
Access Control Lists

Access control lists (ACLs) are used by many different features. When applied to interfaces or globally as
access rules, they permit or deny traffic that flows through the appliance. For other features, the ACL selects
the traffic to which the feature will apply, performing a matching service rather than a control service.

The following sections explain the basics of ACLs and how to configure and monitor them. Access rules,
ACLs applied globally or to interfaces, are explained in more detail in Access Rules.

• About ACLs, on page 1
• Licensing for Access Control Lists, on page 5
• Guidelines for ACLs, on page 5
• Configure ACLs, on page 6
• Edit ACLs in an Isolated Configuration Session, on page 20
• Monitoring ACLs, on page 22
• History for ACLs, on page 22

About ACLs
Access control lists (ACLs) identify traffic flows by one or more characteristics, including source and destination
IP address, IP protocol, ports, EtherType, and other parameters, depending on the type of ACL. ACLs are
used in a variety of features. ACLs are made up of one or more access control entries (ACEs).

ACL Types
The ASA uses the following types of ACLs:

• Extended ACLs—Extended ACLs are the main type that you will use. These ACLs are used for access
rules to permit and deny traffic through the device, and for traffic matching by many features, including
service policies, AAA rules, WCCP, Botnet Traffic Filter, and VPN group and DAP policies. See
Configure Extended ACLs, on page 8.

• EtherType ACLs—EtherType ACLs apply to non-IP layer-2 traffic on bridge group member interfaces
only. You can use these rules to permit or drop traffic based on the EtherType value in the layer-2 packet.
With EtherType ACLs, you can control the flow of non-IP traffic across the device. See Configure
EtherType ACLs, on page 18.

• Webtype ACLs—Webtype ACLs are used for filtering clientless SSL VPN traffic. These ACLs can deny
access based on URLs or destination addresses. See Configure Webtype ACLs, on page 15.

Access Control Lists
1

asa-914-firewall-config_chapter4.pdf#nameddest=unique_16

• Standard ACLs—Standard ACLs identify traffic by destination address only. There are few features that
use them: route maps and VPN filters. Because VPN filters also allow extended access lists, limit standard
ACL use to route maps. See Configure Standard ACLs, on page 14.

The following table lists some common uses for ACLs and the type to use.

Table 1: ACL Types and Common Uses

DescriptionACL TypeACL Use

The ASA does not allow any traffic from a lower security
interface to a higher security interface unless it is explicitly
permitted by an extended ACL. In routed mode, you must use
an ACL to permit traffic between a bridge group member
interface and an interface outside same the bridge group.

To access the ASA interface for management
access, you do not also need an ACL allowing the
host IP address. You only need to configure
management access according to the general
operations configuration guide.

Note

ExtendedControl network access for IP traffic (routed
and transparent mode)

AAA rules use ACLs to identify traffic.ExtendedIdentify traffic for AAA rules

You can configure the RADIUS server to download a dynamic
ACL to be applied to the user, or the server can send the name
of an ACL that you already configured on the ASA.

Extended, downloaded
from aAAA server per
user

Augment network access control for IP traffic
for a given user

Group policies for remote access and site to site VPNs use
standard or extended ACLs for filtering. Remote access VPNs
also use extended ACLs for client firewall configurations and
dynamic access policies.

Extended

Standard

VPN access and filtering

ACLs can be used to identify traffic in a class map, which is
used for features that support Modular Policy Framework.
Features that supportModular Policy Framework include TCP
and general connection settings, and inspection.

ExtendedIdentify traffic in a traffic class map for
Modular Policy Framework

You can configure an ACL that controls traffic based on its
EtherType for any interface that is a member of a bridge group.

EtherTypeFor bridge group member interfaces, control
network access for non-IP traffic

Various routing protocols use standard ACLs for route filtering
and redistribution (through route maps) for IPv4 addresses,
and extended ACLs for IPv6.

Standard

Extended

Identify route filtering and redistribution

You can configure a webtype ACL to filter URLs and
destinations.

WebtypeFiltering for clientless SSL VPN

Access Control Lists
2

Access Control Lists
ACL Types

ACL Names
Each ACL has a name or numeric ID, such as outside_in, OUTSIDE_IN, or 101. Limit the names to 241
characters or fewer.Consider using all uppercase letters to make it easier to find the name when viewing a
running configuration.

Develop a naming convention that will help you identify the intended purpose of the ACL. For example,
ASDM uses the convention interface-name_purpose_direction, such as “outside_access_in”, for an ACL
applied to the “outside” interface in the inbound direction.

Traditionally, ACL IDs were numbers. Standard ACLs were in the range 1-99 or 1300-1999. Extended ACLs
were in the range 100-199 or 2000-2699. The ASA does not enforce these ranges, but if you want to use
numbers, you might want to stick to these conventions to maintain consistency with routers running IOS
Software.

Access Control Entry Order
An ACL is made up of one or more ACEs. Unless you explicitly insert an ACE at a given line, each ACE
that you enter for a given ACL name is appended to the end of the ACL.

The order of ACEs is important. When the ASA decides whether to forward or drop a packet, the ASA tests
the packet against each ACE in the order in which the entries are listed. After a match is found, no more ACEs
are checked.

Thus, if you place a more specific rule after a more general rule, the more specific rule might never be hit.
For example, if you want to permit network 10.1.1.0/24, but drop traffic from host 10.1.1.15 on that subnet,
the ACE that denies 10.1.1.15 must come before the one that permits 10.1.1.0/24. If the permit 10.1.1.0/24
ACE comes first, 10.1.1.15 will be allowed, and the deny ACE will never be matched.

In an extended ACL, use the line number parameter on the access-list command to insert rules at the right
location. Use the show access-list name command to view the ACL entries and their line numbers to help
determine the right number to use. For other types of ACL, you must rebuild the ACL (or better, use ASDM)
to change the order of ACEs.

Permit/Deny vs. Match/Do Not Match
Access control entries either “permit” or “deny” traffic that matches the rule. When you apply an ACL to a
feature that determines whether traffic is allowed through the ASA or is dropped, such as global and interface
access rules, “permit” and “deny” mean what they say.

For other features, such as service policy rules, “permit” and “deny” actually mean “match” or “do not match.”
In these cases, the ACL is selecting the traffic that should receive the services of that feature, such as application
inspection or redirection to a service module. “Denied” traffic is simply traffic that does not match the ACL,
and thus will not receive the service.

Access Control Implicit Deny
ACLs that are used for through-the-box access rules have an implicit deny statement at the end. Thus, for
traffic controlling ACLs such as those applied to interfaces, if you do not explicitly permit a type of traffic,
that traffic is dropped. For example, if you want to allow all users to access a network through the ASA except
for one or more particular addresses, then you need to deny those particular addresses and then permit all
others.

Access Control Lists
3

Access Control Lists
ACL Names

For management (control plane) ACLs, which control to-the-box traffic, there is no implicit deny at the end
of a set of management rules for an interface. Instead, any connection that does not match a management
access rule is then evaluated by regular access control rules.

For ACLs used to select traffic for a service, you must explicitly “permit” the traffic; any traffic not “permitted”
will not be matched for the service; “denied” traffic bypasses the service.

For EtherType ACLs, the implicit deny at the end of the ACL does not affect IP traffic or ARPs; for example,
if you allow EtherType 8037, the implicit deny at the end of the ACL does not now block any IP traffic that
you previously allowed with an extended ACL (or implicitly allowed from a high security interface to a low
security interface). However, if you explicitly deny all traffic with an EtherType ACE, then IP and ARP traffic
is denied; only physical protocol traffic, such as auto-negotiation, is still allowed.

IP Addresses Used for Extended ACLs When You Use NAT
When you use NAT or PAT, you are translating addresses or ports, typically mapping between internal and
external addresses. If you need to create an extended ACL that applies to addresses or ports that have been
translated, you need to determine whether to use the real (untranslated) addresses or ports or the mapped ones.
The requirement differs by feature.

Using the real address and port means that if the NAT configuration changes, you do not need to change the
ACLs.

Features That Use Real IP Addresses

The following commands and features use real IP addresses in the ACLs, even if the address as seen on an
interface is the mapped address:

• Access Rules (extended ACLs referenced by the access-group command)

• Service Policy Rules (Modular Policy Framework match access-list command)

• Botnet Traffic Filter traffic classification (dynamic-filter enable classify-list command)

• AAA Rules (aaa ... match commands)

• WCCP (wccp redirect-list group-list command)

For example, if you configure NAT for an inside server, 10.1.1.5, so that it has a publicly routable IP address
on the outside, 209.165.201.5, then the access rule to allow the outside traffic to access the inside server needs
to reference the server’s real IP address (10.1.1.5), and not the mapped address (209.165.201.5).

hostname(config)# object network server1
hostname(config-network-object)# host 10.1.1.5
hostname(config-network-object)# nat (inside,outside) static 209.165.201.5

hostname(config)# access-list OUTSIDE extended permit tcp any host 10.1.1.5 eq www
hostname(config)# access-group OUTSIDE in interface outside

Features That Use Mapped IP Addresses

The following features use ACLs, but these ACLs use the mapped values as seen on an interface:

• IPsec ACLs

• capture command ACLs

Access Control Lists
4

Access Control Lists
IP Addresses Used for Extended ACLs When You Use NAT

• Per-user ACLs

• Routing protocol ACLs

• All other feature ACLs.

Time-Based ACEs
You can apply time range objects to extended and webtype ACEs so that the rules are active for specific time
periods only. These types of rules let you differentiate between activity that is acceptable at certain times of
the day but that is unacceptable at other times. For example, you could provide additional restrictions during
working hours, and relax them after work hours or at lunch. Conversely, you could essentially shut your
network down during non-work hours.

You cannot create time-based rules that have the exact same protocol, source, destination, and service criteria
of a rule that does not include a time range object. The non-time-based rule always overrides the duplicate
time-based rule, as they are redundant.

Users could experience a delay of approximately 80 to 100 seconds after the specified end time for the ACL
to become inactive. For example, if the specified end time is 3:50, because the end time is inclusive, the
command is picked up anywhere between 3:51:00 and 3:51:59. After the command is picked up, the ASA
finishes any currently running task and then services the command to deactivate the ACL.

Note

Licensing for Access Control Lists
Access control lists do not require a special license.

However, to use sctp as the protocol in an entry, you must have a Carrier license.

Guidelines for ACLs
Firewall Mode

• Extended and standard ACLs are supported in routed and transparent firewall modes.

• Webtype ACLs are supported in routed mode only.

• EtherType ACLs are supported for bridge groupmember interfaces only, in routed and transparent modes.

Failover and Clustering

Configuration sessions are not synchronized across failover or clustered units. When you commit the changes
in a session, they are made in all failover and cluster units as normal.

IPv6

• Extended and webtype ACLs allow a mix of IPv4 and IPv6 addresses.

Access Control Lists
5

Access Control Lists
Time-Based ACEs

• Standard ACLs do not allow IPv6 addresses.

• EtherType ACLs do not contain IP addresses.

Additional Guidelines

• When you specify a network mask, the method is different from the Cisco IOS software access-list
command. The ASA uses a network mask (for example, 255.255.255.0 for a Class C mask). The Cisco
IOS mask uses wildcard bits (for example, 0.0.0.255).

• Normally, you cannot reference an object or object group that does not exist in an ACL or object group,
or delete one that is currently referenced. You also cannot reference an ACL that does not exist in an
access-group command (to apply access rules). However, you can change this default behavior so that
you can “forward reference” objects or ACLs before you create them. Until you create the objects or
ACLs, any rules or access groups that reference them are ignored. To enable forward referencing, use
the forward-reference enable command.

• (Extended ACL only) The following features use ACLs, but cannot accept an ACL with identity firewall
(specifying user or group names), FQDN (fully-qualified domain names), or Cisco TrustSec values:

• VPN crypto map command

• VPN group-policy command, except for vpn-filter

• WCCP

• DAP

Configure ACLs
The following sections explain how to configure the various types of ACL, Read the section on ACL basics
to get the big picture, then the sections on specific types of ACL for the details.

Basic ACL Configuration and Management Options
An ACL is made up of one or more access control entries (ACEs) with the same ACL ID or name. To create
a new ACL, you simply create an ACE with a new ACL name, and it becomes the first rule in the new ACL.

Working with an ACL, you can do the following things:

Examine the ACL contents and determine line numbers and hit counts

Use the show access-list name command to view the contents of the ACL. Each row is an ACE, and
includes the line number, which you will need to know if you want to insert new entries into an extended
ACL. The information also includes a hit count for each ACE, which is how many times the rule was
matched by traffic. For example:

hostname# show access-list outside_access_in
access-list outside_access_in; 3 elements; name hash: 0x6892a938
access-list outside_access_in line 1 extended permit ip 10.2.2.0 255.255.255.0 any
(hitcnt=0) 0xcc48b55c
access-list outside_access_in line 2 extended permit ip host
2001:DB8::0DB8:800:200C:417A any (hitcnt=0) 0x79797f94

Access Control Lists
6

Access Control Lists
Configure ACLs

access-list outside_access_in line 3 extended permit ip user-group
LOCAL\\usergroup any any (hitcnt=0) 0xb0f5b1e1

Add an ACE

The command for adding an ACE is access-list name [line line-num] type parameters. The line number
argument works for extended ACLs only. If you include the line number, the ACE is inserted at that
location in the ACL, and the ACE that was at that location is moved down, along with the remainder of
the ACEs (that is, inserting an ACE at a line number does not replace the old ACE at that line). If you
do not include a line number, the ACE is added to the end of the ACL. The parameters available differ
based on the ACL type; see the specific topics on each ACL type for details.

Add comments to an ACL (all types except webtype)

Use the access-list name [line line-num] remark text command to add remarks into an ACL to help
explain the purpose of an ACE. Best practice is to insert the remark before the ACE; if you view the
configuration in ASDM, remarks will be associated with the ACE that follows the remarks. You can
enter multiple remarks before an ACE to include an expanded comment. Each remark is limited to 100
characters. You can include leading spaces to help set off the remarks. If you do not include a line number,
the remark is added to the end of the ACL. For example, you could add remarks before adding each
ACE:

hostname(config)# access-list OUT remark - this is the inside admin address
hostname(config)# access-list OUT extended permit ip host 209.168.200.3 any
hostname(config)# access-list OUT remark - this is the hr admin address
hostname(config)# access-list OUT extended permit ip host 209.168.200.4 any

Edit or move an ACE or remark

You cannot edit or move an ACE or remark. Instead, you must create a new ACE or remark with the
desired values at the right location (using the line number), then delete the old ACE or remark. Because
you can insert ACEs in extended ACLs only, you need to rebuild standard, webtype, or EtherType ACLs
if you need to edit or move ACEs. It is far easier to reorganize a long ACL using ASDM.

Delete an ACE or remark

Use the no access-list parameters command to remove an ACE or remark. Use the show access-list
command to view the parameter string that you must enter: the string must exactly match an ACE or
remark to delete it, with the exception of the line line-num argument, which is optional on the no access-list
command.

Delete an entire ACL, including remarks

Use the clear configure access-list name command. USE CAUTION! The command does not ask you
for confirmation. If you do not include a name, every access list on the ASA is removed.

Rename an ACL

Use the access-list name rename new_name command.

Apply the ACL to a policy

Creating an ACL in and of itself does nothing to traffic. Youmust apply the ACL to a policy. For example,
you can use the access-group command to apply an extended ACL to an interface, thus denying or
permitting traffic that goes through the interface.

Access Control Lists
7

Access Control Lists
Basic ACL Configuration and Management Options

Configure Extended ACLs
An extended ACL is composed of all ACEs with the same ACL ID or name. Extended ACLs are the most
complex and feature-rich type of ACL, and you can use them for many features. The most noteworthy use of
extended ACLs is as access groups applied globally or to interfaces, which determine the traffic that will be
denied or permitted to flow through the box. But extended ACLs are also used to determine the traffic to
which other services will be provided.

Because extended ACLs are complex, the following sections focus on creating ACEs to provide specific types
of traffic matching. The first sections, on basic address-based ACEs and on TCP/UDP ACEs, build the
foundation for the remaining sections.

Add an Extended ACE for IP Address or Fully-Qualified Domain Name-Based Matching
The basic extended ACE matches traffic based on source and destination addresses, including IPv4 and IPv6
addresses and fully-qualified domain names (FQDN), such as www.example.com. In fact, every type of
extended ACE must include some specification for source and destination address, so this topic explains the
minimum extended ACE.

Tip If you want to match traffic based on FQDN, you must create a network object for each FQDN.Tip

To add an ACE for IP address or FQDN matching, use the following command:

access-list access_list_name [line line_number] extended {deny | permit} protocol_argument
source_address_argument dest_address_argument [log [[level] [interval secs] | disable | default]] [time-range
time_range_name] [inactive]

Example:

hostname(config)# access-list ACL_IN extended permit ip any any
hostname(config)# access-list ACL_IN extended permit object service-obj-http any any

The options are:

• access_list_name—The name of the new or existing ACL.

• Line number—The line line_number option specifies the line number at which insert the ACE; otherwise,
the ACE is added to the end of the ACL.

• Permit or Deny—The deny keyword denies or exempts a packet if the conditions are matched. The
permit keyword permits or includes a packet if the conditions are matched.

• Protocol—The protocol_argument specifies the IP protocol:

• name or number—Specifies the protocol name or number. Specify ip to apply to all protocols.

• object-group protocol_grp_id—Specifies a protocol object group created using the object-group
protocol command.

• object service_obj_id—Specifies a service object created using the object service command. The
object can include port or ICMP type and code specifications if desired.

• object-group service_grp_id—Specifies a service object group created using the object-group
service command.

Access Control Lists
8

Access Control Lists
Configure Extended ACLs

• Source Address, Destination Address—The source_address_argument specifies the IP address or FQDN
from which the packet is being sent, and the dest_address_argument specifies the IP address or FQDN
to which the packet is being sent:

• host ip_address—Specifies an IPv4 host address.

• ip_address mask—Specifies an IPv4 network address and subnet mask, such as 10.100.10.0
255.255.255.0.

• ipv6-address/prefix-length—Specifies an IPv6 host or network address and prefix.

• any, any4, and any6—any specifies both IPv4 and IPv6 traffic; any4 specifies IPv4 traffic only;
and any6 specifies IPv6 traffic only.

• interface interface_name—Specifies the name of an ASA interface. Use the interface name rather
than IP address to match traffic based on which interface is the source or destination of the traffic.

• object nw_obj_id—Specifies a network object created using the object network command.

• object-group nw_grp_id—Specifies a network object group created using the object-group network
command.

• Logging—log arguments set logging options when an ACE matches a connection for network access
(an ACL applied with the access-group command). If you enter the log option without any arguments,
you enable syslog message 106100 at the default level (6) and for the default interval (300 seconds). Log
options are:

• level—A severity level between 0 and 7. The default is 6 (informational). If you change this level
for an active ACE, the new level applies to new connections; existing connections continue to be
logged at the previous level.

• interval secs—The time interval in seconds between syslog messages, from 1 to 600. The default
is 300. This value is also used as the timeout value for deleting an inactive flow from the cache used
to collect drop statistics.

• disable—Disables all ACE logging.

• default—Enables logging to message 106023 for denied packets. This setting is the same as not
including the log option.

• Time Range—The time-range time_range_name option specifies a time range object, which determines
the times of day and days of the week in which the ACE is active. If you do not include a time range,
the ACE is always active.

• Activation—Use the inactive option to disable the ACE without deleting it. To reenable it, enter the
entire ACE without the inactive keyword.

Add an Extended ACE for Port-Based Matching
If you specify service objects in an ACE, the service objects can include protocols with port specifications,
such as TCP/80. Alternatively, you can specify the ports directly in the ACE. With port-based matching, you
can target certain types of traffic for port-based protocols rather than all traffic for the protocol.

The port-based extended ACE is just the basic address-matching ACEwhere the protocol is tcp, udp, or sctp.
To add port specifications, use the following command:

Access Control Lists
9

Access Control Lists
Add an Extended ACE for Port-Based Matching

access-list access_list_name [line line_number] extended {deny | permit} {tcp | udp | sctp}
source_address_argument [port_argument] dest_address_argument [port_argument] [log [[level] [interval
secs] | disable | default] [time-range time-range-name] [inactive]

Example:

hostname(config)# access-list ACL_IN extended deny tcp any host 209.165.201.29 eq www

The port_argument option specifies the source or destination port. If you do not specify ports, all ports are
matched. Available arguments include:

• operator port—The port can be the integer or name of a port. The operator can be one of the following:

• lt—less than

• gt—greater than

• eq—equal to

• neq—not equal to

• range—an inclusive range of values. When you use this operator, specify two port numbers, for
example, range 100 200.

DNS, Discard, Echo, Ident, NTP, RPC, SUNRPC, and Talk each require one
definition for TCP and one for UDP. TACACS+ requires one definition for port
49 on TCP.

Note

• object-group service_grp_id—Specifies a service object group created using the object-group service
{tcp | udp | tcp-udp} command. Note that these object types are no longer recommended.

You cannot specify the recommended generic service objects, where the protocol and port are defined
within the object, as the port argument. You specify these objects as part of the protocol argument, as
explained in Add an Extended ACE for IP Address or Fully-Qualified Domain Name-Based Matching,
on page 8.

For an explanation of the other keywords, and how to use service objects to specify protocols and ports, see
Add an Extended ACE for IP Address or Fully-Qualified Domain Name-Based Matching, on page 8.

Add an Extended ACE for ICMP-Based Matching
If you specify service objects in an ACE, the service objects can include the ICMP/ICMP6 protocols ICMP
type and code specifications. Alternatively, you can specify the ICMP type and code directly in the ACE. For
example, you can target ICMP Echo Request traffic (pings).

The ICMP extended ACE is just the basic address-matching ACE where the protocol is icmp or icmp6.
Because these protocols have type and code values, you can add type and code specifications to the ACE.

To add an ACE for IP address or FQDN matching, where the protocol is ICMP or ICMP6, use the following
command:

Access Control Lists
10

Access Control Lists
Add an Extended ACE for ICMP-Based Matching

access-list access_list_name [line line_number] extended {deny | permit} {icmp | icmp6}
source_address_argument dest_address_argument [icmp_argument] [log [[level] [interval secs] | disable |
default]] [time-range time_range_name] [inactive]

Example:

hostname(config)# access-list abc extended permit icmp any any object-group obj_icmp_1
hostname(config)# access-list abc extended permit icmp any any echo

The icmp_argument option specifies the ICMP type and code.

• icmp_type [icmp_code]—Specifies the ICMP type by name or number, and the optional ICMP code for
that type. If you do not specify the code, then all codes are used.

• object-group icmp_grp_id—Specifies an object group for ICMP/ICMP6 created using the (deprecated)
object-group icmp-type command.

You cannot specify the recommended generic service objects, where the protocol and type are defined
within the object, as the ICMP argument. You specify these objects as part of the protocol argument, as
explained in Add an Extended ACE for IP Address or Fully-Qualified Domain Name-Based Matching,
on page 8.

For an explanation of the other keywords, see Add an Extended ACE for IP Address or Fully-Qualified Domain
Name-Based Matching, on page 8.

Add an Extended ACE for User-Based Matching (Identity Firewall)
The user-based extended ACE is just the basic address-matching ACE where you include username or user
group to the source matching criteria. By creating rules based on user identity, you can avoid tying rules to
static host or network addresses. For example, if you define a rule for user1, and the identity firewall feature
maps that user to a host assigned 10.100.10.3 one day, but 192.168.1.5 the next day, the user-based rule still
applies.

Because you must still supply source and destination addresses, broaden the source address to include the
likely addresses that will be assigned to the user (normally through DHCP). For example, user “LOCAL\user1
any” will match the LOCAL\user1 user nomatter what address is assigned, whereas “LOCAL\user1 10.100.1.0
255.255.255.0” matches the user only if the address is on the 10.100.1.0/24 network.

By using group names, you can define rules based on entire classes of users, such as students, teachers,
managers, engineers, and so forth.

To add an ACE for user or group matching, use the following command:

access-list access_list_name [line line_number] extended {deny | permit} protocol_argument [user_argument]
source_address_argument [port_argument] dest_address_argument [port_argument] [log [[level] [interval
secs] | disable | default]] [time-range time_range_name] [inactive]

Example:

hostname(config)# access-list v1 extended permit ip user LOCAL\idfw
any 10.0.0.0 255.255.255.0

The user_argument option specifies the user or group for which to match traffic in addition to the source
address. Available arguments include the following:

Access Control Lists
11

Access Control Lists
Add an Extended ACE for User-Based Matching (Identity Firewall)

• object-group-user user_obj_grp_id—Specifies a user object group created using the object-group user
command.

• user {[domain_nickname\]name | any | none}—Specifies a username. Specify any to match all users
with user credentials, or none to match addresses that are not mapped to usernames. These options are
especially useful for combining access-group and aaa authentication match policies.

• user-group [domain_nickname\\]user_group_name—Specifies a user group name. Note the double \\
separating the domain and group name.

For an explanation of the other keywords, see Add an Extended ACE for IP Address or Fully-Qualified Domain
Name-Based Matching, on page 8.

You can include both user and Cisco Trustsec security groups in a given ACE.Tip

Add an Extended ACE for Security Group-Based Matching (Cisco TrustSec)
The security group (Cisco TrustSec) extended ACE is just the basic address-matching ACEwhere you include
security groups or tags to the source or destination matching criteria. By creating rules based on security
groups, you can avoid tying rules to static host or network addresses. Because you must still supply source
and destination addresses, broaden the addresses to include the likely addresses that will be assigned to users
(normally through DHCP).

Before adding this type of ACE, configure Cisco TrustSec.Tip

To add an ACE for security group matching, use the following command:

access-list access_list_name [line line_number] extended {deny | permit} protocol_argument
[security_group_argument] source_address_argument [port_argument] [security_group_argument]
dest_address_argument [port_argument] [log [[level] [interval secs] | disable | default]] [inactive | time-range
time_range_name]

Example:

hostname(config)# access-list INSIDE_IN extended permit ip
security-group name my-group any any

The security_group_argument option specifies the security group for which to match traffic in addition to the
source or destination address. Available arguments include the following:

• object-group-security security_obj_grp_id—Specifies a security object group created using the
object-group security command.

• security-group {name security_grp_id | tag security_grp_tag}—Specifies a security group name or
tag.

For an explanation of the other keywords, see Add an Extended ACE for IP Address or Fully-Qualified Domain
Name-Based Matching, on page 8.

Access Control Lists
12

Access Control Lists
Add an Extended ACE for Security Group-Based Matching (Cisco TrustSec)

You can include both user and Cisco Trustsec security groups in a given ACE.Tip

Examples for Extended ACLs
The following ACL allows all hosts (on the interface to which you apply the ACL) to go through the ASA:

hostname(config)# access-list ACL_IN extended permit ip any any

The following ACL prevents hosts on 192.168.1.0/24 from accessing the 209.165.201.0/27 network for
TCP-based traffic. All other addresses are permitted.

hostname(config)# access-list ACL_IN extended deny tcp 192.168.1.0 255.255.255.0
209.165.201.0 255.255.255.224
hostname(config)# access-list ACL_IN extended permit ip any any

If you want to restrict access to selected hosts only, then enter a limited permit ACE. By default, all other
traffic is denied unless explicitly permitted.

hostname(config)# access-list ACL_IN extended permit ip 192.168.1.0 255.255.255.0
209.165.201.0 255.255.255.224

The following ACL restricts all hosts (on the interface to which you apply the ACL) from accessing a website
at address 209.165.201.29. All other traffic is allowed.

hostname(config)# access-list ACL_IN extended deny tcp any host 209.165.201.29 eq www
hostname(config)# access-list ACL_IN extended permit ip any any

The following ACL that uses object groups restricts several hosts on the inside network from accessing several
web servers. All other traffic is allowed.

hostname(config-network)# access-list ACL_IN extended deny tcp object-group denied
object-group web eq www
hostname(config)# access-list ACL_IN extended permit ip any any
hostname(config)# access-group ACL_IN in interface inside

The following example temporarily disables an ACL that permits traffic from one group of network objects
(A) to another group of network objects (B):

hostname(config)# access-list 104 permit ip host object-group A object-group B inactive

To implement a time-based ACE, use the time-range command to define specific times of the day and week.
Then use the access-list extended command to bind the time range to an ACE. The following example binds
an ACE in the “Sales” ACL to a time range named “New_York_Minute.”

hostname(config)# access-list Sales line 1 extended deny tcp host 209.165.200.225 host
209.165.201.1 time-range New_York_Minute

The following example shows a mixed IPv4/IPv6 ACL:

Access Control Lists
13

Access Control Lists
Examples for Extended ACLs

hostname(config)# access-list demoacl extended permit ip 2001:DB8:1::/64 10.2.2.0
255.255.255.0
hostname(config)# access-list demoacl extended permit ip 2001:DB8:1::/64 2001:DB8:2::/64
hostname(config)# access-list demoacl extended permit ip host 10.3.3.3 host 10.4.4.4

Example of Converting Addresses to Objects for Extended ACLs
The following normal ACL that does not use object groups restricts several hosts on the inside network from
accessing several web servers. All other traffic is allowed.

hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.4 host 209.165.201.29
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.78 host 209.165.201.29
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.89 host 209.165.201.29
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.4 host 209.165.201.16
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.78 host 209.165.201.16
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.89 host 209.165.201.16
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.4 host 209.165.201.78
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.78 host 209.165.201.78
eq www
hostname(config)# access-list ACL_IN extended deny tcp host 10.1.1.89 host 209.165.201.78
eq www
hostname(config)# access-list ACL_IN extended permit ip any any
hostname(config)# access-group ACL_IN in interface inside

If you make two network object groups, one for the inside hosts, and one for the web servers, then the
configuration can be simplified and can be easily modified to add more hosts:

hostname(config)# object-group network denied
hostname(config-network)# network-object host 10.1.1.4
hostname(config-network)# network-object host 10.1.1.78
hostname(config-network)# network-object host 10.1.1.89

hostname(config-network)# object-group network web
hostname(config-network)# network-object host 209.165.201.29
hostname(config-network)# network-object host 209.165.201.16
hostname(config-network)# network-object host 209.165.201.78

hostname(config)# access-list ACL_IN extended deny tcp object-group denied object-group
web eq www
hostname(config)# access-list ACL_IN extended permit ip any any
hostname(config)# access-group ACL_IN in interface inside

Configure Standard ACLs
A standard ACL is composed of all ACEs with the same ACL ID or name. Standard ACLs are used for a
limited number of features, such as route maps or VPN filters. A standard ACL uses IPv4 addresses only, and
defines destination addresses only.

To add a standard access list entry, use the following command:

Access Control Lists
14

Access Control Lists
Example of Converting Addresses to Objects for Extended ACLs

access-list access_list_name standard {deny | permit} {any4 | host ip_address | ip_address mask}

Example:

hostname(config)# access-list OSPF standard permit 192.168.1.0 255.255.255.0

The options are:

• Name—The access_list_name argument specifies the name of number of an ACL. Traditional numbers
for standard ACLs are 1-99 or 1300-1999, but you can use any name or number. You create a new ACL
if the ACL does not already exist, otherwise, you are adding the entry to the end of the ACL.

• Permit or Deny—The deny keyword denies or exempts a packet if the conditions are matched. The
permit keyword permits or includes a packet if the conditions are matched.

• Destination Address—The any4 keyword matches all IPv4 addresses. The host ip_address argument
matches a host IPv4 address. The ip_address ip_mask argument matches an IPv4 subnet, for example,
10.1.1.0 255.255.255.0.

Configure Webtype ACLs
Webtype ACLs are used for filtering clientless SSLVPN traffic, constraining user access to specific networks,
subnets, hosts, and Web servers. If you do not define a filter, all connections are allowed. A webtype ACL is
composed of all ACEs with the same ACL ID or name.

With webtype ACLs, you can match traffic based on URLs or destination addresses. A single ACE cannot
mix these specifications. The following sections explain each type of ACE.

Add a Webtype ACE for URL Matching
To match traffic based on the URL the user is trying to access, use the following command;

access-list access_list_name webtype {deny | permit} url {url_string | any} [log [[level] [interval secs] |
disable | default]] [time_range time_range_name] [inactive]

Example:

hostname(config)# access-list acl_company webtype deny url http://*.example.com

The options are:

• access_list_name—The name of the new or existing ACL. If the ACL already exists, you are adding the
ACE to the end of the ACL.

• Permit or Deny—The deny keyword denies or exempts a packet if the conditions are matched. The
permit keyword permits or includes a packet if the conditions are matched.

• URL—The url keyword specifies the URL to match. Use url any to match all URL-based traffic.
Otherwise, enter a URL string, which can include wildcards. Following are some tips and limitations on
specifying URLs:

• Specify any to match all URLs.

• ‘Permit url any' will allow all the URLs that have the format protocol://server-ip/path and will block
traffic that does not match this pattern, such as port-forwarding. There should be an ACE to allow

Access Control Lists
15

Access Control Lists
Configure Webtype ACLs

connections to the required port (port 1494 in the case of Citrix) so that an implicit deny does not
occur.

• Smart tunnel and ica plug-ins are not affected by an ACL with ‘permit url any’ because they match
smart-tunnel:// and ica:// types only.

• You can use these protocols: cifs://, citrix://, citrixs://, ftp://, http://, https://, imap4://, nfs://, pop3://,
smart-tunnel://, and smtp://. You can also use wildcards in the protocol; for example, htt* matches
http and https, and an asterisk * matches all protocols. For example, *://*.example.com matches
any type URL-based traffic to the example.com network.

• If you specify a smart-tunnel:// URL, you can include the server name only. The URL cannot contain
a path. For example, smart-tunnel://www.example.com is acceptable, but
smart-tunnel://www.example.com/index.html is not.

• An asterisk * matches none or any number of characters. To match any http URL, enter http://*/*.

• A question mark ? matches any one character exactly.

• Square brackets [] are range operators, matching any character in the range. For example, to match
both http://www.cisco.com:80/ and http://www.cisco.com:81/, enter http://www.cisco.com:8[01]/.

• Logging—log arguments set logging options when an ACE matches a packet. If you enter the log option
without any arguments, you enable syslog message 106102 at the default level (6) and for the default
interval (300 seconds). Log options are:

• level—A severity level between 0 and 7. The default is 6.

• interval secs—The time interval in seconds between syslog messages, from 1 to 600. The default
is 300.

• disable—Disables all ACL logging.

• default—Enables logging to message 106103. This setting is the same as not including the log
option.

• Time Range—The time-range time_range_name option specifies a time range object, which determines
the times of day and days of the week in which the ACE is active. If you do not include a time range,
the ACE is always active.

• Activation—Use the inactive option to disable the ACE without deleting it. To reenable it, enter the
entire ACE without the inactive keyword.

Add a Webtype ACE for IP Address Matching
You can match traffic based on the destination address the user is trying to access. The webtype ACL can
include a mix of IPv4 and IPv6 addresses in addition to URL specifications.

To add a webtype ACE for IP address matching, use the following command:

access-list access_list_name webtype {deny | permit} tcp dest_address_argument [operator port] [log
[[level] [interval secs] | disable | default]] [time_range time_range_name]] [inactive]]

Example:

hostname(config)# access-list acl_company webtype permit tcp any

Access Control Lists
16

Access Control Lists
Add a Webtype ACE for IP Address Matching

For an explanation of keywords not explained here, see Add a Webtype ACE for URL Matching, on page
15. Keywords and arguments specific to this type of ACE include the following:

• tcp—The TCP protocol. Webtype ACLs match TCP traffic only.

• Destination Address—The dest_address_argument specifies the IP address to which the packet is being
sent:

• host ip_address—Specifies an IPv4 host address.

• dest_ip_address mask—Specifies an IPv4 network address and subnet mask, such as 10.100.10.0
255.255.255.0.

• ipv6-address/prefix-length—Specifies an IPv6 host or network address and prefix.

• any, any4, and any6—any specifies both IPv4 and IPv6 traffic; any4 specifies IPv4 traffic only;
and any6 specifies IPv6 traffic only.

• operator port—The destination port. If you do not specify ports, all ports are matched. The port can be
the integer or name of a TCP port. The operator can be one of the following:

• lt—less than

• gt—greater than

• eq—equal to

• neq—not equal to

• range—an inclusive range of values. When you use this operator, specify two port numbers, for
example, range 100 200.

Examples for Webtype ACLs
The following example shows how to deny access to a specific company URL:

hostname(config)# access-list acl_company webtype deny url http://*.example.com

The following example shows how to deny access to a specific web page:

hostname(config)# access-list acl_file webtype deny url https://www.example.com/dir/file.html

The following example shows how to deny HTTP access to any URL on a specific server through port 8080:

hostname(config)# access-list acl_company webtype deny url http://my-server:8080/*

The following examples show how to use wildcards in webtype ACLs.

• The following example matches URLs such as http://www.example.com/layouts/1033:

access-list VPN-Group webtype permit url http://www.example.com/*

• The following example matches URLs such as http://www.example.com/ and http://www.example.net/:

Access Control Lists
17

Access Control Lists
Examples for Webtype ACLs

access-list test webtype permit url http://www.example.*

• The following example matches URLs such as http://www.example.com and ftp://wwz.example.com:

access-list test webtype permit url *://ww?.e*co*/

• The following example matches URLs such as http://www.cisco.com:80 and https://www.cisco.com:81:

access-list test webtype permit url *://ww?.c*co*:8[01]/

The range operator “[]” in the preceding example specifies that either character 0 or 1 can occur at that
location.

• The following example matches URLs such as http://www.example.com and http://www.example.net:

access-list test webtype permit url http://www.[a-z]xample?*/

The range operator “[]” in the preceding example specifies that any character in the range from a to z
can occur.

• The following example matches http or https URLs that include “cgi” somewhere in the file name or
path.

access-list test webtype permit url htt*://*/*cgi?*

To match any http URL, you must enter http://*/* instead of http://*.Note

The following example shows how to enforce a webtype ACL to disable access to specific CIFS shares.

In this scenario we have a root folder named “shares” that contains two sub-folders named “Marketing_Reports”
and “Sales_Reports.” We want to specifically deny access to the “shares/Marketing_Reports” folder.

access-list CIFS_Avoid webtype deny url cifs://172.16.10.40/shares/Marketing_Reports.

However, due to the implicit “deny all” at the end of the ACL, the above ACL makes all of the sub-folders
inaccessible (“shares/Sales_Reports” and “shares/Marketing_Reports”), including the root folder (“shares”).

To fix the problem, add a new ACL to allow access to the root folder and the remaining sub-folders:

access-list CIFS_Allow webtype permit url cifs://172.16.10.40/shares*

Configure EtherType ACLs
EtherType ACLs apply to non-IP layer-2 traffic on bridge group member interfaces. You can use these rules
to permit or drop traffic based on the EtherType value in the layer-2 packet. With EtherType ACLs, you can

Access Control Lists
18

Access Control Lists
Configure EtherType ACLs

control the flow of non-IP traffic across the bridge group. Note that 802.3-formatted frames are not handled
by the ACL because they use a length field as opposed to a type field.

To add an EtherType ACE, use the following command:

access-list access_list_name ethertype {deny | permit} {any | bpdu | dsap {hex_address | bpdu | ipx | isis
| raw-ipx} | eii-ipx | ipx | isis | mpls-multicast | mpls-unicast | hex_number}

Example:

hostname(config)# access-list ETHER ethertype deny mpls-multicast

The options are:

• access_list_name—The name of the new or existing ACL. If the ACL already exists, you are adding the
ACE to the end of the ACL.

• Permit or Deny—The deny keyword denies a packet if the conditions are matched. The permit keyword
permits a packet if the conditions are matched.

• Traffic Matching Criteria—You can match traffic using the following options:

• any—Matches all layer 2 traffic.

• bpdu—bridge protocol data units (dsap 0x42), which are allowed by default. This keyword is
converted to dsap bpdu.

• dsap {hex_address | bpdu | ipx | isis | raw-ipx}—The IEEE 802.2 Logical Link Control (LLC)
packet's Destination Service Access Point address. Include the address you want to permit or deny
in hexadecimal, from 0x01 to 0xff. You can also use the following keywords to create rules for
common values:

• bpdu for 0x42, bridge protocol data units.

• ipx for 0xe0, Internet Packet Exchange (IPX) 802.2 LLC.

• isis for 0xfe, Intermediate System to Intermediate System (IS-IS).

• raw-ipx for 0xff, raw IPX 802.3 format.

• eii-ipx—Ethernet II IPX format, EtherType 0x8137.

• ipx—Internet Packet Exchange (IPX). This keyword is a shortcut for configuring three separate
rules, for dsap ipx, dsap raw-ipx, and eii-ipx.

• isis—Intermediate System to Intermediate System (IS-IS). This keyword is converted to dsap isis.

• mpls-multicast—MPLS multicast.

• mpls-unicast—MPLS unicast.

• hex_number—Any EtherType that can be identified by a 16-bit hexadecimal number 0x600 to
0xffff. See RFC 1700, “Assigned Numbers,” at http://www.ietf.org/rfc/rfc1700.txt for a list of
EtherTypes.

Access Control Lists
19

Access Control Lists
Configure EtherType ACLs

Examples for EtherType ACLs
The following examples shows how to configure EtherType ACLs, including how to apply them to an interface.

For example, the following sample ACL allows common EtherTypes originating on the inside interface:

hostname(config)# access-list ETHER ethertype permit ipx
INFO: ethertype ipx is saved to config as ethertype eii-ipx
INFO: ethertype ipx is saved to config as ethertype dsap ipx
INFO: ethertype ipx is saved to config as ethertype dsap raw-ipx
hostname(config)# access-list ETHER ethertype permit mpls-unicast
hostname(config)# access-group ETHER in interface inside

The following example allows some EtherTypes through the ASA, but it denies all others:

hostname(config)# access-list ETHER ethertype permit 0x1234
hostname(config)# access-list ETHER ethertype permit mpls-unicast
hostname(config)# access-group ETHER in interface inside
hostname(config)# access-group ETHER in interface outside

The following example denies traffic with EtherType 0x1256 but allows all others on both interfaces:

hostname(config)# access-list nonIP ethertype deny 1256
hostname(config)# access-list nonIP ethertype permit any
hostname(config)# access-group nonIP in interface inside
hostname(config)# access-group nonIP in interface outside

Edit ACLs in an Isolated Configuration Session
When you edit an ACL used for access rules or any other purpose, the change is immediately implemented
and impacts traffic. With access rules, you can enable the transactional commit model to ensure that new rules
become active only after rule compilation is complete, but the compilation happens after each ACE you edit.

If you want to further isolate the impact of editing ACLs, you can make your changes in a “configuration
session,” which is an isolated mode that allows you to edit several ACEs and objects before explicitly
committing your changes. Thus, you can ensure that all of your intended changes are complete before you
change device behavior.

Before you begin

• You can edit ACLs that are referenced by an access-group command, but you cannot edit ACLs that are
referenced by any other command. You can also edit unreferenced ACLs or create new ones.

• You can create or edit objects and object groups, but if you create one in a session, you cannot edit it in
the same session. If the object is not defined as desired, you must commit your changes and then edit the
object, or discard the entire session and start over.

• When you edit an ACL that is referenced by an access-group command (access rules), the transactional
commit model is used when you commit the session. Thus, the ACL is completely compiled before the
new ACL replaces the old version.

• If you enable forward referencing of ACL and object names (the forward-reference enable command),
you can delete an ACL that is referenced by an access-group command (access rules), and then recreate

Access Control Lists
20

Access Control Lists
Examples for EtherType ACLs

the ACL. When you commit changes, the new version of the ACL will be used after compilation is
complete. You can also create rules that refer to objects that do not exist, or delete objects that are in use
by access rules. However, you will get a commit error if you delete an object used by other rules, such
as NAT.

Procedure

Step 1 Start the session.

hostname#configure session session_name
hostname(config-s)#

If the session_name already exists, you open that session. Otherwise, you are creating a new session.

Use the show configuration session command to view the existing sessions. You can have at most 3 sessions
active at a time. If you need to delete an old unused session, use the clear configuration session session_name
command.

If you cannot open an existing session because someone else is editing it, you can clear the flag that indicates
the session is being edited. Do this only if you are certain the session is not actually being edited. Use the
clear session session_name access command to reset the flag.

Step 2 (Uncommitted sessions only.) Make your changes. You can use the following basic commands with any of
their parameters:

• access-list

• object

• object-group

Step 3 Decidewhat to dowith the session. The commands available depend onwhether you have previously committed
the session. Possible commands are:

• exit—To simply exit the session without committing or discarding changes, so that you can return later.

• commit [noconfirm [revert-save | config-save]]—(Uncommitted sessions only.) To commit your
changes. You are asked if you want to save the session. You can save the revert session (revert-save),
which lets you undo your changes using the revert command, or the configuration session (config-save),
which includes all of the changes made in the session (allowing you to commit the same changes again
if you would like to). If you save the revert or configuration session, the changes are committed, but the
session remains active. You can open the session and revert or recommit the changes. You can avoid the
prompt by including the noconfirm option and optionally, the desired save option.

• abort—(Uncommitted sessions only.) To abandon your changes and delete the session. If you want to
keep the session, exit the session and use the clear session session_name configuration command, which
empties the session without deleting it.

• revert—(Committed sessions only.) To undo your changes, returning the configuration back to what it
was before you committed the session, and delete the session.

Access Control Lists
21

Access Control Lists
Edit ACLs in an Isolated Configuration Session

• show configuration session [session_name]—To show the changes made in the session.

Monitoring ACLs
To monitor ACLs, enter one of the following commands:

• show access-list [name]—Displays the access lists, including the line number for each ACE and hit
counts. Include an ACL name or you will see all access lists.

• show running-config access-list [name]—Displays the current running access-list configuration. Include
an ACL name or you will see all access lists.

History for ACLs
DescriptionReleasesFeature Name

ACLs are used to control network access or to specify traffic for many
features to act upon. An extended access control list is used for
through-the-box access control and several other features. Standard
ACLs are used in route maps and VPN filters. Webtype ACLs are used
in clientless SSL VPN filtering. EtherType ACLs control non-IP layer
2 traffic.

We introduced the following commands: access-list extended,
access-list standard, access-list webtype, access-list ethertype.

7.0(1)Extended, standard, webtype ACLs

When using NAT or PAT, mapped addresses and ports are no longer
used in an ACL for several features. Youmust use the real, untranslated
addresses and ports for these features. Using the real address and port
means that if the NAT configuration changes, you do not need to change
the ACLs.

8.3(1)Real IP addresses in extended ACLs

You can now use identity firewall users and groups for the source and
destination. You can use an identity firewall ACL with access rules,
AAA rules, and for VPN authentication.

We modified the following commands: access-list extended.

8.4(2)Support for Identity Firewall in
extended ACLs

In transparent firewall mode, the ASA can now control IS-IS traffic
using an EtherType ACL.

We modified the following command: access-list ethertype {permit
| deny} isis.

8.4(5), 9.1(2)EtherType ACL support for IS-IS traffic

You can now use Cisco TrustSec security groups for the source and
destination. You can use an identity firewall ACL with access rules.

We modified the following commands: access-list extended.

9.0(1)Support for Cisco TrustSec in extended
ACLs

Access Control Lists
22

Access Control Lists
Monitoring ACLs

DescriptionReleasesFeature Name

Extended and webtype ACLs now support IPv4 and IPv6 addresses.
You can even specify a mix of IPv4 and IPv6 addresses for the source
and destination. The any keyword was changed to represent IPv4 and
IPv6 traffic. The any4 and any6 keywords were added to represent
IPv4-only and IPv6-only traffic, respectively. The IPv6-specific ACLs
are deprecated. Existing IPv6 ACLs are migrated to extended ACLs.
See the release notes for more information about migration.

Wemodified the following commands: access-list extended, access-list
webtype.

We removed the following commands: ipv6 access-list, ipv6 access-list
webtype, ipv6-vpn-filter.

9.0(1)Unified extended and webtype ACLs
for IPv4 and IPv6

ICMP traffic can now be permitted/denied based on ICMP code.

We introduced or modified the following commands: access-list
extended , service-object, service.

9.0(1)Extended ACL and object enhancement
to filter ICMP traffic by ICMP code

You can now edit ACLs and objects in an isolated configuration session.
You can also forward reference objects and ACLs, that is, configure
rules and access groups for objects or ACLs that do not yet exist.

We introduced the clear configuration session, clear session,
configure session, forward-reference, and show configuration
session commands.

9.3(2)Configuration session for editing ACLs
and objects.

Forward referencing of objects and
ACLs in access rules.

You can now create ACL rules using the sctp protocol, including port
specifications.

We modified the following command: access-list extended .

9.5(2)ACL support for Stream Control
Transmission Protocol (SCTP)

You can now write Ethertype access control rules for the IEEE 802.2
Logical Link Control packet's Destination Service Access Point address.
Because of this addition, the bpdu keyword no longer matches the
intended traffic. Rewrite bpdu rules for dsap 0x42.

We modified the following commands: access-list ethertype

9.6(2)Ethertype rule support for the IEEE
802.2 Logical Link Control packet's
Destination Service Access Point
address.

You can now create Ethertype ACLs and apply them to bridge group
member interfaces in routed mode. You can also apply extended access
rules to the Bridge Virtual Interface (BVI) in addition to the member
interfaces.

We modified the following commands: access-group, access-list
ethertype .

9.7(1)Support in routed mode for Ethertype
rules on bridge groupmember interfaces
and extended access rules on Bridge
Group Virtual Interfaces (BVI).

Access Control Lists
23

Access Control Lists
History for ACLs

DescriptionReleasesFeature Name

EtherType access control lists now support Ethernet II IPX (EII IPX).
In addition, new keywords are added to the DSAP keyword to support
common DSAP values: BPDU (0x42), IPX (0xE0), Raw IPX (0xFF),
and ISIS (0xFE). Consequently, existing EtherType access control
entries that use the BPDU or ISIS keywords will be converted
automatically to use the DSAP specification, and rules for IPX will be
converted to 3 rules (DSAP IPX, DSAP Raw IPX, and EII IPX). In
addition, packet capture that uses IPX as an EtherType value has been
deprecated, because IPX corresponds to 3 separate EtherTypes.

We modified the following commands: access-list ethertype added
the new keywords eii-ipx and dsap {bpdu | ipx | isis | raw-ipx};
capture ethernet-type no longer supports the ipx keyword.

9.9(1)EtherType access control list changes.

Access Control Lists
24

Access Control Lists
History for ACLs

	Access Control Lists
	About ACLs
	ACL Types
	ACL Names
	Access Control Entry Order
	Permit/Deny vs. Match/Do Not Match
	Access Control Implicit Deny
	IP Addresses Used for Extended ACLs When You Use NAT
	Time-Based ACEs

	Licensing for Access Control Lists
	Guidelines for ACLs
	Configure ACLs
	Basic ACL Configuration and Management Options
	Configure Extended ACLs
	Add an Extended ACE for IP Address or Fully-Qualified Domain Name-Based Matching
	Add an Extended ACE for Port-Based Matching
	Add an Extended ACE for ICMP-Based Matching
	Add an Extended ACE for User-Based Matching (Identity Firewall)
	Add an Extended ACE for Security Group-Based Matching (Cisco TrustSec)
	Examples for Extended ACLs
	Example of Converting Addresses to Objects for Extended ACLs

	Configure Standard ACLs
	Configure Webtype ACLs
	Add a Webtype ACE for URL Matching
	Add a Webtype ACE for IP Address Matching
	Examples for Webtype ACLs

	Configure EtherType ACLs
	Examples for EtherType ACLs

	Edit ACLs in an Isolated Configuration Session
	Monitoring ACLs
	History for ACLs

