Configure an IP Address Assignment Policy

The ASA can use one or more of the following methods for assigning IP addresses to remote access clients. If you configure more than one address assignment method, the ASA searches each of the options until it finds an IP address. By default, all methods are enabled.

- **aaa** Retrieves addresses from an external authentication, authorization, and accounting server on a per-user basis. If you are using an authentication server that has IP addresses configured, we recommend using this method. This method is available for IPv4 and IPv6 assignment policies.

- **dhcp** Obtains IP addresses from a DHCP server. If you want to use DHCP, you must configure a DHCP server. You must also define the range of IP addresses that the DHCP server can use. This method is available for IPv4 assignment policies.

- **local** Internally configured address pools are the easiest method of address pool assignment to configure. If you choose local, you must also use the `ip-local-pool` command to define the range of IP addresses to use. This method is available for IPv4 and IPv6 assignment policies.

 - Allow the reuse of an IP address so many minutes after it is released—Delays the reuse of an IP address after its return to the address pool. Adding a delay helps to prevent problems firewalls can experience when an IP address is reassigned quickly. By default the ASA does not impose a delay. This configurable element is available for IPv4 assignment policies.

Use one of the following methods to specify a way to assign IP addresses to remote access clients.
Configure IPv4 Address Assignments

Procedure

Enable an address assignment method for the ASA to use when assigning IPv4 address to VPN connections. The available methods to obtain an IP address are from a AAA server, DHCP server, or a local address pool. All of these methods are enabled by default.

\[
\text{vpn-addr-assign} \ {\text{aaa \ | \ dhcp \ | \ local \ [\text{reuse-delay} \ minutes]\}}
\]

Example:
For example, you can configure the reuse of an IP address for between 0 and 480 minutes after the IP address has been released.

```
hostname(config)# vpn-addr-assign aaa
hostname(config)# vpn-addr-assign local reuse-delay 180
```

This example uses the no form of the command to disable an address assignment method.

```
hostname(config)# no vpn-addr-assign dhcp
```

Configure IPv6 Address Assignments

Procedure

Enable an address assignment method for the ASA to use when assigning IPv6 address to VPN connections. The available methods to obtain an IP address are from a AAA server or a local address pool. Both of these methods are enabled by default.

\[
\text{ipv6-vpn-addr-assign} \ {\text{aaa \ | \ local}}
\]

Example:

```
hostname(config)# ipv6-vpn-addr-assign aaa
```

This example uses the no form of the command to disable an address assignment method.

```
hostname(config)# no ipv6-vpn-addr-assign local
```

View Address Assignment Methods

Procedure

Use one of these methods to view the address assignment method configured on the ASA:
Configure Local IP Address Pools

To configure IPv4 address pools to use for VPN remote access tunnels, enter the `ip local pool` command in global configuration mode. To delete address pools, enter the `no` form of this command.

To configure IPv6 address pools to use for VPN remote access tunnels, enter the `ipv6 local pool` command in global configuration mode. To delete address pools, enter the `no` form of this command.

The ASA uses address pools based on the connection profile or group policy for the connection. The order in which you specify the pools is important. If you configure more than one address pool for a connection profile or group policy, the ASA uses them in the order in which you added them to the ASA.

If you assign addresses from a non-local subnet, we suggest that you add pools that fall on subnet boundaries to make adding routes for these networks easier.

Configure Local IPv4 Address Pools

Procedure

Step 1 Configure IP address pools as the address assignment method. Enter the `vpn-addr-assign` command with the `local` argument.

Example:

```bash
hostname(config)# vpn-addr-assign local
```

Step 2 Configure an address pool. The command names the pool, specifies a range of IPv4 addresses and the subnet mask.

```bash
ip local pool poolname first_address-last_address mask
```

Example:

Configure Local IPv6 Address Assignments

Show the configured address assignment method. Configured address methods could be `aaa` or `local`.

```bash
show running-config all ipv6-vpn-addr-assign
ipv6-vpn-addr-assign aaa
ipv6-vpn-addr-assign local reuse-delay 0
```
Configure Local IPv6 Address Pools

Procedure

Step 1 Configures IP address pools as the address assignment method, enter the `ipv6-vpn-addr-assign` command with the `local` argument.

Example:
```
hostname(config)# ipv6-vpn-addr-assign local
```

Step 2 Configures an address pool. The command names the pool, identifies the starting IPv6 address, the prefix length in bits, and the number of addresses to use in the range.

```
ipv6 local pool pool_name starting_address prefix_length number_of_addresses
```

Example:
```
This example configures an IP address pool named `ipv6pool`. The starting address is `2001:DB8::1`, the prefix length is `32` bits, and the number of addresses to use in the pool is `100`.

hostname(config)# ipv6 local pool ipv6pool 2001:DB8::1/32 100
```

This example deletes the IP address pool named `ipv6pool`.
```
hostname(config)# no ipv6 local pool ipv6pool
```

Configure AAA Addressing

To use a AAA server to assign addresses for VPN remote access clients, you must first configure a AAA server or server group. See the `aaa-server protocol` command in the command reference.

In addition, the user must match a connection profile configured for RADIUS authentication.

The following examples illustrate how to define a AAA server group called RAD2 for the tunnel group named firstgroup. It includes one more step than is necessary, in that previously you might have named the tunnel group and defined the tunnel group type. This step appears in the following example as a reminder that you have no access to subsequent tunnel-group commands until you set these values.

An overview of the configuration that these examples create follows:
To configure AAA for IP addressing, perform the following steps:

Procedure

Step 1
To configure AAA as the address assignment method, enter the `vpn-addr-assign` command with the `aaa` argument:

```
hostname(config)# vpn-addr-assign aaa
```

Step 2
To establish the tunnel group called `firstgroup` as a remote access or LAN-to-LAN tunnel group, enter the `tunnel-group` command with the `type` keyword. The following example configures a remote access tunnel group.

```
hostname(config)# tunnel-group firstgroup type ipsec-ra
```

Step 3
To enter general-attributes configuration mode, which lets you define a AAA server group for the tunnel group called `firstgroup`, enter the `tunnel-group` command with the `general-attributes` argument.

```
hostname(config)# tunnel-group firstgroup general-attributes
hostname(config-general)#
```

Step 4
To specify the AAA server group to use for authentication, enter the `authentication-server-group` command.

```
hostname(config-general)# authentication-server-group RAD2
```

What to do next
This command has more arguments that this example includes. For more information, see the command reference.

Configure DHCP Addressing

To use DHCP to assign addresses for VPN clients, you must first configure a DHCP server and the range of IP addresses that the DHCP server can use. Then you define the DHCP server on a connection profile basis. Optionally, you can also define a DHCP network scope in the group policy associated with a connection profile or username. This is either an IP network number or IP Address that identifies to the DHCP server which pool of IP addresses to use.

The following examples define the DHCP server at IP address 172.33.44.19 for the connection profile named `firstgroup`. They also define a DHCP network scope of 192.86.0.0 for the group policy called `remotegroup`. (The group policy called remotegroup is associated with the connection profile called `firstgroup`). If you do
not define a network scope, the DHCP server assigns IP addresses in the order of the address pools configured. It goes through the pools until it identifies an unassigned address.

The following configuration includes more steps than are necessary, in that previously you might have named and defined the connection profile type as remote access, and named and identified the group policy as internal or external. These steps appear in the following examples as a reminder that you have no access to subsequent tunnel-group and group-policy commands until you set these values.

Guidelines and Limitations

You can only use an IPv4 address to identify a DHCP server to assign client addresses.

Configure DHCP Addressing

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 1 | Configure IP address pools as the address assignment method.
`vpn-addr-assign dhcp` |
| Step 2 | Establish the connection profile called `firstgroup` as a remote access connection profile.
`tunnel-group firstgroup type remote-access` |
| Step 3 | Enter the general-attributes configuration mode for the connection profile so that you can configure a DHCP server.
`tunnel-group firstgroup general-attributes` |
| Step 4 | Define the DHCP server by IPv4 address. You can not define a DHCP server by an IPv6 address. You can specify more than one DHCP server address for a connection profile. Enter the `dhcp-server` command. This command allows you to configure the ASA to send additional options to the specified DHCP servers when it is trying to get IP addresses for VPN clients.
`dhcp-server IPv4_address_of_DHCP_server`
Example:
The example configures a DHCP server at IP address 172.33.44.19.
`hostname(config-general)# dhcp-server 172.33.44.19`
`hostname(config-general)#` |
| Step 5 | Exit the tunnel-group mode.
`hostname(config-general)# exit`
`hostname(config)#` |
| Step 6 | Create an internal group policy called `remotegroup`.
`hostname(config)# group-policy remotegroup internal`
Example:
The example enters group policy attributes configuration mode for `remotegroup` group-policy. |
Step 7 (Optional) Enter the group-policy attributes configuration mode, which lets you configure a subnetwork of IP addresses for the DHCP server to use. Enter the `group-policy` command with the `attributes` keyword.

Example:

```
hostname(config)# group-policy remotegroup attributes
hostname(config-group-policy)#
```

Step 8 (Optional) To specify the range of IP addresses the DHCP server should use to assign addresses to users of the group policy called `remotegroup`, enter the `dhcp-network-scope` command.

The example configures a network scope of `192.86.0.0`.

```
hostname(config-group-policy)# dhcp-network-scope 192.86.0.0
hostname(config-group-policy)#
```

Note The `dhcp-network-scope` must be a routable IP address and not the subset of the DHCP pool. The DHCP server determines which subnet this IP address belongs to and assigns an IP address from that pool. You can use any IP address as the `dhcp-network-scope`, but it may require that static routes be added to the network.

Example

A summary of the configuration that these examples create follows:

```
hostname(config)# vpn-addr-assign dhcp
hostname(config)# tunnel-group firstgroup type remote-access
tunnel-group firstgroup general-attributes
dhcp-server 172.33.44.19
dhcp-group remotegroup internal
dhcp-network-scope 192.86.0.0
```

What to do next

See the `dhcp-server` command in the Cisco Security Appliance Command Reference guide for more information.