Cisco Firepower Threat Defense Virtual for the Microsoft Azure Cloud Quick Start Guide

Published: January 23, 2017
Updated: July 13, 2017

Microsoft Azure is an open, flexible, enterprise-grade public cloud computing platform that provides a range of cloud services, including those for compute, analytics, storage, and networking. You can pick and choose from these services to develop and scale new applications, or run existing applications, in the public cloud.

This document explains how to deploy Firepower Threat Defense Virtual on Azure.

- About Deployment On the Microsoft Azure Cloud, page 1
- Prerequisites and System Requirements for the Firepower Threat Defense Virtual and Azure, page 2
- Sample Network Topology for Firepower Threat Defense Virtual on Azure, page 4
- Resources Created During Deployment, page 4
- Azure Routing, page 5
- Routing Configuration for VMs in the Virtual Network, page 5
- IP Addresses, page 6
- Deploy the Firepower Threat Defense Virtual, page 6

About Deployment On the Microsoft Azure Cloud

Firepower Threat Defense Virtual is integrated into the Microsoft Azure marketplace. The managing Firepower Management Center runs outside of Azure at the customer premises. The Firepower Threat Defense Virtual on Microsoft Azure supports two instance types:

- Standard D3—4 vCPUs, 14 GB, 4vNICs
- Standard D3_v2—4 vCPUs, 14 GB, 4vNICs
Prerequisites and System Requirements for the Firepower Threat Defense Virtual and Azure

Create an account on Azure.com.
After you create an account on Microsoft Azure, you can log in, search the marketplace for Cisco Firepower Threat Defense, and choose the “Cisco Firepower Next Generation Firewall - virtual” offering.

A Cisco Smart Account. You can create one at Cisco Software Central (https://software.cisco.com/).

License the Firepower Threat Defense Virtual. Until you license the Firepower Threat Defense Virtual, it runs in degraded mode, which allows only 100 connections and a throughput of 100 Kbps.
 - Configure all license entitlements for the security services from the Firepower Management Center.
 - See “Licensing the Firepower System” in the Firepower Management Center Configuration Guide for more information about how to manage licenses.

Communication Paths:
 - Management interface—Used to connect the Firepower Threat Defense Virtual to the Firepower Management Center.
 - Diagnostic interface—Used for diagnostics and reporting; cannot be used for through traffic.
 - Inside interface (required)—Used to connect the Firepower Threat Defense Virtual to inside hosts.
 - Outside interface (required)—Used to connect the Firepower Threat Defense Virtual to the public network.

For Firepower Threat Defense Virtual and Firepower System compatibility, see Cisco Firepower Threat Defense Virtual Compatibility.

Guidelines and Limitations for the Firepower Threat Defense Virtual and Azure

Supported Features
 - Only the Firepower Threat Defense Virtual is available from the Microsoft Azure marketplace. The Firepower Management Center runs outside of Azure.
 - Supported Azure Instances - Standard_D3_V2 (default) and Standard_D3. Both instances support 4vCPU, 14GB memory, 4vNIC.
 - Licensing modes:
 - Smart License only
 - PLR is not supported
 - Networking:
 - Routed firewall mode only
 - Public IP addressing
 - Only the Management 0/0 and GigabitEthernet0/0 are assigned public IP addresses.
 - Interfaces:
 - The Firepower Threat Defense Virtual deploys with four interfaces.

Unsupported Features
 - Licensing
Pay As You Go (PAYG) licensing
Permanent License Reservation (PLR)

Networking (many of these limitations are Microsoft Azure restrictions)
- Jumbo frames
- IPv6
- 802.1Q VLANs
- Transparent Mode and other Layer 2 features; no broadcast, no multicast.
- Proxy ARP for an IP address that the device does not own from an Azure perspective (impacts some NAT capabilities)
- Promiscuous mode (no capture of subnet traffic)
- Inline-set modes, passive mode

Note: Azure policy prevents the Firepower Threat Defense Virtual from operating in transparent firewall or inline mode because it does not allow interfaces to operate in promiscuous mode.
- ERSSPAN (uses GRE, which is not forwarded in Azure)

Management
- Console access; management is performed over the network using Firepower Management Center (SSH is available for some setup and maintenance activities)
- Azure portal “reset password” function
- Console-based password recovery; because the user does not have real-time access to the console, password recovery is not possible. It is not possible to boot the password recovery image. The only recourse is to deploy a new Firepower Threat Defense Virtual VM.

High Availability (active/standby)
Clustering
VM import/export
Firepower Device Manager user interface
Sample Network Topology for Firepower Threat Defense Virtual on Azure

The following figure shows a typical topology for the Firepower Threat Defense Virtual in Routed Firewall Mode within Azure. The first defined interface is always the Management interface, and only the Management 0/0 and GigabitEthernet0/0 are assigned public IP addresses.

Figure 1 Sample Firepower Threat Defense Virtual on Azure Deployment

Resources Created During Deployment

When you deploy the Firepower Threat Defense Virtual in Azure the following resources are created:

- The Firepower Threat Defense Virtual Machine (VM)
- A Resource Group
 - The Firepower Threat Defense Virtual is always deployed into a new Resource Group. However, you can attach it to an existing Virtual Network in another Resource Group.
- Four NICS named vm_name-Nic0, vm_name-Nic1, vm_name-Nic2, vm_name-Nic3
 These NICs map to the Firepower Threat Defense Virtual interfaces Management, Diagnostic 0/0, GigabitEthernet 0/0, and GigabitEthernet 0/1 respectively.
- A security group named vm_name-mgmt-SecurityGroup
 The security group will be attached to the VM’s Nic0, which maps to the Firepower Threat Defense Virtual management interface.
The security group includes rules to allow SSH (TCP port 22) and the management traffic for the Firepower Management Center interface (TCP port 8305). You can modify these values after deployment.

- A Public IP Address (named according to the value you chose during deployment).
 The public IP address is associated with VM Nic0, which maps to Management.
 Note: You must choose a public IP address (new or existing); the NONE option is not supported.

- A Virtual Network with four subnets will be created if you choose the New Network option.

- A Routing Table for each subnet (updated if it already exists)
 The tables are named "subnet name"-FTDv-RouteTable.
 Each routing table includes routes to the other three subnets with the Firepower Threat Defense Virtual IP address as the next hop. You may chose to add a default route if traffic needs to reach other subnets or the Internet.

- A boot diagnostics file in the selected storage account
 The boot diagnostics file will be in Blobs (binary large objects).

- Two files in the selected storage account under Blobs and container VHDs named vm name-disk.vhd and vm name-<uuid>.status

- A Storage account (unless you chose an existing storage account)
 Note: When you delete a VM, you must delete each of these resources individually, except for any resources you want to keep.

Azure Routing

Routing in an Azure Virtual Network Subnet is determined by the Subnet’s Effective Routing Table. The Effective Routing Table is a combination of built-in system routes and the routes in the User Defined Route (UDR) Table.

Note: You can view the Effective Routing Table under VM NIC properties.

You can view and edit the User Defined Routing table. When the system routes and the user defined routes are combined to form the Effective Routing Table, the most specific route wins and ties go to the User Defined Routing table. The System Routing Table includes a default route (0.0.0.0/0) pointing to Azure’s Virtual Network Internet Gateway. The System Routing Table also includes specific routes to the other defined subnets with the next-hop pointing to Azure’s Virtual Network infrastructure gateway.

To route traffic through the Firepower Threat Defense Virtual, routes must be added/updated in the User Defined Routing table associated with each data subnet. Traffic of interest should be routed by using the Firepower Threat Defense Virtual IP address on that subnet as the next-hop. Also, a default route for 0.0.0.0/0 can be added with a next hop of the Firepower Threat Defense Virtual IP if needed.

Because of the existing specific routes in the System Routing Table, you must add specific routes to the User Defined Routing table to point to the Firepower Threat Defense Virtual as the next-hop. Otherwise, a default route in the User Defined table would lose to the more specific route in the System Routing Table and traffic would bypass the Firepower Threat Defense Virtual.

Routing Configuration for VMs in the Virtual Network

Routing in the Azure Virtual Network depends on the Effective Routing Table and not the particular gateway settings on the clients. Clients running in a Virtual Network may be given routes by DHCP that are the .1 address on their respective subnets. This is a place holder and serves only to get the packet to the Virtual Network’s infrastructure.
virtual gateway. Once a packet leaves the VM it is routed according to the Effective Routing Table (as modified by the User Defined Table). The Effective Routing Table determines the next hop regardless of whether a client has a gateway configured as .1 or as the Firepower Threat Defense Virtual address.

Azure VM ARP tables will show the same MAC address (1234.5678.9abc) for all known hosts. This ensures that all packets leaving an Azure VM will reach the Azure gateway where the Effective Routing Table will be used to determine the path of the packet.

IP Addresses

The following information applies to IP addresses in Azure:

- The first NIC on the Firepower Threat Defense Virtual (which maps to Management) is given a private IP address in the subnet to which it is attached.

 A public IP address may be associated with this private IP address and the Azure Internet gateway handles the NAT translations.

 You can associate a public IP address with a data interface (GigabitEthernet0/0, for example) after the Firepower Threat Defense Virtual has been deployed.

- Public IP addresses that are dynamic may change during an Azure stop/start cycle. However, they are persistent during Azure restart and during Firepower Threat Defense Virtual reload.

- Public IP addresses that are static do not change until you change them in Azure.

- Firepower Threat Defense Virtual interfaces may use DHCP to set their IP addresses. The Azure infrastructure ensures that the Firepower Threat Defense Virtual interfaces are assigned the IP addresses set in Azure.

Deploy the Firepower Threat Defense Virtual

The following procedure is a top-level list of steps to set up the Firepower Threat Defense Virtual in the Microsoft Azure environment. For detailed steps for Azure setup, see Getting Started with Azure.

When you deploy the Firepower Threat Defense Virtual in Azure it automatically generates various configurations, such as resources, public IP addresses, and route tables. You can further manage these configurations after deployment. For example, you may want to change the Idle Timeout value from the default, which is a low timeout.

Procedure

1. Log into the Azure Resource Manager (ARM) portal.

 The Azure portal shows virtual elements associated with the current account and subscription regardless of data center location.

2. Choose Azure Marketplace > Virtual Machines.

3. Search Marketplace for “Cisco Firepower Next Generation Firewall - virtual”, choose the offering, and click Create.

4. Configure the basic settings.

 a. Enter a name for the virtual machine. This name should be unique within your Azure subscription.

 Note: Make sure you do not use an existing name or the deployment will fail.

 b. Enter a username for the Firepower Threat Defense Virtual administrator.

 Note: The name “admin” is reserved in Azure and cannot be used.

 c. Choose an authentication type, either password or SSH key.
If you choose password, enter a password and confirm.
If you choose SSH key, specify the RSA public key of the remote peer.

d. Create a password to use with the Admin user account when you log in to configure the Firepower Threat Defense Virtual.

e. Choose your subscription type.

f. Create a new Resource Group.

The Firepower Threat Defense Virtual should be deployed into a new Resource Group. The option to deploy into an existing Resource Group only works if that existing Resource Group is empty.

However, you can attach the FTDv to an existing Virtual Network in another Resource Group when configuring the network options in later steps.

g. Select geographical location. This should be the same for all resources used in this deployment (for example: ASAv, Network, storage accounts).

h. Click OK.

5. Complete the initial configuration for Firepower Threat Defense Virtual.

a. Choose the virtual machine size.

b. Choose a storage account.

 Note: You can use an existing storage account or create a new one. The storage account name can only contain lowercase letters and numbers.

c. Request a public IP address by entering a label for the IP address in the Name field, and then click OK.

 Note: Azure creates a dynamic public IP address, regardless of the dynamic/static choice made in this step. The public IP may change when the VM is stopped and restarted. If you prefer a fixed IP address, you can open the created public-ip after deployment and change it from a dynamic to a static address.

d. Add a DNS label if needed.

 Note: The fully qualified domain name will be your DNS label plus the Azure URL: <dnslabel>.<location>.cloudapp.azure.com

e. Choose an existing virtual network or create a new one.

f. Configure four subnets for the Firepower Threat Defense Virtual network interfaces:

 - FTDv Management interface, attached to the “First subnet”
 - FTDv Diagnostic interface, attached to the “Second subnet”
 - FTDv Gig0/0 interface, attached to the “Third subnet”
 - FTDv Gig0/1 interface, attached to the “Fourth subnet”

 g. Click OK.

6. View the configuration summary, and then click OK.

7. View the terms of use and then click Purchase.

Deployment times vary in Azure. Wait until Azure reports that the Firepower Threat Defense Virtual VM is running.
What to Do Next

- Update the Firepower Threat Defense Virtual’s IP configuration in Azure.

Update the Public IP Address Configuration

Procedure

1. From the Virtual Machine list, choose the Firepower Threat Defense Virtual VM.
2. Click Overview.
3. Click the blue IP and DNS names below the Public IP address/DNS name label.
4. Click Configuration:
 - To connect by IP address, choose the Assignment Static.
 - To connect by DNS name, enter a DNS name label.
 - (Optional) For convenience you can increase the Idle Timeout to its maximum range (30 minutes). This prevents management SSH sessions from timing out too quickly.
5. Click Save.

What to Do Next

- Optionally, add a public IP address to a data interface.
- Configure the Firepower Threat Defense Virtual for management by a Firepower Management Center.

(Optional) Add a Public IP Address to a Data Interface

Procedure

1. From the Virtual Machine list, choose the Firepower Threat Defense Virtual VM.
2. Click Network interfaces.
3. Choose a data interface you want to add the IP addresses to:
 - Nic2 (the third NIC) maps to GigabitEthernet 0/0 when viewed from the Firepower Management Center. This is the first data NIC.
 - Nic3 (the fourth NIC) maps to GigabitEthernet 0/1 when viewed from the Firepower Management Center. This is the second data NIC.
4. Click IP Configurations.
5. Click Add.
6. Choose IPConfig-1 from the list on the right.
7. In the IPConfig-1 configuration blade, switch the Public IP address to Enabled.
8. Use the Create new dialog to create a new public IP address.
 - Note: You can create a static or dynamic IP address. If you create a dynamic IP address, then you must always access this interface by DNS name rather than IP address.
9. Click OK.
 - Wait for the configuration change to process then check the Network interfaces list to make sure a public IP address was added to the data interface.
Note: When Internet traffic is directed at the public IP address associated with a data interface, the traffic will be Destination NATed by the Azure gateway and the new destination IP of the packet will be the private IP of the Firepower Threat Defense Virtual interface associated with the public IP. The Firepower Threat Defense Virtual must be configured with NAT to translate the destination IP to an IP of some resource on the inside subnet.

10. Click **Save**.

What to Do Next
- Configure the Firepower Threat Defense Virtual for management by a Firepower Management Center.

Configure the Firepower Threat Defense Virtual for Firepower Management

The Firepower Threat Defense Virtual needs to be configured with the networking information required to register the device to a Firepower Management Center.

To configure the Firepower Threat Defense Virtual so that an FMC can add it as a device, use the `configure manager add` command. A unique self-generated alphanumeric registration key is always required to register a device to a Firepower Management Center. This is a simple key that you specify, and it is not the same as a license key.

If you have an Express Route connection from your premises to your Azure virtual network, you can provide the Firepower Management Center’s IP address along with the registration key, for example:

```
configure manager add XXX.XXX.XXX.XXX my_reg_key
```

where `XXX.XXX.XXX.XXX` is the IP address of the managing Firepower Management Center and `my_reg_key` is the user-defined registration key for the virtual device.

However, if you want to register the Firepower Threat Defense Virtual using its public IP address, then you need to also enter a unique NAT ID along with the registration key, and specify DONTRESOLVE instead of the IP address. For example:

```
configure manager add DONTRESOLVE my_reg_key my_nat_id
```

where `my_reg_key` is the user-defined registration key and `my_nat_id` is the user-defined NAT ID for the virtual device.

Procedure

1. SSH to the Firepower Threat Defense Virtual using the public IP address provided by Azure.
2. Log in with the username **admin** and the password **Admin123**.
3. Complete the system configuration as prompted.
 - You must first read and accept the end user license agreement (EULA). Then change the admin password, then configure the management address, DNS settings, and firewall mode (routed) as prompted.
4. Wait for the default system configuration to be processed. This may take a few minutes.
5. Identify the Firepower Management Center appliance that will manage this device using the `configure manager add` command.

   ```
   > configure manager add {hostname | IPv4_address | IPv6_address | DONTRESOLVE} reg_key [nat_id]
   ```
Deploy the Firepower Threat Defense Virtual

Note: The registration key is a user-defined one-time use key that must not exceed 37 characters. Valid characters include alphanumeric characters (A–Z, a–z, 0–9) and the hyphen (–). You will need to remember this registration key when you add the device to the Firepower Management Center.

If the Firepower Management Center is not directly addressable, use DONTRESOLVE.

Note: The NAT ID is an optional user-defined alphanumeric string that follows the same conventions as the registration key described above. It is required if the hostname is set to DONTRESOLVE. You will need to remember this NAT ID when you add the device to the Firepower Management Center.

Because the IP address of the Firepower Management Center will likely be NATed into Azure, the NAT ID is required. For example:

```bash
configure manager add DONTRESOLVE 1234 ABCD
```

What to Do Next

- Update the Azure Security Groups.

Update Security Groups

A Security Group controls which ports/destinations Azure allows/denies for certain interfaces. To gain SSH access to the Firepower Threat Defense Virtual as well as from the Firepower Management Center, rules need to be added to the Security Group on the VM’s primary interface. TCP port 22 is needed for SSH and TCP port 8305 is needed for registration and diagnostics.

Procedure

1. Open the VM information page for the newly deployed Firepower Threat Defense Virtual.
2. Choose **Network Interfaces**.
3. Choose **Nic0**.
4. In the Essentials pane, find the Network Security Group. Click the blue network security group name. It should follow a convention similar to `<vmname>-SSH-SecurityGroup`.
5. Click **Inbound security rules**.
6. Verify that there is an SSH-Rule that allows Service = SSH, or add one if there is none.

 We recommend that you limit the Source address range to IP addresses you expect to be using when you connect to the Firepower Threat Defense Virtual via SSH, otherwise SSH is open to the Internet.
7. Add a Security group rule for the diagnostic interface:

 a. Name—Name the inbound rule; for example, `sf-tunnel`.
 b. Priority—Leave the default
 c. Source—Change to CIDR, and enter the subnet that the Firepower Management Center will be sending from.
 d. Service—Custom
 e. Protocol—TCP
 f. Port range—8305
 g. Action—Allow
8. Click **OK**.
What to Do Next
- Register the Firepower Threat Defense Virtual with the Firepower Management Center.

Register with the Firepower Management Center

Make sure that security groups on the first interface and on the Management subnet allow all traffic from your Firepower Management Center's source address. This is typically an address from a pool on an Internet-facing firewall. You can temporarily allow all traffic. However, once you discover the IP address block that your Firepower Management Center is connecting from, you should restrict your security group to allow traffic only from those known safe blocks.

Procedure

Before You Begin
- Firepower Threat Defense Virtual requires Smart Software Licensing, which is configurable from the Firepower Management Center.
- Determine the time synchronization requirements for your virtual appliance. We recommend that you synchronize your appliances to a physical NTP server. Do not synchronize your managed devices to a virtual Firepower Management Center. See the Firepower Management Center Configuration Guide for time synchronization requirements.

Procedure

1. Log into the Firepower Management Center using an HTTPS connection in a browser, using the hostname or address of the configured Firepower Management Center. For example, https://MC.example.com.
2. On the web interface for the Management Center, choose Devices > Device Management.
3. From the Add drop-down list, choose Add Device.
4. In the Host field:
 a. To connect over the Internet using a public IP address, enter the public IP address associated with the Firepower Threat Defense Virtual’s Management interface.
 b. To connect over Azure ExpressRoute, enter the private IP associated with the Firepower Threat Defense Virtual’s Management interface.
5. In the Display Name field, enter a name for the security module as you want it to display in the Management Center.
6. In the Registration Key field, enter the same registration key that you used when you configured the Firepower Threat Defense Virtual for Firepower Management.
7. If you are adding a device in a multidomain environment, assign the device to a leaf domain by selecting a value from the Domain drop-down list.
 If your current domain is a leaf domain, the device is automatically added to the current domain.
8. Optionally, add the device to a device Group.
9. From the Access Control Policy drop-down list, choose an initial policy to deploy to the security module:
 - The Default Access Control policy blocks all traffic from entering your network.
 - The Default Intrusion Prevention policy allows all traffic that is also passed by the Balanced Security and Connectivity intrusion policy.
 - The Default Network Discovery policy allows all traffic, which is inspected by network discovery only.
Deploy the Firepower Threat Defense Virtual

10. Choose licenses to apply to the device.

 Note: Control, Malware, and URL Filtering licenses require a Protection license; see the *Firepower Management Center Configuration Guide* for more information.

11. If you used a NAT ID to identify the device when you configured it to be managed by the Firepower Management Center, expand the **Advanced** section and enter the same NAT ID in the Unique NAT ID field.

 Note: If you connect to the Firepower Threat Defense Virtual over the Internet using the management’s Public IP, then you need to use the NAT ID. If you connect over Azure ExpressRoute, you do not need to use the NAT ID.

12. Click **Register** and confirm a successful registration.

 It may take up to two minutes for the Firepower Management Center to verify the device’s heartbeat and establish communication.

What to Do Next

- Enable and configure the two data interfaces.

Configure Device Settings

After you register the Firepower Threat Defense Virtual to its managing Firepower Management Center, you need to enable and configure the two data interfaces.

Procedure

1. Choose **Devices > Device Management**.

2. Click the edit icon next to the Firepower Threat Defense Virtual device where you want to configure the interface.

 In a multidomain deployment, if you are not in a leaf domain, the system prompts you to switch.

3. Click the edit icon next to the GigabitEthernet0/0 interface:

 a. From the **Mode** drop-down list, choose **None** to leave the interface in routed mode.

 b. Click the **IPv4** tab and verify that the **IP Address** matches the address given to the interface during deployment in Azure.

 c. Click **OK**.

4. Repeat the same steps for the GigabitEthernet0/1 interface.

5. Click **Save**.

What to Do Next

- You can use the Firepower Management Center user interface to configure and apply access control policies and other related policies to manage traffic using your Firepower Threat Defense Virtual instance; see the *Firepower Management Center Configuration Guide* or the online help.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (11110R)

© 2017 Cisco Systems, Inc. All rights reserved.