Getting Started

The following topics explain how to get started configuring Firepower Threat Defense.

- Is This Guide for You?, on page 1
- New Features in Firepower Device Manager/FTD Version 6.4.0, on page 2
- Logging Into the System, on page 5
- Setting Up the System, on page 9
- Configuration Basics, on page 25

Is This Guide for You?

This guide explains how to configure Firepower Threat Defense using the Firepower Device Manager web-based configuration interface included on Firepower Threat Defense devices.

Firepower Device Manager lets you configure the basic features of the software that are most commonly used for small or mid-size networks. It is especially designed for networks that include a single device or just a few, where you do not want to use a high-powered multiple-device manager to control a large network containing many Firepower Threat Defense devices.

If you are managing large numbers of devices, or if you want to use the more complex features and configurations that Firepower Threat Defense allows, use Firepower Management Center to configure your devices instead of the integrated Firepower Device Manager.

You can use Firepower Device Manager on the following devices.

<table>
<thead>
<tr>
<th>Device Model</th>
<th>Minimum Firepower Threat Defense Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firepower 1010, 1120, 1140</td>
<td>6.4</td>
</tr>
<tr>
<td>Firepower 2110, 2120, 2130, 2140</td>
<td>6.2.1</td>
</tr>
<tr>
<td>Firepower Threat Defense Virtual for VMware</td>
<td>6.2.2</td>
</tr>
<tr>
<td>Firepower Threat Defense Virtual for Kernel-based Virtual Machine (KVM) hypervisor</td>
<td>6.2.3</td>
</tr>
<tr>
<td>ASA 5508-X, 5516-X</td>
<td>6.1</td>
</tr>
</tbody>
</table>
You can also manage the device, or multiple devices, using Cisco Defense Orchestrator, a cloud-based application. For more information about how cloud management works, you can watch a video at https://youtu.be/fsIfsHhpQU, and peruse the Cisco Defense Orchestrator portal (http://www.cisco.com/go/cdo). You can find the product documentation at https://docs.defenseorchestrator.com/. For information on connecting the device to Cisco Defense Orchestrator, see Configuring Cloud Management (Cisco Defense Orchestrator).

New Features in Firepower Device Manager/FTD Version 6.4.0

Released: April 24, 2019

The following table lists the new features available in FTD 6.4.0 when configured using Firepower Device Manager.

Table 2:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| Firepower 1000 series device configuration. | You can configure Firepower Threat Defense on Firepower 1000 series devices using Firepower Device Manager.
Note that you can configure and use the Power over Ethernet (PoE) ports as regular Ethernet ports, but you cannot enable or configure any PoE-related properties. |
| Hardware bypass for the ISA 3000. | You can now configure hardware bypass for the ISA 3000 on the **Device > Interfaces** page. In release 6.3, you needed to configure hardware bypass using FlexConfig. If you are using FlexConfig, please redo the configuring on the Interfaces page and remove the hardware bypass commands from FlexConfig. However, the portion of the FlexConfig devoted to disabling TCP sequence number randomization is still recommended. |
| Ability to reboot and shut down the system from the FDM CLI Console. | You can now issue the **reboot** and **shutdown** commands through the CLI Console in FDM. Previously, you needed to open a separate SSH session to the device to reboot or shut down the system. You must have Administrator privileges to use these commands. |
| External Authentication and Authorization using RADIUS for FTD CLI Users. | You can use an external RADIUS server to authenticate and authorize users logging into the FTD CLI. You can give external users config (administrator) or basic (read-only) access.
We added the SSH configuration to the **AAA Configuration** tab on the **Device > System Settings > Management Access** page. |
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for network range objects and nested network group objects.</td>
<td>You can now create network objects that specify a range of IPv4 or IPv6 addresses, and network group objects that include other network groups (that is, nested groups). We modified the network object and network group object Add/Edit dialog boxes to include these features, and modified the various security policies to allow the use of these objects, contingent on whether address specifications of that type make sense within the context of the policy.</td>
</tr>
<tr>
<td>Full-text search options for objects and rules.</td>
<td>You can do a full-text search on objects and rules. By searching a policy or object list that has a large number of items, you can find all items that include your search string anywhere within the rule or object. We added a search box to all policies that have rules, and to all pages on the Objects list. In addition, you can use the <code>filter=fts~search-string</code> option on GET calls for supported objects in the API to retrieve items based on a full-text search.</td>
</tr>
<tr>
<td>Obtaining a list of supported API versions for an FDM-managed FTD device.</td>
<td>You can use the GET /api/versions (ApiVersions) method to get a list of the API versions that are supported on a device. You can use your API client to communicate and configure the device using commands and syntax valid for any of the supported versions.</td>
</tr>
<tr>
<td>FTD REST API version 3 (v3).</td>
<td>The FTD REST API for software version 6.4 has been incremented to version 3. You must replace v1/v2 in the API URLs with v3. The v3 API includes many new resources that cover all features added in software version 6.4. Please re-evaluate all existing calls, as changes might have been made to the resource models you are using. To open the API Explorer, where you can view the resources, change the end of the Firepower Device Manager URL to /#/api-explorer after logging in.</td>
</tr>
<tr>
<td>Hit counts for access control rules.</td>
<td>You can now view hit counts for access control rules. The hit counts indicate how often connections matched the rule. We updated the access control policy to include hit count information. In the FTD API, we added the HitCounts resource and the <code>includeHitCounts</code> and <code>filter=fetchZeroHitCounts</code> options to the GET Access Policy Rules resource.</td>
</tr>
<tr>
<td>Site-to-Site VPN enhancements for dynamic addressing and certificate authentication.</td>
<td>You can now configure site-to-site VPN connections to use certificates instead of preshared keys to authenticate the peers. You can also configure connections where the remote peer has an unknown (dynamic) IP address. We added options to the Site-to-Site VPN wizard and the IKEv1 policy object.</td>
</tr>
</tbody>
</table>
Feature | Description
--- | ---
Support for RADIUS servers and Change of Authorization in remote access VPN. | You can now use RADIUS servers for authenticating, authorizing, and accounting remote access VPN (RA VPN) users. You can also configure Change of Authentication (CoA), also known as dynamic authorization, to alter a user’s authorization after authentication when you use a Cisco ISE RADIUS server. We added attributes to the RADIUS server and server group objects, and made it possible to select a RADIUS server group within an RA VPN connection profile.

Multiple connection profiles and group policies for remote access VPN. | You can configure more than one connection profile, and create group policies to use with the profiles. We changed the **Device > Remote Access VPN** page to have separate pages for connection profiles and group policies, and updated the RA VPN Connection wizard to allow the selection of group policies. Some items that were previously configured in the wizard are now configured in the group policy.

Support for certificate-based, second authentication source, and two-factor authentication in remote access VPN. | You can use certificates for user authentication, and configure secondary authentication sources so that users must authenticate twice before establishing a connection. You can also configure two-factor authentication using RSA tokens or Duo passcodes as the second factor. We updated the RA VPN Connection wizard to support the configuration of these additional options.

Support for IP address pools with multiple address ranges, and DHCP address pools, for remote access VPN. | You can now configure address pools that have more than one address range by selecting multiple network objects that specify subnets. In addition, you can configure address pools in a DHCP server and use the server to provide addresses to RA VPN clients. If you use RADIUS for authorization, you can alternatively configure the address pools in the RADIUS server. We updated the RA VPN Connection wizard to support the configuration of these additional options. You can optionally configure the address pool in the group policy instead of the connection profile.

Active Directory realm enhancements. | You can now include up to 10 redundant Active Directory (AD) servers in a single realm. You can also create multiple realms and delete realms that you no longer need. In addition, the limit for downloading users in a realm is increased to 50,000 from the 2,000 limit in previous releases. We updated the **Objects > Identity Sources** page to support multiple realms and servers. You can select the realm in the user criteria of access control and SSL decryption rules, to apply the rule to all users within the realm. You can also select the realm in identity rules and RA VPN connection profiles.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy support for ISE servers.</td>
<td>When you configure Cisco Identity Services Engine (ISE) as an identity source for passive authentication, you can now configure a secondary ISE server if you have an ISE high availability setup. We added an attribute for the secondary server to the ISE identity object.</td>
</tr>
<tr>
<td>File/malware events sent to external syslog servers.</td>
<td>You can now configure an external syslog server to receive file/malware events, which are generated by file policies configured on access control rules. File events use message ID 430004, malware events are 430005. We added the File/Malware syslog server options to the Device > System Settings > Logging Settings page.</td>
</tr>
<tr>
<td>Logging to the internal buffer and support for custom event log filters.</td>
<td>You can now configure the internal buffer as a destination for system logging. In addition, you can create event log filters to customize which messages are generated for the syslog server and internal buffer logging destinations. We added the Event Log Filter object to the Objects page, and the ability to use the object on the Device > System Settings > Logging Settings page. The internal buffer options were also added to the Logging Settings page.</td>
</tr>
<tr>
<td>Certificate for the Firepower Device Manager Web Server.</td>
<td>You can now configure the certificate that is used for HTTPS connections to the Firepower Device Manager configuration interface. By uploading a certificate your web browsers already trust, you can avoid the Untrusted Authority message you get when using the default internal certificate. We added the Device > System Settings > Management Access > Management Web Server page.</td>
</tr>
<tr>
<td>Cisco Threat Response support.</td>
<td>You can configure the system to send intrusion events to the Cisco Threat Response cloud-based application. You can use Cisco Threat Response to analyze intrusions. We added Cisco Threat Response to the Device > System Settings > Cloud Services page.</td>
</tr>
</tbody>
</table>

Logging Into the System

There are two interfaces to the Firepower Threat Defense device:

Firepower Device Manager Web Interface

Firepower Device Manager runs in your web browser. You use this interface to configure, manage, and monitor the system.

Command Line Interface (CLI, Console)

Use the CLI for troubleshooting. You can also use it for initial setup instead of Firepower Device Manager.

The following topics explain how to log into these interfaces and manage your user account.
Your User Role Controls What You Can See and Do

Your username is assigned a role, and your role determines what you can do or what you can see in Firepower Device Manager. The locally-defined **admin** user has all privileges, but if you log in using a different account, you might have fewer privileges.

The upper-right corner of the Firepower Device Manager window shows your username and privilege level.

The privileges are:

- **Administrator**—You can see and use all features.
- **Read-Write User**—You can do everything a read-only user can do, and you can also edit and deploy the configuration. The only restrictions are for system-critical actions, which include installing upgrades, creating and restoring backups, viewing the audit log, and ending the sessions of other Firepower Device Manager users.
- **Read-Only User**—You can view dashboards and the configuration, but you cannot make any changes. If you try to make a change, the error message explains that this is due to lack of permission.

These privileges are not related to those available for CLI users.

Logging Into Firepower Device Manager

Use the Firepower Device Manager to configure, manage, and monitor the system. The features that you can configure through the browser are not configurable through the command-line interface (CLI); you must use the web interface to implement your security policies.

Use a current version of the following browsers: Firefox, Chrome, Safari, Edge, or Internet Explorer.

Note

If you type in the wrong password and fail to log in on 3 consecutive attempts, your account is locked for 5 minutes. You must wait before trying to log in again.

Before you begin

Initially, you can log into Firepower Device Manager using the **admin** username only. However, you can then configure authorization for additional users defined in an external AAA server, as described in Managing FDM and FTD User Access.

There can be up to 5 active logins to FDM at one time. This includes users logged into FDM and active API sessions, which are represented by non-expired API tokens. If you exceed this limit, the oldest session, either FDM login or API token, is expired to allow the new session. These limits do not apply to SSH sessions.

Procedure

Step 1

Using a browser, open the home page of the system, for example, https://ftd.example.com.
You can use any of the following addresses. You can use the IPv4 or IPv6 address or the DNS name, if you have configured one.

- The management address. By default (on most platforms), this is 192.168.45.45 on the Management interface.

- The address of a data interface that you have opened for HTTPS access. By default (on platforms), the “inside” interface allows HTTPS access, so you can connect to the default inside address 192.168.1.1. On device models where the inside interface is a bridge group, you can connect to this address through any bridge group member interface. See Default Configuration Prior to Initial Setup, on page 21 for details about your model’s inside IP address.

Tip If your browser is not configured to recognize the server certificate, you will see a warning about an untrusted certificate. Accept the certificate as an exception, or in your trusted root certificate store.

Step 2 Enter your username and password defined for the device, then click Login.

You can use the admin username, which is a pre-defined user. The default admin password is Admin123.

Your session will expire after 30 minutes of inactivity, and you will be prompted to log in again. You can log out by selecting Log Out from the user icon drop-down menu in the upper right of the page.

Logging Into the Command Line Interface (CLI)

Use the command-line interface (CLI) to set up the system and do basic system troubleshooting. You cannot configure policies through a CLI session.

To log into the CLI, do one of the following:

- Use the console cable included with the device to connect your PC to the console using a terminal emulator set for 9600 baud, 8 data bits, no parity, 1 stop bit, no flow control. See the hardware guide for your device for more information about the console cable.

Note On Firepower models, the CLI on the Console port is FXOS. You can get to the FTD CLI using the connect ftd command. Use the FXOS CLI for chassis-level troubleshooting only. Use the FTD CLI for basic configuration, monitoring, and normal system troubleshooting. See the FXOS documentation for information on FXOS commands.

- For Firepower Threat Defense Virtual, open the virtual console.

- Use an SSH client to make a connection to the management IP address. You can also connect to the address on a data interface if you open the interface for SSH connections (see Configuring the Management Access List). SSH access to data interfaces is disabled by default. Log in using the admin username (default password is Admin123) or another CLI user account.
Tips

• You can create local user accounts that can log into the CLI using the `configure user add` command. However, these users can log into the CLI only. They cannot log into the Firepower Device Manager web interface.

• You can create user accounts for SSH access in an external server. For information about configuring external authentication for SSH access, see Configuring External Authorization (AAA) for FTD CLI (SSH) Users.

Changing Your Password

You should periodically change your password. The following procedure explains how to change the password while logged into Firepower Device Manager.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you are logged into the CLI, you can change your password using the <code>configure password</code> command. You can change the password for a different CLI user with the <code>configure user password username</code> command.</td>
</tr>
</tbody>
</table>

Before you begin

This procedure applies to local users only. If your user account is defined on an external AAA server, you must change your password with that server.

Procedure

Step 1 Select Profile from the user icon drop-down list in the upper right of the menu.

Step 2 Click the Password tab.

Step 3 Enter your current password.

Step 4 Enter your new password and then confirm it.

Step 5 Click Change.

Setting User Profile Preferences

You can set preferences for the user interface and change your password.
Setting Up the System

You must complete an initial configuration to make the system function correctly in your network. Successful deployment includes attaching cables correctly and configuring the addresses needed to insert the device into your network and connect it to the Internet or other upstream router. The following procedure explains the process.

Before you begin
Before you start the initial setup, the device includes some default settings. For details, see Default Configuration Prior to Initial Setup, on page 21.

Procedure

Step 1 Connect the Interfaces, on page 9
Step 2 Complete the Initial Configuration Using the Setup Wizard, on page 18

For details about the resulting configuration, see Configuration After Initial Setup, on page 23.

Connect the Interfaces

The default configuration assumes that certain interfaces are used for the inside and outside networks. Initial configuration will be easier to complete if you connect network cables to the interfaces based on these expectations.

The default configuration for most models is designed to let you attach your management computer to the inside interface. Alternatively, you can also directly attach your workstation to the Management port. The interfaces are on different networks, so do not try to connect any of the inside interfaces and the Management port to the same network.

Procedure

Step 1 Select Profile from the user icon drop-down list in the upper right of the menu.

Step 2 On the Profile tab, configure the following and click Save.

• Time Zone for Scheduling Tasks—Select the time zone you want to use for scheduling tasks such as backups and updates. The browser time zone is used for dashboards and events, if you set a different zone.
• Color Theme—Select the color theme you want to use in the user interface.

Step 3 On the Password tab, you can enter a new password and click Change.
Do not connect any of the inside interfaces or the Management interface to a network that has an active DHCP server. This will conflict with the DHCP servers already running on the inside interface and Management interface. If you want to use a different DHCP server for the network, disable the unwanted DHCP server after initial setup.

The following topics show how to cable the system for this topology when using the inside interfaces to configure the device.

Cabling for ASA 5508-X and 5516-X

Figure 1: Cabling the ASA 5508-X or 5516-X

- Connect your management computer to either of the following interfaces:
 - GigabitEthernet 1/2—Connect your management computer directly to GigabitEthernet 1/2 for initial configuration, or connect GigabitEthernet 1/2 to your inside network. GigabitEthernet 1/2 has a default IP address (192.168.1.1) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.
 - Management 1/1—Connect your management computer directly to Management 1/1 for initial configuration, or connect Management 1/1 to your management network. Management 1/1 has a default IP address (192.168.45.45) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.

If you need to change the Management 1/1 IP address from the default, you must also cable your management PC to the console port. See (Optional) Change Management Network Settings at the CLI, on page 17.

You can later configure FDM management access from other interfaces.

- Connect the outside network to the GigabitEthernet1/1 interface.

By default, the IP address is obtained using DHCP, but you can set a static address during initial configuration.

- Connect other networks to the remaining interfaces.
Cabling for ASA 5515-X, 5525-X, 5545-X, and 5555-X

Figure 2: Cabling the ASA 5500-X

- Connect your management computer to either of the following interfaces:
 - GigabitEthernet 0/1—Connect your management computer directly to GigabitEthernet 0/1 for initial configuration, or connect GigabitEthernet 0/1 to your inside network. GigabitEthernet 0/1 has a default IP address (192.168.1.1) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.
 - Management 0/0—Connect your management computer directly to Management 0/0 for initial configuration, or connect Management 0/0 to your management network. Management 0/0 has a default IP address (192.168.45.45) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.

If you need to change the Management 0/0 IP address from the default, you must also cable your management computer to the console port. See (Optional) Change Management Network Settings at the CLI, on page 17.

You can later configure FDM management access from other interfaces.

- Connect the outside network to the GigabitEthernet 0/0 interface.

 By default, the IP address is obtained using DHCP, but you can set a static address during initial configuration.

- Connect other networks to the remaining interfaces.
Cabling for Firepower 1010

Figure 3: Cabling for Firepower 1010

- Connect your management computer to one of the following interfaces:
 - Ethernet 1/2 through 1/8—Connect your management computer directly to one of the inside ports (Ethernet 1/2 through 1/8). Inside has a default IP address (192.168.1.1) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.
 - Management 1/1—Connect your management computer directly to Management 1/1. Or connect Management 1/1 to your management network. Management 1/1 has a default IP address (192.168.45.45) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing management network settings.
 - If you need to change the Management 1/1 IP address from the default, you must also cable your management computer to the console port. See (Optional) Change Management Network Settings at the CLI, on page 17.

You can later configure FDM management access from other interfaces.

- Connect the outside network to the Ethernet 1/1 interface.
 - By default, the IP address is obtained using DHCP, but you can set a static address during initial configuration.
 - Connect inside devices to the remaining ports, Ethernet 1/2 through 1/8.
Cabling for Firepower 1100

Figure 4: Cabling the Firepower 1100

- Connect your management computer to either of the following interfaces:
 - Ethernet 1/2—Connect your management computer directly to Ethernet 1/2 for initial configuration, or connect Ethernet 1/2 to your inside network. Ethernet 1/2 has a default IP address (192.168.1.1) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.
 - Management 1/1 (labeled MGMT)—Connect your management computer directly to Management 1/1 for initial configuration, or connect Management 1/1 to your management network. Management 1/1 has a default IP address (192.168.45.45) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.

 If you need to change the Management 1/1 IP address from the default, you must also cable your management computer to the console port. See (Optional) Change Management Network Settings at the CLI, on page 17.

 You can later configure FDM management access from other interfaces.

 - Connect the outside network to the Ethernet 1/1 interface (labeled WAN).

 By default, the IP address is obtained using DHCP, but you can set a static address during initial configuration.

 - Connect other networks to the remaining interfaces.
Cabling for Firepower 2100

Figure 5: Cabling the Firepower 2100

- Connect your management computer to either of the following interfaces:
 - Ethernet 1/2—Connect your management computer directly to Ethernet 1/2 for initial configuration, or connect Ethernet 1/2 to your inside network. Ethernet 1/2 has a default IP address (192.168.1.1) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.
 - Management 1/1 (labeled MGMT)—Connect your management computer directly to Management 1/1 for initial configuration, or connect Management 1/1 to your management network. Management 1/1 has a default IP address (192.168.45.45) and also runs a DHCP server to provide IP addresses to clients (including the management computer), so make sure these settings do not conflict with any existing inside network settings.

If you need to change the Management 1/1 IP address from the default, you must also cable your management computer to the console port. See (Optional) Change Management Network Settings at the CLI, on page 17.

You can later configure FDM management access from other interfaces.

- Connect the outside network to the Ethernet1/1 interface (labeled WAN).
 By default, the IP address is obtained using DHCP, but you can set a static address during initial configuration.
- Connect other networks to the remaining interfaces.

Virtual Cabling for Firepower Threat Defense Virtual

To install Firepower Threat Defense Virtual, see the Cisco Firepower Threat Defense Virtual Quick Start Guide for your virtual platform at http://www.cisco.com/c/en/us/support/security/firepower-ngfw-virtual/products-installation-guides-list.html. Firepower Device Manager is supported on the following virtual platforms: VMware, KVM.
The Firepower Threat Defense Virtual default configuration puts the management interface and inside interface on the same subnet. You must have Internet connectivity on the management interface in order to use Smart Licensing and to obtain updates to system databases.

Thus, the default configuration is designed so that you can connect both the Management0/0 and GigabitEthernet0/1 (inside) to the same network on the virtual switch. The default management address uses the inside IP address as the gateway. Thus, the management interface routes through the inside interface, then through the outside interface, to get to the Internet.

You also have the option of attaching Management0/0 to a different subnet than the one used for the inside interface, as long as you use a network that has access to the Internet. Ensure that you configure the management interface IP address and gateway appropriately for the network.

Note that the management interface IP configuration is defined on Device > System Settings > Management Interface. It is not the same as the IP address for the Management0/0 (diagnostic) interface listed on Device > Interfaces > View Configuration.

How VMware Network Adapters and Interfaces Map to Firepower Threat Defense Physical Interfaces

You can configure up to 10 interfaces for a VMware Firepower Threat Defense Virtual device. You must configure a minimum of 4 interfaces.

Ensure that the Management0-0 source network is associated to a VM network that can access the Internet. This is required so that the system can contact the Cisco Smart Software Manager and also to download system database updates.

You assign the networks when you install the OVF. As long as you configure an interface, you can later change the virtual network through the VMware Client. However, if you need to add a new interface, the process is more cumbersome, as explained in Add Interfaces to Firepower Threat Defense Virtual.

The following table explains how the VMware network adapter and source interface map to the Firepower Threat Defense Virtual physical interface names. For additional interfaces, the naming follows the same pattern, increasing the relevant numbers by one. All additional interfaces are data interfaces. For more information on assigning virtual networks to virtual machines, see the VMware online help.

Table 3: Source to Destination Network Mapping

<table>
<thead>
<tr>
<th>Network Adapter</th>
<th>Source Network</th>
<th>Destination Network (Physical Interface Name)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network adapter 1</td>
<td>Management0-0</td>
<td>Management0/0</td>
<td>Management</td>
</tr>
<tr>
<td>Network adapter 2</td>
<td>Diagnostic0-0</td>
<td>Diagnostic0/0</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>Network adapter 3</td>
<td>GigabitEthernet0-0</td>
<td>GigabitEthernet0/0</td>
<td>Outside data</td>
</tr>
<tr>
<td>Network adapter 4</td>
<td>GigabitEthernet0-1</td>
<td>GigabitEthernet0/1</td>
<td>Inside data</td>
</tr>
<tr>
<td>Network adapter 5</td>
<td>GigabitEthernet0-2</td>
<td>GigabitEthernet0/2</td>
<td>Data traffic</td>
</tr>
<tr>
<td>Network adapter 6</td>
<td>GigabitEthernet0-3</td>
<td>GigabitEthernet0/3</td>
<td>Data traffic</td>
</tr>
<tr>
<td>Network adapter 7</td>
<td>GigabitEthernet0-4</td>
<td>GigabitEthernet0/4</td>
<td>Data traffic</td>
</tr>
<tr>
<td>Network adapter 8</td>
<td>GigabitEthernet0-5</td>
<td>GigabitEthernet0/5</td>
<td>Data traffic</td>
</tr>
<tr>
<td>Network adapter 9</td>
<td>GigabitEthernet0-6</td>
<td>GigabitEthernet0/6</td>
<td>Data traffic</td>
</tr>
</tbody>
</table>
Cabling for ISA 3000

Figure 6: ISA 3000

- Attach GigabitEthernet 1/1 to the ISP/WAN modem or other outside device. By default, the IP address is obtained using DHCP, but you can set a static address during initial configuration.

- Attach GigabitEthernet 1/2 (or another of the inside bridge group member ports) to your workstation, the one you will use to configure the device. Configure the workstation to obtain an IP address using DHCP. The workstation gets an address on the 192.168.1.0/24 network.

Note

You have a couple of other options for connecting the management workstation. You can also directly connect it to the Management port. The workstation gets an address through DHCP on the 192.168.45.0/24 network. Another option is to leave your workstation attached to a switch, and attach that switch to one of the inside ports such as GigabitEthernet1/2. However, you must ensure that no other device on the switch’s network is running a DHCP server, because it will conflict with the one running on the inside bridge group, 192.168.1.1.
• Optionally, attach other endpoints or switches to the other ports in the inside bridge group. You might want to wait until you complete the initial device setup before adding endpoints. If you add switches, ensure that there are no other DHCP servers running on those networks, as this conflicts with the DHCP server running on the inside bridge group.

(Optional) Change Management Network Settings at the CLI

If you cannot use the default management IP address, then you can connect to the console port and perform initial setup at the CLI, including setting the Management IP address, gateway, and other basic networking settings. You can only configure the Management interface settings; you cannot configure inside or outside interfaces, which you can configure later in FDM.

Note

You cannot repeat the CLI setup script unless you clear the configuration; for example, by reimaging. However, all of these settings can be changed later at the CLI using configure network commands. See the FTD command reference.

Procedure

Step 1
Connect to the FTD console port. See Logging Into the Command Line Interface (CLI), on page 7 for more information.

Step 2
Log in with the username admin and the password Admin123.

Step 3
The first time you log in to FTD, you are prompted to accept the End User License Agreement (EULA). You are then presented with the CLI setup script.

Defaults or previously-entered values appear in brackets. To accept previously entered values, press Enter. See the following guidelines:

• Enter the IPv4 default gateway for the management interface—If you set a manual IP address, enter either data-interfaces or the IP address of the gateway router. The data-interfaces setting sends outgoing management traffic over the backplane to exit a data interface. This setting is useful if you do not have a separate Management network that can access the internet. Traffic originating on the Management interface includes license registration and database updates that require internet access. If you use data-interfaces, you can still use FDM on the Management interface if you are directly-connected to the Management network, but for remote management on Management, you need to enter the IP address of a gateway router on the Management network. Note that FDM management on data interfaces is not affected by this setting. If you use DHCP, the system uses the gateway provided by DHCP.

• If your networking information has changed, you will need to reconnect—If you are connected with SSH to the default IP address but you change the IP address at initial setup, you will be disconnected. Reconnect with the new IP address and password. Console connections are not affected. Note also that the DHCP server on Management will be disabled if you change the IP address.

• Manage the device locally?—Enter yes to use FDM. A no answer means you will use FMC instead.

Example:

You must accept the EULA to continue.
Press <ENTER> to display the EULA:
Complete the Initial Configuration Using the Setup Wizard

When you initially log into Firepower Device Manager, you are taken through the device setup wizard to complete the initial system configuration.

If you plan to use the device in a high availability configuration, please read Prepare the Two Units for High Availability.

Before you begin

Ensure that you connect a data interface to your gateway device, for example, a cable modem or router. For edge deployments, this would be your Internet-facing gateway. For data center deployments, this would be a back-bone router. Use the default “outside” interface for your model (see Connect the Interfaces, on page 9 and Default Configuration Prior to Initial Setup, on page 21).

Then, connect your management computer to the “inside” interface for your hardware model. Alternatively, you can connect to the Management interface. For Firepower Threat Defense Virtual, simply ensure that you have connectivity to the management IP address.

(Except for Firepower Threat Defense Virtual, which requires connectivity to the internet from the management IP address.) The Management interface does not need to be connected to a network. By default, the system obtains system licensing and database and other updates through the data interfaces, typically the outside interface, that connect to the internet. If you instead want to use a separate management network, you can connect the Management interface to a network and configure a separate management gateway after you complete initial setup.

Step 4 Log into FDM on the new Management IP address.
To change the Management interface network settings if you cannot access the default IP address, see (Optional) Change Management Network Settings at the CLI, on page 17.

Procedure

Step 1 Log into Firepower Device Manager.

a) Assuming you did not go through initial configuration in the CLI, open Firepower Device Manager at https://ip-address, where the address is one of the following.

• If you are connected to the inside interface: https://192.168.1.1.

• (Required for Firepower Threat Defense Virtual) If you are connected to the Management interface: https://192.168.45.45.

b) Log in with the username admin, password Admin123.

Step 2 If this is the first time logging into the system, and you did not use the CLI setup wizard, you are prompted to read and accept the End User License Agreement and change the admin password.

You must complete these steps to continue.

Step 3 Configure the following options for the outside and management interfaces and click Next. Your settings are deployed to the device when you click Next. The interface will be named “outside” and it will be added to the “outside_zone” security zone. Ensure that your settings are correct.

Outside Interface

• Configure IPv4—The IPv4 address for the outside interface. You can use DHCP or manually enter a static IP address, subnet mask, and gateway. You can also select Off to not configure an IPv4 address. Do not configure an IP address on the same subnet as the default inside address (see Default Configuration Prior to Initial Setup, on page 21), either statically or through DHCP.

• Configure IPv6—The IPv6 address for the outside interface. You can use DHCP or manually enter a static IP address, prefix, and gateway. You can also select Off to not configure an IPv6 address.

Management Interface

• DNS Servers—The DNS server for the system's management address. Enter one or more addresses of DNS servers for name resolution. The default is the OpenDNS public DNS servers. If you edit the fields and want to return to the default, click Use OpenDNS to reload the appropriate IP addresses into the fields. Your ISP might require that you use specific DNS servers. If after completing the wizard, you find that DNS resolution is not working, see Troubleshooting DNS for the Management Interface.

• Firewall Hostname—The hostname for the system's management address.

Step 4 Configure the system time settings and click Next.

• Time Zone—Select the time zone for the system.

• NTP Time Server—Select whether to use the default NTP servers or to manually enter the addresses of your NTP servers. You can add multiple servers to provide backups.

Step 5 Configure the smart licenses for the system.
You must have a smart license account to obtain and apply the licenses that the system requires. Initially, you can use the 90-day evaluation license and set up smart licensing later.

To register the device now, click the link to log into your Smart Software Manager account, generate a new token, and copy the token into the edit box.

If you do not want to register the device yet, select the evaluation mode option. The evaluation period last up to 90 days. To later register the device and obtain smart licenses, click **Device**, then click the link in the **Smart Licenses** group.

Step 6
Click **Finish**.

What to do next

- If you want to use features covered by optional licenses, such as category-based URL filtering, intrusion inspection, or malware prevention, enable the required licenses. See [Enabling or Disabling Optional Licenses](#).

- Connect the other data interfaces to distinct networks and configure the interfaces. For information on configuring interfaces, see [How to Add a Subnet and Interfaces](#).

- If you are managing the device through the inside interface, and you want to open CLI sessions through the inside interface, open the inside interface to SSH connections. See [Configuring the Management Access List](#).

- Go through the use cases to learn how to use the product. See [Best Practices: Use Cases for Firepower Threat Defense](#).

What to Do if You Do Not Obtain an IP Address for the Outside Interface

The default device configuration includes a static IPv4 address for the inside interface. You cannot change this address through the initial device setup wizard, although you can change it afterwards.

The default inside IP address might conflict with other networks attached to the device. This is especially true if you use DHCP on the outside interface to obtain an address from your Internet Service Provider (ISP). Some ISPs use the same subnet as the inside network as the address pool. Because you cannot have two data interfaces with addresses on the same subnet, conflicting addresses from the ISP cannot be configured on the outside interface.

If there is a conflict between the inside static IP address and the DHCP-provided address on the outside interface, the connection diagram should show the outside interface as administratively UP, but with no IPv4 address.

The setup wizard will complete successfully in this case, and all the default NAT, access, and other policies and settings will be configured. Simply follow the procedure below to eliminate the conflict.

Before you begin

Verify that you have a healthy connection to the ISP. Although a subnet conflict will prevent you from getting an address on the outside interface, you will also fail to get one if you simply do not have a link to the ISP.
Procedure

Step 1 Click **Device**, then click the link in the **Interfaces** summary.

Step 2 Mouse over the **Actions** column for the inside interface and click the edit icon (editar).

Step 3 On the **IPv4 Address** tab, enter a static address on a unique subnet, for example, 192.168.2.1/24 or 192.168.46.1/24. Note that the default management address is 192.168.45.45/24, so do not use that subnet.

You also have the option to use DHCP to obtain an address if you have a DHCP server already running on the inside network. However, you must first click **Delete** in the **DHCP SERVER IS DEFINED FOR THIS INTERFACE** group to remove the DHCP server from the interface.

Step 4 In the **DHCP SERVER IS DEFINED FOR THIS INTERFACE** area, click **Edit** and change the DHCP pool to a range on the new subnet, for example, 192.168.2.5-192.168.2.254.

Step 5 Click **OK** to save the interface changes.

Step 6 Click the **Deploy** button in the menu to deploy your changes.

Step 7 Click **Deploy Now**.

After deployment completes, the connection graphic should show that the outside interface now has an IP address. Use a client on the inside network to verify you have connectivity to the Internet or other upstream network.

Default Configuration Prior to Initial Setup

Before you initially configure the Firepower Threat Defense device using the local manager (Firepower Device Manager), the device includes the following default configuration.

For many models, this configuration assumes that you open the Firepower Device Manager through the inside interface, typically by plugging your computer directly into the interface, and use the DHCP server defined on the inside interface to supply your computer with an IP address. Alternatively, you can plug your computer into the Management interface and use DHCP to obtain an address. However, some models have different default configurations and management requirements. See the table below for details.

You can pre-configure many of these settings using the CLI setup ([Optional) Change Management Network Settings at the CLI, on page 17] before you perform setup using the FDM wizard.

Default Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default</th>
<th>Can be changed during FDM initial configuration?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password for admin user.</td>
<td>Admin123</td>
<td>Yes. You must change the default password.</td>
</tr>
<tr>
<td>Setting</td>
<td>Default</td>
<td>Can be changed during FDM initial configuration?</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Management IP address.</td>
<td>192.168.45.45</td>
<td>No.</td>
</tr>
<tr>
<td>Management gateway.</td>
<td>The data interfaces on the device. Typically the outside interface becomes the route to the Internet. This gateway works for from-the-device traffic only. Firepower Threat Defense Virtual: 192.168.45.1</td>
<td>No.</td>
</tr>
<tr>
<td>DNS servers for the management interface.</td>
<td>The OpenDNS public DNS servers, 208.67.220.220 and 208.67.222.222.</td>
<td>Yes</td>
</tr>
<tr>
<td>Inside interface IP address.</td>
<td>192.168.1.1/24</td>
<td>No.</td>
</tr>
<tr>
<td>DHCP auto-configuration for inside clients. (Auto-configuration supplies clients with addresses for WINS and DNS servers.)</td>
<td>Enabled on outside interface.</td>
<td>Yes, but indirectly. If you configure a static IPv4 address for the outside interface, DHCP server auto-configuration is disabled.</td>
</tr>
<tr>
<td>Outside interface IP address.</td>
<td>Obtained through DHCP from Internet Service Provider (ISP) or upstream router.</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

Default Interfaces by Device Model

You cannot select different inside and outside interfaces during initial configuration. To change the interface assignments after configuration, edit the interface and DHCP settings. You must remove an interface from the bridge group before you can configure it as a non-switched interface.

<table>
<thead>
<tr>
<th>Firepower Threat Defense device</th>
<th>Outside Interface</th>
<th>Inside Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA 5508-X</td>
<td>GigabitEthernet1/1</td>
<td>GigabitEthernet1/2</td>
</tr>
<tr>
<td>ASA 5516-X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuration After Initial Setup

After you complete the setup wizard, the device configuration will include the following settings. The table shows whether a particular setting is something you explicitly chose or whether it was defined for you based on your other selections. Validate any "implied" configurations and edit them if they do not serve your needs.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Configuration</th>
<th>Explicit, implied, or default configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password for admin user.</td>
<td>Whatever you entered.</td>
<td>Explicit.</td>
</tr>
<tr>
<td>Management IP address.</td>
<td>192.168.45.45</td>
<td>Default.</td>
</tr>
<tr>
<td>Management gateway.</td>
<td>The data interfaces on the device. Typically the outside interface becomes the route to the Internet. The management gateway works for from-the-device traffic only. Firepower Threat Defense Virtual: 192.168.45.1</td>
<td>Default.</td>
</tr>
<tr>
<td>DNS servers for the management interface.</td>
<td>The OpenDNS public DNS servers, 208.67.220.220 and 208.67.222.222, or whatever you entered. DNS servers obtained from DHCP are never used.</td>
<td>Explicit.</td>
</tr>
<tr>
<td>Management hostname.</td>
<td>firepower or whatever you entered.</td>
<td>Explicit.</td>
</tr>
<tr>
<td>Setting</td>
<td>Configuration</td>
<td>Explicit, implied, or default configuration</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Management access through data interfaces.</td>
<td>A data interface management access list rule allows HTTPS access through the inside interface. SSH connections are not allowed. Both IPv4 and IPv6 connections are allowed. Firepower Threat Defense Virtual: No data interfaces have default management access rules.</td>
<td>Implied.</td>
</tr>
<tr>
<td>System time.</td>
<td>The time zone and NTP servers you selected.</td>
<td>Explicit.</td>
</tr>
<tr>
<td>Smart license.</td>
<td>Either registered with a base license, or the evaluation period activated, whichever you selected. Subscription licenses are not enabled. Go to the smart licensing page to enable them.</td>
<td>Explicit.</td>
</tr>
<tr>
<td>Inside interface IP address.</td>
<td>192.168.1.1/24</td>
<td>Default.</td>
</tr>
<tr>
<td>Firepower Threat Defense Virtual: 192.168.45.1/24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHCP auto-configuration for inside clients.</td>
<td>Enabled on outside interface if you use DHCP to obtain the outside interface IPv4 address. If you use static addressing, DHCP auto-configuration is disabled.</td>
<td>Explicit, but indirectly.</td>
</tr>
<tr>
<td>(Auto-configuration supplies clients with addresses for WINS and DNS servers.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Data interface configuration. | • ISA 3000, Firepower 1010—All data interfaces (such as GigabitEthernet1/2) except the outside interface are enabled and part of the inside bridge group. You can plug end points or switches into these ports and obtain addresses from the DHCP server for the inside interface. These interfaces are named inside_1, inside_2, and so forth.
• All other models—The outside and inside interfaces are the only ones configured and enabled. All other data interfaces are disabled. | Default. |
<p>| Outside physical interface and IP address. | The default outside port based on the device model. See Default Configuration Prior to Initial Setup, on page 21. The IP address is obtained by DHCP, or it is a static address as entered (IPv4, IPv6, or both). | Interface is Default. Addressing is Explicit. |</p>
<table>
<thead>
<tr>
<th>Setting</th>
<th>Configuration</th>
<th>Explicit, implied, or default configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static routes.</td>
<td>If you configure a static IPv4 or IPv6 address for the outside interface, a static default route is configured for IPv4/IPv6 as appropriate, pointing to the gateway you defined for that address type. If you select DHCP, the default route is obtained from the DHCP server. Network objects are also created for the gateway and the "any" address, that is, 0.0.0.0/0 for IPv4, ::/0 for IPv6.</td>
<td>Implied.</td>
</tr>
<tr>
<td>Security zones.</td>
<td>inside_zone, containing the inside interface. For models that have an inside bridge group, the zone contains all members of the inside bridge group interface. outside_zone, containing the outside interface. (You can edit these zones to add other interfaces, or create your own zones.)</td>
<td>Implied.</td>
</tr>
<tr>
<td>Access control policy.</td>
<td>A rule trusting all traffic from the inside_zone to the outside_zone. This allows without inspection all traffic from users inside your network to get outside, and all return traffic for those connections. For models that have an inside bridge group, a second rule trusting all traffic between the interfaces in the inside_zone. This allows without inspection all traffic between users on your inside network. The default action for any other traffic is to block it. This prevents any traffic initiated from outside to enter your network.</td>
<td>Implied.</td>
</tr>
<tr>
<td>NAT</td>
<td>(Models that do not have an inside bridge group.) An interface dynamic PAT rule translates the source address for any IPv4 traffic destined to the outside interface to a unique port on the outside interface’s IP address. (Models that have an inside bridge group.) For each member of the inside bridge group, an interface dynamic PAT rule translates the source address for any IPv4 traffic destined to the outside interface to a unique port on the outside interface’s IP address. These appear in the NAT rule table and you can edit them later if desired. There are additional hidden PAT rules to enable HTTPS access through the inside interfaces, and routing through the data interfaces for the management address. These do not appear in the NAT table, but you will see them if you use the show nat command in the CLI.</td>
<td>Implied.</td>
</tr>
</tbody>
</table>

Configuration Basics

The following topics explain the basic methods for configuring the device.
Configuring the Device

When you initially log into Firepower Device Manager, you are guided through a setup wizard to help you configure basic settings. Once you complete the wizard, use the following method to configure other features and to manage the device configuration.

If you have trouble distinguishing items visually, select a different color scheme in the user profile. Select Profile from the user icon drop-down menu in the upper right of the page.

Procedure

Step 1 Click Device to get to the Device Summary.

The dashboard shows a visual status for the device, including enabled interfaces and whether key settings are configured (colored green) or still need to be configured. For more information, see Viewing Interface and Management Status, on page 31.

Above the status image is a summary of the device model, software version, VDB (System and Vulnerability Database) version, and the last time intrusion rules were updated. This area also shows high availability status, including links to configure the feature; see High Availability (Failover).

Below the image are groups for the various features you can configure, with summaries of the configurations in each group, and actions you can take to manage the system configuration.

Step 2 Click the links in each group to configure the settings or perform the actions.

Following is a summary of the groups:

- **Interface**—You should have at least two data interfaces configured in addition to the management interface. See Interfaces.

- **Routing**—The routing configuration. You must define a default route. Other routes might be necessary depending on your configuration. See Routing.

- **Updates**—Geolocation, intrusion rule, and vulnerability database updates, and system software upgrades. Set up a regular update schedule to ensure that you have the latest database updates if you use those features. You can also go to this page if you need to download an update before the regularly schedule update occurs. See Updating System Databases and Feeds.

- **System Settings**—This group includes a variety of settings. Some are basic settings that you would configure when you initially set up the device and then rarely change. See System Settings.

- **Smart License**—Shows the current state of the system licenses. You must install the appropriate licenses to use the system. Some features require additional licenses. See Licensing the System.

- **Backup and Restore**—Back up the system configuration or restore a previous backup. See Backing Up and Restoring the System.

- **Troubleshoot**—Generate a troubleshooting file at the request of the Cisco Technical Assistance Center. See Creating a Troubleshooting File.

- **Site-to-Site VPN**—The site-to-site virtual private network (VPN) connections between this device and remote devices. See Managing Site-to-Site VPNs.
• **Remote Access VPN**—The remote access virtual private network (VPN) configuration that allows outside clients to connect to your inside network. See Configuring Remote Access VPN.

• **Advanced Configuration**—Use FlexConfig and Smart CLI to configure features that you otherwise cannot configure using Firepower Device Manager. See Advanced Configuration.

• **Device Administration**—View the audit log or export a copy of the configuration. See Auditing and Change Management.

Step 3
Click the **Deploy** button in the menu to deploy your changes.

Changes are not active on the device until you deploy them. See Deploying Your Changes, on page 28.

What to do next

Click **Policies** in the main menu and configure the security policy for the system. You can also click **Objects** to configure the objects needed in those policies.

Configuring Security Policies

Use the security policies to implement your organization’s acceptable use policy and to protect your network from intrusions and other threats.

Procedure

Step 1
Click **Policies**.

The Security Policies page shows the general flow of a connection through the system, and the order in which security policies are applied.

Step 2
Click the name of a policy and configure it.

You might not need to configure each policy type, although you must always have an access control policy. Following is a summary of the policies:

• **SSL Decryption**—If you want to inspect encrypted connections (such as HTTPS) for intrusions, malware, and so forth, you must decrypt the connections. Use the SSL decryption policy to determine which connections need to be decrypted. The system re-encrypts the connection after inspecting it. See Configuring SSL Decryption Policies.

• **Identity**—If you want to correlate network activity to individual users, or control network access based on user or user group membership, use the identity policy to determine the user associated with a given source IP address. See Configuring Identity Policies.

• **Security Intelligence**—Use the Security Intelligence policy to quickly drop connections from or to selected IP addresses or URLs. By blocking known bad sites, you do not need to account for them in your access control policy. Cisco provides regularly updated feeds of known bad addresses and URLs.
so that the Security Intelligence block lists update dynamically. Using feeds, you do not need to edit the policy to add or remove items in the block lists. See Configuring Security Intelligence.

- **NAT (Network Address Translation)**—Use the NAT policy to convert internal IP addresses to externally routeable addresses. See Configure NAT.

- **Access Control**—Use the access control policy to determine which connections are allowed on the network. You can filter by security zone, IP address, protocol, port, application, URL, user or user group. You also apply intrusion and file (malware) policies using access control rules. Use this policy to implement URL filtering. See Configuring the Access Control Policy.

- **Intrusion**—Use the intrusion policies to inspect for known threats. Although you apply intrusion policies using access control rules, you can edit the intrusion policies to selectively enable or disable specific intrusion rules. See Intrusion Policies.

Step 3

Click the **Deploy** button in the menu to deploy your changes.

Changes are not active on the device until you deploy them. See Deploying Your Changes, on page 28.

Searching for Rules or Objects

You can use full-text search on lists of policy rules or objects to help you find the item you want to edit. This is especially helpful when dealing with policies that have hundreds of rules, or long object lists.

The method for using search on rules and objects is the same for any type of policy (except the intrusion policy) or object: in the **Search** field, enter a string to find, and press Enter.

This string can exist in any part of the rule or object, and it can be a partial string. You can use the asterisk * as a wildcard that matches zero or more characters. Do not include the following characters, they are not supported as part of the search string: ?~!{}<>:%. The following characters are ignored: ;#&.

The string can appear within an object in the group. For example, you can enter an IP address and find the network objects or groups that specify that address.

When done, click the x on the right side of the search box to clear the filter.

Deploying Your Changes

When you update a policy or setting, the change is not immediately applied to the device. There is a two step process for making configuration changes:

1. Make your changes.
2. Deploy your changes.

This process gives you the opportunity to make a group of related changes without forcing you to run a device in a “partially configured” manner. In most cases, the deployment includes just your changes. However, if necessary, the system will reapply the entire configuration, which might be disruptive to your network. In addition, some changes require inspection engines to restart, with traffic dropping during the restart. Thus, consider deploying changes when potential disruptions will have the least impact.
If the deployment job fails, the system must roll back any partial changes to the previous configuration. Rollback includes clearing the data plane configuration and redeploying the previous version. This will disrupt traffic until the rollback completes.

After you complete the changes you want to make, use the following procedure to deploy them to the device.

The Firepower Threat Defense device using the Firepower Device Manager drops traffic when the inspection engines are busy because of a software resource issue, or down because a configuration requires the engines to restart during configuration deployment. For detailed information on changes that require a restart, see Configuration Changes that Restart Inspection Engines, on page 30.

Procedure

Step 1
Click the Deploy Changes icon in the upper right of the web page.

The icon is highlighted with a dot when there are undeployed changes.

The Pending Changes window shows a comparison of the deployed version of the configuration with the pending changes. These changes are color-coded to indicate removed, added, or edited elements. See the legend in the window for an explanation of the colors.

If the deployment requires that inspection engines be restarted, the page includes a message that provides detail on what changed that requires a restart. If momentary traffic loss at this time would be unacceptable, close the dialog box and wait until a better time to deploy changes.

If the icon is not highlighted, you can still click it to see the date and time of the last successful deployment job. There is also a link to show you the deployment history, which takes you to the audit page filtered to show deployment jobs only.

Step 2
If you are satisfied with the changes, you can click Deploy Now to start the job immediately.

The window will show that the deployment is in progress. You can close the window, or wait for deployment to complete. If you close the window while deployment is in progress, the job does not stop. You can see results in the task list or audit log. If you leave the window open, click the Deployment History link to view the results.

Optionally, you can do the following:

- Name the Job—To name the deployment job, click the drop-down arrow on the Deploy Now button and select Name the Deployment Job. Enter a name, then click Deploy. The name will appear in the audit and deployment history as part of the job, which might make it easier for you to find the job.

 For example, if you name a job “DMZ Interface Configuration,” a successful deployment will be named “Deployment Completed: DMZ Interface Configuration.” In addition, the name is used as the Event Name in Task Started and Task Completed events related to the deployment job.
Configuration Changes that Restart Inspection Engines

Any of the following configurations or actions restart inspection engines when you deploy configuration changes.

⚠️ Caution

When you deploy, resource demands may result in a small number of packets dropping without inspection. Additionally, deploying some configurations requires inspection engines to restart, which interrupts traffic inspection and drops traffic.

Deployment

Some changes require that inspection engines be restarted, which will result in momentary traffic loss. Following are the changes that require inspection engine restart:

- SSL decryption policy is enabled or disabled.
- The MTU changed on one or more physical interfaces (but not subinterfaces).
- You add or remove a file policy on an access control rule.
- The VDB was updated.
- Creating or breaking the high availability configuration.

In addition, some packets might be dropped during deployment if the Snort process is busy, with the total CPU utilization exceeding 60%. You can check the current CPU utilization for Snort using the `show asp inspect-dp snort` command.

System Database Updates

If you download an update to the Rules database or VDB, you must deploy the update for it to become active. This deployment might restart inspection engines. When you manually download an update, or schedule an update, you can indicate whether the system should automatically deploy changes after the download is complete. If you do not have the system automatically deploy the update, the update is applied the next time you deploy changes, at which time inspection engines might restart.

System Updates

Installing a system update or patch that does not reboot the system and includes a binary change requires inspection engines to restart. Binary changes can include changes to inspection engines, a preprocessor, the...
vulnerability database (VDB), or a shared object rule. Note also that a patch that does not include a binary change can sometimes require a Snort restart.

Viewing Interface and Management Status

The Device Summary includes a graphical view of your device and select settings for the management address. To open the Device Summary, click **Device**.

Elements on this graphic change color based on the status of the element. Mousing over elements sometimes provides additional information. Use this graphic to monitor the following items.

Interface Status

Mouse over a port to see its IP addresses, and enabled and link statuses. The IP addresses can be statically assigned or obtained using DHCP. Mousing over a Bridge Virtual Interface (BVI) also shows the list of member interfaces.

Interface ports use the following color coding:

- **Green**—The interface is configured, enabled, and the link is up.
- **Gray**—The interface is not enabled.
- **Orange/Red**—The interface is configured and enabled, but the link is down. If the interface is wired, this is an error condition that needs correction. If the interface is not wired, this is the expected status.

Inside, Outside Network Connections

The graphic indicates which port is connected to the outside (or upstream) and inside networks, under the following conditions.

- **Inside Network**—The port for the inside network is shown for the interface named “inside” only. If there are additional inside networks, they are not shown. If you do not name any interface “inside,” no port is marked as the inside port.

- **Outside Network**—The port for the outside network is shown for the interface named “outside” only. As with the inside network, this name is required, or no port is marked as the outside port.

Management Setting Status

The graphic shows whether the gateway, DNS servers, NTP servers, and Smart Licensing are configured for the management address, and whether those settings are functioning correctly.

Green indicates that the feature is configured and functioning correctly, gray indicates that it is not configured or not functioning correctly. For example, the DNS box is gray if the servers cannot be reached. Mouse over the elements to see more information.

If you find problems, correct them as follows:

- Management port and gateway—Select **System Settings > Management Interface**.
• DNS servers—Select System Settings > DNS Server.
• NTP servers—Select System Settings > NTP. Also see Troubleshooting NTP.
• Smart License—Click the View Configuration link in the Smart License group.

Viewing System Task Status

System tasks include actions that occur without your direct involvement, such as retrieving and applying various database updates. You can view a list of these tasks and their status to verify that these system tasks are completing successfully.

The task list shows consolidated status for system tasks and deployment jobs. The audit log contains more detailed information, and is available under Device > Device Administration > Audit Log. For example, the audit log shows separate events for task start and task end, whereas the task list merges those events into a single entry. In addition, the audit log entry for a deployment includes detailed information about the deployed changes.

Procedure

Step 1

Click the Task List button in the main menu.

The task list opens, displaying the status and details of system tasks.

Step 2

Evaluate the task status.

If you find a persistent problem, you might need to fix the device configuration. For example, a persistent failure to obtain database updates could indicate that there is no path to the Internet for the device's management IP address. You might need to contact the Cisco Technical Assistance Center (TAC) for some issues as indicted in the task descriptions.

You can do the following with the task list:

- Click the Success or Failures buttons to filter the list based on these statuses.
- Click the delete icon (🔥) for a task to remove it from the list.
- Click Remove All Completed Tasks to empty the list of all tasks that are not in progress.

Using the CLI Console to Monitor and Test the Configuration

FTD devices include a command line interface (CLI) that you can use for monitoring and troubleshooting. Although you can open an SSH session to get access to all of the system commands, you can also open a CLI Console in Firepower Device Manager to use read-only commands, such as the various show commands and ping, traceroute, and packet-tracer. If you have Administrator privileges, you can also enter the reboot and shutdown commands to reboot or shut down the system.
You can keep the CLI Console open as you move from page to page, configure, and deploy features. For example, after deploying a new static route, you could use `ping` in the CLI Console to verify that the target network is reachable.

The CLI Console uses the base FTD CLI. You cannot enter the diagnostic CLI, expert mode, or FXOS CLI (on models that use FXOS) using the CLI Console. Use SSH if you need to enter those other CLI modes.

Notes:

• Although `ping` is supported in CLI Console, the `ping system` command is not supported.

• The system can process at most 2 concurrent commands. Thus, if another user is issuing commands (for example, using the REST API), you might need to wait for other commands to complete before entering a command. If this is a persistent problem, use an SSH session instead of the CLI Console.

• Commands return information based on the deployed configuration. If you make a configuration change in FDM, but do not deploy it, you will not see the results of your change in the command output. For example, if you create a new static route but do not deploy it, that route will not appear in `show route` output.

Procedure

Step 1 Click the **CLI Console** button in the upper right of the web page.

Step 2 Type the commands at the prompt and press **Enter**.

Some commands take longer to produce output than others, please be patient. If you get a message that the command execution timed out, please try again. You will also get a time out error if you enter a command that requires interactive responses, such as `show perfstats`. If the problem persists, you might need to use an SSH client instead of the CLI Console.

Following are some tips on how to use the window.

• Press the **Tab** key to automatically complete a command after partially typing it. Also, Tab will list out the parameters available at that point in the command. Tab works down to three levels of keyword. After three levels, you need to use the command reference for more information.

• You can stop command execution by pressing Ctrl+C.

• To move the window, click and hold anywhere in the header, then drag the window to the desired location.

• Click the **Expand** or **Collapse** button to make the window bigger or smaller.

• Click the **Undock Into Separate Window** button to detach the window from the web page into its own browser window. To dock it again, click the **Dock to Main Window** button.

• Click and drag to highlight text, then press Ctrl+C to copy output to the clipboard.

• Click the **Clear CLI** button to erase all output.
• Click the **Copy Last Output** button to copy the output from the last command you entered to the clipboard.

Step 3

When you are finished, simply close the console window. Do not use the **exit** command.

Although the credentials you use to log into Firepower Device Manager validate your access to the CLI, you are never actually logged into the CLI when using the console.

Using Firepower Device Manager and the REST API Together

When you set up the device in local management mode, you can configure the device using Firepower Device Manager and the Firepower Threat Defense REST API. In fact, Firepower Device Manager uses the REST API to configure the device.

However, please understand that the REST API can provide additional features than the ones available through Firepower Device Manager. Thus, for any given feature, you might be able to configure settings using the REST API that cannot appear when you view the configuration through Firepower Device Manager.

If you do configure a feature setting that is available in the REST API but not in Firepower Device Manager, and then make a change to the overall feature (such as remote access VPN) using Firepower Device Manager, that setting might be undone. Whether an API-only setting is preserved can vary, and in many cases, API changes to settings not available in FDM are preserved through FDM edits. For any given feature, you should verify whether your changes are preserved.

In general, you should avoid using both Firepower Device Manager and the REST API simultaneously for any given feature. Instead, choose one method or the other, feature by feature, for configuring the device.