Understanding the eStreamer Protocol

The Secure Firewall System Event Streamer (eStreamer) uses a message-oriented protocol to stream events
and host profile information to your client application. Your client can request fully-qualified events from a
Management Center. Only connection events, intrusion events, intrusion event packets, and file events are
available as fully-qualified events.

Your client application initiates the data stream by submitting request messages, which specify the data to be
sent, and then controls the message flow from the Management Center or managed device after streaming
begins.

Throughout this document, the eStreamer service on the Management Center or a managed device may be
referred to as the eStreamer server or eStreamer.

* Connection Specifications, on page 1

* Establishing an Authenticated Connection, on page 2
* Establishing a Session, on page 2

* Error Message Format, on page 3

*» Requesting Fully-qualified Events, on page 3

* Format of the JSON file, on page 4

* Fully-Qualified Event Messages, on page 5

* Accepting Data from eStreamer, on page 6

* Changing a Request, on page 6

* Terminating Connections, on page 6

Connection Specifications

» Communicates using TCP over an SSL connection (the client application must support SSL-based
authentication).

* Accepts connection requests on port 8302.
» Waits for the client to initiate all communication sessions.

* Writes all message fields in network byte order (big endian).

Understanding the eStreamer Protocol .

Understanding the eStreamer Protocol |
. Establishing an Authenticated Connection

Establishing an Authenticated Connection

Before a client can request data from eStreamer, the client must initiate an SSL-enabled TCP connection with
the eStreamer service. The client can request on any configured management interface on the Management
Center or managed device. Client connections do not enforce traffic channel configuration for management
interfaces so that configuration can be ignored when choosing an interface for your connection. When the
client initiates the connection, the eStreamer server responds, initiating an SSL handshake with the client. As
part of the SSL handshake, the eStreamer server requests the client’s authentication certificate, and verifies
that the certificate is valid (signed by the Internal Certifying Authority [Internal CA] on the eStreamer server).

Cisco recommends that you also require your client to verify that the certificate presented by the eStreamer
server has been signed by a trusted Certifying Authority. This is the Internal CA certificate included in the
PKCS#12 file that Cisco provides when you register a new eStreamer client with the Management Center or
managed device.

After the SSL session is established, the eStreamer server performs an additional post-connection verification
of the certificate. This includes verifying that the client connection originates from the host specified in the
certificate and that the subject name of the certificate contains the appropriate value. If either post-connection
check fails, the eStreamer server closes the connection. If necessary, you can configure the eStreamer service
so that it does not perform a client host name check.

While the client is not required to perform post-connection verification, Cisco recommends that the client
perform this verification step. The authentication certificate contains the following field values in the subject
name of the certificate:

Table 1: Certificate Subject Name Fields

Field Value
title eStreamer
generationQualifier server

After the post-connection verification is finished, the eStreamer server awaits a data request from the client.

Establishing a Session

The client establishes a session by sending an initial Event Stream request to the eStreamer service.

For fully-qualified events you must submit the data requests in a follow-on message. This initial Event Stream
request message itself is a prerequisite for all eStreamer requests.

\}

Note The eStreamer client can request on any configured management interface on the Management Center or
managed device. Client connections do not enforce traffic channel configuration for management interfaces
so that configuration can be ignored when choosing an interface for your connection.

. Understanding the eStreamer Protocol

| Understanding the eStreamer Protocol
Error Message Format .

Error Message Format

Both the client application and the eStreamer service use error messages. Error messages have a message type
of 1 and contain a header, an error code, an error text length, and the actual error text. Error text can contain
between 0 and 65,535 bytes.

When you create custom error messages for your client application, Cisco recommends using -1 as the error
code.

The following table describes the basic error message format. The Header Version, Message Type, and Message
Length are not specific to the error message type.

Bytes| Name Data Description
Type

0-15 |Header Version |uintl6 Always 1.

16-31 | Message Type |uintl6 Always 1.

32-63 | Message Length | uint32 Length of the error message, in bytes.

64-95 | Error Code uint32 A number representing the error.
96-111 | Error Text uint16 The number of bytes included in the error text field.
Length

112 | Error Message | Variable |The error message. Up to 65,535 bytes.
on

Requesting Fully-qualified Events

Instead of receiving events in the complicated binary format, we recommend that your client uses this option
to request fully-qualified events in a text format such as JSON or CSV. When using this option, the majority
of this document describing the binary format is irrelevant. In the SDK package, the python_client subdirectory
provides sample code for using this option.

This option currently only supports requesting information for a few event types: connection events, intrusion
events, intrusion packets, and file events. If you need to receive other event types in binary format, then
separate client connections must be used for fully-qualified and binary event formats.

To request fully-qualified events, use the documented "Event Stream Request Message", and append a
JSON-format configuration block at the end of the message. The request will include the usual five binary
integers shown below, followed by the JSON-format configuration details, like:

<Header Version (1)> <Message Type (2)> <Message Length> <Initial Timestamp> <Request Flags>
<JSON-format Configuration Block>

The binary Message Length field must include the length of the binary header, plus the length of the JSON
block. A terminating null character is optional after the JSON block, but if the null is included then the Message
Length must account for the null character. For the Request Flags field, only bit 23 (extended event headers)
is supported; all other bits should be zero, in particular bit 30 (extended request) must be zero.

Understanding the eStreamer Protocol .

Understanding the eStreamer Protocol |
B Format of the JSON file

After the client sends the request message, the eStreamer service will immediately start sending event data if
the requested event types have been enabled on the server side Ul eStreamer configuration page.

Format of the JSON file

This example can be also found in the json request.json file in the eStreamer SDK.
{ "Events":

This section specifies the requested fields from connection events. If this section were removed, the eStreamer
server would not send any connection events.

"ConnectionEvent":

"FieldSetDef":

"OutputFieldSet":

"HeaderFieldSet", "ConnectionKeySet", "DetailFieldSet"] },
"Fields":

["OutputFieldSet"] 1},

{
{
{
[

This section specifies the requested fields from intrusion events. If this section were removed, the eStreamer
server would not send any intrusion events.

"IntrusionEvent":

{ "FieldSetDef":

{ "OutputFieldSet":

["HeaderFieldSet", "ConnectionKeySet", "DetailFieldSet", "Impact"] },
"Fields": ["OutputFieldSet"] },

This section specifies the requested fields from intrusion event packets. If this section were removed, the
eStreamer server would not send any intrusion event packets.

"IntrusionPacket":

{ "FieldSetDef":

{ "OutputFieldSet":

["HeaderFieldSet", "DetailFieldSet"] 1},
"Fields": ["OutputFieldSet"] },

This section specifies the requested fields from file events. If this section were removed, the eStreamer server
would not send any file events.

"FileEvent":

{ "FieldSetDef":

{ "OutputFieldSet":

["HeaderFieldSet", "ConnectionKeySet", "DetailFieldSet"] },
"Fields":

["OutputFieldSet"] } 1},

This section specifies the output format as described below.

"OutputFormat":
{ "Transform": "Text", "TransformConfig": "JSON" } }

Inthe Events section, specify a block for each event type that you would like the client to receive (only the
three example types are supported: ConnectionEvent, IntrusionEvent, IntrusionPacket, and
FileEvent). The FieldsetDef section for each event must specify an outputFieldSet, which lists the
fields or field sets which will be included in the events for that event type. The sample file only specifies field
sets, but you can use any combination of field names and field sets.

. Understanding the eStreamer Protocol

| Understanding the eStreamer Protocol
Fully-Qualified Event Messages .

The list of available fields for each event type, and the predefined field sets, can be found on the Firepower
Management Center in the file /etc/sf/EventHandler/EventCatalog/EventCatalog.json. In the Fields
section towards the end of the file, look for the desired event type (such as IntrusionEvent), then see the
Fields and FieldsetDef blocks to see what is available for that event type.

The outputFormat section has settings for the output. The Transform field is always Text, and you specify
the output transformation format with the Transformconfig field. The example shows Json, but you can
also specify csv. Other text formats are available, as well as Fl1atBuffer, but you will need to request
documentation for these formats.

When JSON output is specified in TransformConfig, the output will contain name-value pairs for each
requested field, except any fields which are irrelevant to the event are skipped (e.g. if you requested SSL
fields, and an event did not use SSL, then the output will not contain those fields).

When CSV output is specified in TransformConfig, the output will contain the desired fields in the order
listed in the configuration. If a field is not relevant to the event then the CSV will only contain a comma for
that field. Do not use predefined field sets when requesting CSV because the field sets may change between
versions, making the CSV incompatible.

Fully-Qualified Event Messages

Event messages are contained in bundles, as described in the eStreamer documentation for "Message Bundle
Format", message type 4002.

The client must acknowledge each received data bundle by sending a null message to the eStreamer server,
indicating readiness to accept more data.

For all supported event types, the event data message starts with the binary header that is described in the
eStreamer documentation for various event types, such as the "Intrusion Record Header". The only difference
is that the data block format is the requested format (JSON, CSV, etc.). For quick reference the basic structure
is:

<Header Version (1)>

<Message Type (3)>

<Message Length>

<Record Type (with optional Netmap ID when requested)>

<Record Length> <Timestamp (when request bit 23 is specified)>
<Reserved (when request bit 23 is specified)>

<Data>

Understanding the eStreamer Protocol .

Understanding the eStreamer Protocol |
. Accepting Data from eStreamer

Accepting Data from eStreamer
A\

Note The eStreamer server does not keep a history of the events it sends. Your client application must check for
duplicate events, which can inadvertently occur for a number of reasons. For example, when starting up a
new streaming session, the time specified by the client as the starting point for the new session can have
multiple messages, some of which may have been sent in the previous session and some of which were not.
eStreamer sends all message that meet the specified request criteria. Your application should detect any
resulting duplicates.

During periods of inactivity, eStreamer sends periodic null messages to the client to keep the connection open.
If it receives an error message from the client or an intermediate host, it closes the connection.

eStreamer transmits requested data to the client differently, depending on the request mode.

Changing a Request

To change request parameters for an established session, the client must disconnect and request a new session.

Terminating Connections

The eStreamer server attempts to send an error message before closing the connection. For information on
error messages, see Error Message Format.

The eStreamer server can close a client connection for the following reasons:

* Any time sending a message results in an error. This includes both event data messages and the null
keep-alive message eStreamer sends during periods of inactivity.

* An error occurs while processing a client request.

* Client authentication fails (no error message is sent).

* eStreamer service is shutting down (no error message is sent).

Your client can close the connection to eStreamer server at any time and should attempt to use the error
message format to notify the eStreamer server of the reason.

. Understanding the eStreamer Protocol

https://www.cisco.com/c/en/us/td/docs/security/firepower/720/api/eStreamer/EventStreamerIntegrationGuide/Protocol.html#76249

	Understanding the eStreamer Protocol
	Connection Specifications
	Establishing an Authenticated Connection
	Establishing a Session
	Error Message Format
	Requesting Fully-qualified Events
	Format of the JSON file
	Fully-Qualified Event Messages
	Accepting Data from eStreamer
	Changing a Request
	Terminating Connections

