0

Output from show statistics authentication
General
 totalAuthenticationAttempts = 1105
 failedAuthenticationAttempts = 5

Output from show statistics analysis-engine
Analysis Engine Statistics
 Number of seconds since service started = 256036
 --MORE--

Version Information

The show version command is useful for obtaining sensor information. This section describes the show version command, and contains the following topics:

- Understanding the show version Command, page A-76
- Displaying Version Information, page A-76

Understanding the show version Command

The show version command shows the basic sensor information and can indicate where a failure is occurring. It gives the following information:

- Which applications are running
- Versions of the applications
- Disk and memory usage
- Upgrade history of the applications

To get the same information from IDM, choose Monitoring > Sensor Monitoring > Support Information > Diagnostics Report. To get the same information from IME, choose Configuration > sensor_name > Sensor Monitoring > Support Information > Diagnostics Report.

Displaying Version Information

Use the show version command to display version information for all installed operating system packages, signature packages, and IPS processes running on the system. To view the configuration for the entire system, use the more current-config command.

To display the version and configuration, follow these steps:

1. Log in to the CLI.
2. View version information.

 sensor# show version
 Application Partition:

 Cisco Intrusion Prevention System, Version 6.1(1)E1
Host:
 Realm Keys key1.0
Signature Definition:
 Signature Update S323.0 2008-03-24
 Virus Update V1.2 2005-11-24
OS Version: 2.4.30-IDS-smp-bigphys
Platform: IPS-4240-K9
Serial Number: P3000000652
No license present
Sensor up-time is 4 days.
Using 1421475840 out of 1984548864 bytes of available memory (71% usage)
System is using 17.7M out of 29.0M bytes of available disk space (61% usage)
Application-data is using 41.0M out of 166.8M bytes of available disk space (26% usage)
Boot is using 40.4M out of 68.6M bytes of available disk space (62% usage)

Upgrade History:
 IPS-K9-6.1-1-E1 21:44:00 UTC Wed Apr 16 2008
Recovery Partition Version 1.1 - 6.1(1)E1
Host Certificate Valid from: 23-Apr-2008 to 24-Apr-2010

sensor#

Note If the —MORE— prompt is displayed, press the spacebar to see more information or Ctrl-C to
cancel the output and get back to the CLI prompt.

Step 3 View configuration information.

Note You can use the more current-config or show configuration commands.

sensor# more current-config
! ------------------------------
! Current configuration last modified Thu Apr 24 16:21:25 2008
! ------------------------------
! Version 6.1(1)
! Host:
! Realm Keys key1.0
! Signature Definition:
! Signature Update S323.0 2008-03-24
! Virus Update V1.2 2005-11-24
! ------------------------------
! Service interface
! exit
! ------------------------------
! Service authentication
! exit
! ------------------------------
! Service event-action-rules rules0
exit
! ------------------------------
service host
network-settings
host-ip 10.89.147.45/25, 10.89.147.126
telnet-option enabled
access-list 0.0.0.0/0
exit
exit
! ------------------------------
service logger
exit
! ------------------------------
service network-access
exit
! ------------------------------
service notification
exit
! ------------------------------
service signature-definition sig0
exit
! ------------------------------
service ssh-known-hosts
exit
! ------------------------------
service trusted-certificates
exit
! ------------------------------
service web-server
exit
! ------------------------------
service anomaly-detection ad0
exit
! ------------------------------
service external-product-interface
exit
! ------------------------------
service health-monitor
exit
! ------------------------------
service analysis-engine
exit
sensor#

Statistics Information

The **show statistics** command is useful for examining the state of the sensor services. This section describes the **show statistics** command, and contains the following topics:

- Understanding the show statistics Command, page A-79
- Displaying Statistics, page A-79
Appendix A Troubleshooting

Understanding the show statistics Command

The `show statistics` command provides a snapshot of the state of the sensor services. The following services provide statistics:

- Analysis Engine
- Authentication
- Denied Attackers
- Event Server
- Event Store
- Host
- logger
- Attack Response (formerly known as Network Access)
- Notification
- SDEE Server
- Transaction Server
- Transaction Source
- Virtual Sensor
- Web Server

Note To get the same information from IDM, choose Monitoring > Sensor Monitoring > Support Information > Statistics. To get the same information from IME, choose Configuration > sensor_name > Sensor Monitoring > Support Information > Statistics.

Displaying Statistics

Use the `show statistics [analysis-engine | authentication | event-server | event-store | external-product-interface | host | logger | network-access | notification | sdee-server | transaction-server | web-server] [clear]` command to display statistics for each sensor application.

Use the `show statistics {anomaly-detection | denied-attackers | os-identification | virtual-sensor} [name | clear]` to display statistics for these components for all virtual sensors. If you provide the virtual sensor name, the statistics for that virtual sensor only are displayed.

Note The `clear` option is not available for the analysis engine, anomaly detection, host, network access, or OS identification applications.

To display statistics for the sensor, follow these steps:

Step 1 Log in to the CLI.

Step 2 Display the statistics for Analysis Engine.

```
sensor# show statistics analysis-engine
Analysis Engine Statistics
    Number of seconds since service started = 1421127
    Measure of the level of current resource utilization = 0
```
 Measure of the level of maximum resource utilization = 0
 The rate of TCP connections tracked per second = 0
 The rate of packets per second = 0
 The rate of bytes per second = 0

 Receiver Statistics
 Total number of packets processed since reset = 0
 Total number of IP packets processed since reset = 0

 Transmitter Statistics
 Total number of packets transmitted = 0
 Total number of packets denied = 0
 Total number of packets reset = 0

 Fragment Reassembly Unit Statistics
 Number of fragments currently in FRU = 0
 Number of datagrams currently in FRU = 0

 TCP Stream Reassembly Unit Statistics
 TCP streams currently in the embryonic state = 0
 TCP streams currently in the established state = 0
 TCP streams currently in the closing state = 0
 TCP streams currently in the system = 0
 TCP Packets currently queued for reassembly = 0

 The Signature Database Statistics.
 Total nodes active = 0
 TCP nodes keyed on both IP addresses and both ports = 0
 UDP nodes keyed on both IP addresses and both ports = 0
 IP nodes keyed on both IP addresses = 0

 Statistics for Signature Events
 Number of SigEvents since reset = 0

 Statistics for Actions executed on a SigEvent
 Number of Alerts written to the IdsEventStore = 0

 sensor#

 Step 3 Display the statistics for anomaly detection.

 sensor# show statistics anomaly-detection

 Statistics for Virtual Sensor vs0
 No attack
 Detection - ON
 Learning - ON
 Next KB rotation at 10:00:01 UTC Sat Jan 18 2008
 Internal Zone
 TCP Protocol
 UDP Protocol
 Other Protocol

 External Zone
 TCP Protocol
 UDP Protocol
 Other Protocol

 Illegal Zone
 TCP Protocol
 UDP Protocol
 Other Protocol

 Statistics for Virtual Sensor vs1
 No attack
 Detection - ON
 Learning - ON
 Next KB rotation at 10:00:00 UTC Sat Jan 18 2008
 Internal Zone
 TCP Protocol
 UDP Protocol
 Other Protocol

 External Zone
 TCP Protocol
 UDP Protocol
 Other Protocol
Step 4 Display the statistics for authentication.

```
sensor# show statistics authentication
General
  totalAuthenticationAttempts = 128
  failedAuthenticationAttempts = 0
```

Step 5 Display the statistics for the denied attackers in the system.

```
sensor# show statistics denied-attackers
Denied Attackers and hit count for each.
Denied Attackers and hit count for each.
Statistics for Virtual Sensor vs0
  Denied Attackers with percent denied and hit count for each.
```

```
Denied Attackers with percent denied and hit count for each.
```

```
Statistics for Virtual Sensor vs1
  Denied Attackers with percent denied and hit count for each.
```

```
Denied Attackers with percent denied and hit count for each.
```

sensor#

Step 6 Display the statistics for Event Server.

```
sensor# show statistics event-server
General
  openSubscriptions = 0
  blockedSubscriptions = 0
```

Step 7 Display the statistics for Event Store.

```
sensor# show statistics event-store
Event store statistics
  General information about the event store
    The current number of open subscriptions = 2
    The number of events lost by subscriptions and queries = 0
    The number of queries issued = 0
    The number of times the event store circular buffer has wrapped = 0
  Number of events of each type currently stored
    Debug events = 0
    Status events = 9904
    Log transaction events = 0
    Shun request events = 61
    Error events, warning = 67
    Error events, error = 83
    Error events, fatal = 0
    Alert events, informational = 60
    Alert events, low = 1
    Alert events, medium = 60
    Alert events, high = 0
```
Step 8 Display the statistics for the host.

sensor# show statistics host

General Statistics
Last Change To Host Config (UTC) = 16:11:05 Thu Feb 10 2008
Command Control Port Device = FastEthernet0/0

Network Statistics
fe0_0 Link encap:Ethernet HWaddr 00:0B:46:53:06:AA
inet addr:10.89.149.185 Bcast:10.89.149.255 Mask:255.255.255.128
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1001522 errors:0 dropped:0 overruns:0 frame:0
TX packets:469569 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:57547021 (54.8 Mib) TX bytes:63832557 (60.8 MiB)
Interrupt:9 Base address:0xf400 Memory:c0000000-c0000038

NTP Statistics
status = Not applicable

Memory Usage
usedBytes = 500592640
freeBytes = 8855552
totalBytes = 509448192

Swap Usage
Used Bytes = 77824
Free Bytes = 600649728
Total Bytes = 600727552

CPU Statistics
Usage over last 5 seconds = 0
Usage over last minute = 1
Usage over last 5 minutes = 1

Memory Statistics
Memory usage (bytes) = 500498432
Memory free (bytes) = 894976032

Auto Update Statistics
lastDirectoryReadAttempt = N/A
lastDownloadAttempt = N/A
lastInstallAttempt = N/A
nextAttempt = N/A

sensor#

Step 9 Display the statistics for the logging application.

sensor# show statistics logger

The number of Log interprocessor FIFO overruns = 0
The number of syslog messages received = 11
The number of <evError> events written to the event store by severity
 Fatal Severity = 0
 Error Severity = 64
 Warning Severity = 35
 TOTAL = 99
The number of log messages written to the message log by severity
 Fatal Severity = 0
 Error Severity = 64
 Warning Severity = 24
 Timing Severity = 311
 Debug Severity = 31522
 Unknown Severity = 7
 TOTAL = 31928

sensor#
Step 10 Display the statistics for ARC.

```
sensor# show statistics network-access
```

Current Configuration

```
LogAllBlockEventsAndSensors = true
EnableNvramWrite = false
EnableAclLogging = false
AllowSensorBlock = false
BlockMaxEntries = 11
MaxDeviceInterfaces = 250
```

NetDevice

```
Type = PIX
IP = 10.89.150.171
NATAddr = 0.0.0.0
Communications = ssh-3des
```

NetDevice

```
Type = PIX
IP = 10.89.150.219
NATAddr = 0.0.0.0
Communications = ssh-des
```

NetDevice

```
Type = PIX
IP = 10.89.150.250
NATAddr = 0.0.0.0
Communications = telnet
```

NetDevice

```
Type = Cisco
IP = 10.89.150.158
NATAddr = 0.0.0.0
Communications = telnet
```

BlockInterface

```
InterfaceName = ethernet0/1
InterfaceDirection = out
InterfacePostBlock = Post_Acl_Test
```

BlockInterface

```
InterfaceName = ethernet0/1
InterfaceDirection = in
InterfacePreBlock = Pre_Acl_Test
InterfacePostBlock = Post_Acl_Test
```

NetDevice

```
Type = CAT6000_VACL
IP = 10.89.150.138
NATAddr = 0.0.0.0
Communications = telnet
```

BlockInterface

```
InterfaceName = 502
InterfacePreBlock = Pre_Acl_Test
```

BlockInterface

```
InterfaceName = 507
InterfacePostBlock = Post_Acl_Test
```

State

```
BlockEnable = true
```

NetDevice

```
IP = 10.89.150.171
AclSupport = Does not use ACLs
Version = 6.3
State = Active
Firewall-type = PIX
```

NetDevice

```
IP = 10.89.150.219
AclSupport = Does not use ACLs
Version = 7.0
State = Active
Firewall-type = ASA
```
Gathered Information

NetDevice
IP = 10.89.150.250
AclSupport = Does not use ACLs
Version = 2.2
State = Active
Firewall-type = FWSM

NetDevice
IP = 10.89.150.158
AclSupport = Uses Named ACLs
Version = 12.2
State = Active

NetDevice
IP = 10.89.150.138
AclSupport = Uses VACLs
Version = 8.4
State = Active

BlockedAddr
Host
IP = 22.33.4.5
Vlan =
ActualIp =
BlockMinutes =

Host
Vlan =
ActualIp =
BlockMinutes =

Host
IP = 122.122.33.4
Vlan =
ActualIp =
BlockMinutes = 60
MinutesRemaining = 24

Network
IP = 111.22.0.0
Mask = 255.255.0.0
BlockMinutes =

sensor#

Step 11 Display the statistics for the notification application.

sensor# show statistics notification
General
Number of SNMP set requests = 0
Number of SNMP get requests = 0
Number of error traps sent = 0
Number of alert traps sent = 0

sensor#

Step 12 Display the statistics for the SDEE server.

sensor# show statistics sdee-server
General
Open Subscriptions = 0
Blocked Subscriptions = 0
Maximum Available Subscriptions = 5
Maximum Events Per Retrieval = 500

Subscriptions

sensor#

Step 13 Display the statistics for the transaction server.

sensor# show statistics transaction-server
General
totalControlTransactions = 35
Step 14 Display the statistics for a virtual sensor.

```
sensor# show statistics virtual-sensor vs0
```

Statistics for Virtual Sensor Vs0

- Name of current Signature-Definition instance = sig0
- Name of current Event-Action-Rules instance = rules0
- List of interfaces monitored by this virtual sensor =
- General Statistics for this Virtual Sensor
 - Number of seconds since a reset of the statistics = 1421711
 - Measure of the level of resource utilization = 0
 - Total packets processed since reset = 0
 - Total IP packets processed since reset = 0
 - Total packets that were not IP processed since reset = 0
 - Total TCP packets processed since reset = 0
 - Total UDP packets processed since reset = 0
 - Total ICMP packets processed since reset = 0
 - Total packets that were not TCP, UDP, or ICMP processed since reset = 0
 - Total ARP packets processed since reset = 0
 - Total 1SL encapsulated packets processed since reset = 0
 - Total 802.1q encapsulated packets processed since reset = 0
 - Total packets with bad IP checksums processed since reset = 0
 - Total packets with bad layer 4 checksums processed since reset = 0
 - Total number of bytes processed since reset = 0
 - The rate of packets per second since reset = 0
 - The rate of bytes per second since reset = 0
 - The average bytes per packet since reset = 0

Denied Address Information

- Number of Active Denied Attackers = 0
- Number of Denied Attackers Inserted = 0
- Number of Denied Attacker Victim Pairs Inserted = 0
- Number of Denied Attacker Service Pairs Inserted = 0
- Number of Denied Attackers Total Hits = 0
- Number of times max-denied-attackers limited creation of new entry = 0
- Number of exec Clear commands during uptime = 0

Denied Attackers and hit count for each. Denied Attackers with percent denied and hit count for each.

The Signature Database Statistics.

- The Number of each type of node active in the system (can not be reset
 - Total nodes active = 0
 - TCP nodes keyed on both IP addresses and both ports = 0
 - UDP nodes keyed on both IP addresses and both ports = 0
 - IP nodes keyed on both IP addresses = 0

The number of each type of node inserted since reset

- Total nodes inserted = 0
- TCP nodes keyed on both IP addresses and both ports = 0
- UDP nodes keyed on both IP addresses and both ports = 0
- IP nodes keyed on both IP addresses = 0

The rate of nodes per second for each time since reset

- Nodes per second = 0
- TCP nodes keyed on both IP addresses and both ports per second = 0
- UDP nodes keyed on both IP addresses and both ports per second = 0
- IP nodes keyed on both IP addresses per second = 0

The number of root nodes forced to expire because of memory constraint

- TCP nodes keyed on both IP addresses and both ports = 0

Packets dropped because they would exceed Database insertion rate limits = 0

Fragment Reassembly Unit Statistics for this Virtual Sensor

- Number of fragments currently in FRU = 0
- Number of datagrams currently in FRU = 0
- Number of fragments received since reset = 0
Number of fragments forwarded since reset = 0
Number of fragments dropped since last reset = 0
Number of fragments modified since last reset = 0
Number of complete datagrams reassembled since last reset = 0
Fragments hitting too many fragments condition since last reset = 0
Number of overlapping fragments since last reset = 0
Number of Datagrams too big since last reset = 0
Number of overwriting fragments since last reset = 0
Number of Initial fragment missing since last reset = 0
Fragments hitting the max partial dgrams limit since last reset = 0
Fragments too small since last reset = 0
Too many fragments per dgram limit since last reset = 0
Number of datagram reassembly timeout since last reset = 0
Too many fragments claiming to be the last since last reset = 0
Fragments with bad fragment flags since last reset = 0

TCP Normalizer stage statistics
Packets Input = 0
Packets Modified = 0
Dropped packets from queue = 0
Dropped packets due to deny-connection = 0
Current Streams = 0
Current Streams Closed = 0
Current Streams Closing = 0
Current Streams Embryonic = 0
Current Streams Established = 0
Current Streams Denied = 0

Statistics for the TCP Stream Reassembly Unit
Current Statistics for the TCP Stream Reassembly Unit
TCP streams currently in the embryonic state = 0
TCP streams currently in the established state = 0
TCP streams currently in the closing state = 0
TCP streams currently in the system = 0
TCP Packets currently queued for reassembly = 0
Cumulative Statistics for the TCP Stream Reassembly Unit since reset
TCP streams that have been tracked since last reset = 0
TCP streams that had a gap in the sequence jumped = 0
TCP streams that was abandoned due to a gap in the sequence = 0
TCP packets that arrived out of sequence order for their stream = 0
TCP packets that arrived out of state order for their stream = 0
The rate of TCP connections tracked per second since reset = 0

SigEvent Preliminary Stage Statistics
Number of Alerts received = 0
Number of Alerts Consumed by AlertInterval = 0
Number of Alerts Consumed by Event Count = 0
Number of FireOnce First Alerts = 0
Number of FireOnce Intermediate Alerts = 0
Number of Summary First Alerts = 0
Number of Summary Intermediate Alerts = 0
Number of Regular Summary Final Alerts = 0
Number of Global Summary Final Alerts = 0
Number of Active SigEventDataNodes = 0
Number of Alerts Output for further processing = 0

SigEvent Action Override Stage Statistics
Number of Alerts received to Action Override Processor = 0
Number of Alerts where an override was applied = 0
Actions Added
deny-attacker-inline = 0
deny-attacker-victim-pair-inline = 0
deny-attacker-service-pair-inline = 0
deny-connection-inline = 0
deny-packet-inline = 0
modify-packet-inline = 0
log-attacker-packets = 0
log-pair-packets = 0
log-victim-packets = 0
produce-alert = 0
produce-verbose-alert = 0
request-block-connection = 0
request-block-host = 0
request-snmp-trap = 0
reset-tcp-connection = 0
request-rate-limit = 0

SigEvent Action Filter Stage Statistics
Number of Alerts received to Action Filter Processor = 0
Number of Alerts where an action was filtered = 0
Number of Filter Line matches = 0
Number of Filter Line matches causing decreased DenyPercentage = 0

Actions Filtered
 deny-attacker-inline = 0
 deny-attacker-victim-pair-inline = 0
 deny-attacker-service-pair-inline = 0
 deny-connection-inline = 0
 deny-packet-inline = 0
 modify-packet-inline = 0
 log-attacker-packets = 0
 log-pair-packets = 0
 log-victim-packets = 0
 produce-alert = 0
 produce-verbose-alert = 0
 request-block-connection = 0
 request-block-host = 0
 request-snmp-trap = 0
 reset-tcp-connection = 0
 request-rate-limit = 0

SigEvent Action Handling Stage Statistics.
Number of Alerts received to Action Handling Processor = 0
Number of Alerts where produceAlert was forced = 0
Number of Alerts where produceAlert was off = 0

Actions Performed
 deny-attacker-inline = 0
 deny-attacker-victim-pair-inline = 0
 deny-attacker-service-pair-inline = 0
 deny-connection-inline = 0
 deny-packet-inline = 0
 modify-packet-inline = 0
 log-attacker-packets = 0
 log-pair-packets = 0
 log-victim-packets = 0
 produce-alert = 0
 produce-verbose-alert = 0

--MORE--

Step 15 Display the statistics for Web Server.

sensor# show statistics web-server
listener-443
 number of server session requests handled = 61
 number of server session requests rejected = 0
 total HTTP requests handled = 35
 maximum number of session objects allowed = 40
 number of idle allocated session objects = 10
 number of busy allocated session objects = 0
 crypto library version = 6.0.3
sensor#
Step 16 To clear the statistics for an application, for example, the logging application.

sensor# show statistics logger clear
The number of Log interprocessor FIFO overruns = 0
The number of syslog messages received = 141
The number of <evError> events written to the event store by severity
 Fatal Severity = 0
 Error Severity = 14
 Warning Severity = 142
 TOTAL = 156
The number of log messages written to the message log by severity
 Fatal Severity = 0
 Error Severity = 14
 Warning Severity = 1
 Timing Severity = 0
 Debug Severity = 0
 Unknown Severity = 28
 TOTAL = 43

The statistics were retrieved and cleared.

Step 17 Verify that the statistics have been cleared.

sensor# show statistics logger
The number of Log interprocessor FIFO overruns = 0
The number of syslog messages received = 0
The number of <evError> events written to the event store by severity
 Fatal Severity = 0
 Error Severity = 0
 Warning Severity = 0
 TOTAL = 0
The number of log messages written to the message log by severity
 Fatal Severity = 0
 Error Severity = 0
 Warning Severity = 0
 Timing Severity = 0
 Debug Severity = 0
 Unknown Severity = 0
 TOTAL = 0

sensor#

The statistics all begin from 0.

Interfaces Information

The show interfaces command is useful for gathering information on the sensing and command and control interfaces. This section describes the show interfaces command, and contains the following topics:

- Understanding the show interfaces Command, page A-89
- Interfaces Command Output, page A-89
Understanding the show interfaces Command

You can learn the following information from the `show interfaces` command:

- Whether the interface is up or down
- Whether or not packets are being seen, and on which interfaces
- Whether or not packets are being dropped by SensorApp
- Whether or not there are errors being reported by the interfaces that can result in packet drops

The `show interfaces` command displays statistics for all system interfaces. Or you can use the individual commands to display statistics for the command and control interface (`show interfaces command_control_interface_name`), the sensing interface (`show interfaces interface_name`).

Interfaces Command Output

The following example shows the output from the `show interfaces` command:

```
sensor# show interfaces
Interface Statistics
    Total Packets Received = 0
    Total Bytes Received = 0
    Missed Packet Percentage = 0
    Current Bypass Mode = Auto_off
MAC statistics from interface GigabitEthernet0/1
    Media Type = backplane
    Missed Packet Percentage = 0
    Inline Mode = Unpaired
    Pair Status = N/A
    Link Status = Up
    Link Speed = Auto_1000
    Link Duplex = Auto_Full
    Total Packets Received = 0
    Total Bytes Received = 0
    Total Multicast Packets Received = 0
    Total Broadcast Packets Received = 0
    Total Jumbo Packets Received = 0
    Total Undersize Packets Received = 0
    Total Receive Errors = 0
    Total Receive FIFO Overruns = 0
MAC statistics from interface GigabitEthernet0/0
    Media Type = TX
    Link Status = Up
    Link Speed = Auto_100
    Link Duplex = Auto_Full
    Total Packets Received = 2211296
    Total bytes Received = 157577635
    Total Multicast Packets Received = 20
    Total Broadcast Packets Received = 0
    Total Jumbo Packets Received = 0
    Total Undersize Packets Received = 0
    Total Transmit Errors = 0
    Total Transmit FIFO Overruns = 0
```
Events Information

You can use the `show events` command to view the alerts generated by SensorApp and errors generated by an application. This section describes the `show events` command, and contains the following topics:

- Sensor Events, page A-90
- Understanding the show events Command, page A-90
- Displaying Events, page A-91
- Clearing Events, page A-94

Sensor Events

There are five types of events:

- `evAlert`—Intrusion detection alerts
- `evError`—Application errors
- `evStatus`—Status changes, such as an IP log being created
- `evLogTransaction`—Record of control transactions processed by each sensor application
- `evShunRqst`—Block requests

Events remain in the Event Store until they are overwritten by newer events.

Understanding the show events Command

The `show events` command is useful for troubleshooting event capture issues in which you are not seeing events in Event Viewer or Security Monitor. You can use the `show events` command to determine which events are being generated on the sensor to make sure events are being generated and that the fault lies with the monitoring side.

You can clear all events from Event Store by using the `clear events` command.

Here are the parameters for the `show events` command:

```
sensor# show events
<cr>
alert          Display local system alerts.
error          Display error events.
hh:mm[:ss]     Display start time.
log            Display log events.
nac            Display NAC shun events.
past           Display events starting in the past specified time.
status         Display status events.
|              Output modifiers.
```
Displaying Events

The Event Store has a fixed size of 30 MB for all platforms.

Use the `show events` command to display events from Event Store.

Events are displayed beginning at the start time. If you do not specify a start time, events are displayed beginning at the current time. If you do not specify an event type, all events are displayed.

Events are displayed as a live feed. To cancel the request, press `Ctrl-C`.

The following options apply:

- **alert**—Displays alerts. Provides notification of some suspicious activity that may indicate an attack is in process or has been attempted. Alert events are generated by Analysis Engine whenever a signature is triggered by network activity.

 If no level is selected (informational, low, medium, or high), all alert events are displayed.

- **include-traits**—Displays alerts that have the specified traits.

- **exclude-traits**—Does not display alerts that have the specified traits.

- **traits**—Trait bit position in decimal (0 to 15).

- **min-threat-rating**—Displays events with a threat rating above or equal to this value. The default is 0. The valid range is 0 to 100.

- **max-threat-rating**—Displays events with a threat rating below or equal to this value. The default is 100. The valid range is 0 to 100.

- **error**—Displays error events. Error events are generated by services when error conditions are encountered. If no level is selected (warning, error, or fatal), all error events are displayed.

- **log**—Displays log events. Log events are generated when a transaction is received and responded to by an application. Contains information about the request, response, success or failure of the transaction.

- **NAC**—Displays ARC (block) requests.

 ARC is formerly known as NAC. This name change has not been completely implemented throughout IDM, IME, and the CLI for Cisco IPS 6.1.

- **status**—Displays status events.

- **past**—Displays events starting in the past for the specified hours, minutes, and seconds.

 `hh:mm:ss`—Hours, minutes, and seconds in the past to begin the display.

The `show events` command continues to display events until a specified event is available. To exit, press `Ctrl-C`.
To display events from Event Store, follow these steps:

Step 1 Log in to the CLI.

Step 2 Display all events starting now.

```
Sensor# show events
```

```
evError: eventId=1041472274774840147 severity=warning vendor=Cisco
   originator:  
     hostId: sensor2
     appName: cidwebserver
     appInstanceId: 12075
   time: 2008/01/07 04:41:45 2008/01/07 04:41:45 UTC
   errorMessage: name=errWarning received fatal alert: certificate_unknown
```

```
evError: eventId=1041472274774840148 severity=error vendor=Cisco
   originator:  
     hostId: sensor2
     appName: cidwebserver
     appInstanceId: 351
   time: 2008/01/07 04:41:45 2008/01/07 04:41:45 UTC
   errorMessage: name=errTransport WebSession::sessionTask(6) TLS connection exception: handshake incomplete.
```

The feed continues showing all events until you press Ctrl-C.

Step 3 Display the block requests beginning at 10:00 a.m. on February 9, 2008.

```
Sensor# show events NAC 10:00:00 Feb 9 2008
```

```
evShunRqst: eventId=1106837332219222281 vendor=Cisco
   originator:  
     deviceName: Sensor1
     appName: NetworkAccessControllerApp
     appInstance: 654
   shunInfo:
     host: connectionShun=false
     srcAddr: 11.0.0.1
     destAddr: 
     srcPort: 
     destPort: 
     protocol: numericType=0 other
     timeoutMinutes: 40
   evAlertRef: hostId=esendHost 123456789012345678
```

Step 4 Display errors with the warning level starting at 10.00 a.m. on February 9, 2008:

```
Sensor# show events error warning 10:00:00 Feb 9 2008
```

```
evError: eventId=1041472274774840197 severity=warning vendor=Cisco
   originator:  
     hostId: sensor
     appName: cidwebserver
     appInstanceId: 12160
   errorMessage: name=errWarning received fatal alert: certificate_unknown
```

Step 5 Display alerts from the past 45 seconds.

```
Sensor# show events alert past 00:00:45
```

```
evIdsAlert: eventId=1109695939102805307 severity=medium vendor=Cisco
   originator:  
     hostId: sensor
```

```
Step 6  Display events that began 30 seconds in the past.

sensor# show events past 00:00:30
.evStatus: eventId=1041526834774829055 vendor=Cisco
      originator:
        hostId: sensor
        appName: mainApp
        appInstanceId: 2215
        time: 2008/01/08 02:41:00 2008/01/08 02:41:00 UTC
        controlTransaction: command=getVersion successful=true
description: Control transaction response.
        requestor:
          user: cids
          application:
            hostId: 64.101.182.101
            appName: -cidcli
            appInstanceId: 2316

.evStatus: eventId=1041526834774829056 vendor=Cisco
      originator:
        hostId: sensor
        appName: login(pam_unix)
        appInstanceId: 2315
        time: 2008/01/08 02:41:00 2008/01/08 02:41:00 UTC
        syslogMessage:
          description: session opened for user cisco by cisco(uid=0)
Clearing Events

Use the `clear events` command to clear Event Store. To clear events from Event Store, follow these steps:

**Step 1** Log in to the CLI using an account with administrator privileges.

**Step 2** Clear Event Store.

```
sensor# clear events
```

Warning: Executing this command will remove all events currently stored in the event store.
Continue with clear? [ ]:

**Step 3** Enter `yes` to clear the events.

cidDump Script

If you do not have access to IDM, IME, or the CLI, you can run the underlying script cidDump from the Service account by logging in as root and running `/usr/cids/idsRoot/bin/cidDump`. The path of the cidDump file is `/usr/cids/idsRoot/htdocs/private/cidDump.html`.

cidDump is a script that captures a large amount of information including the IPS processes list, log files, OS information, directory listings, package information, and configuration files.

To run the cidDump script, follow these steps:

**Step 1** Log in to the sensor Service account.

**Step 2** `su` to root using the Service account password.

**Step 3** Enter the following command.

```
/usr/cids/idsRoot/bin/cidDump
```

**Step 4** Compress the resulting `/usr/cids/idsRoot/log/cidDump.html` file.

```
gzip /usr/cids/idsRoot/log/cidDump.html
```

**Step 5** Send the resulting HTML file to TAC or the IPS developers in case of a problem.

For More Information

For the procedure for putting a file on the Cisco FTP site, see Uploading and Accessing Files on the Cisco FTP Site, page A-95.
## Uploading and Accessing Files on the Cisco FTP Site

You can upload large files, for example, cidDump.html, the `show tech-support` command output, and cores, to the ftp-sj server. To upload and access files on the Cisco FTP site, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Log in to ftp-sj.cisco.com as anonymous.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Change to the /incoming directory.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Use the <code>put</code> command to upload the files. Make sure to use the binary transfer type.</td>
</tr>
<tr>
<td>Step 4</td>
<td>To access uploaded files, log in to an ECS-supported host.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Change to the /auto/ftp/incoming directory.</td>
</tr>
</tbody>
</table>
### GLOSSARY

#### Numerals

**3DES**
Triple Data Encryption Standard. A stronger version of DES, which is the default encryption method for SSH version 1.5. Used when establishing an SSH session with the sensor. It can be used when the sensor is managing a device.

**802.x**
A set of IEEE standards for the definition of LAN protocols.

#### A

**aaa**
authentication, authorization, and accounting. The primary and recommended method for access control in Cisco devices.

**AAA**
authentication, authorization, and accounting. Pronounced “triple a.”

**ACE**
Access Control Entry. An entry in the ACL that describes what action should be taken for a specified address or protocol. The sensor adds/removes ACE to block hosts.

**ACK**
acknowledgement. Notification sent from one network device to another to acknowledge that some event occurred (for example, the receipt of a message).

**ACL**
Access Control List. A list of ACEs that control the flow of data through a router. There are two ACLs per router interface for inbound data and outbound data. Only one ACL per direction can be active at a time. ACLs are identified by number or by name. ACLs can be standard, enhanced, or extended. You can configure the sensor to manage ACLs.

**action**
The response of the sensor to an event. An action only happens if the event is not filtered. Examples include TCP reset, block host, block connection, IP logging, and capturing the alert trigger packet.

**active ACL**
The ACL created and maintained by ARC and applied to the router block interfaces.

**adaptive security appliance**
Combines firewall, VPN concentrator, and intrusion prevention software functionality into one software image. You can configure the adaptive security appliance in single mode or multi-mode.

**AIC engine**
Application Inspection and Control engine. Provides deep analysis of web traffic. It provides granular control over HTTP sessions to prevent abuse of the HTTP protocol. It allows administrative control over applications that try to tunnel over specified ports, such as instant messaging, and tunneling applications, such as gotomypc. It can also inspect FTP traffic and control the commands being issued.

**AIM-IPS**
Advanced Integration Module. A type of IPS network module installed in Cisco routers.
AIP-SSM  Advanced Inspection and Prevention Security Services Module. The IPS plug-in module in the Cisco ASA 5500 series adaptive security appliance. See ASA.

Alarm Channel  The IPS software module that processes all signature events generated by the inspectors. Its primary function is to generate alerts for each event it receives.

alert  Specifically, an IPS event type; it is written to the Event Store as an evidsAlert. In general, an alert is an IPS message that indicates a network exploit in progress or a potential security problem occurrence. Also known as an alarm.

Analysis Engine  The IPS software module that handles sensor configuration. It maps the interfaces and also the signature and alarm channel policy to the configured interfaces. It performs packet analysis and alert detection. The Analysis Engine functionality is provided by the SensorApp process.

anomaly detection  AD. The sensor component that creates a baseline of normal network traffic and then uses this baseline to detect worm-infected hosts.

API  Application Programming Interface. The means by which an application program talks to communications software. Standardized APIs allow application programs to be developed independently of the underlying method of communication. Computer application programs run a set of standard software interrupts, calls, and data formats to initiate contact with other devices (for example, network services, mainframe communications programs, or other program-to-program communications). Typically, APIs make it easier for software developers to create links that an application needs to communicate with the operating system or with the network.

application  Any program (process) designed to run in the Cisco IPS environment.

application image  Full IPS image stored on a permanent storage device used for operating the sensor.

application instance  A specific application running on a specific piece of hardware in the IPS environment. An application instance is addressable by its name and the IP address of its host computer.

application partition  The bootable disk or compact-flash partition that contains the IPS software image.

ARC  Attack Response Controller. Formerly known as Network Access Controller (NAC). A component of the IPS. A software module that provides block and unblock functionality where applicable.

architecture  The overall structure of a computer or communication system. The architecture influences the capabilities and limitations of the system.

ARP  Address Resolution Protocol. Internet protocol used to map an IP address to a MAC address. Defined in RFC 826.

ASDM  Adaptive Security Device Manager. A web-based application that lets you configure and manage your ASA.

ASN.1  Abstract Syntax Notation 1. Standard for data presentation.

aspect version  Version information associated with a group of IDIOM default configuration settings. For example, Cisco Systems publishes the standard set of attack signatures as a collection of default settings with the S aspect. The S-aspect version number is displayed after the S in the signature update package file name. Other aspects include the Virus signature definitions in the V-aspect and IDIOM signing keys in the key-aspect.
attack relevance rating  ARR. weight associated with the relevancy of the targeted OS. The Attack Relevance Rating is a derived value (relevant, unknown, or not relevant), which is determined at alert time. The relevant OSes are configured per signature.

attack severity rating  ASR. A weight associated with the severity of a successful exploit of the vulnerability. The attack severity rating is derived from the alert severity parameter (informational, low, medium, or high) of the signature. The attack severity rating is configured per signature and indicates how dangerous the event detected is.

atomic attack  Represents exploits contained within a single packet. For example, the “ping of death” attack is a single, abnormally large ICMP packet.

Atomic engine  There are two ATOMIC engines: ATOMIC.IP inspects IP protocol packets and associated Layer-4 transport protocols, and ATOMIC.ARP inspects Layer-2 ARP protocol.

attack  An assault on system security that derives from an intelligent threat, that is, an intelligent act that is a deliberate attempt (especially in the sense of method or technique) to evade security services and violate the security policy of a system.

authentication  Process of verifying that a user has permission to use the system, usually by means of a password key or certificate.

AuthenticationApp  A component of the IPS. It verifies that users have the correct permissions to perform CLI, IDM, IME, or RDEP actions.

autostate  In normal autostate mode, the Layer 3 interfaces remain up if at least one port in the VLAN remains up. If you have appliances, such as load balancers or firewall servers that are connected to the ports in the VLAN, you can configure these ports to be excluded from the autostate feature to make sure that the forwarding SVI does not go down if these ports become inactive.

AV  Anti-Virus.

B

backplane  The physical connection between an interface processor or card and the data buses and the power distribution buses inside a chassis.

base version  A software release that must be installed before a follow-up release, such as a service pack or signature update, can be installed. Major and minor updates are base version releases.

benign trigger  A situation in which a signature is fired correctly, but the source of the traffic is nonmalicious.

BIOS  Basic Input/Output System. The program that starts the sensor and communicates between the devices in the sensor and the system.

block  The ability of the sensor to direct a network device to deny entry to all packets from a specified network host or network.

block interface  The interface on the network device that the sensor manages.

BO  BackOrifice. The original Windows back door Trojan that ran over UDP only.

BO2K  BackOrifice 2000. A Windows back door Trojan that runs over TCP and UDP.
**bootloader**
A small set of system software that runs when the system first powers up. It loads the operating system (from the disk, network, external compact flash, or external USB flash), which loads and runs the IPS application. For AIM-IPS, it boots the module from the network and assists in software installation and upgrades, disaster recovery, and other operations when the module cannot access its software.

**Bpdu**
Bridge Protocol Data Unit. Spanning-Tree Protocol hello packet that is sent out at configurable intervals to exchange information among bridges in the network.

**bypass mode**
Mode that lets packets continue to flow through the sensor even if the sensor fails. Bypass mode is only applicable to inline-paired interfaces.

**C**

**CA**
certification authority. Entity that issues digital certificates (especially X.509 certificates) and vouches for the binding between the data items in a certificate. Sensors use self-signed certificates.

**CA certificate**
Certificate for one CA issued by another CA.

**CEF**
Cisco Express Forwarding. CEF is advanced, Layer 3 IP switching technology. CEF optimizes network performance and scalability for networks with large and dynamic traffic patterns, such as the Internet, on networks characterized by intensive Web-based applications, or interactive sessions.

**certificate**
Digital representation of user or device attributes, including a public key, that is signed with an authoritative private key.

**cidDump**
A script that captures a large amount of information including the IPS processes list, log files, OS information, directory listings, package information, and configuration files.

**CIDEE**
Cisco Intrusion Detection Event Exchange. Specifies the extensions to SDEE that are used by Cisco IPS systems. The CIDEE standard specifies all possible extensions that may be supported by Cisco IPS systems.

**CIDS header**
The header that is attached to each packet in the IPS system. It contains packet classification, packet length, checksum results, timestamp, and the receive interface.

**cipher key**
The secret binary data used to convert between clear text and cipher text. When the same cipher key is used for both encryption and decryption, it is called symmetric. When it is used for either encryption or decryption (but not both), it is called asymmetric.

**Cisco IOS**
Cisco system software that provides common functionality, scalability, and security for all products under the CiscoFusion architecture. Cisco IOS allows centralized, integrated, and automated installation and management of internetworks while supporting a wide variety of protocols, media, services, and platforms.

**CLI**
command-line interface. A shell provided with the sensor used for configuring and controlling the sensor applications.

**command and control interface**
The interface on the sensor that communicates with the IPS manager and other network devices. This interface has an assigned IP address.

**community**
In SNMP, a logical group of managed devices and NMSs in the same administrative domain.
**Composite attack**
Spans multiple packets in a single session. Examples include most conversation attacks such as FTP, Telnet, and most Regex-based attacks.

**Connection block**
ARC blocks traffic from a given source IP address to a given destination IP address and destination port.

**Console**
A terminal or laptop computer used to monitor and control the sensor.

**Console port**
An RJ45 or DB9 serial port on the sensor that is used to connect to a console device.

**Control interface**
When ARC opens a Telnet or SSH session with a network device, it uses one of the routing interfaces of the device as the remote IP address. This is the control interface.

**Control transaction**
An IPS message containing a command addressed to a specific application instance. Example control transactions include start, stop, getConfig.

**Cookie**
A piece of information sent by a web server to a web browser that the browser is expected to save and send back to the web server whenever the browser makes additional requests of the web server.

**CSA MC**
Cisco Security Agent Management Center. CSA MC receives host posture information from the CSA agents it manages. It also maintains a watch list of IP addresses that it has determined should be quarantined from the network.

**CSM**
Cisco Security Manager, the provisioning component of the Cisco Self-Defending Networks solution. CS-Manager is fully integrated with CS-MARS.

**CS-Manager**
See CSM.

**CS-MARS**
Cisco Security Monitoring, Analysis and Reporting System. The monitoring component of the Cisco Self-Defending Networks solution. CS-MARS is fully integrated with CS-Manager.

**CVE**

**D**

**Database Processor**
Maintains the signature state and flow databases.

**Datagram**
Logical grouping of information sent as a network layer unit over a transmission medium without prior establishment of a virtual circuit. IP datagrams are the primary information units in the Internet. The terms cell, frame, message, packet, and segment also are used to describe logical information groupings at various layers of the OSI reference model and in various technology circles.

**DCE**
data circuit-terminating equipment (ITU-T expansion). Devices and connections of a communications network that comprise the network end of the user-to-network interface. The DCE provides a physical connection to the network, forwards traffic, and provides a clocking signal used to synchronize data transmission between DCE and DTE devices. Modems and interface cards are examples of DCE.

**DCOM**
Distributed Component Object Model. Protocol that enables software components to communicate directly over a network. Developed by Microsoft and previously called Network OLE, DCOM is designed for use across multiple network transports, including such Internet protocols as HTTP.
DDoS  Distributed Denial of Service. An attack in which a multitude of compromised systems attack a single target, thereby causing denial of service for users of the targeted system. The flood of incoming messages to the target system essentially forces it to shut down, thereby denying service to the system to legitimate users.

Deny Filters Processor  Handles the deny attacker functions. It maintains a list of denied source IP addresses.

DES  Data Encryption Standard. A strong encryption method where the strength lies in a 56-bit key rather than an algorithm.

destination address  Address of a network device that is receiving data.

DIMM  Dual In-line Memory Modules.

DMZ  demilitarized zone. A separate network located in the neutral zone between a private (inside) network and a public (outside) network.

DNS  Domain Name System. An Internet-wide hostname to IP address mapping. DNS enables you to convert human-readable names into the IP addresses needed for network packets.

DoS  Denial of Service. An attack whose goal is just to disrupt the operation of a specific system or network.

DRAM  dynamic random-access memory. RAM that stores information in capacitors that must be refreshed periodically. Delays can occur because DRAMs are inaccessible to the processor when refreshing their contents. However, DRAMs are less complex and have greater capacity than SRAMs.

DTE  Data Terminal Equipment. Refers to the role of a device on an RS-232C connection. A DTE writes data to the transmit line and reads data from the receive line.

DTP  Dynamic Trunking Protocol. A Cisco proprietary protocol in the VLAN group used for negotiating trunking on a link between two devices and for negotiating the type of trunking encapsulation (ISL or 802.1q) to be used.

E  Ether Channel Load Balancing. Lets a Catalyst switch split traffic flows over different physical paths.

egress  Traffic leaving the network.

encryption  Application of a specific algorithm to data to alter the appearance of the data making it incomprehensible to those who are not authorized to see the information.

engine  A component of the sensor designed to support many signatures in a certain category. Each engine has parameters that can be used to create signatures or tune existing signatures.

enterprise network  Large and diverse network connecting most major points in a company or other organization. Differs from a WAN in that it is privately owned and maintained.

escaped expression  Used in regular expression. A character can be represented as its hexadecimal value, for example, \x61 equals ‘a,’ so \x61 is an escaped expression representing the character ‘a.’
| **ESD** | electrostatic discharge. Electrostatic discharge is the rapid movement of a charge from one object to another object, which produces several thousand volts of electrical charge that can cause severe damage to electronic components or entire circuit card assemblies. |
| **event** | An IPS message that contains an alert, a block request, a status message, or an error message. |
| **Event Server** | One of the components of the IPS. |
| **Event Store** | One of the components of the IPS. A fixed-size, indexed store (30 MB) used to store IPS events. |
| **evIdsAlert** | The XML entity written to the Event Store that represents an alert. |

| **F** |  |
| **fail closed** | Blocks traffic on the device after a hardware failure. |
| **fail open** | Lets traffic pass through the device after a hardware failure. |
| **false negative** | A signature is not fired when offending traffic is detected. |
| **false positive** | Normal traffic or a benign action causes a signature to fire. |
| **Fast Ethernet** | Any of a number of 100-Mbps Ethernet specifications. Fast Ethernet offers a speed increase 10 times that of the 10BaseT Ethernet specification while preserving such qualities as frame format, MAC mechanisms, and MTU. Such similarities allow the use of existing 10BaseT applications and network management tools on Fast Ethernet networks. Based on an extension to the IEEE 802.3 specification. |
| **firewall** | Router or access server, or several routers or access servers, designated as a buffer between any connected public networks and a private network. A firewall router uses access lists and other methods to ensure the security of the private network. |
| **Flood engine** | Detects ICMP and UDP floods directed at hosts and networks. |
| **flooding** | Traffic passing technique used by switches and bridges in which traffic received on an interface is sent out all the interfaces of that device except the interface on which the information was received originally. |
| **fragment** | Piece of a larger packet that has been broken down to smaller units. |
| **fragmentation** | Process of breaking a packet into smaller units when transmitting over a network medium that cannot support the original size of the packet. |
| **Fragment Reassembly Processor** | Reassembles fragmented IP datagrams. It is also responsible for normalization of IP fragments when the sensor is in inline mode. |
| **FTP** | File Transfer Protocol. Application protocol, part of the TCP/IP protocol stack, used for transferring files between network nodes. FTP is defined in RFC 959. |
| **FTP server** | File Transfer Protocol server. A server that uses the FTP protocol for transferring files between network nodes. |
**full duplex**  
Capability for simultaneous data transmission between a sending station and a receiving station.

**FWSM**  
Firewall Security Module. A module that can be installed in a Catalyst 6500 series switch. It uses the `shun` command to block. You can configure the FWSM in either single mode or multi-mode.

---

**G**

**GBIC**  
GigaBit Interface Converter. Often refers to a fiber optic transceiver that adapts optical cabling to fiber interfaces. Fiber-ready switches and NICs generally provide GBIC and/or SFP slots. For more information, refer to the *Catalyst Switch Cable, Connector, and AC Power Cord Guide*.

**Gigabit Ethernet**  
Standard for a high-speed Ethernet, approved by the IEEE (Institute of Electrical and Electronics Engineers) 802.3z standards committee in 1996.

**GMT**  
Greenwich Mean Time. Time zone at zero degrees longitude. Now called Coordinated Universal Time (UTC).

**GRUB**  
Grand Unified Bootloader.

---

**H**

**H.225.0**  
An ITU standard that governs H.225.0 session establishment and packetization. H.225.0 actually describes several different protocols: RAS, use of Q.931, and use of RTP.

**H.245**  
An ITU standard that governs H.245 endpoint control.

**H.323**  
Allows dissimilar communication devices to communicate with each other by using a standardized communication protocol. H.323 defines a common set of CODECs, call setup and negotiating procedures, and basic data transport methods.

**half duplex**  
Capability for data transmission in only one direction at a time between a sending station and a receiving station. BSC is an example of a half-duplex protocol.

**handshake**  
Sequence of messages exchanged between two or more network devices to ensure transmission synchronization.

**hardware bypass**  
A specialized NIC that pairs physical interfaces so that when a software error is detected, a bypass mechanism is engaged that directly connects the physical interfaces and allows traffic to flow through the pair. Hardware bypass passes traffic at the network interface, does not pass it to the IPS system.

**host block**  
ARC blocks all traffic from a given IP address.

**HTTP**  
Hypertext Transfer Protocol. The stateless request/response media transfer protocol used in the IPS architecture for remote data exchange.

**HTTPS**  
An extension to the standard HTTP protocol that provides confidentiality by encrypting the traffic from the website. By default this protocol uses TCP port 443.
ICMP
Internet Control Message Protocol. Network layer Internet protocol that reports errors and provides other information relevant to IP packet processing. Documented in RFC 792.

ICMP flood
Denial of Service attack that sends a host more ICMP echo request ("ping") packets than the protocol implementation can handle.

IDAPI
Intrusion Detection Application Programming Interface. Provides a simple interface between IPS architecture applications. IDAPI reads and writes event data and provides a mechanism for control transactions.

IDCONF
Intrusion Detection Configuration. A data format standard that defines operational messages that are used to configure intrusion detection and prevention systems.

IDENT
Ident protocol, specified in RFC 1413, is an Internet protocol that helps identify the user of a particular TCP connection.

IDIOM
Intrusion Detection Interchange and Operations Messages. A data format standard that defines the event messages that are reported by intrusion detection systems and the operational messages that are used to configure and control intrusion detection systems.

IDM
IPS Device Manager. A web-based application that lets you configure and manage your sensor. The web server for IDM resides on the sensor. You can access it through Internet Explorer or Firefox web browsers.

IDMEF

IDSM-2
Intrusion Detection System Module. A switching module that performs intrusion detection in the Catalyst 6500 series switch.

IDS MC
Management Center for IDS Sensors. A web-based IDS manager that can manage configurations for up to 300 sensors.

IME
IPS Manager Express. A network management application that provides system health monitoring, events monitoring, reporting, and configuration for up to five sensors.

inline mode
All packets entering or leaving the network must pass through the sensor.

inline interface
A pair of physical interfaces configured so that the sensor forwards all traffic received on one interface out to the other interface in the pair.

intrusion detection system
A security service that monitors and analyzes system events to find and provide real-time or near real-time warning of attempts to access system resources in an unauthorized manner.

IP address
32-bit address assigned to hosts using TCP/IP. An IP address belongs to one of five classes (A, B, C, D, or E) and is written as 4 octets separated by periods (dotted decimal format). Each address consists of a network number, an optional subnetwork number, and a host number. The network and subnetwork numbers together are used for routing, and the host number is used to address an individual host within the network or subnetwork. A subnet mask is used to extract network and subnetwork information from the IP address.
IPS | Intrusion Prevention System. A system that alerts the user to the presence of an intrusion on the network through network traffic analysis techniques.

IPS data or message | Describes the messages transferred over the command and control interface between IPS applications.

iplog | A log of the binary packets to and from a designated address. Iplogs are created when the log Event Action is selected for a signature. Iplogs are stored in a libpcap format, which can be read by WireShark and TCPDUMP.

IP spoofing | IP spoofing attack occurs when an attacker outside your network pretends to be a trusted user either by using an IP address that is within the range of IP addresses for your network or by using an authorized external IP address that you trust and to which you want to provide access to specified resources on your network. Should an attacker get access to your IPSec security parameters, that attacker can masquerade as the remote user authorized to connect to the corporate network.

IPV6 | IP version 6. Replacement for the current version of IP (version 4). IPv6 includes support for flow ID in the packet header, which can be used to identify flows. Formerly called IPng (next generation).

ISL | Inter-Switch Link. Cisco-proprietary protocol that maintains VLAN information as traffic flows between switches and routers.

J | Java Web Start provides a platform-independent, secure, and robust deployment technology. It enables developers to deploy full-featured applications to you by making the applications available on a standard web server. With any web browser, you can launch the applications and be confident you always have the most-recent version.

JNLP | Java Network Launching Protocol. Defined in an XML file format specifying how Java Web Start applications are launched. JNLP consists of a set of rules defining how exactly the launching mechanism should be implemented.

K | Knowledge Base. The sets of thresholds learned by anomaly detection and used for worm virus detection.

KB | See KB.

L | Link Aggregation Control Protocol. LACP aids in the automatic creation of EtherChannel links by exchanging LACP packets between LAN ports. This protocol is defined in IEEE 802.3ad.

LAN | Local Area Network. Refers to the Layer 2 network domain local to a given host. Packets exchanged between two hosts on the same LAN do not require Layer 3 routing.
Layer 2 Processor  Processes layer 2-related events. It also identifies malformed packets and removes them from the processing path.

Logger  A component of the IPS.

logging  Gathers actions that have occurred in a log file. Logging of security information is performed on two levels: logging of events (such as IPS commands, errors, and alerts), and logging of individual IP session information.

LOKI  Remote access, back door Trojan, ICMP tunneling software. When the computer is infected, the malicious code creates an ICMP tunnel that can be used to send small payload ICMP replies.

M  

MainApp  The main application in the IPS. The first application to start on the sensor after the operating system has booted.

maintenance partition  The bootable disk partition on IDSM-2, from which an IPS image can be installed on the application partition. No IPS capability is available while the IDSM-2 is booted into the maintenance partition.

maintenance partition image  The bootable software image installed on the maintenance partition on an IDSM-2. You can install the maintenance partition image only while booted into the application partition.

major update  A base version that contains major new functionality or a major architectural change in the product.

manufacturing image  Full IPS system image used by manufacturing to image sensors.

master blocking sensor  A remote sensor that controls one or more devices. Blocking forwarding sensors send blocking requests to the master blocking sensor and the master blocking sensor executes the blocking requests.

MD5  Message Digest 5. A one-way hashing algorithm that produces a 128-bit hash. Both MD5 and Secure Hash Algorithm (SHA) are variations on MD4 and strengthen the security of the MD4 hashing algorithm. Cisco uses hashes for authentication within the IPSec framework. Also used for message authentication in SNMP v.2. MD5 verifies the integrity of the communication, authenticates the origin, and checks for timeliness.

MEG  Mega Event Generator. Signature based on the Meta engine. The Meta engine takes alerts as input rather than packets.

Meta engine  Defines events that occur in a related manner within a sliding time interval. This engine processes events rather than packets.

MIB  Management Information Base. Database of network management information that is used and maintained by a network management protocol, such as SNMP or CMIP. The value of a MIB object can be changed or retrieved using SNMP or CMIP commands, usually through a GUI network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MIME  Multipurpose Internet Mail Extension. Standard for transmitting non-text data (or data that cannot be represented in plain ASCII code) in Internet mail, such as binary, foreign language text (such as Russian or Chinese), audio, or video data. MIME is defined in RFC 2045.
minor update
A minor version that contains minor enhancements to the product line. Minor updates are incremental to the major version, and are also base versions for service packs.

module
A removable card in a switch, router, or security appliance chassis. AIM-IPS, AIP SSM, IDSM-2, and NME-IPS are IPS modules.

monitoring interface
See sensing interface.

MPF
Modular Policy Framework. A means of configuring security appliance features in a manner similar to Cisco IOS software Modular QoS CLI.

MSFC, MSFC2
Multilayer Switch Feature Card. An optional card on a Catalyst 6000 supervisor engine that performs L3 routing for the switch.

MSRPC
Microsoft Remote Procedure Call. MSRPC is the Microsoft implementation of the DCE RPC mechanism. Microsoft added support for Unicode strings, implicit handles, inheritance of interfaces (which are extensively used in DCOM), and complex calculations in the variable-length string and structure paradigms already present in DCE/RPC.

MySDN
My Self-Defending Network. A part of the signature definition section of IDM and IME. It provides detailed information about signatures.

N
NAC
Network Access Controller. See ARC.

NAT
Native Address Translation. A network device can present an IP address to the outside networks that is different from the actual IP address of a host.

NBD
Next Business Day. The arrival of replacement hardware according to Cisco service contracts.

Neighborhood Discovery
Protocol for IPv6. IPv6 nodes on the same link use Neighbor Discovery to discover each other's presence, to determine each other's link-layer addresses, to find routers, and to maintain reachability information about the paths to active neighbors.

network device
A device that controls IP traffic on a network and can block an attacking host. An example of a network device is a Cisco router or PIX Firewall.

never block address
Hosts and networks you have identified that should never be blocked.

never shun address
See never block address.

NIC
Network Interface Card. Board that provides network communication capabilities to and from a computer system.

NME-IPS
Network Module Enhanced. An IPS module that you can install in any network module slot in the Cisco 2800 and 3800 series integrated services routers.

NMS
network management system. System responsible for managing at least part of a network. An NMS is generally a reasonably powerful and well-equipped computer, such as an engineering workstation. NMSs communicate with agents to help keep track of network statistics and resources.
node  A physical communicating element on the command and control network. For example, an appliance, an IDSM-2, or a router.

Normalizer engine  Configures how the IP and TCP normalizer functions and provides configuration for signature events related to the IP and TCP normalizer.

NOS  network operating system. Generic term used to refer to distributed file systems. Examples include LAN Manager, NetWare, NFS, and VINES.

NTP  Network Timing Protocol. Protocol built on top of TCP that ensures accurate local time-keeping with reference to radio and atomic clocks located on the Internet. This protocol is capable of synchronizing distributed clocks within milliseconds over long time periods.

NTP server  Network Timing Protocol server. A server that uses NTP. NTP is a protocol built on top of TCP that ensures accurate local time-keeping with reference to radio and atomic clocks located on the Internet. This protocol is capable of synchronizing distributed clocks within milliseconds over long time periods.

NVRAM  Non-Volatile Read/Write Memory. RAM that retains its contents when a unit is powered off.

O

OIR  online insertion and removal. Feature that permits you to add, replace, or remove cards without interrupting the system power, entering console commands, or causing other software or interfaces to shutdown.

OPS  Outbreak Prevention Service.

P

packet  Logical grouping of information that includes a header containing control information and (usually) user data. Packets most often are used to refer to network layer units of data. The terms datagram, frame, message, and segment also are used to describe logical information groupings at various layers of the OSI reference model and in various technology circles.

PAgP  Port Aggregation Control Protocol. PAgP aids in the automatic creation of EtherChannel links by exchanging PAgP packets between LAN ports. It is a Cisco-proprietary protocol.

passive fingerprinting  Act of determining the OS or services available on a system from passive observation of network interactions.

passive OS fingerprinting  The sensor determines host operating systems by inspecting characteristics of the packets exchanged on the network.

PASV Port Spoof  An attempt to open connections through a firewall to a protected FTP server to a non-FTP port. This happens when the firewall incorrectly interprets an FTP 227 passive command by opening an unauthorized connection.

PAT  Port Address Translation. A more restricted translation scheme than NAT in which a single IP address and different ports are used to represent the hosts of a network.
patch release  Release that addresses defects identified in the update (minor, major, or service pack) binaries after a software release (service pack, minor, or major update) has been released.

PAWS  Protection Against Wrapped Sequence. Protection against wrapped sequence numbers in high performance TCP networks. See RFC 1323.

PDU  protocol data unit. OSI term for packet. See also BPDU and packet.

PEP  Cisco Product Evolution Program. PEP is the UDI information that consists of the PID, the VID, and the SN of your sensor. PEP provides hardware version and serial number visibility through electronic query, product labels, and shipping items.

PER  packed encoding rules. Instead of using a generic style of encoding that encodes all types in a uniform way, PER specializes the encoding based on the date type to generate much more compact representations.

PFC  Policy Feature Card. An optional card on a Catalyst 6000 supervisor engine that supports VACL packet filtering.

PID  Product Identifier. The orderable product identifier that is one of the three parts of the UDI. The UDI is part of the PEP policy.

ping  packet internet groper. Often used in IP networks to test the reachability of a network device. It works by sending ICMP echo request packets to the target host and listening for echo response replies.

PIX Firewall  Private Internet Exchange Firewall. A Cisco network security device that can be programmed to block/enable addresses and ports between networks.

PKI  Public Key Infrastructure. Authentication of HTTP clients using the clients X.509 certificates.

POST  Power-On Self Test. Set of hardware diagnostics that runs on a hardware device when that device is powered up.

Post-ACL  Designates an ACL from which ARC should read the ACL entries, and where it places entries after all deny entries for the addresses being blocked.

Pre-ACL  Designates an ACL from which ARC should read the ACL entries, and where it places entries before any deny entries for the addresses being blocked.

cenciscuous delta  PD. A weight in the range of 0 to 30 configured per signature. This weight can be subtracted from the overall risk rating in promiscuous mode.

Promiscuous mode  A passive interface for monitoring packets of the network segment. The sensing interface does not have an IP address assigned to it and is therefore invisible to attackers.

Q  

Q.931  ITU-T specification for signaling to establish, maintain, and clear ISDN network connections.

QoS  quality of service. Measure of performance for a transmission system that reflects its transmission quality and service availability.
RackMounting

Refers to mounting a sensor in an equipment rack.

RAM

Random-access memory. Volatile memory that can be read and written by a microprocessor.

RAS

Registration, Admission, and Status Protocol. Protocol that is used between endpoints and the gatekeeper to perform management functions. RAS signalling function performs registration, admissions, bandwidth changes, status, and disengage procedures between the VoIP gateway and the gatekeeper.

RBCP

Router Blade Control Protocol. RBCP is based on SCP, but modified specifically for the router application. It is designed to run over Ethernet interfaces and uses 802.2 SNAP encapsulation for messages.

RDEP2

Remote Data Exchange Protocol version 2. The published specification for remote data exchange over the command and control network using HTTP and TLS.

Reassembly

The putting back together of an IP datagram at the destination after it has been fragmented either at the source or at an intermediate node.

Recovery Package

An IPS package file that includes the full application image and installer used for recovery on sensors.

Repackaging Release

Used to address defects in the packaging or the installer.

Regex

See regular expression.

Regular Expression

A mechanism by which you can define how to search for a specified sequence of characters in a data stream or file. Regular expressions are a powerful and flexible notation almost like a mini-programming language that allow you to describe text. In the context of pattern matching, regular expressions allow a succinct description of any arbitrary pattern.

Repackaging Release

A release that addresses defects in the packaging or the installer.

Risk Rating

An risk rating is a value between 0 and 100 that represents a numerical quantification of the risk associated with a particular event on the network. The risk of the attack accounts for the severity, fidelity, relevance, and asset value of the attack, but not any response or mitigation actions. This risk is higher when more damage could be inflicted on your network.

RMA

Return Materials Authorization. The Cisco program for returning faulty hardware and obtaining a replacement.

ROMMON

Read-Only-Memory Monitor. ROMMON lets you TFTP system images onto the sensor for recovery purposes.

Round-Trip Time

See RTT.

RPC

Remote-procedure call. Technological foundation of client/server computing. RPCs are procedure calls that are built or specified by clients and are executed on servers, with the results returned over the network to the clients.

RSM

Router Switch Module. A router module that is installed in a Catalyst 5000 switch. It functions exactly like a standalone router.
Glossary

**RTP**
Real-Time Transport Protocol. Commonly used with IP networks. RTP is designed to provide end-to-end network transport functions for applications transmitting real-time data, such as audio, video, or simulation data, over multicast or unicast network services. RTP provides such services as payload type identification, sequence numbering, timestamping, and delivery monitoring to real-time applications.

**RTT**
Round-trip time. A measure of the time delay imposed by a network on a host from the sending of a packet until acknowledgement of the receipt.

**RU**
Rack unit. A rack is measured in rack units. An RU is equal to 44 mm or 1.75 inches.

**S**

**SCP**
Switch Configuration Protocol. Cisco control protocol that runs directly over the Ethernet.

**SCEP**
Simple Certificate Enrollment Protocol. The Cisco Systems PKI communication protocol that leverages existing technology by using PKCS#7 and PKCS#10. SCEP is the evolution of the enrollment protocol.

**SDEE**
Security Device Event Exchange. A product-independent standard for communicating security device events. It is an enhancement to RDEP. It adds extensibility features that are needed for communicating events generated by various types of security devices.

**Secure Shell Protocol**
Protocol that provides a secure remote connection to a router through a Transmission Control Protocol (TCP) application.

**security context**
You can partition a single adaptive security appliance into multiple virtual devices, known as security contexts. Each context is an independent device, with its own security policy, interfaces, and administrators. Multiple contexts are similar to having multiple standalone devices. Many features are supported in multiple context mode, including routing tables, firewall features, IPS, and management.

**Security Monitor**
Monitoring Center for Security. Provides event collection, viewing, and reporting capability for network devices. Used with the IDS MC.

**sensing interface**
The interface on the sensor that monitors the desired network segment. The sensing interface is in promiscuous mode; it has no IP address and is not visible on the monitored segment.

**sensor**
The sensor is the intrusion detection engine. It analyzes network traffic searching for signs of unauthorized activity.

**SensorApp**
A component of the IPS. Performs packet capture and analysis. SensorApp analyzes network traffic for malicious content. Packets flow through a pipeline of processors fed by a producer designed to collect packets from the network interfaces on the sensor. SensorApp is the standalone executable that runs Analysis Engine.

**Service engine**
Deals with specific protocols, such as DNS, FTP, H255, HTTP, IDENT, MS RPC, MS SL, NTP, RPC, SMB, SNMP, and SSH.

**service pack**
Used for the release of defect fixes and for the support of new signature engines. Service packs contain all of the defect fixes since the last base version (minor or major) and any new defects fixes.
**session command**  Command used on routers and switches to provide either Telnet or console access to a module in the router or switch.

**SFP**  Small Form-factor Pluggable. Often refers to a fiber optic transceiver that adapts optical cabling to fiber interfaces. See GBIC for more information.

**shun command**  Enables a dynamic response to an attacking host by preventing new connections and disallowing packets from any existing connection. It is used by ARC when blocking with a PIX Firewall.

**Signature Analysis Processor**  Dispatches packets to the inspectors that are not stream-based and that are configured for interest in the packet in process.

**signature**  A signature distills network information and compares it against a rule set that indicates typical intrusion activity.

**signature engine**  A component of the sensor that supports many signatures in a certain category. An engine is composed of a parser and an inspector. Each engine has a set of legal parameters that have allowable ranges or sets of values.

**signature engine update**  Executable file with its own versioning scheme that contains binary code to support new signature updates.

**Signature Event Action Filter**  Subtracts actions based on the signature event signature ID, addresses, and risk rating. The input to the Signature Event Action Filter is the signature event with actions possibly added by the Signature Event Action Override.

**Signature Event Action Handler**  Performs the requested actions. The output from Signature Event Action Handler is the actions being performed and possibly an evldsAlert written to the Event Store.

**Signature Event Action Override**  Adds actions based on the risk rating value. The Signature Event Action Override applies to all signatures that fall into the range of the configured risk rating threshold. Each Signature Event Action Override is independent and has a separate configuration value for each action type.

**Signature Event Action Processor**  Processes event actions. Event actions can be associated with an event risk rating threshold that must be surpassed for the actions to take place.

**signature fidelity rating**  SFR. A weight associated with how well a signature might perform in the absence of specific knowledge of the target. The signature fidelity rating is configured per signature and indicates how accurately the signature detects the event or condition it describes.

**signature update**  Executable file that contains a set of rules designed to recognize malicious network activities, such as worms, DDOS, viruses, and so forth. Signature updates are released independently, are dependent on a required signature engine version, and have their own versioning scheme.

**Slave Dispatch Processor**  Process found on dual CPU systems.

**SMB**  Server Message Block. File-system protocol used in LAN manager and similar NOSs to package data and exchange information with other systems.

**SMTP**  Simple Mail Transfer Protocol. Internet protocol providing e-mail services.

**SN**  Serial Number. Part of the UDI. The SN is the serial number of your Cisco product.
SNAP
Subnetwork Access Protocol. Internet protocol that operates between a network entity in the subnetwork and a network entity in the end system. SNAP specifies a standard method of encapsulating IP datagrams and ARP messages on IEEE networks. The SNAP entity in the end system makes use of the services of the subnetwork and performs three key functions: data transfer, connection management, and QoS selection.

sniffing interface
See sensing interface.

SNMP

SNMP2
SNMP Version 2. Version 2 of the network management protocol. SNMP2 supports centralized and distributed network management strategies, and includes improvements in the SMI, protocol operations, management architecture, and security.

software bypass
Passes traffic through the IPS system without inspection.

source address
Address of a network device that is sending data.

SPAN
Switched Port Analyzer. Feature of the Catalyst 5000 switch that extends the monitoring abilities of existing network analyzers into a switched Ethernet environment. SPAN mirrors the traffic at one switched segment onto a predefined SPAN port. A network analyzer attached to the SPAN port can monitor traffic from any other Catalyst switched port.

spanning tree
Loop-free subset of a network topology.

SQL
Structured Query Language. International standard language for defining and accessing relational databases.

SRAM
Type of RAM that retains its contents for as long as power is supplied. SRAM does not require constant refreshing, like DRAM.

SSH
Secure Shell. A utility that uses strong authentication and secure communications to log in to another computer over a network.

SSL
Secure Socket Layer. Encryption technology for the Internet used to provide secure transactions, such as the transmission of credit card numbers for e-commerce.

Stacheldraht
A DDoS tool that relies on the ICMP protocol.

State engine
Stateful searches of HTTP strings.

Statistics Processor
Keeps track of system statistics such as packet counts and packet arrival rates.

Stream Reassembly Processor
Reorders TCP streams to ensure the arrival order of the packets at the various stream-based inspectors. It is also responsible for normalization of the TCP stream. The normalizer engine lets you enable or disable alert and deny actions.

String engine
A signature engine that provides regular expression-based pattern inspection and alert functionality for multiple transport protocols, including TCP, UDP, and ICMP.

subsignature
A more granular representation of a general signature. It typically further defines a broad scope signature.
surface mounting  Refers to attaching rubber feet to the bottom of a sensor when it is installed on a flat surface. The rubber feet allow proper airflow around the sensor and they also absorb vibration so that the hard-disk drive is less impacted.

switch  Network device that filters, forwards, and floods frames based on the destination address of each frame. The switch operates at the data link layer of the OSI model.

SYN flood  Denial of Service attack that sends a host more TCP SYN packets (request to synchronize sequence numbers, used when opening a connection) than the protocol implementation can handle.

system image  The full IPS application and recovery image used for reimaging an entire sensor.

TAC  A Cisco Technical Assistance Center. There are four TACs worldwide.


target value rating  TVR. A weight associated with the perceived value of the target. Target value rating is a user-configurable value (zero, low, medium, high, or mission critical) that identifies the importance of a network asset (through its IP address).

TCP  Transmission Control Protocol. Connection-oriented transport layer protocol that provides reliable full-duplex data transmission. TCP is part of the TCP/IP protocol stack.

TCPDUMP  The TCPDUMP utility is a free network protocol analyzer for UNIX and Windows. It lets you examine data from a live network or from a capture file on disk. You can use different options for viewing summary and detail information for each packet. For more information see http://www.tcpdump.org/.

TCP reset interface  The interface on IDSM-2 that can send TCP resets. On most sensors the TCP resets are sent out on the same sensing interface on which the packets are monitored, but on IDSM-2 the sensing interfaces cannot be used for sending TCP resets. On the IDSM-2 the TCP reset interface is designated as port 1 with Catalyst software, and is not visible to the user in Cisco IOS software. The TCP reset action is only appropriate as an action selection on those signatures that are associated with a TCP-based service.

Telnet  Standard terminal emulation protocol in the TCP/IP protocol stack. Telnet is used for remote terminal connection, enabling users to log in to remote systems and use resources as if they were connected to a local system. Telnet is defined in RFC 854.

terminal server  A router with multiple, low speed, asynchronous ports that are connected to other serial devices. Terminal servers can be used to remotely manage network equipment, including sensors.

TFN  Tribe Flood Network. A common type of DoS attack that can take advantage of forged or rapidly changing source IP addresses to allow attackers to thwart efforts to locate or filter the attacks.

TFN2K  Tribe Flood Network 2000. A common type of DoS attack that can take advantage of forged or rapidly changing source IP addresses to allow attackers to thwart efforts to locate or filter the attacks.
<table>
<thead>
<tr>
<th>Glossary Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol. Simplified version of FTP that lets files be transferred from one computer to another over a network, usually without the use of client authentication (for example, username and password).</td>
</tr>
<tr>
<td>threat rating</td>
<td>A value between 0 and 100 that represents a numerical decrease of the risk rating of an attack based on the response action that depicts the threat of an alert on the monitored network.</td>
</tr>
<tr>
<td>three-way handshake</td>
<td>Process whereby two protocol entities synchronize during connection establishment.</td>
</tr>
<tr>
<td>threshold</td>
<td>A value, either upper- or lower-bound that defines the maximum/minimum allowable condition before an alarm is sent.</td>
</tr>
<tr>
<td>Time Processor</td>
<td>Processes events stored in a time-slice calendar. Its primary task is to make stale database entries expire and to calculate time-dependent statistics.</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security. The protocol used over stream transports to negotiate the identity of peers and establish encrypted communications.</td>
</tr>
<tr>
<td>TNS</td>
<td>Transparent Network Substrate. Provides database applications with a single common interface to all industry-standard network protocols. With TNS, database applications can connect to other database applications across networks with different protocols.</td>
</tr>
<tr>
<td>topology</td>
<td>Physical arrangement of network nodes and media within an enterprise networking structure.</td>
</tr>
<tr>
<td>TPKT</td>
<td>Transport Packet. RFC 1006-defined method of demarking messages in a packet. The protocol uses ISO transport services on top of TCP.</td>
</tr>
<tr>
<td>traceroute</td>
<td>Program available on many systems that traces the path a packet takes to a destination. It is used mostly to debug routing problems between hosts. A traceroute protocol is also defined in RFC 1393.</td>
</tr>
<tr>
<td>traffic analysis</td>
<td>Inference of information from observable characteristics of data flow(s), even when the data is encrypted or otherwise not directly available. Such characteristics include the identities and locations of the source(s) and destination(s), and the presence, amount, frequency, and duration of occurrence.</td>
</tr>
<tr>
<td>Traffic ICMP engine</td>
<td>Analyzes traffic from nonstandard protocols, such as TFN2K, LOKI, and DDOS.</td>
</tr>
<tr>
<td>Transaction Server</td>
<td>A component of the IPS.</td>
</tr>
<tr>
<td>Transaction Source</td>
<td>A component of the IPS.</td>
</tr>
<tr>
<td>trap</td>
<td>Message sent by an SNMP agent to an NMS, a console, or a terminal to indicate the occurrence of a significant event, such as a specifically defined condition or a threshold that was reached.</td>
</tr>
<tr>
<td>Trojan engine</td>
<td>Analyzes traffic from nonstandard protocols, such as BO2K and TFN2K.</td>
</tr>
<tr>
<td>trunk</td>
<td>Physical and logical connection between two switches across which network traffic travels. A backbone is composed of a number of trunks.</td>
</tr>
<tr>
<td>trusted certificate</td>
<td>Certificate upon which a certificate user relies as being valid without the need for validation testing; especially a public-key certificate that is used to provide the first public key in a certification path.</td>
</tr>
</tbody>
</table>
trusted key

Public key upon which a user relies; especially a public key that can be used as the first public key in a certification path.

tune

Adjusting signature parameters to modify an existing signature.

U

UDI

Unique Device Identifier. Provides a unique identity for every Cisco product. The UDI is composed of the PID, VID, and SN. The UDI is stored in the Cisco IPS ID PROM.

UDP

User Datagram Protocol. Connectionless transport layer protocol in the TCP/IP protocol stack. UDP is a simple protocol that exchanges datagrams without acknowledgments or guaranteed delivery, requiring that error processing and retransmission be handled by other protocols. UDP is defined in RFC 768.

unblock

To direct a router to remove a previously applied block.

unvirtualized sensing interface

An unvirtualized sensing interface has not been divided into subinterfaces and the entire interfaces can be associated with at most one virtual sensor.

UPS

Uninterruptable Power Source.

UTC

Coordinated Universal Time. Time zone at zero degrees longitude. Formerly called Greenwich Mean Time (GMT) and Zulu time.

V

VACL

VLAN ACL. An ACL that filters all packets (both within a VLAN and between VLANs) that pass through a switch. Also known as security ACLs.

VID

Version identifier. Part of the UDI.

VIP

Versatile Interface Processor. Interface card used in Cisco 7000 and Cisco 7500 series routers. The VIP provides multilayer switching and runs Cisco IOS. The most recent version of the VIP is VIP2.

virtual sensor

A logical grouping of sensing interfaces and the configuration policy for the signature engines and alarm filters to apply to them. In other words, multiple virtual sensors running on the same appliance, each configured with different signature behavior and traffic feeds.

virtualized sensing interface

A virtualized interface has been divided into subinterfaces each of which consists of a group of VLANs. You can associate a virtual sensor with one or more subinterfaces so that different intrusion prevention policies can be assigned to those subinterfaces. You can virtualize both physical and inline interfaces.

virus

Hidden, self-replicating section of computer software, usually malicious logic, that propagates by infecting—that is, inserting a copy of itself into and becoming part of—another program. A virus cannot run by itself; it requires that its host program be run to make the virus active.

virus update

A signature update specifically addressing viruses.
VLAN
Virtual Local Area Network. Group of devices on one or more LANs that are configured (using management software) so that they can communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments. Because VLANs are based on logical instead of physical connections, they are extremely flexible.

VTP
VLAN Trunking Protocol. Cisco Layer 2 messaging protocol that manages the addition, deletion, and renaming of VLANs on a network-wide basis.

VMS
CiscoWorks VPN/Security Management Solution. A suite of network security applications that combines web-based tools for configuring, monitoring, and troubleshooting enterprise VPN, firewalls, network intrusion detection systems and host-based intrusion prevention systems.

VoIP
Voice over IP. The capability to carry normal telephony-style voice over an IP-based internet with POTS-like functionality, reliability, and voice quality. VoIP enables a router to carry voice traffic (for example, telephone calls and faxes) over an IP network. In VoIP, the DSP segments the voice signal into frames, which then are coupled in groups of two and stored in voice packets. These voice packets are transported using IP in compliance with ITU-T specification H.323.

VPN
Virtual Private Network(ing). Enables IP traffic to travel securely over a public TCP/IP network by encrypting all traffic from one network to another. A VPN uses “tunneling” to encrypt all information at the IP level.

VTP
VLAN Trunking Protocol. A Cisco Layer 2 messaging protocol that manages the addition, deletion, and renaming of VLANs on a network-wide basis.

vulnerability
One or more attributes of a computer or a network that permit a subject to initiate patterns of misuse on that computer or network.

W
WAN
wide-area network. Data communications network that serves users across a broad geographic area and often uses transmission devices provided by common carriers. Frame Relay, SMDS, and X.25 are examples of WANs.

Watch list rating
WLR. A weight associated with the CSA MC watch list in the range of 0 to 100 (CSA MC only uses the range 0 to 35).

Web Server
A component of the IPS.

WHOIS
A TCP-based query/response protocol used for querying an official database to determine the owner of a domain name or an IP address.

Wireshark
Wireshark is a free network protocol analyzer for UNIX and Windows. It lets you examine data from a live network or from a capture file on disk. You can interactively browse the capture data, viewing summary and detail information for each packet. Wireshark has several powerful features, including a rich display filter language and the ability to view the reconstructed stream of a TCP session. For more information, see http://www.wireshark.org.

Worm
A computer program that can run independently, can propagate a complete working version of itself onto other hosts on a network, and can consume computer resources destructively.
### X

<table>
<thead>
<tr>
<th>X.509</th>
<th>Standard that defines information contained in a certificate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML</td>
<td>eXtensible Markup Language. Textual file format used for data interchange between heterogeneous hosts.</td>
</tr>
</tbody>
</table>

### Z

| zone   | A set of destination IP addresses sorted into an internal, illegal, or external zone used by anomaly detection. |
INDEX

Numerics

10GE card
   described  3-3, 4-4
   illustration  3-4, 4-4

2SX card
   described  3-3, 4-4
   illustration  3-3, 4-4

4GE bypass interface card
   configuration restrictions  3-5, 4-6
   described  3-2, 3-4, 4-3, 4-5
   illustration  3-3, 4-3

802.1q encapsulation
   VLAN groups  1-14

access control list. See ACL.

accessing
   Diagnostic Panel (IPS 4270-20)  4-42
   IPS software  11-2

access list misconfiguration  A-27

actions
   ACL changes  1-2
   IP logs  1-3
   multiple packet drop  1-3
   TCP reset  1-2

adaptive security appliance described  1-21

AIM-IPS
   branch router (illustration)  1-19
   described  1-19
   illustration  1-19
   initializing  9-13

installing  5-5
installing system image  12-21

interfaces described  5-4
logging in  10-5
removing  5-5
restrictions  5-3
session command  10-5
sessioning  10-4, 10-5
setup command  9-13
software requirements  5-2
specifications  5-1
time sources  1-25, A-17
verifying installation  5-6

AIP-SSM
   data plane  A-70
   described  1-21
   hardware requirements  6-2
   indicators
      described  6-2
      illustration  6-2
   initializing  9-16
   installing  6-3
   installing system image  12-25
   logging in  10-6
   memory specifications  6-2
   models  1-21
   Normalizer engine  A-70
   password recovery  A-11
   recovering  A-67
   reimaging  12-24
   removing  6-5
   requirements  6-2
   Reset TCP Connection  A-71
resetting  A-67
resetting the password  A-11
session command  10-6
setup command  9-16
show module 1 command  6-4
specifications  6-1
TCP reset packets  A-71
time sources  1-26, A-17
verifying status  6-4

AIP-SSM modules
Deny Connection Inline  A-71
alternate TCP reset interface configuration restrictions  1-11
Analysis Engine
error messages  A-24
IDM exits  A-56
anomaly detection disabling  A-20
appliances
ACLs  1-2
application partition image  12-11
described  1-17
GRUB menu  A-9
initializing  9-7
logging in  10-2
managers  1-17
models  1-17
password recovery restrictions  1-17
SPAN  1-17
TCP reset  1-2
terminal servers
described  1-17, 10-3, 12-13
setting up  1-17, 10-3, 12-13
time sources  1-25, A-16
upgrading recovery partition  12-5
application partition image recovery  12-11
applying software updates  A-53
ARC
blocking not occurring for signature  A-43
device access issues  A-40
enabling SSH  A-43
inactive state  A-39
misconfigured MBS  A-44
troubleshooting  A-37
verifying device interfaces  A-42
verifying status  A-38
ASA-IPS modules
Deny Packet Inline  A-71
ASDM
resetting passwords  A-13
asymmetric traffic disabling anomaly detection  A-20
attack responses for TCP reset  1-2
authenticated NTP  A-16
automatic setup  9-1
automatic updates troubleshooting  A-54
automatic upgrade
information required  12-6
autonegotiation and hardware bypass  3-6, 4-6
auto-upgrade-option command  12-6

B
backing up
configuration  A-3
current configuration  A-4, A-5
back panel features
IPS-4260  3-7
IPS 4270-20  4-9
basic setup  9-3
blocking not occurring for signature  A-43
Bug Toolkit
described  A-1
URL  A-1
C

cable management arm
described 4-32
installing 4-29
cable management arm converting 4-33
cable pinouts
console port 1-33
RJ-45 1-33
RJ-45 to DB-25 1-34
RJ-45 to DB-9 1-34
cannot access sensor A-25
Catalyst software
IDSM-2
enabling full memory tests 7-12
powering down 7-15
powering up 7-15
resetting 7-13
cidDump obtaining information A-94
cisco
default password 10-2
default username 10-2
Cisco.com
accessing software 11-2
downloading software 11-1
IPS software 11-1
software downloads 11-1
Cisco IOS software
IDSM-2
enabling full memory tests 7-13
powering down 7-15
powering up 7-15
resetting 7-14
Cisco IPS 6.1 files 12-2
Cisco Security Intelligence Operations
described 11-9
URL 11-9
Cisco Services for IPS
service contract 11-11

supported products 11-11
clear events command 1-27, A-19, A-94
clearing
events A-94
statistics A-79
clear password command A-10, A-14
command and control interface
described 1-5
Ethernet 1-2
list 1-5
commands
auto-upgrade-option 12-6
clear events 1-27, A-19, A-94
clear password A-10, A-14
copy backup-config A-3
copy current-config A-3
copy license-key 11-13
debug module-boot A-67
downgrade 12-10
hw-module module 1 reset A-67
hw-module module slot_number password-reset A-11
session 10-5, 10-10
setup 9-1, 9-3, 9-7, 9-13, 9-16, 9-20, 9-25
show events A-91
show health A-72
show inventory 5-6, 8-5
show module 1 6-4
show module 1 details A-66
show settings A-15
show statistics A-79
show statistics virtual-sensor A-24, A-79
show tech-support A-73
show version A-76
upgrade 12-3, 12-5
configuration files
backing up A-3
merging A-3
configuration restrictions
  alternate TCP reset interface  1-11
  inline interface pairs  1-11
  inline VLAN pairs  1-11
  interfaces  1-10
  physical interfaces  1-10
  VLAN groups  1-11
configuring
  automatic upgrades  12-8
  maintenance partition
    IDSM-2 (Catalyst software)  12-29
    IDSM-2 (Cisco IOS software)  12-33
  upgrades  12-4
console port pinouts  1-33
converting cable management arm  4-33
copy backup-config command  A-3
copy current-config command  A-3
copy license-key command  11-13
correcting time on the sensor  1-27, A-19
creating the service account  A-6
cryptographic account
  Encryption Software Export Distribution Authorization from  11-2
  obtaining  11-2
  current configuration backup  A-3

downgrade command  12-10
downgrading sensors  12-10
downloading software  11-1
duplicate IP addresses  A-28
disable
  anomaly detection  A-20
  password recovery  A-15
disaster recovery  A-6
displaying
  events  A-92
  health status  A-72
  password recovery setting  A-15
  statistics  A-79
  tech support information  A-73
  version  A-76
edisable
  downgrading sensors  12-10
downloading software  11-1
duplicate IP addresses  A-28

electrical safety guidelines  1-30
enabling
  debug logging  A-46
  full memory tests
    Catalyst software  7-12
    Cisco IOS software  7-13
Encryption Software Export Distribution Authorization form
  cryptographic account  11-2
described  11-2
ESD environment  1-31
Ethernet port indicators
  IPS-4260  3-8
  IPS-4270-20  4-10
events display  A-92
Event Store clearing events  1-27, A-19
event types  A-90
examples
  ASA failover configuration  A-69

D
dc power supply (IPS-4240)  2-10
debug logging enabling  A-46
debug-module-boot command  A-67
default
  password  10-2
  username  10-2
device access issues  A-40
Diagnostic Panel
  accessing  4-42
  component list  4-13
  illustration  4-13
expansion card interfaces naming conventions
  IPS-4260  3-4
  IPS 4270-20  4-4
expansion card slots
  IPS-4260  3-20
  IPS 4270-20  4-43
external product interfaces
  issues  A-21
  troubleshooting  A-22

F
fail-over testing  3-5, 4-6
fan indicators (IPS 4270-20)  4-50
fans (IPS 4270-20)  4-50
files
  IDSM2 password recovery  A-13
files for Cisco IPS 6.1  12-2
finding the serial number  5-6, 8-5
front panel indicators
  IPS-4240  2-2
  IPS-4255  2-2
  IPS-4260  3-7
  IPS 4270-20  4-8
front panel switches
  IPS-4260  3-7
  IPS 4270-20  4-8
FTP servers supported  12-2

G
grounding lugs (IPS-4260)  3-16
GRUB menu password recovery  A-9
guidelines
  electrical safety  1-30
  power supplies  1-30
  rack configuration  1-29

H
hardware bypass
  autonegotiation  3-6, 4-6
  configuration restrictions  3-5, 4-6
  fail-over  3-5, 4-6
  IPS-4260  3-4
  IPS 4270-20  3-4, 4-5
  link status changes and drops  3-6, 4-7, A-23
  proper configuration  3-6, 4-6, A-23
  supported configurations  3-4, 4-5
  with software bypass  3-4, 4-5
hardware requirements
  AIP-SSM  6-2
  IDSM-2  7-2
health status display  A-72
HTTP/HTTPS servers supported  12-2
hw-module module 1 reset command  A-67
hw-module module slot_number password-reset command  A-11

I
IDM
  Analysis Engine is busy  A-56
  will not load  A-56
IDS appliances unsupported models  1-16
IDSM-2
  command and control port  A-64
  configuring
    maintenance partition (Catalyst software)  12-29
    maintenance partition (Cisco IOS software)  12-33
described  1-23
  enabling full memory tests
    Catalyst software  7-12
    Cisco IOS software  7-13
  front panel  7-3
  hardware requirements  7-2
hot swapping  7-4, 7-8
initializing  9-20
installing
  procedure  7-5
  required tools  7-4
  system image (Catalyst software)  12-27
  system image (Cisco IOS software)  12-28
logging in  10-8
PFC  7-5
powering down
  Catalyst software  7-15
  Cisco IOS software  7-15
powering up
  Catalyst software  7-15
  Cisco IOS software  7-15
reimagining  12-27
removing  7-11
requirements  7-2
resetting
  Catalyst software  7-13
  Cisco IOS software  7-14
setup command  9-20
shutdown
  button  7-3
  command  7-3
  described  7-11
slot assignments  7-5
software requirements  7-2
SPAN  1-23
specifications  7-1
status indicator  7-3
supported configurations  7-2, A-60
TCP reset port  7-3
time sources  1-25, A-17
upgrading
  maintenance partition (Catalyst software)  12-37
  maintenance partition (Cisco IOS software)  12-37
VACLs  1-23
verifying installation  7-9
IDSM2
  password recovery  A-13
  password recovery image file  A-13
  TCP reset port  7-3, A-65
IDS switch modules unsupported models  1-16
IME time synchronization problems  A-58
initializing
  AIM-IPS  9-13
  AIP-SSM  9-16
  appliances  9-7
  IDSM-2  9-20
  NME-IPS  9-25
  sensors  9-1, 9-3
  user roles  9-1
  verifying  9-28
inline interface pair mode described  1-13
inline interface pairs configuration restrictions  1-11
inline VLAN pair mode
  described  1-13
  supported sensors  1-13
inline VLAN pairs configuration restrictions  1-11
installation preparation  1-28
installer major version  11-5
installer minor version  11-5
installing
  AIM-IPS  5-5
  AIP-SSM  6-3
  cable management arm  4-29
  fans (IPS 4270-20)  4-50
  IPS-4240  2-8
  IPS-4255  2-8
  IPS-4260  3-16
  IPS 4270-20  4-36
  license key  11-14
  NME-IPS  8-5
  sensor license  11-12
  system image
    AIP-SSM  12-25
Index

IPS-4240 12-14
IPS-4255 12-14
IPS-4260 12-17
IPS 4270-20 12-19
NME-IPS 12-38

interfaces
IPS-4260
installing 3-20
removing 3-20
IPS 4270-20
installing 4-43
removing 4-43

introducing
AIM-IPS 1-19
AIP-SSM 1-21
appliance 1-17
IDSM-2 1-23
NME-IPS 1-20

IPS-4240
accessories 2-5
back panel
illustration 2-3
indicators 2-3
described 2-1
features 2-2

front panel
illustration 2-2
indicators 2-2
installing 2-8
installing DC power supply 2-10
installing system image 12-14
introducing 2-1
password recovery A-9
rack mounting 2-6
reimaging 12-14
specifications 2-4

IPS-4255
accessories 2-5
back panel (illustration) 2-3

IPS-4260
4GE bypass interface card 3-2
accessories kit 3-9
back panel features 3-7
chassis cover
removing 3-19
replacing 3-19
described 3-1
Ethernet port indicators 3-8
expansion card slots 3-20
features 3-6
front panel
indicators 3-7
switches 3-7
grounding lugs 3-16

internal health information on the Diagnostic Panel 4-43

interfaces
alternate TCP reset 1-5
command and control 1-5
configuration restrictions 1-10
described 1-4
port numbers 1-4
sensing 1-5, 1-6
slot numbers 1-4
support (table) 1-6
TCP reset 1-9
VLAN groups 1-5
hardware bypass 3-4
installing 3-16
installing interface cards 3-20
installing system image 12-17
installing the power supply 3-22
network ports 3-2
performance 3-1, 3-2
power supplies 3-2
rack mounting
  2-post 3-13
  4-post 3-10
reimaging 12-17
removing interface cards 3-20
removing the power supply 3-22
sensing interfaces 3-2
specifications 3-9
supported interface cards 3-2, 3-3
IPS 4270-20
  4GE bypass interface card 4-2
accessing Diagnostic Panel 4-42
accessories kit 4-15
back panel features 4-9
chassis cover
  removing 4-40
  replacing 4-40
converting cable management arm 4-33
described 4-1
Diagnostic Panel
described 4-13
  illustration 4-13
Ethernet port indicators 4-10
Ethernet port indicators (illustration) 4-10
expansion card slots 4-43
extending from a rack 4-26
fan connector and indicator (illustration) 4-50
fan indicators 4-50
fans 4-50
features 4-7
front panel indicators 4-8
front view (illustration) 4-7
hardware bypass 3-4, 4-5
hot-pluggable power supplies 4-45
installation 4-36
installing
cable management arm 4-29
fans 4-50
in a rack 4-18
interface cards 4-43
power supplies 4-45
installing system image 12-19
interface naming conventions 4-4
internal components (illustration) 4-12
maximum rack depth 4-16
network ports 4-2
performance 4-2
power supplies 4-2
power supply indicators 4-11
rack requirements 4-17
rail system kit
described 4-16
  minimum rack depth 4-16
redundant power supplies 4-45
reimaging 12-19
removing
  interface cards 4-43
  power supplies 4-45
sensing interfaces 4-2
shallow rack installation 4-20
specifications 4-14
switches and indicators (illustration) 4-8
T-15 Torx screwdriver 4-46
IPS appliances
Deny Connection Inline A-71
Deny Packet Inline A-71
Reset TCP Connection A-71
TCP reset packets A-71
IPS modules time synchronization 1-26, A-18
IPS software

- available files 11-1
- obtaining 11-1
- platform-dependent release examples 11-6

IPS software file names

- major updates (illustration) 11-4
- minor updates (illustration) 11-4
- patch releases (illustration) 11-4
- service packs (illustration) 11-4

L

license key

- installing 11-14
- trial 11-10

licensing

- described 11-10
- IPS device serial number 11-10

Licensing pane

- configuring 11-12
- described 11-10

logging in

- AIM-IPS 10-5
- AIP-SSM 10-6
- appliances 10-2
- IDSM-2 10-8
- NME-IPS 10-10

sensors

- SSH 10-11
- Telnet 10-11
- service role 10-2
- terminal servers 1-17, 10-3, 12-13
- user role 10-1

loose connections on sensors 4-52, A-24

M

maintenance partition

- configuring
  - IDSM-2 (Catalyst software) 12-29
  - IDSM-2 (Cisco IOS software) 12-33

major updates described 11-3

manual block to bogus host A-43

master blocking sensor not set up properly A-44

merging configuration files A-3

MIBs supported A-20

minor updates described 11-3

modes

- IDS 1-1
- inline interface pair 1-13
- inline VLAN pair 1-13
- IPS 1-1
- promiscuous 1-12
- VLAN groups 1-13

modules

- AIM-IPS 1-19
- AIP-SSM
  - described 1-21
  - memory specifications 6-2
  - specifications 6-1
- IDSM-2 1-23, 7-3, 7-4, 7-5, 7-11

N

Network Timing Protocol. See NTP.

NME-IPS

- illustration 1-21
- initializing 9-25
- installing 8-5
- installing system image 12-38
- introducing 1-20
- logging in 10-10
- reimaging 12-38
- removing 8-5
restrictions 8-3
session command 10-10
sessioning 10-9, 10-10
setup command 9-25
software requirements 8-2
specifications 8-1
time sources 1-25, A-17
verifying installation 8-6

NTP
authenticated A-16
described 1-24, A-16
incorrect configuration 1-27, A-18
time synchronization 1-24, A-16
unauthenticated A-16

O

obtaining cryptographic account 11-2

P

password recovery
AIP-SSM A-11
appliances A-9
CLI A-15
described A-8
disabling A-15
GRUB menu A-9
IDSM2 A-13
IPS-4240 A-9
IPS-4255 A-9
platforms A-8
ROMMON A-9
troubleshooting A-16
verifying A-15
patch releases described 11-3
performance
IPS-4240 2-1
IPS-4255 2-2
IPS-4260 3-1
IPS-4270-20 4-2
PFC described 7-5
physical connectivity issues A-31
physical interfaces configuration restrictions 1-10
Policy Feature Card. See PFC.

powering down
IDSM-2 (Catalyst software) 7-15
IDSM-2 (Cisco IOS software) 7-15
powering up
IDSM-2 (Catalyst software) 7-15
IDSM-2 (Cisco IOS software) 7-15
power supplies
guidelines 1-30
hot-pluggable (IPS 4270-20) 4-45
indicators (IPS 4270-20) 4-11
IPS-4260
installing 3-22
removing 3-22
IPS 4270-20
installing 4-45
removing 4-45
redundant (IPS 4270-20) 4-45
preparing for sensor installation 1-28
prerequisites
AIM-IPS 5-2
NME-IPS 5-2, 8-2
promiscuous mode
described 1-12
packet flow 1-12

R

rack mounting
IPS-4260
2-post 3-13
4-post 3-10
IPS 4270-20
  extension  4-26
  installation  4-18
  requirements  4-17

racks
  airflow requirements  4-17
  configuration guidelines  1-29
  space requirements  4-17

rail system
  maximum rack depth  4-16
  minimum rack depth  4-16
  rack hole-types (illustration)  4-16
  round holes  4-16
  square holes  4-16
  threaded holes  4-16

rail system kit
  cable management arm  4-29, 4-32
  contents  4-16
  IPS 4270-20  4-16
  required tools  4-16

recover command  12-10
recovering
  AIP-SSM  A-67
  application partition image  12-11
recovery partition upgrade  12-5
reimaging
  AIP-SSM  12-24
  appliances  12-10
  described  12-1
  IDSM-2  12-27
  IPS–4240  12-14
  IPS–4255  12-14
  IPS–4260  12-17
  IPS 4270-20  12-19
  NME-IPS  12-38
  sensors  12-1
removing
  AIM-IPS  5-5
  AIP-SSM  6-5
chassis cover
  IPS-4260  3-19
  IPS 4270-20  4-40
IDSM-2  7-11
  last applied
  service pack  12-10
  signature update  12-10
NME-IPS  8-5
replacing
  chassis cover
  IPS-4260  3-19
  IPS 4270-20  4-40
requirements
  AIM-IPS  5-2
  AIP-SSM  6-2
  IDSM-2  7-2
  NME-IPS  8-2
  racks
  airflow  4-17
  space  4-17
reset not occurring for a signature  A-51
resetting
  AIP-SSM  A-67
  IDSM-2  7-13
  passwords
  ASDM  A-13
  hw-module command  A-11
resetting the password
  AIP-SSM  A-11
restoring the current configuration  A-4, A-5
restrictions
  AIM-IPS  5-3
  NME-IPS  8-3
RJ-45 cable pinouts  1-33
RJ-45 to DB2-5 cable pinouts  1-34
RJ-45 to DB-9 cable pinouts  1-34
ROMMON
  described  12-12
  IPS–4240  12-14
IP address conflicts A-28
IPS mode 1-1
license 11-12
logging in
  SSH 10-11
  Telnet 10-11
loose connections 4-52, A-24
misconfigured access lists A-27
models 1-15
network topology 1-3
no alerts A-33, A-58
not seeing packets A-34
NTP time synchronization 1-24, A-16
physical connectivity A-31
power supply guidelines 1-30
preparing for installation 1-28
preventive maintenance A-2
process not running A-30
rack configuration guidelines 1-29
reimaging 12-1
sensing process not running A-30
setup command 9-1, 9-3, 9-7
site guidelines 1-29
supported 1-15
TCP reset 1-2
time sources 1-24, A-16
troubleshooting software upgrades A-55
unsupported 1-16
serial number and show inventory command 5-6, 8-5
service account
  creating A-6
  described A-5
service-module ids-sensor slot/port session command 10-4, 10-9
service packs described 11-3
service role 10-2
session command
  AIM-IPS 10-5
  AIP-SSM 10-6

S
scheduling automatic upgrades 12-8
security
  information on Cisco Security Intelligence Operations 11-9
sensing interfaces
  described 1-6
  interface cards 1-6
  modes 1-6
sensors
  access problems A-25
  AIP-SSM 1-21
  asymmetric traffic and disabling anomaly detection A-20
  capturing traffic 1-1
  comprehensive deployment 1-1
  Comprehensive Deployment Solutions (illustration) 1-1
  corrupted SensorApp configuration A-36
  disaster recovery A-6
downgrading 12-10
electrical guidelines 1-30
IDS mode 1-1
incorrect NTP configuration 1-27, A-18
initializing 9-1, 9-3
interface support 1-6

RTT
  described 12-13
  TFTP limitation 12-13
IDSM-2 10-8
NME-IPS 10-10

sessioning
AIM-IPS 10-5
AIP-SSM 10-6
IDSM-2 10-8
NME-IPS 10-10

setting up a terminal server 1-17, 10-3, 12-13

setup
automatic 9-1
simplified mode 9-1

setup command 9-1, 9-3, 9-7, 9-13, 9-16, 9-20, 9-25

shallow rack installation (IPS 4270-20) 4-20

show events command A-90, A-91
show health command A-72
show interfaces command A-89
show inventory command 5-6, 8-5
show module 1 command 6-4
show module 1 details command A-66
show settings command A-15
show statistics command A-79
show statistics virtual-sensor command A-24, A-79
show tech-support command A-73
show version command A-76

signature/virus update files described 11-4
signature engine update files described 11-5
signatures and no TCP reset A-51

site guidelines for sensors 1-29

slot assignments
IDSM-2 7-5
supervisor engines 7-5

SNMP supported MIBs A-20

software bypass
supported configurations 3-4, 4-5
with hardware bypass 3-4, 4-5

software downloads Cisco.com 11-1

software file names
recovery (illustration) 11-5
signature/virus updates (illustration) 11-4

signature engine updates (illustration) 11-5
system image (illustration) 11-5

software release examples
platform-dependent 11-6
platform identifiers 11-7
platform-independent 11-6

software requirements
AIM-IPS 5-2
AIP-SSM 6-2
IDSM-2 7-2
NME-IPS 8-2

software updates
supported FTP servers 12-2
supported HTTP/HTTPS servers 12-2

SPAN
appliances 1-17
IDSM-2 1-23
port issues A-31

specifications
AIM-IPS 5-1
AIP-SSM 6-1
IDSM-2 7-1
IPS-4240 2-4
IPS-4255 2-4
IPS-4260 3-9
IPS 4270-20 4-14
NME-IPS 8-1

status
AIP-SSM 6-4
IDSM-2 7-9

subinterface 0 described 1-14

supported
FTP servers 12-2
HTTP/HTTPS servers 12-2
IDSM-2 configurations 7-2, A-60

switch commands for troubleshooting A-61

Switched Port Analyzer. See SPAN.

System Configuration Dialog described 9-2
example 9-2
system image
installing
  IDSM-2 (Cisco IOS software) 12-28
  IPS-4240 12-14
  IPS-4255 12-14

T

T-15 Torx screwdriver (IPS 4270-20) 4-46
TAC
  service account A-5
  show tech-support command A-73
TCP reset interfaces
  conditions 1-10
  described 1-9
  list 1-9
TCP reset port (IDSM-2) 7-3
TCP resets
  described 1-2
  IDSM2 port 7-3, A-65
  not occurring A-51
terminal servers setup 1-17, 10-3, 12-13
testing fail-over 3-5, 4-6
TFTP servers
  maximum file size limitation 12-13
  RTT 12-13
time
  correcting on the sensor 1-27, A-19
  IPS modules synchronization 1-26, A-18
time sources
  AIM-IPS 1-25, A-17
  AIP-SSM 1-26, A-17
  appliances 1-25, A-16
  IDSM-2 1-25, A-17
  NME-IPS 1-25, A-17
trial license key 11-10
troubleshooting

AIP-SSM commands A-66
deployment A-67
resetting A-67
reset A-67
Analysis Engine busy A-56
applying software updates A-53
ARC
  blocking not occurring for signature A-43
device access issues A-40
  device access issues A-40
  enabling SSH A-43
  inactive state A-39
  misconfigured MBS A-44
  verifying device interfaces A-42
ASA 5500 AIP SSM failover scenarios A-68
automatic updates A-54
cannot access sensor A-25
cidDump A-94
cidLog messages to syslog A-50
communication A-25
corrupted SensorApp configuration A-36
debug logger zone names (table) A-50
debug logging A-46
Diagnostic Panel (IPS 4270-20) 4-42
disaster recovery A-6
duplicate sensor IP addresses A-28
enabling debug logging A-46
external product interfaces A-22
gathering information A-72
IDM cannot access sensor A-57
IDM will not load A-56
IDSM-2
  command and control port A-64
diagnosing problems A-59
  not online A-63, A-64
serial cable A-66
status indicator A-61
switch commands A-61
IME time synchronization problems  A-58
IPS and PIX devices  A-23
IPS modules time drift  1-26, A-18
manual block to bogus host  A-43
misconfigured access list  A-27
no alerts  A-33, A-58
normalizer inline mode  A-23
NTP  A-51
password recovery  A-16
physical connectivity issues  A-31
preventive maintenance  A-2
reset not occurring for a signature  A-51
sensing process not running  A-30
sensor events  A-90
sensor loose connections  A-52, A-24
sensor not seeing packets  A-34
sensor software upgrade  A-55
service account  A-5
show events command  A-90
show interfaces command  A-88, A-89
show statistics command  A-78, A-79
show tech-support command  A-73, A-74
show version command  A-76
software upgrades  A-53
SPAN port issue  A-31
upgrading  A-53
verifying ARC status  A-38

recovery partition  12-5, 12-10
URLs for Cisco Security Intelligence Operations  11-9
using
debug logging  A-46
TCP reset interface  1-10

V
VACLs and IDSM-2  1-23
verifying
IDSM-2 installation  7-9
installation (AIM-IPS)  5-6
installation (NME-IPS)  8-6
password recovery  A-15
sensor initialization  9-28
sensor setup  9-28
VLAN access control list. See VACL.
VLAN groups
802.1q encapsulation  1-14
collection restrictions  1-11
deploying  1-14
described  1-13
switches  1-14

U
unauthenticated NTP  A-16
understanding time on the sensor  1-24, A-16
unsupported sensors  1-16
upgrade command  12-3, 12-5
upgrading
maintenance partition
IDSM-2 (Catalyst software)  12-37
IDSM-2 (Cisco IOS software)  12-37
minimum required version  11-7