

C H A P T E R 4

Working with the Remediation SDK
Understanding the Remediation SDK

In addition to deploying Cisco-provided remediation modules, you can install and run your own custom
remediations to automate responses to violations of associated correlation policies. Cisco provides a
software developer kit (SDK) that you can download from the Support Site to help you get started.

Purpose of the SDK
Using the SDK and the information in this chapter of the Cisco Remediation API Guide, you can:

 Practice deploying a simple remediation module to gain familiarity with the process. Installation,
configuration, and removal are easy.

 Inspect the source code of a remediation program to see one way to use the API to interact with the
remediation subsystem and perform multiple remediation functions.

Caution: The syslog module in the SDK is not intended for production use.

Please note that you can use the Cisco-provided modules already loaded on the Defense Center as a
reference resource while you develop. All of these modules are accessible at
/var/sf/remediation_modules on the Defense Center. Each installed module has a .tgz package in this
directory. For information on the modules, see Cisco-Provided Remediation Modules, page 1-2.

Description of the SDK
The remediation SDK has a syslog alert remediation module in two versions, Perl and C. To use it, you
need a syslog server running and receiving remote traffic.

The module provides two remediation types:

 Simple_Notification - generates syslog alerts with the source IP address, source port (if available),
and IP protocol (if available) for the triggering event.

 Complete_Notification - generates a syslog alert with the same fields as the simple notification,
and also includes the destination IP address, destination port, and a severity indicator for the
triggering event.

As with all remediation modules, you enter a small amount of configuration in the web interface to add
instances of the module. Each instance targets a particular device on your network (in this case a syslog
server) and runs the remediation for the instance. To run the Complete_Notification remediation type,
you select a syslog facility level not required for the Simple_Notification remediation type.

See the following table for a list of the Perl version files.
4-1
FireSIGHT System Remediation API Guide

Chapter Working with the Remediation SDK
Overview of the Development and Installation Process
See the following table for a list of the C version files.

Downloading the SDK
To download the remediation SDK:

1. Access the support website at https://support.sourcefire.com/downloads.

2. Select a software version, then under Product Category, select Software. The download link for the
remediation SDK is in the api portion of the page.

3. Unpack the .zip file in a convenient folder on your client machine.

Overview of the Development and Installation Process
The steps below form a checklist of tasks that need to be performed to create, install, and configure a
custom remediation module. Some of the steps involve procedural and descriptive details that are
explained in cross-referenced sections of the Remediation API Guide or the FireSIGHT System User
Guide.

To develop, install, and configure a custom remediation module, you must:
1. Identify the condition you want to mitigate and the actions that appropriately resolve the detected

condition in your environment.

2. Familiarize yourself with data elements that can be obtained from the remediation subsystem. See
Data Available from the Remediation Subsystem, page 2-1 for definitions of all available fields that
the Defense Center can provide for your remediation.

You should also understand the return code functionality built into the remediation subsystem. See
Defining Exit Statuses, page 3-22 for information.

Table 4-1 Sample Perl Module

Included Files Description

syslog.pl The program that executes the syslog alert when the correlation policy associated
it with is violated.

module.template Module configuration file. Defines required event data, required information to
collect in the web interface when users create instances, and other essential setup
parameters.

Makefile Sample makefile to package the files in a remediation module for installation on the
Defense Center.

Table 4-2 Sample C Module

Included Files Description

syslogc.c The program that executes the syslog alert when the correlation policy associated
it with is violated.

module.template Module configuration file. Defines required event data, required information to
collect in the web interface when users create instances, and other essential setup
parameters.
4-2
FireSIGHT System Remediation API Guide

https://support.sourcefire.com/downloads

Chapter Working with the Remediation SDK
Notes for Remediation Program Developers
3. Generate a high-level design that identifies all the remediation actions (remediation types) that your
program needs to address.

4. Write your remediation program so that it addresses all the functions necessary for the desired
remediations. Remediation module programs may be written in bash, tsch, Perl or C. Develop your
program using the technical guidance provided in Notes for Remediation Program Developers,
page 4-3.

5. Create the module template file for your remediation module. For an understanding of the data
elements and syntax of the module template, see the chapter Communicating with the Remediation
Subsystem, page 3-1.

You can save time by editing an existing module.template file to start with.

6. Package your remediation module as described in Packaging Your Module, page 2-13.

7. Install the module on the Defense Center using the Policy and Response component as described in
Installing Your Module, page 2-13. You will load the package on the Defense Center and proceed as
if you were configuring one of the Cisco-provided modules.

8. Ensure that the individual remediation types in your remediation module are assigned as responses
to the correct correlation rules in your defined correlation policies. See the FireSIGHT System User
Guide for procedure details.

Notes for Remediation Program Developers
When you have defined the required scope and functionality of your remediation program and understood
the data elements available for your remediation actions, you can write the remediation program.

Remediation module programs may be written in bash, tsch, Perl or C.

The following table indicates where to find information on topics of interest.

Table 4-3 Programmer Notes

To learn more about... Look in...

the file structure and workflow environment of the
remediation subsystem

Understanding the Remediation Subsystem File
Structure, page 4-4

implementing multiple remediation types in a
remediation program

Implementing Remediation Types in a
Remediation Program, page 4-4

the remediation subsystem file structure Understanding the Remediation Subsystem File
Structure, page 4-4

the interactions of the remediation program and the
Defense Center remediation subsystem

Understanding the Remediation Program
Workflow, page 4-5

the order in which parameters are passed from the
Defense Center to the remediation module

The Order of Command Line Parameters,
page 4-5

how the remediation daemon handles undefined
data elements

Handling Undefined Data Elements, page 4-5

return codes from the remediation program Handling Return Codes, page 4-6

runtime modes for the remediation program Important Global Configuration Elements,
page 4-6

alternative encoding of user input Important Global Configuration Elements,
page 4-6
4-3
FireSIGHT System Remediation API Guide

Chapter Working with the Remediation SDK
Notes for Remediation Program Developers
Implementing Remediation Types in a Remediation Program
The remediation daemon on the Defense Center specifies the remediation name as the first argument on
the command line when it launches the remediation program. The code snippet below from the SDK Perl
program, syslog.pl, shows one way your program can branch to the appropriate remediation function.
The program runs either SimpleNotification() or CompleteNotification(), based on the content of
$remediation_config, which is set by the first field from the remediation daemon. The sample also
shows the use of return codes which are discussed in Handling Return Codes, page 4-6.

Call the appropriate function for the remediation type
my $rval = 0;
if($remediation_config->{type} eq "Simple_Notification")
{
$rval = SimpleNotification($instance_config, $remediation_config,
\@pe_event_data);
}
elsif($remediation_config->{type} eq "Complete_Notification")
{
$rval= CompleteNotification($instance_config,$remediation_config,
\@pe_event_data);
}
else
{
warn "Invalid remediation type. Check your instance.conf\n";
exit(CONFIG_ERR);
}
exit($rval);

You declare the names of all remediation types in the module.template file, and associate remediation
types with each instance as you add the instance via the web interface. The remediation type that is
executed by the instance is recorded in the instance.config file which is stored in the instance.config
subdirectory described in Understanding the Remediation Subsystem File Structure, page 4-4.

Understanding the Remediation Subsystem File Structure
The root directory of each remediation module is derived from the remediation module name and version
number, both of which are declared in the module.template file. See The config Element, page 2-9 for
details on the elements of module.template.

If you install a module packaged in syslog.tgz with the name syslog and version 1.0 in module.template,
the system puts the module in the following directory: /var/sf/remediation/syslog_1.0. That directory
contains the module.template file and the remediation program binary for the module.

When you add an instance of the remediation and name the instance log_tokyo, the system creates the
following directory:

/var/sf/remediation/syslog_1.0/log_tokyo
and places a file named instance.conf in it. The instance.conf file, which is in XML format, contains
the configuration information for the log_tokyo instance.

The following Linux command sequence illustrates the directory structure described above.

cd /var/sf/remediations
ls
NMap_perl_2.0 SetAttrib_1.0 cisco_pix_1.0
cisco_ios_router_1.0 syslog_perl_0.1
cd syslog_perl_0.1
ls
log_chicago log_tokyo module.template syslog.pl
4-4
FireSIGHT System Remediation API Guide

Chapter Working with the Remediation SDK
Notes for Remediation Program Developers
cd log_tokyo
ls
instance.conf

Note that the instance.conf file contains the name of the remediation type that the log_tokyo instance
runs. In the above example, the user who added the log_tokyo instance could have configured it to run
either remediation type defined for the syslog remediation module: Simple_Notification or
Complete_Notification.

For details on the elements in the instance.conf XML file, see Instance Configuration Data, page 2-9.

Understanding the Remediation Program Workflow
When the Defense Center executes a remediation instance, the remediation daemon launches the
remediation program from the instance subdirectory and supplies data from the instance.conf file to the
remediation program as command line arguments.

An example will illustrate the process. If a policy violation launches a syslog instance named log_tokyo,
which calls the remediation named Simple_Notification with a source IP address of 1.1.1.1 and a
destination IP address of 2.2.2.2, the Defense Center sets the working directory to
/var/sf/remediations/Syslog_1.0/log_tokyo (that is, the instance.conf subdirectory) and executes
the remediation binary, syslog.pl. The daemon’s command line syntax will be as follows:

../syslog.pl Simple_Notification 1.1.1.1 2.2.2.2
Note in particular that the syslog.pl executable is in the parent directory of the instance.conf
subdirectory.

When the command runs in this way, the syslog.pl binary can load the information in instance.conf file
because it is in the current directory. If the binary needs to load any modules or other files in the parent
directory (/var/sf/remediations/Syslog_1.0 in this case), the code must explicitly load them from the
parent directory; that is, it must provide a path starting with "../". Otherwise the binary will not be able
to find the files that it needs.

In Perl, you can also deal with this issue using the lib() function as follows:

use lib("../");
Your program must be able to open, read, parse, and close the instance.conf file.

The Order of Command Line Parameters
When the remediation daemon passes event data to your remediation module, it passes the name of the
remediation followed by the correlation event data in the order in which the fields are specified in
module.template. In module.template, each field to be passed to your module is declared using the
<pe_item> tag.

If a pe_item is set to optional in module.template and is undefined (meaning there is no value for the
specific pe_item), the remediation daemon passes “undefined” or null to your module. If pe_item is set
to required in module.template but is undefined, the remediation daemon logs a message to the
remediation log stating that no value is available, and does not execute your remediation module binary.
You can view the remediation log in the web interface where it is called the Table View of Remediations.
See the FireSIGHT System User Guide for details on how to access and use this view.

Handling Undefined Data Elements
The remediation daemon handles undefined data items differently, depending on whether an item is
marked as optional or required in module.template. Undefined means that the Defense Center
database has no value for the item. The daemon’s processing is as follows:
4-5
FireSIGHT System Remediation API Guide

Chapter Working with the Remediation SDK
Notes for Remediation Program Developers
 If the undefined pe_item is set to optional in module.template, the daemon passes “undefined” or
null to your module.

 If the undefined pe_item is set to required in module.template, the daemon does not execute the
remediation and logs a message to the remediation log stating that no value is available.

Handling Return Codes
The Defense Center waits for a return code for each instance and records the code in the remediation
log. For information on predefined and custom return codes, see Defining Exit Statuses, page 3-22.

The Table View of Remediations in the web interface of the Defense Center displays the results of each
launched remediation. See the FireSIGHT System User Guide for information on accessing and using the
Table View of Remediations.

Important Global Configuration Elements
You can enable the remediation API features described in the table below by setting their corresponding
elements in the module.template file. For configuration details, see Defining the Global Configuration,
page 3-3.

Table 4-4 Features Enabled in Global Configurations of module.template

To enable this feature... Set this module.template parameter ...

run remediation program as
root

run_as_root

Note: Warning: Cisco recommends that you use this element only if
absolutely necessary.

HTML-encoding of user input encode_values

Note: Note: If you use this element, your remediation module must
handle HTML decoding as part of its input handling.
4-6
FireSIGHT System Remediation API Guide

	Understanding the Remediation SDK
	Purpose of the SDK
	Description of the SDK
	Downloading the SDK

	Overview of the Development and Installation Process
	Notes for Remediation Program Developers
	Implementing Remediation Types in a Remediation Program
	Understanding the Remediation Subsystem File Structure
	Understanding the Remediation Program Workflow
	The Order of Command Line Parameters
	Handling Undefined Data Elements
	Handling Return Codes
	Important Global Configuration Elements

