CONTENTS

CHAPTER 1 Introduction to the Firepower Security Appliance 1
 About the Firepower Security Appliance 1
 Monitoring Chassis Health 1

CHAPTER 2 CLI Overview 5
 Managed Objects 5
 Command Modes 5
 Object Commands 7
 Complete a Command 8
 Command History 8
 Commit, Discard, and View Pending Commands 8
 Inline Help for the CLI 9
 CLI Session Limits 9

CHAPTER 3 Getting Started 11
 Task Flow 11
 Initial Configuration Using Console Port 11
 Accessing the FXOS CLI 14

CHAPTER 4 License Management for the ASA 17
 About Smart Software Licensing 17
 Smart Software Licensing for the ASA 17
 Smart Software Manager and Accounts 18
 Offline Management 18
 Permanent License Reservation 18
 Satellite Server 19
Contents

Licenses and Devices Managed per Virtual Account 19
Evaluation License 19
Smart Software Manager Communication 19
Device Registration and Tokens 20
Periodic Communication with the License Authority 20
Out-of-Compliance State 20
Smart Call Home Infrastructure 20
Prerequisites for Smart Software Licensing 21
Guidelines for Smart Software Licensing 21
Defaults for Smart Software Licensing 21
Configure Regular Smart Software Licensing 22
(Optional) Configure the HTTP Proxy 22
(Optional) Delete the Call Home URL 23
Register the Firepower Security Appliance with the License Authority 24
Change Cisco Success Network Enrollment 25
Configure a Smart License Satellite Server for the Firepower 4100/9300 chassis 26
Configure Permanent License Reservation 27
Install the Permanent License 27
(Optional) Return the Permanent License 28
Monitoring Smart Software Licensing 29
History for Smart Software Licensing 30

CHAPTER 5

User Management 33
User Accounts 33
Guidelines for Usernames 34
Guidelines for Passwords 35
Guidelines for Remote Authentication 36
User Roles 38
Password Profile for Locally Authenticated Users 38
Select the Default Authentication Service 39
Configuring the Session Timeout 41
Configuring the Absolute Session Timeout 42
Configuring the Role Policy for Remote Users 43
Enabling Password Strength Check for Locally Authenticated Users 44
Changing the Management IP Address 81
Changing the Application Management IP 83
Changing the Firepower 4100/9300 Chassis Name 85
Install a Trusted Identity Certificate 86
Pre-Login Banner 92
 Creating the Pre-Login Banner 92
 Modifying the Pre-Login Banner 93
 Deleting the Pre-Login Banner 94
Rebooting the Firepower 4100/9300 Chassis 95
Powering Off the Firepower 4100/9300 Chassis 95
Restoring the Factory Default Configuration 96

Platform Settings 99
Setting the Date and Time 99
 Viewing the Configured Date and Time 100
 Setting the Time Zone 100
 Setting the Date and Time Using NTP 102
 Deleting an NTP Server 104
 Setting the Date and Time Manually 105
Configuring SSH 106
Configuring Telnet 109
Configuring SNMP 110
 About SNMP 110
 SNMP Notifications 111
 SNMP Security Levels and Privileges 111
 Supported Combinations of SNMP Security Models and Levels 112
 SNMPv3 Security Features 112
 SNMP Support 113
 Enabling SNMP and Configuring SNMP Properties 113
 Creating an SNMP Trap 114
 Deleting an SNMP Trap 116
 Creating an SNMPv3 User 117
 Deleting an SNMPv3 User 119
 Viewing Current SNMP Settings 119
Configuring HTTPS 120
 Certificates, Key Rings, and Trusted Points 120
 Creating a Key Ring 121
 Regenerating the Default Key Ring 122
 Creating a Certificate Request for a Key Ring 123
 Creating a Certificate Request for a Key Ring with Basic Options 123
 Creating a Certificate Request for a Key Ring with Advanced Options 124
 Creating a Trusted Point 126
 Importing a Certificate into a Key Ring 127
 Configuring HTTPS 128
 Changing the HTTPS Port 130
 Deleting a Key Ring 131
 Deleting a Trusted Point 131
 Disabling HTTPS 132
Configuring AAA 132
 About AAA 132
 Setting Up AAA 134
 Configuring LDAP Providers 135
 Configuring RADIUS Providers 139
 Configuring TACACS+ Providers 142
 Verifying Remote AAA Server Configurations 145
 Configuring Syslog 146
 Configuring DNS Servers 148
 Enable FIPS Mode 150
 Enable Common Criteria Mode 150
 Configure the IP Access List 151

CHAPTER 10 Interface Management 153
 About Firepower Interfaces 153
 Chassis Management Interface 153
 Interface Types 153
 FXOS Interfaces vs. Application Interfaces 154
 Hardware Bypass Pairs 154
 Jumbo Frame Support 155
CHAPTER 11 Logical Devices 165

About Logical Devices 165

Standalone and Clustered Logical Devices 165
Requirements and Prerequisites for Logical Devices 166

Requirements and Prerequisites for Hardware and Software Combinations 166
Requirements and Prerequisites for Clustering 166
Requirements and Prerequisites for High Availability 168
Guidelines and Limitations for Logical Devices 168

General Guidelines and Limitations 169
Clustering Guidelines and Limitations 169
Add a Standalone Logical Device 174

Add a Standalone ASA 174
Add a Standalone Firepower Threat Defense 179
Add a High Availability Pair 188

Add a Cluster 188
About Clustering on the Firepower 4100/9300 Chassis 188

Primary and Secondary Unit Roles 189
Cluster Control Link 189
Management Network 191
Management Interface 191
Spanned EtherChannels 191
Inter-Site Clustering 191
Add an ASA Cluster 192
Create an ASA Cluster 192
Packet Capture 247
 Backplane Port Mappings 247
 Guidelines and Limitations for Packet Capture 248
 Creating or Editing a Packet Capture Session 248
 Configuring Filters for Packet Capture 250
 Starting and Stopping a Packet Capture Session 252
 Downloading a Packet Capture File 252
 Deleting Packet Capture Sessions 253
Testing Network Connectivity 254
Troubleshooting Management Interface Status 255
Determine Port Channel Status 256
Recovering from a Software Failure 258
Recovering from a Corrupted File System 263
Restoring the Factory Default Configuration when the Admin Password is Unknown 272
Enabling Firepower Module Core Dumps 274
Finding the Serial Number of the Firepower 4100/9300 Chassis 275
Rebuild RAID Virtual Drive 276
Introduction to the Firepower Security Appliance

About the Firepower Security Appliance

The Cisco Firepower 4100/9300 chassis is a next-generation platform for network and content security solutions. The Firepower 4100/9300 chassis is part of the Cisco Application Centric Infrastructure (ACI) Security Solution and provides an agile, open, secure platform that is built for scalability, consistent control, and simplified management.

The Firepower 4100/9300 chassis provides the following features:

- Modular chassis-based security system—provides high performance, flexible input/output configurations, and scalability.
- Firepower Chassis Manager—graphical user interface provides streamlined, visual representation of current chassis status and simplified configuration of chassis features.
- FXOS CLI—provides command-based interface for configuring features, monitoring chassis status, and accessing advanced troubleshooting features.
- FXOS REST API—allows users to programatically configure and manage their chassis.

Monitoring Chassis Health

You can use the `show environment summary` command to view the following pieces of information that show the overall health for the Firepower 4100/9300 chassis:

- Total Power Consumption—Total power consumed in watts.
- Inlet Temperature—Ambient system temperature in Celsius.
- CPU Temperature—Processor temperature in Celsius.
- Power Supply Type—AC or DC.
- Power Supply Input Feed Status—Input status (Ok, Fault).
- Power Supply Output Status—12V output status (Ok, Fault).
Monitoring Chassis Health

- Power Supply Overall Status—Overall health of PSU (Operable, Removed, Thermal problem).
- Fan Speed RPM—Highest RPM of both fans in single fan tray.
- Fan Speed Status—Fan speed (Slow, Ok, High, Critical).
- Fan Overall Status—Overall health of Fan (Operable, Removed, Thermal problem)
- Blade Total Power Consumption—Total power consumed by security module/engine in watts.
- Blade Processor Temperature—Highest temperature in Celsius of processors on security module/engine.

Procedure

Step 1
Connect to the FXOS CLI (see Accessing the FXOS CLI, on page 14).

Step 2
Enter chassis mode:
```
Firepower-chassis# scope chassis 1
```

Step 3
To view a summary of the chassis health, enter the following command:
```
Firepower-chassis /chassis # show environment summary
```

Example

```
Firepower-chassis# scope chassis 1
Firepower-chassis /chassis # show environment summary

Chassis INFO :
Total Power Consumption: 638.000000
Inlet Temperature (C): 32.000000
CPU Temperature (C): 47.000000

PSU 1:
Type: AC
Input Feed Status: Ok
12v Output Status: Ok
Overall Status: Operable

PSU 2:
Type: AC
Input Feed Status: Ok
12v Output Status: Ok
Overall Status: Operable

FAN 1
Fan Speed RPM (RPM): 3168
Speed Status: Ok
Overall Status: Operable

FAN 2
Fan Speed RPM (RPM): 3388
Speed Status: Ok
Overall Status: Operable

FAN 3
```
Fan Speed RPM (RPM): 3168
Speed Status: Ok
Overall Status: Operable

FAN 4
Fan Speed RPM (RPM): 3212
Speed Status: Ok
Overall Status: Operable

BLADE 1:
Total Power Consumption: 216.000000
Processor Temperature (C): 58.000000

BLADE 2:
Total Power Consumption: 222.000000
Processor Temperature (C): 62.500000
CLI Overview

• Managed Objects, on page 5
• Command Modes, on page 5
• Object Commands, on page 7
• Complete a Command, on page 8
• Command History, on page 8
• Commit, Discard, and View Pending Commands, on page 8
• Inline Help for the CLI, on page 9
• CLI Session Limits, on page 9

Managed Objects

The Firepower eXtensible Operating System (FXOS) uses a managed object model, where managed objects are abstract representations of physical or logical entities that can be managed. For example, chassis, security modules, network modules, ports, and processors are physical entities represented as managed objects, and licenses, user roles, and platform policies are logical entities represented as managed objects.

Managed objects may have one or more associated properties that can be configured.

Command Modes

The CLI is organized into a hierarchy of command modes, with EXEC mode being the highest-level mode of the hierarchy. Higher-level modes branch into lower-level modes. You use create, enter, and scope commands to move from higher-level modes to modes in the next lower level, and you use the up command to move up one level in the mode hierarchy. You can also use the top command to move to the top level in the mode hierarchy.

Note

Most command modes are associated with managed objects, so you must create an object before you can access the mode associated with that object. You use create and enter commands to create managed objects for the modes being accessed. The scope commands do not create managed objects and can only access modes for which managed objects already exist.
Each mode contains a set of commands that can be entered in that mode. Most of the commands available in each mode pertain to the associated managed object.

The CLI prompt for each mode shows the full path down the mode hierarchy to the current mode. This helps you to determine where you are in the command mode hierarchy, and it can be an invaluable tool when you need to navigate through the hierarchy.

The following table lists the main command modes, the commands used to access each mode, and the CLI prompt associated with each mode.

Table 1: Main Command Modes and Prompts

<table>
<thead>
<tr>
<th>Mode Name</th>
<th>Commands Used to Access</th>
<th>Mode Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC</td>
<td>top command from any mode</td>
<td>#</td>
</tr>
<tr>
<td>Adapter</td>
<td>scope adapter command from EXEC mode</td>
<td>/adapter #</td>
</tr>
<tr>
<td>Cabling</td>
<td>scope cabling command from EXEC mode</td>
<td>/cabling #</td>
</tr>
<tr>
<td>Chassis</td>
<td>scope chassis command from EXEC mode</td>
<td>/chassis #</td>
</tr>
<tr>
<td>Ethernet server domain</td>
<td>scope eth-server command from EXEC mode; this command and all subcommands are currently not supported</td>
<td>/eth-server #</td>
</tr>
<tr>
<td>Ethernet uplink</td>
<td>scope eth-uplink command from EXEC mode</td>
<td>/eth-uplink #</td>
</tr>
<tr>
<td>Fabric interconnect</td>
<td>scope fabric-interconnect command from EXEC mode</td>
<td>/fabric-interconnect #</td>
</tr>
<tr>
<td>Firmware</td>
<td>scope firmware command from EXEC mode</td>
<td>/firmware #</td>
</tr>
<tr>
<td>Host Ethernet interface</td>
<td>scope host-eth-if command from EXEC mode; This command and all subcommands are not supported at this level; the Host Ethernet interface commands are available in /adapter # mode.</td>
<td>/host-eth-if #</td>
</tr>
<tr>
<td>License</td>
<td>scope license command from EXEC mode</td>
<td>/license #</td>
</tr>
<tr>
<td>Monitoring</td>
<td>scope monitoring command from EXEC mode</td>
<td>/monitoring #</td>
</tr>
<tr>
<td>Organization</td>
<td>scope org command from EXEC mode</td>
<td>/org #</td>
</tr>
<tr>
<td>Packet capture</td>
<td>scope packet-capture command from EXEC mode</td>
<td>/packet-capture #</td>
</tr>
<tr>
<td>Security</td>
<td>scope security command from EXEC mode</td>
<td>/security #</td>
</tr>
</tbody>
</table>
Object Commands

Four general commands are available for object management:

- `create object`
- `delete object`
- `enter object`
- `scope object`

You can use the `scope` command with any managed object, whether a permanent object or a user-instantiated object. The other commands allow you to create and manage user-instantiated objects. For every `create object` command, a corresponding `delete object` and `enter object` command exists.

In the management of user-instantiated objects, the behavior of these commands depends on whether the object exists, as described in the following tables:

Table 2: Command Behavior If The Object Does Not Exist

<table>
<thead>
<tr>
<th>Command</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create object</code></td>
<td>The object is created and its configuration mode, if applicable, is entered.</td>
</tr>
<tr>
<td><code>delete object</code></td>
<td>An error message is generated.</td>
</tr>
<tr>
<td><code>enter object</code></td>
<td>The object is created and its configuration mode, if applicable, is entered.</td>
</tr>
<tr>
<td><code>scope object</code></td>
<td>An error message is generated.</td>
</tr>
</tbody>
</table>
Table 3: Command Behavior If The Object Exists

<table>
<thead>
<tr>
<th>Command</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>create object</td>
<td>An error message is generated.</td>
</tr>
<tr>
<td>delete object</td>
<td>The object is deleted.</td>
</tr>
<tr>
<td>enter object</td>
<td>The configuration mode, if applicable, of the object is entered.</td>
</tr>
<tr>
<td>scope object</td>
<td>The configuration mode of the object is entered.</td>
</tr>
</tbody>
</table>

Complete a Command

You can use the Tab key in any mode to complete a command. Partially typing a command name and pressing Tab causes the command to be displayed in full or to the point where you must enter another keyword or an argument value.

Command History

The CLI stores all commands used in the current session. You can step through the previously used commands by using the up-arrow or down-arrow keys. The up-arrow key moves to the previous command in the history, and the down-arrow key moves to the next command in the history. When you get to the end of the history, pressing the down-arrow key does nothing.

You can enter any command in the history again by stepping through the history to recall that command and then pressing Enter. The command is entered as if you had manually typed it. You can also recall a command and change it before you press Enter.

Commit, Discard, and View Pending Commands

When you enter a configuration command in the CLI, the command is not applied until you enter the commit-buffer command. Until committed, a configuration command is pending and can be discarded by entering a discard-buffer command.

You can accumulate pending changes in multiple command modes and apply them together with a single commit-buffer command. You can view the pending commands by entering the show configuration pending command in any command mode.

Note

All pending commands are checked for validity. However, if any queued command fails during commit, the remaining commands are applied; failed commands are reported in an error message.

While any commands are pending, an asterisk (*) appears before the command prompt. The asterisk disappears when you enter the commit-buffer command.

The following example shows how the prompts change during the command entry process:
Firepower# scope system
Firepower /system # scope services
Firepower /system/services # create ntp-server 192.168.200.101
Firepower /system/services* # show configuration pending
 scope services
 + create ntp-server 192.168.200.101
 exit
Firepower /system/services* # commit-buffer
Firepower /system/services #

Inline Help for the CLI

At any time, you can enter the ? character to display the options available at the current state of the command syntax.

If you have not entered anything at the prompt, entering ? lists all available commands for the mode you are in. With a partially entered command, entering ? lists all keywords and arguments available at your current position in the command syntax.

CLI Session Limits

FXOS limits the number of CLI sessions that can be active at one time to 32 total sessions. This value is not configurable.
CHAPTER 3

Getting Started

- Task Flow, on page 11
- Initial Configuration Using Console Port, on page 11
- Accessing the FXOS CLI, on page 14

Task Flow

The following procedure shows the basic tasks that should be completed when configuring your Firepower 4100/9300 chassis.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configure the Firepower 4100/9300 chassis hardware (see the Cisco Firepower Security Appliance Hardware Installation Guide).</td>
</tr>
<tr>
<td>Step 2</td>
<td>Complete the initial configuration (see Initial Configuration Using Console Port, on page 11).</td>
</tr>
<tr>
<td>Step 3</td>
<td>Set the Date and Time (see Setting the Date and Time, on page 99).</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configure a DNS server (see Configuring DNS Servers, on page 148).</td>
</tr>
<tr>
<td>Step 5</td>
<td>Register your product license (see License Management for the ASA, on page 17).</td>
</tr>
<tr>
<td>Step 6</td>
<td>Configure users (see User Management, on page 33).</td>
</tr>
<tr>
<td>Step 7</td>
<td>Perform software updates as required (see Image Management, on page 55).</td>
</tr>
<tr>
<td>Step 8</td>
<td>Configure additional platform settings (see Platform Settings, on page 99).</td>
</tr>
<tr>
<td>Step 9</td>
<td>Configure interfaces (see Interface Management, on page 153).</td>
</tr>
<tr>
<td>Step 10</td>
<td>Create logical devices (see Logical Devices, on page 165).</td>
</tr>
</tbody>
</table>

Initial Configuration Using Console Port

Before you can use Firepower Chassis Manager or the FXOS CLI to configure and manage your system, you must perform some initial configuration tasks using the FXOS CLI accessed through the console port. Use the following procedure to perform initial configuration using the FXOS CLI accessed through the console port.
The first time that you access the Firepower 4100/9300 chassis using the FXOS CLI, you will encounter a setup wizard that you can use to configure the system.

Note
To repeat the initial setup, you need to erase any existing configuration using the following commands:

```
Firepower-chassis# connect local-mgmt
firepower-chassis(local-mgmt)# erase configuration
```

You must specify only one IPv4 address, gateway, and subnet mask, or only one IPv6 address, gateway, and network prefix for the single management port on the Firepower 4100/9300 chassis. You can configure either an IPv4 or an IPv6 address for the management port IP address.

Before you begin
1. Verify the following physical connections on the Firepower 4100/9300 chassis:
 • The console port is physically connected to a computer terminal or console server.
 • The 1 Gbps Ethernet management port is connected to an external hub, switch, or router.
 For more information, refer to the Cisco Firepower Security Appliance Hardware Installation Guide.
2. Verify that the console port parameters on the computer terminal (or console server) attached to the console port are as follows:
 • 9600 baud
 • 8 data bits
 • No parity
 • 1 stop bit
3. Gather the following information for use with the setup script:
 • New admin password
 • Management IP address and subnet mask
 • Gateway IP address
 • Subnets from which you want to allow HTTPS and SSH access (you are prompted for "IP block" addresses)
 • Hostname and domain name
 • DNS server IP address

Procedure

Step 1 Power on the chassis.
Step 2 Connect to the serial console port using a terminal emulator.
The Firepower includes an RS-232–to–RJ-45 serial console cable. You might need to use a third party serial-to-USB cable to make the connection. Use the following serial parameters:

- 9600 baud
- 8 data bits
- No parity
- 1 stop bit

Step 3
Complete the system configuration as prompted.

Example:

```
---- Basic System Configuration Dialog ----

This setup utility will guide you through the basic configuration of the system. Only minimal configuration including IP connectivity to the FXOS Supervisor is performed through these steps.

Type Ctrl-C at any time for more options or to abort configuration and reboot system.
To back track or make modifications to already entered values, complete input till end of section and answer no when prompted to apply configuration.

You have chosen to setup a new Security Appliance.
Continue? (yes/no): y

Enforce strong password? (yes/no) [y]: n

Enter the password for "admin": Farscape632
Confirm the password for "admin": Farscape632
Enter the system name: firepower-9300

Supervisor Mgmt IP address : 10.80.6.12
Supervisor Mgmt IPv4 netmask : 255.255.255.0
IPv4 address of the default gateway : 10.80.6.1

Do you want to configure IP block for ssh access? (yes/no) [y]: y
SSH IP block address : 10.0.0.0
SSH IPv4 block netmask : 255.0.0.0

Do you want to configure IP block for https access? (yes/no) [y]: y
HTTPS IP block address : 10.0.0.0
HTTPS IPv4 block netmask : 255.0.0.0

Configure the DNS Server IP address? (yes/no) [n]: y
DNS IP address : 10.164.47.13

Configure the default domain name? (yes/no) [n]: y
Default domain name : cisco.com
```
Following configurations will be applied:

Switch Fabric=A
System Name=firepower-9300
Enforced Strong Password=no
Supervisor Mgmt IP Address=10.89.5.14
Supervisor Mgmt IP Netmask=255.255.255.192
Default Gateway=10.89.5.1
SSH Access Configured=yes
 SSH IP Address=10.0.0.0
 SSH IP Netmask=255.0.0.0
HTTPS Access Configured=yes
 HTTPS IP Address=10.0.0.0
 HTTPS IP Netmask=255.0.0.0
DNS Server=72.163.47.11
Domain Name=cisco.com

Apply and save the configuration (select 'no' if you want to re-enter)? (yes/no): y
Applying configuration. Please wait... Configuration file – Ok

Cisco FPR Series Security Appliance
firepower-9300 login: admin
Password: Farscape32
Successful login attempts for user 'admin' : 1
Cisco Firepower Extensible Operating System (FX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (c) 2009-2019, Cisco Systems, Inc. All rights reserved.

[...]

firepower-chassis#

Accessing the FXOS CLI

You can connect to the FXOS CLI using a terminal plugged into the console port. Verify that the console port parameters on the computer terminal (or console server) attached to the console port are as follows:

- 9600 baud
- 8 data bits
- No parity
- 1 stop bit

You can also connect to the FXOS CLI using SSH and Telnet. The Firepower eXtensible Operating System supports up to eight simultaneous SSH connections. To connect with SSH, you need to know the hostname or IP address of the Firepower 4100/9300 chassis.

Use one of the following syntax examples to log in with SSH, Telnet, or Putty:
SSH login is case-sensitive.

From a Linux terminal using SSH:

- `ssh ucs-auth-domain\{username\}@{UCS-ip-address|UCS-ipv6-address}`

 - `ssh ucs-example\jsmith@192.0.20.11`
 - `ssh ucs-example\jsmith@2001::1`

- `ssh -l ucs-auth-domain\{username\} {UCS-ip-address|UCS-ipv6-address|UCS-host-name}`

 - `ssh -l ucs-example\jsmith 192.0.20.11`
 - `ssh -l ucs-example\jsmith 2001::1`

- `ssh {UCS-ip-address | UCS-ipv6-address | UCS-host-name} -l ucs-auth-domain\{username\}`

 - `ssh 192.0.20.11 -l ucs-example\jsmith`
 - `ssh 2001::1 -l ucs-example\jsmith`

- `ssh ucs-auth-domain\{username\}@{UCS-ip-address|UCS-ipv6-address}`

 - `ssh ucs-ldap23\jsmith@192.0.20.11`
 - `ssh ucs-ldap23\jsmith@2001::1`

From a Linux terminal using Telnet:

- `telnet ucs-UCS-host-name ucs-auth-domain\username`

 - `telnet ucs-qa-10`
 - `login: ucs-ldap23\blladmin`

- `telnet ucs-{UCS-ip-address | UCS-ipv6-address} ucs-auth-domain\username`

 - `telnet 10.106.19.12 2052`
 - `ucs-qa-10-A login: ucs-ldap23\blladmin`

From a Putty client:

- `Login as: ucs-auth-domain\username`

 - `Login as: ucs-example\jsmith`

Note

If the default authentication is set to local, and the console authentication is set to LDAP, you can log in to the fabric interconnect from a Putty client using `ucs-local\admin`, where admin is the name of the local account.
License Management for the ASA

Cisco Smart Software Licensing lets you purchase and manage a pool of licenses centrally. You can easily deploy or retire devices without having to manage each unit’s license key. Smart Software Licensing also lets you see your license usage and needs at a glance.

This section only applies to ASA logical devices on the Firepower 4100/9300 chassis. For more information on licensing for Firepower Threat Defense logical devices, see the Firepower Management Center Configuration Guide.

About Smart Software Licensing

This section describes how Smart Software Licensing works.

Smart Software Licensing for the ASA

For the ASA application on the Firepower 4100/9300 chassis, Smart Software Licensing configuration is split between the Firepower 4100/9300 chassis supervisor and the application.
• Firepower 4100/9300 chassis—Configure all Smart Software Licensing infrastructure in the supervisor, including parameters for communicating with the License Authority. The Firepower 4100/9300 chassis itself does not require any licenses to operate.

Note

Inter-chassis clustering requires that you enable the same Smart Licensing method on each chassis in the cluster.

• ASA Application—Configure all license entitlements in the application.

Note

Cisco Transport Gateway is not supported on Firepower 4100/9300 security appliances.

Smart Software Manager and Accounts

When you purchase 1 or more licenses for the device, you manage them in the Cisco Smart Software Manager: https://software.cisco.com/#module/SmartLicensing

The Smart Software Manager lets you create a master account for your organization.

Note

If you do not yet have an account, click the link to set up a new account. The Smart Software Manager lets you create a master account for your organization.

By default, your licenses are assigned to the Default Virtual Account under your master account. As the account administrator, you can optionally create additional virtual accounts; for example, you can create accounts for regions, departments, or subsidiaries. Multiple virtual accounts let you more easily manage large numbers of licenses and devices.

Offline Management

If your devices do not have Internet access, and cannot register with the License Authority, you can configure offline licensing.

Permanent License Reservation

If your devices cannot access the internet for security reasons, you can optionally request permanent licenses for each ASA. Permanent licenses do not require periodic access to the License Authority. Like PAK licenses, you will purchase a license and install the license key for the ASA. Unlike a PAK license, you obtain and manage the licenses with the Smart Software Manager. You can easily switch between regular smart licensing mode and permanent license reservation mode.

You can obtain a license that enables all features: Standard tier with maximum Security Contexts and the Carrier license. The license is managed on the Firepower 4100/9300 chassis, but you also need to request the entitlements in the ASA configuration so that the ASA allows their use.
Satellite Server

If your devices cannot access the internet for security reasons, you can optionally install a local Smart Software Manager satellite server as a virtual machine (VM). The satellite provides a subset of Smart Software Manager functionality, and allows you to provide essential licensing services for all your local devices. Only the satellite needs to connect periodically to the main License Authority to sync your license usage. You can sync on a schedule or you can sync manually.

Once you download and deploy the satellite application, you can perform the following functions without sending data to Cisco SSM using the Internet:

- Activate or register a license
- View your company's licenses
- Transfer licenses between company entities

For more information, see the Smart Software Manager satellite installation and configuration guides on Smart Account Manager satellite.

Licenses and Devices Managed per Virtual Account

Licenses and devices are managed per virtual account: only that virtual account's devices can use the licenses assigned to the account. If you need additional licenses, you can transfer an unused license from another virtual account. You can also transfer devices between virtual accounts.

Only the Firepower 4100/9300 chassis registers as a device, while the ASA applications in the chassis request their own licenses. For example, for a Firepower 9300 chassis with 3 security modules, the chassis counts as one device, but the modules use 3 separate licenses.

Evaluation License

The Firepower 4100/9300 chassis supports two types of evaluation license:

- Chassis-level evaluation mode—Before the Firepower 4100/9300 chassis registers with the Licensing Authority, it operates for 90 days (total usage) in evaluation mode. The ASA cannot request specific entitlements in this mode; only default entitlements are enabled. When this period ends, the Firepower 4100/9300 chassis becomes out-of-compliance.

- Entitlement-based evaluation mode—After the Firepower 4100/9300 chassis registers with the Licensing Authority, you can obtain time-based evaluation licenses that can be assigned to the ASA. In the ASA, you request entitlements as usual. When the time-based license expires, you need to either renew the time-based license or obtain a permanent license.

Note

You cannot receive an evaluation license for Strong Encryption (3DES/AES); only permanent licenses support this entitlement.

Smart Software Manager Communication

This section describes how your device communicates with the Smart Software Manager.
Device Registration and Tokens

For each virtual account, you can create a registration token. This token is valid for 30 days by default. Enter this token ID plus entitlement levels when you deploy each chassis, or when you register an existing chassis. You can create a new token if an existing token is expired.

At startup after deployment, or after you manually configure these parameters on an existing chassis, the chassis registers with the Cisco License Authority. When the chassis registers with the token, the License Authority issues an ID certificate for communication between the chassis and the License Authority. This certificate is valid for 1 year, although it will be renewed every 6 months.

Periodic Communication with the License Authority

The device communicates with the License Authority every 30 days. If you make changes in the Smart Software Manager, you can refresh the authorization on the device so the change takes place immediately. Or you can wait for the device to communicate as scheduled.

You can optionally configure an HTTP proxy.

The Firepower 4100/9300 chassis must have internet access either directly or through an HTTP proxy at least every 90 days. Normal license communication occurs every 30 days, but with the grace period, your device will operate for up to 90 days without calling home. After the grace period, you must contact the Licensing Authority, or you will not be able to make configuration changes to features requiring special licenses; operation is otherwise unaffected.

Note

If your device is unable to communicate with the license authority for one year, the device will enter an unregistered state without strong encryption licenses.

Out-of-Compliance State

The device can become out of compliance in the following situations:

- Over-utilization—When the device uses unavailable licenses.
- License expiration—When a time-based license expires.
- Lack of communication—When the device cannot reach the Licensing Authority for re-authorization.

To verify whether your account is in, or approaching, an Out-of-Compliance state, you must compare the entitlements currently in use by your Firepower 4100/9300 chassis against those in your Smart Account.

In an out-of-compliance state, you will not be able to make configuration changes to features requiring special licenses, but operation is otherwise unaffected. For example, existing contexts over the Standard license limit can continue to run, and you can modify their configuration, but you will not be able to add a new context.

Smart Call Home Infrastructure

By default, a Smart Call Home profile exists in the FXOS configuration that specifies the URL for the Licensing Authority. You cannot remove this profile. Note that the only configurable option for the License profile is the destination address URL for the License Authority. Unless directed by Cisco TAC, you should not change the License Authority URL.
Cisco Transport Gateway is not supported on Firepower 4100/9300 security appliances.

Prerequisites for Smart Software Licensing

- Note that this chapter only applies to ASA logical devices on the Firepower 4100/9300 chassis. For more information on licensing for Firepower Threat Defense logical devices, see the Firepower Management Center Configuration Guide.

- Create a master account on the Cisco Smart Software Manager:
 https://software.cisco.com/#module/SmartLicensing
 If you do not yet have an account, click the link to set up a new account. The Smart Software Manager lets you create a master account for your organization.

- Purchase 1 or more licenses from the Cisco Commerce Workspace. On the home page, search for your platform in the **Find Products and Solutions** search field. Some licenses are free, but you still need to add them to your Smart Software Licensing account.

- Ensure internet access or HTTP proxy access from the chassis, so the chassis can contact the Licensing Authority.

- Configure a DNS server so the chassis can resolve the name of the Licensing Authority.

- Set the time for the chassis.

- Configure the Smart Software Licensing infrastructure on the Firepower 4100/9300 chassis before you configure the ASA licensing entitlements.

Guidelines for Smart Software Licensing

ASA Guidelines for Failover and Clustering

Each Firepower 4100/9300 chassis must be registered with the License Authority or satellite server. There is no extra cost for secondary units. For permanent license reservation, you must purchase separate licenses for each chassis.

Defaults for Smart Software Licensing

The Firepower 4100/9300 chassis default configuration includes a Smart Call Home profile called “SLProfile” that specifies the URL for the Licensing Authority.

```plaintext
scope monitoring
  scope callhome
    scope profile SLProfile
      scope destination SLDest
```
Configure Regular Smart Software Licensing

To communicate with the Cisco License Authority, you can optionally configure an HTTP proxy. To register with the License Authority, you must enter the registration token ID on the Firepower 4100/9300 chassis that you obtained from your Smart Software License account.

Procedure

Step 1
(Optional) Configure the HTTP Proxy, on page 22.
Step 2
(Optional) Delete the Call Home URL, on page 23
Step 3
Register the Firepower Security Appliance with the License Authority, on page 24.

(Optional) Configure the HTTP Proxy

If your network uses an HTTP proxy for Internet access, you must configure the proxy address for Smart Software Licensing. This proxy is also used for Smart Call Home in general.

Note

HTTP proxy with authentication is not supported.

Procedure

Step 1
Enable the HTTP proxy:

```bash
scope monitoring
scope callhome
set http-proxy-server-enable on
```

Example:

```bash
scope monitoring
scope callhome
set http-proxy-server-enable on
```

Step 2
Set the proxy URL:

```bash
set http-proxy-server-url url
```

where `url` is the http or https address of the proxy server.

Example:
set http-proxy-server-url https://10.1.1.1

Step 3 Set the port:

```
set http-proxy-server-port \(\text{port}\)
```

Example:

```
set http-proxy-server-port 443
```

Step 4 Commit the buffer:

```
commit-buffer
```

(Optional) Delete the Call Home URL

Use the following procedure to delete a previously configured Call Home URL.

Procedure

Step 1 Enter the monitoring scope:

```
scope monitoring
```

Step 2 Enter the callhome scope:

```
scope callhome
```

Step 3 Look for the SLProfile:

```
scope profile SLProfile
```

Step 4 Show the destination:

```
show destination
```

Example:

```
SLDest https https://tools.cisco.com/its/oddce/services/DDCEService
```

Step 5 Delete the URL:

```
delete destination SLDest
```

Step 6 Commit the buffer:

```
commit-buffer
```
Register the Firepower Security Appliance with the License Authority

When you register the Firepower 4100/9300 chassis, the License Authority issues an ID certificate for communication between the Firepower 4100/9300 chassis and the License Authority. It also assigns the Firepower 4100/9300 chassis to the appropriate virtual account. Normally, this procedure is a one-time instance. However, you might need to later re-register the Firepower 4100/9300 chassis if the ID certificate expires because of a communication problem, for example.

Procedure

Step 1
In the Smart Software Manager or the Smart Software Manager Satellite, request and copy a registration token for the virtual account to which you want to add this Firepower 4100/9300 chassis.

For more information on how to request a registration token using the Smart Software Manager Satellite, see the Cisco Smart Software Manager Satellite User Guide (https://www.cisco.com/c/en/us/buy/smart-accounts/software-manager-satellite.html).

Step 2
Enter the registration token on the Firepower 4100/9300 chassis:

```
scope license
register idtoken id-token
```

Example:

```
scope license
  register idtoken ZGFmNWM5NjgtYmNjYS00ZWI3L
  WE3NGItmWjKOGExZj1xNGQ0LTE0NjI2NDYx%0AMDIeNT
  V8N3RdXM1Z0NjWkpR214eFZhMldBOS3CVnNEYnVkm1
  g3R3dvnRD%0AY29NQT0%3D%0A
```

Step 3
To later unregister the device, enter:

```
scope license
deregister
```

Deregistering the Firepower 4100/9300 chassis removes the device from your account. All license entitlements and certificates on the device are removed. You might want to deregister to free up a license for a new Firepower 4100/9300 chassis. Alternatively, you can remove the device from the Smart Software Manager.

Step 4
To renew the ID certificate and update the entitlements on all security modules, enter:

```
scope license
scope licdebug
renew
```

By default, the ID certificate is automatically renewed every 6 months, and the license entitlement is renewed every 30 days. You might want to manually renew the registration for either of these items if you have a limited window for Internet access, or if you make any licensing changes in the Smart Software Manager, for example.
Change Cisco Success Network Enrollment

You enable Cisco Success Network when you register the Firepower 4100/9300 with the Cisco Smart Software Manager. After that, use the following procedure to view or change enrollment status.

Note

Cisco Success Network does not work in evaluation mode.

Procedure

Step 1
Enter the system scope.

```
scope system
Example:
Firepower# scope system
Firepower /system #
```

Step 2
Enter the services scope.

```
scope services
Example:
Firepower /system # scope services
Firepower /system/services #
```

Step 3
Enter the telemetry scope.

```
scope telemetry
Example:
Firepower /system/services # scope telemetry
Firepower /system/services/telemetry #
```

Step 4
Enable or disable the Cisco Success Network feature.

```
{enable | disable}
Example:
Firepower /system/services/telemetry # enable
```

Step 5
Verify the Cisco Success Network status in the Firepower 4100/9300 Chassis.

```
show detail
Example:
Verify that the Admin State shows the correct status of Cisco Success Network.

Telemetry:
  Admin State: Enabled
  Oper State: Registering
  Error Message:
  Period: 86400
  Current Task: Registering the device for Telemetry
  (FSM-STAGE:sam:dme:CommTelemetryDataExchSeq:RegisterforTelemetry)
```

Example:
Verify that the **Oper State** shows **OK**, which indicates that telemetry data is sent.

Telemetry:
- Admin State: Enabled
- Oper State: Ok
- Error Message:
- Period: 86400
- Current Task:

Configure a Smart License Satellite Server for the Firepower 4100/9300 chassis

The following procedure shows how to configure the Firepower 4100/9300 chassis to use a Smart License satellite server.

Before you begin

- Complete all prerequisites listed in the [Prerequisites for Smart Software Licensing, on page 21](#).
- Deploy and set up a Smart Software Satellite Server:
 - Download the [Smart License Satellite OVA file](#) from Cisco.com and install and configure it on a VMware ESXi server. For more information, see the [Smart Software Manager satellite Install Guide](#).
- Verify that the FQDN of the Smart Software Satellite Server can be resolved by your internal DNS server.
- Verify whether the satellite trustpoint is already present:
 - `scope security`
 - `show trustpoint`

 Note that the trustpoint is added by default in FXOS version 2.4(1) and later. If the trustpoint is not present, you must add it manually using the following steps:

 1. Go to http://www.cisco.com/security/pki/certs/clrca.cer and copy the entire body of the SSL certificate (from "-----BEGIN CERTIFICATE-----" to "-----END CERTIFICATE-----") into a place you can access during configuration.

 2. Enter security mode:
 - `scope security`

 3. Create and name a trusted point:
 - `create trustpoint trustpoint_name`

 4. Specify certificate information for the trust point. Note: the certificate must be in Base64 encoded X.509 (CER) format.
 - `set certchain certchain`

 For the `certchain` variable, paste the certificate text that you copied in step 1.
If you do not specify certificate information in the command, you are prompted to enter a certificate or a list of trust points defining a certification path to the root certificate authority (CA). On the next line following your input, type `ENDOBFBUF` to finish.

5. Commit the configuration:

   ```
   commit-buffer
   ```

Procedure

Step 1
Set up the satellite server as the callhome destination:

```
scope monitoring
callhome
profile SLProfile
destination SLDest
set address https://[FQDN of Satellite server]/Transportgateway/services/DeviceRequestHandler
```

Step 2
Register the Firepower 4100/9300 chassis with the License Authority (see Register the Firepower Security Appliance with the License Authority, on page 24). Note that you must request and copy the registration token from the Smart License Manager satellite.

Configure Permanent License Reservation

You can assign a permanent license to your Firepower 4100/9300 chassis. This universal reservation allows you to use any entitlement for an unlimited count on your device.

Note

Before you begin, you must purchase the permanent licenses so they are available in the Smart Software Manager. Not all accounts are approved for permanent license reservation. Make sure you have approval from Cisco for this feature before you attempt to configure it.

Install the Permanent License

The following procedure shows how to assign a permanent license to your Firepower 4100/9300 chassis.

Procedure

Step 1
From the FXOS CLI, enable license reservation:

```
scope license
enable reservation
```
Step 2 Scope to the license reservation:
 scope license
 scope reservation

Step 3 Generate a reservation request code:
 request universal
 show license resvcode

Step 4 Go to the Smart Software Manager Inventory screen in the Cisco Smart Software Manager portal, and click the Licenses tab:
 https://software.cisco.com/#SmartLicensing-Inventory
 The Licenses tab displays all existing licenses related to your account, both regular and permanent.

Step 5 Click License Reservation, and type the generated reservation request code into the box.

Step 6 Click Reserve License.
 The Smart Software Manager generates an authorization code. You can download the code or copy it to the clipboard. At this point, the license is now in use according to the Smart Software Manager.
 If you do not see the License Reservation button, then your account is not authorized for permanent license reservation. In this case, you should disable permanent license reservation and re-enter the regular smart license commands.

Step 7 In the FXOS CLI, enter the licensing scope:
 scope license

Step 8 Enter the reservation scope:
 scope reservation

Step 9 Enter the authorization code:
 install code
 Your Firepower 4100/9300 chassis is now fully licensed with PLR.

Step 10 Enable feature entitlements on the ASA logical device. See the ASA licensing chapter to enable entitlements.

(Optional) Return the Permanent License

If you no longer need a permanent license, you must officially return it to the Smart Software Manager using this procedure. If you do not follow all steps, the license stays in an in-use state and cannot be used elsewhere.

Procedure

Step 1 From the FXOS CLI, enter the license scope:
 scope license
Step 2 Enter the reservation scope:

`scope reservation`

Step 3 Return the permanent license:

`return`

The Firepower 4100/9300 chassis immediately becomes unlicensed and moves to the Evaluation state.

Step 4 View and copy the return reservation code:

`show license resvcode`

Step 5 View and copy the FXOS universal device identifier (UDI) so you can find your FXOS instance in the Smart Software Manager:

`show license udi`

Step 6 Go to the Smart Software Manager Inventory screen, and click on the **Product Instances** tab:

https://software.cisco.com/#SmartLicensing-Inventory

Step 7 Search for your Firepower 4100/9300 chassis using its universal device identifier (UDI).

Step 8 Choose **Actions > Remove**, and type the generated return reservation code into the box.

Step 9 Click **Remove Product Instance**.

The permanent license is returned to the available pool.

Step 10 Reboot the system. For details on how to reboot your Firepower 4100/9300 chassis, see Rebooting the Firepower 4100/9300 Chassis, on page 95.

Monitoring Smart Software Licensing

See the following commands for viewing license status:

- `show license all`

 Displays the state of Smart Software Licensing, Smart Agent version, UDI information, Smart Agent state, global compliance status, the entitlements status, licensing certificate information and schedule Smart Agent tasks.

- `show license status`

- `show license techsupport`
History for Smart Software Licensing

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Platform Releases</th>
<th>Description</th>
</tr>
</thead>
</table>
| Cisco Success Network | 2.7.1 | Cisco Success Network is a user-enabled cloud service. When you enable Cisco Success Network, a secure connection is established between the Firepower 4100/9300 chassis and the Cisco cloud to stream usage information and statistics. Streaming telemetry provides a mechanism that selects data of interest from the ASA and transmits it in a structured format to remote management stations to do the following:
 • Inform you of available unused features that can improve the effectiveness of the product in your network
 • Inform you of additional technical support services and monitoring that might be available for your product
 • Help Cisco improve our products

Once you enroll in the Cisco Success Network, the chassis establishes and maintains the secure connection at all times. You can turn off this connection at any time by disabling Cisco Success Network, which disconnects the device from the Cisco Success Network cloud.

We introduced the following commands:

```bash
scope telemetry {enable | disable}
```

We introduced the following screens:

```
System > Licensing > Cisco Success Network
```
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Platform Releases</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Smart Software Licensing for the Firepower 4100/9300 chassis</td>
<td>1.1(1)</td>
<td>Smart Software Licensing lets you purchase and manage a pool of licenses. Smart licenses are not tied to a specific serial number. You can easily deploy or retire devices without having to manage each unit’s license key. Smart Software Licensing also lets you see your license usage and needs at a glance. Smart Software Licensing configuration is split between the Firepower 4100/9300 chassis supervisor and the security module. We introduced the following commands: deregister, register idtoken, renew, scope callhome, scope destination, scope licdebug, scope license, scope monitoring, scope profile, set address, set http-proxy-server-enable on, set http-proxy-server-url, set http-proxy-server-port, show license all, show license status, show license techsupport</td>
</tr>
</tbody>
</table>
User Management

- User Accounts, on page 33
- Guidelines for Usernames, on page 34
- Guidelines for Passwords, on page 35
- Guidelines for Remote Authentication, on page 36
- User Roles, on page 38
- Password Profile for Locally Authenticated Users, on page 38
- Select the Default Authentication Service, on page 39
- Configuring the Session Timeout, on page 41
- Configuring the Absolute Session Timeout, on page 42
- Configuring the Role Policy for Remote Users, on page 43
- Enabling Password Strength Check for Locally Authenticated Users, on page 44
- Set the Maximum Number of Login Attempts, on page 44
- View and Clear User Lockout Status, on page 45
- Configuring the Maximum Number of Password Changes for a Change Interval, on page 46
- Configure Minimum Password Length Check, on page 47
- Configuring a No Change Interval for Passwords, on page 47
- Configuring the Password History Count, on page 48
- Creating a Local User Account, on page 49
- Deleting a Local User Account, on page 51
- Activating or Deactivating a Local User Account, on page 52
- Clearing the Password History for a Locally Authenticated User, on page 53

User Accounts

User accounts are used to access the system. You can configure up to 48 local user accounts. Each user account must have a unique username and password.

Admin Account

The admin account is a default user account and cannot be modified or deleted. This account is the system administrator or superuser account and has full privileges. There is no default password assigned to the admin account; you must choose the password during the initial system setup.

The admin account is always active and does not expire. You cannot configure the admin account as inactive.
Locally Authenticated User Accounts

A locally authenticated user account is authenticated directly through the chassis and can be enabled or disabled by anyone with admin or AAA privileges. Once a local user account is disabled, the user cannot log in. Configuration details for disabled local user accounts are not deleted by the database. If you reenable a disabled local user account, the account becomes active again with the existing configuration.

Remotely Authenticated User Accounts

A remotely authenticated user account is any user account that is authenticated through LDAP, RADIUS, or TACACS+.

If a user maintains a local user account and a remote user account simultaneously, the roles defined in the local user account override those maintained in the remote user account.

See the following topics for more information on guidelines for remote authentication, and how to configure and delete remote authentication providers:

- Guidelines for Remote Authentication, on page 36
- Configuring LDAP Providers, on page 135
- Configuring RADIUS Providers, on page 139
- Configuring TACACS+ Providers, on page 142

Expiration of User Accounts

You can configure user accounts to expire at a predefined time. When the expiration time is reached, the user account is disabled.

By default, user accounts do not expire.

After you configure a user account with an expiration date, you cannot reconfigure the account to not expire. You can, however, configure the account with the latest expiration date available.

Guidelines for Usernames

The username is also used as the login ID for Firepower Chassis Manager and the FXOS CLI. When you assign login IDs to user accounts, consider the following guidelines and restrictions:

- The login ID can contain between 1 and 32 characters, including the following:
 - Any alphabetic character
 - Any digit
 - _ (underscore)
 - - (dash)
 - . (dot)
- The login ID must be unique.
- The login ID must start with an alphabetic character. It cannot start with a number or a special character, such as an underscore.
• The login ID is case-sensitive.
• You cannot create an all-numeric login ID.
• After you create a user account, you cannot change the login ID. You must delete the user account and create a new one.

Guidelines for Passwords

A password is required for each locally authenticated user account. A user with admin or AAA privileges can configure the system to perform a password strength check on user passwords. If the password strength check is enabled, each user must have a strong password.

We recommend that each user have a strong password. If you enable the password strength check for locally authenticated users, the Firepower eXtensible Operating System rejects any password that does not meet the following requirements:

• Must contain a minimum of 8 characters and a maximum of 80 characters.

 Note You can optionally configure a minimum password length of 15 characters on the system, to comply with Common Criteria requirements. For more information, see Configure Minimum Password Length Check, on page 47.

• Must include at least one uppercase alphabetic character.
• Must include at least one lowercase alphabetic character.
• Must include at least one non-alphanumeric (special) character.
• Must not contain a space.
• Must not contain a character that is repeated more than 3 times consecutively, such as aaabb.
• Must not contain three consecutive numbers or letters in any order, such as passwordABC or password321.
• Must not be identical to the username or the reverse of the username.
• Must pass a password dictionary check. For example, the password must not be based on a standard dictionary word.
• Must not contain the following symbols: $ (dollar sign), ? (question mark), and = (equals sign).

 Note This restriction applies whether the password strength check is enabled or not.

• Must not be blank for local user and admin accounts.
Guidelines for Remote Authentication

If a system is configured for one of the supported remote authentication services, you must create a provider for that service to ensure that the Firepower 4100/9300 chassis can communicate with the system. The following guidelines impact user authorization:

User Accounts in Remote Authentication Services

User accounts can exist locally in the Firepower 4100/9300 chassis or in the remote authentication server. You can view the temporary sessions for users who log in through remote authentication services from the Firepower Chassis Manager or the FXOS CLI.

User Roles in Remote Authentication Services

If you create user accounts in the remote authentication server, you must ensure that the accounts include the roles those users require for working in the Firepower 4100/9300 chassis and that the names of those roles match the names used in FXOS. Based on the role policy, a user might not be allowed to log in, or is granted only read-only privileges.

User Attributes in Remote Authentication Providers

For RADIUS and TACACS+ configurations, you must configure a user attribute for the Firepower 4100/9300 chassis in each remote authentication provider through which users log in to Firepower Chassis Manager or the FXOS CLI. This user attribute holds the roles and locales assigned to each user.

When a user logs in, FXOS does the following:

1. Queries the remote authentication service.
2. Validates the user.
3. If the user is validated, checks the roles and locales assigned to that user.

The following table contains a comparison of the user attribute requirements for the remote authentication providers supported by FXOS:

<table>
<thead>
<tr>
<th>Authentication Provider</th>
<th>Custom Attribute</th>
<th>Schema Extension</th>
<th>Attribute ID Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAP</td>
<td>Optional</td>
<td>You can choose to do one of the following:</td>
<td>The Cisco LDAP implementation requires a unicode type attribute.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Do not extend the LDAP schema and configure an existing, unused attribute that meets the requirements.</td>
<td>If you choose to create the CiscoAVPair custom attribute, use the following attribute ID: 1.3.6.1.4.1.9.287247.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Extend the LDAP schema and create a custom attribute with a unique name, such as CiscoAVPair.</td>
<td>A sample OID is provided in the following section.</td>
</tr>
<tr>
<td>Authentication Provider</td>
<td>Custom Attribute</td>
<td>Schema Extension</td>
<td>Attribute ID Requirements</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| RADIUS | Optional | You can choose to do one of the following:
 - Do not extend the RADIUS schema and use an existing, unused attribute that meets the requirements.
 - Extend the RADIUS schema and create a custom attribute with a unique name, such as cisco-avpair. | The vendor ID for the Cisco RADIUS implementation is 009 and the vendor ID for the attribute is 001.
 The following syntax example shows how to specify multiple user roles and locales if you choose to create the cisco-avpair attribute:
 `shell:roles="admin,aaa" shell:locales="L1,abc"`. Use a comma `," as the delimiter to separate multiple values. |
| TACACS+ | Required | You must extend the schema and create a custom attribute with the name cisco-av-pair. | The cisco-av-pair name is the string that provides the attribute ID for the TACACS+ provider.
 The following syntax example shows how to specify multiple user roles and locales when you create the cisco-av-pair attribute:
 `cisco-av-pair=shell:roles="admin,aaa" shell:locales="L1,abc"`. Using an asterisk (*) in the cisco-av-pair attribute syntax flags the locale as optional, preventing authentication failures for other Cisco devices that use the same authorization profile. Use a space as the delimiter to separate multiple values. |

Sample OID for LDAP User Attribute

The following is a sample OID for a custom CiscoAVPair attribute:

```
CN=CiscoAVPair,CN=Schema,  
CN=Configuration,CN=X  
objectClass: top  
objectClass: attributeSchema  
cn: CiscoAVPair  
distinguishedName: CN=CiscoAVPair,CN=Schema,CN=Configuration,CN=X  
instanceType: 0x4  
uSNCreated: 26318654  
attributeID: 1.3.6.1.4.1.9.287247.1  
attributeSyntax: 2.5.5.12  
isSingleValued: TRUE  
showInAdvancedViewOnly: TRUE  
adminDisplayName: CiscoAVPair  
adminDescription: UCS User Authorization Field  
oMSyntax: 64
```
User Roles

The system contains the following user roles:

Administrator

Complete read-and-write access to the entire system. The default admin account is assigned this role by default and it cannot be changed.

Read-Only

Read-only access to system configuration with no privileges to modify the system state.

Operations

Read-and-write access to NTP configuration, Smart Call Home configuration for Smart Licensing, and system logs, including syslog servers and faults. Read access to the rest of the system.

AAA Administrator

Read-and-write access to users, roles, and AAA configuration. Read access to the rest of the system.

Password Profile for Locally Authenticated Users

The password profile contains the password history and password change interval properties for all locally authenticated users. You cannot specify a different password profile for each locally authenticated user.

Password History Count

The password history count allows you to prevent locally authenticated users from reusing the same password over and over again. When this property is configured, the Firepower chassis stores passwords that were previously used by locally authenticated users up to a maximum of 15 passwords. The passwords are stored in reverse chronological order with the most recent password first to ensure that the only the oldest password can be reused when the history count threshold is reached.

A user must create and use the number of passwords configured in the password history count before being able to reuse one. For example, if you set the password history count to 8, a locally authenticated user cannot reuse the first password until after the ninth password has expired.

By default, the password history is set to 0. This value disables the history count and allows users to reuse previously passwords at any time.

If necessary, you can clear the password history count for a locally authenticated user and enable reuse of previous passwords.

Password Change Interval

The password change interval enables you to restrict the number of password changes a locally authenticated user can make within a given number of hours. The following table describes the two configuration options for the password change interval.
<table>
<thead>
<tr>
<th>Interval Configuration</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>No password change allowed</td>
<td>This option does not allow passwords for locally authenticated users to be changed within a specified number of hours after a password change.</td>
<td>For example, to prevent passwords from being changed within 48 hours after a locally authenticated user changes his or her password, set the following:</td>
</tr>
<tr>
<td></td>
<td>You can specify a no change interval between 1 and 745 hours. By default, the no change interval is 24 hours.</td>
<td>* Change during interval to disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* No change interval to 48</td>
</tr>
<tr>
<td>Password changes allowed within change interval</td>
<td>This option specifies the maximum number of times that passwords for locally authenticated users can be changed within a pre-defined interval.</td>
<td>For example, to allow a password to be changed a maximum of once within 24 hours after a locally authenticated user changes his or her password, set the following:</td>
</tr>
<tr>
<td></td>
<td>You can specify a change interval between 1 and 745 hours and a maximum number of password changes between 0 and 10. By default, a locally authenticated user is permitted a maximum of 2 password changes within a 48 hour interval.</td>
<td>* Change during interval to enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Change count to 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Change interval to 24</td>
</tr>
</tbody>
</table>

Select the Default Authentication Service

Procedure

1. **Step 1** Enter security mode:

 Firepower-chassis # `scope security`

2. **Step 2** Enter default authorization security mode:

 Firepower-chassis /security # `scope default-auth`

3. **Step 3** Specify the default authentication:

 Firepower-chassis /security/default-auth # `set realm auth-type`

 where `auth-type` is one of the following keywords:

 - `ldap`—Specifies LDAP authentication
 - `local`—Specifies local authentication
 - `none`—Allows local users to log on without specifying a password
 - `radius`—Specifies RADIUS authentication
 - `tacacs`—Specifies TACACS+ authentication
If Default Authentication and Console Authentication are both set to use the same remote authentication protocol (RADIUS, TACACS+, or LDAP), you cannot change certain aspects of that server's configuration (for example, deleting that server, or changing its order of assignment) without updating these user settings.

Step 4 *(Optional)* Specify the associated provider group, if any:

Firepower-chassis /security/default-auth # **set auth-server-group** auth-serv-group-name

Step 5 *(Optional)* Specify the maximum amount of time allowed between refresh requests for a user in this domain:

Firepower-chassis /security/default-auth # **set refresh-period** seconds

Specify an integer between 0 and 600. The default is 600 seconds.

If this time limit is exceeded, FXOS considers the web session to be inactive, but it does not terminate the session.

Step 6 *(Optional)* Specify the maximum amount of time that can elapse after the last refresh request before FXOS considers a web session to have ended:

Firepower-chassis /security/default-auth # **set session-timeout** seconds

Specify an integer between 0 and 600. The default is 600 seconds.

Note If you set two-factor authentication for a RADIUS or TACACS+ realm, consider increasing the session-refresh and session-timeout periods so that remote users do not have to reauthenticate too frequently.

Step 7 *(Optional)* Set the authentication method to two-factor authentication for the realm:

Firepower-chassis /security/default-auth # **set use-2-factor** yes

Note Two-factor authentication applies only to the RADIUS and TACACS+ realms.

Step 8 Commit the transaction to the system configuration:

commit-buffer

Example

The following example sets the default authentication to RADIUS, the default authentication provider group to provider1, enables two-factor authentications, sets the refresh period to 300 seconds (5 minutes), the session timeout period to 540 seconds (9 minutes), and enables two-factor authentication. It then commits the transaction.

Firepower-chassis# scope security
Firepower-chassis /security # scope default-auth
Firepower-chassis /security/default-auth # set realm radius
Firepower-chassis /security/default-auth* # set auth-server-group provider1
Firepower-chassis /security/default-auth* # set use-2-factor yes
Firepower-chassis /security/default-auth* # set refresh-period 300
Firepower-chassis /security/default-auth* # set session-timeout 540
Firepower-chassis /security/default-auth* # commit-buffer
Firepower-chassis /security/default-auth #
Configuring the Session Timeout

You can use the FXOS CLI to specify the amount of time that can pass without user activity before the Firepower 4100/9300 chassis closes user sessions. You can configure different settings for console sessions and for HTTPS, SSH, and Telnet sessions.

You can set a timeout value up to 3600 seconds (60 minutes). The default value is 600 seconds. To disable this setting, set the session timeout value to 0.

Procedure

Step 1 Enter security mode:
Firepower-chassis # scope security

Step 2 Enter default authorization security mode:
Firepower-chassis /security # scope default-auth

Step 3 Set the idle timeout for HTTPS, SSH, and Telnet sessions:
Firepower-chassis /security/default-auth # set session-timeout seconds

Step 4 (Optional) Set the idle timeout for console sessions:
Firepower-chassis /security/default-auth # set con-session-timeout seconds

Step 5 Commit the transaction to the system configuration:
Firepower-chassis /security/default-auth # commit-buffer

Step 6 (Optional) View the session and absolute session timeout settings:
Firepower-chassis /security/default-auth # show detail

Example:
Default authentication:
Admin Realm: Local
Operational Realm: Local
Web session refresh period (in secs): 600
Idle Session timeout (in secs) for web, ssh, telnet sessions: 600
Absolute Session timeout (in secs) for web, ssh, telnet sessions: 3600
Serial Console Session timeout (in secs): 600
Serial Console Absolute Session timeout (in secs): 3600
Admin Authentication server group:
Operational Authentication server group:
Use of 2nd factor: No
Configuring the Absolute Session Timeout

The Firepower 4100/9300 chassis has an absolute session timeout setting that closes user sessions after the absolute session timeout period has passed, regardless of session use. This absolute timeout functionality is global across all forms of access including serial console, SSH, and HTTPS.

You can separately configure the absolute session timeout for serial console sessions. This allows for disabling the serial console absolute session timeout for debugging needs while maintaining the timeout for other forms of access.

The absolute timeout value defaults to 3600 seconds (60 minutes) and can be changed using the FXOS CLI. To disable this setting, set the absolute session timeout value to 0.

Procedure

Step 1
Enter security mode:
Firepower-chassis # scope security

Step 2
Enter default authorization security mode:
Firepower-chassis /security # scope default-auth

Step 3
Set the absolute session timeout:
Firepower-chassis /security/default-auth # set absolute-session-timeout seconds

Step 4
(Optional) Set a separate console absolute session timeout:
Firepower-chassis /security/default-auth # set con-absolute-session-timeout seconds

Step 5
Commit the transaction to the system configuration:
Firepower-chassis /security/default-auth # commit-buffer

Step 6
(Optional) View the session and absolute session timeout settings:
Firepower-chassis /security/default-auth # show detail

Example:
Default authentication:
Admin Realm: Local
Operational Realm: Local
Web session refresh period(in secs): 600
Idle Session timeout (in secs) for web, ssh, telnet sessions: 600
Absolute Session timeout (in secs) for web, ssh, telnet sessions: 3600
Serial Console Session timeout(in secs): 600
Serial Console Absolute Session timeout(in secs): 3600
Admin Authentication server group:
Operational Authentication server group:
Use of 2nd factor: No
Configuring the Role Policy for Remote Users

By default, read-only access is granted to all users logging in to Firepower Chassis Manager or the FXOS CLI from a remote server using the LDAP, RADIUS, or TACACS+ protocols. For security reasons, it might be desirable to restrict access to those users matching an established user role.

You can configure the role policy for remote users in the following ways:

assign-default-role

When a user attempts to log in and the remote authentication provider does not supply a user role with the authentication information, the user is allowed to log in with a read-only user role.

This is the default behavior.

no-login

When a user attempts to log in and the remote authentication provider does not supply a user role with the authentication information, access is denied.

Procedure

Step 1 Enter security mode:
Firepower-chassis# scope security

Step 2 Specify whether user access to Firepower Chassis Manager and the FXOS CLI should be restricted based on user roles:
Firepower-chassis /security# set remote-user default-role {assign-default-role | no-login}

Step 3 Commit the transaction to the system configuration:
Firepower-chassis /security# commit-buffer

Example

The following example sets the role policy for remote users and commits the transaction:

Firepower-chassis# scope security
Firepower-chassis /security# set remote-user default-role no-login
Firepower-chassis /security*# commit-buffer
Firepower-chassis /security #
Enabling Password Strength Check for Locally Authenticated Users

If the password strength check is enabled, the Firepower eXtensible Operating System does not permit a user to choose a password that does not meet the guidelines for a strong password (see Guidelines for Passwords, on page 35).

Procedure

Step 1 Enter security mode:
Firepower-chassis# scope security

Step 2 Specify whether the password strength check is enabled or disabled:
Firepower-chassis/security# set enforce-strong-password {yes | no}

Example
The following example enables the password strength check:
Firepower-chassis# scope security
Firepower-chassis/security# set enforce-strong-password yes
Firepower-chassis/security*# commit-buffer

Set the Maximum Number of Login Attempts

You can configure the maximum number of failed login attempts allowed before a user is locked out of the Firepower 4100/9300 chassis for a specified amount of time. If a user exceeds the set maximum number of login attempts, the user is locked out of the system. No notification appears indicating that the user is locked out. In this event, the user must wait the specified amount of time before attempting to log in.

Perform these steps to configure the maximum number of login attempts.

Note
- All types of user accounts (including admin) are locked out of the system after exceeding the maximum number of login attempts.
- The default maximum number of unsuccessful login attempts is 0. The default amount of time the user is locked out of the system after exceeding the maximum number of login attempts is 30 minutes (1800 seconds).
- For steps to view a user's lockout status and to clear the user's locked out state, see View and Clear User Lockout Status, on page 45.
This option is one of a number offered for achieving Common Criteria certification compliance on your system. For more information, see Security Certifications Compliance, on page 65.

Procedure

Step 1
From the FXOS CLI, enter security mode:
```
scope security
```

Step 2
Set the maximum number of unsuccessful login attempts.
```
set max-login-attempts num_attempts
```
The `num_attempts` value is any integer from 0-10.

Step 3
Specify the amount of time (in seconds) the user should remain locked out of the system after reaching the maximum number of login attempts:
```
set user-account-unlock-time
```
```
unlock_time
```

Step 4
Commit the configuration:
```
commit-buffer
```

View and Clear User Lockout Status

Admin users can view and clear the locked out status of users that have been locked out of the Firepower 4100/9300 chassis after exceeding the maximum number of failed login attempts specified in the Maximum Number of Login Attempts CLI setting. For more information, see Set the Maximum Number of Login Attempts, on page 44.

Procedure

Step 1
From the FXOS CLI, enter security mode:
```
scope security
```

Step 2
Display the user information (including lockout status) of the user in question:
```
Firepower-chassis /security # show local-user user detail
```

Example:

<table>
<thead>
<tr>
<th>Local User user:</th>
<th>First Name:</th>
<th>Last Name:</th>
<th>Email:</th>
<th>Phone:</th>
<th>Expiration: Never</th>
<th>Password:</th>
</tr>
</thead>
</table>
Step 3 (Optional) Clear the user's lock out status:
Firepower-chassis/security# scope local-user user
Firepower-chassis/security/local-user# clear lock-status

Configuring the Maximum Number of Password Changes for a Change Interval

Procedure

Step 1 Enter security mode:
Firepower-chassis# scope security

Step 2 Enter password profile security mode:
Firepower-chassis/security# scope password-profile

Step 3 Restrict the number of password changes a locally authenticated user can make within a given number of hours:
Firepower-chassis/security/password-profile# set change-during-interval enable

Step 4 Specify the maximum number of times a locally authenticated user can change his or her password during the Change Interval:
Firepower-chassis/security/password-profile# set change-count pass-change-num
This value can be anywhere from 0 to 10.

Step 5 Specify the maximum number of hours over which the number of password changes specified in the Change Count field are enforced:
Firepower-chassis/security/password-profile# set change-interval num-of-hours
This value can be anywhere from 1 to 745 hours.
For example, if this field is set to 48 and the Change Count field is set to 2, a locally authenticated user can make no more than 2 password changes within a 48 hour period.

Step 6 Commit the transaction to the system configuration:
Firepower-chassis/security/password-profile# commit-buffer
Example
The following example enables the change during interval option, sets the change count to 5, sets
the change interval to 72 hours, and commits the transaction:

```
Firepower-chassis # scope security
Firepower-chassis /security # scope password-profile
Firepower-chassis /security/password-profile # set change-during-interval enable
Firepower-chassis /security/password-profile* # set change-count 5
Firepower-chassis /security/password-profile* # set change-interval 72
Firepower-chassis /security/password-profile* # commit-buffer
```

Configure Minimum Password Length Check

If you enable minimum password length check, you must create passwords with the specified minimum
number of characters. For example, if the \texttt{min_length} option is set to 15, you must create passwords using 15
characters or more. This option is one of a number that allow for Common Criteria certification compliance
on your system. For more information, see Security Certifications Compliance, on page 65.

Perform these steps to configure the minimum password length check.

Procedure

\begin{itemize}
\item [Step 1] From the FXOS CLI, enter security mode:
\texttt{scope security}
\item [Step 2] Specify the minimum password length:
\texttt{set min-password-length min_length}
\item [Step 3] Commit the configuration:
\texttt{commit-buffer}
\end{itemize}

Configuring a No Change Interval for Passwords

Procedure

\begin{itemize}
\item [Step 1] Enter security mode:
Firepower-chassis # scope security
\item [Step 2] Enter password profile security mode:
Firepower-chassis /security # scope password-profile
\end{itemize}
Step 3
Disable the change during interval feature:
Firepower-chassis /security/password-profile # set change-during-interval disable

Step 4
Specify the minimum number of hours that a locally authenticated user must wait before changing a newly created password:
Firepower-chassis /security/password-profile # set no-change-interval min-num-hours
This value can be anywhere from 1 to 745 hours.
This interval is ignored if the Change During Interval property is not set to Disable.

Step 5
Commit the transaction to the system configuration:
Firepower-chassis /security/password-profile # commit-buffer

Example
The following example disables the change during interval option, sets the no change interval to 72 hours, and commits the transaction:
Firepower-chassis # scope security
Firepower-chassis /security # scope password-profile
Firepower-chassis /security/password-profile # set change-during-interval disable
Firepower-chassis /security/password-profile* # set no-change-interval 72
Firepower-chassis /security/password-profile* # commit-buffer

Configuring the Password History Count

Procedure

Step 1
Enter security mode:
Firepower-chassis # scope security

Step 2
Enter password profile security mode:
Firepower-chassis /security # scope password-profile

Step 3
Specify the number of unique passwords that a locally authenticated user must create before that user can reuse a previously used password:
Firepower-chassis /security/password-profile # set history-count num-of-passwords
This value can be anywhere from 0 to 15.
By default, the History Count field is set to 0, which disables the history count and allows users to reuse previously used passwords at any time.

Step 4
Commit the transaction to the system configuration:
Example
The following example configures the password history count and commits the transaction:

```
Firepower-chassis # scope security
Firepower-chassis /security # scope password-profile
Firepower-chassis /security/password-profile # set history-count 5
Firepower-chassis /security/password-profile* # commit-buffer
Firepower-chassis /security/password-profile #
```

Creating a Local User Account

Procedure

Step 1 Enter security mode:
Firepower-chassis# scope security

Step 2 Create the user account:
Firepower-chassis /security # create local-user local-user-name
where `local-user-name` is the account name to be used when logging into this account. This name must be unique and meet the guidelines and restrictions for user account names (see Guidelines for Usernames, on page 34).

After you create the user, the login ID cannot be changed. You must delete the user account and create a new one.

Step 3 Specify whether the local user account is enabled or disabled:
Firepower-chassis /security/local-user # set account-status {active|inactive}

Step 4 Set the password for the user account:
Firepower-chassis /security/local-user # set password
Enter a password: password
Confirm the password: password

If password strength check is enabled, a user's password must be strong and the Firepower eXtensible Operating System rejects any password that does not meet the strength check requirements (see Guidelines for Passwords, on page 35).

Note Passwords must not contain the following symbols: $ (dollar sign), ? (question mark), and = (equals sign). This restriction applies whether the password strength check is enabled or not.

Step 5 (Optional) Specify the first name of the user:
Firepower-chassis /security/local-user # set firstname first-name
Creating a Local User Account

Step 6 (Optional) Specify the last name of the user:
Firepower-chassis /security/local-user # set lastname last-name

Step 7 (Optional) Specify the date that the user account expires. The month argument is the first three letters of the month name.
Firepower-chassis /security/local-user # set expiration month day-of-month year

Note After you configure a user account with an expiration date, you cannot reconfigure the account to not expire. You can, however, configure the account with the latest expiration date available.

Step 8 (Optional) Specify the user e-mail address.
Firepower-chassis /security/local-user # set email email-addr

Step 9 (Optional) Specify the user phone number.
Firepower-chassis /security/local-user # set phone phone-num

Step 10 (Optional) Specify the SSH key used for passwordless access.
Firepower-chassis /security/local-user # set sshkey ssh-key

Step 11 All users are assigned the read-only role by default and this role cannot be removed. For each additional role
that you want to assign to the user:
Firepower-chassis /security/local-user # create role role-name

where role-name is the role that represents the privileges you want to assign to the user account (see User Roles, on page 38).

Note Changes in user roles and privileges do not take effect until the next time the user logs in. If a user
is logged in when you assign a new role to or remove an existing role from a user account, the active
session continues with the previous roles and privileges.

Step 12 To remove an assigned role from the user:
Firepower-chassis /security/local-user # delete role role-name

All users are assigned the read-only role by default and this role cannot be removed.

Step 13 Commit the transaction.
Firepower-chassis security/local-user # commit-buffer

Example
The following example creates the user account named kikipopo, enables the user account, sets the
password to foo12345, assigns the admin user role, and commits the transaction:

Firepower-chassis# scope security
Firepower-chassis /security # create local-user kikipopo
Firepower-chassis /security/local-user* # set account-status active
Firepower-chassis /security/local-user* # set password
Enter a password:
Confirm the password:
The following example creates the user account named linsey, enables the user account, sets an OpenSSH key for passwordless access, assigns the aaa and operations user roles, and commits the transaction.

```plaintext
Firepower-chassis# scope security
Firepower-chassis /security # create local-user linsey
Firepower-chassis /security/local-user* # set account-status active
Firepower-chassis /security/local-user* # set sshkey "ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAuo9VQ2CmWBI9/S1f30k1CWjnV3lgdXMzO0WU15iPw851kdQqap+NFuNmHcb4KiaQB8X/PDmtd1xQQcwc1j+k8f4VeoE18xslsGk51uq51s10b1VOIEwcKEL/h51rdbN18y3SS91/gfB9ARlop9LDpDm8HPn2LOgyH7E11MI8="
Firepower-chassis /security/local-user* # create role aaa
Firepower-chassis /security/local-user* # create role operations
Firepower-chassis /security/local-user* # commit-buffer
Firepower-chassis /security/local-user #
```

The following example creates the user account named jforlenz, enables the user account, sets a Secure SSH key for passwordless access, and commits the transaction.

```plaintext
Firepower-chassis# scope security
Firepower-chassis /security # create local-user jforlenz
Firepower-chassis /security/local-user* # set account-status active
Firepower-chassis /security/local-user* # set sshkey
Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.
User's SSH key:
> ---- BEGIN SSH2 PUBLIC KEY ----
> AAAAB3NzaC1yc2EAAAABIwAAAIEAuo9VQ2CmWBI9/S1f30k1CWjnV3lgdXMzO0WU15iPw851kdQqap+NFuNmHcb4KiaQB8X/PDmtd1xQQcwc1j+k8f4VeoE18xslsGk51uq51s10b1VOIEwcKEL/h51rdbN18y3SS91/gfB9ARlop9LDpDm8HPn2LOgyH7E11MI8=
> ---- END SSH2 PUBLIC KEY ----
> ENDOFBUF
Firepower-chassis /security/local-user* # commit-buffer
Firepower-chassis /security/local-user #
```

Deleting a Local User Account

Procedure

Step 1 Enter security mode:

```
Firepower-chassis# scope security
```

Step 2 Delete the local-user account:

```
Firepower-chassis /security # delete local-user local-user-name
```

Step 3 Commit the transaction to the system configuration:

```
Firepower-chassis /security # commit-buffer
```
Activating or Deactivating a Local User Account

You must be a user with admin or AAA privileges to activate or deactivate a local user account.

Procedure

Step 1
Enter security mode:

`Firepower-chassis# scope security`

Step 2
Enter local-user security mode for the user you want to activate or deactivate:

`Firepower-chassis /security # scope local-user local-user-name`

Step 3
Specify whether the local user account is active or inactive:

`Firepower-chassis /security/local-user # set account-status {active | inactive}`

Note:
The admin user account is always set to active. It cannot be modified.

Step 4
Commit the transaction to the system configuration:

`Firepower-chassis /security/local-user # commit-buffer`

Example

The following example enables a local user account called accounting:

```
Firepower-chassis# scope security
Firepower-chassis /security # scope local-user accounting
Firepower-chassis /security* # commit-buffer
Firepower-chassis /security #
```
Clearing the Password History for a Locally Authenticated User

Procedure

Step 1 Enter security mode:
Firepower-chassis # scope security

Step 2 Enter local user security mode for the specified user account:
Firepower-chassis /security # scope local-user user-name

Step 3 Clear the password history for the specified user account:
Firepower-chassis /security/local-user # clear password-history

Step 4 Commit the transaction to the system configuration:
Firepower-chassis /security/local-user # commit-buffer

Example
The following example clears the password history and commits the transaction:

Firepower-chassis # scope security
Firepower-chassis /security # scope local-user admin
Firepower-chassis /security/local-user # clear password-history
Firepower-chassis /security/local-user* # commit-buffer
Firepower-chassis /security/local-user #
Clearing the Password History for a Locally Authenticated User
Image Management

• About Image Management, on page 55
• Downloading Images from Cisco.com, on page 56
• Downloading a Firepower eXtensible Operating System Software Image to the Firepower 4100/9300 chassis, on page 56
• Verifying the Integrity of an Image, on page 57
• Upgrading the Firepower eXtensible Operating System Platform Bundle, on page 58
• Downloading a Logical Device Software Image to the Firepower 4100/9300 chassis, on page 59
• Updating the Image Version for a Logical Device, on page 61
• Firmware Upgrade, on page 63
• Manually Downgrading to Version 2.0.1 or Lower, on page 63

About Image Management

The Firepower 4100/9300 chassis uses two basic types of images:

Note

All images are digitally signed and validated through Secure Boot. Do not modify the image in any way or you will receive a validation error.

Note

• Platform Bundle—The Firepower platform bundle is a collection of multiple independent images that operate on the Firepower Supervisor and Firepower security module/engine. The platform bundle is a Firepower eXtensible Operating System software package.

• Application—Application images are the software images you want to deploy on the security module/engine of the Firepower 4100/9300 chassis. Application images are delivered as Cisco Secure Package files (CSP) and are stored on the supervisor until deployed to a security module/engine as part of logical device creation or in preparation for later logical device creation. You can have multiple different versions of the same application image type stored on the Firepower Supervisor.

Note

If you are upgrading both the Platform Bundle image and one or more Application images, you must upgrade the Platform Bundle first.
Downloading Images from Cisco.com

Download FXOS and application images from Cisco.com so you can upload them to the Firepower chassis.

Before you begin
You must have a Cisco.com account.

Procedure

Step 1 Using a web browser, navigate to http://www.cisco.com/go/firepower9300-software or http://www.cisco.com/go/firepower4100-software. The software download page for the Firepower 4100/9300 chassis is opened in the browser.

Step 2 Find and then download the appropriate software image to your local computer.

Downloading a Firepower eXtensible Operating System Software Image to the Firepower 4100/9300 chassis

You can use FTP, SCP, SFTP, or TFTP to copy the FXOS software image to the Firepower 4100/9300 chassis.

Before you begin
Collect the following information that you will need to import a configuration file:

- IP address and authentication credentials for the server from which you are copying the image
- Fully qualified name of the FXOS image file

Procedure

Step 1 Enter firmware mode:
Firepower-chassis # scope firmware

Step 2 Download the FXOS software image:
Firepower-chassis /firmware # download image URL

Specify the URL for the file being imported using one of the following syntax:

- ftp://username@hostname/path/image_name
- scp://username@hostname/path/image_name
- sftp://username@hostname/path/image_name
- tftp://hostname:port-num/path/image_name
To monitor the download process:

```
Firepower-chassis/firmware # show package image_name detail
```

Example

The following example copies an image using the SCP protocol:

```
Firepower-chassis # scope firmware
scp://user@192.168.1.1/images/fxos-k9.1.1.1.19.SPA
Firepower-chassis /firmware # show package fxos-k9.1.1.1.19.SPA detail
```

Download task:
- File Name: fxos-k9.1.1.1.19.SPA
- Protocol: scp
- Server: 192.168.1.1
- Userid:
- Path:
- Downloaded Image Size (KB): 5120
- State: Downloading

Verifying the Integrity of an Image

The integrity of the image is automatically verified when a new image is added to the Firepower 4100/9300 chassis. If needed, you can use the following procedure to manually verify the integrity of an image.

Procedure

Step 1 Connect to the FXOS CLI (see Accessing the FXOS CLI, on page 14).

Step 2 Enter firmware mode:

```
Firepower-chassis# scope firmware
```

Step 3 List images:

```
Firepower-chassis /firmware # show package
```

Step 4 Verify the image:

```
Firepower-chassis /firmware # verify platform-pack version version_number
```

version_number is the version number of the FXOS platform bundle you are verifying— for example, 1.1(2.51).

Step 5 The system will warn you that verification could take several minutes.

Enter **yes** to confirm that you want to proceed with verification.

Step 6 To check the status of the image verification:
Firepower-chassis /firmware # show validate-task

Upgrading the Firepower eXtensible Operating System Platform Bundle

Before you begin

Download the platform bundle software image from Cisco.com (see Downloading Images from Cisco.com, on page 56) and then download that image to the Firepower 4100/9300 chassis (see Downloading a Logical Device Software Image to the Firepower 4100/9300 chassis, on page 59).

Note

The upgrade process typically takes between 20 and 30 minutes.

If you are upgrading a Firepower 9300 or Firepower 4100 Series security appliance that is running a standalone logical device or if you are upgrading a Firepower 9300 security appliance that is running an intra-chassis cluster, traffic will not traverse through the device while it is upgrading.

If you are upgrading Firepower 9300 or a Firepower 4100 Series security appliance that is part of an inter-chassis cluster, traffic will not traverse through the device being upgraded while it is upgrading. However, the other devices in the cluster will continue to pass traffic.

Procedure

Step 1 Connect to the FXOS CLI (see Accessing the FXOS CLI, on page 14).

Step 2 Enter firmware mode:

Firepower-chassis# scope firmware

Step 3 Enter auto-install mode:

Firepower-chassis /firmware # scope auto-install

Step 4 Install the FXOS platform bundle:

Firepower-chassis /firmware/auto-install # install platform platform-vers version_number

version_number is the version number of the FXOS platform bundle you are installing—for example, 1.1(2.51).

Step 5 The system will first verify the software package that you want to install. It will inform you of any incompatibility between currently installed applications and the specified FXOS platform software package. It will also warn you that any existing sessions will be terminated and that the system will need to be rebooted as part of the upgrade.

Enter yes to confirm that you want to proceed with verification.

Step 6 Enter yes to confirm that you want to proceed with installation, or enter no to cancel the installation.

The Firepower eXtensible Operating System unpacks the bundle and upgrades/reloads the components.
Step 7
To monitor the upgrade process:

a) Enter `scope firmware`.
b) Enter `scope auto-install`.
c) Enter `show fsm status expand`.

Downloading a Logical Device Software Image to the Firepower 4100/9300 chassis

You can use FTP, SCP, SFTP, or TFTP to copy the logical device software image to the Firepower 4100/9300 chassis.

Before you begin

Collect the following information that you will need to import a configuration file:

- IP address and authentication credentials for the server from which you are copying the image
- Fully qualified name of the software image file

Procedure

Step 1
Enter Security Services mode:

```
Firepower-chassis# scope ssa
```

Step 2
Enter Application Software mode:

```
Firepower-chassis/ssa# scope app-software
```

Step 3
Download the logical device software image:

```
Firepower-chassis/ssa/app-software# download image URL
```

Specify the URL for the file being imported using one of the following syntax:

- `ftp://username@hostname/path`
- `scp://username@hostname/path`
- `sftp://username@hostname/path`
- `tftp://hostname:port-num/path`

Step 4
To monitor the download process:

```
Firepower-chassis/ssa/app-software# show download-task
```

Step 5
To view the downloaded applications:

```
Firepower-chassis/ssa/app-software# up
```
Firepower-chassis /ssa # show app

Step 6 To view details for a specific application:

Firepower-chassis /ssa # scope app application_type image_version

Firepower-chassis /ssa/app # show expand

Example

The following example copies an image using the SCP protocol:

Firepower-chassis # scope ssa
Firepower-chassis /ssa # scope app-software
Firepower-chassis /ssa/app-software # download image scp://user@192.168.1.1/images/cisco-asa.9.4.1.65.csp
Firepower-chassis /ssa/app-software # show download-task

Downloads for Application Software:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Protocol</th>
<th>Server</th>
<th>Userid</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco-asa.9.4.1.65.csp</td>
<td>Scp</td>
<td>192.168.1.1</td>
<td>user</td>
<td>Downloaded</td>
</tr>
</tbody>
</table>

Firepower-chassis /ssa/app-software # up

Firepower-chassis /ssa # show app

Application:

<table>
<thead>
<tr>
<th>Name</th>
<th>Version</th>
<th>Description</th>
<th>Author</th>
<th>Deploy Type</th>
<th>CSP Type</th>
<th>Is Default App</th>
</tr>
</thead>
<tbody>
<tr>
<td>asa</td>
<td>9.4.1.41</td>
<td>N/A</td>
<td></td>
<td>Native</td>
<td>Application</td>
<td>No</td>
</tr>
<tr>
<td>asa</td>
<td>9.4.1.65</td>
<td>N/A</td>
<td></td>
<td>Native</td>
<td>Application</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Firepower-chassis /ssa # scope app asa 9.4.1.65
Firepower-chassis /ssa/app # show expand

Application:

Name: asa
Version: 9.4.1.65
Description: N/A
Author:
Deploy Type: Native
CSP Type: Application
Is Default App: Yes

App Attribute Key for the Application:

- cluster-role: This is the role of the blade in the cluster
- mgmt-ip: This is the IP for the management interface
- mgmt-url: This is the management URL for this application

Net Mgmt Bootstrap Key for the Application:

- PASSWORD: String

Port Requirement for the Application:

Port Type: Data
Max Ports: 120
Min Ports: 1
Port Type: Mgmt
Max Ports: 1
Min Ports: 1

Mgmt Port Sub Type for the Application:
Management Sub Type

Default

Port Type: Cluster
Max Ports: 0
Min Ports: 0

Firepower-chassis /ssa/app #

Updating the Image Version for a Logical Device

Use this procedure to upgrade the ASA application image to a new version, or set the Firepower Threat Defense application image to a new startup version that will be used in a disaster recovery scenario.

When you change the startup version on a Firepower Threat Defense logical device using Firepower Chassis Manager or the FXOS CLI, the application does not immediately upgrade to the new version. The logical device startup version is the version that Firepower Threat Defense reinstalls to in a disaster recovery scenario. After initial creation of a FTD logical device, you do not upgrade the FTD logical device using Firepower Chassis Manager or the FXOS CLI. To upgrade a FTD logical device, you must use Firepower Management Center. See the Firepower System Release Notes for more information: http://www.cisco.com/c/en/us/support/security/defense-center/products-release-notes-list.html.

Also, note that any updates to the FTD logical device will not be reflected on the Logical Devices > Edit and System > Updates pages in Firepower Chassis Manager. On these pages, the version shown indicates the software version (CSP image) that was used to create the FTD logical device.

When you change the startup version on an ASA logical device, the ASA upgrades to that version and all configuration is restored. Use the following workflows to change the ASA startup version, depending on your configuration:

ASA High Availability -

1. Change the logical device image version(s) on the standby unit.
2. Make the standby unit active.
3. Change the application version(s) on the other unit.

ASA Inter-Chassis Cluster -

1. Change the startup version on the data unit.
2. Make the data unit the control unit.
3. Change the startup version on the original control unit (now data).
Before you begin

Download the application image you want to use for the logical device from Cisco.com (see Downloading Images from Cisco.com, on page 56) and then download that image to the Firepower 4100/9300 chassis (see Downloading a Logical Device Software Image to the Firepower 4100/9300 chassis, on page 59).

If you are upgrading both the Platform Bundle image and one or more Application images, you must upgrade the Platform Bundle first.

Procedure

Step 1
Enter Security Services mode:
Firepower-chassis# scope ssa

Step 2
Set the scope to the security module you are updating:
Firepower-chassis/ssa# scope slot slot_number

Step 3
Set the scope to the application you are updating:
Firepower-chassis/ssa/slot# scope app-instance app_template

Step 4
Set the Startup version:
Firepower-chassis/ssa/slot/app-instance# set startup-version version_number

If you are setting the application startup version on a Firepower Threat Defense logical device, the following warning message appears:

13254: Warning: FXOS upgrades are not supported for ftd. The specified version will be used only if ftd needs to be reinstalled.

Example:

```
firpower /ssa/slot/app-instance# set startup-version 6.2.2.81
```

Step 5
Commit the configuration:

```
commit-buffer
```

Commits the transaction to the system configuration. The application image is updated and the application restarts.

Example

The following example updates the software image for an ASA running on security module 1. Notice that you can use the show command to view the update status.

```
Firepower-chassis# scope ssa
Firepower-chassis /ssa # scope slot 1
Firepower-chassis /ssa/slot # scope app-instance asa
Firepower-chassis /ssa/slot/app-instance # set startup-version 9.4.1.65
Firepower-chassis /ssa/slot/app-instance* # show configuration pending
ter enter app-instance asa
```
Firmware Upgrade

For information about upgrading the firmware on your Firepower 4100/9300 chassis, see the Cisco Firepower 4100/9300 FXOS Firmware Upgrade Guide.

Manually Downgrading to Version 2.0.1 or Lower

Follow these CLI steps to manually downgrade the CIMC image on a security module.

Note

This procedure is used specifically to downgrade to version 2.0.1 or lower, from version 2.1.1 or higher.

Before you begin

Ensure the application image you want to downgrade to has been downloaded to the Firepower 4100/9300 chassis (see Downloading Images from Cisco.com, on page 56 and Downloading a Logical Device Software Image to the Firepower 4100/9300 chassis, on page 59).

Procedure

Step 1

Disable image version comparison before downgrading the CIMC image.

Follow the steps in this example to clear the default platform image version:

Example:

```bash
firepower# scope org
firepower /org # scope fw-platform-pack default
firepower /org/fw-platform-pack # set platform-bundle-version ""
Warning: Set platform version to empty will result software/firmware incompatibility issue.
firepower /org/fw-platform-pack* # commit-buffer
firepower /org/fw-platform-pack #
```
Step 2

Downgrade the module image.

Follow the steps in this example to change the CIMC image:

Example:

```plaintext
firepower# scope server 1/1
firepower /chassis/server # scope cimc
firepower /chassis/server/cimc # update firmware <version_num>
firepower /chassis/server/cimc* # activate firmware <version_num>
firepower /chassis/server/cimc* # commit-buffer
firepower /chassis/server/cimc #
```

Repeat this step as necessary to update other modules.

Step 3

Install the new firmware bundle.

Follow the steps in this example to install the downgrade image:

Example:

```plaintext
firepower# scope firmware
firepower /firmware # scope auto-install
firepower /firmware/auto-install # install platform platform-vers <version_num>
```

The currently installed FXOS platform software package is <version_num>

WARNING: If you proceed with the upgrade, the system will reboot.

This operation upgrades firmware and software on Security Platform Components

Here is the checklist of things that are recommended before starting Auto-Install

1. Review current critical/major faults
2. Initiate a configuration backup

Do you want to proceed? (yes/no):

What to do next

You can use the show fsm status expand command in firmware/auto-install mode to monitor the installation process.
Security Certifications Compliance

United States federal government agencies are sometimes required to use only equipment and software complying with security standards established by the U.S. Department of Defense and global certification organizations. The Firepower 4100/9300 chassis supports compliance with several of these security certification standards.

See the following topics for steps to enable features that support compliance with these standards:

- Enable FIPS Mode, on page 150
- Enable Common Criteria Mode, on page 150
- Configure IPSec Secure Channel, on page 67
- Configure Static CRL for a Trustpoint, on page 72
- About the Certificate Revocation List Check, on page 73
- Configure CRL Periodic Download, on page 77
- Set the LDAP Key Ring Certificate, on page 79
- Enable Client Certificate Authentication, on page 79
- Configure Minimum Password Length Check, on page 47
• Set the Maximum Number of Login Attempts, on page 44

Note

Note that these topics discuss enabling certifications compliance on the Firepower 4100/9300 chassis only. Enabling certification compliance on the Firepower 4100/9300 chassis does not automatically propagate compliance to any of its attached logical devices.

Generate the SSH Host Key

Prior to FXOS release 2.0.1, the existing SSH host key created during initial setup of a device was hard-coded to 1024 bits. To comply with FIPS and Common Criteria certification, you must destroy this old host key and generate a new one. See Enable FIPS Mode, on page 150 or Enable Common Criteria Mode, on page 150 for more information.

Perform these steps to destroy the old SSH host key and generate a new certifications-compliant one.

Procedure

Step 1
From the FXOS CLI, enter services mode:

```
scope system
scope services
```

Step 2
Delete the SSH host key:

```
delete ssh-server host-key
```

Step 3
Commit the configuration:

```
commit-buffer
```

Step 4
Set the SSH host key size to 2048 bits:

```
set ssh-server host-key rsa 2048
```

Step 5
Commit the configuration:

```
commit-buffer
```

Step 6
Create a new SSH host key:

```
create ssh-server host-key
commit-buffer
```

Step 7
Confirm the new host key size:

```
show ssh-server host-key
Host Key Size: 2048
```
Configure IPSec Secure Channel

You can configure IPSec on your Firepower 4100/9300 chassis to provide end-to-end data encryption and authentication service on data packets going through the public network. This option is one of a number offered for achieving Common Criteria certification compliance on your system. For more information, see Security Certifications Compliance, on page 65.

• If you elect to configure enforcement of matching cryptographic key strength between IKE and SA connections (set sa-strength-enforcement to yes in the below procedure):

<table>
<thead>
<tr>
<th>If SA enforcement is enabled</th>
<th>then when IKE negotiated key size is less than ESP negotiated key size, the connection fails.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>then when IKE negotiated key size is large or equal than ESP negotiated key size, SA enforcement check passes and the connection is successful.</td>
</tr>
</tbody>
</table>

| If SA enforcement is disabled | then SA enforcement check passes and the connection is successful. |

Perform these steps to configure an IPSec secure channel.

Procedure

Step 1 From the FXOS CLI, enter security mode:
scope security

Step 2 Create the keyring:
enter keyring ssp
! create certreq subject-name subject-name ip ip

Step 3 Enter the associated certificate request information:
enter certreq

Step 4 Set the country:
set country country

Step 5 Set the DNS:
set dns dns

Step 6 Set the email:
set e-mail email

Step 7 Set the IP information:
set fi-a-ip fi-a-ip
set fi-a-ipv6 fi-a-ipv6
set fi-b-ip fi-b-ip
set fi-b-ipv6 fi-b-ipv6
set ipv6 ipv6

Step 8 Set the locality:
 set locality locality

Step 9 Set the organization name:
 set org-name org-name

Step 10 Set the organization unit name:
 set org-unit-name org-unit-name

Step 11 Set the password:
 ! set password

Step 12 Set the state:
 set state state

Step 13 Set the subject name for the certreq:
 set subject-name subject-name

Step 14 Exit:
 exit

Step 15 Set the modulus:
 set modulus modulus

Step 16 Set the regeneration for the certificate request:
 set regenerate \{ yes | no \}

Step 17 Set the trustpoint:
 set trustpoint interca

Step 18 Exit:
 exit

Step 19 Enter the newly created trustpoint:
 enter trustpoint interca

Step 20 Generate certificate signing request:
 set certchain
 Example:
Configure IPSec Secure Channel

Step 21
Show the certificate signing request:

```
show certreq
```

Example:

```
Firepower-chassis# /security/keyring # show certreq
Certificate request subject name: SSP
Certificate request ip address: 192.168.0.111
Certificate request FIA ip address: 0.0.0.0
Certificate request FIB ip address: 0.0.0.0
Certificate request e-mail name: 
Certificate request ipv6 address: ::
Certificate request FIA ipv6 address: ::
Certificate request FIB ipv6 address: ::
Certificate request country name: US
State, province or county (full name): CA
Locality name (eg, city): SJC
Organisation name (eg, company): Cisco
Organisational Unit Name (eg, section): Sec
DNS name (subject alternativename): 
Request: 

-----BEGINCERTIFICATEReQUEST-----
MIICwTCCAakCAQAwVTEmMCAEIMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoAMABoA
set log-level log_level

Step 24 Create and enter an IPSec connection:

```
enter connection connection_name
```

Step 25 Set IPSec mode to tunnel or transport:

```
set mode tunnel_or_transport
```

Step 26 Set the local IP address:

```
set local-addr ip_address
```

Step 27 Set the remote IP address:

```
set remote-addr ip_address
```

Step 28 If using tunnel mode, set the remote subnet:

```
set remote-subnet ip/mask
```

Step 29 (Optional) Set the remote identity:

```
set remote-ike-ident remote_identity_name
```

Step 30 Set the keyring name:

```
set keyring-name name
```

Step 31 (Optional) Set the keyring password:

```
set keyring-passwd passphrase
```

Step 32 (Optional) Set the IKE-SA lifetime in minutes:

```
set ike-rekey-time minutes
```

The minutes value can be any integer between 60-1440, inclusive.

Step 33 (Optional) Set the Child SA lifetime in minutes (30-480):

```
set esp-rekey-time minutes
```

The minutes value can be any integer between 30-480, inclusive.

Step 34 (Optional) Set the number of retransmission sequences to perform during initial connect:

```
set keyringtries retry_number
```

The retry_number value can be any integer between 1-5, inclusive.

Step 35 (Optional) Enable or disable the certificate revocation list check:

```
set revoke-policy { relaxed | strict }
```

Step 36 Enable the connection:

```
set admin-state enable
```

Step 37 Reload connections:

```
reload-conns
```
Connections that were previously not established are retried. Established connections remain untouched.

**Step 38** *(Optional)* Add the existing trustpoint name to IPsec:

```bash
create authority trustpoint_name
```

**Step 39** Configure the enforcement of matching cryptographic key strength between IKE and SA connections:

```bash
set sa-strength-enforcement yes_or_no
```

---

## Configure Static CRL for a Trustpoint

Revoked certifications are kept in the Certification Revocation List (CRL). Client applications use the CRL to check the authentication of a server. Server applications utilize the CRL to grant or deny access requests from client applications which are no longer trusted.

You can configure your Firepower 4100/9300 chassis to validate peer certificates using Certification Revocation List (CRL) information. This option is one of a number offered for achieving Common Criteria certification compliance on your system. For more information, see Security Certifications Compliance, on page 65.

Perform these steps to validate peer certificates using CRL information.

### Procedure

**Step 1** From the FXOS CLI, enter security mode:

```bash
scope security
```

**Step 2** Enter trustpoint mode:

```bash
scope trustpoint trustname
```

**Step 3** Enter revoke mode:

```bash
scope revoke
```

**Step 4** Download the CRL file(s):

```bash
import crl protocol://user_id@CA_or_CRL_issuer_IP/tmp/DoDCA1CRL1.crl
```

**Step 5** *(Optional)* Show the status of the import process of CRL information:

```bash
show import-task detail
```

**Step 6** Set the certificate revocation method to CRL-only:

```bash
set certrevokemethod {crl}
```
About the Certificate Revocation List Check

You can configure your Certificate Revocation List (CRL) check mode to be either strict or relaxed in IPSec, HTTPS, and secure LDAP connections.

FXOS harvests dynamic (non-static) CRL information from the CDP information of an X.509 certificate, which indicates dynamic CRL information. System administration downloads static CRL information manually, which indicates local CRL information in the FXOS system. FXOS processes dynamic CRL information against the current processing certificate in the certificate chain. The static CRL is applied to the whole peer certificate chain.

For steps to enable or disable certificate revocation checks for your secure IPSec, LDAP, and HTTPS connections, see Configure IPSec Secure Channel, Creating an LDAP Provider and Configuring HTTPS.

- If the Certificate Revocation Check Mode is set to Strict, static CRL is only applicable when the peer certificate chain has a level of 1 or higher. (For example, when the peer certificate chain contains only the root CA certificate and the peer certificate signed by the root CA.)

- When configuring static CRL for IPSec, the Authority Key Identifier (authkey) field must be present in the imported CRL file. Otherwise, IPSec considers it invalid.

- Static CRL takes precedence over Dynamic CRL from the same issuer. When FXOS validates the peer certificate, if a valid (determined) static CRL of the same issuer exists, FXOS ignores the CDP in the peer certificate.

- Strict CRL checking is enabled by default in the following scenarios:
  - Newly created secure LDAP provider connections, IPSec connections, or Client Certificate entries
  - Newly deployed FXOS Chassis Managers (deployed with an initial starting version of FXOS 2.3.1.x or later)

The following tables describe the connection results, depending on your certificate revocation list check setting and certificate validation.

**Table 4: Certificate Revocation Check Mode set to Strict without a local static CRL**

<table>
<thead>
<tr>
<th>Without local static CRL</th>
<th>LDAP Connection</th>
<th>IPSec Connection</th>
<th>Client Certificate Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking peer certificate chain</td>
<td>Full certificate chain is required</td>
<td>Full certificate chain is required</td>
<td>Full certificate chain is required</td>
</tr>
<tr>
<td>Checking CDP in peer certificate chain</td>
<td>Full certificate chain is required</td>
<td>Full certificate chain is required</td>
<td>Full certificate chain is required</td>
</tr>
<tr>
<td>CDP checking for Root CA certificate of the peer certificate chain</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Yes</td>
</tr>
</tbody>
</table>
### Table 5: Certificate Revocation Check Mode set to Strict with a local static CRL

<table>
<thead>
<tr>
<th>Without local static CRL</th>
<th>LDAP Connection</th>
<th>IPSec Connection</th>
<th>Client Certificate Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any certificate validation failure in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>Any certificate revoked in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>One CDP is missing in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Peer certificate: connection fails with syslog message Intermediate CAs: connection fails</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>One CDP CRL is empty in the peer certificate chain with valid signature</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>Any CDP in the peer certificate chain cannot be downloaded</td>
<td>Connection fails with syslog message</td>
<td>Peer certificate: Connection fails with syslog message Intermediate CA: connection fails</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>Certificate has CDP, but the CDP server is down</td>
<td>Connection fails with syslog message</td>
<td>Peer certificate: Connection fails with syslog message Intermediate CA: connection fails</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>Certificate has CDP, server is up, and CRL is on CDP, but the CRL has an invalid signature</td>
<td>Connection fails with syslog message</td>
<td>Peer certificate: Connection fails with syslog message Intermediate CA: connection fails</td>
<td>Connection fails with syslog message</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With local static CRL</th>
<th>LDAP Connection</th>
<th>IPSec Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking peer certificate chain</td>
<td>Full certificate chain is required</td>
<td>Full certificate chain is required</td>
</tr>
<tr>
<td>Checking CDP in peer certificate chain</td>
<td>Full certificate chain is required</td>
<td>Full certificate chain is required</td>
</tr>
<tr>
<td>CDP checking for Root CA certificate of the peer certificate chain</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
### Table 6: Certificate Revocation Check Mode set to Relaxed without a local static CRL

<table>
<thead>
<tr>
<th>With local static CRL</th>
<th>LDAP Connection</th>
<th>IPSec Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any certificate validation failure in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>Any certificate revoked in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>One CDP is missing in the peer certificate chain (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>One CDP CRL is empty in the peer certificate chain (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>Any CDP in the peer certificate chain cannot be downloaded (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>Certificate has CDP, but the CDP server is down (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>Certificate has CDP, server is up, and CRL is on CDP, but the CRL has an invalid signature (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>Peer Certificate Chain level is higher than 1</td>
<td>Connection fails with syslog message</td>
<td>If combined with CDP, connection succeeds If there is no CDP, connection fails with syslog message</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Without local static CRL</th>
<th>LDAP Connection</th>
<th>IPSec Connection</th>
<th>Client Certificate Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking peer certificate chain</td>
<td>Full certificate chain</td>
<td>Full certificate chain</td>
<td>Full certificate chain</td>
</tr>
<tr>
<td>Checking CDP in the peer certificate chain</td>
<td>Full certificate chain</td>
<td>Full certificate chain</td>
<td>Full certificate chain</td>
</tr>
<tr>
<td>CDP checking for Root CA certificate of the peer certificate chain</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Yes</td>
</tr>
<tr>
<td>Any certificate validation failure in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
</tr>
</tbody>
</table>

---

Cisco Firepower 4100/9300 FXOS CLI Configuration Guide, 2.2(2)
### Without local static CRL

<table>
<thead>
<tr>
<th>Without local static CRL</th>
<th>LDAP Connection</th>
<th>IPSec Connection</th>
<th>Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any certificate revoked in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>One CDP is missing in the peer certificate chain</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>One CDP CRL is empty in the peer certificate chain with valid signature</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>Any CDP in the peer certificate chain cannot be downloaded</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>Certificate has CDP, but the CDP server is down</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>Certificate has CDP, server is up, and CRL is on CDP, but the CRL has an invalid signature</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
</tbody>
</table>

### Table 7: Certificate Revocation Check Mode set to Relaxed with a local static CRL

<table>
<thead>
<tr>
<th>With local static CRL</th>
<th>LDAP Connection</th>
<th>IPSec Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking peer certificate chain</td>
<td>Full certificate chain</td>
<td>Full certificate chain</td>
</tr>
<tr>
<td>Checking CDP in the peer certificate chain</td>
<td>Full certificate chain</td>
<td>Full certificate chain</td>
</tr>
<tr>
<td>CDP checking for Root CA certificate of the peer certificate chain</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Any certificate validation failure in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>Any certificate revoked in the peer certificate chain</td>
<td>Connection fails with syslog message</td>
<td>Connection fails with syslog message</td>
</tr>
<tr>
<td>One CDP is missing in the peer certificate chain (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>One CDP CRL is empty in the peer certificate chain (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>With local static CRL</td>
<td>LDAP Connection</td>
<td>IPSec Connection</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Any CDP in the peer certificate chain cannot be downloaded (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>Certificate has CDP, but the CDP server is down (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
<tr>
<td>Certificate has CDP, server is up, and CRL is on CDP, but the CRL has an invalid signature (Certificate Chain level is 1)</td>
<td>Connection succeeds</td>
<td>Connection succeeds</td>
</tr>
</tbody>
</table>
| Peer Certificate Chain level is higher than 1 | Connection fails with syslog message | If combined with CDP, connection succeeds  
If there is no CDP, connection fails with syslog message |

**Configure CRL Periodic Download**

You can configure your system to periodically download a (CRL) so that a new CRL is used every 1 to 24 hours to validate certificates.

You can use the following protocols and interfaces with this feature:

- FTP
- SCP
- SFTP
- TFTP
- USB

**Note**

- SCEP and OCSP are not supported.
- You can only configure one periodic download per CRL.
- One CRL is supported per trustpoint.

**Note**

You can only configure the period in one-hour intervals.

Perform these steps to configure CRL periodic download.
Before you begin

Ensure that you have already configured your Firepower 4100/9300 chassis to validate peer certificates using (CRL) information. For more information, see Configure Static CRL for a Trustpoint, on page 72.

Procedure

**Step 1**
From the FXOS CLI, enter security mode:

`scope security`

**Step 2**
Enter trustpoint mode:

`scope trustpoint`

**Step 3**
Enter revoke mode:

`scope revoke`

**Step 4**
Edit the revoke configuration:

`sh config`

**Step 5**
Set your preferred configuration:

**Example:**

```bash
set certrevokemethod crl
set crl-poll-filename rootCA.crl
set crl-poll-path /users/myname
set crl-poll-period 1
set crl-poll-port 0
set crl-poll-protocol scp
! set crl-poll-pwd
set crl-poll-server 182.23.33.113
set crl-poll-user myname
```

**Step 6**
Exit the configuration file:

`exit`

**Step 7**
(Optional) Test the new configuration by downloading a new CRL:

**Example:**

```bash
Firepower-chassis /security/trustpoint/revoke # sh import-task
```

Import task:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Protocol</th>
<th>Server</th>
<th>Port</th>
<th>Userid</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>rootCA.crl</td>
<td>scp</td>
<td>182.23.33.113</td>
<td>0</td>
<td>myname</td>
<td>Downloading</td>
</tr>
</tbody>
</table>

---
Set the LDAP Key Ring Certificate

You can configure a secure LDAP client key ring certificate to support a TLS connection on your Firepower 4100/9300 chassis. This option is one of a number offered for achieving Common Criteria certification compliance on your system. For more information, see Security Certifications Compliance, on page 65.

Note

If Common Criteria mode is enabled, you must have SSL enabled, and you must use the server DNS information to create the key ring certificate.

If SSL is enabled for the LDAP server entry, key ring information is referenced and checked when forming a connection.

LDAP server information has to be DNS information in the CC mode for the secure LDAP connection (with SSL enabled).

Perform these steps to configure a secure LDAP client key ring certificate:

Procedure

Step 1
From the FXOS CLI, enter security mode:
```
scope security
```

Step 2
Enter LDAP mode:
```
scope ldap
```

Step 3
Enter LDAP server mode:
```
enter server server_ip|server_dns
```

Step 4
Set the LDAP key ring:
```
set keyring keyring_name
```

Step 5
Commit the configuration:
```
commit-buffer
```

Enable Client Certificate Authentication

You can enable your system to use a client certificate in conjunction with LDAP to authenticate a user for HTTPS access. The default authentication configuration on the Firepower 4100/9300 chassis is credential-based.
If certificate authentication is enabled, that is the only form of authentication permitted for HTTPS. Certificate revocation check is not supported with the FXOS 2.1.1 release of the client certificate authentication feature.

The following requirements must be met by the Client Certificate to use this feature:

- The username must be included in the X509 attribute Subject Alternative Name - Email.
- The client certificate must be signed by a root CA that has had its certificate imported into a trustpoint on the Supervisor.

**Procedure**

**Step 1**  
From the FXOS CLI, enter services mode:
  
  `scope system
  scope services`

**Step 2**  
(Optional) View your options for HTTPS authentication:
  
  `set https auth-type`

**Example:**

```
Firepower-chassis /system/services # set https auth-type
cert-auth Client certificate based authentication
cred-auth Credential based authentication
```

**Step 3**  
Set your HTTPS authentication to client-based:

`set https auth-type cert-auth`

**Step 4**  
Commit the configuration:

`commit-buffer`
System Administration

- Changing the Management IP Address, on page 81
- Changing the Application Management IP, on page 83
- Changing the Firepower 4100/9300 Chassis Name, on page 85
- Install a Trusted Identity Certificate, on page 86
- Pre-Login Banner, on page 92
- Rebooting the Firepower 4100/9300 Chassis, on page 95
- Powering Off the Firepower 4100/9300 Chassis, on page 95
- Restoring the Factory Default Configuration, on page 96

Changing the Management IP Address

**Before you begin**

You can change the management IP address on the Firepower 4100/9300 chassis from the FXOS CLI.

**Note**

After changing the management IP address, you will need to reestablish any connections to Firepower Chassis Manager or the FXOS CLI using the new address.

**Procedure**

**Step 1**
Connect to the FXOS CLI (see Accessing the FXOS CLI, on page 14).

**Step 2**
To configure an IPv4 management IP address:

a) Set the scope for fabric-interconnect a:

   Firepower-chassis# scope fabric-interconnect a

b) To view the current management IP address, enter the following command:

   Firepower-chassis /fabric-interconnect # show

c) Enter the following command to configure a new management IP address and gateway:
Firepower-chassis/fabric-interconnect # set out-of-band ip ip_address netmask network_mask gw gateway_ip_address

d) Commit the transaction to the system configuration:
Firepower-chassis /fabric-interconnect* # commit-buffer

**Step 3**
To configure an IPv6 management IP address:

a) Set the scope for fabric-interconnect a:
Firepower-chassis# scope fabric-interconnect a

b) Set the scope for management IPv6 configuration:
Firepower-chassis /fabric-interconnect # scope ipv6-config

c) To view the current management IPv6 address, enter the following command:
Firepower-chassis /fabric-interconnect/ipv6-config # show ipv6-if

d) Enter the following command to configure a new management IP address and gateway:
Firepower-chassis /fabric-interconnect/ipv6-config # set out-of-band ipv6 ipv6_address ipv6-prefix prefix_length ipv6-gw gateway_address

**Note** Only IPv6 Global Unicast addresses are supported as the chassis’s IPv6 management address.

e) Commit the transaction to the system configuration:
Firepower-chassis /fabric-interconnect/ipv6-config* # commit-buffer

---

**Example**
The following example configures an IPv4 management interface and gateway:

```
Firepower-chassis# scope fabric-interconnect a
Firepower-chassis /fabric-interconnect # show

Fabric Interconnect:
--- --------------- --------------- --------------- ---------------- ----------------
ID OOB IP Addr OOB Gateway OOB Netmask OOB IPv6 Address OOB IPv6 Gateway Operability
--- --------------- --------------- --------------- ---------------- --------------- ---------
A 192.0.2.112 192.0.2.1 255.255.255.0 :: :: Operable
64
```

Firepower-chassis /fabric-interconnect # set out-of-band ip 192.0.2.111 netmask 255.255.255.0 gw 192.0.2.1
Warning: When committed, this change may disconnect the current CLI session
Firepower-chassis /fabric-interconnect* # commit-buffer
Firepower-chassis /fabric-interconnect #

The following example configures an IPv6 management interface and gateway:

```
Firepower-chassis# scope fabric-interconnect a
Firepower-chassis /fabric-interconnect # scope ipv6-config
```
Changing the Application Management IP

You can change the management IP address on the application(s) attached to your Firepower 4100/9300 chassis from the FXOS CLI. To do so, you must first change the IP information at the FXOS platform level, then change the IP information at the application level.

Changing the application management IP will result in a service interruption.

Procedure

**Step 1**
Connect to the FXOS CLI. (See Accessing the FXOS CLI, on page 14).

**Step 2**
Scope to the logical device:

```bash
scope ssa
scope logical-device logical_device_name
```

**Step 3**
Scope to the management bootstrap and configure the new management bootstrap parameters. Note that there are differences between deployments:

For standalone configuration of an ASA logical device:

a) Enter the logical device management bootstrap:

```bash
scope mgmt-bootstrap asa
```

b) Enter the IP mode for the slot:

```bash
scope ipv4_or_6 slot_number default
```

c) (IPv4 only) Set the new IP address:

```bash
set ip ipv4_address mask network_mask
```

d) (IPv6 only) Set the new IP address:

```bash
set ip ipv6_address prefix-length prefix_length_number
```

e) Set the gateway address:

```bash
set gateway gateway_ip_address
```

f) Commit the configuration:
commit-buffer

For a clustered configuration of ASA logical devices:

a) Enter the cluster management bootstrap:
   \texttt{scope cluster-bootstrap asa}

b) (IPv4 only) Set the new virtual IP:
   \texttt{set virtual ipv4 ip\_address mask network\_mask}

c) (IPv6 only) Set the new virtual IP:
   \texttt{set virtual ipv6 ipv6\_address prefix-length prefix\_length\_number}

d) Set the new IP pool:
   \texttt{set ip pool start\_ip end\_ip}

e) Set the gateway address:
   \texttt{set gateway gateway\_ip\_address}

f) Commit the configuration:
   \texttt{commit-buffer}

For standalone and clustered configurations of Firepower Threat Defense:

a) Enter the logical device management bootstrap:
   \texttt{scope mgmt-bootstrap ftd}

b) Enter the IP mode for the slot:
   \texttt{scope ipv4\_or\_6 slot\_number firepower}

c) (IPv4 only) Set the new IP address:
   \texttt{set ip ipv4\_address mask network\_mask}

d) (IPv6 only) Set the new IP address:
   \texttt{set ip ipv6\_address prefix-length prefix\_length\_number}

e) Set the gateway address:
   \texttt{set gateway gateway\_ip\_address}

f) Commit the configuration:
   \texttt{commit-buffer}

\textbf{Note} \quad For a clustered configuration, you must set the new IP address for each application attached to the Firepower 4100/9300 chassis. If you have an inter-chassis cluster or a HA configuration, you must repeat these steps for each application on both chassis.

\textbf{Step 4} \quad Clear the management bootstrap information for each application:

a) Scope to ssa mode:
   \texttt{scope ssa}

b) Scope to the slot:
scope slot slot_number
c) Scope to the application instance:
   scope app-instance asa_or_ftd
d) Clear the management bootstrap information:
   clear-mgmt-bootstrap
e) Commit the configuration:
   commit-buffer

**Step 5** Disable the application:

disable
commit-buffer

*Note*  For a clustered configuration, you must clear and disable the management bootstrap information for each application attached to the Firepower 4100/9300 chassis. If you have an inter-chassis cluster or a HA configuration, you must repeat these steps for each application on both chassis.

**Step 6** When the application is offline and the slot comes online again, re-enable the application.
a) Scope back to ssa mode:
   scope ssa
b) Scope to the slot:
   scope slot slot_number
c) Scope to the application instance:
   scope app-instance asa_or_ftd
d) Enable the application:
   enable
e) Commit the configuration:
   commit-buffer

*Note*  For a clustered configuration, you must repeat these steps to re-enable each application attached to the Firepower 4100/9300 chassis. If you have an inter-chassis cluster or a HA configuration, you must repeat these steps for each application on both chassis.

---

### Changing the Firepower 4100/9300 Chassis Name

You can change the name used for your Firepower 4100/9300 chassis from the FXOS CLI.
**Procedure**

**Step 1**
Connect to the FXOS CLI (see Accessing the FXOS CLI, on page 14).

**Step 2**
Enter the system mode:

```
Firepower-chassis-A# scope system
```

**Step 3**
To view the current name:

```
Firepower-chassis-A /system # show
```

**Step 4**
To configure a new name:

```
Firepower-chassis-A /system # set name device_name
```

**Step 5**
Commit the transaction to the system configuration:

```
Firepower-chassis-A /fabric-interconnect* # commit-buffer
```

---

**Example**

The following example changes the devices name:

```
Firepower-chassis-A# scope system
Firepower-chassis-A /system # set name New-name
Warning: System name modification changes FC zone name and redeploy them non-disruptively
Firepower-chassis-A /system* # commit-buffer
Firepower-chassis-A /system # show

Systems:
Name Mode System IP Address System IPv6 Address
---------- ----------- ----------------- -------------------
New-name Stand Alone 192.168.100.10 ::
New-name-A /system #
```

---

**Install a Trusted Identity Certificate**

After initial configuration, a self-signed SSL certificate is generated for use with the Firepower 4100/9300 chassis web application. Because that certificate is self-signed, client browsers do not automatically trust it. The first time a new client browser accesses the Firepower 4100/9300 chassis web interface, the browser will throw an SSL warning, requiring the user to accept the certificate before accessing the Firepower 4100/9300 chassis. You can use the following procedure to generate a Certificate Signing Request (CSR) using the FXOS CLI and install the resulting identity certificate for use with the Firepower 4100/9300 chassis. This identity certificate allows a client browser to trust the connection, and bring up the web interface with no warnings.

**Procedure**

**Step 1**
Connect to the FXOS CLI. (See Accessing the FXOS CLI, on page 14).
Step 2 Enter the security module:
```
scope security
```

Step 3 Create a keyring:
```
create keyring keyring_name
```

Step 4 Set a modulus size for the private key:
```
set modulus size
```

Step 5 Commit the configuration:
```
commit-buffer
```

Step 6 Configure the CSR fields. The certificate can be generated with basic options (for example, a subject-name), and optionally more advanced options that allow information like locale and organization to be embedded in the certificate. Note that when you configure the CSR fields, the system prompts for a certificate password.
```
create certreq certreq subject_name
password
```
```
set country country
```
```
set state state
```
```
set locality locality
```
```
set org-name organization_name
```
```
set org-unit-name organization_unit_name
```
```
set subject-name subject_name
```

Step 7 Commit the configuration:
```
commit-buffer
```

Step 8 Export the CSR to provide to your certificate authority. The certificate authority uses the CSR to create your identity certificate.

a) Show the full CSR:
```
show certreq
```

b) Copy the output starting with (and including) "-----BEGIN CERTIFICATE REQUEST-----", ending with (and including) "-----END CERTIFICATE REQUEST-----".

Example:
```
-----BEGIN CERTIFICATE REQUEST-----
MIIC6zCCAdMCQwAwgZElMAkGA1UEBhMCVVMxETAPBgNVBAsMCkNhbGlmaWVyMCAt
ETAPBgNVBAsMC0NhbiBKb3NlMRYwFAYDVQQKDA1DaXNjbyBTeXN0ZW1zMQwwCgYD
VQQDDAUNQUxMjAyBgcgNVBAsMC0NhbiBKb3NlMRYwFAYDVQQKDA1DaXNjbyBTeXN0Z
MQwwCgYDVQQKEwZwNDEyMC50ZXN0LmxvY2FsMIIIBjANBgkqhkiG9w0BAQEFCAQ8AMII
BcQCAQEA0NSgakfZ2fi4JVEANG+7YGgcHbnUT7LpVvY0HSbUJ8C3u5/aD30257m95s
yMChG5KOFjJbkURMQA1mQsRQcdbJ232/sk0fMSyq0L8JzC71tuxEzRyz/7/a7X7G
VNvqg/XF+y+zdO3nt4GxM63FsrPcPa7EvqgDSLoShtBFV10hhf4+9w4pKCZ+eSSKS
Jktb12zHxV9bttVg3kF/UEU0jgk/EyrVq3B+u2oSoopFvQ76wTm8BwVMqHb3Ev4Pnu
RjWE88EvV8WH7JTEij90vxhbatjdjVS/HZB1RtCanvyBgVgL1PQ/Nmv3Lo3G9ITbL
L5g1YYvAtXpx6HUEzZ2MLx2oAvu61tB9rnyqGth5dpV0dQIDAQABcC8wLQYJKj
K0z1hv5cMAQkMwAwjHAcEgNvNhREEFoATghFmcdQxMjA0dGzxc5ab2NhbDANBgqk
hikG9w0BQGAFAOCQAAREUZLChx9vt5aVdcL+tATu5xFE3La310ck6Gj1NV6W/6r
bnLxusYiirzZcW+CgnvNa4ArqGyNYVBySOavJ0/VvQ1KfxyxJ10Ikyx3RzEjgK0
-----END CERTIFICATE REQUEST-----
```
Step 9  Exit the certreq mode:
exit

Step 10  Exit the keyring mode:
exit

Step 11  Provide the CSR output to the Certificate Authority in accordance with the Certificate Authority’s enrollment process. If the request is successful, the Certificate Authority sends back an identity certificate that has been digitally signed using the CA’s private key.

Step 12  Note All identity certificates must be in Base64 format to be imported into FXOS. If the identity certificate chain received from the Certificate Authority is in a different format, you must first convert it with an SSL tool such as OpenSSL.

Create a new trustpoint to hold the identity certificate chain.

create trustpoint trustpoint_name

Step 13  Enter the identity certificate chain you received from the Certificate Authority in step 11, following the instructions on screen.

Note For a Certificate Authority that uses intermediate certificates, the root and intermediate certificates must be combined. In a text file, paste the root certificate at the top, followed by each intermediate certificate in the chain, including all BEGIN CERTIFICATE and END CERTIFICATE flags. Copy and paste that entire text block into the trustpoint.

set certchain

Example:

```
firepower /security/trustpoint* # set certchain
Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.
Trustpoint Certificate Chain:
>-----BEGIN CERTIFICATE-----
>MIICDTCCAzbGwAwIBAgIQAQCAjBTMRUwEwYKCZImIzYzLQGhGRFwB9jYw/wgDAWgoJ
>-----END CERTIFICATE-----
>------END CERTIFICATE REQUEST-----
```

Step 14  Commit the configuration:

commit-buffer
Step 15  Exit the trustpoint mode:
exit

Step 16  Enter the keyring mode:
scope keyring keyring_name

Step 17  Associate the trustpoint created in step 13 with the keyring that was created for the CSR:
set trustpoint trustpoint_name

Step 18  Import the signed identity certificate for the server.
set cert

Step 19  Paste the contents of the identity certificate provided by the Certificate authority:

Example:
Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.
Keyring certificate:

|--------BEGIN CERTIFICATE--------|
|MIIE8DCCBjaAgAwIBAgITTwAACAAT1db2hleQMA0GBAFGMh0GCSqGSIb3DQEBAQUA4IBAL|
|-----END CERTIFICATE-----|

ENDOFBUF

Step 20  Exit the keyring mode:
exit

Step 21  Exit the security mode:
exit

Step 22  Exit the system mode:

**Install a Trusted Identity Certificate**

**Step 23**  
Enter the services mode:

```
scope services
```

**Step 24**  
Configure the FXOS web service to use the new certificate:

```
set https keyring keyring_name
```

**Step 25**  
Commit the configuration:

```
commit-buffer
```

**Step 26**  
Display the keyring associated with the HTTPS server. It should reflect the keyring name created in step 3 of this procedure. If the screen output displays the default keyring name, the HTTPS server has not yet been updated to use the new certificate:

```
show https
```

**Example:**

```
fp4120 /system/services # show https
Name: https
 Admin State: Enabled
 Port: 443
 Operational port: 443
 Key Ring: firepower_cert
 Cipher suite mode: Medium Strength
 Cipher suite: ALL:!ADH:!EXPORT40:!EXPORT56:!LON:!RC4:!MD5:!IDEA:+HIGH:+MEDIUM:+EXP:+eNULL
```

**Step 27**  
Display the contents of the imported certificate, and verify that the **Certificate Status** value displays as **Valid**:

```
scope security
```

```
show keyring keyring_name detail
```

**Example:**

```
fp4120 /security # scope security
fp4120 /security # show keyring firepower_cert detail
Keyring firepower_cert:
 RSA key modulus: Mod2048
 Trustpoint CA: firepower_chain
 Certificate status: Valid
 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 45:00:00:00:0a:de:86:55:16:82:24:f3:be:00:00:00:00:0a
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: DC-local, DC-naustin, CN-naustin-NAAUSTIN-PC-CA
 Validity
 Not Before: Apr 28 13:09:54 2016 GMT
 Not After : Apr 28 13:09:54 2018 GMT
 Subject: C-US, ST-California, L-San Jose, O-Cisco Systems, OU-TAC,
 CN-fp4120.test.local
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
Install a Trusted Identity Certificate

System Administration

Cisco Firepower 4100/9300 FXOS CLI Configuration Guide, 2.2(2)
To verify that the new trusted certificate is presented, navigate to the Firepower Chassis Manager by entering https://<FQDN_or_IP>/ in the address bar of a web browser.

Browsers also verify the subject-name of a certificate against the input in the address bar. If the certificate is issued to the fully qualified domain name, it must be accessed that way in the browser. If it is accessed via IP address, a different SSL error is thrown (Common Name Invalid) even if the trusted certificate is used.

Creating the Pre-Login Banner

With a pre-login banner, when a user logs into Firepower Chassis Manager, the system displays the banner text and the user must click OK on the message screen before the system prompts for the username and password. If a pre-login banner is not configured, the system goes directly to the username and password prompt.

When a user logs into the FXOS CLI, the system displays the banner text, if configured, before it prompts for the password.
Firepower-chassis /security/banner # create pre-login-banner

Step 5 Specify the message that FXOS should display to the user before they log into Firepower Chassis Manager or the FXOS CLI:
Firepower-chassis /security/banner/pre-login-banner* # set message
Launches a dialog for entering the pre-login banner message text.

Step 6 At the prompt, type a pre-login banner message. You can enter any standard ASCII character in this field. You can enter multiple lines of text with each line having up to 192 characters. Press Enter between lines. On the line following your input, type END OF BUF and press Enter to finish.
Press Ctrl and C to cancel out of the set message dialog.

Step 7 Commit the transaction to the system configuration:
Firepower-chassis /security/banner/pre-login-banner* # commit-buffer

Example
The following example creates the pre-login banner:

```
Firepower-chassis# scope security
Firepower-chassis /security # scope banner
Firepower-chassis /security/banner # create pre-login-banner
Firepower-chassis /security/banner/pre-login-banner* # set message
Enter lines one at a time. Enter END OF BUF to finish. Press ^C to abort.
Enter prelogin banner:
> Welcome to the Firepower Security Appliance
> **Unauthorized use is prohibited**
> END OF BUF
```

Firepower-chassis /security/banner/pre-login-banner* # commit-buffer

Modifying the Pre-Login Banner

Procedure

Step 1 Connect to the FXOS CLI (see Accessing the FXOS CLI, on page 14).
Step 2 Enter security mode:
Firepower-chassis# scope security
Step 3 Enter banner security mode:
Firepower-chassis /security # scope banner
Step 4 Enter pre-login-banner banner security mode:
Firepower-chassis /security/banner # scope pre-login-banner
Step 5 Specify the message that FXOS should display to the user before they log into Firepower Chassis Manager or the FXOS CLI:

Firepower-chassis /security/banner/pre-login-banner # set message

Launches a dialog for entering the pre-login banner message text.

Step 6 At the prompt, type a pre-login banner message. You can enter any standard ASCII character in this field. You can enter multiple lines of text with each line having up to 192 characters. Press Enter between lines.

On the line following your input, type ENDOFBUF and press Enter to finish.

Press Ctrl and C to cancel out of the set message dialog.

Step 7 Commit the transaction to the system configuration:

Firepower-chassis /security/banner/pre-login-banner* # commit-buffer

Example

The following example modifies the pre-login banner:

Firepower-chassis# scope security
Firepower-chassis /security # scope banner
Firepower-chassis /security/banner # scope pre-login-banner
Firepower-chassis /security/banner/pre-login-banner # set message

Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.

Enter prelogin banner:
> Welcome to the Firepower Security Appliance
> **Unauthorized use is prohibited**
> ENDOFBUF

Firepower-chassis /security/banner/pre-login-banner* # commit-buffer

Deleting the Pre-Login Banner

Procedure

Step 1 Connect to the FXOS CLI (see Accessing the FXOS CLI, on page 14).

Step 2 Enter security mode:

Firepower-chassis# scope security

Step 3 Enter banner security mode:

Firepower-chassis /security # scope banner

Step 4 Delete the pre-login banner from the system:

Firepower-chassis /security/banner # delete pre-login-banner

Step 5 Commit the transaction to the system configuration:
Example

The following example deletes the pre-login banner:

```
Firepower-chassis# scope security
Firepower-chassis /security # scope banner
Firepower-chassis /security/banner # delete pre-login-banner
Firepower-chassis /security/banner* # commit-buffer
Firepower-chassis /security/banner #
```

Rebooting the Firepower 4100/9300 Chassis

Procedure

Step 1

Enter chassis mode:

```
scope chassis 1
```

Step 2

Enter the following command to reboot the chassis:

```
reboot [reason] [no-prompt]
```

Note If you use the `[no-prompt]` keyword, the chassis will reboot immediately after entering the command. If you do not use the `[no-prompt]` keyword, the system will not reboot until you enter the `commit-buffer` command.

The system will gracefully shut down any logical devices configured on the system and then power down each security module/engine before finally powering down and then restarting the Firepower 4100/9300 chassis. This process takes approximately 15-20 minutes.

Step 3

To monitor the reboot process:

```
scope chassis 1
show fsm status
```

Powering Off the Firepower 4100/9300 Chassis

Procedure

Step 1

Enter chassis mode:

```
scope chassis 1
```

Step 2

Enter the following command to power down the chassis:

```
shutdown [reason] [no-prompt]
```

Note If you use the `[no-prompt]` keyword, the chassis will shut down immediately after entering the command. If you do not use the `[no-prompt]` keyword, the system will not shut down until you enter the `commit-buffer` command.

The system will gracefully shut down any logical devices configured on the system and then power down each security module/engine before finally powering down the Firepower 4100/9300 chassis. This process takes approximately 15-20 minutes. After the chassis has successfully shut down, you can then physically unplug the power on the chassis.

Step 3

To monitor the shutdown process:

```
scope chassis 1
show fsm status
```

Restoring the Factory Default Configuration

You can use the FXOS CLI to restore your Firepower 4100/9300 chassis to factory default configuration.

Note This process erases all user configuration from the chassis including any logical device configuration. After completing this procedure, you will need to reconfigure the system (see Initial Configuration Using Console Port, on page 11).

Procedure

Step 1 (Optional) The `erase configuration` command does not remove the Smart License configuration from the chassis. If you also want to remove the Smart License configuration, perform the following steps:

```
scope license
deregister
```

Deregistering the Firepower 4100/9300 chassis removes the device from your account. All license entitlements and certificates on the device are removed.

Step 2 Connect to the local-management shell:

```
connect local-mgmt
```

Step 3 Enter the following command to erase all user configuration from your Firepower 4100/9300 chassis and restore the chassis to its original factory default configuration:

```
erase configuration
```

The system prompts you to verify that you are sure you want to erase all user configuration.

Step 4 Confirm that you want to erase the configuration by entering `yes` at the command prompt.
The system will erase all user configuration from your Firepower 4100/9300 chassis and then reboot the system.
Platform Settings

- Setting the Date and Time, on page 99
- Configuring SSH, on page 106
- Configuring Telnet, on page 109
- Configuring SNMP, on page 110
- Configuring HTTPS, on page 120
- Configuring AAA, on page 132
- Verifying Remote AAA Server Configurations, on page 145
- Configuring Syslog, on page 146
- Configuring DNS Servers, on page 148
- Enable FIPS Mode, on page 150
- Enable Common Criteria Mode, on page 150
- Configure the IP Access List, on page 151

Setting the Date and Time

Use the CLI commands described below to configure the network time protocol (NTP) on the system, to set the date and time manually, or to view the current system time.

NTP settings are automatically synced between the Firepower 4100/9300 chassis and any logical devices installed on the chassis.

Note

If you are deploying Firepower Threat Defense on the Firepower 4100/9300 chassis, you must configure NTP on the Firepower 4100/9300 chassis so that Smart Licensing will work properly and to ensure proper timestamps on device registrations. You should use the same NTP server for both the Firepower 4100/9300 chassis and the Firepower Management Center, but note that you cannot use Firepower Management Center as the NTP server for the Firepower 4100/9300 chassis.

If you are using NTP, you can view the overall synchronization status on the Current Time tab, or you can view the synchronization status for each configured NTP server by looking at the Server Status field in the NTP Server table on the Time Synchronization tab. If the system is unable to synchronize with a particular NTP server, you can hover over the information icon next to the Server Status for more information.
Viewing the Configured Date and Time

Procedure

Step 1 Connect to the FXOS CLI (see Accessing the FXOS CLI, on page 14).

Step 2 To view the configured time zone:

Firepower-chassis# `show timezone`

Step 3 To view the configured date and time:

Firepower-chassis# `show clock`

Example

The following example shows how to display the configured time zone and current system date and time:

Firepower-chassis# `show timezone`
Timezone: America/Chicago
Firepower-chassis# `show clock`
Thu Jun 2 12:40:42 CDT 2016
Firepower-chassis#

Setting the Time Zone

Procedure

Step 1 Enter system mode:

Firepower-chassis# `scope system`

Step 2 Enter system services mode:

Firepower-chassis/system # `scope services`

Step 3 Set the time zone:

Firepower-chassis /system/services # `set timezone`

At this point, you are prompted to enter a number corresponding to your continent, country, and time zone region. Enter the appropriate information at each prompt.

When you have finished specifying the location information, you are prompted to confirm that the correct time zone information is being set. Enter 1 (yes) to confirm, or 2 (no) to cancel the operation.

Step 4 To view the configured time zone:

Firepower-chassis /system/services # `top`
Example

The following example configures the time zone to the Pacific time zone region, commits the transaction, and displays the configured time zone:

```
Firepower-chassis# show timezone
```

```
Example

The following example configures the time zone to the Pacific time zone region, commits the transaction, and displays the configured time zone:

```
Firepower-chassis# scope system
Firepower-chassis /system # scope services
Firepower-chassis /system/services # set timezone
Please identify a location so that time zone rules can be set correctly.
Please select a continent or ocean.
1) Africa 4) Arctic Ocean 7) Australia 10) Pacific Ocean
2) Americas 5) Asia 8) Europe
3) Antarctica 6) Atlantic Ocean 9) Indian Ocean
#? 2
Please select a country.
1) Anguilla 28) Haiti
2) Antigua & Barbuda 29) Honduras
3) Argentina 30) Jamaica
4) Aruba 31) Martinique
5) Bahamas 32) Mexico
6) Barbados 33) Montserrat
7) Belize 34) Nicaragua
8) Bolivia 35) Panama
9) Brazil 36) Paraguay
10) Canada 37) Peru
11) Caribbean Netherlands 38) Puerto Rico
12) Cayman Islands 39) St Barthelemy
13) Chile 40) St Kitts & Nevis
14) Colombia 41) St Lucia
15) Costa Rica 42) St Maarten (Dutch part)
16) Cuba 43) St Martin (French part)
17) Curacao 44) St Pierre & Miquelon
18) Dominica 45) St Vincent
19) Dominican Republic 46) Suriname
20) Ecuador 47) Trinidad & Tobago
21) El Salvador 48) Turks & Caicos Is
22) French Guiana 49) United States
23) Greenland 50) Uruguay
24) Grenada 51) Venezuela
25) Guadeloupe 52) Virgin Islands (UK)
26) Guatemala 53) Virgin Islands (US)
27) Guyana
#? 49
Please select one of the following time zone regions.
1) Eastern Time
2) Eastern Time - Michigan - most locations
3) Eastern Time - Kentucky - Louisville area
4) Eastern Time - Kentucky - Wayne County
5) Eastern Time - Indiana - most locations
6) Eastern Time - Indiana - Daviess, Dubois, Knox & Martin Counties
7) Eastern Time - Indiana - Pulaski County
8) Eastern Time - Indiana - Crawford County
9) Eastern Time - Indiana - Pike County
10) Eastern Time - Indiana - Switzerland County
11) Central Time
12) Central Time - Indiana - Perry County
13) Central Time - Indiana - Starke County
14) Central Time - Michigan - Dickinson, Gogebic, Iron & Menominee Counties
```
15) Central Time - North Dakota - Oliver County
16) Central Time - North Dakota - Morton County (except Mandan area)
17) Central Time - North Dakota - Mercer County
18) Mountain Time
19) Mountain Time - south Idaho & east Oregon
20) Mountain Standard Time - Arizona (except Navajo)
21) Pacific Time
22) Pacific Standard Time - Annette Island, Alaska
23) Alaska Time
24) Alaska Time - Alaska panhandle
25) Alaska Time - southeast Alaska panhandle
26) Alaska Time - Alaska panhandle neck
27) Alaska Time - west Alaska
28) Aleutian Islands
29) Hawaii

The following information has been given:

United States
Pacific Time

Therefore timezone 'America/Los_Angeles' will be set.
Is the above information OK?
1) Yes
2) No

1
Firepower-chassis /system/services* # commit-buffer
Firepower-chassis /system/services # top
Firepower-chassis# show timezone
Timezone: America/Los_Angeles (Pacific Time)
Firepower-chassis#

Setting the Date and Time Using NTP

NTP is used to implement a hierarchical system of servers that provide a precisely synchronized time among network systems. This kind of accuracy is required for time-sensitive operations, such as validating CRLs, which include a precise time stamp. You can configure up to four NTP servers.

**Note**

- FXOS uses NTP version 3.
- If the stratum value of an external NTP server is 13 or greater, the application instance cannot sync to the NTP server on the FXOS chassis. Each time a NTP client syncs to a NTP server, the stratum value increases by one.

If you have set up your own NTP server, you can find its stratum value in the /etc/ntp.conf file on the server. If the NTP server has stratum value of 13 or greater you can either change the stratum value in the ntp.conf file and restart the server, or use a different NTP server (for example: pool.ntp.org).

**Before you begin**

If you use a hostname for the NTP server, you must configure a DNS server. See Configuring DNS Servers, on page 148.
**Procedure**

**Step 1**
Enter system mode:
Firepower-chassis# `scope system`

**Step 2**
Enter system services mode:
Firepower-chassis /system # `scope services`

**Step 3**
Configure the system to use the NTP server with the specified hostname, IPv4, or IPv6 address:
Firepower-chassis /system/services # `create ntp-server {hostname | ip-addr | ip6-addr}`

**Step 4**
(Optional) Configure NTP authentication.
Only SHA1 is supported for NTP server authentication. Obtain the key ID and value from the NTP server. For example, to generate the SHA1 key on NTP server Version 4.2.8p8 or later with OpenSSL installed, enter the `ntp-keygen -M` command, and then view the key ID and value in the ntp.keys file. The key is used to tell both the client and server which value to use when computing the message digest.

a) Set the SHA1 Key ID.
```
set ntp-sha1-key-id key_id
```

b) Set the SHA1 Key String.
```
set ntp-sha1-key-string
```
You are prompted for the key string.

c) Exit ntp-server mode.
```
exit
```

d) Enable NTP authentication.
```
enable ntp-authentication
```

Example:
```
firepower /system/services/ntp-server* # set ntp-sha1-key-string 11
firepower /system/services/ntp-server* # set ntp-sha1-key-string
NTP SHA-1 key string: 7092334a7809ab9873124c08123df907097fe72
firepower /system/services/ntp-server* # exit
firepower /system/services* # enable authentication
```

**Step 5**
Commit the transaction to the system configuration:
Firepower-chassis /system/services # `commit-buffer`

**Step 6**
To view the synchronization status for all configured NTP servers:
Firepower-chassis /system/services # `show ntp-server`

**Step 7**
To view the synchronization status for a specific NTP server:
Firepower-chassis /system/services # `scope ntp-server {hostname | ip-addr | ip6-addr}`
Deleting an NTP Server

Procedure

Step 1
Enter system mode:
Firepower-chassis# scope system

Step 2
Enter system services mode:
Firepower-chassis /system # scope services

Step 3
Delete the NTP server with the specified hostname, IPv4, or IPv6 address:
Firepower-chassis /system/services # delete ntp-server {hostname | ip-addr | ip6-addr}

Step 4
Commit the transaction to the system configuration:
Firepower-chassis /system/services # commit-buffer

Example
The following example deletes the NTP server with the IP address 192.168.200.101 and commits the transaction:
Firepower-chassis# scope system
Firepower-chassis /system # scope services
The following example deletes the NTP server with the IPv6 address 4001::6 and commits the transaction:

```
Firepower-chassis# scope system
Firepower-chassis /system # scope services
Firepower-chassis /system/services # delete ntp-server 4001::6
Firepower-chassis /system/services* # commit-buffer
Firepower-chassis /system/services #
```

## Setting the Date and Time Manually

This section describes how to set the date and time manually on the Firepower chassis. System clock modifications take effect immediately.

### Note

If the system clock is currently being synchronized with an NTP server, you will not be able to set the date and time manually.

### Procedure

**Step 1**

Enter system mode:

```
Firepower-chassis# scope system
```

**Step 2**

Enter system services mode:

```
Firepower-chassis /system # scope services
```

**Step 3**

Configure the system clock:

```
Firepower-chassis /system/services # set clock month day year hour min sec
```

For month, use the first three digits of the month. Hours must be entered using the 24-hour format, where 7 pm would be entered as 19.

System clock modifications take effect immediately. You do not need to commit the buffer.

### Example

The following example configures the system clock:

```
Firepower-chassis# scope system
Firepower-chassis /system # scope services
Firepower-chassis /system/services # set clock jun 24 2015 15 27 00
Firepower-chassis /system/services #
```
Configuring SSH

The following procedure describes how to enable or disable SSH access to the Firepower chassis, how to enable the FXOS chassis as an SSH client, and how to configure the various algorithms used by SSH for encryption, key exchange, and message authentication for both the SSH server and SSH client.

SSH is enabled by default.

**Procedure**

---

**Step 1**
Enter system mode:

```
Firepower-chassis# scope system
```

**Step 2**
Enter system services mode:

```
Firepower-chassis/system# scope services
```

**Step 3**
To configure SSH access to the Firepower chassis, do one of the following:

- To allow SSH access to the Firepower chassis, enter the following command:

```
Firepower-chassis/system/services# enable ssh-server
```

- To disallow SSH access to the Firepower chassis, enter the following command:

```
Firepower-chassis/system/services# disable ssh-server
```

**Step 4**
Configure encryption algorithms for the server:

```
Firepower-chassis/system/services# set ssh-server encrypt-algorithm encrypt_algorithm
```

**Example:**

```
Firepower /system/services # set ssh-server encrypt-algorithm ?
3des-cbc 3des Cbc
aes128-cbc Aes128 Cbc
aes128-ctr Aes128 Ctr
aes192-cbc Aes192 Cbc
aes192-ctr Aes192 Ctr
aes256-cbc Aes256 Cbc
aes256-ctr Aes256 Ctr
```

**Example:**

**Note**

- 3des-cbc is not supported in Common Criteria. If Common Criteria mode is enabled on the FXOS chassis, you cannot use 3des-cbc as an encryption algorithm.

**Step 5**
Configure the server Diffie-Hellman (DH) key exchange algorithms:

```
Firepower-chassis/system/services# set ssh-server kex-algorithm
```

**Example:**

```
Firepower /system/services # set ssh-server kex-algorithm

diffie-hellman-group1-sha1 Diffie Hellman Group1 Sha1
diffie-hellman-group14-sha1 Diffie Hellman Group14 Sha1
```
The DH key exchange provides a shared secret that cannot be determined by either party alone. The key exchange is combined with a signature and the host key to provide host authentication. This key-exchange method provides explicit server authentication. For more information about using DH key-exchange methods, see RFC 4253.

Step 6
Set the server mac algorithms:

Firepower-chassis /system/services # set ssh-server mac-algorithm

Example:

Firepower /system/services # set ssh-server mac-algorithm
  hmac-sha1  Hmac Sha1
  hmac-sha1-160 Hmac Sha1 160
  hmac-sha1-96  Hmac Sha1 96
  hmac-sha2-256 Hmac Sha2 256
  hmac-sha2-512 Hmac Sha2 512

Step 7
For the server host key, enter the modulus size for the RSA key pairs.

The modulus value (in bits) is in multiples of 8 from 1024 to 2048. The larger the key modulus size you specify, the longer it takes to generate an RSA key pair. We recommend a value of 2048.

Firepower-chassis /system/services # set ssh-server host-key rsa modulus_value

Example:

Firepower /system/services # set ssh-server host-key rsa ?
  <1024-2048> Enter number of bits (in multiples of 8)

Firepower /system/services # set ssh-server host-key rsa 2048

Step 8
For the server volume rekey limit, set the amount of traffic in KB allowed over the connection before FXOS disconnects from the session:

Firepower-chassis /system/services # set ssh-server rekey-limit volume KB_of_Traffic

Example:

Firepower /system/services # set /system/services # set ssh-server rekey-limit volume ?
  100-4194303 Max volume limit in KB

Step 9
For the server time rekey limit, set the number of minutes that an SSH session can be idle before FXOS disconnects the session:

Firepower-chassis /system/services # set ssh-server rekey-limit time minutes

Example:

Firepower /system/services # set /system/services # set ssh-server rekey-limit time ?
  10-1440 Max time limit in Minutes

Step 10
Commit the transaction to the system configuration:

Firepower /system/services # commit-buffer

Step 11
Configure strict host keycheck, to control SSH host key checking:

Firepower /system/services # ssh-client stricthostkeycheck enable/disable/prompt

Example:

Firepower /system/services # set ssh-client stricthostkeycheck enable

  • enable-The connection is rejected if the host key is not already in the FXOS known hosts file. You must manually add hosts at the FXOS CLI using the enter ssh-host command in the system/services scope.
Step 12 Configure encryption algorithms for the client:

Firepower-chassis /system/services # set ssh-client encrypt-algorithm encrypt_algorithm

Example:

Firepower /system/services # set ssh-client encrypt-algorithm ?
3des-cbc 3des Cbc
aes128-cbc Aes128 Cbc
aes128-ctr Aes128 Ctr
aes192-cbc Aes192 Cbc
aes192-ctr Aes192 Ctr
aes256-cbc Aes256 Cbc
aes256-ctr Aes256 Ctr

Note: 3des-cbc is not supported in Common Criteria. If Common Criteria mode is enabled on the FXOS chassis, you cannot use 3des-cbc as an encryption algorithm.

Step 13 Configure the client Diffie-Hellman (DH) key exchange algorithms:

Firepower-chassis /system/services # set ssh-client kex-algorithm

Example:

Firepower /system/services # set ssh-client kex-algorithm
diffie-hellman-group1-sha1 Diffie Hellman Group1 Sha1
diffie-hellman-group14-sha1 Diffie Hellman Group14 Sha1

The DH key exchange provides a shared secret that cannot be determined by either party alone. The key exchange is combined with a signature and the host key to provide host authentication. This key-exchange method provides explicit server authentication. For more information about using DH key-exchange methods, see RFC 4253.

Step 14 Set the client mac algorithms:

Firepower-chassis /system/services # set ssh-client mac-algorithm

Example:

Firepower /system/services # set ssh-client mac-algorithm
hmac-sha1 Hmac Sha1
hmac-sha1-160 Hmac Sha1 160
hmac-sha1-96 Hmac Sha1 96
hmac-sha2-256 Hmac Sha2 256
hmac-sha2-512 Hmac Sha2 512

Step 15 For the client host key, enter the modulus size for the RSA key pairs.

The modulus value (in bits) is in multiples of 8 from 1024 to 2048. The larger the key modulus size you specify, the longer it takes to generate an RSA key pair. We recommend a value of 2048.

Firepower-chassis /system/services # set ssh-client host-key rsa modulus_value

Example:

Firepower /system/services # set ssh-client host-key rsa ?
<1024-2048> Enter number of bits (in multiples of 8)
Firepower /system/services # set ssh-client host-key rsa 2048
Step 16 For the client volume rekey limit, set the amount of traffic in KB allowed over the connection before FXOS disconnects from the session:

Firepower-chassis /system/services # set ssh-client rekey-limit volume KB_of_Traffic

Example:
Firepower /system/services # set /system/services # set ssh-client rekey-limit volume 100-4194303 Max volume limit in KB

Step 17 For the client time rekey limit, set the number of minutes that an SSH session can be idle before FXOS disconnects the session:

Firepower-chassis /system/services # set ssh-client rekey-limit time minutes

Example:
Firepower /system/services # set /system/services # set ssh-client rekey-limit time 10-1440 Max time limit in Minutes

Step 18 Commit the transaction to the system configuration:

Firepower /system/services # commit-buffer

Example
The following example enables SSH access to the Firepower chassis and commits the transaction:

Firepower# scope system
Firepower /system # scope services
Firepower /system/services # enable ssh-server
Firepower /system/services* # commit-buffer
Firepower /system/services #

Configuring Telnet

The following procedure describes how to enable or disable Telnet access to the Firepower chassis. Telnet is disabled by default.

Note
Telnet configuration is currently only available using the CLI.

Procedure

Step 1 Enter system mode:
Firepower-chassis # scope system

Step 2 Enter system services mode:
Firepower-chassis /system # scope services
Step 3 To configure Telnet access to the Firepower chassis, do one of the following:

- To allow Telnet access to the Firepower chassis, enter the following command:
  Firepower-chassis/system/services# enable telnet-server
- To disallow Telnet access to the Firepower chassis, enter the following command:
  Firepower-chassis/system/services# disable telnet-server

Step 4 Commit the transaction to the system configuration:
Firepower /system/services# commit-buffer

Example
The following example enables Telnet and commits the transaction:

Firepower-chassis# scope system
Firepower-chassis /system # scope services
Firepower-chassis /services # enable telnet-server
Firepower-chassis /services* # commit-buffer
Firepower-chassis /services #

Configuring SNMP

This section describes how to configure the Simple Network Management Protocol (SNMP) on the Firepower chassis. See the following topics for more information:

About SNMP

The Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network.

The SNMP framework consists of three parts:

- An SNMP manager—The system used to control and monitor the activities of network devices using SNMP.
- An SNMP agent—The software component within the Firepower chassis that maintains the data for the Firepower chassis and reports the data, as needed, to the SNMP manager. The Firepower chassis includes the agent and a collection of MIBs. To enable the SNMP agent and create the relationship between the manager and agent, enable and configure SNMP in the Firepower Chassis Manager or the FXOS CLI.
- A managed information base (MIB)—The collection of managed objects on the SNMP agent.

The Firepower chassis supports SNMPv1, SNMPv2c and SNMPv3. Both SNMPv1 and SNMPv2c use a community-based form of security. SNMP is defined in the following:

SNMP Notifications

A key feature of SNMP is the ability to generate notifications from an SNMP agent. These notifications do not require that requests be sent from the SNMP manager. Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of connection to a neighbor router, or other significant events.

The Firepower chassis generates SNMP notifications as either traps or informs. Traps are less reliable than informs because the SNMP manager does not send any acknowledgment when it receives a trap, and the Firepower chassis cannot determine if the trap was received. An SNMP manager that receives an inform request acknowledges the message with an SNMP response protocol data unit (PDU). If the Firepower chassis does not receive the PDU, it can send the inform request again.

However, informs are available only with SNMPv2c, which is considered insecure, and is not recommended.

SNMP Security Levels and Privileges

SNMPv1, SNMPv2c, and SNMPv3 each represent a different security model. The security model combines with the selected security level to determine the security mechanism applied when the SNMP message is processed.

The security level determines the privileges required to view the message associated with an SNMP trap. The privilege level determines whether the message needs to be protected from disclosure or authenticated. The supported security level depends upon which security model is implemented. SNMP security levels support one or more of the following privileges:

- noAuthNoPriv—No authentication or encryption
- authNoPriv—Authentication but no encryption
- authPriv—Authentication and encryption
SNMPv3 provides for both security models and security levels. A security model is an authentication strategy that is set up for a user and the role in which the user resides. A security level is the permitted level of security within a security model. A combination of a security model and a security level determines which security mechanism is employed when handling an SNMP packet.

**Supported Combinations of SNMP Security Models and Levels**

The following table identifies what the combinations of security models and levels mean.

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>HMAC-SHA</td>
<td>No</td>
<td>Provides authentication based on the HMAC Secure Hash Algorithm (SHA).</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>HMAC-SHA</td>
<td>DES</td>
<td>Provides authentication based on the HMAC-SHA algorithm. Provides Data Encryption Standard (DES) 56-bit encryption in addition to authentication based on the Cipher Block Chaining (CBC) DES (DES-56) standard.</td>
</tr>
</tbody>
</table>

**SNMPv3 Security Features**

SNMPv3 provides secure access to devices by a combination of authenticating and encrypting frames over the network. SNMPv3 authorizes management operations only by configured users and encrypts SNMP messages. The SNMPv3 User-Based Security Model (USM) refers to SNMP message-level security and offers the following services:

- **Message integrity**—Ensures that messages have not been altered or destroyed in an unauthorized manner and that data sequences have not been altered to an extent greater than can occur non-maliciously.

- **Message origin authentication**—Ensures that the claimed identity of the user on whose behalf received data was originated is confirmed.

- **Message confidentiality and encryption**—Ensures that information is not made available or disclosed to unauthorized individuals, entities, or processes.
## SNMP Support

The Firepower chassis provides the following support for SNMP:

**Support for MIBs**

The Firepower chassis supports read-only access to MIBs. For information about the specific MIBs available and where you can obtain them, see the Cisco FXOS MIB Reference Guide.

**Authentication Protocol for SNMPv3 Users**

The Firepower chassis supports the HMAC-SHA-96 (SHA) authentication protocol for SNMPv3 users.

**AES Privacy Protocol for SNMPv3 Users**

The Firepower chassis uses Advanced Encryption Standard (AES) as one of the privacy protocols for SNMPv3 message encryption and conforms with RFC 3826.

The privacy password, or priv option, offers a choice of DES or 128-bit AES encryption for SNMP security encryption. If you enable AES-128 configuration and include a privacy password for an SNMPv3 user, the Firepower chassis uses the privacy password to generate a 128-bit AES key. The AES privacy password can have a minimum of eight characters. If the passphrases are specified in clear text, you can specify a maximum of 64 characters.

## Enabling SNMP and Configuring SNMP Properties

### Procedure

1. **Step 1** Enter monitoring mode:
   
   Firepower-chassis# scope monitoring

2. **Step 2** Enable SNMP:
   
   Firepower-chassis /monitoring # enable snmp

3. **Step 3** (Optional) Enter SNMP community mode:
   
   Firepower-chassis /monitoring # set snmp community

   After you enter the `set snmp community` command, you are prompted to enter the SNMP community name. When you specify an SNMP community name, you are also automatically enabling SNMP versions 1 and 2c for polling requests from the SNMP remote manager.

   **Note** Be aware that SNMP versions 1 and 2c have serious known security issues: they transmit all information without encryption, including the community string, which serves as the only form of authentication in these versions.

4. **Step 4** Specify the SNMP community name; this community name is used as a SNMP password. The community name can be any alphanumeric string up to 32 characters.
Firepower-chassis /monitoring # **Enter a snmp community:** community-name

There can be only one community name; however, you can use `set snmp community` to overwrite the existing name. To delete an existing community name (also disabling SNMP versions 1 and 2c for polling requests from the SNMP remote manager), enter `set snmp community` but do not type a community string; that is, simply press `Enter` again. After you commit the buffer, `show snmp` output will include the line `Is Community Set: No`.

**Step 5**
Specify the system contact person responsible for SNMP. The system contact name can be any alphanumeric string up to 255 characters, such as an email address or name and telephone number.

Firepower-chassis /monitoring # **set snmp syscontact** system-contact-name

**Step 6**
Specify the location of the host on which the SNMP agent (server) runs. The system location name can be any alphanumeric string up to 512 characters.

Firepower-chassis /monitoring # **set snmp syslocation** system-location-name

**Step 7**
Commit the transaction to the system configuration:

Firepower-chassis /monitoring # **commit-buffer**

---

**Example**

The following example enables SNMP, configures an SNMP community named SnmpCommSystem2, configures a system contact named contactperson, configures a contact location named systemlocation, and commits the transaction:

```
Firepower-chassis# scope monitoring
Firepower-chassis /monitoring # enable snmp
Firepower-chassis /monitoring* # set snmp community
Enter a snmp community: SnmpCommSystem2
Firepower-chassis /monitoring* # set snmp syscontact contactperson1
Firepower-chassis /monitoring* # set snmp syslocation systemlocation
Firepower-chassis /monitoring* # commit-buffer
```

**What to do next**

Create SNMP traps and users.

---

**Creating an SNMP Trap**

The following procedure describes how to create SNMP traps.

---

**Note**

You can define up to eight SNMP traps.
**Procedure**

**Step 1**
Enter monitoring mode:
Firepower-chassis# `scope monitoring`

**Step 2**
Enable SNMP:
Firepower-chassis /monitoring # `enable snmp`

**Step 3**
Create an SNMP trap with the specified host name, IPv4 address, or IPv6 address.
Firepower-chassis /monitoring # `create snmp-trap {hostname | ip-addr | ip6-addr}`

**Step 4**
Specify the SNMP community string, or version 3 user name, to be used with the SNMP trap:
Firepower-chassis /monitoring/snmp-trap # `set community community-name`
Specifies the SNMPv1/v2c community string, or the SNMPv3 user name, to permit access to the trap destination. You are queried for the community name after you enter this command. The name can be up to 32 characters with no spaces; the name is not displayed as you type.

**Step 5**
Specify the port to be used for the SNMP trap:
Firepower-chassis /monitoring/snmp-trap # `set port port-num`

**Step 6**
Specify the SNMP version and model used for the trap:
Firepower-chassis /monitoring/snmp-trap # `set version {v1 | v2c | v3}`

**Note** Be aware that SNMP versions 1 and 2c have serious known security issues: they transmit all information without encryption, including the community string, which serves as the only form of authentication in these versions.

**Step 7** (Optional) Specify the type of trap to send.
Firepower-chassis /monitoring/snmp-trap # `set notificationtype {traps | informs}`
This can be:
- `traps` if you select v2c or v3 for the version.
- `informs` if you select v2c for the version.

**Note** An inform notification can be sent only if you select v2c for the version.

**Step 8** (Optional) If you select v3 for the version, specify the privilege associated with the trap:
Firepower-chassis /monitoring/snmp-trap # `set v3privilege {auth | noauth | priv}`
This can be:
- `auth`—Authentication but no encryption.
- `noauth`—No authentication or encryption. Note that while you can specify it, FXOS does not support this security level with SNMPv3.
- `priv`—Authentication and encryption.
Step 9
Commit the transaction to the system configuration:

Firepower-chassis /monitoring/snmp-trap # commit-buffer

Example

The following example enables SNMP, creates an SNMP trap using an IPv4 address, specifies that the trap will use the SnmpCommSystem2 community on port 2, sets the version to v3, sets the notification type to traps, sets the v3 privilege to priv, and commits the transaction:

```
Firepower-chassis# scope monitoring
Firepower-chassis /monitoring # enable snmp
Firepower-chassis /monitoring* # create snmp-trap 192.168.100.112
Firepower-chassis /monitoring/snmp-trap* # set community SnmpCommSystem2
Firepower-chassis /monitoring/snmp-trap* # set port 2
Firepower-chassis /monitoring/snmp-trap* # set version v3
Firepower-chassis /monitoring/snmp-trap* # set notificationtype traps
Firepower-chassis /monitoring/snmp-trap* # set v3privilege priv
Firepower-chassis /monitoring/snmp-trap* # commit-buffer
Firepower-chassis /monitoring/snmp-trap #
```

The following example enables SNMP, creates an SNMP trap using an IPv6 address, specifies that the trap will use the SnmpCommSystem3 community on port 2, sets the version to v3, sets the notification type to traps, sets the v3 privilege to priv, and commits the transaction:

```
Firepower-chassis# scope monitoring
Firepower-chassis /monitoring # enable snmp
Firepower-chassis /monitoring* # create snmp-trap 2001::1
Firepower-chassis /monitoring/snmp-trap* # set community SnmpCommSystem3
Firepower-chassis /monitoring/snmp-trap* # set port 2
Firepower-chassis /monitoring/snmp-trap* # set version v3
Firepower-chassis /monitoring/snmp-trap* # set notificationtype traps
Firepower-chassis /monitoring/snmp-trap* # set v3privilege priv
Firepower-chassis /monitoring/snmp-trap* # commit-buffer
Firepower-chassis /monitoring/snmp-trap #
```

Deleting an SNMP Trap

Procedure

Step 1
Enter monitoring mode:

Firepower-chassis# scope monitoring

Step 2
Delete the SNMP trap with the specified hostname or IP address:

Firepower-chassis /monitoring # delete snmp-trap {hostname | ip-addr}

Step 3
Commit the transaction to the system configuration:
Example
The following example deletes the SNMP trap at IP address 192.168.100.112 and commits the transaction:

```
Firepower-chassis# scope monitoring
Firepower-chassis /monitoring # delete snmp-trap 192.168.100.112
Firepower-chassis /monitoring* # commit-buffer
Firepower-chassis /monitoring #
```

Creating an SNMPv3 User

Procedure

**Step 1**
Enter monitoring mode:
```
Firepower-chassis# scope monitoring
```

**Step 2**
Enable SNMP:
```
Firepower-chassis /monitoring# enable snmp
```

**Step 3**
Create an SNMPv3 user:
```
Firepower-chassis /monitoring# create snmp-user user-name
```
After you enter the `create snmp-user` command, you are prompted to enter a password.

The Firepower eXtensible Operating System rejects any password that does not meet the following requirements:

- Must contain a minimum of 8 characters and a maximum of 80 characters.
- Must contain only letters, numbers, and the following characters:
  
  ~`!@#$%^&*()_+-{}|:"<>?/
  
- Must not contain the following symbols: $ (dollar sign), ? (question mark), or = (equals sign).
- Must contain at least five different characters.
- Must not contain too many consecutively incrementing or decrementing numbers or letters. For example, the string "12345" has four such characters, and the string "ZYXW" has three. If the total number of such characters exceeds a certain limit (typically more than around 4-6 such occurrences), the simplicity check will fail.

**Note**

The consecutively incrementing or decrementing character count is not reset when non-incrementing or decrementing characters are used in between. For example, abcd&!21 will fail the password check, but abcd&!25, will not.

**Step 4**
Enable or disable the use of AES-128 encryption:
By default, AES-128 encryption is disabled.

**Step 5**

Specify the user privacy password:

```
Firepower-chassis /monitoring/snmp-user# set priv-password
```

After you enter the `set priv-password` command, you are prompted to enter and confirm the privacy password. The Firepower eXtensible Operating System rejects any password that does not meet the following requirements:

- Must contain a minimum of 8 characters and a maximum of 80 characters.
- Must contain only letters, numbers, and the following characters:
  `~!@#$%^&*()_-+{}|;":'<,>./`
- Must not contain the following symbols: $ (dollar sign), ? (question mark), or = (equals sign).
- Must contain at least five different characters.
- Must not contain too many consecutively incrementing or decrementing numbers or letters. For example, the string "12345" has four such characters, and the string "ZYXW" has three. If the total number of such characters exceeds a certain limit (typically more than around 4-6 such occurrences), the simplicity check will fail.

**Note**  The consecutively incrementing or decrementing character count is not reset when non-incrementing or decrementing characters are used in between. For example, abcd&!21 will fail the password check, but abcd&!25, will not.

**Step 6**

Commit the transaction to the system configuration:

```
Firepower-chassis /monitoring/snmp-user# commit-buffer
```

---

**Example**

The following example enables SNMP, creates an SNMPv3 user named snmp-user14, enables AES-128 encryption, sets the password and privacy password, and commits the transaction:

```bash
Firepower-chassis# scope monitoring
Firepower-chassis /monitoring # enable snmp
Firepower-chassis /monitoring* # create snmp-user snmp-user14
Password:
Firepower-chassis /monitoring/snmp-user* # set aes-128 yes
Firepower-chassis /monitoring/snmp-user* # set priv-password
Enter a password:
Firepower-chassis /monitoring/snmp-user* # commit-buffer
Firepower-chassis /monitoring/snmp-user #
```
Deleting an SNMPv3 User

Procedure

Step 1  Enter monitoring mode:
Firepower-chassis#  scope monitoring

Step 2  Delete the specified SNMPv3 user:
Firepower-chassis /monitoring #  delete snmp-user user-name

Step 3  Commit the transaction to the system configuration:
Firepower-chassis /monitoring #  commit-buffer

Example

The following example deletes the SNMPv3 user named snmp-user14 and commits the transaction:

Firepower-chassis#  scope monitoring
Firepower-chassis /monitoring #  delete snmp-user snmp-user14
Firepower-chassis /monitoring* #  commit-buffer
Firepower-chassis /monitoring #

Viewing Current SNMP Settings

Use the following CLI commands to display current SNMP settings, users and traps.

Procedure

Step 1  Enter monitoring mode:
firepower#  scope monitoring

Step 2  Display the current SNMP settings:
firepower/monitoring #  show snmp

Name: snmp
   Admin State: Enabled
   Port: 161
   Is Community Set: Yes
   Sys Contact: R_Admin
   Sys Location:

Step 3  List the currently defined SNMPv3 users:
firepower/monitoring #  show snmp-user

SNMPv3 User:
   Name Authentication type
Step 4
List the currently defined SNMP traps:

```
firepower/monitoring # show snmp-trap
```

<table>
<thead>
<tr>
<th>SNMP Trap</th>
<th>Port</th>
<th>Community</th>
<th>Version</th>
<th>V3 Privilege</th>
<th>Notification Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>trap1_informs</td>
<td>162</td>
<td>****</td>
<td>V2c</td>
<td>Noauth</td>
<td>Informs</td>
</tr>
<tr>
<td>192.168.10.100</td>
<td>162</td>
<td>****</td>
<td>V3</td>
<td>Noauth</td>
<td>Traps</td>
</tr>
</tbody>
</table>

Example
This example show how to display detailed information about a specific SNMPv3 user:

```
firepower /monitoring # show snmp-user snmp-user1 detail
```

SNMPv3 User:
- Name: snmp-user1
- Authentication type: Sha
- Password: ****
- Privacy password: ****
- Use AES-128: Yes

Configuring HTTPS

This section describes how to configure HTTPS on the Firepower 4100/9300 chassis.

Note
You can change the HTTPS port using Firepower Chassis Manager or the FXOS CLI. All other HTTPS configuration can only be done using the FXOS CLI.

Certificates, Key Rings, and Trusted Points

HTTPS uses components of the Public Key Infrastructure (PKI) to establish secure communications between two devices, such as a client's browser and the Firepower 4100/9300 chassis.

Encryption Keys and Key Rings

Each PKI device holds a pair of asymmetric Rivest-Shamir-Adleman (RSA) encryption keys, one kept private and one made public, stored in an internal key ring. A message encrypted with either key can be decrypted with the other key. To send an encrypted message, the sender encrypts the message with the receiver's public
key, and the receiver decrypts the message using its own private key. A sender can also prove its ownership of a public key by encrypting (also called 'signing') a known message with its own private key. If a receiver can successfully decrypt the message using the public key in question, the sender's possession of the corresponding private key is proven. Encryption keys can vary in length, with typical lengths from 512 bits to 2048 bits. In general, a longer key is more secure than a shorter key. FXOS provides a default key ring with an initial 2048-bit key pair, and allows you to create additional key rings.

The default key ring certificate must be manually regenerated if the cluster name changes or the certificate expires.

**Certificates**

To prepare for secure communications, two devices first exchange their digital certificates. A certificate is a file containing a device's public key along with signed information about the device's identity. To merely support encrypted communications, a device can generate its own key pair and its own self-signed certificate. When a remote user connects to a device that presents a self-signed certificate, the user has no easy method to verify the identity of the device, and the user's browser will initially display an authentication warning. By default, FXOS contains a built-in self-signed certificate containing the public key from the default key ring.

**Trusted Points**

To provide stronger authentication for FXOS, you can obtain and install a third-party certificate from a trusted source, or trusted point, that affirms the identity of your device. The third-party certificate is signed by the issuing trusted point, which can be a root certificate authority (CA) or an intermediate CA or trust anchor that is part of a trust chain that leads to a root CA. To obtain a new certificate, you must generate a certificate request through FXOS and submit the request to a trusted point.

---

**Important**

The certificate must be in Base64 encoded X.509 (CER) format.

---

**Creating a Key Ring**

FXOS supports a maximum of 8 key rings, including the default key ring.

**Procedure**

**Step 1**

Enter security mode:

`Firepower-chassis # scope security`

**Step 2**

Create and name the key ring:

`Firepower-chassis # create keyring keyring-name`

**Step 3**

Set the SSL key length in bits:

`Firepower-chassis # set modulus {mod1024 | mod1536 | mod2048 | mod512}`

**Step 4**

Commit the transaction:
Firepower-chassis # commit-buffer

Example

The following example creates a keyring with a key size of 1024 bits:

```
Firepower-chassis# scope security
Firepower-chassis /security # create keyring kr220
Firepower-chassis /security/keyring* # set modulus mod1024
Firepower-chassis /security/keyring* # commit-buffer
```

What to do next

Create a certificate request for this key ring.

Regenerating the Default Key Ring

The default key ring certificate must be manually regenerated if the cluster name changes or the certificate expires.

Procedure

**Step 1**  
Enter security mode:
```
Firepower-chassis # scope security
```

**Step 2**  
Enter key ring security mode for the default key ring:
```
Firepower-chassis /security # scope keyring default
```

**Step 3**  
Regenerate the default key ring:
```
Firepower-chassis /security/keyring # set regenerate yes
```

**Step 4**  
Commit the transaction:
```
Firepower-chassis # commit-buffer
```

Example

The following example regenerates the default key ring:

```
Firepower-chassis# scope security
Firepower-chassis /security # scope keyring default
Firepower-chassis /security/keyring* # set regenerate yes
Firepower-chassis /security/keyring* # commit-buffer
Firepower-chassis /security/keyring #
```
Creating a Certificate Request for a Key Ring

Creating a Certificate Request for a Key Ring with Basic Options

Procedure

Step 1  Enter security mode:
Firepower-chassis # scope security

Step 2  Enter configuration mode for the key ring:
Firepower-chassis /security # scope keyring keyring-name

Step 3  Create a certificate request using the IPv4 or IPv6 address specified, or the name of the fabric interconnect. You are prompted to enter a password for the certificate request.
Firepower-chassis /security/keyring # create certreq {ip [ipv4-addr | ipv6-v6] | subject-name name}

Step 4  Commit the transaction:
Firepower-chassis /security/keyring/certreq # commit-buffer

Step 5  Display the certificate request, which you can copy and send to a trust anchor or certificate authority:
Firepower-chassis /security/keyring # show certreq

Example

The following example creates and displays a certificate request with an IPv4 address for a key ring, with basic options:

```
Firepower-chassis# scope security
Firepower-chassis /security # scope keyring kr220
Firepower-chassis /security/keyring # create certreq ip 192.168.200.123 subject-name sjc04
Certificate request password:
Firepower-chassis /security/keyring* # commit-buffer
Firepower-chassis /security/keyring # show certreq
Certificate request subject name: sjc04
Certificate request ip address: 192.168.200.123
```

Example Certificate Request

```
-----BEGIN CERTIFICATE REQUEST-----
MIIBfTCB5wIBADARMQ8wDQYDVQQDEwZzYW1jMDQwgZ8wDQYJKoZIhvcNAQEBBQAD
qUAMIGJAoGBALpKn1t8qMZO4UGqQLKFQcCc2c8b/vW2rRF80PhRKhghLA1YZ1F
JqJyeG5Yl1vgohhBTd45sUGC8m4RTLJHo4SwccAUUXQZQn5f45YtXiMsyl1UWV4
0re/2gTk/Wcd56R0OvWQ2Dctzu2pGA14a761zLxFg29K7R8mzj6CAMVAgMBAAGg
LTAhBkqkrk1G9w0BCQ4xHjAcMBogA1UDEQEB/wQQMA6C8nNhbWMwN1cECsEIXJAN
Bkqkrk1G9w0BAQQFAAO8qGacwN0qUHY9FqQw56Rq9eLTHPrrpdqUwUZMUC03Teg
```

Cisco Firepower 4100/9300 FXOS CLI Configuration Guide, 2.2(2)
## Creating a Certificate Request for a Key Ring with Advanced Options

### Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Enter security mode:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Firepower-chassis # <code>scope security</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enter configuration mode for the key ring:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security # <code>scope keyring keyring-name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Create a certificate request:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/keyring # <code>create certreq</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Specify the country code of the country in which the company resides:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/keyring/certreq* # <code>set country country name</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Specify the Domain Name Server (DNS) address associated with the request:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/keyring/certreq* # <code>set dns DNS Name</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>Specify the email address associated with the certificate request:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/keyring/certreq* # <code>set e-mail E-mail name</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>Specify the IP address of the Firepower 4100/9300 chassis:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/keyring/certreq* # `set ip {certificate request ip-address</td>
</tr>
<tr>
<td>Step 8</td>
<td>Specify the city or town in which the company requesting the certificate is headquartered:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/keyring/certreq* # <code>set locality locality name (eg, city)</code></td>
</tr>
<tr>
<td>Step 9</td>
<td>Specify the organization requesting the certificate:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/keyring/certreq* # <code>set org-name organization name</code></td>
</tr>
<tr>
<td>Step 10</td>
<td>Specify the organizational unit:</td>
</tr>
</tbody>
</table>
Firepower-chassis /security/keyring/certreq* # set org-unit-name organizational unit name

**Step 11** Specify an optional password for the certificate request:
Firepower-chassis /security/keyring/certreq* # set password certificate request password

**Step 12** Specify the state or province in which the company requesting the certificate is headquartered:
Firepower-chassis /security/keyring/certreq* # set state state, province or county

**Step 13** Specify the fully qualified domain name of the Firepower 4100/9300 chassis:
Firepower-chassis /security/keyring/certreq* # set subject-name certificate request name

**Step 14** Commit the transaction:
Firepower-chassis /security/keyring/certreq # commit-buffer

**Step 15** Display the certificate request, which you can copy and send to a trust anchor or certificate authority:
Firepower-chassis /security/keyring # show certreq

**Example**
The following example creates and displays a certificate request with an IPv4 address for a key ring, with advanced options:

```plaintext
Firepower-chassis# scope security
Firepower-chassis /security # scope keyring kr220
Firepower-chassis /security/keyring # create certreq
Firepower-chassis /security/keyring/certreq* # set ip 192.168.200.123
Firepower-chassis /security/keyring/certreq* # set subject-name sjc04
Firepower-chassis /security/keyring/certreq* # set country US
Firepower-chassis /security/keyring/certreq* # set dns bg1-samc-15A
Firepower-chassis /security/keyring/certreq* # set email test@cisco.com
Firepower-chassis /security/keyring/certreq* # set locality new york city
Firepower-chassis /security/keyring/certreq* # set org-name "Cisco Systems"
Firepower-chassis /security/keyring/certreq* # set or-unit-name Testing
Firepower-chassis /security/keyring/certreq* # set state new york
Firepower-chassis /security/keyring/certreq* # commit-buffer
Firepower-chassis /security/keyring/certreq/certreq # show certreq
Certificate request subject name: sjc04
Certificate request ip address: 192.168.200.123
Certificate request e-mail name: test@cisco.com
Certificate request country name: US
State, province or county (full name): New York
Locality name (eg, city): new york city
Organization name (eg, company): Cisco
Organization Unit name (eg, section): Testing
Request:
-----BEGIN CERTIFICATE REQUEST-----
MIIBfTCB5wIBADARMQ8wDQYDVQQDEwZzYW1jMDQwgZ8wDQYJKoZIhvcNAQEBBQAD
gY0AMIGJAoGBALpKn1t8qMZO4UGq1LKFXQc2c8b/Vk2r6R80PhKhghLA1YZ1F
JQcYEjE5Y1vvgohLBTd4sOOGC8m4RtLJHh04SwccAUXQ53nqf45Yt1Xw1wOWV4
0ure/zgTK/5c5656wOBJW2dczu2pGAI4sd/61zLx179K7R8mzj6CAUVAgNBAAGg
LTArBghQkhgk9w8gBC4xHjSoCMBgA1U0EQhEB/wQQAMA6CBMhkbAfzCExEJXJAN
BhQkhgk9w8woAQQQA0OGqCxsNHQY0PQwQ6RwqELZWi9npgRwZwZHOQ37eq
hSxyu4atpYyPqvV9vikZx/5pVc65FW7cTWhcNN8BimOb/O0OkG8kwfGQGLAv
TTYVU+8s90FfBnR17A18SxV8ndXr1HejiQGxlDNqoN+odCXPC5kjoX01ZTL09H
-----END CERTIFICATE REQUEST-----
```
Creating a Trusted Point

Procedure

Step 1  Enter security mode:
Firepower-chassis # scope security

Step 2  Create a trusted point:
Firepower-chassis /security # create trustpoint name

Step 3  Specify certificate information for this trusted point:
Firepower-chassis /security/trustpoint # set certchain [certchain]

If you do not specify certificate information in the command, you are prompted to enter a certificate or a list of trustpoints defining a certification path to the root certificate authority (CA). On the next line following your input, type ENDOFBUF to finish.

Important  The certificate must be in Base64 encoded X.509 (CER) format.

Step 4  Commit the transaction:
Firepower-chassis /security/trustpoint # commit-buffer

Example

The following example creates a trusted point and provides a certificate for the trusted point:

Firepower-chassis # scope security
Firepower-chassis /security # create trustpoint tPoint10
Firepower-chassis /security/trustpoint* # set certchain
Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.

Trustpoint Certificate Chain:
> -----BEGIN CERTIFICATE-----
> MIIDMDCCApmgAwIBAgIBADANBgkqhkiG9w0BAQQFADB0MQswCQYDVQQGEwJVUzEL
> BxMMU2FuIHpvc2UsIENBMRUwEwYDVQQKEwxFeGFtcGxlIEluYy4xEzARBgNVBAsT
> ClRlc3QgR3JvdXAxGTAXBgNVBAMTEHRlc3QuZXhhbXBsZS5jb20xHzAdBgkqhkiG
> Cisco Firepower 4100/9300 FXOS CLI Configuration Guide, 2.2(2)
What to do next

Obtain a key ring certificate from the trust anchor or certificate authority and import it into the key ring.

**Importing a Certificate into a Key Ring**

**Before you begin**

- Configure a trusted point that contains the certificate chain for the key ring certificate.
- Obtain a key ring certificate from a trust anchor or certificate authority.

**Procedure**

**Step 1**  
Enter security mode:

```
Firepower-chassis(scope security
```

**Step 2**  
Enter configuration mode for the key ring that will receive the certificate:

```
Firepower-chassis /security/keyring
```

**Step 3**  
Specify the trusted point for the trust anchor or certificate authority from which the key ring certificate was obtained:

```
Firepower-chassis /security/keyring # set trustpoint name
```

**Step 4**  
Launch a dialog for entering and uploading the key ring certificate:

```
Firepower-chassis /security/keyring # set cert
```

At the prompt, paste the certificate text that you received from the trust anchor or certificate authority. On the next line following the certificate, type **ENDOFBUF** to complete the certificate input.

**Important**  
The certificate must be in Base64 encoded X.509 (CER) format.
Commit the transaction:

Firepower-chassis /security/keyring # commit-buffer

---

**Example**

The following example specifies the trust point and imports a certificate into a key ring:

Firepower-chassis# scope security
Firepower-chassis /security # scope keyring kr220
Firepower-chassis /security/keyring # set trustpoint tPoint10
Firepower-chassis /security/keyring* # set cert

Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.

Keyring certificate:

```
-----BEGIN CERTIFICATE-----
MIIB/zCCAwgCAQAwg2kkCaAJBgNVBAYTAITBQgIBAgIwIaAQgIBAQMwEgYDVQQK
KwYEDQTEFVMdBkM2U1MwMGA1UEBxMMU2FuIEpvc2UsIENBMRUwEwYDVQQ KEwFeG
GtcoxAlIEluYy4xExZbQRSgyKNBASSt
CIR1c3Qs3JvdXAxTAXbGVBABMAETHRlczQSU2k6XhhbXBBaS55jb20xHhBbBggkiG
9w0BCQwK楚vXJAxXhhbXBBaS55jb20wQzgS8WQYJKoZIhvcNAQEBBQADBgYm
AoGBAMZw4nTepNIDhVzb0j7ZJe4xAG56zmSHRMQeOGHemd66u2/XAoLx7YCcyU
ZgAMivyCkgb/6CqJtsoftvtrmC/eAehuK3/SINv7d6V2pBt62pGd4V5RNKDQ1
GMBkPayV1jbM4MD2dx2+H8E3MLtdgkgPvPl+bf5wZVNAqMBAAGjJTAJbkgkq
hkiG9w0BCQcxFhMUQSBjaGFbG6GBVvZ2U6G6Fz23dcmQwQYJKoZIhvcNAQEBQAD
gYtA6C6aJa0vMAhzCl90306M6g51znkizCkz67+V6j06r9asckCld3mkOVx5gJU
Pt5C5QnPdO16bPPvexx6ytsOzgHmpk9ClveV6uy1DYfualmvWkhevskV0j6
mK3Ku+YI0Rv6DhxOqau8Sr/hviLy/L4317IPN1H0i3oha4=
-----END CERTIFICATE-----
ENDOFBUF
```

Firepower-chassis /security/keyring* # commit-buffer
Firepower-chassis /security/keyring #

---

**What to do next**

Configure your HTTPS service with the key ring.

---

**Configuring HTTPS**

**Caution**

After you complete the HTTPS configuration, including changing the port and key ring to be used by HTTPS, all current HTTP and HTTPS sessions are closed without warning as soon as you save or commit the transaction.

---

**Procedure**

1. Enter system mode:
   Firepower-chassis# scope system
2. Enter system services mode:
   Firepower-chassis /system # scope services
3. Enable the HTTPS service:
Firepower-chassis /system/services # enable https

**Step 4** (Optional) Specify the port to be used for the HTTPS connection:
Firepower-chassis /system/services # set https port port-num

**Step 5** (Optional) Specify the name of the key ring you created for HTTPS:
Firepower-chassis /system/services # set https keyring keyring-name

**Step 6** (Optional) Specify the level of Cipher Suite security used by the domain:
Firepower-chassis /system/services # set https cipher-suite-mode cipher-suite-mode

cipher-suite-mode can be one of the following keywords:

- **high-strength**
- **medium-strength**
- **low-strength**
- **custom**—Allows you to specify a user-defined Cipher Suite specification string.

**Step 7** (Optional) If **cipher-suite-mode** is set to **custom**, specify a custom level of Cipher Suite security for the domain:

Firepower-chassis /system/services # set https cipher-suite cipher-suite-spec-string

cipher-suite-spec-string can contain up to 256 characters and must conform to the OpenSSL Cipher Suite specifications. You cannot use any spaces or special characters except ! (exclamation point), + (plus sign), - (hyphen), and : (colon). For details, see http://httpd.apache.org/docs/2.0/mod/mod_ssl.html#sslciphersuite.

For example, the medium strength specification string FXOS uses as the default is:

`ALL:!ADH:!EXPORT56:!LOW:RC4+RSA:+HIGH:+MEDIUM:+EXP:+eNULL`

**Note** This option is ignored if **cipher-suite-mode** is set to anything other than **custom**.

**Step 8** (Optional) Enable or disable the certificate revocation list check:

`set revoke-policy { relaxed | strict }`

**Step 9** Commit the transaction to the system configuration:

Firepower-chassis /system/services # commit-buffer

---

**Example**

The following example enables HTTPS, sets the port number to 443, sets the key ring name to kring7984, sets the Cipher Suite security level to high, and commits the transaction:

```bash
Firepower-chassis# scope system
Firepower-chassis /system # scope services
Firepower-chassis /system/services # enable https
Firepower-chassis /system/services* # set https port 443
Warning: When committed, this closes all the web sessions.
Firepower-chassis /system/services* # set https keyring kring7984
Firepower-chassis /system/services* # set https cipher-suite-mode high
```

---
Changing the HTTPS Port

The HTTPS service is enabled on port 443 by default. You cannot disable HTTPS, but you can change the port to use for HTTPS connections.

**Procedure**

**Step 1** Enter system mode:
Firepower-chassis# scope system

**Step 2** Enter system services mode:
Firepower-chassis /system# scope services

**Step 3** Specify the port to use for HTTPS connections:
Firepower-chassis /system/services# set https port port-number
Specify an integer between 1 and 65535 for `port-number`. HTTPS is enabled on port 443 by default.

**Step 4** Commit the transaction to the system configuration:
Firepower /system/services# commit-buffer

After changing the HTTPS port, all current HTTPS sessions are closed. Users will need to log back in to the Firepower Chassis Manager using the new port as follows:

```
https://<chassis_mgmt_ip_address>:<chassis_mgmt_port>
```

where `<chassis_mgmt_ip_address>` is the IP address or host name of the Firepower chassis that you entered during initial configuration and `<chassis_mgmt_port>` is the HTTPS port you have just configured.

**Example**

The following example sets the HTTPS port number to 443 and commits the transaction:

```
Firepower-chassis# scope system
Firepower-chassis /system# scope services
Firepower-chassis /system/services# set https port 444
Warning: When committed, this closes all the web sessions.
Firepower-chassis /system/services# commit-buffer
Firepower-chassis /system/services#
```
Deleting a Key Ring

**Procedure**

**Step 1** Enter security mode:
Firepower-chassis # **scope security**

**Step 2** Delete the named key ring:
Firepower-chassis /security # **delete keyring name**

**Step 3** Commits the transaction:
Firepower-chassis /security # **commit-buffer**

**Example**
The following example deletes a key ring:
Firepower-chassis# **scope security**
Firepower-chassis /security # **delete keyring key10**
Firepower-chassis /security* # **commit-buffer**
Firepower-chassis /security #

Deleting a Trusted Point

**Before you begin**
Ensure that the trusted point is not used by a key ring.

**Procedure**

**Step 1** Enters security mode:
Firepower-chassis# **scope security**

**Step 2** Delete the named trusted point:
Firepower-chassis /security # **delete trustpoint name**

**Step 3** Commits the transaction:
Firepower-chassis /security # **commit-buffer**
Example

The following example deletes a trusted point:

```
Firepower-chassis# scope security
Firepower-chassis /security # delete trustpoint tPoint10
Firepower-chassis /security* # commit-buffer
Firepower-chassis /security #
```

Disabling HTTPS

Procedure

Step 1
Enter system mode:
```
Firepower-chassis# scope system
```

Step 2
Enter system services mode:
```
Firepower-chassis /system # scope services
```

Step 3
Disable the HTTPS service:
```
Firepower-chassis /system/services # disable https
```

Step 4
Commit the transaction to the system configuration:
```
Firepower-chassis /system/services # commit-buffer
```

Example

The following example disables HTTPS and commits the transaction:

```
Firepower-chassis# scope system
Firepower-chassis /system # scope services
Firepower-chassis /system/services # disable https
Firepower-chassis /system/services* # commit-buffer
Firepower-chassis /system/services #
```

Configuring AAA

This section describes authentication, authorization, and accounting. See the following topics for more information:

About AAA

Authentication, Authorization and Accounting (AAA) is a set of services for controlling access to network resources, enforcing policies, assessing usage, and providing the information necessary to bill for services.
Authentication identifies the user. Authorization implements policies that determine which resources and services an authenticated user may access. Accounting keeps track of time and data resources that are used for billing and analysis. These processes are considered important for effective network management and security.

**Authentication**

Authentication provides a way to identify each user, typically by having the user enter a valid user name and valid password before access is granted. The AAA server compares the user’s provided credentials with user credentials stored in a database. If the credentials are matched, the user is permitted access to the network. If the credentials do not match, authentication fails and network access is denied.

You can configure the Firepower 4100/9300 chassis to authenticate administrative connections to the chassis, including the following sessions:

- HTTPS
- SSH
- Serial console

**Authorization**

Authorization is the process of enforcing policies: determining what types of activities, resources, or services each user is permitted to access. After authentication, a user may be authorized for different types of access or activity.

**Accounting**

Accounting measures the resources a user consumes during access, which may include the amount of system time or the amount of data that a user has sent or received during a session. Accounting is carried out through the logging of session statistics and usage information, which is used for authorization control, billing, trend analysis, resource utilization, and capacity planning activities.

**Interaction Between Authentication, Authorization, and Accounting**

You can use authentication alone, or with authorization and accounting. Authorization always requires a user to be authenticated first. You can use accounting alone, or with authentication and authorization.

**Supported Types of Authentication**

FXOS supports the following types of user Authentication:

- **Remote** – The following network AAA services are supported:
  - LDAP
  - RADIUS
  - TACACS+

- **Local** – The Firepower chassis maintains a local database that you can populate with user profiles. You can use this local database instead of AAA servers to provide user authentication, authorization, and accounting.
User Roles

FXOS supports local and remote Authorization in the form of user-role assignment. The roles that can be assigned are:

- **Admin** – Complete read-and-write access to the entire system. The default admin account is assigned this role by default and it cannot be changed.
- **AAA Administrator** – Read-and-write access to users, roles, and AAA configuration. Read access to the rest of the system.
- **Operations** – Read-and-write access to NTP configuration, Smart Call Home configuration for Smart Licensing, and system logs, including syslog servers and faults. Read access to the rest of the system.
- **Read-Only** – Read-only access to system configuration with no privileges to modify the system state.

See User Management, on page 33 for more information about local users and role assignments.

Setting Up AAA

These steps provide a basic outline for setting up Authentication, Authorization and Accounting (AAA) on a Firepower 4100/9300 appliance.

1. Configure the desired type(s) of user authentication:
   - **Local** – User definitions and local authentication are part of User Management, on page 33.
   - **Remote** – Configuring remote AAA server access is part of Platform Settings, specifically:
     - Configuring LDAP Providers, on page 135
     - Configuring RADIUS Providers, on page 139
     - Configuring TACACS+ Providers, on page 142

   **Note**
   If you will be using remote AAA servers, be sure to enable and configure AAA services on the remote servers before configuring remote AAA server access on the Firepower chassis.

2. Specify the default authentication method—this also is part of User Management, on page 33.

   **Note**
   If Default Authentication and Console Authentication are both set to use the same remote authentication protocol (RADIUS, TACACS+, or LDAP), you cannot change certain aspects of that server’s configuration (for example, deleting that server, or changing its order of assignment) without updating these user settings.
Configuring LDAP Providers

Configuring Properties for LDAP Providers

The properties that you configure in this task are the default settings for all provider connections of this type. If an individual provider includes a setting for any of these properties, the Firepower eXtensible Operating System uses that setting and ignores the default setting.

If you are using Active Directory as your LDAP server, create a user account in the Active Directory server to bind with the Firepower eXtensible Operating System. This account should be given a non-expiring password.

Procedure

**Step 1**
Enter security mode:
Firepower-chassis# scope security

**Step 2**
Enter security LDAP mode:
Firepower-chassis /security # scope ldap

**Step 3**
Restrict database searches to records that contain the specified attribute:
Firepower-chassis /security/ldap # set attribute attribute

**Step 4**
Restrict database searches to records that contain the specified distinguished name:
Firepower-chassis /security/ldap # set basedn distinguished-name

**Step 5**
Restrict database searches to records that contain the specified filter:
Firepower-chassis /security/ldap # set filter filter

where filter is the filter attribute to use with your LDAP server, for example cn=$userid or sAMAccountName=$userid. The filter must include $userid.

**Step 6**
Set the amount of time the system will wait for a response from the LDAP server before noting the server as down:
Firepower-chassis /security/ldap # set timeout seconds

**Step 7**
Commit the transaction to the system configuration:
Firepower-chassis /security/ldap # commit-buffer

Example

The following example sets the LDAP attribute to CiscoAvPair, the base distinguished name to "DC=cisco-firepower-aaa3,DC=qalab,DC=com", the filter to sAMAccountName=$userid, and the timeout interval to 5 seconds, and commits the transaction:

```
Firepower-chassis# scope security
Firepower-chassis /security # scope ldap
Firepower-chassis /security/ldap # set attribute CiscoAvPair
Firepower-chassis /security/ldap* # set basedn "DC=cisco-firepower-aaa3,DC=qalab,DC=com"
Firepower-chassis /security/ldap # set timeout 5
Firepower-chassis /security/ldap # commit-buffer
```
Creating an LDAP Provider

Firepower-chassis /security/ldap* # set filter sAMAccountName=$userid
Firepower-chassis /security/ldap* # set timeout 5
Firepower-chassis /security/ldap* # commit-buffer

Note
User login will fail if the DN for an LDAP user exceeds 255 characters.

What to do next
Create an LDAP provider.

Creating an LDAP Provider

Follow these steps to define and configure an LDAP provider—that is, a specific remote server providing LDAP-based AAA services for this Firepower appliance.

Note
The Firepower eXtensible Operating System supports a maximum of 16 LDAP providers.

Before you begin
If you are using Active Directory as your LDAP server, create a user account in the Active Directory server to bind with the Firepower eXtensible Operating System. This account should be given a non-expiring password.

Procedure

Step 1
Enter security mode:
Firepower-chassis# scope security

Step 2
Enter security LDAP mode:
Firepower-chassis /security # scope ldap

Step 3
Create an LDAP server instance and enter security LDAP server mode:
Firepower-chassis /security/ldap # create server server-name

If SSL is enabled, the server-name, typically an IP address or FQDN, must exactly match a Common Name (CN) in the LDAP server’s security certificate. Unless an IP address is specified, a DNS server must be configured.

Step 4
(Optional) Set an LDAP attribute that stores the values for the user roles and locales:
Firepower-chassis /security/ldap/server # set attribute attr-name

This property is always a name-value pair. The system queries the user record for the value that matches this attribute name.

This value is required unless a default attribute has been set for LDAP providers.
Step 5  (Optional) Set the specific distinguished name in the LDAP hierarchy where the server should begin a search when a remote user logs in and the system attempts to get the user’s DN based on their username:

Firepower-chassis /security/ldap/server # set basedn basedn-name

The length of the base DN can be a maximum of 255 characters minus the length of CN=username, where username identifies the remote user attempting to access Firepower Chassis Manager or the FXOS CLI using LDAP authentication.

This value is required unless a default base DN has been set for LDAP providers.

Step 6  (Optional) Set the distinguished name (DN) for an LDAP database account that has read and search permissions for all objects under the base DN:

Firepower-chassis /security/ldap/server # set binddn binddn-name

The maximum supported string length is 255 ASCII characters.

Step 7  (Optional) Restrict the LDAP search to user names that match the defined filter.

Firepower-chassis /security/ldap/server # set filter filter-value

where filter-value is the filter attribute to use with your LDAP server; for example cn=$userid or sAMAccountName=$userid. The filter must include $userid.

This value is required unless a default filter has been set for LDAP providers.

Step 8  Specify the password for the LDAP database account specified for Bind DN:

Firepower-chassis /security/ldap/server # set password

To set the password, press Enter after typing the set password command and enter the key value at the prompt.

You can enter any standard ASCII characters except for space, § (section sign), ? (question mark), or = (equal sign).

Step 9  (Optional) Specify the order in which the Firepower eXtensible Operating System uses this provider to authenticate users:

Firepower-chassis /security/ldap/server # set order order-num

Step 10  (Optional) Specify the port used to communicate with the LDAP server. The standard port number is 389.

Firepower-chassis /security/ldap/server # set port port-num

Step 11  Enable or disable the use of encryption when communicating with the LDAP server:

Firepower-chassis /security/ldap/server # set ssl {yes | no}

The options are as follows:

- yes — Encryption is required. If encryption cannot be negotiated, the connection fails.
- no — Encryption is disabled. Authentication information is sent as clear text.

LDAP uses STARTTLS. This allows encrypted communication using port 389.

Step 12  Specify the length of time in seconds the system will spend trying to contact the LDAP database before it times out:

Firepower-chassis /security/ldap/server # set timeout timeout-num
Enter an integer from 1 to 60 seconds, or enter 0 (zero) to use the global timeout value specified for LDAP providers. The default is 30 seconds.

Step 13 Specify the vendor that is providing the LDAP provider or server details:

Firepower-chassis /security/ldap/server# set vendor {ms-ad | openldap}

The options are as follows:

• ms-ad—LDAP provider is Microsoft Active Directory.
• openldap—LDAP provider is not Microsoft Active Directory.

Step 14 (Optional) Enable the certification revocation list check:

Firepower-chassis /security/ldap/server# set revoke-policy {strict | relaxed}

Note This configuration only takes effect if the SSL connection is enabled.

Step 15 Commit the transaction to the system configuration:

Firepower-chassis /security/ldap/server# commit-buffer

Example

The following example creates an LDAP server instance named 10.193.169.246, configures the binddn, password, order, port, SSL settings, vendor attribute, and commits the transaction:

Firepower-chassis# scope security
Firepower-chassis /security # scope ldap
Firepower-chassis /security/ldap* # create server 10.193.169.246
Firepower-chassis /security/ldap/server* # set binddn "cn=Administrator,cn=Users,DC=cisco-firepower-aaa3,DC=qalab,DC=com"
Firepower-chassis /security/ldap/server* # set password
Enter the password: Confirm the password:
Firepower-chassis /security/ldap/server* # set order 2
Firepower-chassis /security/ldap/server* # set port 389
Firepower-chassis /security/ldap/server* # set vendor ms-ad
Firepower-chassis /security/ldap/server* # commit-buffer

The following example creates an LDAP server instance named 12:31:71:1231:45b1:0011:011:900, configures the binddn, password, order, port, SSL settings, vendor attribute, and commits the transaction:

Firepower-chassis# scope security
Firepower-chassis /security # scope ldap
Firepower-chassis /security/ldap/server* # set binddn "cn=Administrator,cn=Users,DC=cisco-firepower-aaa3,DC=qalab,DC=com"
Firepower-chassis /security/ldap/server* # set password
Enter the password: Confirm the password:
Firepower-chassis /security/ldap/server* # set order 1
Firepower-chassis /security/ldap/server* # set port 389
Deleting an LDAP Provider

Procedure

Step 1
Enter security mode:
Firepower-chassis# scope security

Step 2
Enter security LDAP mode:
Firepower-chassis /security # scope ldap

Step 3
Delete the specified server:
Firepower-chassis /security/ldap # delete server serv-name

Step 4
Commit the transaction to the system configuration:
Firepower-chassis /security/ldap # commit-buffer

Example
The following example deletes the LDAP server called ldap1 and commits the transaction:

Firepower-chassis# scope security
Firepower-chassis /security # scope ldap
Firepower-chassis /security/ldap # delete server ldap1
Firepower-chassis /security/ldap* # commit-buffer
Firepower-chassis /security/ldap #

Configuring RADIUS Providers

Configuring Properties for RADIUS Providers

The properties that you configure in this task are the default settings for all provider connections of this type. If an individual provider includes a setting for any of these properties, the Firepower eXtensible Operating System uses that setting and ignores this default setting.

Procedure

Step 1
Enter security mode:
Firepower-chassis# scope security
Creating a RADIUS Provider

Step 2  Enter security RADIUS mode:
Firepower-chassis /security #  scope radius

Step 3  (Optional) Specify the number of times to retry contacting the RADIUS server before noting the server as down:
Firepower-chassis /security/radius #  set retries  retry-num

Step 4  (Optional) Set the amount of time the system will wait for a response from the RADIUS server before noting the server as down:
Firepower-chassis /security/radius #  set timeout  seconds

Step 5  Commit the transaction to the system configuration:
Firepower-chassis /security/radius #  commit-buffer

Example

The following example sets the RADIUS retries to 4, sets the timeout interval to 30 seconds, and commits the transaction:

Firepower-chassis#  scope security
Firepower-chassis /security #  scope radius
Firepower-chassis /security/radius #  set retries 4
Firepower-chassis /security/radius* #  set timeout 30
Firepower-chassis /security/radius* #  commit-buffer

What to do next
Create a RADIUS provider.

Creating a RADIUS Provider

Follow these steps to define and configure a RADIUS provider—that is, a specific remote server providing RADIUS-based AAA services for this Firepower appliance.

Procedure

Step 1  Enter security mode:
Firepower-chassis#  scope security

Step 2  Enter security RADIUS mode:
Firepower-chassis /security #  scope radius
Step 3  Create a RADIUS server instance and enter security RADIUS server mode:
Firepower-chassis /security/radius # create server server-name

Step 4  (Optional) Specify the port used to communicate with the RADIUS server.
Firepower-chassis /security/radius/server # set authport authport-num

Step 5  Set the RADIUS server key:
Firepower-chassis /security/radius/server # set key
To set the key value, press Enter after typing the set key command and enter the key value at the prompt.
You can enter any standard ASCII characters except for space, § (section sign), ? (question mark), or = (equal sign).

Step 6  (Optional) Specify when in the order this server will be tried:
Firepower-chassis /security/radius/server # set order order-num

Step 7  (Optional) Set the number of times to retry communicating with the RADIUS server before noting the server as down:
Firepower-chassis /security/radius/server # set retries retry-num

Step 8  Specify the length of time in seconds the system will wait for a response from the RADIUS server before noting the server as down:
Firepower-chassis /security/radius/server # set timeout seconds
Tip  It is recommended that you configure a higher Timeout value if you select two-factor authentication for RADIUS providers.

Step 9  Commit the transaction to the system configuration:
Firepower-chassis /security/radius/server # commit-buffer

Example

The following example creates a server instance named radiusserv7, sets the authentication port to 5858, sets the key to radiuskey321, sets the order to 2, sets the retries to 4, sets the timeout to 30, and commits the transaction:

Firepower-chassis# scope security
Firepower-chassis /security # scope radius
Firepower-chassis /security/radius # create server radiusserv7
Firepower-chassis /security/radius/server* # set authport 5858
Firepower-chassis /security/radius/server* # set key
Enter the key: radiuskey321
Confirm the key: radiuskey321
Firepower-chassis /security/radius/server* # set order 2
Firepower-chassis /security/radius/server* # set retries 4
Firepower-chassis /security/radius/server* # set timeout 30
Firepower-chassis /security/radius/server* # commit-buffer
Firepower-chassis /security/radius/server #
Deleting a RADIUS Provider

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enter security mode:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis#  <code>scope security</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enter security RADIUS mode:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security #  <code>scope RADIUS</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Delete the specified server:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/radius #  <code>delete server serv-name</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Commit the transaction to the system configuration:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/radius #  <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

Example

The following example deletes the RADIUS server called radius1 and commits the transaction:

```
Firepower-chassis# `scope security`
Firepower-chassis # `scope radius`
Firepower-chassis /security/radius # `delete server radius1`
Firepower-chassis /security/radius* # `commit-buffer`
```

Configuring TACACS+ Providers

Configuring Properties for TACACS+ Providers

The properties that you configure in this task are default settings for all provider connections of this type. If an individual provider configuration includes a setting for any of these properties, the Firepower eXtensible Operating System uses that setting and ignores this default setting.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enter security mode:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis#  <code>scope security</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enter security TACACS+ mode:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security #  <code>scope tacacs</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) Set the amount of time the system will wait for a response from the TACACS+ server before noting the server as down:</td>
</tr>
<tr>
<td></td>
<td>Firepower-chassis /security/tacacs #  <code>set timeout seconds</code></td>
</tr>
</tbody>
</table>
Enter an integer from 1 to 60 seconds. The default value is 5 seconds.

**Step 4**

Commit the transaction to the system configuration:

Firepower-chassis /security/tacacs # commit-buffer

---

**Example**

The following example sets the TACACS+ timeout interval to 45 seconds and commits the transaction:

```plaintext
Firepower-chassis# scope security
Firepower-chassis /security # scope tacacs
Firepower-chassis /security/tacacs # set timeout 45
Firepower-chassis /security/tacacs* # commit-buffer
Firepower-chassis /security/tacacs #
```

**What to do next**

Create a TACACS+ provider.

---

### Creating a TACACS+ Provider

Follow these steps to define and configure a TACACS+ provider—that is, a specific remote server providing TACACS-based AAA services for this Firepower appliance.

---

**Note**

The Firepower eXtensible Operating System supports a maximum of 16 TACACS+ providers.

---

**Procedure**

---

**Step 1**

Enter security mode:

Firepower-chassis# scope security

**Step 2**

Enter security TACACS+ mode:

Firepower-chassis /security # scope tacacs

**Step 3**

Create a TACACS+ server instance and enter security TACACS+ server mode:

Firepower-chassis /security/tacacs # create server server-name

**Step 4**

Specify the TACACS+ server key:

Firepower-chassis /security/tacacs/server # set key

To set the key value, press **Enter** after typing the **set key** command and enter the key value at the prompt.
You can enter any standard ASCII characters except for space, § (section sign), ? (question mark), or = (equal sign).

**Step 5**

(Optional) Specify when in the order this server will be tried:
Deleting a TACACS+ Provider

### Step 6
Specify the time interval that the system will wait for a response from the TACACS+ server before noting the server as down:

```
Firepower-chassis /security/tacacs/server # set timeout seconds
```

**Tip** It is recommended that you configure a higher timeout value if you select two-factor authentication for TACACS+ providers.

### Step 7
(Optional) Specify the port used to communicate with the TACACS+ server:

```
Firepower-chassis /security/tacacs/server # set port port-num
```

### Step 8
Commit the transaction to the system configuration:

```
Firepower-chassis /security/tacacs/server # commit-buffer
```

---

## Example

The following example creates a server instance named tacacsserv680, sets the key to tacacskey321, sets the order to 4, sets the authentication port to 5859, and commits the transaction:

```
Firepower-chassis# scope security
Firepower-chassis /security # scope tacacs
Firepower-chassis /security/tacacs # create server tacacsserv680
Firepower-chassis /security/tacacs/server* # set key
Enter the key: tacacskey321
Confirm the key: tacacskey321
Firepower-chassis /security/tacacs/server* # set order 4
Firepower-chassis /security/tacacs/server* # set port 5859
Firepower-chassis /security/tacacs/server* # commit-buffer
```

---

## Deleting a TACACS+ Provider

### Procedure

#### Step 1
Enter security mode:

```
Firepower-chassis# scope security
```

#### Step 2
Enter security TACACS+ mode:

```
Firepower-chassis /security # scope tacacs
```

#### Step 3
Delete the specified server:

```
Firepower-chassis /security/tacacs # delete server serv-name
```

#### Step 4
Commit the transaction to the system configuration:
Example

The following example deletes the TACACS+ server called tacacs1 and commits the transaction:

```
Firepower-chassis# scope security
Firepower-chassis /security # scope tacacs
Firepower-chassis /security/tacacs # delete server tacacs1
Firepower-chassis /security/tacacs* # commit-buffer
Firepower-chassis /security/tacacs #
```

Verifying Remote AAA Server Configurations

The following sections describe how to use the FXOS CLI to determine the current configuration for the various remote AAA servers.

Determining Current FXOS Authentication Configuration

The following example shows you how to use the `show authentication` command to determine the current FXOS authentication settings. In this example, LDAP is the default mode of authentication.

```
firpower# scope security
 firpower /security # show authentication
 Console authentication: Local
 Operational Console authentication: Local
 Default authentication: Ldap
 Operational Default authentication: Ldap
 Role Policy For Remote Users: Assign Default Role
 firpower /security #
```

Determining Current LDAP Configuration

The following example shows you how to use the `show server detail` command in ldap mode to determine the current LDAP configuration settings.

```
firpower# scope security
 firpower /security # scope ldap
 firpower /security/ldap # show server detail

 LDAP server:
 Hostname, FQDN or IP address: 10.48.53.132
 Descr:
 Order: 1
 DN to search and read: CN=cisco,CN=Users,DC=fxosldapuser,DC=lab
 Password:
 Port: 389
 SSL: No
 Key:
 Cipher Suite Mode: Medium Strength
 Cipher Suite:
 ALL:!DHE-PSK-AES256-CBC-SHA:!EDH-RSA-DES-CBC3-SHA:!EDH-DSS-DES-CBC3-SHA:!DES-CBC3-SHA:!ADH:!3DES:!EXPORT40:!EXPORT56:!LOW:!RC4:!MD5:!IDEA:+HIGH:+MEDIUM:+EXP:+eNULL
 CRL: Relaxed
```
Basedn: CN=Users,DC=fxosldapuser,DC=lab
User profile attribute: CiscoAVPair
Filter: cn=$userid
Timeout: 30
Ldap Vendor: MS AD
firepower /security/ldap #

**Determining Current RADIUS Configuration**

The following example shows you how to use the `show server detail` command in radius mode to determine the current RADIUS configuration settings.

```plaintext
firepower# scope security
firepower /security # scope radius
firepower /security/radius # show server detail

RADIUS server:
 Hostname, FQDN or IP address: 10.48.17.199
 Descr:
 Order: 1
 Auth Port: 1812
 Key: ****
 Timeout: 5
 Retries: 1
firepower /security/radius #
```

**Determining Current TACACS+ Configuration**

The following example shows you how to use the `show server detail` command in tacacs mode to determine the current TACACS+ configuration settings.

```plaintext
firepower# scope security
firepower /security # scope tacacs
firepower /security/tacacs # show server detail

TACACS+ server:
 Hostname, FQDN or IP address: 10.48.17.199
 Descr:
 Order: 1
 Port: 49
 Key: ****
 Timeout: 5
firepower /security/tacacs #
```

**Configuring Syslog**

System logging is a method of collecting messages from devices to a server running a syslog daemon. Logging to a central syslog server helps in aggregation of logs and alerts. A syslog service accepts messages and stores them in files, or prints them according to a simple configuration file. This form of logging provides protected long-term storage for logs. Logs are useful both in routine troubleshooting and in incident handling.

**Procedure**

**Step 1**

Enter monitoring mode:
Firepower-chassis# `scope monitoring`

**Step 2**
Enable or disable the sending of syslogs to the console:

```
Firepower-chassis /monitoring # {enable | disable} syslog console
```

**Step 3**
(Optional) Select the lowest message level that you want displayed. If syslogs are enabled, the system displays that level and above on the console. The level options are listed in order of decreasing urgency. The default level is Critical.

```
Firepower-chassis /monitoring # set syslog console level {emergencies | alerts | critical}
```

**Step 4**
Enable or disable the monitoring of syslog information by the operating system:

```
Firepower-chassis /monitoring # {enable | disable} syslog monitor
```

**Step 5**
(Optional) Select the lowest message level that you want displayed. If the monitor state is enabled, the system displays that level and above. The level options are listed in order of decreasing urgency. The default level is Critical.

```
Firepower-chassis /monitoring # set syslog monitor level {emergencies | alerts | critical | errors | warnings | notifications | information | debugging}
```

**Note**  Messages at levels below Critical are displayed on the terminal monitor only if you have entered the `terminal monitor` command.

**Step 6**
Enable or disable the writing of syslog information to a syslog file:

```
Firepower-chassis /monitoring # {enable | disable} syslog file
```

**Step 7**
Specify the name of the file in which the messages are logged. Up to 16 characters are allowed in the file name.

```
Firepower-chassis /monitoring # set syslog file name filename
```

**Step 8**
(Optional) Select the lowest message level that you want stored to a file. If the file state is enabled, the system stores that level and above in the syslog file. The level options are listed in order of decreasing urgency. The default level is Critical.

```
Firepower-chassis /monitoring # set syslog file level {emergencies | alerts | critical | errors | warnings | notifications | information | debugging}
```

**Step 9**
(Optional) Specify the maximum file size, in bytes, before the system begins to write over the oldest messages with the newest ones. The range is 4096 to 4194304 bytes.

```
Firepower-chassis /monitoring # set syslog file size filesize
```

**Step 10**
Configure sending of syslog messages to up to three external syslog servers:

a) Enable or disable the sending of syslog messages to up to three external syslog servers:

```
Firepower-chassis /monitoring # {enable | disable} syslog remote-destination {server-1 | server-2 | server-3}
```

b) (Optional) Select the lowest message level that you want stored to the external log. If the remote-destination is enabled, the system sends that level and above to the external server. The level options are listed in order of decreasing urgency. The default level is Critical.

```
Firepower-chassis /monitoring # set syslog remote-destination {server-1 | server-2 | server-3} level {emergencies | alerts | critical | errors | warnings | notifications | information | debugging}
```
c) Specify the hostname or IP address of the specified remote syslog server. Up to 256 characters are allowed in the hostname.

Firepower-chassis /monitoring# set syslog remote-destination {server-1 | server-2 | server-3} hostname hostname

d) (Optional) Specify the facility level contained in the syslog messages sent to the specified remote syslog server.

Firepower-chassis /monitoring# set syslog remote-destination {server-1 | server-2 | server-3} facility {local0 | local1 | local2 | local3 | local4 | local5 | local6 | local7}

Step 11 Configure the local sources. Enter the following command for each of the local sources you want to enable or disable:

Firepower-chassis /monitoring# {enable | disable} syslog source {audits | events | faults}

This can be one of the following:

• **audits**—Enables or disables the logging of all audit log events.

• **events**—Enables or disables the logging of all system events.

• **faults**—Enables or disables the logging of all system faults.

Step 12 Commit the transaction:

Firepower-chassis /monitoring# commit-buffer

---

**Example**

This example shows how to enable the storage of syslog messages in a local file and commits the transaction:

Firepower-chassis# scope monitoring
Firepower-chassis /monitoring# disable syslog console
Firepower-chassis /monitoring* # disable syslog monitor
Firepower-chassis /monitoring* # enable syslog file
Firepower-chassis /monitoring* # set syslog file name SysMsgsFirepower
Firepower-chassis /monitoring* # set syslog file level notifications
Firepower-chassis /monitoring* # set syslog file size 4194304
Firepower-chassis /monitoring* # disable syslog remote-destination server-1
Firepower-chassis /monitoring* # disable syslog remote-destination server-2
Firepower-chassis /monitoring* # disable syslog remote-destination server-3
Firepower-chassis /monitoring* # commit-buffer
Firepower-chassis /monitoring #

---

**Configuring DNS Servers**

You need to specify a DNS server if the system requires resolution of host names to IP addresses. For example, you cannot use a name such as www.cisco.com when you are configuring a setting on the Firepower chassis if you do not configure a DNS server. You would need to use the IP address of the server, which can be either an IPv4 or an IPv6 address. You can configure up to four DNS servers.
When you configure multiple DNS servers, the system searches for the servers only in any random order. If a local management command requires DNS server lookup, it can only search for three DNS servers in random order.

Procedure

**Step 1**
Enter system mode:
```
Firepower-chassis# scope system
```

**Step 2**
Enter system services mode:
```
Firepower-chassis/system# scope services
```

**Step 3**
To create or delete a DNS server, enter the appropriate command as follows:
- To configure the system to use a DNS server with the specified IPv4 or IPv6 address:
  ```
 Firepower-chassis /system/services# create dns {ip-addr | ip6-addr}
  ```
- To delete a DNS server with the specified IPv4 or IPv6 address:
  ```
 Firepower-chassis /system/services# delete dns {ip-addr | ip6-addr}
  ```

**Step 4**
Commit the transaction to the system configuration:
```
Firepower /system/services# commit-buffer
```

Example

The following example configures a DNS server with the IPv4 address 192.168.200.105 and commits the transaction:
```
Firepower-chassis# scope system
Firepower-chassis /system# scope services
Firepower-chassis /system/services# create dns 192.168.200.105
Firepower-chassis /system/services*# commit-buffer
Firepower-chassis /system/services #
```

The following example configures a DNS server with the IPv6 address 2001:db8::22:F376:FF3B:AB3F and commits the transaction:
```
Firepower-chassis# scope system
Firepower-chassis /system# scope services
Firepower-chassis /system/services# create dns 2001:db8::22:F376:FF3B:AB3F
Firepower-chassis /system/services*# commit-buffer
Firepower-chassis /system/services #
The following example deletes the DNS server with the IP address 192.168.200.105 and commits the transaction:

Firepower-chassis# scope system
Firepower-chassis /system # scope services
Firepower-chassis /system/services # delete dns 192.168.200.105
Firepower-chassis /system/services* # commit-buffer
Firepower-chassis /system/services #

Enable FIPS Mode

Perform these steps to enable FIPS mode on your Firepower 4100/9300 chassis.

Procedure

Step 1
From the FXOS CLI, enter the security mode:

\texttt{scope security}

Step 2
Enable FIPS mode:

\texttt{enable fips-mode}

Step 3
Commit the configuration:

\texttt{commit-buffer}

Step 4
Reboot the system:

\texttt{connect local-mgmt}
\texttt{reboot}

What to do next

Prior to FXOS release 2.0.1, the existing SSH host key created during first-time setup of a device was hard coded to 1024 bits. To comply with FIPS and Common Criteria certification requirements, you must destroy this old host key and generate a new one using the procedure detailed in Generate the SSH Host Key, on page 66. If you do not perform these additional steps, you will not be able to connect to the Supervisor using SSH after the device has rebooted with FIPS mode enabled. If you performed initial setup using FXOS 2.0.1 or later, you do not have to generate a new host key.

Enable Common Criteria Mode

Perform these steps to enable Common Criteria mode on your Firepower 4100/9300 chassis.
Procedure

Step 1 From the FXOS CLI, enter the security mode:
 scope security

Step 2 Enable Common Criteria mode:
 enable cc-mode

Step 3 Commit the configuration:
 commit-buffer

Step 4 Reboot the system:
 connect local-mgmt
 reboot

What to do next
Prior to FXOS release 2.0.1, the existing SSH host key created during first-time setup of a device was hard
coded to 1024 bits. To comply with FIPS and Common Criteria certification requirements, you must destroy
this old host key and generate a new one using the procedure detailed in Generate the SSH Host Key, on page
66. If you do not perform these additional steps, you will not be able to connect to the Supervisor using SSH
after the device has rebooted with Common Criteria mode enabled. If you performed initial setup using FXOS
2.0.1 or later, you do not have to generate a new host key.

Configure the IP Access List

By default, the Firepower 4100/9300 chassis denies all access to the local web server. You must configure
your IP Access List with a list of allowed services for each of your IP blocks.

The IP Access List supports the following protocols:

• HTTPS
• SNMP
• SSH

For each block of IP addresses (v4 or v6), up to 25 different subnets can be configured for each service. A
subnet of 0 and a prefix of 0 allows unrestricted access to a service.

Procedure

Step 1 From the FXOS CLI, enter the services mode:
 scope system
 scope services
Step 2 Create an IP block for the services you want to enable access for:

For IPv4:

```
create ip-block ip prefix [0-32] [http | snmp | ssh]
```

For IPv6:

```
create ipv6-block ip prefix [0-128] [http | snmp | ssh]
```

Example

The following example shows how to create, enter, and verify an IPv4 address block to provide SSH access:

```
firepower # scope system
grep /system # scope services
grep /system/services # enter ip-block 192.168.200.101 32 ssh
grep /system/services/ip-block* # commit-buffer
grep /system/services/ip-block # up
grep /system/services # show ip-block

Permitted IP Block:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Prefix Length</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td>https</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td>snmp</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0</td>
<td>ssh</td>
</tr>
<tr>
<td>192.168.200.101</td>
<td>32</td>
<td>ssh</td>
</tr>
</tbody>
</table>
```

The following example shows how to create, enter and verify an IPv6 address block to provide SSH access:

```
firepower # scope system
grep /system # scope services
grep /system/services # create ipv6-block 2001:DB8:1::1 64 ssh
grep /system/services/ipv6-block* # commit-buffer
grep /system/services/ipv6-block # up
grep /system/services # show ipv6-block

Permitted IPv6 Block:

<table>
<thead>
<tr>
<th>IPv6 Address</th>
<th>Prefix Length</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>::</td>
<td>0</td>
<td>https</td>
</tr>
<tr>
<td>::</td>
<td>0</td>
<td>snmp</td>
</tr>
<tr>
<td>::</td>
<td>0</td>
<td>ssh</td>
</tr>
<tr>
<td>2001:DB8:1::1</td>
<td>64</td>
<td>ssh</td>
</tr>
</tbody>
</table>
```

About Firepower Interfaces

The Firepower 4100/9300 chassis supports physical interfaces and EtherChannel (port-channel) interfaces. EtherChannel interfaces can include up to 16 member interfaces of the same type.

Chassis Management Interface

The chassis management interface is used for management of the FXOS Chassis by SSH or Firepower Chassis Manager. This interface is separate from the mgmt-type interface that you assign to the logical devices for application management.

To configure parameters for this interface, you must configure them from the CLI. To view information about this interface in the FXOS CLI, connect to local management and show the management port:

Firepower # connect local-mgmt
Firepower(local-mgmt) # show mgmt-port

Note that the chassis management interface remains up even if the physical cable or SFP module are unplugged, or if the mgmt-port shut command is performed.

Interface Types

Each interface can be one of the following types:

- Data—Use for regular data. Data interfaces cannot be shared between logical devices, and logical devices cannot communicate over the backplane to other logical devices. For traffic on Data interfaces, all traffic must exit the chassis on one interface and return on another interface to reach another logical device.

- Mgmt—Use to manage application instances. These interfaces can be shared by one or more logical devices to access external hosts; logical devices cannot communicate over this interface with other logical
devices that share the interface. You can only assign one management interface per logical device. For ASA: You can later enable management from a data interface; but you must assign a Management interface to the logical device even if you don't intend to use it after you enable data management. For information about the separate chassis management interface, see Chassis Management Interface, on page 153.

- Firepower-eventing—Use as a secondary management interface for FTD devices. To use this interface, you must configure its IP address and other parameters at the FTD CLI. For example, you can separate management traffic from events (such as web events). See the FMC configuration guide for more information. Firepower-eventing interfaces can be shared by one or more logical devices to access external hosts; logical devices cannot communicate over this interface with other logical devices that share the interface.

- Cluster—Use as the cluster control link for a clustered logical device. By default, the cluster control link is automatically created on Port-channel 48. The Cluster type is only supported on EtherChannel interfaces.

FXOS Interfaces vs. Application Interfaces

The Firepower 4100/9300 manages the basic Ethernet settings of physical interfaces and EtherChannel (port-channel) interfaces. Within the application, you configure higher level settings. For example, you can only create EtherChannels in FXOS; but you can assign an IP address to the EtherChannel within the application.

The following sections describe the interaction between FXOS and the application for interfaces.

VLAN Subinterfaces

For all logical devices, you can create VLAN subinterfaces within the application.

Independent Interface States in the Chassis and in the Application

You can administratively enable and disable interfaces in both the chassis and in the application. For an interface to be operational, the interface must be enabled in both operating systems. Because the interface state is controlled independently, you may have a mismatch between the chassis and application.

Hardware Bypass Pairs

For the FTD, certain interface modules on the Firepower 9300 and 4100 series let you enable the Hardware Bypass feature. Hardware Bypass ensures that traffic continues to flow between an inline interface pair during a power outage. This feature can be used to maintain network connectivity in the case of software or hardware failures.

The Hardware Bypass feature is configured within the FTD application. You do not need to use these interfaces as Hardware Bypass pairs; they can be used as regular interfaces for both the ASA and the FTD applications. Note that Hardware Bypass-capable interfaces cannot be configured for breakout ports. If you want to use the Hardware Bypass feature, do not configure the ports as EtherChannels; otherwise, you can include these interfaces as EtherChannel members in regular interface mode.

When Hardware Bypass is enabled on an inline pair, switch bypass is attempted first. If the bypass configuration fails due a switch error, physical bypass is enabled.

The FTD supports Hardware Bypass for interface pairs on specific network modules on the following models:

- Firepower 9300
The supported Hardware Bypass network modules for these models include:

- Firepower 6-port 1G SX FTW Network Module single-wide (FPR-NM-6X1SX-F)
- Firepower 6-port 10G SR FTW Network Module single-wide (FPR-NM-6X10SR-F)
- Firepower 6-port 10G LR FTW Network Module single-wide (FPR-NM-6X10LR-F)
- Firepower 2-port 40G SR FTW Network Module single-wide (FPR-NM-2X40G-F)
- Firepower 8-port 1G Copper FTW Network Module single-wide (FPR-NM-8X1G-F)

Hardware Bypass can only use the following port pairs:

- 1 & 2
- 3 & 4
- 5 & 6
- 7 & 8

Jumbo Frame Support

The Firepower 4100/9300 chassis has support for jumbo frames enabled by default. To enable jumbo frame support on a specific logical device installed on the Firepower 4100/9300 chassis, you will need to configure the appropriate MTU settings for the interfaces on the logical device.

The maximum MTU that is supported for the application on the Firepower 4100/9300 chassis is 9184.

Inline Set Link State Propagation for the Firepower Threat Defense

An inline set acts like a bump on the wire, and binds two interfaces together to slot into an existing network. This function allows the system to be installed in any network environment without the configuration of adjacent network devices. Inline interfaces receive all traffic unconditionally, but all traffic received on these interfaces is retransmitted out of an inline set unless explicitly dropped.

When you configure an inline set in the FTD application and enable link state propagation, the FTD sends inline set membership to the FXOS chassis. Link state propagation means that the chassis automatically brings down the second interface in the inline interface pair when one of the interfaces in an inline set goes down. When the downed interface comes back up, the second interface automatically comes back up, also. In other words, if the link state of one interface changes, the chassis senses the change and updates the link state of the other interface to match it. Note that the chassis requires up to 4 seconds to propagate link state changes. Link state propagation is especially useful in resilient network environments where routers are configured to reroute traffic automatically around network devices that are in a failure state.
Guidelines and Limitations for Firepower Interfaces

Inline Sets for FTD
- Supported for physical interfaces (both regular and breakout ports) and EtherChannels.
- Link state propagation is supported.

Hardware Bypass
- Supported for the FTD; you can use them as regular interfaces for the ASA.
- The FTD only supports Hardware Bypass with inline sets.
- Hardware Bypass-capable interfaces cannot be configured for breakout ports.
- You cannot include Hardware Bypass interfaces in an EtherChannel and use them for Hardware Bypass; you can use them as regular interfaces in an EtherChannel.
- Hardware Bypass is not supported with High Availability.

Default MAC Addresses
Default MAC address assignments depend on the type of interface.
- Physical interfaces—The physical interface uses the burned-in MAC address.
- EtherChannels—For an EtherChannel, all interfaces that are part of the channel group share the same MAC address. This feature makes the EtherChannel transparent to network applications and users, because they only see the one logical connection; they have no knowledge of the individual links. The port-channel interface uses a unique MAC address from a pool; interface membership does not affect the MAC address.

Configure Interfaces
By default, physical interfaces are disabled. You can enable interfaces, add EtherChannels, and edit interface properties.

Configure a Physical Interface
You can physically enable and disable interfaces, as well as set the interface speed and duplex. To use an interface, it must be physically enabled in FXOS and logically enabled in the application.

Before you begin
- Interfaces that are already a member of an EtherChannel cannot be modified individually. Be sure to configure settings before you add it to the EtherChannel.
Procedure

Step 1 Enter interface mode.
 `scope eth-uplink`
 `scope fabric a`

Step 2 Enable the interface.
 `enter interface interface_id`
 `enable`

 Example:

 Firepower /eth-uplink/fabric # enter interface Ethernet1/8
 Firepower /eth-uplink/fabric/interface # enable

 Note Interfaces that are already a member of a port-channel cannot be modified individually. If you use
 the `enter interface` or `scope interface` command on an interface that is a member of a port channel,
 you will receive an error stating that the object does not exist. You should edit interfaces using the
 `enter interface` command before you add them to a port-channel.

Step 3 (Optional) Set the interface type.
 `set port-type {data | mgmt | firepower-eventing | cluster}`

 Example:

 Firepower /eth-uplink/fabric/interface # set port-type mgmt

 The `data` keyword is the default type. Do not choose the `cluster` keyword; by default, the cluster control link
 is automatically created on Port-channel 48.

Step 4 Enable or disable autonegotiation, if supported for your interface.
 `set auto-negotiation {on | off}`

 Example:

 Firepower /eth-uplink/fabric/interface* # set auto-negotiation off

Step 5 Set the interface speed.
 `set admin-speed {10mbps | 100mbps | 1gbps | 10gbps | 40gbps | 100gbps}`

 Example:

 Firepower /eth-uplink/fabric/interface* # set admin-speed 1gbps

Step 6 Set the interface duplex mode.
 `set admin-duplex {fullduplex | halfduplex}`
Add an EtherChannel (Port Channel)

An EtherChannel (also known as a port channel) can include up to 16 member interfaces of the same media type and capacity, and must be set to the same speed and duplex. The media type can be either RJ-45 or SFP; SFPs of different types (copper and fiber) can be mixed. You cannot mix interface capacities (for example 1GB and 10GB interfaces) by setting the speed to be lower on the larger-capacity interface. The Link Aggregation Control Protocol (LACP) aggregates interfaces by exchanging the Link Aggregation Control Protocol Data Units (LACPDUs) between two network devices.

LACP coordinates the automatic addition and deletion of links to the EtherChannel without user intervention. It also handles misconfigurations and checks that both ends of member interfaces are connected to the correct channel group.

When the Firepower 4100/9300 chassis creates an EtherChannel, the EtherChannel stays in a Suspended state until you assign it to a logical device, even if the physical link is up. The EtherChannel will be brought out of this Suspended state in the following situations:

- The EtherChannel is added as a data or management interface for a standalone logical device
- The EtherChannel is added as a management interface or cluster control link for a logical device that is part of a cluster
- The EtherChannel is added as a data interface for a logical device that is part of a cluster and at least one unit has joined the cluster

Note that the EtherChannel does not come up until you assign it to a logical device. If the EtherChannel is removed from the logical device or the logical device is deleted, the EtherChannel will revert to a Suspended state.

Example:

Firepower /eth-uplink/fabric/interface* # set admin-duplex halfduplex

Step 7
If you edited the default flow control policy, it is already applied to interfaces. If you created a new policy, apply it to the interface.

set flow-control-policy name

Example:

Firepower /eth-uplink/fabric/interface* # set flow-control-policy flow1

Step 8
Save the configuration.

commit-buffer

Example:

Firepower /eth-uplink/fabric/interface* # commit-buffer
Firepower /eth-uplink/fabric/interface #
Procedure

Step 1 Enter interface mode:
```
scope eth-uplink
scope fabric a
```

Step 2 Create the port-channel:
```
create port-channel id
enable
```

Step 3 Assign member interfaces:
```
create member-port interface_id
```

Example:
```
Firepower /eth-uplink/fabric/port-channel* # create member-port Ethernet1/1
Firepower /eth-uplink/fabric/port-channel/member-port* # exit
Firepower /eth-uplink/fabric/port-channel* # create member-port Ethernet1/2
Firepower /eth-uplink/fabric/port-channel/member-port* # exit
Firepower /eth-uplink/fabric/port-channel* # create member-port Ethernet1/3
Firepower /eth-uplink/fabric/port-channel/member-port* # exit
Firepower /eth-uplink/fabric/port-channel* # create member-port Ethernet1/4
Firepower /eth-uplink/fabric/port-channel/member-port* # exit
```

Step 4 (Optional) Set the interface type.
```
set port-type {data | mgmt | firepower-eventing | cluster}
```

Example:
```
Firepower /eth-uplink/fabric/port-channel # set port-type data
```

The *data* keyword is the default type. Do not choose the *cluster* keyword unless you want to use this port-channel as the cluster control link instead of the default.

Step 5 (Optional) Set the interface speed for all members of the port-channel.
```
set speed {10mbps | 100mbps | 1gbps | 10gbps | 40gbps | 100gbps}
```

Example:
```
Firepower /eth-uplink/fabric/port-channel* # set speed 1gbps
```

Step 6 (Optional) Set the duplex for all members of the port-channel.
```
set duplex {fullduplex | halfduplex}
```

Example:
```
Firepower /eth-uplink/fabric/port-channel* # set duplex fullduplex
```
Step 7 Enable or disable autonegotiation, if supported for your interface.

```bash
set auto-negotiation {on | off}
```

Example:

```
Firepower /eth-uplink/fabric/interface* # set auto-negotiation off
```

Step 8 If you edited the default flow control policy, it is already applied to interfaces. If you created a new policy, apply it to the interface.

```bash
set flow-control-policy name
```

Example:

```
Firepower /eth-uplink/fabric/interface* # set flow-control-policy flow1
```

Step 9 Commit the configuration:

```bash
commit-buffer
```

Configure Breakout Cables

The following procedure shows how to configure breakout cables for use with the Firepower 4100/9300 chassis. You can use a breakout cable to provide four 10 Gbps ports in place of a single 40 Gbps port.

Before you begin
Hardware Bypass-capable interfaces cannot be configured for breakout ports.

Procedure

Step 1
To create a new breakout, use the following commands:

a) Enter cabling mode:

```bash
scope cabling
scope fabric a
```

b) Create the breakout:

```bash
create breakout network_module_slot port
```

Example:

```
Firepower /cabling/fabric/ # create breakout 2 1
```

c) Commit the configuration:

```bash
commit-buffer
```
This will cause an automatic reboot. If you are configuring more than one breakout, you should create all of them before you issue the commit-buffer command.

Step 2

To enable/configure the breakout ports, use the following commands:

a) Enter interface mode:

```plaintext
scope eth-uplink
scope fabric a
scope aggr-interface network_module_slot port
```

Note Interfaces that are already a member of a port-channel cannot be modified individually. If you use the `enter interface` or `scope interface` command on an interface that is a member of a port channel, you will receive an error stating that the object does not exist. You should edit interfaces using the `enter interface` command before you add them to a port-channel.

b) Use the `set` command to configure the interface speed and port type.

Use the `enable` or `disable` command to set the administrative state of the interface.

c) Commit the configuration:

```plaintext
commit-buffer
```

Configure a Flow Control Policy

Flow control policies determine whether the Ethernet ports send and receive IEEE 802.3x pause frames when the receive buffer for a port fills. These pause frames request that the transmitting port stop sending data for a few milliseconds until the buffer clears. For flow control to work between devices, you must enable the corresponding receive and send flow control parameters for both devices.

The default policy disables send and receive control, and sets the priority to autonegotiate.

Procedure

Step 1 Enter eth-uplink and then flow-control mode.

```plaintext
scope eth-uplink
scope flow-control
```

Example:

```plaintext
firepower-4110# scope eth-uplink
firepower-4110 /eth-uplink # scope flow-control
firepower-4110 /eth-uplink/flow-control #
```

Step 2 Edit or create a flow control policy.

```plaintext
enter policy name
```

If you want to edit the default policy, enter `default` for the name.
Configure a Flow Control Policy

Example:

```plaintext
firepower-4110 /eth-uplink/flow-control # enter policy default
firepower-4110 /eth-uplink/flow-control/policy* #
```

Step 3

Set the priority.

```plaintext
set prio {auto | on}
```

The priority sets whether to negotiate or enable PPP for this link.

Example:

```plaintext
firepower-4110 /eth-uplink/flow-control/policy* # set prio on
```

Step 4

Enable or disable flow control receive pauses.

```plaintext
set receive {on | off}
```

- **on** — Pause requests are honored and all traffic is halted on that uplink port until the network cancels the pause request.
- **off** — Pause requests from the network are ignored and traffic flow continues as normal.

Example:

```plaintext
firepower-4110 /eth-uplink/flow-control/policy* # set receive on
```

Step 5

Enable or disable flow control send pauses.

```plaintext
set send {on | off}
```

- **on** — The Firepower 4100/9300 sends a pause request to the network if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels.
- **off** — Traffic on the port flows normally regardless of the packet load.

Example:

```plaintext
firepower-4110 /eth-uplink/flow-control/policy* # set send on
```

Step 6

Save the configuration.

```plaintext
commit-buffer
```

Example:

```plaintext
firepower-4110 /eth-uplink/flow-control/policy* # commit-buffer
firepower-4110 /eth-uplink/flow-control/policy #
```
Example

The following example configures a flow control policy.

```
firepower-4110# scope eth-uplink
firepower-4110 /eth-uplink # scope flow-control
firepower-4110 /eth-uplink/flow-control # enter policy FlowControlPolicy23
firepower-4110 /eth-uplink/flow-control/policy* # set prio auto
firepower-4110 /eth-uplink/flow-control/policy* # set receive on
firepower-4110 /eth-uplink/flow-control/policy* # set send on
firepower-4110 /eth-uplink/flow-control/policy* # commit-buffer
firepower-4110 /eth-uplink/flow-control/policy #
```

Monitoring Interfaces

- **show interface**

 Shows interface status.

 ![Note](Image)

 Interfaces that act as ports in port channels do not appear in this list.

```
Firepower# scope eth-uplink
Firepower /eth-uplink # scope fabric a
Firepower /eth-uplink/fabric # show interface

Interface:
<table>
<thead>
<tr>
<th>Port Name</th>
<th>Port Type</th>
<th>Admin State</th>
<th>Oper State</th>
<th>State Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet1/1</td>
<td>Mgmt</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Ethernet1/2</td>
<td>Data</td>
<td>Enabled</td>
<td>Link Down</td>
<td>Link failure or</td>
</tr>
<tr>
<td>Ethernet1/3</td>
<td>Data</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Ethernet1/4</td>
<td>Data</td>
<td>Enabled</td>
<td>Sfp Not Present</td>
<td>Unknown</td>
</tr>
<tr>
<td>Ethernet1/6</td>
<td>Data</td>
<td>Enabled</td>
<td>Sfp Not Present</td>
<td>Unknown</td>
</tr>
<tr>
<td>Ethernet1/7</td>
<td>Data</td>
<td>Enabled</td>
<td>Sfp Not Present</td>
<td>Unknown</td>
</tr>
<tr>
<td>Ethernet1/8</td>
<td>Data</td>
<td>Disabled</td>
<td>Sfp Not Present</td>
<td>Unknown</td>
</tr>
<tr>
<td>Ethernet2/1</td>
<td>Data</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Ethernet2/2</td>
<td>Data</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Ethernet2/4</td>
<td>Data</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Ethernet2/5</td>
<td>Data</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Ethernet2/6</td>
<td>Data</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Ethernet3/2</td>
<td>Data</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>Ethernet3/4</td>
<td>Data</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
</tbody>
</table>
```

- **show port-channel**

 Shows port-channel status.

```
Firepower# scope eth-uplink
Firepower /eth-uplink # scope fabric a
Firepower /eth-uplink/fabric # show port-channel
```
History for Interfaces

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Platform Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for EtherChannels in FTD inline sets</td>
<td>2.1.1</td>
<td>You can now use EtherChannels in a FTD inline set.</td>
</tr>
<tr>
<td>Inline set link state propagation support for the FTD</td>
<td>2.0.1</td>
<td>When you configure an inline set in the FTD application and enable link state propagation, the FTD sends inline set membership to the FXOS chassis. Link state propagation means that the chassis automatically brings down the second interface in the inline interface pair when one of the interfaces in an inline set goes down. New/Modified commands: `show fault</td>
</tr>
<tr>
<td>Support for Hardware bypass network modules for the FTD</td>
<td>2.0.1</td>
<td>Hardware Bypass ensures that traffic continues to flow between an inline interface pair during a power outage. This feature can be used to maintain network connectivity in the case of software or hardware failures. New/Modified Firepower Management Center screens: <code>Devices > Device Management > Interfaces > Edit Physical Interface</code></td>
</tr>
<tr>
<td>Firepower-eventing type interface for FTD</td>
<td>1.1.4</td>
<td>You can specify an interface as firepower-eventing for use with the FTD. This interface is a secondary management interface for FTD devices. To use this interface, you must configure its IP address and other parameters at the FTD CLI. For example, you can separate management traffic from events (such as web events). See the "Management Interfaces" section in the Firepower Management Center configuration guide System Configuration chapter. New/Modified FXOS commands: <code>set port-type firepower-eventing</code>, <code>show interface</code></td>
</tr>
</tbody>
</table>
About Logical Devices

A logical device lets you run one application instance (either ASA or Firepower Threat Defense) and also one optional decorator application (Radware DefensePro) to form a service chain.

When you add a logical device, you also define the application instance type and version, assign interfaces, and configure bootstrap settings that are pushed to the application configuration.

Note

For the Firepower 9300, you must install the same application instance type (ASA or FTD) on all modules in the chassis; different types are not supported at this time. Note that modules can run different versions of an application instance type.

Standalone and Clustered Logical Devices

You can add the following logical device types:

• Standalone—A standalone logical device operates as a standalone unit or as a unit in a High Availability pair.

• Cluster—A clustered logical device lets you group multiple units together, providing all the convenience of a single device (management, integration into a network) while achieving the increased throughput
and redundancy of multiple devices. Multiple module devices, like the Firepower 9300, support intra-chassis clustering. For the Firepower 9300, all three modules must participate in the cluster.

Requirements and Prerequisites for Logical Devices

See the following sections for requirements and prerequisites.

Requirements and Prerequisites for Hardware and Software Combinations

The Firepower 4100/9300 supports multiple models, security modules, application types, and high availability and scalability features. See the following requirements for allowed combinations.

Firepower 9300 Requirements

The Firepower 9300 includes 3 security module slots and multiple types of security modules. See the following requirements:

- Security Module Types—
- Clustering—All security modules in the cluster, whether it is intra-chassis or inter-chassis, must be the same type. You can have different quantities of installed security modules in each chassis, although all modules present in the chassis must belong to the cluster including any empty slots. For example, you can install 2 SM-36s in chassis 1, and 3 SM-36s in chassis 2.
- High Availability—High Availability is only supported between same-type modules on the Firepower 9300.
- ASA and FTD application types—
- ASA or FTD versions—You can run different versions of an application instance type on separate modules. For example, you can install FTD 6.3 on module 1, FTD 6.4 on module 2, and FTD 6.5 on module 3.

Firepower 4100 Requirements

The Firepower 4100 comes in multiple models. See the following requirements:

- Clustering—All chassis in the cluster must be the same model.
- High Availability—High Availability is only supported between same-type models.
- ASA and FTD application types—The Firepower 4100 can only run a single application type.

Requirements and Prerequisites for Clustering

Cluster Model Support

- ASA on the Firepower 9300—Maximum 16 modules. For example, you can use 1 module in 16 chassis, or 2 modules in 8 chassis, or any combination that provides a maximum of 16 modules. Note that all modules in a chassis must belong to the cluster. Supported for intra-chassis, inter-chassis, and inter-site clustering.
• ASA on the Firepower 4100 series—Maximum 16 chassis. Supported for inter-chassis and inter-site clustering.

• FTD on the Firepower 9300—Maximum 6 modules. For example, you can use 2 modules in 3 chassis, or 3 modules in 2 chassis, or any combination that provides a maximum of 6 modules. Note that all modules in a chassis must belong to the cluster. Supported for intra-chassis and inter-chassis clustering.

• FTD on the Firepower 4100 series—Maximum 6 chassis. Supported for inter-chassis clustering.

• Radware DefensePro—Supported for intra-chassis clustering with the ASA.

• Radware DefensePro—Supported for intra-chassis clustering with the FTD.

Clustering Hardware and Software Requirements

All chassis in a cluster:

• For the Firepower 4100 series: All chassis must be the same model. For the Firepower 9300: All security modules must be the same type. For example, if you use clustering, all modules in the Firepower 9300 must be SM-40s. You can have different quantities of installed security modules in each chassis, although all modules present in the chassis must belong to the cluster including any empty slots.

• Must run the identical FXOS software except at the time of an image upgrade.

• Must include the same interface configuration for interfaces you assign to the cluster, such as the same Management interface, EtherChannels, active interfaces, speed and duplex, and so on. You can use different network module types on the chassis as long as the capacity matches for the same interface IDs and interfaces can successfully bundle in the same spanned EtherChannel. Note that all data interfaces must be EtherChannels in inter-chassis clustering. If you change the interfaces in FXOS after you enable clustering (by adding or removing interface modules, or configuring EtherChannels, for example), then perform the same changes on each chassis, starting with the data units, and ending with the control unit.

• Must use the same NTP server. For Firepower Threat Defense, the Firepower Management Center must also use the same NTP server. Do not set the time manually.

• ASA: Each FXOS chassis must be registered with the License Authority or satellite server. There is no extra cost for data units. For permanent license reservation, you must purchase separate licenses for each chassis. For Firepower Threat Defense, all licensing is handled by the Firepower Management Center.

Switch Requirements for Inter-Chassis Clustering

• Be sure to complete the switch configuration and successfully connect all the EtherChannels from the chassis to the switch(es) before you configure clustering on the Firepower 4100/9300 chassis.

• For supported switch characteristics, see Cisco FXOS Compatibility.

Sizing the Data Center Interconnect for Inter-Site Clustering

You should reserve bandwidth on the data center interconnect (DCI) for cluster control link traffic equivalent to the following calculation:

\[
\text{# of cluster members per site} \times \text{cluster control link size per member} / 2
\]
If the number of members differs at each site, use the larger number for your calculation. The minimum bandwidth for the DCI should not be less than the size of the cluster control link for one member.

For example:

- For 4 members at 2 sites:
 - 4 cluster members total
 - 2 members at each site
 - 5 Gbps cluster control link per member

Reserved DCI bandwidth = 5 Gbps (2/2 x 5 Gbps).

- For 6 members at 3 sites, the size increases:
 - 6 cluster members total
 - 3 members at site 1, 2 members at site 2, and 1 member at site 3
 - 10 Gbps cluster control link per member

Reserved DCI bandwidth = 15 Gbps (3/2 x 10 Gbps).

- For 2 members at 2 sites:
 - 2 cluster members total
 - 1 member at each site
 - 10 Gbps cluster control link per member

Reserved DCI bandwidth = 10 Gbps (1/2 x 10 Gbps = 5 Gbps; but the minimum bandwidth should not be less than the size of the cluster control link (10 Gbps)).

Requirements and Prerequisites for High Availability

- The two units in a High Availability Failover configuration must:
 - Be on a separate chassis; intra-chassis High Availability for the Firepower 9300 is not supported.
 - Be the same model.
 - Have the same interfaces assigned to the High Availability logical devices.
 - Have the same number and types of interfaces. All interfaces must be preconfigured in FXOS identically before you enable High Availability.

- For High Availability system requirements, see.

Guidelines and Limitations for Logical Devices

See the following sections for guidelines and limitations.
General Guidelines and Limitations

Firewall Mode
You can set the firewall mode to routed or transparent in the bootstrap configuration for the FTD.

High Availability
• Configure high availability within the application configuration.
• You can use any data interfaces as the failover and state links.

Context Mode
• Multiple context mode is only supported on the ASA.

Clustering Guidelines and Limitations

Switches for Inter-Chassis Clustering
• For the ASR 9006, if you want to set a non-default MTU, set the ASR interface MTU to be 14 bytes higher than the cluster device MTU. Otherwise, OSPF adjacency peering attempts may fail unless the mtu-ignore option is used. Note that the cluster device MTU should match the ASR IPv4 MTU.

• On the switch(es) for the cluster control link interfaces, you can optionally enable Spanning Tree PortFast on the switch ports connected to the cluster unit to speed up the join process for new units.

• On the switch, we recommend that you use one of the following EtherChannel load-balancing algorithms: source-dest-ip or source-dest-ip-port (see the Cisco Nexus OS and Cisco IOS port-channel load-balance command). Do not use a vlan keyword in the load-balance algorithm because it can cause unevenly distributed traffic to the devices in a cluster.

• If you change the load-balancing algorithm of the EtherChannel on the switch, the EtherChannel interface on the switch temporarily stops forwarding traffic, and the Spanning Tree Protocol restarts. There will be a delay before traffic starts flowing again.

• Some switches do not support dynamic port priority with LACP (active and standby links). You can disable dynamic port priority to provide better compatibility with Spanned EtherChannels.

• Switches on the cluster control link path should not verify the L4 checksum. Redirected traffic over the cluster control link does not have a correct L4 checksum. Switches that verify the L4 checksum could cause traffic to be dropped.

• Port-channel bundling downtime should not exceed the configured keepalive interval.

• On Supervisor 2T EtherChannels, the default hash distribution algorithm is adaptive. To avoid asymmetric traffic in a VSS design, change the hash algorithm on the port-channel connected to the cluster device to fixed:

 router(config)# port-channel id hash-distribution fixed

Do not change the algorithm globally; you may want to take advantage of the adaptive algorithm for the VSS peer link.
• Firepower 4100/9300 clusters support LACP graceful convergence. So you can leave LACP graceful convergence enabled on connected Cisco Nexus switches.

• When you see slow bundling of a Spanned EtherChannel on the switch, you can enable LACP rate fast for an individual interface on the switch. FXOS EtherChannels have the LACP rate set to fast by default. Note that some switches, such as the Nexus series, do not support LACP rate fast when performing in-service software upgrades (ISSUs), so we do not recommend using ISSUs with clustering.

EtherChannels for Inter-Chassis Clustering

• In Catalyst 3750-X Cisco IOS software versions earlier than 15.1(1)S2, the cluster unit did not support connecting an EtherChannel to a switch stack. With default switch settings, if the cluster unit EtherChannel is connected cross stack, and if the control unit switch is powered down, then the EtherChannel connected to the remaining switch will not come up. To improve compatibility, set the `stack-mac persistent timer` command to a large enough value to account for reload time; for example, 8 minutes or 0 for indefinite. Or, you can upgrade to more a more stable switch software version, such as 15.1(1)S2.

• Spanned vs. Device-Local EtherChannel Configuration—Be sure to configure the switch appropriately for Spanned EtherChannels vs. Device-local EtherChannels.

 • Spanned EtherChannels—For cluster unit Spanned EtherChannels, which span across all members of the cluster, the interfaces are combined into a single EtherChannel on the switch. Make sure each interface is in the same channel group on the switch.
• **Device-local EtherChannels**—For cluster unit **Device-local** EtherChannels including any EtherChannels configured for the cluster control link, be sure to configure discrete EtherChannels on the switch; do not combine multiple cluster unit EtherChannels into one EtherChannel on the switch.
Inter-Site Clustering

See the following guidelines for inter-site clustering:

- The cluster control link latency must be less than 20 ms round-trip time (RTT).

- The cluster control link must be reliable, with no out-of-order or dropped packets; for example, you should use a dedicated link.

- Do not configure connection rebalancing; you do not want connections rebalanced to cluster members at a different site.

- The cluster implementation does not differentiate between members at multiple sites for incoming connections; therefore, connection roles for a given connection may span across sites. This is expected behavior. However, if you enable director localization, the local director role is always chosen from the same site as the connection owner (according to site ID). Also, the local director chooses a new owner at the same site if the original owner fails (Note: if the traffic is asymmetric across sites, and there is continuous traffic from the remote site after the original owner fails, then a unit from the remote site might become the new owner if it receives a data packet within the re-hosting window.).
• For director localization, the following traffic types do not support localization: NAT or PAT traffic; SCTP-inspected traffic; Fragmentation owner query.

• For transparent mode, if the cluster is placed between a pair of inside and outside routers (AKA North-South insertion), you must ensure that both inside routers share a MAC address, and also that both outside routers share a MAC address. When a cluster member at site 1 forwards a connection to a member at site 2, the destination MAC address is preserved. The packet will only reach the router at site 2 if the MAC address is the same as the router at site 1.

• For transparent mode, if the cluster is placed between data networks and the gateway router at each site for firewalling between internal networks (AKA East-West insertion), then each gateway router should use a First Hop Redundancy Protocol (FHRP) such as HSRP to provide identical virtual IP and MAC address destinations at each site. The data VLANs are extended across the sites using Overlay Transport Virtualization (OTV), or something similar. You need to create filters to prevent traffic that is destined to the local gateway router from being sent over the DCI to the other site. If the gateway router becomes unreachable at one site, you need to remove any filters so traffic can successfully reach the other site’s gateway.

• For routed mode using Spanned EtherChannel, configure site-specific MAC addresses. Extend the data VLANs across the sites using OTV, or something similar. You need to create filters to prevent traffic that is destined to the global MAC address from being sent over the DCI to the other site. If the cluster becomes unreachable at one site, you need to remove any filters so traffic can successfully reach the other site’s cluster units. Dynamic routing is not supported when an inter-site cluster acts as the first hop router for an extended segment.

Additional Guidelines

• When adding a unit to an existing cluster, or when reloading a unit, there will be a temporary, limited packet/connection drop; this is expected behavior. In some cases, the dropped packets can hang connections; for example, dropping a FIN/ACK packet for an FTP connection will make the FTP client hang. In this case, you need to reestablish the FTP connection.

• If you use a Windows 2003 server connected to a Spanned EtherChannel interface, when the syslog server port is down, and the server does not throttle ICMP error messages, then large numbers of ICMP messages are sent back to the cluster. These messages can result in some units of the cluster experiencing high CPU, which can affect performance. We recommend that you throttle ICMP error messages.

• We recommend connecting EtherChannels to a VSS or vPC for redundancy.

• Within a chassis, you cannot cluster some security modules and run other security modules in standalone mode; you must include all security modules in the cluster.

Defaults

• The cluster health check feature is enabled by default with the holdtime of 3 seconds. Interface health monitoring is enabled on all interfaces by default.

• The cluster auto-rejoin feature for a failed cluster control link is set to unlimited attempts every 5 minutes.

• The cluster auto-rejoin feature for a failed data interface is set to 3 attempts every 5 minutes, with the increasing interval set to 2.

• Connection replication delay of 5 seconds is enabled by default for HTTP traffic.
Add a Standalone Logical Device

Standalone logical devices can be used alone or as high availability units. For more information about high availability usage, see Add a High Availability Pair, on page 188.

Add a Standalone ASA

Standalone logical devices work either alone or in a High Availability pair. On the Firepower 9300 with multiple security modules, you can deploy either a cluster or standalone devices. The cluster must use all modules, so you cannot mix and match a 2-module cluster plus a single standalone device, for example.

You can deploy a routed firewall mode ASA from the Firepower 4100/9300 chassis.

For multiple context mode, you must first deploy the logical device, and then enable multiple context mode in the ASA application.

Before you begin

- Download the application image you want to use for the logical device from Cisco.com, and then download that image to the Firepower 4100/9300 chassis.

 Note

 For the Firepower 9300, you must install the same application instance type (ASA or FTD) on all modules in the chassis; different types are not supported at this time. Note that modules can run different versions of an application instance type.

 - Configure a management interface to use with the logical device. The management interface is required. Note that this management interface is not the same as the chassis management port that is used only for chassis management (in FXOS, you might see it displayed as MGMT, management0, or other similar names).

 - Gather the following information:
 - Interface IDs for this device
 - Management interface IP address and network mask
 - Gateway IP address

Procedure

Step 1

Enter security services mode.

`scope ssa`

Example:

```
Firepower# scope ssa
Firepower /ssa #
```
Step 2 Set the application instance image version.

a) View available images. Note the Version number that you want to use.

 show app

 Example:

 Firepower /ssa # show app

 Name Version Author Supported Deploy Types CSP Type Is Default
 App ---------- --------------- ---------- ---------------------- -----------
 --------------- --------------- ---------- ---------------------- -----------
 asa 9.9.1 cisco Native Application No
 asa 9.10.1 cisco Native Application Yes
 ftd 6.2.3 cisco Native Application Yes

b) Set the scope to the security module/engine slot.

 scope slot slot_id

 The slot_id is always 1 for the Firepower 4100, and 1, 2, or 3 for the Firepower 9300.

 Example:

 Firepower /ssa # scope slot 1
 Firepower /ssa/slot #

c) Create the application instance.

 enter app-instance asa

 Example:

 Firepower /ssa/slot # enter app-instance asa
 Firepower /ssa/slot/app-instance* #

d) Set the ASA image version.

 set startup-version version

 Example:

 Firepower /ssa/slot/app-instance* # set startup-version 9.10.1

e) Exit to slot mode.

 exit

 Example:

 Firepower /ssa/slot/app-instance* # exit
 Firepower /ssa/slot* #

f) Exit to ssa mode.

 exit

 Example:
Step 3 Create the logical device.

`enter logical-device device_name asa slot_id standalone`

Example:

Firepower /ssa # enter logical-device ASA1 asa 1 standalone
Firepower /ssa/logical-device* #

Step 4 Assign the management and data interfaces to the logical device. Repeat for each interface.

`create external-port-link name interface_id asa`

`set description description`

`exit`

- **name**—The name is used by the Firepower 4100/9300 chassis supervisor; it is not the interface name used in the ASA configuration.

- **description**—Use quotes (") around phrases with spaces.

The management interface is not the same as the chassis management port. You will later enable and configure the data interfaces on the ASA, including setting the IP addresses.

Example:

Firepower /ssa/logical-device* # create external-port-link inside Ethernet1/1 asa
Firepower /ssa/logical-device/external-port-link* # set description "inside link"
Firepower /ssa/logical-device/external-port-link* # exit
Firepower /ssa/logical-device* # create external-port-link management Ethernet1/7 asa
Firepower /ssa/logical-device/external-port-link* # set description "management link"
Firepower /ssa/logical-device/external-port-link* # exit
Firepower /ssa/logical-device* # create external-port-link outside Ethernet1/2 asa
Firepower /ssa/logical-device/external-port-link* # set description "external link"
Firepower /ssa/logical-device/external-port-link* # exit

Step 5 Configure the management bootstrap information.

a) Create the bootstrap object.

`create mgmt-bootstrap asa`

Example:
b) Specify the admin password.

```
create bootstrap-key-secret PASSWORD
set value
Enter a value: password
Confirm the value: password
```

Example:
The pre-configured ASA admin user is useful for password recovery; if you have FXOS access, you can reset the admin user password if you forget it.

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key-secret PASSWORD
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value
Enter a value: floppylampshade
Confirm the value: floppylampshade
```

Firepower /ssa/logical-device/mgmt-bootstrap* #

c) Configure the IPv4 management interface settings.

```
create ipv4 slot_id default
set ip ip_address mask network_mask
set gateway gateway_address
exit
```

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create ipv4 1 default
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set ip 10.10.10.34 mask 255.255.255.0
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set gateway 10.10.10.1
```

Firepower /ssa/logical-device/mgmt-bootstrap* #

d) Configure the IPv6 management interface settings.

```
create ipv6 slot_id default
set ip ip_address prefix-length prefix
set gateway gateway_address
exit
```

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create ipv6 1 default
Firepower /ssa/logical-device/mgmt-bootstrap/ipv6* # set ip 2001:0DB8:BA98::3210
```

Firepower /ssa/logical-device/mgmt-bootstrap* #
c) Exit the management bootstrap mode.

```
exit
```

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # exit
Firepower /ssa/logical-device* #
```

Step 6
Save the configuration.

```
commit-buffer
```

The chassis deploys the logical device by downloading the specified software version and pushing the bootstrap configuration and management interface settings to the application instance. Check the status of the deployment using the `show app-instance` command. The application instance is running and ready to use when the **Admin State** is **Enabled** and the **Oper State** is **Online**.

Example:

```
Firepower /ssa/logical-device* # commit-buffer
Firepower /ssa/logical-device # exit
Firepower /ssa # show app-instance
App Name  Identifier Slot ID  Admin State Oper State Running Version Startup Version
---------- ---------- ---------- ----------- ----------------------------------------------
asa        asa1      2    Disabled  Not Installed  9.12.1  Native  Not Applicable  None
ftd        ftd1      1   Enabled   Online  6.4.0.49  6.4.0.49  Container  Default-Small  None
```

Step 7
See the ASA configuration guide to start configuring your security policy.

Example

```
Firepower# scope ssa
Firepower /ssa # scope slot 1
Firepower /ssa/slot # enter app-instance asa
Firepower /ssa/slot/app-instance* # set startup-version 9.10.1
Firepower /ssa/slot/app-instance* # exit
Firepower /ssa/slot* # exit
Firepower /ssa* # create logical-device MyDevice1 asa 1 standalone
Firepower /ssa/logical-device* # create external-port-link inside Ethernet1/1 asa
Firepower /ssa/logical-device/external-port-link* # set description "inside link"
Firepower /ssa/logical-device/external-port-link* # exit
Firepower /ssa/logical-device/external-port-link management Ethernet1/7 asa
Firepower /ssa/logical-device/external-port-link* # set description "management link"
Firepower /ssa/logical-device/external-port-link* # exit
Firepower /ssa/logical-device/external-port-link outside Ethernet1/2 asa
Firepower /ssa/logical-device/external-port-link* # set description "external link"
```
Add a Standalone Firepower Threat Defense

Standalone logical devices work either alone or in a High Availability pair. On the Firepower 9300 with multiple security modules, you can deploy either a cluster or standalone devices. The cluster must use all modules, so you cannot mix and match a 2-module cluster plus a single standalone device, for example.

Before you begin

- Download the application image you want to use for the logical device from Cisco.com, and then download that image to the Firepower 4100/9300 chassis.

 Note

 For the Firepower 9300, you must install the same application instance type (ASA or FTD) on all modules in the chassis; different types are not supported at this time. Note that modules can run different versions of an application instance type.

- Configure a management interface to use with the logical device. The management interface is required. Note that this management interface is not the same as the chassis management port that is used only for chassis management (in FXOS, you might see it displayed as MGMT, management0, or other similar names).

- You must also configure at least one Data type interface. Optionally, you can also create a firepower-eventing interface to carry all event traffic (such as web events). See Interface Types, on page 153 for more information.

- Gather the following information:
 - Interface IDs for this device
 - Management interface IP address and network mask
 - Gateway IP address
 - FMC IP address and/or NAT ID of your choosing
 - DNS server IP address
 - FTD hostname and domain name
Procedure

Step 1 Enter security services mode.

```bash
scope ssa
```

Example:

```
Firepower# scope ssa
Firepower /ssa #
```

Step 2 Accept the end-user license agreement for the Firepower Threat Defense version you want to use. You only need to perform this step if you have not already accepted the EULA for this version.

a) View available images. Note the Version number that you want to use.

```bash
show app
```

Example:

```
Name  Version  Author Supported Deploy Types CSP Type    Is Default
App   ----------------- --------------------------  -----------------------  ----------
---------- --------------- ---------- ----------------------  -----------
asa      9.9.1        cisco  Native Application No
asa      9.10.1       cisco  Native Application Yes
ftd      6.2.3        cisco  Native Application Yes
```

b) Set the scope to the image version.

```bash
scope app ftd application_version
```

Example:

```
Firepower /ssa # scope app ftd 6.2.3
Firepower /ssa/app #
```

c) Accept the license agreement.

```bash
accept-license-agreement
```

Example:

```
Firepower /ssa/app # accept-license-agreement

End User License Agreement: End User License Agreement

Effective: May 22, 2017

This is an agreement between You and Cisco Systems, Inc. or its affiliates ("Cisco") and governs your Use of Cisco Software. "You" and "Your" means the individual or legal entity licensing the Software under this EULA. "Use" or "Using" means to download, install, activate, access or otherwise use the Software. "Software" means the Cisco computer programs and any Upgrades made available to You by an Approved Source and licensed to You by Cisco. "Documentation" is the Cisco user or technical manuals, training materials, specifications or other documentation applicable to the Software and made available to You by an Approved Source. "Approved Source" means (i) Cisco or
```
(ii) the Cisco authorized reseller, distributor or systems integrator from whom you acquired the Software. "Entitlement" means the license detail; including license metric, duration, and quantity provided in a product ID (PID) published on Cisco's price list, claim certificate or right to use notification. "Upgrades" means all updates, upgrades, bug fixes, error corrections, enhancements and other modifications to the Software and backup copies thereof.

[...] Please "commit-buffer" if you accept the license agreement, otherwise "discard-buffer".

Firepower /ssa/app* #

d) Save the configuration.

commit-buffer

Example:

Firepower /ssa/app* # commit-buffer
Firepower /ssa/app #

e) Exit to security services mode.

exit

Example:

Firepower /ssa/app # exit
Firepower /ssa #

Step 3 Set the application instance image version.

a) Set the scope to the security module/engine slot.

scope slot slot_id

The slot_id is always 1 for the Firepower 4100, and 1, 2, or 3 for the Firepower 9300.

Example:

Firepower /ssa # scope slot 1
Firepower /ssa/slot #

b) Create the application instance.

enter app-instance ftd

Example:

Firepower /ssa/slot # enter app-instance ftd
Firepower /ssa/slot/app-instance* #

c) Set the Firepower Threat Defense image version.

set startup-version version

Enter the version number that you noted earlier in this procedure when you accepted the EULA.

Example:
d) Exit to slot mode.

 `exit`

 Example:

   ```
   Firepower /ssa/slot/app-instance* # exit
   Firepower /ssa/slot* #
   ```

e) (Optional) Create the Radware DefensePro instance for the Firepower 4110 or 4120, which require you to create the application instance before you create the logical device.

 `enter app-instance vdp`

 `exit`

 After you complete the logical device configuration, you must continue configuring the Radware DefensePro decorator in a service chain with the Firepower Threat Defense logical device. See Configure Radware DefensePro on a Standalone Logical Device, on page 216, starting with step 4.

 Example:

   ```
   Firepower /ssa/slot* # enter app-instance vdp
   Firepower /ssa/slot/app-instance* # exit
   Firepower /ssa/slot* #
   ```

f) Exit to ssa mode.

 `exit`

 Example:

   ```
   Firepower /ssa/slot* # exit
   Firepower /ssa* #
   ```

Example:

```
Firepower /ssa # scope slot 1
Firepower /ssa/slot # enter app-instance ftd MyDevice1
Firepower /ssa/slot/app-instance* # set startup-version 6.3.0
Firepower /ssa/slot/app-instance* # exit
Firepower /ssa/slot* # exit
Firepower /ssa* #
``` 

Step 4 Create the logical device.

`enter logical-device device_name ftd slot_id standalone`

Example:

```
Firepower /ssa # enter logical-device FTD1 ftd 1 standalone
Firepower /ssa/logical-device* #
```
Step 5 Assign the management and data interfaces to the logical device. Repeat for each interface.

```
create external-port-link name interface_id ftd
set description description
exit
```

- **name**—The name is used by the Firepower 4100/9300 chassis supervisor; it is not the interface name used in the Firepower Threat Defense configuration.
- **description**—Use quotes (") around phrases with spaces.

The management interface is not the same as the chassis management port. You will later enable and configure the data interfaces in FMC, including setting the IP addresses.

Example:

```
Firepower /ssa/logical-device* # create external-port-link inside Ethernet1/1 ftd
Firepower /ssa/logical-device/external-port-link* # set description "inside link"
Firepower /ssa/logical-device/external-port-link* # exit
Firepower /ssa/logical-device* # create external-port-link management Ethernet1/7 ftd
Firepower /ssa/logical-device/external-port-link* # set description "management link"
Firepower /ssa/logical-device/external-port-link* # exit
Firepower /ssa/logical-device* # create external-port-link outside Ethernet1/2 ftd
Firepower /ssa/logical-device/external-port-link* # set description "external link"
Firepower /ssa/logical-device/external-port-link* # exit
```
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key FIREPOWER_MANAGER_IP
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value 10.10.10.7
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #

c) Specify the firewall mode, routed or transparent.

create bootstrap-key FIREWALL_MODE

set value {routed | transparent}

exit

In routed mode, the device is considered to be a router hop in the network. Each interface that you want to route between is on a different subnet. A transparent firewall, on the other hand, is a Layer 2 firewall that acts like a “bump in the wire,” or a “stealth firewall,” and is not seen as a router hop to connected devices.

The firewall mode is only set at initial deployment. If you re-apply the bootstrap settings, this setting is not used.

Example:

Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key FIREWALL_MODE
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value routed
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #

d) Specify the key to be shared between the device and the Firepower Management Center. You can choose any passphrase for this key between 1 and 37 characters; you will enter the same key on the FMC when you add the FTD.

create bootstrap-key-secret REGISTRATION_KEY

set value

Enter a value: registration_key

Confirm the value: registration_key

exit

Example:

Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key-secret REGISTRATION_KEY
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value
Enter a value: gratuitousapples
Confirm the value: gratuitousapples
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #

e) Specify the admin password. This password is used for the admin user for CLI access.

create bootstrap-key-secret PASSWORD

set value

Enter a value: password
Confirm the value: password

exit

Example:

Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key-secret PASSWORD
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value
Enter a value: floppylampshade
Confirm the value: floppylampshade
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #

f) Specify the fully qualified hostname.

create bootstrap-key FQDN

set value fqdn

exit

Example:

Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key FQDN
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value ftd1.cisco.com
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #

g) Specify a comma-separated list of DNS servers.

create bootstrap-key DNS_SERVERS

set value dns_servers

exit

The FTD uses DNS if you specify a hostname for the FMC, for example.

Example:

Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key DNS_SERVERS
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value 10.9.8.7,10.9.6.5
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #

h) Specify a comma-separated list of search domains.

create bootstrap-key SEARCH_DOMAINS

set value search_domains

exit

Example:

Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key SEARCH_DOMAINS
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value cisco.com,example.com
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #
i) Configure the IPv4 management interface settings.

 create ipv4 slot_id firepower
 set ip ip_address mask network_mask
 set gateway gateway_address
 exit

 Example:

 Firepower /ssa/logical-device/mgmt-bootstrap* # create ipv4 1 firepower
 Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set ip 10.10.10.34 mask 255.255.255.0
 Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set gateway 10.10.10.1
 Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # exit

j) Configure the IPv6 management interface settings.

 create ipv6 slot_id firepower
 set ip ip_address prefix-length prefix
 set gateway gateway_address
 exit

 Example:

 Firepower /ssa/logical-device/mgmt-bootstrap* # create ipv6 1 firepower
 Firepower /ssa/logical-device/mgmt-bootstrap/ipv6* # set ip 2001:0DB8:BA98::3210 prefix-length 64
 Firepower /ssa/logical-device/mgmt-bootstrap/ipv6* # set gateway 2001:0DB8:BA98::3211
 Firepower /ssa/logical-device/mgmt-bootstrap/ipv6* # exit

k) Exit the management bootstrap mode.

 exit

 Example:

 Firepower /ssa/logical-device/mgmt-bootstrap* # exit
 Firepower /ssa/logical-device* #

Step 7

Save the configuration.
 commit-buffer

The chassis deploys the logical device by downloading the specified software version and pushing the bootstrap configuration and management interface settings to the application instance. Check the status of the deployment using the show app-instance command. The application instance is running and ready to use when the Admin State is Enabled and the Oper State is Online.

Example:

 Firepower /ssa/logical-device* # commit-buffer
 Firepower /ssa/logical-device* # exit
 Firepower /ssa # show app-instance
Logical Devices

Add a Standalone Firepower Threat Defense

<table>
<thead>
<tr>
<th>App Name</th>
<th>Identifier</th>
<th>Slot ID</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Running Version</th>
<th>Startup Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>asa</td>
<td>asa1</td>
<td>2</td>
<td>Disabled</td>
<td>Not Installed</td>
<td>9.12.1</td>
<td></td>
</tr>
<tr>
<td>ftd</td>
<td>ftd1</td>
<td>1</td>
<td>Enabled</td>
<td>Online</td>
<td>6.4.0.49</td>
<td>6.4.0.49</td>
</tr>
</tbody>
</table>

Step 8

See the FMC configuration guide to add the FTD as a managed device and start configuring your security policy.

Example

```
Firepower# scope ssa
Firepower /ssa* # scope app ftd 6.3.0
Firepower /ssa/app* # accept-license-agreement
Firepower /ssa/app* # commit-buffer
Firepower /ssa/app # exit
Firepower /ssa # scope slot 1
Firepower /ssa/slot # enter app-instance ftd
Firepower /ssa/slot/app-instance* # set startup-version 6.3.0
Firepower /ssa/slot/app-instance* # exit
Firepower /ssa/slot* # exit
Firepower /ssa* # create logical-device MyDevice1 ftd 1 standalone
Firepower /ssa/logical-device* # create external-port-link inside Ethernet1/1 ftd
Firepower /ssa/logical-device/external-port-link* # set description "inside link"
Firepower /ssa/logical-device* # create external-port-link management Ethernet1/7 ftd
Firepower /ssa/logical-device/external-port-link* # set description "management link"
Firepower /ssa/logical-device* # create external-port-link outside Ethernet1/2 ftd
Firepower /ssa/logical-device/external-port-link* # set description "external link"
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key FIREPOWER_MANAGER_IP
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value 10.0.0.100
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key FIREWALL_MODE
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value routed
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key-secret REGISTRATION_KEY
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value juniorwindowpane
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key-secret PASSWORD
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value secretglassine
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key DNS_SERVERS
```
Add a High Availability Pair

High Availability (also known as failover) is configured within the application, not in FXOS. However, to prepare your chassis for high availability, see the following steps.

Before you begin

See.

Procedure

Step 1 Allocate the same interfaces to each logical device.
Step 2 Allocate 1 or 2 data interfaces for the failover and state link(s).
 These interfaces exchange high availability traffic between the 2 chassis. We recommend that you use a 10 GB data interface for a combined failover and state link. If you have available interfaces, you can use separate failover and state links; the state link requires the most bandwidth. You cannot use the management-type interface for the failover or state link. We recommend that you use a switch between the chassis, with no other device on the same network segment as the failover interfaces.
Step 3 Enable High Availability on the logical devices.
Step 4 If you need to make interface changes after you enable High Availability, perform the changes on the standby unit first, and then perform the changes on the active unit.

Add a Cluster

Clustering lets you group multiple devices together as a single logical device. A cluster provides all the convenience of a single device (management, integration into a network) while achieving the increased throughput and redundancy of multiple devices. The Firepower 9300, which includes multiple modules, supports intra-chassis clustering where you group all modules within a single chassis into a cluster. You can also use inter-chassis clustering, where multiple chassis are grouped together; inter-chassis clustering is the only option for single module devices like the Firepower 4100 series.

About Clustering on the Firepower 4100/9300 Chassis

The cluster consists of multiple devices acting as a single logical unit. When you deploy a cluster on the Firepower 4100/9300 chassis, it does the following:

- Creates a cluster-control link (by default, port-channel 48) for unit-to-unit communication.
For intra-chassis clustering (Firepower 9300 only), this link utilizes the Firepower 9300 backplane for cluster communications.

For inter-chassis clustering, you need to manually assign physical interface(s) to this EtherChannel for communications between chassis.

• Creates the cluster bootstrap configuration within the application.

When you deploy the cluster, the chassis supervisor pushes a minimal bootstrap configuration to each unit that includes the cluster name, cluster control link interface, and other cluster settings. Some parts of the bootstrap configuration may be user-configurable within the application if you want to customize your clustering environment.

• Assigns data interfaces to the cluster as Spanned interfaces.

For intra-chassis clustering, spanned interfaces are not limited to EtherChannels, like it is for inter-chassis clustering. The Firepower 9300 supervisor uses EtherChannel technology internally to load-balance traffic to multiple modules on a shared interface, so any data interface type works for Spanned mode. For inter-chassis clustering, you must use Spanned EtherChannels for all data interfaces.

Note

Individual interfaces are not supported, with the exception of a management interface.

• Assigns a management interface to all units in the cluster.

The following sections provide more detail about clustering concepts and implementation.

Primary and Secondary Unit Roles

One member of the cluster is the primary unit. The primary unit is determined automatically. All other members are secondary units.

You must perform all configuration on the primary unit only; the configuration is then replicated to the secondary units.

Cluster Control Link

The cluster control link is automatically created using the Port-channel 48 interface.

For intra-chassis clustering, this interface has no member interfaces. This Cluster type EtherChannel utilizes the Firepower 9300 backplane for cluster communications for intra-chassis clustering. For inter-chassis clustering, you must add one or more interfaces to the EtherChannel.

For a 2-member inter-chassis cluster, do not directly connect the cluster control link from one chassis to the other chassis. If you directly connect the interfaces, then when one unit fails, the cluster control link fails, and thus the remaining healthy unit fails. If you connect the cluster control link through a switch, then the cluster control link remains up for the healthy unit.

Cluster control link traffic includes both control and data traffic.

Size the Cluster Control Link for Inter-Chassis Clustering

If possible, you should size the cluster control link to match the expected throughput of each chassis so the cluster-control link can handle the worst-case scenarios.
Cluster control link traffic is comprised mainly of state update and forwarded packets. The amount of traffic at any given time on the cluster control link varies. The amount of forwarded traffic depends on the load-balancing efficacy or whether there is a lot of traffic for centralized features. For example:

- NAT results in poor load balancing of connections, and the need to rebalance all returning traffic to the correct units.
- When membership changes, the cluster needs to rebalance a large number of connections, thus temporarily using a large amount of cluster control link bandwidth.

A higher-bandwidth cluster control link helps the cluster to converge faster when there are membership changes and prevents throughput bottlenecks.

If your cluster has large amounts of asymmetric (rebalanced) traffic, then you should increase the cluster control link size.

Cluster Control Link Redundancy for Inter-Chassis Clustering

The following diagram shows how to use an EtherChannel as a cluster control link in a Virtual Switching System (VSS) or Virtual Port Channel (vPC) environment. All links in the EtherChannel are active. When the switch is part of a VSS or vPC, then you can connect Firepower 4100/9300 chassis interfaces within the same EtherChannel to separate switches in the VSS or vPC. The switch interfaces are members of the same EtherChannel port-channel interface, because the separate switches act like a single switch. Note that this EtherChannel is device-local, not a Spanned EtherChannel.

Cluster Control Link Reliability for Inter-Chassis Clustering

To ensure cluster control link functionality, be sure the round-trip time (RTT) between units is less than 20 ms. This maximum latency enhances compatibility with cluster members installed at different geographical sites. To check your latency, perform a ping on the cluster control link between units.
The cluster control link must be reliable, with no out-of-order or dropped packets; for example, for inter-site deployment, you should use a dedicated link.

Cluster Control Link Network

The Firepower 4100/9300 chassis auto-generates the cluster control link interface IP address for each unit based on the chassis ID and slot ID: 127.2.chassis_id.slot_id. The cluster control link network cannot include any routers between units; only Layer 2 switching is allowed. For inter-site traffic, Cisco recommends using Overlay Transport Virtualization (OTV).

Management Network

We recommend connecting all units to a single management network. This network is separate from the cluster control link.

Management Interface

You must assign a Management type interface to the cluster. This interface is a special *individual* interface as opposed to a Spanned interface. The management interface lets you connect directly to each unit.

For the ASA, the Main cluster IP address is a fixed address for the cluster that always belongs to the current primary unit. You must configure a range of addresses so that each unit, including the current primary unit, can use a Local address from the range. The Main cluster IP address provides consistent management access to an address; when a primary unit changes, the Main cluster IP address moves to the new primary unit, so management of the cluster continues seamlessly. The Local IP address is used for routing, and is also useful for troubleshooting. For example, you can manage the cluster by connecting to the Main cluster IP address, which is always attached to the current primary unit. To manage an individual member, you can connect to the Local IP address. For outbound management traffic such as TFTP or syslog, each unit, including the primary unit, uses the Local IP address to connect to the server.

For the Firepower Threat Defense, assign a management IP address to each unit on the same network. Use these IP addresses when you add each unit to the FMC.

Spanned EtherChannels

You can group one or more interfaces per chassis into an EtherChannel that spans all chassis in the cluster. The EtherChannel aggregates the traffic across all the available active interfaces in the channel. A Spanned EtherChannel can be configured in both routed and transparent firewall modes. In routed mode, the EtherChannel is configured as a routed interface with a single IP address. In transparent mode, the IP address is assigned to the BVI, not to the bridge group member interface. The EtherChannel inherently provides load balancing as part of basic operation.

Inter-Site Clustering

For inter-site installations, you can take advantage of clustering as long as you follow the recommended guidelines.

You can configure each cluster chassis to belong to a separate site ID.

Site IDs work with site-specific MAC addresses and IP addresses. Packets sourced from the cluster use a site-specific MAC address and IP address, while packets received by the cluster use a global MAC address and IP address. This feature prevents the switches from learning the same global MAC address from both sites on two different ports, which causes MAC flapping; instead, they only learn the site MAC address.
Site-specific MAC addresses and IP address are supported for routed mode using Spanned EtherChannels only.

Site IDs are also used to enable flow mobility using LISP inspection, director localization to improve performance and reduce round-trip time latency for inter-site clustering for data centers.

See the following sections for more information about inter-site clustering:

- Sizing the Data Center Interconnect—Requirements and Prerequisites for Clustering, on page 166
- Inter-Site Guidelines—Clustering Guidelines and Limitations, on page 169
- Inter-Site Examples—Examples for Inter-Site Clustering, on page 232

Add an ASA Cluster

You can add a single Firepower 9300 chassis as an intra-chassis cluster, or add multiple chassis for inter-chassis clustering. For inter-chassis clustering, you must configure each chassis separately. Add the cluster on one chassis; you can then enter most of the same settings on the next chassis.

Create an ASA Cluster

Set the scope to the image version.

You can easily deploy the cluster from the Firepower 4100/9300 chassis supervisor. All initial configuration is automatically generated for each unit.

For inter-chassis clustering, you must configure each chassis separately. Deploy the cluster on one chassis; you can then copy the bootstrap configuration from the first chassis to the next chassis for ease of deployment.

In a Firepower 9300 chassis, you must enable clustering for all 3 module slots, even if you do not have a module installed. If you do not configure all 3 modules, the cluster will not come up.

For multiple context mode, you must first deploy the logical device, and then enable multiple context mode in the ASA application.

Before you begin

- Download the application image you want to use for the logical device from Cisco.com, and then upload that image to the Firepower 4100/9300 chassis.
- Gather the following information:
 - Management interface ID, IP address, and network mask
 - Gateway IP address

Procedure

Step 1

Configure interfaces.

a) Add at least one Data type interface or EtherChannel (also known as a port-channel) before you deploy the cluster. See Add an EtherChannel (Port Channel), on page 158 or Configure a Physical Interface, on page 156.
For inter-chassis clustering, all data interfaces must be Spanned EtherChannels with at least one member interface. Add the same EtherChannels on each chassis. Combine the member interfaces from all cluster units into a single EtherChannel on the switch. See Clustering Guidelines and Limitations, on page 169 for more information about EtherChannels for inter-chassis clustering.

b) Add a Management type interface or EtherChannel. See Add an EtherChannel (Port Channel), on page 158 or Configure a Physical Interface, on page 156.

The management interface is required. Note that this management interface is not the same as the chassis management interface that is used only for chassis management (in FXOS, you might see the chassis management interface displayed as MGMT, management0, or other similar names).

For inter-chassis clustering, add the same Management interface on each chassis.

c) For inter-chassis clustering, add a member interface to the cluster control link EtherChannel (by default, port-channel 48). See Add an EtherChannel (Port Channel), on page 158.

Do not add a member interface for intra-chassis clustering. If you add a member, the chassis assumes this cluster will be inter-chassis, and will only allow you to use Spanned EtherChannels, for example.

Add the same member interfaces on each chassis. The cluster control link is a device-local EtherChannel on each chassis. Use separate EtherChannels on the switch per device. See Clustering Guidelines and Limitations, on page 169 for more information about EtherChannels for inter-chassis clustering.

Step 2 Enter security services mode.

```
scope ssa
```

Example:

```
Firepower# scope ssa
Firepower /ssa #
```

Step 3 Set the application instance image version.

a) View available images. Note the Version number that you want to use.

```
show app
```

Example:

```
Firepower /ssa # show app

<table>
<thead>
<tr>
<th>App</th>
<th>Name</th>
<th>Version</th>
<th>Author</th>
<th>Supported Deploy Types</th>
<th>CSP Type</th>
<th>Is Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>asa</td>
<td>asa</td>
<td>9.9.1</td>
<td>cisco</td>
<td>Native</td>
<td>Application No</td>
<td></td>
</tr>
<tr>
<td>asa</td>
<td>asa</td>
<td>9.10.1</td>
<td>cisco</td>
<td>Native</td>
<td>Application Yes</td>
<td></td>
</tr>
<tr>
<td>ftd</td>
<td>ftd</td>
<td>6.2.3</td>
<td>cisco</td>
<td>Native</td>
<td>Application Yes</td>
<td></td>
</tr>
</tbody>
</table>
```

b) Set the scope to the image version.

```
scope app asa application_version
```

Example:

```
Firepower /ssa # scope app asa 9.10.1
Firepower /ssa/app #
```
c) Set this version as the default.

`set-default`

Example:

```
Firepower /ssa/app # set-default
Firepower /ssa/app* #
```

d) Exit to ssa mode.

`exit`

Example:

```
Firepower /ssa/app* # exit
Firepower /ssa* #
```

Example:

```
Firepower /ssa # scope app asa 9.12.1
Firepower /ssa/app # set-default
Firepower /ssa/app* # exit
Firepower /ssa* #
```

Step 4 Create the cluster.

```
enter logical-device device_name asa slots clustered
```

- `device_name`—Used by the Firepower 4100/9300 chassis supervisor to configure clustering settings and assign interfaces; it is not the cluster name used in the security module configuration. You must specify all three security modules, even if you have not yet installed the hardware.

- `slots`—Assigns the chassis modules to the cluster. For the Firepower 4100, specify 1. For the Firepower 9300, specify 1,2,3. You must enable clustering for all 3 module slots in a Firepower 9300 chassis, even if you do not have a module installed. If you do not configure all 3 modules, the cluster will not come up.

Example:

```
Firepower /ssa # enter logical-device ASA1 asa 1,2,3 clustered
Firepower /ssa/logical-device* #
```

Step 5 Configure the cluster bootstrap parameters.

These settings are meant for initial deployment only, or for disaster recovery. For normal operation, you can later change most values in the application CLI configuration.

a) Create the cluster bootstrap object.

```
enter cluster-bootstrap
```

Example:

```
Firepower /ssa/logical-device* # enter cluster-bootstrap
```
b) Set the chassis ID.

   ```bash
   set chassis-id id
   ```
 Each chassis in the cluster needs a unique ID.

c) For inter-site clustering, set the site ID between 1 and 8.

   ```bash
   set site-id number.
   ```
 To remove the site ID, set the value to 0.

 Example:

   ```bash
   Firepower /ssa/logical-device/cluster-bootstrap* # set site-id 1
   Firepower /ssa/logical-device/cluster-bootstrap* #
   ```

d) Configure an authentication key for control traffic on the cluster control link.

   ```bash
   set key
   ```

 Example:

   ```bash
   Firepower /ssa/logical-device/cluster-bootstrap* # set key
   Key: diamonddogs
   ```
 You are prompted to enter the shared secret.

 The shared secret is an ASCII string from 1 to 63 characters. The shared secret is used to generate the key. This option does not affect datapath traffic, including connection state update and forwarded packets, which are always sent in the clear.

e) Set the cluster interface mode.

   ```bash
   set mode spanned-etherchannel
   ```
 Spanned EtherChannel mode is the only supported mode.

 Example:

   ```bash
   Firepower /ssa/logical-device/cluster-bootstrap* # set mode spanned-etherchannel
   Firepower /ssa/logical-device/cluster-bootstrap* #
   ```

f) Set the cluster group name in the security module configuration.

   ```bash
   set service-type cluster_name
   ```
 The name must be an ASCII string from 1 to 38 characters.

 Example:

   ```bash
   Firepower /ssa/logical-device/cluster-bootstrap* # set service-type cluster1
   Firepower /ssa/logical-device/cluster-bootstrap* #
   ```

g) Configure the management IP address information.

 This information is used to configure a management interface in the security module configuration.
1. Configure a pool of Local IP addresses, one of which will be assigned to each cluster unit for the interface.

 set ipv4 pool start_ip end_ip
 set ipv6 pool start_ip end_ip

Include at least as many addresses as there are units in the cluster. Note that for the Firepower 9300, you must include 3 addresses per chassis, even if you do not have all module slots filled. If you plan to expand the cluster, include additional addresses. The Virtual IP address (known as the Main cluster IP address) that belongs to the current control unit is not a part of this pool; be sure to reserve an IP address on the same network for the Main cluster IP address. You can use IPv4 and/or IPv6 addresses.

2. Configure the Main cluster IP address for the management interface.

 set virtual ipv4 ip_address mask
 set virtual ipv6 ip_address prefix-length

This IP address must be on the same network as the cluster pool addresses, but not be part of the pool.

3. Enter the network gateway address.

 set ipv4 gateway ip_address
 set ipv6 gateway ip_address

Example:

```
Firepower /ssa/logical-device/cluster-bootstrap* # set ipv4 gateway 10.1.1.254
Firepower /ssa/logical-device/cluster-bootstrap* # set ipv4 pool 10.1.1.11 10.1.1.27
Firepower /ssa/logical-device/cluster-bootstrap* # set ipv6 gateway 2001:DB8::AA
Firepower /ssa/logical-device/cluster-bootstrap* # set ipv6 pool 2001:DB8::11 2001:DB8::27
Firepower /ssa/logical-device/cluster-bootstrap* # set virtual ipv4 10.1.1.1 mask 255.255.255.0
Firepower /ssa/logical-device/cluster-bootstrap* # set virtual ipv6 2001:DB8::1 prefix-length 64
```

h) Exit the cluster bootstrap mode.

 exit

Example:

```
Firepower /ssa/logical-device* # enter cluster-bootstrap
Firepower /ssa/logical-device/cluster-bootstrap* # set chassis-id 1
Firepower /ssa/logical-device/cluster-bootstrap* # set key
   Key: f@arscape
Firepower /ssa/logical-device/cluster-bootstrap* # set mode spanned-etherchannel
Firepower /ssa/logical-device/cluster-bootstrap* # set service-type cluster1
Firepower /ssa/logical-device/cluster-bootstrap* # exit
Firepower /ssa/logical-device/* #
```

Step 6 Configure the management bootstrap parameters.

These settings are meant for initial deployment only, or for disaster recovery. For normal operation, you can later change most values in the application CLI configuration.

a) Create the management bootstrap object.
enter mgmt-bootstrap asa

Example:

Firepower /ssa/logical-device* # enter mgmt-bootstrap asa
Firepower /ssa/logical-device/mgmt-bootstrap* #

b) Specify the admin password.

create bootstrap-key-secret PASSWORD

set value

Enter a value: password

Confirm the value: password

exit

Example:

The pre-configured ASA admin user is useful for password recovery; if you have FXOS access, you can reset the admin user password if you forget it.

Example:

Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key-secret PASSWORD
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value
Enter a value: floppylampshade
Confirm the value: floppylampshade
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #

c) Exit the management bootstrap mode.

exit

Example:

Firepower /ssa/logical-device/mgmt-bootstrap* # exit
Firepower /ssa/logical-device* #

Step 7 Save the configuration.

commit-buffer

The chassis deploys the logical device by downloading the specified software version and pushing the bootstrap configuration and management interface settings to the application instance. Check the status of the deployment using the show app-instance command. The application instance is running and ready to use when the Admin State is Enabled and the Oper State is Online.

Example:

Firepower /ssa/logical-device* # commit-buffer
Firepower /ssa/logical-device # exit
Firepower /ssa # show app-instance

<table>
<thead>
<tr>
<th>App Name</th>
<th>Identifier</th>
<th>Slot ID</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Running Version</th>
<th>Startup Version</th>
<th>Deploy Type</th>
<th>Profile Name</th>
<th>Cluster State</th>
<th>Cluster Role</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Step 8 To add another chassis to the cluster, repeat this procedure except you must configure a unique chassi-id and the correct site-id; otherwise, use the same configuration for both chassis.

Make sure the interface configuration is the same on the new chassis. You can export and import FXOS chassis configuration to make this process easier.

Step 9 Connect to the control unit ASA to customize your clustering configuration.

Example

For chassis 1:

```
scope eth-uplink
scope fabric a
   enter port-channel 1
      set port-type data
      enable
      enter member-port Ethernet1/1
      exit
      enter member-port Ethernet1/2
      exit
   exit
   enter port-channel 2
      set port-type data
      enable
      enter member-port Ethernet1/3
      exit
      enter member-port Ethernet1/4
      exit
   exit
   enter port-channel 3
      set port-type data
      enable
      enter member-port Ethernet1/5
      exit
      enter member-port Ethernet1/6
      exit
   exit
   enter port-channel 4
      set port-type mgmt
      enable
      enter member-port Ethernet2/1
      exit
      enter member-port Ethernet2/2
      exit
   exit
   enter port-channel 48
      set port-type cluster
      enable
      enter member-port Ethernet2/3
      exit
```
exit
exit
commit-buffer

scope ssa
enter logical-device ASA1 asa "1,2,3" clustered
 enter cluster-bootstrap
 set chassis-id 1
 set ipv4 gateway 10.1.1.254
 set ipv4 pool 10.1.1.11 10.1.1.27
 set ipv6 gateway 2001:DB8::AA
 set ipv6 pool 2001:DB8::11 2001:DB8::27
 set key
 Key: f@arscape
 set mode spanned-etherchannel
 set service-type cluster1
 set virtual ipv4 10.1.1.1 mask 255.255.255.0
 set virtual ipv6 2001:DB8::1 prefix-length 64
 exit
scope app asa 9.5.2.1
 set-default
 exit
commit-buffer

For chassis 2:

scope eth-uplink
 scope fabric a
 create port-channel 1
 set port-type data
 enable
 create member-port Ethernet1/1
 exit
 create member-port Ethernet1/2
 exit
 exit
 create port-channel 2
 set port-type data
 enable
 create member-port Ethernet1/3
 exit
 create member-port Ethernet1/4
 exit
 exit
 create port-channel 3
 set port-type data
 enable
 create member-port Ethernet1/5
 exit
 create member-port Ethernet1/6
 exit
 exit
 create port-channel 4
 set port-type mgmt
 enable
 create member-port Ethernet2/1
 exit
 create member-port Ethernet2/2
 exit
 exit
 create port-channel 48
 set port-type cluster
enable
create member-port Ethernet2/3
exit
exit
exit
exit
commit-buffer

scope ssa
enter logical-device ASA1 asa "1,2,3" clustered
enter cluster-bootstrap
 set chassis-id 2
 set ipv4 gateway 10.1.1.254
 set ipv4 pool 10.1.1.11 10.1.1.15
 set ipv6 gateway 2001:DB8::AA
 set ipv6 pool 2001:DB8::11 2001:DB8::19
 set key
 Key: f0rscape
 set mode spanned-etherchannel
 set service-type cluster1
 set virtual ipv4 10.1.1.1 mask 255.255.255.0
 set virtual ipv6 2001:DB8::1 prefix-length 64
 exit
 exit
 scope app asa 9.5.2.1
 set-default
 exit
 commit-buffer

Add More Cluster Members

Add or replace an ASA cluster member.

Note

This procedure only applies to adding or replacing a chassis; if you are adding or replacing a module to a Firepower 9300 where clustering is already enabled, the module will be added automatically.

Before you begin

• Make sure your existing cluster has enough IP addresses in the management IP address pool for this new member. If not, you need to edit the existing cluster bootstrap configuration on each chassis before you add this new member. This change causes a restart of the logical device.

• The interface configuration must be the same on the new chassis. You can export and import FXOS chassis configuration to make this process easier.

• For multiple context mode, enable multiple context mode in the ASA application on the first cluster member; additional cluster members will inherit the multiple context mode configuration automatically.

Procedure

Step 1

lick OK.
To add another chassis to the cluster, repeat the procedure in Create an ASA Cluster, on page 192 except you must configure a unique chassis-id and the correct site-id; otherwise, use the same configuration for the new chassis.

Step 2

Add a Firepower Threat Defense Cluster

You can add a single Firepower 9300 chassis as an intra-chassis cluster, or add multiple chassis for inter-chassis clustering.

For inter-chassis clustering, you must configure each chassis separately. Add the cluster on one chassis; you can then enter most of the same settings on the next chassis.

Create a Firepower Threat Defense Cluster

You can easily deploy the cluster from the Firepower 4100/9300 chassis supervisor. All initial configuration is automatically generated for each unit.

For inter-chassis clustering, you must configure each chassis separately. Deploy the cluster on one chassis; you can then copy the bootstrap configuration from the first chassis to the next chassis for ease of deployment.

In a Firepower 9300 chassis, you must enable clustering for all 3 module slots, even if you do not have a module installed. If you do not configure all 3 modules, the cluster will not come up.

Before you begin

• Download the application image you want to use for the logical device from Cisco.com, and then upload that image to the Firepower 4100/9300 chassis.

• Gather the following information:
 • Management interface ID, IP addresses, and network mask
 • Gateway IP address
 • FMC IP address and/or NAT ID of your choosing
 • DNS server IP address
 • FTD hostname and domain name

Procedure

Step 1

Configure interfaces.

a) Add at least one Data type interface or EtherChannel (also known as a port-channel) before you deploy the cluster. See Add an EtherChannel (Port Channel), on page 158 or Configure a Physical Interface, on page 156.

For inter-chassis clustering, all data interfaces must be Spanned EtherChannels with at least one member interface. Add the same EtherChannels on each chassis. Combine the member interfaces from all cluster units into a single EtherChannel on the switch. See Clustering Guidelines and Limitations, on page 169 for more information about EtherChannels for inter-chassis clustering.
b) Add a Management type interface or EtherChannel. See Add an EtherChannel (Port Channel), on page 158 or Configure a Physical Interface, on page 156.

The management interface is required. Note that this management interface is not the same as the chassis management interface that is used only for chassis management (in FXOS, you might see the chassis management interface displayed as MGMT, management0, or other similar names).

For inter-chassis clustering, add the same Management interface on each chassis.

c) For inter-chassis clustering, add a member interface to the cluster control link EtherChannel (by default, port-channel 48). See Add an EtherChannel (Port Channel), on page 158.

Do not add a member interface for intra-chassis clustering. If you add a member, the chassis assumes this cluster will be inter-chassis, and will only allow you to use Spanned EtherChannels, for example.

Add the same member interfaces on each chassis. The cluster control link is a device-local EtherChannel on each chassis. Use separate EtherChannels on the switch per device. See Clustering Guidelines and Limitations, on page 169 for more information about EtherChannels for inter-chassis clustering.

d) (Optional) Add a Firepower-eventing interface. See Add an EtherChannel (Port Channel), on page 158 or Configure a Physical Interface, on page 156.

This interface is a secondary management interface for FTD devices. To use this interface, you must configure its IP address and other parameters at the FTD CLI. For example, you can separate management traffic from events (such as web events). See the configure network commands in the Firepower Threat Defense command reference.

For inter-chassis clustering, add the same eventing interface on each chassis.

Step 2

Enter security services mode.

```cmd
scope ssa
```

Example:

```
Firepower# scope ssa
Firepower /ssa #
```

Step 3

Set the default image version.

a) View available images. Note the Version number that you want to use.

```cmd
show app
```

Example:

```
Firepower /ssa # show app
Name  Version  Author  Supported Deploy Types CSP Type  Is Default
----------  ----------  --------  ----------------------  ------------
asa  9.9.1  cisco  Native  Application No
asa  9.10.1  cisco  Native  Application Yes
ftd  6.2.3  cisco  Native  Application Yes
```

b) Set the scope to the image version.

```cmd
scope app ftd application_version
```

Example:
c) Accept the license agreement.

 accept-license-agreement

 Example:

   ```bash
   Firepower /ssa/app # accept-license-agreement
   ```

 End User License Agreement: End User License Agreement

 Effective: May 22, 2017

 This is an agreement between You and Cisco Systems, Inc. or its affiliates ("Cisco") and governs your Use of Cisco Software. "You" and "Your" means the individual or legal entity licensing the Software under this EULA. "Use" or "Using" means to download, install, activate, access or otherwise use the Software. "Software" means the Cisco computer programs and any Upgrades made available to You by an Approved Source and licensed to You by Cisco. "Documentation" is the Cisco user or technical manuals, training materials, specifications or other documentation applicable to the Software and made available to You by an Approved Source. "Approved Source" means (i) Cisco or (ii) the Cisco authorized reseller, distributor or systems integrator from whom you acquired the Software. "Entitlement" means the license detail; including license metric, duration, and quantity provided in a product ID (PID) published on Cisco's price list, claim certificate or right to use notification. "Upgrades" means all updates, upgrades, bug fixes, error corrections, enhancements and other modifications to the Software and backup copies thereof.

 Please "commit-buffer" if you accept the license agreement, otherwise "discard-buffer".

 Firepower /ssa/app* #

 d) Set this version as the default.

 set-default

 Example:

   ```bash
   Firepower /ssa/app # set-default
   Firepower /ssa/app* #
   ```

 e) Save the configuration.

 commit-buffer

 Example:

   ```bash
   Firepower /ssa/app* # commit-buffer
   Firepower /ssa/app #
   ```

 f) Exit to ssa mode.

 exit

 Example:
Create a Firepower Threat Defense Cluster

Step 4
Create the cluster:

```plaintext
enter logical-device device_name ftd slots clustered
```

- **device_name**—Used by the Firepower 4100/9300 chassis supervisor to configure clustering settings and assign interfaces; it is not the cluster name used in the security module configuration.
- **slots**—Assigns the chassis modules to the cluster. For the Firepower 4100, specify 1. For the Firepower 9300, specify 1,2,3. You must enable clustering for all 3 module slots in a Firepower 9300 chassis, even if you do not have a module installed. If you do not configure all 3 modules, the cluster will not come up.

Example:

```plaintext
Firepower /ssa # enter logical-device FTD1 ftd 1,2,3 clustered
```

Step 5
Configure the cluster bootstrap parameters.

These settings are meant for initial deployment only, or for disaster recovery. For normal operation, you can later change most values in the application CLI configuration.

a) Create the cluster bootstrap object.

```plaintext
enter cluster-bootstrap
```

Example:

```plaintext
Firepower /ssa/logical-device* # enter cluster-bootstrap
```

b) Set the chassis ID.

```plaintext
set chassis-id id
```

Each chassis in the cluster needs a unique ID.

c) For inter-site clustering, set the site ID between 1 and 8.

```plaintext
set site-id number.
```

To remove the site ID, set the value to 0.

Example:
d) Configure an authentication key for control traffic on the cluster control link.

 `set key`

 Example:

   ```
   Firepower /ssa/logical-device/cluster-bootstrap* # set key
   Key: diamonddogs
   ```

 You are prompted to enter the shared secret.
 The shared secret is an ASCII string from 1 to 63 characters. The shared secret is used to generate the key. This option does not affect datapath traffic, including connection state update and forwarded packets, which are always sent in the clear.

e) Set the cluster interface mode.

 `set mode spanned-etherchannel`

 Spanned EtherChannel mode is the only supported mode.

 Example:

   ```
   Firepower /ssa/logical-device/cluster-bootstrap* # set mode spanned-etherchannel
   Firepower /ssa/logical-device/cluster-bootstrap* #
   ```

f) Set the cluster group name in the security module configuration.

 `set service-type cluster_name`

 The name must be an ASCII string from 1 to 38 characters.

 Example:

   ```
   Firepower /ssa/logical-device/cluster-bootstrap* # set service-type cluster1
   Firepower /ssa/logical-device/cluster-bootstrap* #
   ```

g) Exit the cluster bootstrap mode.

 `exit`

 Example:

   ```
   Firepower /ssa/logical-device* # enter cluster-bootstrap
   Firepower /ssa/logical-device/cluster-bootstrap* # set chassis-id 1
   Firepower /ssa/logical-device/cluster-bootstrap* # set key
   Key: @arscape
   Firepower /ssa/logical-device/cluster-bootstrap* # set mode spanned-etherchannel
   Firepower /ssa/logical-device/cluster-bootstrap* # set service-type cluster1
   Firepower /ssa/logical-device/cluster-bootstrap* # exit
   Firepower /ssa/logical-device/* #
   ```

Step 6 Configure the management bootstrap parameters.
These settings are meant for initial deployment only, or for disaster recovery. For normal operation, you can later change most values in the application CLI configuration.

a) Create the management bootstrap object.

```
enter mgmt-bootstrap ftd
```

Example:

```
Firepower /ssa/logical-device* # enter mgmt-bootstrap ftd
Firepower /ssa/logical-device/mgmt-bootstrap* #
```

b) Specify the IP address or hostname of the managing Firepower Management Center.

Set one of the following:

- **enter bootstrap-key FIREPOWER_MANAGER_IP**

  ```
  set value IP_address
  exit
  ```

- **enter bootstrap-key FQDN**

  ```
  set value fmc_hostname
  exit
  ```

c) Specify the firewall mode, routed or transparent.

```
create bootstrap-key FIREWALL_MODE
```

```
set value {routed | transparent}
exit
```

In routed mode, the device is considered to be a router hop in the network. Each interface that you want to route between is on a different subnet. A transparent firewall, on the other hand, is a Layer 2 firewall that acts like a “bump in the wire,” or a “stealth firewall,” and is not seen as a router hop to connected devices.

The firewall mode is only set at initial deployment. If you re-apply the bootstrap settings, this setting is not used.

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key FIREWALL_MODE
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value routed
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #
```

d) Specify the key to be shared between the device and the FMC.

```
enter bootstrap-key-secret REGISTRATION_KEY
```

```
set value
Enter a value: registration_key
Confirm the value: registration_key
exit
```
You can choose any text string for this key between 1 and 37 characters; you will enter the same key on
the FMC when you add the FTD.

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key-secret
REGISTRATION_KEY
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value
Enter a value: gratuitousapples
Confirm the value: gratuitousapples
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #
```

e) Specify a password for the FTD admin user for CLI access.

```
enter bootstrap-key-secret PASSWORD
set value
Enter a value: password
Confirm the value: password
exit
```

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key-secret PASSWORD
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value
Enter a value: floppylampshade
Confirm the value: floppylampshade
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #
```

f) Specify the fully qualified hostname.

```
enter bootstrap-key FQDN
set value fqdn
exit
```

Valid characters are the letters from a to z, the digits from 0 to 9, the dot (.), and the hyphen (-); maximum
number of characters is 253.

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key FQDN
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value
ftdcluster1.example.com
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* #
```

g) Specify a comma-separated list of DNS servers.

```
enter bootstrap-key DNS_SERVERS
set value dns_servers
exit
```
The FTD uses DNS if you specify a hostname for the FMC, for example.

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key DNS_SERVERS
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value 10.9.8.7,10.9.6.5
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
```

h) Specify a comma-separated list of search domains.

```
enter bootstrap-key SEARCH_DOMAINS
set value search_domains
exit
```

Example:

```
Firepower /ssa/logical-device/mgmt-bootstrap* # create bootstrap-key SEARCH_DOMAINS
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value cisco.com,example.com
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
```

i) Configure the management IP addresses for each security module in the cluster.

Note For the Firepower 9300, you must set the IP address for all 3 module slots in a chassis, even if you do not have a module installed. If you do not configure all 3 modules, the cluster will not come up.

To create an IPv4 management interface object:

1. Create the management interface object.

 `enter ipv4 slot_id firepower`

2. Set the gateway address.

 `set gateway gateway_address`

3. Set the IP address and mask.

 `set ip ip_address mask network_mask`

4. Exit the management IP mode.

 `exit`

5. Repeat for the remaining modules in the chassis.

To create an IPv6 management interface object:

1. Create the management interface object.

 `enter ipv6 slot_id firepower`

2. Set the gateway address.

 `set gateway gateway_address`
3. Set the IP address and prefix.

   ```
   set ip ip_address prefix-length prefix
   ```

4. Exit the management IP mode.

   ```
   exit
   ```

5. Repeat for the remaining modules in the chassis.

 Example:

   ```
   Firepower /ssa/logical-device/mgmt-bootstrap* # create ipv4 1 firepower
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set ip 10.10.10.34 mask 255.255.255.0
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set gateway 10.10.10.1
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # exit
   Firepower /ssa/logical-device/mgmt-bootstrap* # create ipv4 2 firepower
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set ip 10.10.10.35 mask 255.255.255.0
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set gateway 10.10.10.1
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # exit
   Firepower /ssa/logical-device/mgmt-bootstrap* # create ipv4 3 firepower
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set ip 10.10.10.36 mask 255.255.255.0
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set gateway 10.10.10.1
   Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # exit
   ```

 j) Exit the management bootstrap mode.

   ```
   exit
   ```

 Example:

   ```
   Firepower /ssa/logical-device/mgmt-bootstrap* # exit
   Firepower /ssa/logical-device* #
   ```

 Example:

   ```
   Firepower /ssa/logical-device* # enter mgmt-bootstrap ftd
   Firepower /ssa/logical-device/mgmt-bootstrap* # enter bootstrap-key FIREPOWER_MANAGER_IP
   Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value 10.0.0.100
   ```
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # enter bootstrap-key-key FIREWALL_MODE
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value routed
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # enter bootstrap-key-secret REGISTRATION_KEY
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value Value: ziggy$tardust
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # enter bootstrap-key-secret PASSWORD
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # set value Value: $pidersfrommars
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key-secret* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # enter bootstrap-key FQDN
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value example.cisco.com
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # enter bootstrap-key DNS_SERVERS
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value 192.168.1.1
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # enter bootstrap-key SEARCH_DOMAINS
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # set value example.com
Firepower /ssa/logical-device/mgmt-bootstrap/bootstrap-key* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # enter ipv4 1 firepower
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set gateway 10.0.0.1
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set ip 10.0.0.31 mask 255.255.255.0
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # enter ipv4 2 firepower
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set gateway 10.0.0.1
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set ip 10.0.0.32 mask 255.255.255.0
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # enter ipv4 3 firepower
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set gateway 10.0.0.1
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # set ip 10.0.0.33 mask 255.255.255.0
Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* # exit
Firepower /ssa/logical-device/mgmt-bootstrap* # exit

Step 7

Save the configuration.

commit-buffer

The chassis deploys the logical device by downloading the specified software version and pushing the bootstrap configuration and management interface settings to the application instance. Check the status of the deployment using the show app-instance command. The application instance is running and ready to use when the Admin State is Enabled and the Oper State is Online.

Example:

Firepower /ssa/logical-device* # commit-buffer
Firepower /ssa/logical-device # exit
Firepower /ssa # show app-instance

App Name Identifier Slot ID Admin State Oper State Running Version Startup Version
---------- ----------- ----------- ------------ ------------
ftd cluster1 1 Enabled Online 6.4.0.49 6.4.0.49
Native
ftd cluster1 2 Enabled Online 6.4.0.49 6.4.0.49
Native
ftd cluster1 3 Disabled Not Available 6.4.0.49 6.4.0.49
Native

Cisco Firepower 4100/9300 FXOS CLI Configuration Guide, 2.2(2)
Step 8 To add another chassis to the cluster, repeat this procedure except you must configure unique chassis-id and management IP addresses, as well as the correct site-id; otherwise, use the same configuration for both chassis. Make sure the interface configuration is the same on the new chassis. You can export and import FXOS chassis configuration to make this process easier.

Step 9 Add each unit to the Firepower Management Center using the management IP addresses, and then group them into a cluster at the web interface. All cluster units must be in a successfully-formed cluster on FXOS prior to adding them to Firepower Management Center.

Example

```
scope eth-uplink
  scope fabric a
    enter port-channel 1
      set port-type data
      enable
      create member-port Ethernet1/1
      exit
      create member-port Ethernet1/2
      exit
    exit
    enter port-channel 2
      set port-type data
      enable
      create member-port Ethernet1/3
      exit
      create member-port Ethernet1/4
      exit
    exit
    enter port-channel 3
      set port-type firepower-eventing
      enable
      create member-port Ethernet1/5
      exit
      create member-port Ethernet1/6
      exit
    exit
    enter port-channel 4
      set port-type mgmt
      enable
      create member-port Ethernet2/1
      exit
      enter member-port Ethernet2/2
      exit
    exit
    enter port-channel 48
      set port-type cluster
      enable
      enter member-port Ethernet2/3
      exit
    exit
  exit
commit-buffer
```
scope ssa
 enter logical-device FTD1 ftd "1,2,3" clustered
 enter cluster-bootstrap
 set chassis-id 1
 set key cluster_key
 set mode spanned-etherchannel
 set service-type ftd-cluster
 exit
 enter mgmt-bootstrap ftd
 enter bootstrap-key FIREPOWER_MANAGER_IP
 set value 10.0.0.100
 exit
 enter bootstrap-key FIREWALL_MODE
 set value transparent
 exit
 enter bootstrap-key-secret REGISTRATION_KEY
 set value
 Value: alladinsane
 exit
 enter bootstrap-key-secret PASSWORD
 set value
 Value: widthofacircle
 exit
 enter bootstrap-key FQDN
 set value ftd.cisco.com
 exit
 enter bootstrap-key DNS_SERVERS
 set value 192.168.1.1
 exit
 enter bootstrap-key SEARCH_DOMAINS
 set value search.com
 exit
 enter ipv4 1 firepower
 set gateway 10.0.0.1
 set ip 10.0.0.31 mask 255.255.255.0
 exit
 enter ipv4 2 firepower
 set gateway 10.0.0.1
 set ip 10.0.0.32 mask 255.255.255.0
 exit
 enter ipv4 3 firepower
 set gateway 10.0.0.1
 set ip 10.0.0.33 mask 255.255.255.0
 exit
 exit
 exit
scope app ftd 6.0.0.837
 accept-license-agreement
 set-default
 exit
commit-buffer

For chassis 2:

scope eth-uplink
 scope fabric a
 enter port-channel 1
 set port-type data
 enable
 create member-port Ethernet1/1
 exit
 create member-port Ethernet1/2
 exit
exit
enter port-channel 2
set port-type data
enable
create member-port Ethernet1/3
exit
create member-port Ethernet1/4
exit
exit
enter port-channel 3
set port-type firepower-eventing
enable
create member-port Ethernet1/5
exit
create member-port Ethernet1/6
exit
exit
enter port-channel 4
set port-type mgmt
enable
create member-port Ethernet2/1
exit
enter member-port Ethernet2/2
exit
exit
enter port-channel 48
set port-type cluster
enable
enter member-port Ethernet2/3
exit
exit
exit
exit
commit-buffer

scope ssa
enter logical-device FTD1 ftd "1,2,3" clustered
enter cluster-bootstrap
 set chassis-id 2
 set key cluster_key
 set mode spanned-etherchannel
 set service-type ftd-cluster
 exit
enter mgmt-bootstrap ftd
 enter bootstrap-key FIREPOWER_MANAGER_IP
 set value 10.0.0.100
 exit
enter bootstrap-key FIREWALL_MODE
 set value transparent
 exit
enter bootstrap-key-secret REGISTRATION_KEY
 set value alladinsane
 exit
enter bootstrap-key-secret PASSWORD
 set value widthofacircle
 exit
enter bootstrap-key FQDN
 set value ftd.cisco.com
 exit
enter bootstrap-key DNS_SERVERS
 set value 192.168.1.1
 exit
Add More Cluster Units

Add or replace a FTD cluster unit in an existing cluster.

Note
The FXOS steps in this procedure only apply to adding a new *chassis*; if you are adding a new module to a Firepower 9300 where clustering is already enabled, the module will be added automatically. However, you must still add the new module to the Firepower Management Center; skip to the Firepower Management Center steps.

Before you begin

- In the case of a replacement, you must delete the old cluster unit from the Firepower Management Center. When you replace it with a new unit, it is considered to be a new device on the Firepower Management Center.
- The interface configuration must be the same on the new chassis. You can export and import FXOS chassis configuration to make this process easier.

Procedure

To add another chassis to the cluster, repeat the procedure in *Create a Firepower Threat Defense Cluster, on page 201* except you must configure the following settings to be unique; otherwise, use the same configuration for both chassis.

- Chassis ID
Configure Radware DefensePro

The Cisco Firepower 4100/9300 chassis can support multiple services (for example, a firewall and a third-party DDoS application) on a single blade. These applications and services can be linked together to form a Service Chain.

About Radware DefensePro

In the current supported Service Chaining configuration, the third-party Radware DefensePro virtual platform can be installed to run in front of the ASA firewall, or in front of Firepower Threat Defense. Radware DefensePro is a KVM-based virtual platform that provides distributed denial-of-service (DDoS) detection and mitigation capabilities on the Firepower 4100/9300 chassis. When Service Chaining is enabled on your Firepower 4100/9300 chassis, traffic from the network must first pass through the DefensePro virtual platform before reaching the main ASA or Firepower Threat Defense firewall.

Note

• The Radware DefensePro virtual platform may be referred to as Radware vDP (virtual DefensePro), or simply vDP.

• The Radware DefensePro virtual platform may occasionally be referred to as a Link Decorator.

Prerequisites for Radware DefensePro

Prior to deploying Radware DefensePro on your Firepower 4100/9300 chassis, you must configure the Firepower 4100/9300 chassis to use an NTP Server with the etc/UTC Time Zone. For more information about setting the date and time in your Firepower 4100/9300 chassis, see Setting the Date and Time, on page 99.

Guidelines for Service Chaining

Models

• ASA—The Radware DefensePro (vDP) platform is supported with ASA on the following models:
 • Firepower 9300
 • Firepower 4110
 • Firepower 4120—You must use the CLI to deploy Radware DefensePro on this platform; the Firepower Chassis Manager does not yet support this functionality.
 • Firepower 4140—You must use the CLI to deploy Radware DefensePro on this platform; the Firepower Chassis Manager does not yet support this functionality.
 • Firepower 4150
• Firepower Threat Defense—the Radware DefensePro platform is supported with Firepower Threat Defense on the following models:
 • Firepower 9300
 • Firepower 4110—Note you must deploy the decorator at the same time as the logical device. You cannot install the decorator after the logical device is already configured on the device.
 • Firepower 4120—Note you must deploy the decorator at the same time as the logical device. You cannot install the decorator after the logical device is already configured on the device.
 • Firepower 4140
 • Firepower 4150

Additional Guidelines
• Service Chaining is not supported in an inter-chassis cluster configuration. However, the Radware DefensePro (vDP) application can be deployed in a standalone configuration in an inter-chassis cluster scenario.

Configure Radware DefensePro on a Standalone Logical Device

The following procedure shows how to install Radware DefensePro in a single Service Chain in front of a standalone ASA or Firepower Threat Defense logical device.

Before you begin
• Download the vDP image from Cisco.com (see Downloading Images from Cisco.com, on page 56) and then download that image to the Firepower 4100/9300 chassis (see Downloading a Logical Device Software Image to the Firepower 4100/9300 chassis, on page 59).
• You can deploy the Radware DefensePro application in a standalone configuration on an intra-chassis cluster; for intra-chassis clustering, see Configure Radware DefensePro on an Intra-Chassis Cluster, on page 218.

Procedure

Step 1
If you want to use a separate management interface for vDP, enable the interface and set it to be the mgmt type according to Configure a Physical Interface, on page 156. Otherwise, you can share the application management interface.

Step 2
Create an ASA or Firepower Threat Defense logical device in standalone configuration (see Add a Standalone ASA, on page 174 or Add a Standalone Firepower Threat Defense, on page 179). Note that if you are installing the images on a Firepower 4110 or 4120 security appliance, you must install vDP along with the Firepower Threat Defense image before you commit your configuration.

Step 3
Enter security services mode:
Firepower# scope ssa

Step 4
Create the Radware vDP instance:
Firepower /ssa # scope slot slot_id
Firepower /ssa/slot # create app-instance vdp logical_device_identifier
Firepower /ssa/slot/app-instance* # exit
Firepower /ssa/slot/* # exit

Step 5
Commit the configuration:
commit-buffer

Step 6
Verify the installation and provisioning of vDP on the security module:

Firepower /ssa # show app-instance

Example:

<table>
<thead>
<tr>
<th>App Name</th>
<th>Slot ID</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Running Version</th>
<th>Startup Version</th>
<th>Cluster State</th>
<th>Cluster Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftd</td>
<td>1</td>
<td>Enabled</td>
<td>Online</td>
<td>6.2.1.62</td>
<td>6.2.1.62</td>
<td>Not Applicable</td>
<td>None</td>
</tr>
<tr>
<td>vdp</td>
<td>1</td>
<td>Disabled</td>
<td>Installing</td>
<td>8.10.01.16-5</td>
<td></td>
<td>Not Applicable</td>
<td>None</td>
</tr>
</tbody>
</table>

Step 7
Once the vDP application is installed, access the logical device:

Firepower /ssa # scope logical-device device_name

Step 8
Assign the management interface to vDP. You can use the same physical interface as for the logical device, or you can use a separate interface.

Firepower /ssa/logical-device # enter external-port-link name interface_id vdp
Firepower /ssa/logical-device/external-port-link* # exit

Step 9
Configure the external management interface settings for vDP:

a) Create the bootstrap object:

Firepower /ssa/logical-device* # create mgmt-bootstrap vdp

b) Configure the management IP address:

Firepower /ssa/logical-device/mgmt-bootstrap* #create ipv4 slot_id default

c) Set the gateway address:

Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* #set gateway gateway_address

d) Set the IP address and mask:

Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* #set ip ip_address mask network_mask

e) Exit the management IP configuration scope:

Firepower /ssa/logical-device/mgmt-bootstrap/ipv4* #exit

f) Exit the management bootstrap configuration scope:

Firepower /ssa/logical-device/mgmt-bootstrap* #exit
Step 10 Edit the data interface where you want to place the vDP in front of the ASA or Firepower Threat Defense flow:
Firepower /ssa/logical-device* # scope external-port-link name
Enter the `show external-port-link` command to view interface names.

Step 11 Add the vDP to the logical device:
Firepower /ssa/logical-device/external-port-link* # set decorator vdp
Repeat for each interface where you want to use vDP.

Step 12 Commit the configuration:
`commit-buffer`

Step 13 Verify that the third-party app is set for the interface:
Firepower /ssa/logical-device/external-port-link* # show detail

Example:

```
Firepower /ssa/logical-device/external-port-link # show detail

External-Port Link:
  Name: Ethernet11_ftd
  Port or Port Channel Name: Ethernet1/1
  App Name: ftd
  Description:
  Link Decorator: vdp
```

What to do next
Set a password for the DefensePro application. Note that the application does not come online until you set a password. For more information, see the Radware DefensePro DDoS Mitigation User Guide on cisco.com.

Configure Radware DefensePro on an Intra-Chassis Cluster

Note
Service Chaining is not supported in an inter-chassis cluster configuration. However, the Radware DefensePro application can be deployed in a standalone configuration in an inter-chassis cluster scenario.

Before you begin
- Download the vDP image from Cisco.com (see **Downloading Images from Cisco.com**, on page 56) and then download that image to the Firepower 4100/9300 chassis (see **Downloading a Logical Device Software Image to the Firepower 4100/9300 chassis**, on page 59).
Procedure

Step 1
If you want to use a separate management interface for vDP, enable the interface and set it to be the mgmt type according to [Configure a Physical Interface](#) on page 156. Otherwise, you can share the application management interface.

Step 2
Configure an ASA intra-chassis cluster (see [Create an ASA Cluster](#) on page 192) or a Firepower Threat Defense intra-chassis cluster (see [Create a Firepower Threat Defense Cluster](#) on page 201).

Step 3
Decorate the external (client-facing) port with Radware DefensePro:

```
enter external-port-link name interface_name { asa | ftd }
set decorator vdp
set description """"
exit
```

Step 4
Assign the external management port for the logical device:

```
enter external-port-link { mgmt_asa | mgmt_ftd } interface_id { asa | ftd }
set decorator """
set description """
exit
```

Step 5
Assign the external management port for DefensePro:

```
enter external-port-link mgmt_vdp interface_name { asa | ftd }
set decorator """
set description """
```

Step 6
Configure cluster port channel:

```
enter external-port-link port-channel48 Port-channel48 { asa | ftd }
set decorator """
set description """
exit
```

Step 7
Configure management bootstrap for all three DefensePro instances:

```
enter mgmt-bootstrap vdp
enter ipv4 slot_id default
set gateway gateway_address
set ip ip_address mask network_mask
exit
```

Example:

```
enter mgmt-bootstrap vdp
    enter ipv4 1 default
        set gateway 172.16.0.1
```
Step 8 Exit management bootstrap configuration scope:
 exit

Step 9 Enter the DefensePro application instance on the Control blade:
 connect module slot console
 connect vdp

Step 10 On the Control blade, set the management IP:
 device clustering management-channel ip

Step 11 Using the IP found in the previous step, set the Control IP:
 device clustering master set management-channel ip

Step 12 Enable the cluster:
 device clustering state set enable

Step 13 Exit the application console and return to the FXOS module CLI:
 Ctrl]

Step 14 Repeat steps 10, 12, 13, and 14 to set the Control blade IP found in step 11 and enable the cluster for each blade application instance.

Step 15 Commit the configuration:
 commit-buffer

Note After completing this procedure, you must verify whether the DefensePro instances are configured in a cluster.

Step 16 Validate that all DefensePro applications have joined the cluster:
 device cluster show

Step 17 Use either of the following methods to verify which DefensePro instance is primary, and which one is secondary.
 a) Scope the DefensePro instance and show application attributes for DefensePro only:
 scope ssa
 scope slot slot_number
 scope app-instance vdp
 show app-attri
b) Scope the slot and show the DefensePro instance in expanded detail. This approach displays information for both logical device and vDP application instances on the slot.

```
scope ssa

scope slot_number

show app-instance expand detail
```

If the DefensePro application is online but not yet formed in a cluster, the CLI displays:

```
App Attribute:
  App Attribute Key: cluster-role
  Value: unknown
```

If the system displays this "unknown" value, you must enter the DefensePro application and configure the control blade IP address to create the vDP cluster.

If the DefensePro application is online and formed in a cluster, the CLI displays:

```
App Attribute:
  App Attribute Key: cluster-role
  Value: primary/secondary
```

Example

```
scope ssa

enter logical-device ld asa "1,2,3" clustered

enter cluster-bootstrap
  set chassis-id 1
  set ipv4 gateway 172.16.0.1
  set ipv4 pool 172.16.4.216 172.16.4.218
  set ipv6 gateway 2010::2
  set ipv6 pool 2010::21 2010::26
  set key secret
  set mode spanned-etherchannel
  set name cisco
  set virtual ipv4 172.16.4.222 mask 255.255.0.0
  set virtual ipv6 2010::134 prefix-length 64
exit

enter external-port-link Ethernet1-2 Ethernet1/2 asa
  set decorator vdp
  set description ""
exit

enter external-port-link Ethernet1-3_asa Ethernet1/3 asa
  set decorator ""
  set description ""
exit

enter external-port-link mgmt_asa Ethernet1/1 asa
  set decorator ""
  set description ""
exit

enter external-port-link mgmt_vdp Ethernet1/1 vdp
  set decorator ""
  set description ""
exit

enter external-port-link port-channel48 Port-channel48 asa
  set decorator ""
  set description ""
exit
```
What to do next

Set a password for the DefensePro application. Note that the application does not come online until you set a password. For more information, see the Radware DefensePro DDoS Mitigation User Guide on cisco.com.

Open UDP/TCP Ports and Enable vDP Web Services

The Radware APSolute Vision Manager interfaces communicate with the Radware vDP application using various UDP/TCP ports. In order for the vDP application to communicate with the APSolute Vision Manager, you must ensure that these ports are accessible and not blocked by your firewall. For more information on which specific ports to open, see the following tables in the APSolute Vision User Guide:

- **Ports for APSolute Vision Server-WBM Communication and Operating System**
- **Communication Ports for APSolute Vision Server with Radware Devices**

In order for Radware APSolute Vision to manage the Virtual DefensePro application deployed on the FXOS chassis, you must enable the vDP web service using the FXOS CLI.

Procedure

Step 1
From the FXOS CLI, connect to the vDP application instance.

```
connect module slot console
connect vdp
```

Step 2
Enable vDP web services.

```
manage secure-web status set enable
```
Step 3
Exit the vDP application console and return to the FXOS module CLI.
Ctrl]

Manage Logical Devices
You can delete a logical device, convert an ASA to transparent mode, change the interface configuration, and perform other tasks on existing logical devices.

Connect to the Console of the Application
Use the following procedure to connect to the console of the application.

Procedure

Step 1
Connect to the module CLI.
connect module slot_number console
To connect to the security engine of a device that does not support multiple security modules, always use 1 as the slot_number.
Example:

Firepower# connect module 1 console
Telnet escape character is ' ~'.
Trying 127.5.1.1...
Connected to 127.5.1.1.
Escape character is ' ~'.

CISCO Serial Over LAN:
Close Network Connection to Exit
Firepower-module1>

Step 2
Connect to the application console. Enter the appropriate command for your device.
connect ftd
connect vdp

Step 3
Exit the application console to the FXOS module CLI.
• FTD—Enter
• vDP—Enter Ctrl-], .

Step 4
Return to the supervisor level of the FXOS CLI.
a) Enter ~
You exit to the Telnet application.
Delete a Logical Device

Procedure

Step 1
Enter security services mode:
Firepower# scope ssa

Step 2
View details for the logical devices on the chassis:
Firepower /ssa # show logical-device

Step 3
For each logical device that you want to delete, enter the following command:
Firepower /ssa # delete logical-device device_name

Step 4
View details for the applications installed on the logical devices:
Firepower /ssa # show app-instance

Step 5
For each application that you want to delete, enter the following commands:
 a) Firepower /ssa # scope slot slot_number
 b) Firepower /ssa/slot # delete app-instance application_name
 c) Firepower /ssa/slot # exit

Step 6
Commit the configuration:
commit-buffer
Commits the transaction to the system configuration.

Example

Firepower# scope ssa
Firepower /ssa # show logical-device

Logical Device:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Slot ID</th>
<th>Mode</th>
<th>Operational State</th>
<th>Template Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTD</td>
<td></td>
<td>1,2,3</td>
<td>Clustered</td>
<td>Ok</td>
<td>ftd</td>
</tr>
</tbody>
</table>

Firepower /ssa # delete logical-device FTD
Firepower /ssa* # show app-instance

Application Name	Slot ID	Admin State	Operational State	Running Version	Startup Version	Cluster	Oper State
ftd		1 Disabled	Stopping	6.0.0.837	Not Applicable		
Remove a Cluster Unit

The following sections describe how to remove units temporarily or permanently from the cluster.

Temporary Removal

A cluster unit will be automatically removed from the cluster due to a hardware or network failure, for example. This removal is temporary until the conditions are rectified, and it can rejoin the cluster. You can also manually disable clustering.

To check whether a device is currently in the cluster, check the cluster status within the application using the `show cluster info` command:

```
ciscoasa# show cluster info
Clustering is not enabled
```

For FTD using FMC, you should leave the device in the FMC device list so that it can resume full functionality after you reenable clustering.

- **Disable clustering in the application**—You can disable clustering using the application CLI. Enter the `cluster remove unit name` command to remove any unit other than the one you are logged into. The bootstrap configuration remains intact, as well as the last configuration synced from the control unit, so you can later re-add the unit without losing your configuration. If you enter this command on a data unit to remove the control unit, a new control unit is elected.

 When a device becomes inactive, all data interfaces are shut down; only the Management interface can send and receive traffic. To resume traffic flow, re-enable clustering. The Management interface remains up using the IP address the unit received from the bootstrap configuration. However if you reload, and the unit is still inactive in the cluster, the Management interface is disabled.

 To reenable clustering, on the FTD enter `cluster enable`.

- **Disable the application instance**—At the FXOS CLI, see the following example:

```
Firepower-chassis# scope ssa
Firepower-chassis /ssa # scope slot 1
Firepower-chassis /ssa/slot # scope app-instance asa asa1
Firepower-chassis /ssa/slot/app-instance # disable
Firepower-chassis /ssa/slot/app-instance* # commit-buffer
Firepower-chassis /ssa/slot/app-instance #
```
To reenable:

```plaintext
Firepower-chassis /ssa/slot/app-instance # enable
Firepower-chassis /ssa/slot/app-instance* # commit-buffer
Firepower-chassis /ssa/slot/app-instance #
```

- Shut down the security module/engine—at the FXOS CLI, see the following example:

```plaintext
Firepower-chassis# scope service-profile server 1/1
Firepower-chassis /org/service-profile # power down soft-shut-down
Firepower-chassis /org/service-profile* # commit-buffer
Firepower-chassis /org/service-profile #
```

To power up:

```plaintext
Firepower-chassis /org/service-profile # power up
Firepower-chassis /org/service-profile* # commit-buffer
Firepower-chassis /org/service-profile #
```

- Shut down the chassis—at the FXOS CLI, see the following example:

```plaintext
Firepower-chassis# scope chassis 1
Firepower-chassis /chassis # shutdown no-prompt
```

Permanent Removal

You can permanently remove a cluster member using the following methods.

For FTD using FMC, be sure to remove the unit from the FMC device list after you disable clustering on the chassis.

- Delete the logical device—at the FXOS CLI, see the following example:

```plaintext
Firepower-chassis# scope ssa
Firepower-chassis /ssa # delete logical-device cluster1
Firepower-chassis /ssa* # commit-buffer
Firepower-chassis /ssa #
```

- Remove the chassis or security module from service—if you remove a device from service, you can add replacement hardware as a new member of the cluster.

Delete an Application Instance that is not Associated with a Logical Device

When you delete a logical device, you are prompted as to whether you want to also delete the application configuration for the logical device. If you do not delete the application configuration, you will not be able to create a logical device using a different application until that application instance is deleted. You can use the following procedure to delete an application instance from a security module/engine when it is no longer associated with a logical device.
Procedure

Step 1
Enter security services mode:
Firepower# scope ssa

Step 2
View details for the installed applications:
Firepower/ssa # show app-instance

Step 3
For each application that you want to delete, enter the following commands:
a) Firepower /ssa # scope slot slot_number
b) Firepower /ssa/slot # delete app-instance application_name
c) Firepower /ssa/slot # exit

Step 4
Commit the configuration:
commit-buffer
Commits the transaction to the system configuration.

Example
Firepower# scope ssa
Firepower /ssa* # show app-instance
<table>
<thead>
<tr>
<th>Application Name</th>
<th>Slot ID</th>
<th>Admin State</th>
<th>Operational State</th>
<th>Running Version</th>
<th>Startup Version</th>
<th>Cluster Oper State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftd</td>
<td>1</td>
<td>Disabled</td>
<td>Stopping</td>
<td>6.0.0.837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0.0.837</td>
<td>Not Applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftd</td>
<td>2</td>
<td>Disabled</td>
<td>Offline</td>
<td>6.0.0.837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0.0.837</td>
<td>Not Applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftd</td>
<td>3</td>
<td>Disabled</td>
<td>Not Available</td>
<td>6.0.0.837</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Firepower /ssa* # scope slot 1
Firepower /ssa/slot # delete app-instance ftd
Firepower /ssa/slot* # exit
Firepower /ssa* # scope slot 2
Firepower /ssa/slot # delete app-instance ftd
Firepower /ssa/slot* # exit
Firepower /ssa* # scope slot 3
Firepower /ssa/slot # delete app-instance ftd
Firepower /ssa/slot* # exit
Firepower /ssa* # commit-buffer

Change the ASA to Transparent Firewall Mode

You can only deploy a routed firewall mode ASA from the Firepower 4100/9300 chassis. To change the ASA to transparent firewall mode, complete the initial deployment, and then change the firewall mode within the ASA CLI. For standalone ASAs, because changing the firewall mode erases the configuration, you must then redeploy the configuration from the Firepower 4100/9300 chassis to regain the bootstrap configuration. The ASA then remains in transparent mode with a working bootstrap configuration. For clustered ASAs, the configuration is not erased, so you do not need to redeploy the bootstrap configuration from FXOS.
Procedure

Step 1
Connect to the ASA console according to Connect to the Console of the Application, on page 223. For a cluster, connect to the primary unit. For a failover pair, connect to the active unit.

Step 2
Enter configuration mode:

```
enable
configure terminal
```

By default, the enable password is blank.

Step 3
Set the firewall mode to transparent:

```
firewall transparent
```

Step 4
Save the configuration:

```
write memory
```

For a cluster or failover pair, this configuration is replicated to secondary units:

```
asa(config)# firewall transparent
asa(config)# write memory
Building configuration...
Cryptochecksum: 9f831dfb 60dfff8c 1d93988d 74735b69
3791 bytes copied in 0.160 secs
[OK]
asa(config)#
```

```
Beginning configuration replication to unit-1-2
End Configuration Replication to data unit.
asa(config)#
```

Step 5
On the Firepower Chassis Manager **Logical Devices** page, click the **Edit** icon to edit the ASA. The **Provisioning** page appears.

Step 6
Click the device icon to edit the bootstrap configuration. Change any value in your configuration, and click **OK**.

You must change the value of at least one field, for example, the **Password** field.

You see a warning about changing the bootstrap configuration; click **Yes**.

Step 7
For an inter-chassis cluster or for a failover pair, repeat steps 5 through 7 to redeploy the bootstrap configuration on each chassis.

Wait several minutes for the chassis/security modules to reload, and for the ASA to become operational again. The ASA now has an operational bootstrap configuration, but remains in transparent mode.
Change an Interface on a Firepower Threat Defense Logical Device

You can allocate or unallocate an interface on the FTD logical device. You can then sync the interface configuration in FMC.

Adding a new interface, or deleting an unused interface has minimal impact on the FTD configuration. However, deleting an interface that is used in your security policy will impact the configuration. Interfaces can be referenced directly in many places in the FTD configuration, including access rules, NAT, SSL, identity rules, VPN, DHCP server, and so on. Policies that refer to security zones are not affected. You can also edit the membership of an allocated EtherChannel without affecting the logical device or requiring a sync on the FMC.

Deleting an interface will delete any configuration associated with that interface.

Before you begin

• Configure your interfaces, and add any EtherChannels according to Configure a Physical Interface, on page 156 and Add an EtherChannel (Port Channel), on page 158.

• If you want to add an already-allocated interface to an EtherChannel (for example, all interfaces are allocated by default to a cluster), you need to unallocate the interface from the logical device first, then add the interface to the EtherChannel. For a new EtherChannel, you can then allocate the EtherChannel to the device.

• If you want to replace the management or firepower eventing interface, you must use the Firepower Chassis Manager; the CLI does not support this change.

• For clustering or High Availability, make sure you add or remove the interface on all units before you sync the configuration in the FMC. We recommend that you make the interface changes on the data/standby unit(s) first, and then on the control/active unit. Note that new interfaces are added in an administratively down state, so they do not affect interface monitoring.

Procedure

Step 1 Enter security services mode:
Firepower# scope ssa

Step 2 Edit the logical device:
Firepower /ssa # scope logical-device device_name

Step 3 Allocate a new interface to the logical device:
Firepower /ssa/logical-device* # create external-port-link name interface_id ftd
Do not delete any interfaces yet.

Step 4 Commit the configuration:
commit-buffer
Commits the transaction to the system configuration.

Step 5 Sync the interfaces in FMC.
a) Log into the FMC.
b) Select Devices > Device Management and click Edit () for your FTD device. The Interfaces page is selected by default.
c) Click the Sync Device button on the top left of the Interfaces page.
d) After the changes are detected, you will see a red banner on the Interfaces page indicating that the interface configuration has changed. Click the Click to know more link to view the interface changes.
e) If you plan to delete an interface, manually transfer any interface configuration from the old interface to the new interface. Because you have not yet deleted any interfaces, you can refer to the existing configuration. You will have additional opportunity to fix the configuration after you delete the old interface and re-run the validation. The validation will show you all locations in which the old interface is still used.
f) Click Save.
g) Select the devices and click Deploy to deploy the policy to the assigned devices. The changes are not active until you deploy them.

Step 6
In FXOS, unallocate an interface from the logical device:

```
Firepower /ssa/logical-device # delete external-port-link name
```

Enter the `show external-port-link` command to view interface names.

Step 7
Commit the configuration:

```
commit-buffer
```

Commits the transaction to the system configuration.

Step 8
Sync the interfaces again in FMC.

Change an Interface on an ASA Logical Device

You can allocate, unallocate, or replace a management interface on an ASA logical device. ASDM discovers the new interfaces automatically.

Adding a new interface, or deleting an unused interface has minimal impact on the ASA configuration. However, if you remove an allocated interface in FXOS (for example, if you remove a network module, remove an EtherChannel, or reassign an allocated interface to an EtherChannel), and the interface is used in your security policy, removal will impact the ASA configuration. In this case, the ASA configuration retains the original commands so that you can make any necessary adjustments. You can manually remove the old interface configuration in the ASA OS.

Note
You can edit the membership of an allocated EtherChannel without impacting the logical device.

Before you begin
- Configure your interfaces and add any EtherChannels according to Configure a Physical Interface, on page 156 and Add an EtherChannel (Port Channel), on page 158.
• If you want to add an already-allocated interface to an EtherChannel (for example, all interfaces are allocated by default to a cluster), you need to unallocate the interface from the logical device first, then add the interface to the EtherChannel. For a new EtherChannel, you can then allocate the EtherChannel to the device.

• For clustering or failover, make sure you add or remove the interface on all units. We recommend that you make the interface changes on the data/standby unit(s) first, and then on the control/active unit. New interfaces are added in an administratively down state, so they do not affect interface monitoring.

Procedure

Step 1 Enter security services mode:
Firepower# scope ssa

Step 2 Edit the logical device:
Firepower /ssa# scope logical-device device_name

Step 3 Unallocate an interface from the logical device:
Firepower /ssa/logical-device# delete external-port-link name
Enter the show external-port-link command to view interface names.
For a management interface, delete the current interface then commit your change using the commit-buffer command before you add the new management interface.

Step 4 Allocate a new interface to the logical device:
Firepower /ssa/logical-device# create external-port-link name interface_id asa

Step 5 Commit the configuration:
commit-buffer
Commits the transaction to the system configuration.

Monitoring Logical Devices

• show app
View available images.

<table>
<thead>
<tr>
<th>App</th>
<th>Version</th>
<th>Author</th>
<th>Supported Deploy Types</th>
<th>CSP Type</th>
<th>Is Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>asa</td>
<td>9.10.1</td>
<td>cisco</td>
<td>Native</td>
<td></td>
<td>Application Yes</td>
</tr>
<tr>
<td>ftd</td>
<td>6.2.3</td>
<td>cisco</td>
<td>Native</td>
<td></td>
<td>Application Yes</td>
</tr>
<tr>
<td>vdp</td>
<td>8.13.01.09-2</td>
<td>radware</td>
<td>Vm</td>
<td></td>
<td>Application Yes</td>
</tr>
</tbody>
</table>
• **show app-instance**

View the application instance status and information.

```plaintext
Firepower# scope ssa
Firepower /ssa # show app-instance

<table>
<thead>
<tr>
<th>App Name</th>
<th>Slot ID</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Running Version</th>
<th>Startup Version</th>
<th>Cluster State</th>
<th>Cluster Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftd</td>
<td>1</td>
<td>Enabled</td>
<td>Online</td>
<td>6.2.1.62</td>
<td>6.2.1.62</td>
<td>Not Applicable</td>
<td>None</td>
</tr>
<tr>
<td>vdp</td>
<td>1</td>
<td>Disabled</td>
<td>Installing</td>
<td>8.10.01.16-5</td>
<td>Not Applicable</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
```

• **show logical-device**

View details for logical devices.

```plaintext
Firepower# scope ssa
Firepower /ssa # show logical-device

Logical Device:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Slot ID</th>
<th>Mode</th>
<th>Oper State</th>
<th>Template Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>asa1</td>
<td></td>
<td>1</td>
<td>Standalone</td>
<td>Ok</td>
<td>asa</td>
</tr>
</tbody>
</table>
```

• **show app-resource-profile**

Show resource profiles for vDP.

```plaintext
Firepower# scope ssa
Firepower /ssa # scope app vdp 8.13.01.09-2
Firepower /ssa/app # show app-resource-profile

Profile Name Security Model CPU Logical Core Count RAM Size (MB) Default Profile

------------------------- --------------- ---------------------- ---------------
DEFAULT-4110-RESOURCE FPR4K-SM-12 4 16384 Yes
VDP-2-CORES all 2 8192 No
VDP-4-CORES all 4 16384 No
```

Examples for Inter-Site Clustering

The following examples show supported cluster deployments.
Spanned EtherChannel Routed Mode Example with Site-Specific MAC Addresses

The following example shows 2 cluster members at each of 2 data centers placed between the gateway router and an inside network at each site (East-West insertion). The cluster members are connected by the cluster control link over the DCI. The cluster members at each site connect to the local switches using spanned EtherChannels for both the inside and outside networks. Each EtherChannel is spanned across all chassis in the cluster.

The data VLANs are extended between the sites using Overlay Transport Virtualization (OTV) (or something similar). You must add filters blocking the global MAC address to prevent traffic from traversing the DCI to the other site when the traffic is destined for the cluster. If the cluster units at one site become unreachable, you must remove the filters so traffic can be sent to the other site’s cluster units. You should use VACLs to filter the global MAC address. Be sure to disable ARP inspection.

The cluster acts as the gateway for the inside networks. The global virtual MAC, which is shared across all cluster units, is used only to receive packets. Outgoing packets use a site-specific MAC address from each DC cluster. This feature prevents the switches from learning the same global MAC address from both sites on two different ports, which causes MAC flapping; instead, they only learn the site MAC address.

In this scenario:

- All egress packets sent from the cluster use the site MAC address and are localized at the data center.
- All ingress packets to the cluster are sent using the global MAC address, so they can be received by any of the units at both sites; filters at the OTV localize the traffic within the data center.
Spanned EtherChannel Transparent Mode North-South Inter-Site Example

The following example shows 2 cluster members at each of 2 data centers placed between inside and outside routers (North-South insertion). The cluster members are connected by the cluster control link over the DCI. The cluster members at each site connect to the local switches using spanned EtherChannels for the inside and outside. Each EtherChannel is spanned across all chassis in the cluster.

The inside and outside routers at each data center use OSPF, which is passed through the transparent ASAs. Unlike MACs, router IPs are unique on all routers. By assigning a higher cost route across the DCI, traffic stays within each data center unless all cluster members at a given site go down. The lower cost route through the ASAs must traverse the same bridge group at each site for the cluster to maintain asymmetric connections. In the event of a failure of all cluster members at one site, traffic goes from each router over the DCI to the cluster members at the other site.

The implementation of the switches at each site can include:

- Inter-site VSS/vPC—In this scenario, you install one switch at Data Center 1, and the other at Data Center 2. One option is for the cluster units at each Data Center to only connect to the local switch, while the VSS/vPC traffic goes across the DCI. In this case, connections are for the most part kept local to each
datacenter. You can optionally connect each unit to both switches across the DCI if the DCI can handle the extra traffic. In this case, traffic is distributed across the data centers, so it is essential for the DCI to be very robust.

- Local VSS/vPC at each site—For better switch redundancy, you can install 2 separate VSS/vPC pairs at each site. In this case, although the cluster units still have a spanned EtherChannel with Data Center 1 chassis connected only to both local switches, and Data Center 2 chassis connected to those local switches, the spanned EtherChannel is essentially “split.” Each local VSS/vPC sees the spanned EtherChannel as a site-local EtherChannel.

Spanned EtherChannel Transparent Mode East-West Inter-Site Example

The following example shows 2 cluster members at each of 2 data centers placed between the gateway router and two inside networks at each site, the App network and the DB network (East-West insertion). The cluster members are connected by the cluster control link over the DCI. The cluster members at each site connect to the local switches using spanned EtherChannels for both the App and DB networks on the inside and outside. Each EtherChannel is spanned across all chassis in the cluster.

The gateway router at each site uses an FHRP such as HSRP to provide the same destination virtual MAC and IP addresses at each site. A good practice to avoid unintended MAC address flapping is to statically add the gateway routers’ real MAC addresses to the ASA MAC address table using the `mac-address-table static outside_interface mac_address` command. Without these entries, if the gateway at site 1 communicates with the gateway at site 2, that traffic might pass through the ASA and attempt to reach site 2 from the inside.
interface and cause problems. The data VLANs are extended between the sites using Overlay Transport Virtualization (OTV) (or something similar). You must add filters to prevent traffic from traversing the DCI to the other site when the traffic is destined for the gateway router. If the gateway router at one site becomes unreachable, you must remove the filters so traffic can be sent to the other site’s gateway router.

See Spanned EtherChannel Transparent Mode North-South Inter-Site Example, on page 234 for information about vPC/VSS options.

History for Logical Devices

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Platform Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-site clustering improvement for the ASA</td>
<td>2.1.1</td>
<td>You can now configure the site ID for each Firepower 4100/9300 chassis when you deploy the ASA cluster. Previously, you had to configure the site ID within the ASA application; this new feature eases initial deployment. Note that you can no longer set the site ID within the ASA configuration. Also, for best compatibility with inter-site clustering, we recommend that you upgrade to ASA 9.7(1) and FXOS 2.1.1, which includes several improvements to stability and performance. We modified the following command: <code>set site-id</code></td>
</tr>
<tr>
<td>Inter-chassis clustering for 6 FTD modules on the Firepower 9300</td>
<td>2.1.1</td>
<td>You can now enable inter-chassis clustering for the FTD on the Firepower 9300. You can include up to 6 modules. For example, you can use 1 module in 6 chassis, or 2 modules in 3 chassis, or any combination that provides a maximum of 6 modules.</td>
</tr>
<tr>
<td>Support for FTD clustering on the Firepower 4100</td>
<td>2.1.1</td>
<td>You can cluster up to 6 chassis in an FTD cluster.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Platform Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Support for 16 Firepower 4100 chassis in an ASA cluster</td>
<td>2.0.1</td>
<td>You can cluster up to 16 chassis in an ASA cluster.</td>
</tr>
<tr>
<td>Support for ASA clustering on the Firepower 4100</td>
<td>1.1.4</td>
<td>You can cluster up to 6 chassis in an ASA cluster.</td>
</tr>
<tr>
<td>Support for intra-chassis clustering on the FTD on the Firepower 9300</td>
<td>1.1.4</td>
<td>The Firepower 9300 supports intra-chassis clustering with the FTD application. We introduced the following commands: <code>enter mgmt-bootstrap ftd</code>, <code>enter bootstrap-key FIREPOWER_MANAGER_IP</code>, <code>enter bootstrap-key FIREWALL_MODE</code>, <code>enter bootstrap-key-secret REGISTRATION_KEY</code>, <code>enter bootstrap-key-secret PASSWORD</code>, <code>enter bootstrap-key FQDN</code>, <code>enter bootstrap-key DNS_SERVERS</code>, <code>enter bootstrap-key SEARCH_DOMAINS</code>, <code>enter ipv4 firepower</code>, <code>enter ipv6 firepower</code>, <code>set value</code>, <code>set gateway</code>, <code>set ip</code>, <code>accept-license-agreement</code></td>
</tr>
<tr>
<td>Inter-chassis clustering for 16 ASA modules on the Firepower 9300</td>
<td>1.1.3</td>
<td>You can now enable inter-chassis clustering for the ASA. You can include up to 16 modules. For example, you can use 1 module in 16 chassis, or 2 modules in 8 chassis, or any combination that provides a maximum of 16 modules.</td>
</tr>
<tr>
<td>Intra-chassis Clustering for the ASA on the Firepower 9300</td>
<td>1.1.1</td>
<td>You can cluster all ASA security modules within the Firepower 9300 chassis. We introduced the following commands: <code>enter cluster-bootstrap</code>, <code>enter logical-device clustered</code>, <code>set chassis-id</code>, <code>set ipv4 gateway</code>, <code>set ipv4 pool</code>, <code>set ipv6 gateway</code>, <code>set ipv6 pool</code>, <code>set key</code>, <code>set mode spanned-etherchannel</code>, <code>set port-type cluster</code>, <code>set service-type</code>, <code>set virtual ipv4</code>, <code>set virtual ipv6</code></td>
</tr>
</tbody>
</table>
Configuration Import/Export

- About Configuration Import/Export, on page 239
- Exporting an FXOS Configuration File, on page 240
- Scheduling Automatic Configuration Export, on page 242
- Setting a Configuration Export Reminder, on page 243
- Importing a Configuration File, on page 244

About Configuration Import/Export

You can use the configuration export feature to export an XML file containing logical device and platform configuration settings for your Firepower 4100/9300 chassis to a remote server. You can later import that configuration file to quickly apply the configuration settings to your Firepower 4100/9300 chassis to return to a known good configuration or to recover from a system failure.

Guidelines and Restrictions

- Do not modify the contents of the configuration file. If a configuration file is modified, configuration import using that file might fail.

- Application-specific configuration settings are not contained in the configuration file. You must use the configuration backup tools provided by the application to manage application-specific settings and configurations.

- When you import a configuration to the Firepower 4100/9300 chassis, all existing configuration on the Firepower 4100/9300 chassis (including any logical devices) are deleted and completely replaced by the configuration contained in the import file.

- Except in an RMA scenario, we recommend you only import a configuration file to the same Firepower 4100/9300 chassis where the configuration was exported.

- The platform software version of the Firepower 4100/9300 chassis where you are importing should be the same version as when the export was taken. If not, the import operation is not guaranteed to be successful. We recommend you export a backup configuration whenever the Firepower 4100/9300 chassis is upgraded or downgraded.

- The Firepower 4100/9300 chassis where you are importing must have the same Network Modules installed in the same slots as when the export was taken.
The Firepower 4100/9300 chassis where you are importing must have the correct software application images installed for any logical devices defined in the export file that you are importing.

If the configuration file being imported contains a logical device whose application has an End-User License Agreement (EULA), you must accept the EULA for that application on the Firepower 4100/9300 chassis before you import the configuration or the operation will fail.

To avoid overwriting existing backup files, change the file name in the backup operation or copy the existing file to another location.

Exporting an FXOS Configuration File

Use the configuration export feature to export an XML file containing logical device and platform configuration settings for your Firepower 4100/9300 chassis to a remote server.

Before you begin
Review the About Configuration Import/Export.

Procedure

Step 1
To export a configuration file to a remote server:

```
scope system
export-config URL enabled
commit-buffer
```

Specify the URL for the file being exported using one of the following syntax:

- `ftp://username@hostname/path/image_name`
- `scp://username@hostname/path/image_name`
- `sftp://username@hostname/path/image_name`
- `tftp://hostname:port-num/path/image_name`

Note: You must specify the full path including filename. If you do not specify a filename, a hidden file is created in the specified path.

Example:
```
Firepower-chassis# scope system
Firepower-chassis /system # export-config scp://user1@192.168.1.2:/export/cfg-backup.xml enabled
Firepower-chassis /system/export-config # commit-buffer
```

Step 2
To check the status of the export task:

```
scope system

scope export-config hostname
```
show fsm status

Example:
Firepower-chassis# scope system
Firepower-chassis /system # scope export-config 192.168.1.2
Firepower-chassis /system/export-config # show fsm status

Hostname: 192.168.1.2

FSM 1:
 Remote Result: Not Applicable
 Remote Error Code: None
 Remote Error Description:
 Status: Nop
 Previous Status: Backup Success
 Timestamp: 2016-01-03T15:32:08.636
 Try: 0
 Progress (%): 100
 Current Task:

Step 3 To view existing export tasks:
 scope system
 show export-config

Step 4 To modify an existing export task:
 scope system
 scope export-config hostname

Use the following commands to modify the export task:
 • {enable|disable}
 • set description <description>
 • set password <password>
 • set port <port>
 • set protocol {ftp|scp|sftp|tftp}
 • set remote-file path_and_filename
 • set user <user>

Step 5 To delete an export task:
 scope system
 delete export-config hostname
 commit-buffer
Scheduling Automatic Configuration Export

Use the scheduled export feature to automatically export an XML file containing logical device and platform configuration settings for your Firepower 4100/9300 chassis to a remote server. You can schedule the exports to be run daily, weekly, or every two weeks. The configuration export will be executed according to the schedule based on the when the scheduled export feature is enabled. So, for example, if you enable weekly scheduled export on a Wednesday at 10:00pm, the system will trigger a new export every Wednesday at 10:00pm.

Please review the About Configuration Import/Export for important information about using the configuration export feature.

Procedure

To create a scheduled export task:

a) Set the scope to export policy configuration:

 \texttt{scope org}

 \texttt{scope cfg-export-policy default}

b) Enable the export policy:

 \texttt{set adminstate enable}

c) Specify the protocol to use when communicating with the remote server:

 \texttt{set protocol \{ftp|scp|sftp|tftp\}}

d) Specify the hostname or IP address of the location where the backup file should be stored. This can be a server, storage array, local drive, or any read/write media that the Firepower 4100/9300 chassis can access through the network.

 If you use a hostname rather than an IP address, you must configure a DNS server.

 \texttt{set hostname hostname}

e) If you are using a non-default port, specify the port number:

 \texttt{set port port}

f) Specify the username the system should use to log in to the remote server. This field does not apply if the protocol is TFTP:

 \texttt{set user username}

g) Specify the password for the remote server username. This field does not apply if the protocol is TFTP:

 \texttt{set password password}

h) Specify the full path to where you want the configuration file exported including the filename. If you omit the filename, the export procedure assigns a name to the file:

 \texttt{set remote-file path_and_filename}
i) Specify the schedule on which you would like to have the configuration automatically exported. This can be one of the following: Daily, Weekly, or BiWeekly:

 set schedule {daily|weekly|bi-weekly}

j) Commit the transaction to the system configuration:

 commit-buffer

Example:

Firepower-chassis# scope org
Firepower-chassis /org # scope cfg-export-policy default
Firepower-chassis /org/cfg-export-policy # set adminstate enable
Firepower-chassis /org/cfg-export-policy# set protocol scp
Firepower-chassis /org/cfg-export-policy# set hostname 192.168.1.2
Firepower-chassis /org/cfg-export-policy# set remote-file /export/cfg-backup.xml
Firepower-chassis /org/cfg-export-policy# set user user1
Firepower-chassis /org/cfg-export-policy# set password Password:
Firepower-chassis /org/cfg-export-policy# set schedule weekly
Firepower-chassis /org/cfg-export-policy# commit-buffer
Firepower-chassis /org/cfg-export-policy# show detail

Config Export policy:
Name: default
Description: Configuration Export Policy
Admin State: Enable
Protocol: Scp
Hostname: 192.168.1.2
User: user1
Remote File: /export/cfg-backup.xml
Schedule: Weekly
Port: Default
Current Task:

Setting a Configuration Export Reminder

Use the Export Reminder feature to have the system generate a fault when a configuration export hasn't been executed in a certain number of days.

Procedure

To create a configuration export reminder:

 scope org
 scope cfg-export-reminder
 set frequency days
 set adminstate {enable|disable}
 commit-buffer
Importing a Configuration File

You can use the configuration import feature to apply configuration settings that were previously exported from your Firepower 4100/9300 chassis. This feature allows you to return to a known good configuration or to recover from a system failure.

Before you begin

Review the About Configuration Import/Export.

Procedure

Step 1
To import a configuration file from a remote server:

```
scope system
import-config URL enabled
commit-buffer
```

Specify the URL for the file being imported using one of the following syntax:

- `ftp://username@hostname/path/image_name`
- `scp://username@hostname/path/image_name`
- `sftp://username@hostname/path/image_name`
- `tftp://hostname:port-num/path/image_name`

Example:

```
Firepower-chassis# scope system
Firepower-chassis /system # import-config scp://user1@192.168.1.2:/import/cfg-backup.xml enabled
Warning: After configuration import any changes on the breakout port configuration will cause the system to reboot
Firepower-chassis /system/import-config # commit-buffer
```

Step 2
To check the status of the import task:
scope system
scope import-config hostname
show fsm status

Example:
Firepower-chassis# scope system
Firepower-chassis /system # scope import-config 192.168.1.2
Firepower-chassis /system/import-config # show fsm status

Hostname: 192.168.1.2

FSM 1:
Remote Result: Not Applicable
Remote Error Code: None
Remote Error Description:
Status: Import Wait For Switch
Previous Status: Import Config Breakout
Timestamp: 2016-01-03T15:45:03.963
Try: 0
Progress (%): 97
Current Task: updating breakout port configuration(FSM-STAGE:sam:dme:
MgmtImporterImport:configBreakout)

Step 3 To view existing import tasks:
scope system
show import-config

Step 4 To modify an existing import task:
scope system
scope import-config hostname

Use the following commands to modify the import task:

- {enable|disable}
- set description <description>
- set password <password>
- set port <port>
- set protocol {ftp|scp|sftp|tftp}
- set remote-file path_and_filename
- set user <user>

Step 5 To delete an import task:
scope system
delete import-config hostname
CHAPTER 13

Troubleshooting

• Packet Capture, on page 247
• Testing Network Connectivity, on page 254
• Troubleshooting Management Interface Status, on page 255
• Determine Port Channel Status, on page 256
• Recovering from a Software Failure, on page 258
• Recovering from a Corrupted File System, on page 263
• Restoring the Factory Default Configuration when the Admin Password is Unknown, on page 272
• Enabling Firepower Module Core Dumps, on page 274
• Finding the Serial Number of the Firepower 4100/9300 Chassis, on page 275
• Rebuild RAID Virtual Drive, on page 276

Packet Capture

The Packet Capture tool is a valuable asset for use in debugging connectivity and configuration issues and for understanding traffic flows through your Firepower 4100/9300 chassis. You can use the Packet Capture tool to log traffic that is going through specific interfaces on your Firepower 4100/9300 chassis.

You can create multiple packet capture sessions, and each session can capture traffic on multiple interfaces. For each interface included in a packet capture session, a separate packet capture (PCAP) file will be created.

Backplane Port Mappings

The Firepower 4100/9300 chassis uses the following mappings for internal backplane ports:

<table>
<thead>
<tr>
<th>Security Module</th>
<th>Port Mapping</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Module 1/Engine</td>
<td>Ethernet1/9</td>
<td>Internal-Data0/0</td>
</tr>
<tr>
<td>Security Module 1/Engine</td>
<td>Ethernet1/10</td>
<td>Internal-Data0/1</td>
</tr>
<tr>
<td>Security Module 2</td>
<td>Ethernet1/11</td>
<td>Internal-Data0/0</td>
</tr>
<tr>
<td>Security Module 2</td>
<td>Ethernet1/12</td>
<td>Internal-Data0/1</td>
</tr>
<tr>
<td>Security Module 3</td>
<td>Ethernet1/13</td>
<td>Internal-Data0/0</td>
</tr>
</tbody>
</table>
Guidelines and Limitations for Packet Capture

The Packet Capture tool has the following limitations:

- Can capture only up to 100 Mbps.
- Packet capture sessions can be created even when there is not enough storage space available to run the packet capture session. You should verify that you have enough storage space available before you start a packet capture session.
- Does not support multiple active packet capturing sessions.
- Captures only at the ingress stage of the internal switch.
- Filters are not effective on packets that cannot be understood by the internal switch (for example Security Group Tag and Network Service Header packets).
- You cannot capture packets for an EtherChannel as a whole. However, for an EtherChannel allocated to a logical device, you can capture packets on each member interface of the EtherChannel.
- You cannot copy or export a PCAP file while the capture session is still active.
- When you delete a packet capture session, all packet capture files associated with that session are also deleted.

Creating or Editing a Packet Capture Session

Procedure

Step 1
Enter packet capture mode:
Firepower-chassis # scope packet-capture

Step 2
Create a filter; see Configuring Filters for Packet Capture, on page 250.
You can apply filters to any of the interfaces included in a packet capture session.

Step 3
To create or edit a packet capture session:
Firepower-chassis /packet-capture # enter session session_name

Step 4
Specify the buffer size to use for this packet capture session:
Firepower-chassis /packet-capture/session* # set session-memory-usage session_size_in_megabytes
The specified buffer size must be between 1 and 2048 MB.

Step 5
Specify the length of the packet that you want to capture for this packet capture session:
Firepower-chassis /packet-capture/session* # set session-pcap-snaplength session_snap_length_in_bytes
The specified snap length must be between 64 and 900 bytes. If you do not configure the session snap length, the default capture length is 1518 bytes.

Step 6

Specify the physical source ports that should be included in this packet capture session.

You can capture from multiple ports and can capture from both physical ports and application ports during the same packet capture session. A separate packet capture file is created for each port included in the session. You cannot capture packets for an EtherChannel as a whole. However, for an EtherChannel allocated to a logical device, you can capture packets on each member interface of the EtherChannel.

Note

To remove a port from the packet capture session, use `delete` instead of `create` in the commands listed below.

a) Specify the physical port.

 Firepower-chassis /packet-capture/session* # create {phy-port | phy-aggr-port} port_id

Example:

 Firepower-chassis /packet-capture/session* # create phy-port Ethernet1/1
 Firepower-chassis /packet-capture/session/phy-port* #

b) (Optional) Apply the desired filter.

 Firepower-chassis /packet-capture/session/phy-port* # set {source-filter} filtername

Note

To remove a filter from a port, use `set source-filter ""`.

c) Repeat the steps above as needed to add all desired ports.

Step 7

Specify the application source ports that should be included in this packet capture session.

You can capture from multiple ports and can capture from both physical ports and application ports during the same packet capture session. A separate packet capture file is created for each port included in the session.

Note

To remove a port from the packet capture session, use `delete` instead of `create` in the commands listed below.

a) Specify the application port.

 Firepower-chassis /packet-capture/session* # create app_port module_slot link_name interface_name app_name

b) (Optional) Apply the desired filter.

 Firepower-chassis /packet-capture/session/phy-port* # set {source-filter} filtername

Note

To remove a filter from a port, use `set source-filter ""`.

c) Repeat the steps above as needed to add all desired application ports.

Step 8

If you want to start the packet capture session now:

 Firepower-chassis /packet-capture/session* # enable

Newly created packet-capture sessions are disabled by default. Explicit enabling of a session activates the packet capture session when the changes are committed. If another session is already active, enabling a session will generate an error. You must disable the already active packet-capture session before you can enable this session.
Step 9 Commit the transaction to the system configuration:

Firepower-chassis/packet-capture/session* # commit-buffer

If you enabled the packet capture session, the system will begin capturing packets. You will need to stop capturing before you can download the PCAP files from your session.

Example

Firepower-chassis# scope packet-capture
Firepower-chassis packet-capture # create session asalinside
Firepower-chassis packet-capture/session # set session-memory-usage 256
Firepower-chassis packet-capture/session* # create phy-port Ethernet3/1
Firepower-chassis packet-capture/session* # create phy-aggr-port Ethernet2/1/1
Firepower-chassis packet-capture/session* # create app-port 1 link1 Ethernet 1/1 asa
Firepower-chassis packet-capture/session* # create filter interfacevlan100
Firepower-chassis packet-capture/filter* # set ivlan 100
Firepower-chassis packet-capture/filter* # set srcIP 6.6.6.6
Firepower-chassis packet-capture/filter* # set srcPort 80
Firepower-chassis packet-capture/filter* # set destIP 10.10.10.10
Firepower-chassis packet-capture/filter* # set destPort 5050
Firepower-chassis packet-capture/session # exit
Firepower-chassis packet-capture/session/phy-port* # scope phy-port Ethernet3/1
Firepower-chassis packet-capture/session/phy-port* # set src-filter interfacevlan100
Firepower-chassis packet-capture/session/phy-port* # exit
Firepower-chassis packet-capture/session/app-port* # scope app-port 1 link1 Ethernet1/1 asa
Firepower-chassis packet-capture/session/app-port* # set src-filter interfacevlan100
Firepower-chassis packet-capture/session/app-port* # exit
Firepower-chassis packet-capture/session* # enable
Firepower-chassis packet-capture/session* # commit-buffer
Firepower-chassis packet-capture/session #

Configuring Filters for Packet Capture

You can create filters to limit the traffic that is included in a packet capture session. You can select which interfaces should use a specific filter while creating a packet capture session.

Note

If you modify or delete a filter that is applied to a packet capture session that is currently running, the changes will not take effect until you disable that session and then reenable it.

Procedure

Step 1 Enter packet capture mode:

Firepower-chassis # scope packet-capture

Step 2 To create a new packet capture filter:

Firepower-chassis/packet-capture # create filter filter_name

To edit an existing packet capture filter:
Firepower-chassis /packet-capture # enter filter filter_name
To delete an existing packet capture filter:
Firepower-chassis /packet-capture # delete filter filter_name

Step 3 Specify the filter details by setting one or more filter properties:
Firepower-chassis /packet-capture/filter* # set <filterprop filterprop_value>

Note You can filter using IPv4 or IPv6 addresses, but you cannot filter on both in the same packet capture session.

Table 9: Supported Filter Properties

<table>
<thead>
<tr>
<th>Filter Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ivlan</td>
<td>Inner VLAN ID (vlan of packet while ingressing port)</td>
</tr>
<tr>
<td>ovlan</td>
<td>Outer VLAN ID (vlan added by the Firepower 4100/9300 chassis)</td>
</tr>
<tr>
<td>srcip</td>
<td>Source IP Address (IPv4)</td>
</tr>
<tr>
<td>destip</td>
<td>Destination IP Address (IPv4)</td>
</tr>
<tr>
<td>srcipv6</td>
<td>Source IP Address (IPv6)</td>
</tr>
<tr>
<td>destipv6</td>
<td>Destination IP Address (IPv6)</td>
</tr>
<tr>
<td>srcport</td>
<td>Source Port Number</td>
</tr>
<tr>
<td>destport</td>
<td>Destination Port Number</td>
</tr>
<tr>
<td>protocol</td>
<td>IP Protocol [IANA defined Protocol values in decimal format]</td>
</tr>
<tr>
<td>ethertype</td>
<td>Ethernet Protocol type [IANA defined Ethernet Protocol type value in decimal format. For eg: IPv4 = 2048, IPv6 = 34525, ARP = 2054, SGT = 35081]</td>
</tr>
<tr>
<td>srcmac</td>
<td>Source Mac Address</td>
</tr>
<tr>
<td>destmac</td>
<td>Destination Mac Address</td>
</tr>
</tbody>
</table>

Example

Firepower-chassis# scope packet-capture
Firepower-chassis packet-capture # create filter interface1vlan100
Firepower-chassis packet-capture/filter* # set ivlan 100
Firepower-chassis packet-capture/filter* # set srcip 6.6.6.6
Firepower-chassis packet-capture/filter* # set srcport 80
Firepower-chassis packet-capture/filter* # set destip 10.10.10.10
Firepower-chassis packet-capture/filter* # set destport 5050
Firepower-chassis packet-capture/filter* # commit-buffer
Starting and Stopping a Packet Capture Session

Procedure

Step 1 Enter packet capture mode:
Firepower-chassis # scope packet-capture

Step 2 Enter the scope for the packet capture session that you want to start or stop:
Firepower-chassis /packet-capture # enter session session_name

Step 3 To start a packet capture session:
Firepower-chassis /packet-capture/session* # enable [append | overwrite]

Note You cannot start a packet capture session while another session is running.

While the packet capture session is running, the file size for the individual PCAP files will increase as traffic is captured. Once the Buffer Size limit is reached, the system will start dropping packets and you will see the Drop Count field increase.

Step 4 To stop a packet capture session:
Firepower-chassis /packet-capture/session* # disable

Step 5 Commit the transaction to the system configuration:
Firepower-chassis /packet-capture/session* # commit-buffer

If you enabled the packet capture session, the PCAP files for the interfaces included in the session will start collecting traffic. If the session is configured to overwrite session data, the existing PCAP data will be erased. If not, data will be appended to the existing file (if any).

Example
Firepower-chassis# scope packet-capture
Firepower-chassis packet-capture # scope session asalinside
Firepower-chassis packet-capture/session # enable append
Firepower-chassis packet-capture/session* # commit-buffer
Firepower-chassis packet-capture/session #

Downloading a Packet Capture File

You can download the Packet Capture (PCAP) files from a session to your local computer so that they can be analyzed using a network packet analyzer.

PCAP files are stored into the workspace://packet-capture directory and use the following naming conventions:
workspace://packet-capture/session-<id>/<session-name>-<interface-name>.pcap
Procedure

To copy a PCAP file from the Firepower 4100/9300 chassis:

Note You should stop the packet capture session before you download the PCAP files from that session.

a) Connect to local management:
 Firepower-chassis # connect localmgmt

b) Copy the PCAP files:
 # copy pcap_file copy_destination

Example

Firepower-chassis# connect localmgmt
copy workspace:/packet-capture/session-1/test-ethernet-1-1-0.pcap
scp://user@10.10.10.1:/workspace/

Deleting Packet Capture Sessions

You can delete an individual packet capture session if it is not currently running or you can delete all inactive packet capture sessions.

Procedure

Step 1 Enter packet capture mode:
Firepower-chassis # scope packet-capture

Step 2 To delete a specific packet capture session:
Firepower-chassis /packet-capture # delete session session_name

Step 3 To delete all inactive packet capture sessions:
Firepower-chassis /packet-capture # delete-all-sessions

Step 4 Commit the transaction to the system configuration:
Firepower-chassis /packet-capture* # commit-buffer

Example

Firepower-chassis# scope packet-capture
Firepower-chassis packet-capture # delete session asalinside
Firepower-chassis packet-capture* # commit-buffer
Firepower-chassis packet-capture #
Testing Network Connectivity

Before you begin

To test basic network connectivity by pinging another device on the network with its host name or IPv4 address, use the ping command. To ping another device on the network with its host name or IPv6 address, use the ping6 command.

To trace the route to another device on the network with its host name or IPv4 address, use the traceroute command. To trace the route to another device on the network with its host name or IPv6 address, use the traceroute6 command.

- The ping and ping6 commands are available in local-mgmt mode.
- The ping command is also available in module mode.
- The traceroute and traceroute6 commands are available in local-mgmt mode.
- The traceroute command is also available in module mode.

Procedure

Step 1

Connect to local-mgmt or module mode by entering one of the following commands:

- connect local-mgmt
- connect module module-ID console

Example:

FP9300-A# connect local-mgmt
FP9300-A(local-mgmt)#

Step 2

To test basic network connectivity by pinging another device on the network with its host name or IPv4 address:

```
ping {hostname | IPv4_address} [count number_packets ] | [deadline seconds ] | [interval seconds ] | [packet-size bytes ]
```

Example:

This example shows how to connect to ping another device on the network twelve times:

FP9300-A(local-mgmt)# ping 198.51.100.10 count 12
PING 198.51.100.10 (198.51.100.10) from 203.0.113.5 eth0: 56(84) bytes of data.
64 bytes from 198.51.100.10: icmp_seq=1 ttl=61 time=0.264 ms
64 bytes from 198.51.100.10: icmp_seq=2 ttl=61 time=0.219 ms
64 bytes from 198.51.100.10: icmp_seq=3 ttl=61 time=0.234 ms
64 bytes from 198.51.100.10: icmp_seq=4 ttl=61 time=0.205 ms
64 bytes from 198.51.100.10: icmp_seq=5 ttl=61 time=0.216 ms
64 bytes from 198.51.100.10: icmp_seq=6 ttl=61 time=0.251 ms
64 bytes from 198.51.100.10: icmp_seq=7 ttl=61 time=0.223 ms
64 bytes from 198.51.100.10: icmp_seq=8 ttl=61 time=0.221 ms
64 bytes from 198.51.100.10: icmp_seq=9 ttl=61 time=0.227 ms
64 bytes from 198.51.100.10: icmp_seq=10 ttl=61 time=0.224 ms
64 bytes from 198.51.100.10: icmp_seq=11 ttl=61 time=0.225 ms
64 bytes from 198.51.100.10: icmp_seq=12 ttl=61 time=0.227 ms
Step 3 To trace the route to another device on the network using its host name or IPv4 address:

```
traceroute {hostname | IPv4_address}
```

Example:

```
FP9300-A(local-mgmt)# traceroute 198.51.100.10
traceroute to 198.51.100.10 (198.51.100.10), 30 hops max, 40 byte packets
1 198.51.100.57 (198.51.100.57) 0.640 ms 0.737 ms 0.686 ms
2 net1-gw1-13.cisco.com (198.51.100.101) 2.050 ms 2.038 ms 2.028 ms
3 net1-sec-gw2.cisco.com (198.51.100.201) 0.540 ms 0.591 ms 0.577 ms
4 net1-fp9300-19.cisco.com (198.51.100.108) 0.336 ms 0.267 ms 0.289 ms
```

Step 4 (Optional) Enter `exit` to exit `local-mgmt` mode and return to the top-level mode.

Troubleshooting Management Interface Status

During initialization and configuration, if you suspect the management interface has not come up for some reason (for example, you cannot access the Chassis Manager), use the `show mgmt-port` command in the `local-mgmt` shell to determine the status of the management interface.

Note

Do not use the `show interface brief` command in the `fxos` shell as it currently displays incorrect information.

Procedure

Step 1 Connect to `local-mgmt` mode by entering the following command:

- `connect local-mgmt`

Example:

```
firepower# connect local-mgmt
firepower(local-mgmt)#
```

Step 2 Use the `show mgmt-port` command to determine the status of the management interface.

Example:
You also can use the `show mgmt-ip-debug` command; however, it produces an extensive listing of interface-configuration information.

Determine Port Channel Status

You can follow these steps to determine the status of currently defined port channels.

Procedure

Step 1
Enter `/eth-uplink/fabric` mode by entering the following commands:

- `scope eth-uplink`
- `scope fabric {a | b}`

Example:

FP9300-A# scope eth-uplink
FP9300-A /eth-uplink # scope fabric a
FP9300-A /eth-uplink/fabric #

Step 2
Enter the `show port-channel` command to display a list current port channels with the administrative state and operational state for each.

Example:

FP9300-A /eth-uplink/fabric # show port-channel

<table>
<thead>
<tr>
<th>Port Channel Id</th>
<th>Name</th>
<th>Port Type</th>
<th>Admin</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Port-channel10</td>
<td>Data</td>
<td>Enabl</td>
</tr>
<tr>
<td>11</td>
<td>Port-channel11</td>
<td>Data</td>
<td>Enabl</td>
</tr>
<tr>
<td>12</td>
<td>Port-channel12</td>
<td>Data</td>
<td>Disab</td>
</tr>
<tr>
<td>48</td>
<td>Port-channel48</td>
<td>Cluster</td>
<td>Enabl</td>
</tr>
</tbody>
</table>
Step 3 Enter `/port-channel` mode to display individual port-channel and port information by entering the following command:

 - `scope port-channel ID`

Example:

```
FP9300-A /eth-uplink/fabric/port-channel #
```

Step 4 Enter the `show` command to display status information for the specified port channel.

Example:

```
FP9300-A /eth-uplink/fabric/port-channel #
```

Step 5 Enter the `show member-port` command to display status information for the port channel’s member port(s).

Example:

```
FP9300-A /eth-uplink/fabric/port-channel #
```

A port channel does not come up until you assign it to a logical device. If the port channel is removed from the logical device, or the logical device is deleted, the port channel reverts to a Suspended state.

Step 6 To view additional port channel and LACP information, exit `/eth-uplink/fabric/port-channel` mode and enter `fxos` mode by entering the following commands:
• top

• connect fxos

Example:

Step 7

Enter the *show port-channel summary* command to display summary information for the current port channels.

Example:

```
FP9300-A(fxos)# show port-channel summary
```

Flags:
D - Down P - Up in port-channel (members)
I - Individual H - Hot-standby (LACP only)
s - Suspended r - Module-removed
S - Switched R - Routed
U - Up (port-channel)
M - Not in use. Min-links not met

```
-------------------------------------------------------------
-------------------
Group Port- Type Protocol Member Ports
Channel                              
-------------------------------------------------------------
-------------------
10 Po10(SD) Eth LACP Eth2/3(s) Eth2/4(s) 
11 Po11(SD) Eth LACP Eth2/1(s) Eth2/2(s) 
12 Po12(SD) Eth LACP Eth1/4(D) Eth1/5(D) 
48 Po48(SU) Eth LACP Eth1/1(P) Eth1/2(P) 
```

Additional *show port-channel* and *show lacp* commands are available in *fxos* mode. You can use these commands to display a variety of port channel and LACP information such as capacity, traffic, counters, and usage.

What to do next

See *Add an EtherChannel (Port Channel)*, on page 158 for information about creating port channels.

Recovering from a Software Failure

Before you begin

In the event of software failure that prevents the system from booting successfully, you can use the following procedure to boot a new version of software. To complete this process you need to TFTP boot a kickstart image, download new system and manager images, and then boot using the new images.

The recovery images for a specific FXOS version can be obtained from Cisco.com at one of the following locations:

- Firepower 9300—https://software.cisco.com/portal/pub/download/portal/select.html?&mdfid=286287252&flowid=778282&softwareid=286287263
The recovery images include three separate files. For example, below are the current recovery images for FXOS 2.1.1.64.

Recovery image (kickstart) for FX-OS 2.1.1.64.
fxos-k9-kickstart.5.0.3.N2.4.11.63.SPA

Recovery image (manager) for FX-OS 2.1.1.64.
fxos-k9-manager.4.1.1.63.SPA

Recovery image (system) for FX-OS 2.1.1.64.
fxos-k9-system.5.0.3.N2.4.11.63.SPA

Procedure

Step 1

Access ROMMON:

a) Connect to the console port.

b) Reboot the system.

 The system will start loading and during the process display a countdown timer.

c) Press the **Escape** key during the countdown to enter ROMMON mode.

Example:

Cisco System ROMMON, version 1.0.09, RELEASE SOFTWARE
Copyright (c) 1994-2015 by Cisco Systems, Inc.
Compiled Sun 01/01/1999 23:59:59:59.99 by user

Current image running: Boot ROMO
Last reset cause: LocalSoft
DIMM Slot 0 : Present
DIMM Slot 1 : Present
No USB drive !!!!
Platform FPR9K-SUP with 16384 Mbytes of main memory
MAC Address aa:aa:aa:aa:aa:aa

find the string ! boot bootflash:/installables/switch/fxos-k9-kickstart.5.0.3.N2.0.00.00.SPA

bootflash:/installables/switch/fxos-k9-system.5.0.3.N2.0.00.00.SPA

Use BREAK, ESC or CTRL+L to interrupt boot.
use SPACE to begin boot immediately.
Boot interrupted.

rommon 1 >

Step 2

TFTP boot a kickstart image:

a) Verify that the management IP address, management netmask, and gateway IP address are set correctly.

 You can see their values using the **set** command. You can test the connectivity to the TFTP server using the **ping** command.

   ```
   rommon 1 > set
   ADDRESS=
   NETMASK=
   GATEWAY=
   ```
b) Copy the kickstart image to a TFTP directory that is accessible from your Firepower 4100/9300 chassis.

 The kickstart image version number will not match the bundle version number. Information showing the mapping between your FXOS version and the kickstart image can be found on the Cisco.com software download page.

c) Boot the image from ROMMON using the boot command:

 boot tftp://<IP address>/<path to image>

 You can also boot the kickstart from ROMMON using a USB media device inserted into the USB slot on the front panel of the Firepower 4100/9300 chassis. If the USB device is inserted while the system is running, you will need to reboot the system before it will recognize the USB device.

 The system will display a series of #'s indicating that the image is being received and will then load the kickstart image.

Example:

 rommon 1 > set
 ADDRESS=
 NETMASK=
 GATEWAY=
 SERVER=
 IMAGE=
 PS1="ROMMON ! > "

 rommon 2 > address 10.0.0.2
 rommon 3 > netmask 255.255.255.0
 rommon 4 > gateway 10.0.0.1
 rommon 5 > ping 10.0.0.2
 !
 Success rate is 100 percent (10/10)
 rommon 6 > ping 192.168.1.2
 !
 Success rate is 100 percent (10/10)

 rommon 7 > boot tftp://192.168.1.2/fxos-k9-kickstart.5.0.3.N2.1.11.1.SPA
 ADDRESS: 10.0.0.2
 NETMASK: 255.255.255.0
 GATEWAY: 10.0.0.1
 SERVER: 192.168.1.2
 IMAGE: fxos-k9-kickstart.5.0.3.N2.1.11.1.SPA

 Receiving fxos-k9-kickstart.5.0.3.N2.1.11.1.SPA from 192.168.1.2

 ##
 ##
 ##
 ##
File reception completed.

Step 3 Download the recovery system and manager images that match the kickstart image you just loaded to the Firepower 4100/9300 chassis:

a) To download the recovery system and manager images you will need to set the management IP address and gateway. You cannot download these images via USB.

```plaintext
switch(boot)# config terminal
switch(boot)(config)# interface mgmt 0
switch(boot)(config-if)# ip address <ip address> <netmask>
switch(boot)(config-if)# no shutdown
switch(boot)(config-if)# exit
switch(boot)(config)# ip default-gateway <gateway>
switch(boot)(config)# exit
```

b) Copy the recovery system and manager images from the remote server to the bootflash:

```plaintext
switch(boot)# copy URL bootflash:
```

Specify the URL for the file being imported using one of the following syntax:

- `ftp://username@hostname/path/image_name`
- `scp://username@hostname/path/image_name`
- `sftp://username@hostname/path/image_name`
- `tftp://hostname/path/image_name`

Example:

```plaintext
switch(boot)# copy scp://<username>@192.168.1.2/recovery_images/fxos-k9-system.5.0.3.N2.41.69.SPA bootflash:
```

```plaintext
switch(boot)# copy scp://<username>@192.168.1.2/recovery_images/fxos-k9-manager.4.11.69.SPA bootflash:
```

c) After the images have been successfully copied to the Firepower 4100/9300 chassis, make a symlink to the manager image from `nuova-sim-mgmt-nsg.0.1.0.001.bin`. This link tells the load mechanism which manager image to load. The symlink name should always be `nuova-sim-mgmt-nsg.0.1.0.001.bin` regardless of what image you are trying to load.

```plaintext
switch(boot)# copy bootflash:<manager-image>
bootflash:nuova-sim-mgmt-nsg.0.1.0.001.bin
```

Example:

```plaintext
switch(boot)# config terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(boot)(config)# interface mgmt 0
switch(boot)(config-if)# ip address 10.0.0.2 255.255.255.0
switch(boot)(config-if)# no shutdown
switch(boot)(config-if)# exit
switch(boot)(config)# ip default-gateway 10.0.0.1
switch(boot)(config)# exit
```
Step 4 Load the system image that you just downloaded:

switch(boot)# load bootflash:<system-image>

Example:

switch(boot)# load bootflash:fxos-k9-system.5.0.3.N2.4.11.69.SPA
Uncompressing system image: bootflash:/fxos-k9-system.5.0.3.N2.4.11.69.SPA

Manager image digital signature verification successful
System is coming up ... Please wait ...

Cisco FPR Series Security Appliance
FP9300-A login:

Step 5 After the recovery images have loaded, enter the following commands to prevent the system from trying to load the prior images:

Note: This step should be performed immediately after loading the recovery images.

FP9300-A# scope org
FP9300-A /org # scope fw-platform-pack default
FP9300-A /org/fw-platform-pack # set platform-bundle-version ""
Warning: Set platform version to empty will result software/firmware incompatibility issue.
FP9300-A /org/fw-platform-pack* # commit-buffer

Step 6 Download and install the Platform Bundle image that you want to use on your Firepower 4100/9300 chassis. For more information, see Image Management, on page 55.

Example:
Troubleshooting

Recovering from a Corrupted File System

Before you begin

If the Supervisor’s onboard flash becomes corrupted and the system is no longer able to start successfully, you can use the following procedure to recover the system. To complete this process you need to TFTP boot a kickstart image, reformat the flash, download new system and manager images, and then boot using the new images.

This procedure includes reformatting the system flash. As a result, you will need to completely reconfigure your system after it has been recovered.

The recovery images for a specific FXOS version can be obtained from Cisco.com at one of the following locations:

The recovery images include three separate files. For example, below are the recovery images for FXOS 2.1.1.64.

Recovery image (kickstart) for FX-OS 2.1.1.64.
fxos-k9-kickstart.5.0.3.N2.4.11.63.SPA

Recovery image (manager) for FX-OS 2.1.1.64.
fxos-k9-manager.4.1.1.63.SPA

Recovery image (system) for FX-OS 2.1.1.64.
fxos-k9-system.5.0.3.N2.4.11.63.SPA
Procedure

Step 1
Access ROMMON:

a) Connect to the console port.

b) Reboot the system.

 The system will start loading and during the process display a countdown timer.

c) Press the Escape key during the countdown to enter ROMMON mode.

Example:

Cisco System ROMMON, version 1.0.09, RELEASE SOFTWARE
Copyright (c) 1994-2015 by Cisco Systems, Inc.
Compiled Sun 01/01/1999 23:59:59:99.99 by user

Current image running: Boot ROM0
Last reset cause: LocalSoft
DIMM Slot 0 : Present
DIMM Slot 1 : Present
No USB drive !!
Platform FPR9K-SUP with 16384 Mbytes of main memory
MAC Address a0:a0:a0:a0:a0:a0

find the string ! boot bootflash:/installables/switch/fxos-k9-kickstart.5.0.3.N2.0.00.00.SPA
bootflash:/installables/switch/fxos-k9-system.5.0.3.N2.0.00.00.SPA

Use BREAK, ESC or CTRL+L to interrupt boot.
use SPACE to begin boot immediately.
Boot interrupted.

rommon 1 >

Step 2
TFTP boot a kickstart image:

a) Verify that the management IP address, management netmask, and gateway IP address are set correctly.

 You can see their values using the set command. You can test the connectivity to the TFTP server using the ping command.

 rommon 1 > set
 ADDRESS=<ip-address>
 NETMASK=<network-mask>
 GATEWAY=<default-gateway>
 SERVER=<TFTP-server>
 IMAGE=<kickstart-image>
 PS1="ROMMON ! > "

 rommon > address <ip-address>
 rommon > netmask <network-mask>
 rommon > gateway <default-gateway>

b) Copy the kickstart image to a TFTP directory that is accessible from your Firepower 4100/9300 chassis.

 Note The kickstart image version number will not match the bundle version number. Information showing the mapping between your FXOS version and the kickstart image can be found on the Cisco.com software download page.

c) Boot the image from ROMMON using the boot command:
Troubleshooting
Recovering from a Corrupted File System

boot tftp://<IP address>/<path to image>

Note

You can also boot the kickstart from ROMMON using a USB media device inserted into the
USB slot on the front panel of the Firepower 4100/9300 chassis. If the USB device is inserted
while the system is running, you will need to reboot the system before it will recognize the USB
device.

The system will display a series of #'s indicating that the image is being received and will then load the
kickstart image.
Example:
rommon 1 > set
ADDRESS=
NETMASK=
GATEWAY=
SERVER=
IMAGE=
PS1="ROMMON ! > "
rommon 2 > address 10.0.0.2
rommon 3 > netmask 255.255.255.0
rommon 4 > gateway 10.0.0.1
rommon 5 > ping 10.0.0.2
..!!!!!!!!!!
Success rate is 100 percent (10/10)
rommon 6 > ping 192.168.1.2
..!!!!!!!!!!
Success rate is 100 percent (10/10)
rommon 7 > boot tftp://192.168.1.2/fxos-k9-kickstart.5.0.3.N2.1.11.1.SPA
ADDRESS: 10.0.0.2
NETMASK: 255.255.255.0
GATEWAY: 10.0.0.1
SERVER: 192.168.1.2
IMAGE: fxos-k9-kickstart.5.0.3.N2.1.11.1.SPA
..
Receiving fxos-k9-kickstart.5.0.3.N2.1.11.1.SPA from 192.168.1.2
###
###
###
File reception completed.

Step 3

After the kickstart image has loaded, reformat the flash using the init system command.
The init system command erases the contents of the flash including all software images downloaded to the
system and all configurations on the system. The command takes approximately 20-30 minutes to complete.
Example:
switch(boot)# init system
This command is going to erase your startup-config, licenses as well as the contents of
your bootflash:.
Do you want to continue? (y/n)

[n] y

Cisco Firepower 4100/9300 FXOS CLI Configuration Guide, 2.2(2)
265


Detected 32GB flash...
Initializing the system
mke2fs 1.35 (28-Feb-2004)
Checking for bad blocks (read-only test): done
Initializing startup-config and licenses
mke2fs 1.35 (28-Feb-2004)
Checking for bad blocks (read-only test): done
mke2fs 1.35 (28-Feb-2004)
Checking for bad blocks (read-only test): done
mke2fs 1.35 (28-Feb-2004)
Checking for bad blocks (read-only test): done
Formatting bootflash:
mke2fs 1.35 (28-Feb-2004)
Checking for bad blocks (read-only test): done
Formatting SAM partition:
mke2fs 1.35 (28-Feb-2004)
Checking for bad blocks (read-only test): done
Formatting Workspace partition:
mke2fs 1.35 (28-Feb-2004)
Checking for bad blocks (read-only test): done
Formatting Sysdebug partition:
mke2fs 1.35 (28-Feb-2004)
Checking for bad blocks (read-only test): done

Step 4
Download the recovery images to the Firepower 4100/9300 chassis:

a) To download the recovery images you will need to set the management IP address and gateway. You cannot download these images via USB.

```
switch(boot)# config terminal
switch(boot)(config)# interface mgmt 0
switch(boot)(config-if)# ip address <ip address> <netmask>
switch(boot)(config-if)# no shutdown
switch(boot)(config-if)# exit
switch(boot)(config)# ip default-gateway <gateway>
switch(boot)(config)# exit
```

b) Copy all three recovery images from the remote server to the bootflash:

```
switch(boot)# copy URL bootflash:
```

Specify the URL for the file being imported using one of the following syntax:

- `ftp://username@hostname/path/image_name`
- `scp://username@hostname/path/image_name`
- `sftp://username@hostname/path/image_name`
- `tftp://hostname/path/image_name`

Example:

```
switch(boot)# copy
scp://<username>@192.168.1.2/recovery_images/fxos-k9-kickstart.5.0.3.N2.4.11.69.SPA
bootflash:
```

```
switch(boot)# copy
scp://<username>@192.168.1.2/recovery_images/fxos-k9-system.5.0.3.N2.4.11.69.SPA
bootflash:
```

```
switch(boot)# copy
```
scp://<username>@192.168.1.2/recovery_images/fxos-k9-manager.4.1.1.69.SPA
bootflash:

c) After the images have been successfully copied to the Firepower 4100/9300 chassis, make a symlink to the manager image from nuova-sim-mgmt-nsg.0.1.0.001.bin. This link tells the load mechanism which manager image to load. The symlink name should always be nuova-sim-mgmt-nsg.0.1.0.001.bin regardless of what image you are trying to load.

switch(boot)# copy bootflash: <manager-image>
bootflash: nuova-sim-mgmt-nsg.0.1.0.001.bin

Example:

switch(boot)# config terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(boot)(config)# interface mgmt 0
switch(boot)(config-if)# ip address 10.0.0.2 255.255.255.0
switch(boot)(config-if)# no shutdown
switch(boot)(config-if)# exit
switch(boot)(config)# ip default-gateway 10.0.0.1
switch(boot)(config)# exit
switch(boot)# copy
tftp://192.168.1.2/recovery_images/fxos-k9-kickstart.5.0.3.N2.4.11.69.SPA
bootflash:
Trying to connect to tftp server......
Connection to server Established. Copying Started......
/TFTP get operation was successful
Copy complete, now saving to disk (please wait)....

switch(boot)# copy
tftp://192.168.1.2/recovery_images/fxos-k9-system.5.0.3.N2.4.11.69.SPA
bootflash:
Trying to connect to tftp server......
Connection to server Established. Copying Started......
/TFTP get operation was successful
Copy complete, now saving to disk (please wait)....

switch(boot)# copy
tftp://192.168.1.2/recovery_images/fxos-k9-manager.4.1.1.69.SPA
bootflash:
Trying to connect to tftp server......
Connection to server Established. Copying Started......
/TFTP get operation was successful
Copy complete, now saving to disk (please wait)....

switch(boot)# copy bootflash: fxos-k9-manager.4.1.1.69.SPA
bootflash: nuova-sim-mgmt-nsg.0.1.0.001.bin
Copy complete, now saving to disk (please wait)....

switch(boot)#

Step 5 Reload the switch:

switch(boot)# reload
Example:

switch(boot)# reload
This command will reboot this supervisor module. (y/n) ? y
(1866.310313) Restarting system.

!! Rommon image verified successfully !!

Cisco System ROMMON, Version 1.0.11, RELEASE SOFTWARE
Copyright (c) 1994-2016 by Cisco Systems, Inc.
Current image running: Boot ROM1
Last reset cause: ResetRequest
DIMM Slot 0 : Present
DIMM Slot 1 : Present
No USB drive !!
BIOS has been locked !!
Platform FPR9K-SUP with 16384 Mbytes of main memory
MAC Address: bb:aa:77:aa:aa:bb
autoboot: Can not find autoboot file 'menu.lst.local'
Or can not find correct boot string !!
rommon 1 >

Step 6
Boot from the kickstart and system images:

rommon 1 > boot <kickstart-image> <system-image>

Note You will likely see license manager failure messages while the system image is loading. These
messages can be safely ignored.

Example:

rommon 1 > dir
Directory of: bootflash:

01/01/12 12:33a <DIR> 4,096 .
01/01/12 12:33a <DIR> 4,096 ..
01/01/12 12:16a <DIR> 16,384 lost+found
01/01/12 12:27a 34,333,696 fxos-k9-kickstart.5.0.3.N2.4.11.69.SPA
01/01/12 12:29a 330,646,465 fxos-k9-manager.4.1.1.69.SPA
01/01/12 12:31a 250,643,172 fxos-k9-system.5.0.3.N2.4.11.69.SPA
01/01/12 12:34a 330,646,465 nuova-sim-mgmt-nsg.0.1.0.001.bin
4 File(s) 946,269,798 bytes
3 Dir(s)

rommon 2 > boot fxos-k9-kickstart.5.0.3.N2.4.11.69.SPA fxos-k9-system.5.0.3.N2.4.11.69.SPA
!! Kickstart Image verified successfully !!

Linux version: 2.6.27.47 (security@cisco.com) #1 SMP Thu Nov 17 18:22:00 PST 2016
[0.000000] Fastboot Memory at 0c100000 of size 201326592
Usage: init 0123456SsQqAaBbCcUu
INIT: version 2.86 booting

POST INIT Starts at Sun Jan 1 00:27:32 UTC 2012
S10mount-ramfs.supnuovaca Mounting /isan 3000m
Mounted /isan
Creating /callhome..
Mounting /callhome..
Creating /callhome done.
Callhome spool file system init done.
Platform is BS or QP MIO: 30
FPGA Version 0x00010500 FPGA Min Version 0x00000600
Checking all filesystems... done.
Warning: switch is starting up with default configuration
Checking NVRAM block device ... done.
FIPS power-on self-test passed
Unpack CMC Application software
Loading system software
Uncompressing system image: bootflash:/fxos-k9-system.5.0.3.N2.4.11.69.SPA

Manager image digital signature verification successful

... System is coming up ... Please wait ...

nohup: appending output to `nohup.out'

---- Basic System Configuration Dialog ----
This setup utility will guide you through the basic configuration of the system. Only minimal configuration including IP connectivity to the Fabric interconnect and its clustering mode is performed through these steps.

Type Ctrl-C at any time to abort configuration and reboot system. To back track or make modifications to already entered values, complete input till end of section and answer no when prompted to apply configuration.

You have chosen to setup a new Security Appliance. Continue? (y/n):

Step 7

After the images have loaded, the system will prompt you to enter initial configuration settings. For more information, see Initial Configuration Using Console Port, on page 11.

Step 8

Download the Platform Bundle image that you want to use on your Firepower 4100/9300 chassis. For more information, see Image Management, on page 55.

Example:

```
FP9300-A# scope firmware
FP9300-A /firmware # show download-task
```

```
Download task:
File Name Protocol Server Port Userid State
--------- -------- --------------- ---------- --------------- -----
fxos-k9.2.1.1.73.SPA Tftp 192.168.1.2 0 Downloaded
```

```
FP9300-A /firmware # show package fxos-k9.2.1.1.73.SPA detail
Firmware Package fxos-k9.2.1.1.73.SPA:
  Version: 2.1(1.73)
  Type: Platform Bundle
  State: Active
  Time Stamp: 2012-01-01T07:40:28.000
  Build Date: 2017-02-28 13:51:08 UTC
```  

Step 9

Install the Platform Bundle image you downloaded in the previous step:

a) Enter auto-install mode:
Firepower-chassis /firmware # scope auto-install

b) Install the FXOS platform bundle:

Firepower-chassis /firmware/auto-install # install platform platform-vers version_number

version_number is the version number of the FXOS platform bundle you are installing—for example, 2.1(1.73).

c) The system will first verify the software package that you want to install. It will inform you of any incompatibility between currently installed applications and the specified FXOS platform software package. It will also warn you that any existing sessions will be terminated and that the system will need to be rebooted as part of the upgrade.

Enter yes to confirm that you want to proceed with verification.

d) Enter yes to confirm that you want to proceed with installation, or enter no to cancel the installation.

The Firepower eXtensible Operating System unpacks the bundle and upgrades/reloads the components.

e) To monitor the upgrade process:

- Enter scope firmware.
- Enter scope auto-install.
- Enter show fsm status expand.

Step 10

If the Platform Bundle image that you installed corresponds with the images you used for recovering your system, you must manually activate the kickstart and system images so that they will be used when loading the system in the future. Automatic activation does not occur when installing a Platform Bundle that has same images as the recovery images that were used.

a) Set the scope for fabric-interconnect a:

FP9300-A# scope fabric-interconnect a

b) Use the show version command to view the running kernel version and the running system version. You will use these strings to activate the images.

FP9300-A /fabric-interconnect # show version

Note If the Startup-Kern-Vers and Startup-Sys-Vers are already set and match the Running-Kern-Vers and Running-Sys-Vers, you do not need to activate the images and can proceed to Step 11.

c) Enter the following command to activate the images:

FP9300-A /fabric-interconnect # activate firmware

kernel-version <running_kernel_version> system-version <running_system_version>

commit-buffer

Note The server status might change to "Disk Failed." You do not need to worry about this message and can continue with this procedure.

d) Use the show version command to verify that the startup versions have been set correctly and to monitor the activation status for the images.

Important Do not proceed to the next step until the status changes from "Activating" to "Ready."
FP9300-A /fabric-interconnect # show version

Example:

FP9300-A /firmware # top
FP9300-A# scope fabric-interconnect a
FP9300-A /fabric-interconnect # show version
Fabric Interconnect A:
Running-Kern-Vers: 5.0(3)N2(4.11.69)
Running-Sys-Vers: 5.0(3)N2(4.11.69)
Package-Vers: 2.1(1.73)
Startup-Kern-Vers:
Startup-Sys-Vers:
Act-Kern-Status: Ready
Act-Sys-Status: Ready
Bootloader-Vers:

FP9300-A /fabric-interconnect # activate firmware kernel-version
5.0(3)N2(4.11.69) system-version 5.0(3)N2(4.11.69)
Warning: When committed this command will reset the end-point
FP9300-A /fabric-interconnect* # commit-buffer
FP9300-A /fabric-interconnect # show version
Fabric Interconnect A:
Running-Kern-Vers: 5.0(3)N2(4.11.69)
Running-Sys-Vers: 5.0(3)N2(4.11.69)
Package-Vers: 2.1(1.73)
Startup-Kern-Vers: 5.0(3)N2(4.11.69)
Startup-Sys-Vers: 5.0(3)N2(4.11.69)
Act-Kern-Status: Activating
Act-Sys-Status: Activating
Bootloader-Vers:

Step 11

Reboot the system:

Example:

FP9300-A /fabric-interconnect # top
FP9300-A# scope chassis 1
FP9300-A /chassis # reboot no-prompt
Starting chassis reboot. Monitor progress with the command "show fsm status"
FP9300-A /chassis #

The system will power down each security module/engine before finally powering down and then restarting the Firepower 4100/9300 chassis. This process takes approximately 5-10 minutes.

Step 12

Monitor the system status. The server status should go from "Discovery" to "Config" and then finally to "Ok".

Example:

FP9300-A# show server status
Server Slot Status Overall Status Discovery
When the Overall Status is "Ok" your system has been recovered. You must still reconfigure your security appliance (including license configuration) and re-create any logical devices. For more information:

- Firepower 9300 Quick Start Guides—http://www.cisco.com/go/firepower9300-quick
- Firepower 4100 Series Quick Start Guides—http://www.cisco.com/go/firepower4100-quick

Restoring the Factory Default Configuration when the Admin Password is Unknown

This procedure returns your Firepower 4100/9300 chassis system to its default configuration settings, including the admin password. Use this procedure to reset the configurations on your device when the admin password is not known.

Note

This procedure requires console access to the Firepower 4100/9300 chassis.

Procedure

Step 1
Connect your PC to the console port using the provided console cable, and connect to the console using a terminal emulator set for 9600 baud, 8 data bits, no parity, 1 stop bit, and no flow control. For more information on the console cable, see Cisco Firepower 9300 Hardware Installation Guide.

Step 2
Power on the device. When you see the following prompt, press ESC to stop the boot.

Example:
Cisco System ROMMON, Version 1.0.09, RELEASE SOFTWARE
Copyright (c) 1994-2015 by Cisco Systems, Inc.

Current image running: Boot ROM0
Last reset cause: ResetRequest
DIMM Slot 0 : Present
DIMM Slot 1 : Present
No USB drive !!
BIOS has been locked !!

Platform FPR9K-SUP with 16384 Mbytes of main memory
MAC Address: 00:00:00:00:00:00

find the string ! boot bootflash:/installables/switch/fxos-k9-kickstart.5.0.3.N2.3.14.69.SPA
bootflash:/installables/switch/fxos-k9-system.5.0.3.N2.3.14.69.SPA

Use BREAK, ESC or CTRL+L to interrupt boot.
Use SPACE to begin boot immediately.
Boot interrupted.
rommon 1 >

Step 3 Make a note of the kickstart and system image names:

Example:
bootflash:/installables/switch/fxos-k9-kickstart.5.0.3.N2.3.14.69.SPA
bootflash:/installables/switch/fxos-k9-system.5.0.3.N2.3.14.69.SPA

Step 4 Load the kickstart image:
rommon 1 > boot kickstart_image

Example:
rommon 1 > boot bootflash:/installables/switch/fxos-k9-kickstart.5.0.3.N2.3.14.69.SPA
!! Kickstart Image verified successfully !!

Linux version: 2.6.27.47 (security@cisco.com) #1 SMP Tue Nov 24 12:10:28 PST 2015
[0.000000] Fastboot Memory at 0c100000 of size 201326592
Usage: init 0123456SsQqAaBbCcUu
can't create lock file /var/lock/mtab~302: No such file or directory (use -n flag to override)
S10mount-ramfs.supnuovaca Mounting /isan 3000m
Mounted /isan

TAC support: http://www.cisco.com/tac
Copyright (c) 2002-2015, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php

switch(boot)#

Step 5 Enter the config terminal mode:
switch(boot) # config terminal

Example:
switch(boot)#
switch(boot)# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Step 6 Reset the password and confirm the change:
switch(boot) (config) # admin-password erase

Note This step erases all configurations and returns your system to its default configuration settings.

Example:
switch(boot)(config)# admin-password erase
Your password and configuration will be erased!
Do you want to continue? [y/n] [n] y

Step 7 Exit the config terminal mode:
switch(boot) (config) # exit

Step 8 Load the system image noted in step 3 of this procedure and configure your system from scratch using the Initial Configuration Using Console Port, on page 11 task flow.
switch(boot) # load system_image

Example:
switch(boot)# load bootflash:/installables/switch/fxos-k9-system.5.0.3.N2.3.14.69.SPA

Enabling Firepower Module Core Dumps

Enabling core dumps on a Firepower module can help with troubleshooting in the event of a system crash, or to send to Cisco TAC if requested.

Procedure

Step 1 Connect to the desired Firepower module; for example:
Firepower# connect module 1 console

Step 2 (Optional) Enter the following command to view current core dump status:
Firepower-module1> show coredump detail

The command output shows current core dump status information, including whether core dump compression is enabled.

Example:
Firepower-module1> show coredump detail
Configured status: ENABLED.
ASA Coredump: ENABLED.
Bootup status: ENABLED.
Compress during crash: DISABLED.

Step 3 Use the config coredump command to enable or disable core dumps, and to enable or disable core dump compression during a crash.
• Use `config coredump enable` to enable creation of a core dump during a crash.
• Use `config coredump disable` to disable core dump creation during a crash.
• Use `config coredump compress enable` to enable compression of core dumps.
• Use `config coredump compress disable` to disable core dump compression.

Example:

```
Firepower-module1> config coredump enable
Coredump enabled successfully.
ASA coredump enabled, do 'config coredump disableAsa' to disable
Firepower-module1> config coredump compress enable
WARNING: Enabling compression delays system reboot for several minutes after a system failure. Are you sure? (y/n):
y
Firepower-module1>
```

Note Core dump files consume disk space, and if space is running low and compression is not enabled, a core dump file may not be saved even if core dumps are enabled.

Finding the Serial Number of the Firepower 4100/9300 Chassis

You can find details about the Firepower 4100/9300 Chassis and its serial number. Note that serial number of Firepower 4100/9300 Chassis is different than serial numbers of the logical devices.

Procedure

Step 1 Enter the chassis scope:
`scope chassis`

Example:

```
Firepower# scope chassis
Firepower /chassis #
```

Step 2 View inventory details:
`show inventory`

Example:

```
Firepower /chassis # show inventory

The output shows the serial number and other details.

<table>
<thead>
<tr>
<th>Chassis</th>
<th>PID</th>
<th>Vendor</th>
<th>Serial (SN)</th>
<th>HW Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FRR-C9300-AC</td>
<td>Cisco Systems Inc</td>
<td>JNX1950196H</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Rebuild RAID Virtual Drive

RAID (Redundant Array of Independent Disks) is an array, or group, of multiple independent physical drives that provide high performance and fault tolerance. A drive group is a group of physical drives. These drives are managed in partitions known as virtual drives.

RAID drive groups improve data storage reliability and fault tolerance compared to single-drive storage systems. Data loss resulting from a drive failure can be prevented by reconstructing missing data from the remaining drives. RAID improves I/O performance and increases storage subsystem reliability.

If one of your RAID drives has failed or is offline, then the RAID virtual drive is considered to be in a degraded state. Use this procedure to verify whether a RAID virtual drive is in a degraded state, and temporarily set the local disk configuration protection policy to no to rebuild it if necessary.

Procedure

Step 1
Check the RAID drive status.

- a. Enter chassis mode:

  ```
  scope chassis
  ```

- b. Enter server mode:

  ```
  scope server 1
  ```

- c. Enter the raid controller:

  ```
  scope raid-controller 1 sas
  ```

- d. View the virtual drive:

  ```
  show virtual-drive
  ```

 If the RAID virtual drive is degraded, the operability displays as **Degraded**. For example:

  ```
  Virtual Drive:
  ID: 0
  Block Size: 512
  Blocks: 3123046400
  Size (MB): 1524925
  Operability: Degraded
  Presence: Equipped
  ```

Step 2
Set the local disk configuration policy protection to no to rebuild the RAID drive. Note - all data on the disk will be destroyed after you complete this step.

- a. Enter the organization scope:

  ```
  scope org
  ```

- b. Enter the local disk configuration policy scope:
scope local-disk-config-policy ssp-default

c. Set protect to no:

 set protect no

d. Commit the configuration:

 commit-buffer

Step 3
Wait for the RAID drive to rebuild. Check the RAID rebuild status:

scope chassis 1

show server

When the RAID drive has rebuilt successfully, the slot's overall status displays as **Ok**. For example:

Example:

```text
Server:
Slot   Overall Status   Service Profile
------- --------------------- ---------------
1       Ok               ssp-sprof-1
```

Step 4
Once the RAID drive has rebuilt successfully, set the local disk configuration policy protection back to yes.

a. Enter the organization scope:

 scope org

b. Enter the local disk configuration policy scope:

 scope local-disk-config-policy ssp-default

c. Set protect to no:

 set protect yes

d. Commit the configuration:

 commit-buffer
Troubleshooting

Rebuild RAID Virtual Drive
INDEX

D
date 100, 105
 setting manually 105
 viewing 100
date and time 99
 configuring 99
deleting packet capture sessions 253
device name 85
 changing 85
DNS 148
downloading packet capture file 252

E
enabling 113
 SNMP 113
enforcing password strength 44
exiting from logical device connection 223
export configuration 239

F
factory default configuration 96
 restoring 96
Firepower chassis 1, 11, 95
 initial configuration 11
 monitoring health 1
 powering off 95
 rebooting 95
Firepower eXtensible OS 58
 upgrading the platform bundle 58
Firepower platform bundle 55, 56, 57, 58
 about 55
 downloading from Cisco.com 56
 downloading to the Firepower security appliance 56
 upgrading 58
 verifying integrity 57
Firepower security appliance 1
 overview 1
Firepower Threat Defense, See threat defense
firmware 63
 upgrading 63
fpga 63
 upgrading 63
ftd, See threat defense
FXOS chassis, See Firepower chassis

H
high-level task list 11
history, passwords 38
http proxy 22
 configuring 22
HTTPS 41, 42, 121, 122, 123, 124, 126, 127, 128, 130, 132
 certificate request 123, 124
 changing port 130
 configuring 128
 creating key ring 121
 disabling 132
 importing certificate 127
 regenerating key ring 122
 timeout 41, 42
 trusted point 126

I
image version 61
 updating 61
images 55, 56, 57, 58, 59
 downloading from Cisco.com 56
 downloading to the Firepower security appliance 56, 59
 managing 55
 upgrading the Firepower eXtensible Operating System platform bundle 58
 verifying integrity 57
import configuration 239
informs 111
 about 111
initial configuration 11
interfaces 156
 configuring 156
 properties 156

K
key ring 120, 121, 122, 123, 124, 126, 127, 131
 about 120
 certificate request 123, 124
 creating 121
 deleting 131
 importing certificate 127
 regenerating 122
 trusted point 126

L
LDAP 135, 136, 139
 LDAP providers 135, 139
 creating 136
 deleting 139
license 24
 registering 24
license authority 24
locally authenticated users 38, 46, 47, 48, 53
 change interval 46
 clearing password history 53
 no change interval 47
 password history count 48
locally authenticated users (continued)
 password profile 38
logical devices 61, 63, 169, 174, 179, 192, 201, 223, 224, 226
 connecting to 223
 creating a cluster 169, 192, 201
 creating a standalone 174, 179
 deleting 224
 deleting an application instance 226
 exiting from connection 223
 manually downgrading image version 63
 updating image version 61

M
 managed objects 5
 management interface 255
 status 255
 management IP address 81
 changing 81
 monitoring chassis health 1

N
 noAuthNoPriv 111
 NTP 99, 102, 104
 adding 102
 configuring 99, 102
 deleting 104

O
 object commands 7

P
 packet capture 247, 248, 250, 252, 253
 creating packet capture session 248
 deleting packet capture sessions 253
 downloading PCAP file 252
 filter 250
 starting a packet capture session 252
 stopping a packet capture session 252
 password profile 38, 46, 47, 48, 53
 about 38
 change interval 46
 clearing password history 53
 no change interval 47
 password history count 48
 passwords 35, 38, 44
 change interval 38
 guidelines 35
 history count 38
 strength check 44
 PCAP, See packet capture
 PCAP file 252
 downloading 252
 pending commands 8
 ping 254
 PKI 120
 platform bundle 55, 56, 57, 58
 about 55
 downloading from Cisco.com 56
 downloading to the Firepower security appliance 56
 upgrading 58
 verifying integrity 57
 policies 43
 role for remote users 43
 port channel 256
 status 256
 port channels 158
 configuring 158
 powering off Firepower chassis 95
 pre-login banner 92, 93, 94
 creating 92
 deleting 94
 modifying 93
 profiles 38
 password 38

R
 RADIUS 139, 140, 142
 RADIUS providers 140, 142
 creating 140
 deleting 142
 rebooting 95
 registering a license 24
 restoring the factory default configuration 96
 role policy for remote users 43
 rommon 63
 upgrading 63
 RSA 120

S
 session timeout 41, 42
 smart call home 22
 configure http proxy 22
 SNMP 110, 111, 112, 113, 114, 116, 117, 119
 about 110
 community 113
 current settings 119
 enabling 113
 notifications 111
 privileges 111
 security levels 111
 support 110, 113
 traps 114, 116
 creating 114
SNMP (continued)
 traps (continued)
 deleting 116
 users 117, 119
 creating 117
 deleting 119
 Version 3 security features 112
SNMPv3 112
 security features 112
software failure 258
 recovering 258
SSH 41, 42, 106
 configuring 106
 timeout 41, 42
syslog 146
 configuring local destinations 146
 configuring local sources 146
 configuring remote destinations 146
system 11
 initial configuration 11
system recovery 258, 263

time 100, 105
 setting manually 105
 viewing 100
time zone 100, 102, 105
 setting 100, 102, 105
timeout 41, 42
 console 41, 42
 HTTPS, SSH, and Telnet 41, 42
traceroute 254
 connectivity tests 254
traps 111, 114, 116
 about 111
 creating 114
 deleting 116
troubleshooting 255, 256, 274
 generating coredumps 274
 management interface 255
 port channel status 256
termed points 120, 126, 131
 about 120
 creating 126
 deleting 131

upgrading the firmware 63
user accounts 38, 46, 47, 48, 53
 password profile 38, 46, 47, 48, 53
users 9, 33, 34, 35, 38, 39, 43, 44, 46, 47, 48, 49, 51, 52, 53, 117, 119
 activating 52
 CLI session limits 9
 creating 49
 deactivating 52
 default authentication 39
 deleting 51
 locally authenticated 38, 46, 47, 48, 53
 managing 33
 naming guidelines 34
 password guidelines 35
 password strength check 44
 remote, role policy 43
 roles 38
SNMP 117, 119