

C H A P T E R 2

Understanding the eStreamer Application
Protocol

The Firepower System Event Streamer (eStreamer) uses a message-oriented protocol to stream events
and host profile information to your client application. Your client can request event and host profile data
from a Management Center, and intrusion event data only from a managed device. Your client
application initiates the data stream by submitting request messages, which specify the data to be sent,
and then controls the message flow from the Management Center or managed device after streaming
begins.

Throughout this document, the eStreamer service on the Management Center or a managed device may
be referred to as the eStreamer server or eStreamer.

The following sections describe requirements for connecting to the eStreamer service and introduce
commands and data formats used in the eStreamer protocol:

• Connection Specifications, page 2-1 describes the communication flow between the eStreamer
service and your client and describes how the client interacts with it.

• Understanding eStreamer Communication Stages, page 2-2 describes the communication protocol
for client applications to submit data requests to the eStreamer server and for eStreamer to deliver
the requested information to the client.

• Understanding eStreamer Message Types, page 2-6 describes the message types used in the
eStreamer protocol; discusses the basic structure of data packets used by eStreamer to return
intrusion event data, discovery event data, metadata, and host data to a client; and provides other
information to help you write a client that can interpret eStreamer messages.

Connection Specifications
The eStreamer service:

• Communicates using TCP over an SSL connection (the client application must support SSL-based
authentication).

• Accepts connection requests on port 8302.

• Waits for the client to initiate all communication sessions.

• Writes all message fields in network byte order (big endian).

• Encodes text in UTF-8.
2-1
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Understanding eStreamer Communication Stages
Understanding eStreamer Communication Stages
There are four major stages of communication that occur between a client and the eStreamer service:

1. The client establishes a connection with the eStreamer server and the connection is authenticated by
both parties.

See Establishing an Authenticated Connection, page 2-2 for more information.

2. The client requests data from the eStreamer service and specifies the types of data to be streamed.
A single event request message can specify any combination of available event data, including event
metadata. A single host profile request can specify a single host or multiple hosts.

Two request modes are available for requesting event data:

– Event Stream Request — The client submits a message containing request flags that specify the
requested event types and version of each type, and the eStreamer server responds by streaming
the requested data.

– Extended Request — The client submits a request with the same message format as for Event
Stream requests but sets a flag for an extended request. This initiates a message interaction
between client and eStreamer server through which the client requests additional information
and version combinations not available via Event Stream requests.

For information on requesting data, see Requesting Data from eStreamer, page 2-3.

3. eStreamer establishes the requested data stream to the client.

See Accepting Data from eStreamer, page 2-5 for more information.

4. The connection terminates.
See Terminating Connections, page 2-5 for more information.

Establishing an Authenticated Connection
Before a client can request data from eStreamer, the client must initiate an SSL-enabled TCP connection
with the eStreamer service. The client can request on any configured management interface on the
Management Center or managed device. Client connections do not enforce traffic channel configuration
for management interfaces so that configuration can be ignored when choosing an interface for your
connection. When the client initiates the connection, the eStreamer server responds, initiating an SSL
handshake with the client. As part of the SSL handshake, the eStreamer server requests the client’s
authentication certificate, and verifies that the certificate is valid (signed by the Internal Certifying
Authority [Internal CA] on the eStreamer server).

Note Cisco recommends that you also require your client to verify that the certificate presented by the
eStreamer server has been signed by a trusted Certifying Authority. This is the Internal CA certificate
included in the PKCS#12 file that Cisco provides when you register a new eStreamer client with the
Management Center or managed device. See Adding Authentication for eStreamer Clients, page 6-3 for
more information.

After the SSL session is established, the eStreamer server performs an additional post-connection
verification of the certificate. This includes verifying that the client connection originates from the host
specified in the certificate and that the subject name of the certificate contains the appropriate value. If
either post-connection check fails, the eStreamer server closes the connection. If necessary, you can
configure the eStreamer service so that it does not perform a client host name check (see eStreamer
Service Options, page 6-4 for more information).
2-2
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Understanding eStreamer Communication Stages
While the client is not required to perform post-connection verification, Cisco recommends that the
client perform this verification step. The authentication certificate contains the following field values in
the subject name of the certificate:

After the post-connection verification is finished, the eStreamer server awaits a data request from the
client.

Requesting Data from eStreamer
Your client performs the following high-level tasks in managing data requests:

• Initializing the request session — See Establishing a Session, page 2-3.

• Requesting events from the eStreamer event archive — Using Event Stream Requests and Extended
Requests to Initiate Event Streaming, page 2-3.

• Requesting host data — See Requesting Host Data, page 2-4.

• Changing a request — See Changing a Request, page 2-5.

Establishing a Session

The client establishes a session by sending an initial Event Stream request to the eStreamer service.

In this initial message, you can either include data request flags or submit the data requests in a follow-on
message. This initial Event Stream request message itself is a prerequisite for all eStreamer requests,
whether for event data or for host data. For information about using the Event Stream request message,
see Event Stream Request Message Format, page 2-10.

Note The eStreamer client can request on any configured management interface on the Management Center
or managed device. Client connections do not enforce traffic channel configuration for management
interfaces so that configuration can be ignored when choosing an interface for your connection.

Using Event Stream Requests and Extended Requests to Initiate Event Streaming

The eStreamer service provides two modes of requests for event streaming. Your request can combine
modes. In both modes, your client starts the request with an Event Stream request message but sets the
request flag bits differently. For details about the Event Stream message format, see Event Stream
Request Message Format, page 2-10.

When eStreamer receives an Event Stream request message, it processes the client request as follows:

• If the request message does not set bit 30 in the request flag field, eStreamer begins streaming any
events requested by other set bits in the request flag field. For information, see Submitting Event
Stream Requests, page 2-4.

Table 2-1 Certificate Subject Name Fields

Field Value

title eStreamer

generationQualifier server
2-3
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Understanding eStreamer Communication Stages
• If bit 30 is set in the Event Stream request, eStreamer provides extended request processing.
Extended request flags must be sent if this bit is set. For information, see Submitting Extended
Requests, page 2-4. Note that eStreamer resolves any duplicate requests. If you request multiple
versions of the same data, either by multiple flags or multiple extended requests, the highest version
is used. For example, if eStreamer receives flag requests for discovery events version 1 and 6 and
an extended request for version 3, it sends version 6.

Submitting Event Stream Requests

Event stream requests use a simple process:

• Your client sends a request message to the eStreamer service with a start date and time and a request
flag field that specifies the events and their version level to be included in the data stream.

• eStreamer streams events beginning at the specified time. For information about the streaming
protocol, see Accepting Data from eStreamer, page 2-5.

For information on the format and content of the client’s Event Stream request message, see Event
Stream Request Message Format, page 2-10.

For information on the event types and versions of events that the client can request, see Table 2-6 on
page 2-12.

Submitting Extended Requests

If you set bit 30 in the request flags field of an Event Stream Request message, you initiate an extended
request, which starts a negotiation with the server. Extended request flags must be sent if this bit is set.
For the event types available by extended request, see Table 2-22 on page 2-36.

The steps for extended requests are as follows:

• Your client sends an Event Streaming Request message to eStreamer with the request flags bit 30
set to 1, which signals an extended request. See Event Stream Request Message Format, page 2-10
for message format details.

• eStreamer answers with a Streaming Information message that advertises the list of services
available to the client. For details about the Streaming Information message, see Streaming
Information Message Format, page 2-31.

• The client returns a Streaming Request message that indicates the service it wants to use, with a
request list of event types and versions available from that service. The request list corresponds to
setting bits in the request flag field when making a standard event stream request. For details about
how to use the Streaming Request message to request events, see “Sample Extended Request
Messages” section on page 2-38.

• eStreamer processes the client’s Streaming Request message and begins streaming the data at the
time specified in the message. For information about the streaming protocol, see Accepting Data
from eStreamer, page 2-5.

Requesting Host Data

Once you have established a session, you can submit a request for host data at any time. eStreamer
generates information for the requested hosts from the Firepower System network map.
2-4
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Understanding eStreamer Communication Stages
Changing a Request

To change request parameters for an established session, the client must disconnect and request a new
session.

Accepting Data from eStreamer

Note The eStreamer server does not keep a history of the events it sends. Your client application must check
for duplicate events, which can inadvertently occur for a number of reasons. For example, when starting
up a new streaming session, the time specified by the client as the starting point for the new session can
have multiple messages, some of which may have been sent in the previous session and some of which
were not. eStreamer sends all message that meet the specified request criteria. Your application should
detect any resulting duplicates.

During periods of inactivity, eStreamer sends periodic null messages to the client to keep the connection
open. If it receives an error message from the client or an intermediate host, it closes the connection.

eStreamer transmits requested data to the client differently, depending on the request mode.

Event Stream Requests

If the client submits an event stream request, eStreamer returns data message by message. It may send
multiple messages in a row without waiting for a client acknowledgment. At a certain point, it pauses
and waits for the client. The client operating system buffers received data and lets the client process it
at its own pace.

If the client request includes a request for metadata, eStreamer sends the metadata first. The client should
store it in memory to be available when processing the event records that follow.

Extended Requests

If the client submits an extended request, eStreamer queues up messages and sends them in bundles.
eStreamer may send multiple bundles in a row without waiting for a client acknowledgment. At a certain
point, it pauses and waits for the client. The client operating system buffers received data and lets the
client read it off at its own pace.

The client unpacks each bundle, message by message, and uses the lengths of the records and the blocks
to parse each message. The overall message length in each message header can be used to calculate when
the end of each message has been reached, and the overall bundle length can be used to know when the
end of the bundle is reached. The bundle requires no index of its contents to be correctly parsed.

For information about the message bundling mechanism, see Message Bundle Format, page 2-39.

For information about the null message that the client can use for additional flow control, see Null
Message Format, page 2-7.

Terminating Connections
The eStreamer server attempts to send an error message before closing the connection. For information
on error messages, see Error Message Format, page 2-8.
2-5
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Understanding eStreamer Message Types
The eStreamer server can close a client connection for the following reasons:

• Any time sending a message results in an error. This includes both event data messages and the null
keep-alive message eStreamer sends during periods of inactivity.

• An error occurs while processing a client request.

• Client authentication fails (no error message is sent).

• eStreamer service is shutting down (no error message is sent).

Your client can close the connection to eStreamer server at any time and should attempt to use the error
message format to notify the eStreamer server of the reason.

Understanding eStreamer Message Types
The eStreamer application protocol uses a simple message format that includes a standard message
header and various sub-header fields followed by the record data which contains the message’s payload.
The message header is the same in all eStreamer message types; for more information, see eStreamer
Message Header, page 2-7.

Table 2-2 eStreamer Message Types

Message Type Name Description

0 Null message Both the eStreamer server and the client send null messages
to control data flow. For information, see Null Message
Format, page 2-7.

1 Error message Both the eStreamer server and the client use error messages
to indicate why a connection closed. For information, see
Error Message Format, page 2-8.

2 Event Stream Request A client sends this message type to the eStreamer service to
initiate a new streaming session and request data. For
information, see Event Stream Request Message Format,
page 2-10.

4 Event Data The eStreamer service uses this message type to send event
data and metadata to the client. For information, see Event
Data Message Format, page 2-17.

5 Host Data Request A client sends this message type to the eStreamer service to
request host data. A session must be started already via an
Event Stream Request message. For information, see Host
Request Message Format, page 2-25.

6 Single Host Data The eStreamer service uses this message type to send single
host data requested by the client. For information, see Host
Data and Multiple Host Data Message Format, page 2-30.

7 Multiple Host Data The eStreamer service uses this message type to send
multiple host data requested by the client. For information,
see Host Data and Multiple Host Data Message Format,
page 2-30.
2-6
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Null Message Format
eStreamer Message Header
All eStreamer messages start with the message header illustrated in the graphic below. The following
table explains the fields.

Null Message Format
Both the client application and the eStreamer service send null messages. The null message has a type
of 0 and contains no data after the message header.

The client sends a null message to the eStreamer server to indicate readiness to accept more data. The
eStreamer service sends null messages to the client to keep the connection alive when no data is being
transmitted. The message length value for null messages is always set to 0.

2049 Streaming Request A client uses this message type in extended requests to
specify which of the advertised events from the Stream
Information message it wants. For information, see Sample
Extended Request Messages, page 2-38.

2051 Streaming
Information

The eStreamer service uses this message type in extended
requests to advertise the list of services available to the
client. For information, see Streaming Information Message
Format, page 2-31.

4002 Message Bundle The eStreamer service uses this message type to package
messages that it streams to clients. For information, see
Message Bundle Format, page 2-39.

Table 2-2 eStreamer Message Types (continued)

Message Type Name Description

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version Message Type

Message Length

Table 2-3 Standard eStreamer Message Header Fields

Field Data Type Description

Header Version uint16 Indicates the version of the header used on the message. For the
current version of eStreamer, this value is always 1.

Message Type uint16 Indicates the type of message transmitted. For the list of current
values, see Table 2-2 on page 2-6.

Message Length uint32 Indicates the length of the content that follows, and excludes the
bytes in the message header itself. A message with a header and no
data has a message length of zero.
2-7
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Error Message Format
Tip In data structure diagrams in this book, integers in parentheses such as (1) or (115) represent constant
field values. For example, Header Version (1) means that the field in the data structure under discussion
always has a value of 1.

The Null message format is shown below. The only non-zero value in the message is the header version.

An example of a null message in binary format follows. Notice that the only non-zero value is in the
second byte, signifying a header version value of 1. The message type and length fields (shaded) each
have a value of 0.

Tip Examples in this guide appear in binary format to clearly display which bits are set. This is important
for some messages, such as the event request message and event impact fields.

Error Message Format
Both the client application and the eStreamer service use error messages. Error messages have a message
type of 1 and contain a header, an error code, an error text length, and the actual error text. Error text can
contain between 0 and 65,535 bytes.

When you create custom error messages for your client application, Cisco recommends using -1 as the
error code.

The following graphic illustrates the basic error message format. Shaded fields are specific to error
messages.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (0)

Message Length (0)

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
2-8
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Error Message Format
The following table describes each field in error code messages.

The following diagram shows an example error message:

In the preceding example, the following information appears:

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (1)

Message Length

Error Code

Error Text Length Error Text...

Table 2-4 Error Message Fields

Field Data Type Description

Error Code int32 A number representing the error.

Error Text Length uint16 The number of bytes included in the error text field.

Error Text variable The error message. Up to 65,535 bytes.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

B 0 1 1 1 1

C 0 1 0 0 1 1

D 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1

0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1

0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1

Letter Description

A The first two bytes indicate the standard header value of 1. The second two bytes show a value
of 1, which signifies that the transmission is an error message.

B This line indicates the amount of message data that follows it. In this example, 15 bytes (in
binary, 1111) of data follow.
2-9
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Stream Request Message Format
Event Stream Request Message Format
eStreamer clients use the Event Stream Request message to start a streaming session. The request
message includes a start time and a bit flag field to specify the data the eStreamer service should include,
which can be any combination of events, as well as intrusion event extra data and metadata. The Event
Stream Request message can initiate both event stream requests and extended requests. The message
type is 2.

You must submit an Event Stream Request message for all data requests, including a request exclusively
for host profile information. In such a case, you first submit an Event Stream Request message, then a
Host Request message (type 5) to specify the host data.

The following graphic illustrates the Event Stream Request message format. The message uses the
standard header. The shaded fields are specific to the request message and are described in the following
table.

The following table describes each field in Event Stream Request messages.

C This line displays the error code. In this example, the message contains a value of 19 (10011).
Therefore, error number 19 is transmitted in the message.

D This line contains the number of bytes in the error message (1001, or nine bytes), and the error
message itself follows in the next nine bytes. The error message value, when converted to
ASCII text, equals “No space,” which is the error message that accompanies error code 19.

Letter Description

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (2)

Message Length

Initial Timestamp

Request Flags
2-10
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Stream Request Message Format
Initial Timestamp

Note Your client application should use the archival timestamp in the Initial Timestamp field when submitting
an event stream request, as explained below. This ensures that you do not inadvertently exclude events.
Devices transmit data to the Management Center using a “store and forward” mechanism with
transmission delays. If you request events by the generation timestamp assigned by the device that
detects it, delayed events may be missed.

When starting a session, a best practice is to start up from the archival timestamp (also known as the
“server timestamp”) of the last record in the previous session. It is not a technical requirement but is
strongly recommended. By using the archival timestamp of the last record in the previous session, the
eStreamer service will not resend prior records or metadata. Under certain circumstances, if you use the
generation timestamp you can inadvertently exclude events from the new streaming session.

To include the archival timestamp in your streamed events, you must set bit 23 in the request flag field.

Note that only time-based events have archival timestamps. Events that eStreamer generates, such as
metadata, have zero in this field when extended event headers have been requested with bit 23 set.

Request Flags
You set bits 0 through 29 in the event data request flag field to select the types of events you want
eStreamer to send. You set bit 30 to activate the extended request mode. Setting bit 30 does not directly
request any data. Extended request flags must be sent if this bit is set. Your client requests data during
the server-client message dialog that follows submission of the Event Stream Request message. For
information on extended requests, see Requesting Data from eStreamer, page 2-3.

See Table 2-6 on page 2-12 for definitions of the bit settings in the Request Flags field. Different flags
request different versions of the event data. For example, to obtain data in Firepower System 4.9 format
instead of 4.10 format you set a different flag bit. For specific information on the flags to use when
requesting data for particular product versions, see Table 2-7 on page 2-15.

Table 2-5 Event Stream Request Message Fields

Field Data Type Description

Initial
Timestamp

uint32 Defines the start of the session. To start at:

• the time the client connects to eStreamer, set all timestamp bits to
1.

• the oldest data available, set all timestamp bits to zero.

• a given date and time, specify the UNIX timestamp (number of
seconds since January 1, 1970).

See Initial Timestamp, page 2-11 below for important information.

Request Flags bits[32] Specifies the types and versions of events and metadata to be returned
in event stream requests. See Request Flags, page 2-11 for flag
definitions.

Setting bit 30 initiates an extended request, which can co-exist with
event stream requests in the same message.
2-11
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Stream Request Message Format
Note that you request metadata by version, not by the individual metadata record. For information about
each supported version of metadata, see Request Flags, page 2-11.

The following diagram shades the bits in the flags field that are currently used:

For information on each request flag bit, see the following table.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0

0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1

0 1 0 0 0 1 1

 Flag
Bit

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Table 2-6 Request Flags

Bit Field Description

Bit 0 Requests the transmission of packet data associated with intrusion events. If set to 1, packet data is transmitted
with intrusion events. If set to 0, packet data is not transmitted.

Bit 1 Requests the transmission of version 1 metadata associated with intrusion, discovery, correlation, and connection
events. If set to 1, version 1 metadata is transmitted with events. If set to 0, version 1 metadata is not transmitted.

You can use metadata to resolve coded and numeric fields in events. See Understanding Metadata, page 2-40 for
general information on the way eStreamer transmits metadata to clients and how a client can use metadata.

 Bit 2 Requests the transmission of intrusion events. If bit 2, bit 6, or both bit 2 and 6 are set to 1, but the extended
request flag, bit 30, is set to 0, the system interprets this as a request from a Version 4.x client and record type
104/105 is sent. If no event type is specified when bit 2, bit 6, or both bit 2 and 6 are set to 1, and bit 30 is set to
1, the system interprets this as a request from a Version 5.0-5.1 client and record type 207/208 is sent. If bit 30
is set to 1, and a specific event type is requested, intrusion events are sent regardless of bits 2 and 6.

For details on requesting record types, see Submitting Extended Requests, page 2-4.

If bit 2, bit 6, and bit 30 are all set to 0, intrusion events are not sent.

Bit 6 is used in a manner identical to bit 2. Either bit can be set to request intrusion events. Setting one of these
bits to 0 will not override the other bit; setting bit 2 to 0 and bit 6 to 1, or setting bit 2 to 1 and bit 6 to 0, will be
interpreted as a request for intrusion events.

Bit 3 Requests the transmission of discovery data version 1 (Management Center 3.2). If set to 0, discovery data
version 1 is not transmitted.

For more information about discovery events, see Understanding Discovery & Connection Data Structures,
page 4-1.

Bit 4 Requests the transmission of correlation data version 1 (Management Center 3.2). If set to 0, correlation data
version 1 is not transmitted.
2-12
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Stream Request Message Format
Bit 5 Requests the transmission of impact correlation events (intrusion impact alerts). If set to 1, intrusion impact
alerts are transmitted. If set to 0, intrusion impact alerts are not transmitted.

See Intrusion Impact Alert Data 5.3+, page 3-18 for more information about intrusion impact alerts.

Bit 6 Bit 6 is used in a manner identical to bit 2. See Bit 2, page 2-12.

Bit 7 Requests the transmission of discovery data version 2 (Management Center 4.0 - 4.1) if set to 1. If set to 0,
discovery data version 2 is not transmitted.

Bit 8 Requests the transmission of connection data version 1 (Management Center 4.0 - 4.1) if set to 1. If set to 0,
connection data version 1 is not sent.

Bit 9 Requests the transmission of correlation data version 2 (Management Center 4.0 - 4.1.x) if set to 1. If set to 0,
correlation policy data version 2 is not transmitted.

Bit 10 Requests the transmission of discovery data version 3 (Management Center 4.5 - 4.6.1) if set to 1. If set to 0,
discovery data version 3 is not transmitted.

For more information about legacy discovery events, see Legacy Discovery Data Structures, page B-119.

Bit 11 Disables transmission of events.

Bit 12 Requests the transmission of connection data version 3 (Management Center 4.5 - 4.6.1) if set to 1. If set to 0,
connection data version 3 is not sent.

Bit 13 Requests the transmission of correlation data version 3 (Management Center 4.5 - 4.6.1). If set to 0, correlation
data version 3 is not transmitted.

Bit 14 Requests the transmission of version 2 metadata associated with intrusion, discovery, correlation, and connection
events. If set to 1, version 2 metadata is transmitted with events. If set to 0, version 2 metadata is not transmitted.

See Understanding Metadata, page 2-40 for general information on the way eStreamer transmits metadata to
clients and how a client can use metadata.

Bit 15 Requests the transmission of version 3 metadata associated with intrusion, correlation, discovery, and connection
events. If set to 1, version 3 metadata is transmitted with events. If set to 0, version 3 metadata is not transmitted.

See Understanding Metadata, page 2-40 for general information on the way eStreamer transmits metadata to
clients and how a client can use metadata.

Bit 16 Unused

Bit 17 Requests the transmission of discovery data version 4 (Management Center 4.7 - 4.8.x). If set to 0, discovery
data version 4 is not transmitted.

Bit 18 Requests the transmission of connection data version 4 (Management Center 4.7 - 4.9.0.x) if set to 1. If set to 0,
connection data version 4 is not sent. See Connection Chunk Message, page 4-54 for more information.

Bit 19 Requests the transmission of correlation data version 4 (Management Center 4.7). If set to 0, correlation data
version 4 is not transmitted.

See Legacy Correlation Event Data Structures, page B-328 for information about correlation events transmitted
in Management Center 4.7 format.

Table 2-6 Request Flags (continued)

Bit Field Description
2-13
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Stream Request Message Format
Bit 20 Requests the transmission of version 4 metadata associated with intrusion, discovery, user activity, correlation,
and connection events. If set to 1, version 4 metadata is transmitted with events. If set to 0, version 4 metadata
is not transmitted.

Version 4 metadata includes the following:

• correlation (compliance) rule information

• correlation (compliance) policy information

• fingerprint records

• client application records

• client application type records

• vulnerability records

• host criticality records

• network protocol records

• host attribute records

• scan type records

• user records

• service detection device (version 2) records

• event classification (version 2) records

• priority records

• rule information (version 2)

• malware information

If you request bit 20 with bit 22, user metadata is also sent.

See Understanding Metadata, page 2-40 for general information on the way eStreamer transmits metadata to
clients and how a client can use metadata.

Bit 21 Requests the transmission of version 1 user events. For more information on user events, see User Record,
page 4-19.

Bit 22 Requests the transmission of correlation data version 5 (Management Center 4.8.0.2 - 4.9.1). If set to 0,
correlation data version 5 is not transmitted.

If you request bit 20 with bit 22, user metadata is also sent.

For more information about legacy correlation (compliance) events, see Legacy Correlation Event Data
Structures, page B-328.

Bit 23 Requests extended event headers. If set to 1, events are transmitted with the timestamp applied when the event
was archived for the eStreamer server to process and four bytes reserved for future use. If this field is set to 0,
events are sent with a standard event header that only includes the record type and record length.

See eStreamer Message Header, page 2-7 for information about the event message header.

Bit 24 Requests the transmission of discovery data version 5 (Management Center 4.9.0.x). If set to 0, discovery data
version 5 is not transmitted.

For more information about discovery events, see Understanding Discovery & Connection Data Structures,
page 4-1.

Table 2-6 Request Flags (continued)

Bit Field Description
2-14
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Stream Request Message Format
To help you decide which flags to use to request data for a particular version, see the following table.
For Version 5.0 and later, see Submitting Extended Requests, page 2-4 for more information about using
Bit 30.

Bit 25 Requests the transmission of discovery data version 6 (Management Center 4.9.1+). If set to 0, discovery data
version 6 is not transmitted.

For more information about discovery events, see Understanding Discovery & Connection Data Structures,
page 4-1.

Bit 26 Requests the transmission of connection data version 5 (Management Center 4.9.1 - 4.10.x) if set to 1. If set to
0, connection data version 5 is not sent. See Connection Chunk Message, page 4-54 for more information.

Bit 27 Requests event extra data associated with an intrusion event in an Extra Data record.

For more information about event data, see Table B-11Intrusion Event Extra Data Data Block Fields, page B-66.

Bit 28 Requests the transmission of discovery data version 7 (Management Center 4.10.0+). If set to 0, discovery data
version 7 is not transmitted.

For more information about discovery events, see Understanding Discovery & Connection Data Structures,
page 4-1.

Bit 29 Requests the transmission of correlation data version 6 (Management Center 4.10 - 4.10.x). If set to 0, correlation
policy data version 6 is not transmitted.

If you request bit 20 with bit 29, user metadata is also sent.

For more information about correlation events, see earlier versions of the product.

Bit 30 Indicates an extended request to eStreamer. Extended request flags must be sent if this bit is set. For information
about extended requests, see Submitting Extended Requests, page 2-4.

Table 2-6 Request Flags (continued)

Bit Field Description

Table 2-7 Event Request Flags by Product Version

Type of Requested Data 4.9.0.x 4.9.1.x 4.10.x 5.0+ 5.1 5.1.1+

packet data Bit 0 Bit 0 Bit 0 Bit 0 Bit 0 Bit 0

intrusion events Bit 2 Bit 2 Bit 2 Bit 2 Bit 2 Bit 30

metadata Bit 20 Bit 20 Bit 20 Bit 20 Bit 20 Bit 20

discovery events Bit 24 Bit 25 Bit 28 Bit 30 Bit 30 Bit 30

correlation events Bit 22 Bit 22 Bit 29 Bit 30 Bit 30 Bit 30

event extra data — — Bit 27 Bit 27 Bit 27 Bit 27

impact event alerts Bit 5 Bit 5 Bit 5 Bit 5 Bit 5 Bit 5

connection data Bit 18 Bit 26 Bit 26 Bit 30 Bit 30 Bit 30

user events Bit 21 Bit 21 Bit 21 Bit 30 Bit 30 Bit 30

malware events — — — — — Bit 30

file events — — — — — Bit 30
2-15
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Stream Request Message Format
Caution In all event types, prior to version 5.x, the reference client labels detection engine ID fields as sensor
ID.

The following example requests intrusion events of type 7 (compatible with Firepower System 3.2+)
with both version 1 metadata and packet flags:

To request only data compatible with Firepower System 3.2 (including intrusion events, packets,
metadata, impact alerts, policy violation events, and version 2.0 events), use the following:

To request intrusion impact alerts, correlation events, discovery events, connection events, and intrusion
events of type 7 with packets and version 3 metadata in Management Center 4.6.1+ format, use the
following:

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0

0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1

0 1 0 0 0 0 1 1

Flag
Bit

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0

0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1

0 1 1 1 1 1 1 1

Flag Bit 3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0
2-16
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Data Message Format
Event Data Message Format
The eStreamer service transmits event data and related metadata to clients when it receives an event
request. Event data messages have a message type of 3. Each message contains a single data record with
either event data or metadata.

Note that type 3 messages carry only event data and metadata. eStreamer transmits host information in
type 6 (single-host) and type 7 (multiple-host) messages. See Host Data and Multiple Host Data Message
Format, page 2-30 for information on host message formats.

Understanding the Organization of Event Data Messages
The event data and metadata messages that eStreamer sends contain the following sections:

• eStreamer message header — The standard message header defined at eStreamer Message Header,
page 2-7.

• Event-specific sub-headers — Sets of fields that vary by event type, with codes that describe
additional event details and determine the structure of the payload data that follows.

• Data record — Fixed-length fields and a data block.

Note The client should unpack all messages on the basis of field length.

For the event message formats by event type, see the following:

• Intrusion Event and Metadata Message Format, page 2-18 for intrusion event data records and all
metadata records. These messages have fixed-length fields.

• Discovery Event Message Format, page 2-19 for messages with discovery event or user event data.
In addition to the standard eStreamer message header and a record header similar to the intrusion
event message, discovery messages have a distinctive discovery event header with an event type and
subtype field. The data record in discovery event messages is packaged in a series 1 block that can
have variable length fields and multiple layers of encapsulated blocks.

• Connection Event Message Format, page 2-21 for messages with connection statistics. Their general
structure is identical to discovery event messages. Their data block types, however, are specific for
connection statistics.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0

0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1

Flag Bit 3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0
2-17
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Data Message Format
• Correlation Event Message Format, page 2-21 for messages with correlation (compliance) event
data. The headers in these messages are the same as in intrusion event messages but the data blocks
are series 1 blocks.

• Event Extra Data Message Format, page 2-23 for a series of messages that deliver intrusion-related
record types with variable-length fields and multiple layers of nested data blocks such as intrusion
event extra data. See Event Extra Data Message Format, page 2-23 for general information on the
structure of this message series. See Data Block Header, page 2-24 for information about the
structures of this series of blocks which are similar to series 1 blocks but numbered separately.

Intrusion Event and Metadata Message Format
The graphic below shows the general structure of intrusion event and metadata messages.

The following graphic shows the details of the record header portion of the intrusion event and metadata
message format. The record header fields are shaded. The table that follows defines the fields.

The following table describes each field in the header of intrusion events and metadata messages.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Message Header
See eStreamer Message Header, page 2-7

Record Header

Data Record
...

Byt 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (3)

Message Length

Netmap ID Record Type
See Table 3-1 on page 3-1

Record Length

eStreamer Server Timestamp
(for events only, not used in metadata records)

Reserved for Future Use
(for events only, not used in metadata records)

Data
...
2-18
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Data Message Format
Discovery Event Message Format
The graphic below shows the structure of discovery event messages. The standard eStreamer message
header and event record header are followed by a discovery event header used only in discovery and user
event messages. The discovery event header section of the message contains the discovery event type
and subtype fields, which together form a key to the data block that follows. For the current discovery
event types and subtypes, see Table 4-29Discovery and Connection Events by Type and Subtype,
page 4-42.

Table 2-8 Intrusion Event and Metadata Record Header Fields

Field Data Type Description

Netmap ID uint16 The first bit of this field is a flag indicating whether the header is an
extended header containing an archive timestamp. The remaining 15 bits
are an optional field containing the Netmap ID for the domain on which
the event was detected. If this field is not used, it is left empty. Netmap
IDs map to domains as provided in metadata.

Record Type uint16 Identifies the data record content type. See Table 3-1Intrusion Event and
General Metadata Record Types, page 3-1 for the list of record types.

Record
Length

uint32 Length of the content of the message after the record header. Does not
include the 8 or 16 bytes of the record header. (Record Length plus the
length of the record header equals Message Length.)

eStreamer
Server
Timestamp

uint32 Indicates the timestamp applied when the event was archived by the
eStreamer server. Also called the archival timestamp.

Field present only if bit 23 is set in the request message flags.

Reserved for
future use

uint32 Reserved for future use.

Field present only if bit 23 is set in the request message flags.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Message Header
See eStreamer Message Header, page 2-7

Discovery Event Record Header
See Discovery Event Message Headers, page 2-20 for field details.

Discovery Event Header
See Discovery Event Header 5.2+, page 4-40 for field details.

Series 1 Data Block
See Understanding Discovery (Series 1) Blocks, page 4-62

...
2-19
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Data Message Format
Discovery Event Message Headers

The shaded section in the following graphic shows the fields of the record header in the discovery event
data message format, and shows the location of the event header that follows it. The following table
defines the fields of the discovery event message headers.

The following table describes the fields in the record header and the event header of the discovery event
message.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (3)

Message Length

Netmap ID Record Type
See Table 4-1Discovery and Connection

Event Record Types, page 4-2

Record Length

eStreamer Server Timestamp
(for events only)

Reserved for Future Use
(for events only)

Discovery Event Header
See Table 4-28Discovery Event Header Fields, page 4-41

Series 1 Data Block
See Understanding Discovery (Series 1) Blocks, page 4-62

...

Table 2-9 Discovery Event Message Header Fields

Field Data Type Description

Netmap ID uint16 The first bit of this field is a flag indicating whether the header
is an extended header containing an archive timestamp. The
remaining 15 bits are an optional field containing the Netmap ID
for the domain on which the event was detected. If this field is
not used, it is left empty. Netmap IDs map to domains as
provided in metadata.

Record Type uint16 Identifies the data record content type. See Table 4-1Discovery
and Connection Event Record Types, page 4-2 for the list of
record types.

Record Length uint32 Length of the content of the message after the record header.
Does not include the 8 or 16 bytes of the record header. (Record
Length plus the length of the record header equals Message
Length.)
2-20
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Data Message Format
Connection Event Message Format
Messages with connection statistics have a structure identical to discovery event messages. See
Discovery Event Message Format, page 2-19 for general message format information. Connection event
messages are distinct in terms of the data block types they incorporate.

Correlation Event Message Format
The graphic below shows the general structure of correlation (compliance) event messages. The standard
eStreamer message header and record header are followed immediately by a data block in the data record
section of the message. Correlation messages use Series 1 data blocks.

Correlation Record Header

The shaded section of the following graphic shows the fields of the record header in correlation event
messages. Note that correlation messages use series 1 data blocks; however, they do not have the
discovery header that appears in discovery event messages. Their header fields resemble those of
intrusion event messages. The table that follows the graphic below defines the record header fields for
correlation events.

eStreamer Server
Timestamp

uint32 Indicates the timestamp applied when the event was archived by
the eStreamer server. Also called the archival timestamp. Field
present only if bit 23 is set in the request flags field of the event
stream request.

Reserved for future
use

uint32 Reserved for future use. Field present only if bit 23 is set in the
request message flags.

Discovery Event
Header

Varied Contains a number of fields, including the event type and
subtype, which together form a unique key to the data structure
that follows. See Discovery Event Header 5.2+, page 4-40 for
definitions of fields in the discovery event header.

Table 2-9 Discovery Event Message Header Fields (continued)

Field Data Type Description

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Message Header
See eStreamer Message Header, page 2-7

Record Header
See Correlation Record Header, page 2-21 for field details.

Data Record Block
...

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

2-21
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Data Message Format
The following table describes each field in the record header of correlation event messages.

Header Version (1) Message Type (3)

Message Length

Netmap ID Record Type
See Table 3-1Intrusion Event and General

Metadata Record Types, page 3-1

Record Length

eStreamer Server Timestamp
(for events only, not used in metadata records)

Reserved for Future Use
(for events only, not used in metadata records)

Data Record Block
Uses Series 1 block, see Understanding Discovery (Series 1) Blocks, page 4-62

...

Table 2-10 Correlation Event Message Record Header Fields

Field Data Type Description

Netmap ID uint16 The first bit of this field is a flag indicating whether the header
is an extended header containing an archive timestamp. The
remaining 15 bits are an optional field containing the Netmap ID
for the domain on which the event was detected. If this field is
not used, it is left empty. Netmap IDs map to domains as
provided in metadata.

Record Type uint16 Identifies the data record content type. See Table 3-1 on
page 3-1 for the list of intrusion, correlation, and metadata
record types.

Record Length uint32 Length of the content of the message after the record header.
Does not include the 8 or 16 bytes of the record header. (Record
Length plus the length of the record header equals Message
Length.)

eStreamer Server
Timestamp

uint32 Indicates the timestamp applied when the event was archived by
the eStreamer server. Also called the archival timestamp.

Field present only if bit 23 is set in the request message flags.

Field is zero for data generated by the Management Center such
as host profiles and metadata.

Reserved for future
use

uint32 Reserved for future use.

Field present only if bit 23 is set in the request message flags.
2-22
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Data Message Format
Event Extra Data Message Format
The graphic below shows the structure of event extra data messages. The Intrusion Event Extra Data
message is an example of this message group.

Event extra data messages have the same format as correlation event messages, with a data block directly
after the record header. Unlike correlation messages, they use series 2 data blocks, not series 1 data
blocks, which have a separate numbering sequence. For information about series 2 block types, see
Understanding Series 2 Data Blocks, page 3-53.

Event Extra Data Message Record Header

The shaded section of the following graphic shows the fields of the record header in event extra data
messages. The table that follows defines the record header fields for event extra data messages.

The following table describes each field in the record header of event extra data messages.

Byt 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Message Header
See eStreamer Message Header, page 2-7

Record Header
See Event Extra Data Message Record Header, page 2-23

Data Blocks...
See Understanding Series 2 Data Blocks, page 3-53

Byt 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (3)

Message Length

Netmap ID Record Type
See Table 3-1Intrusion Event and General

Metadata Record Types, page 3-1

Record Length

eStreamer Server Timestamp
(for events only, not used in metadata records)

Reserved for Future Use
(for events only, not used in metadata records)

Data Record Block
Uses series 2 block, see Understanding Series 2 Data Blocks, page 3-53

...
2-23
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Event Data Message Format
Data Block Header
Series 1 blocks and series 2 blocks have similar structures but distinct numbering. These blocks can
appear anywhere in the data portion of a discovery, correlation, connection, or event extra data message.
These blocks encapsulate other blocks at multiple levels of nesting.

The data blocks in both the first and second series begin with the header structure shown in the graphic
below. The following table provides information about the header fields. The header is followed
immediately by the data structure associated with the data block type.

Table 2-11 Event Extra Data Message Record Header Fields

Field Data Type Description

Netmap ID uint16 The first bit of this field is a flag indicating whether the header is an
extended header containing an archive timestamp. The remaining 15
bits are an optional field containing the Netmap ID for the domain on
which the event was detected. If this field is not used, it is left empty.
Netmap IDs map to domains as provided in metadata.

Record Type uint16 Identifies the data record content type. See Table 3-1Intrusion Event
and General Metadata Record Types, page 3-1 for the list of event
extra data record types.

Record Length uint32 Length of the content of the message after the record header. Does
not include the 8 or 16 bytes of the record header. (Record Length
plus the length of the record header equals Message Length.)

eStreamer Server
Timestamp

uint32 Indicates the timestamp applied when the event was archived by the
eStreamer server. Also called the archival timestamp.

Field present only if bit 23 is set in the request message flags. Field
is not present for events generated by the Management Center.

Reserved for
future use

uint32 Reserved for future use.

Field present only if bit 23 is set in the request message flags. Field
is not present for events generated by the Management Center.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Data Block Type

Data Block Length
2-24
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Host Request Message Format
Host Request Message Format
To receive host profiles, you submit Host Request messages. You can request data for a single host or
multiple hosts defined by an IP address range.

Note that it is mandatory for all data requests, including requests for host profile information, to first
initialize the session by submitting an Event Stream Request message. To set up for streaming host data
only, you can use any of the following request flag settings in your initial Event Stream Request
message:

• set the bit for the appropriate version of metadata (this can be beneficial when streaming host data)

• set no request flags

• set bit 11 (to suppress any default event streaming if using legacy versions of eStreamer)

After the initial message, you then use a Host Request message (type 5) to specify the hosts.

Note For legacy eStreamer versions with default event streaming, if you want to stream only host profile data,
you need to suppress the default event messages. First send the server an Event Stream Request message
with bit 11 in the Request Flags field set to 1; then, send the Host Request message.

The graphic below shows the format for the Host Request message. The shaded fields are specific to the
Host Request message format and are defined in the following table. The preceding three fields are the
standard message header.

Table 2-12

Field Data Type Description

Data Block Type uint32 For series 1 block types, see Understanding Discovery (Series 1)
Blocks, page 4-62.

For series 2 block types, see Table 3-24Series 2 Block Types,
page 3-53.

Data Block Length uint32 Length of the data block. Includes the number of bytes of data
plus the 8 bytes in the two data block header fields.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (5)

Message Length

Data Type

Flags

Start IP Address

Start IP Address, continued

Start IP Address, continued
2-25
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Host Request Message Format
The following table explains the message fields.

Start IP Address, continued

End IP Address

End IP Address, continued

End IP Address, continued

End IP Address, continued
2-26
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Host Request Message Format
Table 2-13 Host Request Message Fields

Field Data Type Description

Data Type uint32 Requests data for a single host or multiple hosts, using the following
codes:

• 0 — Version 3.5 - 4.6 for a single host.

• 1 — Version 3.5 - 4.6 for multiple hosts (uses block 34).

• 2 — Version 4.7 - 4.8 for a single host (uses block 47).

• 3 — Version 4.7 - 4.8 for multiple hosts (uses block 47).

• 4 — Version 4.9 - 4.10 for a single host (uses block 92).

• 5 — Version 4.9 - 4.10 for multiple hosts (uses block 92).

• 6 — Version 5.0.x data for a single host (uses block 111, see Full
Host Profile Data Block 5.0 - 5.0.2, page B-344).

• 7 — Version 5.0.x data for multiple hosts (uses block 111, see Full
Host Profile Data Block 5.0 - 5.0.2, page B-344).

• 8 — Version 5.1.x data for multiple hosts (uses block 111, see Full
Host Profile Data Block 5.1.1, page B-353).

• 9 — Version 5.1.x data for multiple hosts (uses block 111, see Full
Host Profile Data Block 5.1.1, page B-353).

• 10 — Rule documentation data (uses block 27, see Rule
Documentation Message Format, page 2-29)

• 11 — Version 5.2x data for multiple hosts (uses block 111, see Full
Host Profile Data Block 5.2.x, page B-361).

• 12 — Version 5.2.x data for multiple hosts (uses block 111, see
Full Host Profile Data Block 5.2.x, page B-361).

• 13 — Version 5.3+ data for multiple hosts (uses block 111, see Full
Host Profile Data Block 5.3+, page 5-1).

• 14 — Version 5.3+ data for multiple hosts (uses block 111, see Full
Host Profile Data Block 5.3+, page 5-1).

Flags 32-bit field • 0x00000001 — Causes the Notes field of the host profile to be
populated (with user-defined information about the host stored in
the Firepower System).

• 0x00000002 — Causes the Banner field of the service block to be
populated (with the first 256 bytes of the first packet detected for
the service). Banners are disabled by default and available only if
configured.

Start IP
Address

uint8[16] IP address of the host whose data should be returned (if request is for a
single host), or the starting address in an IP address range (if request is
for multiple hosts). Can be either an IPv4 or IPv6 address.

End IP
Address

uint8[16] Ending address in an IP address range (if request is for multiple hosts),
or the Start IP Address value (if request is for single host). Can be either
an IPv4 or IPv6 address.
2-27
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Host Request Message Format
The graphic below shows the format for the legacy Host Request message. eStreamer will still respond
to this request. The only difference from the current request is the smaller IPv4 address fields. The
shaded fields are specific to the Host Request message format and are defined in the following table. The
preceding three fields are the standard message header.

The following table explains the message fields.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (5)

Message Length

Data Type

Flags

Start IP Address

End IP Address

Table 2-14 Host Request Message Fields

Field Data Type Description

Data Type uint32 Requests data for a single host or multiple hosts, using the following codes:

• 0 — Version 3.5 - 4.6 for a single host.

• 1 — Version 3.5 - 4.6 for multiple hosts (uses block 34).

• 2 — Version 4.7 - 4.8 for a single host (uses block 47).

• 3 — Version 4.7 - 4.8 for multiple hosts (uses block 47).

• 4 — Version 4.9 - 4.10 for a single host (uses block 92).

• 5 — Version 4.9 - 4.10 for multiple hosts (uses block 92).

• 6 — Version 5.0+ data for a single host (uses block 111, see Full Host
Profile Data Block 5.3+, page 5-1).

• 7 — Version 5.0+ data for multiple hosts (uses block 111, see Full Host
Profile Data Block 5.3+, page 5-1).

Flags 32-bit
field

• 0x00000001 — Causes the Notes field of the host profile to be populated
(with user-defined information about the host stored in the Firepower
System).

• 0x00000002 — Causes the Banner field of the service block to be
populated (with the first 256 bytes of the first packet detected for the
service). Banners are disabled by default and available only if
configured.
2-28
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Rule Documentation Message Format
Rule Documentation Message Format
To receive rule documentation profiles, you submit Rule Documentation messages. You request these by
generator ID, signature ID, and revision.

Note that it is mandatory for all data requests, including requests for rule documentation information, to
first initialize the session by submitting an Event Stream Request message. To set up for streaming host
data only, you can use any of the following request flag settings in your initial Event Stream Request
message:

• set the bit for the appropriate version of metadata (this can be beneficial when streaming host data)

• set no request flags

• set bit 11 (to suppress any default event streaming if using legacy versions of eStreamer)

After the initial message, you then use a Rule Documentation message (type 10) to specify the rule.

The graphic below shows the format for the Rule Documentation message. The shaded fields are specific
to the Rule Documentation message format and are defined in the following table. The preceding three
fields are the standard message header.

Start IP
Address

uint8[4] IP address of the host whose data should be returned (if request is for a single
host), or the starting address in an IP address range (if request is for multiple
hosts). Specify the address in IP address octets.

End IP
Address

uint8[4] Ending address in an IP address range (if request is for multiple hosts), or the
Start IP Address value (if request is for single host).

Table 2-14 Host Request Message Fields (continued)

Field Data Type Description

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (5)

Message Length

Data Type

Flags

Signature ID

Generator ID

Revision

Reserved

Reserved, continued

Reserved, continued
2-29
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Host Data and Multiple Host Data Message Format
The following table explains the message fields.

Host Data and Multiple Host Data Message Format
eStreamer responds to host requests by sending host data messages, each with a full host profile data
block. eStreamer sends one host data message for each host specified in the request. eStreamer uses the
type 6 message to respond to requests for a single host profile, and uses the type 7 message to respond
to requests for multiple hosts. The formats of the type 6 and type 7 messages are identical, only the
message type is different.

Host data messages do not have a record type field. The structure of the message is communicated by
the message type and the data block type of the full host profile included in the message. Full host profile
data blocks are in the series a group of blocks.

The graphic below shows the format of the host data message and the table that follows defines the
shaded fields:

Reserved, continued

Reserved, continued

Table 2-15 Rule Documentation Message Fields

Field Data Type Description

Data Type uint32 Requests data for a Rule Documentation Data Block. This value is
always 10. See Rule Documentation Data Block for 5.2+, page 3-103.

Flags 32-bit field • 0x00000001 — Causes the Notes field of the Rule Documentation
data block to be populated (with user-defined information about
the host stored in the Firepower System).

• 0x00000002 — Causes the Banner field of the service block to be
populated (with the first 256 bytes of the first packet detected for
the service). Banners are disabled by default and available only if
configured.

Signature ID uint32 Identification number of the requested rule.

Generator ID uint32 Identification number of the Firepower System preprocessor for the
requested rule.

Rule Revision uint32 Rule revision number.

Reserved uint8[20] This field is not currently used.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (6 | 7)

Message Length
2-30
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Streaming Information Message Format
The fields specific to the Host Request message are:

Streaming Information Message Format
When the eStreamer service receives a request for an extended request, it sends the client the Streaming
Information message described below. This message advertises the server’s list of available services.
Currently, the only relevant option is the eStreamer service (6667), although the message can list other
services, which should be ignored. Each advertised service is represented by a Streaming Service
Request structure described in Streaming Service Request Structure, page 2-33.

The graphic below illustrates the format for the Streaming Information message. The shaded field is
specific to this message type. The preceding three fields are the standard message header.

The fields of the Streaming Information message are:

Full Host Profile Data Block Type
See Table 4-30Host Discovery and Connection Data Block Types, page 4-63

Length

Full Host Profile Data Block

Table 2-16

Field Data Type Description

Full Host Profile
Data Block Type

uint32 Specifies the block type for the full host profile data included in
the message. See Table 4-30Host Discovery and Connection Data
Block Types, page 4-63.

Length uint32 Length of the full host profile data in the message.

Full Host Profile
Data Block

variable The host data. For links to the definitions of current full host
profile data blocks, see Table 4-30Host Discovery and Connection
Data Block Types, page 4-63.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (2051)

Message Length

Service...
See Streaming Service Request Structure, page 2-33
2-31
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Streaming Request Message Format
Streaming Request Message Format
The client uses the Streaming Request message to specify to eStreamer the service in the Streaming
Information message that it wants to use, followed by a set of requests for event types and versions to
be streamed. The graphic below shows the message structure and the following table defines the fields.
The requested service is represented by a Streaming Service Request structure described in Streaming
Service Request Structure, page 2-33.

The graphic below illustrates the format for the Streaming Information message. The shaded field is
specific to this message type. The preceding three fields are the standard message header.

The fields of the Streaming Request message are:

Table 2-17 Streaming Information Message Fields

Field Data Type Description

Header Version uint16 Set to 1.

Message Type uint16 eStreamer message type. Set to 2051 for Streaming
Request messages.

Message Length uint32 Length of the content of the message after the
message header. Does not include the bytes in the
Header Version, Message Type, and Message Length
fields.

Service[] array List of available services. See Streaming Service
Request Structure, page 2-33.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (2049)

Message Length

Service...
See Streaming Service Request Structure, page 2-33

Table 2-18 Streaming Request Message Fields

Field Data Type Description

Header Version uint16 Set to 1.

Message Type uint16 eStreamer message type. Set to 2049 for Streaming Request messages.

Message Length uint32 Length of the content of the message after the message header. Does
not include the bytes in the Header Version, Message Type, and
Message Length fields.

Service[] array List of requested service structures. See Streaming Service Request
Structure, page 2-33.
2-32
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Streaming Service Request Structure
Streaming Service Request Structure
The eStreamer service sends one Streaming Service Request data structure in the Streaming Information
message for each service it advertises. The eStreamer service does not use the last field of the Streaming
Service Request, which provides for a list of event types to be included.

The client processes the Streaming Service Request structure from eStreamer and uses the same structure
in the response it returns to the server. In the Streaming Service Request that the client sends to the
server, it includes, first, a request for the service advertised by eStreamer, and, second, a list of Streaming
Event Type structures, which specify the requested event types the client wants to receive.

Each Streaming Event Type structure contains two fields to specify the event type and version for each
requested event type. For information on the Streaming Event Type structure, see , page 2-34.

The graphic below shows the fields of the Streaming Service Request structure. The table that follows
defines the fields.

The fields of the Streaming Service Request structure are:

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Type

Length

Flags

Initial Timestamp

Streaming Event Type...
See , page 2-34

Table 2-19 Streaming Service Request Fields

Field Data Type Description

Type uint32 Service ID.

In eStreamer server messages, this advertises an available
service.

In client messages, it specifies a requested service.

Current valid options:

• 6667 (for eStreamer service)

Length uint32 Service request length. Describes the length of the service
request, including Type and Length.

Note that Length must include all the Streaming Event
Type records in the message, plus the terminating one.

Flags uint32 In eStreamer’s Streaming Information messages: Always
0.

In client’s Streaming Request message: replicates the flag
settings in the original Event Stream Request message.
2-33
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol

Domain Streaming Request Message Format
The client uses the Domain Streaming Request message to request events from a specific domain from
eStreamer. The graphic below shows the message structure and the following table defines the fields.
The shaded fields are specific to this message type. The preceding three fields are the standard message
header.

The fields of the Domain Streaming Request message are:

Initial Timestamp uint32 In eStreamer’s Streaming Information messages: Always
0.

In client’s Streaming Request message: replicates the
timestamp in the original Event Stream Request message.

Streaming Event Type array In eStreamer’s Streaming Information message:

• Reserved for future use. Has 0 length.

In client’s Streaming Request message:

• One Streaming Event Type entry for each requested
event type. See , page 2-34.

• Terminate the request list with a 0 Event Type entry,
with both Event Type and Version set to 0.

See , page 2-34.

Table 2-19 Streaming Service Request Fields (continued)

Field Data Type Description

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (2052)

Message Length

String Block Type (0)

String Block Length

Domain...
2-34
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Streaming Event Type Structure
Streaming Event Type Structure
eStreamer clients use the Streaming Event Type structure to specify an event’s version and version. Each
event version/type combination is a request for an event stream.

Lists of Streaming Event Type structures must be terminated with a structure with all fields set to zero.
That is:

Event Version = 0

Event Type = 0

The following diagram illustrates the format for the Streaming Event Type structure.

The fields of the Streaming Event Type structure are:

Table 2-20 Domain Streaming Request Message Fields

Field Data Type Description

Header Version uint16 Set to 1.

Message Type uint16 eStreamer message type. Set to 2052 for Domain Streaming Request
messages.

Message Length uint32 Length of the content of the message after the message header. Does
not include the bytes in the Header Version, Message Type, and
Message Length fields.

String Block
Type

uint32 Initiates a String data block containing the domain. This value is
always 0.

String Block
Length

uint32 The number of bytes included in the domain String data block,
including eight bytes for the block type and header fields plus the
number of bytes in the domain.

Domain string Domain from which streaming events are requested. If left blank, the
service will stream events for all domains to which the client has
access.

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Event Version Event Type
2-35
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Streaming Event Type Structure
The following table lists the event types and versions that clients can specify in extended requests. The
table indicates the Management Center software versions that correspond to each event type version. For
example, to request the correlation events that were supported by the Management Center in version
4.8.0.2 - 4.9.1, you should request Event Type 31, Version 5. If an event was recorded with a different
event type, it will be upgraded or downgraded to match the format of the requested event type.

Table 2-21 Streaming Event Type Fields

Field Data Type Description

Event Version uint16 Version number of event type. For list of versions supported for each
event type, see Table 2-22Event Types and Versions for Extended
Request, page 2-36.

Event Type uint16 Code for requested event type. For the current list of valid event types
and version codes, see Table 2-22Event Types and Versions for
Extended Request, page 2-36.

List of event types should be terminated with a zero event type and zero
event version.

Table 2-22 Event Types and Versions for Extended Request

To request... Use this event version number... And this event code

intrusion events 1 — 4.8.x and earlier
2 — 4.9 - 4.10.x
3 — 5.0 - 5.1
4 — 5.1.1.x
5 — 5.2.x
6 — 5.3
7 — 5.3.1
8 — 5.4.x
9— 6.x
10— 7.0+

12

metadata 1 — 3.2 - 4.5.x
2 — 4.6.0.x
3 — 4.6.1 - 4.6.x
4 — 4.7+

21

correlation and compliance
allow list events

1 — 3.2 and earlier
2 — 4.0 - 4.4.x
3 — 4.5 - 4.6.1
4 — 4.7 - 4.8.0.1
5 — 4.8.0.2 - 4.9.1.x
6 — 4.10.0 - 4.10.x
7 — 5.0 - 5.0.2
8 — 5.1 - 5.3.x
9 — 5.4+

31
2-36
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Streaming Event Type Structure
discovery events 1 — 3.2 and earlier
2 — 3.0 - 3.4.x
3 — 3.5 - 4.6.x
4 — 4.7 - 4.8.x
5 — 4.9.0.x
6 — 4.9.1 - 4.9.x.x
7 — 4.10.0 - 4.10.x
8 — 5.0.x
9 — 5.1.x
10 — 5.2 - 5.3
11 — 5.3.1+

61

connection events 1 — 4.0 - 4.1
3 — 4.5 - 4.6.1
4 — 4.7 - 4.9.0.x
5 — 4.9.1 - 4.10.x
6 — 5.0.x
7 — 5.1.0.x
8 — 5.1.1.x
9 — 5.2.x
10 — 5.3
11 — 5.3.1
12 — 5.4
13 — 5.4.0.1-5.4.0.2
14 — 6.0.x
15 — 6.1.x
16 — 7.0.x
17 — 7.1+

71

user events 1 — 4.7 - 4.10.x
2 — 5.0.x
3 — 5.1-5.1.x
4 — 5.2
5— 6.0
6— 6.1
7— 6.2+

91

malware events 1 — 5.1.0.x
2 — 5.1.1.x
3 — 5.2.x
4 — 5.3
5 — 5.3.1
6 — 5.4.x
7— 6.x
8— 7.0+

101

Table 2-22 Event Types and Versions for Extended Request (continued)

To request... Use this event version number... And this event code
2-37
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Sample Extended Request Messages
Sample Extended Request Messages

Streaming Information Message
In the sample below, the server advertises two services, the first type 6667 (eStreamer) and the second
type 5000. In Streaming Information messages from the server, the flags field and initial timestamp fields
are zero, and the message specifies no event types.

Streaming Request Message
Below is a Streaming Request message where the client requests service type 6667 (eStreamer) and
specifies two event types: version 6 of connection events (event type 71) and version 4 of metadata (event
type 21).

file events 1 — 5.1.1 - 5.1.x
2 — 5.2.x
3 — 5.3
4 — 5.3.1
5 — 5.4.x
6— 6.x
7— 7.0+

111

impact correlation events 1 — 5.2.x and earlier
2 — 5.3+

131

terminating event type in a list 0 0

Table 2-22 Event Types and Versions for Extended Request (continued)

To request... Use this event version number... And this event code

Table 2-23

Header Version: 1 /*always 1*/

Message Type: 2051 /*streaming info msg*/

Message Length 32 /*bytes of msg content*/

Service[1].Type 6667 /*eStreamer service ID*/

Service[1].Length 8

Service[1].Flags 0 /*no flags from server*/

Service[1].Initial Timestamp 0 /*always 0*/

Service[2].Type 5000 /*service-2 ID*/

Service[2].Length 8

Service[2].Flags 0 /*no flags from server*/

Service[2].Initial Timestamp 0 /*always 0*/

Header Version: 1 /*always 1*/

Message Type: 2051 /*streaming info msg*/
2-38
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Message Bundle Format
Message Bundle Format
The eStreamer server sends messages in a bundle format when the client submits an extended request.

The client responds with a null message to acknowledge receipt of an entire bundle. The client should
not acknowledge receipt of individual messages in a bundle.

Message bundles have a message type of 4002.

The graphic below shows the structure of a message bundle. The shaded fields are specific to the bundle
message type. The following table describes the content of the fields and data structures.

The fields of a message bundle message are:

Table 2-24

Header Version: 1 /*always 1*/

Message Type: 2049 /*stream request msg*/

Message Length 28 /*payload bytes*/

Service[1].Type 6667 /*eStreamer service ID*/

Service[1].Length 20

Service[1].Flags 30 /*original flags value*/

Service[1].Initial Timestamp 0 /*original timestamp*/

Service[1].Event[1].Version 6 /*version 6*/

Service[1].Event[1].Type 71 /*connection events*/

Service[1].Event[2].Version 4 /* version 4*/

Service[1].Event[2].Type 21 /*metadata*/

Service[1].Event[3].Version 0 /*terminate event list*/

Service[1].Event[3].Type 0 /*terminate event list*/

Byte 0 1 2 3

Bit 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Header Version (1) Message Type (4002)

Message Length

Connection ID

Sequence Number

Event Messages...
2-39
Firepower eStreamer Integration Guide

Chapter 2 Understanding the eStreamer Application Protocol
 Understanding Metadata
Understanding Metadata
The eStreamer server can provide metadata along with requested event records. To receive metadata, you
must explicitly request it. See Table 2-6Request Flags, page 2-12 for information on how to request a
given version of metadata. The metadata provides context information for codes and numeric identifiers
in the event records. For example, an intrusion event contains only the internal identifier of the detecting
device, and the metadata provides the device’s name.

Depending on the metadata requested and the environment, the amount of metadata sent may vary
considerably.

Metadata Transmission
If the request message specifies metadata, eStreamer sends the relevant metadata record before it sends
any related event records.

eStreamer keeps track of the metadata it has sent to the client and does not resend the same metadata
record. The client should cache each received metadata record. If the client application uses a limited
cache size, when the cache becomes full the client should flush the cache and reconnect to the eStreamer
service in order to ensure that the client receives all metadata values for the events that are being
streamed. eStreamer does not keep a history of metadata transmissions from one session to the next, so
when a new session starts and a request message specifies metadata, eStreamer restarts metadata
streaming from scratch. When reconnecting, the client can specify the "Initial Timestamp" in the
Request Message in order to avoid duplicate or missing events.

Table 2-25 Message Bundle Message Fields

Field Data Type Description

Header Version uint16 Always 1.

Message Type uint16 Always 4002.

Message Length uint32 Length of the content of the message after the message header. Does
not include the bytes in the bundle’s Header Version, Message Type,
and Message Length fields.

As the client loads a message from the bundle, it can subtract the
message’s total length (including header) from the length in this
field. As long as the remainder is positive, there are more messages
to process.

Connection ID uint32 A unique identifier for the connection with the server.

Sequence Number uint32 Starts at 1 and increments by one for each bundle sent by the
eStreamer server.

Event Messages [] array The events streamed by the server in the bundle. Each message has a
full set of headers, including message version number (1), archive
timestamp if requested, and so forth.
2-40
Firepower eStreamer Integration Guide

	2
	Understanding the eStreamer Application Protocol

	Connection Specifications
	Understanding eStreamer Communication Stages
	Establishing an Authenticated Connection
	Table 2-1 Certificate Subject Name Fields

	Requesting Data from eStreamer
	Establishing a Session
	Using Event Stream Requests and Extended Requests to Initiate Event Streaming
	Submitting Event Stream Requests
	Submitting Extended Requests
	Requesting Host Data
	Changing a Request

	Accepting Data from eStreamer
	Event Stream Requests
	Extended Requests

	Terminating Connections

	Understanding eStreamer Message Types
	Table 2-2 eStreamer Message Types
	eStreamer Message Header
	Table 2-3 Standard eStreamer Message Header Fields

	Null Message Format
	Error Message Format
	Table 2-4 Error Message Fields

	Event Stream Request Message Format
	Table 2-5 Event Stream Request Message Fields
	Initial Timestamp
	Request Flags
	Table 2-6 Request Flags
	Table 2-7 Event Request Flags by Product Version

	Event Data Message Format
	Understanding the Organization of Event Data Messages
	Intrusion Event and Metadata Message Format
	Table 2-8 Intrusion Event and Metadata Record Header Fields

	Discovery Event Message Format
	Discovery Event Message Headers
	Table 2-9 Discovery Event Message Header Fields

	Connection Event Message Format
	Correlation Event Message Format
	Correlation Record Header
	Table 2-10 Correlation Event Message Record Header Fields

	Event Extra Data Message Format
	Event Extra Data Message Record Header
	Table 2-11 Event Extra Data Message Record Header Fields

	Data Block Header
	Table 2-12

	Host Request Message Format
	Table 2-13 Host Request Message Fields
	Table 2-14 Host Request Message Fields

	Rule Documentation Message Format
	Table 2-15 Rule Documentation Message Fields

	Host Data and Multiple Host Data Message Format
	Table 2-16

	Streaming Information Message Format
	Table 2-17 Streaming Information Message Fields

	Streaming Request Message Format
	Table 2-18 Streaming Request Message Fields

	Streaming Service Request Structure
	Table 2-19 Streaming Service Request Fields

	Domain Streaming Request Message Format
	Table 2-20 Domain Streaming Request Message Fields

	Streaming Event Type Structure
	Table 2-21 Streaming Event Type Fields
	Table 2-22 Event Types and Versions for Extended Request

	Sample Extended Request Messages
	Streaming Information Message
	Table 2-23

	Streaming Request Message
	Table 2-24

	Message Bundle Format
	Table 2-25 Message Bundle Message Fields

	Understanding Metadata
	Metadata Transmission

