Configuring Basic Settings

This chapter describes how to configure basic settings on the ASA that are typically required for a functioning configuration and includes the following sections:

- Configuring the Hostname, Domain Name, and Passwords, page 1-1
- Setting the Date and Time, page 1-4
- Configuring the Master Passphrase, page 1-7
- Configuring the DNS Server, page 1-12
- Performing Password Recovery, page 1-13
- Monitoring DNS Cache, page 1-15

Configuring the Hostname, Domain Name, and Passwords

This section includes the following topics:

- Setting the Login Password, page 1-2
- Changing the Enable Password, page 1-2
- Setting the Hostname, page 1-3
- Setting the Domain Name, page 1-3
- Feature History for the Hostname, Domain Name, and Passwords, page 1-4
Configuring the Hostname, Domain Name, and Passwords

Setting the Login Password

The login password is used for Telnet access when you do not configure Telnet authentication (see the “Configuring Authentication for CLI, and ASDM, and enable command Access” section on page 45-23). You also use this password when accessing the ASASM from the switch with the session command.

Prerequisites

Enable Telnet access according to the “Configuring Telnet Access” section on page 45-5.

To set the login password, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`{passwd</td>
<td>password} password [encrypted]`</td>
</tr>
</tbody>
</table>

Changing the Enable Password

To change the enable password, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable password password</td>
<td>Changes the enable password, which lets you enter privileged EXEC mode. By default, the enable password is blank. The password argument is a case-sensitive password of up to 16 alphanumeric and special characters. You can use any character in the password except a question mark or a space. This command changes the password for the highest privilege level. If you configure local command authorization, you can set enable passwords for each privilege level from 0 to 15. The password is saved in the configuration in encrypted form, so you cannot view the original password after you enter it. Enter the enable password command without a password to set the password to the default, which is blank.</td>
</tr>
</tbody>
</table>

Example:

hostname(config)# passwd Pa$$w0rd
Setting the Hostname

To set the hostname, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hostname name</code></td>
<td>Specifies the hostname for the ASA or for a context. This name can be up to 63 characters. The hostname must start and end with a letter or digit, and have only letters, digits, or a hyphen. When you set a hostname for the ASA, that name appears in the command line prompt. If you establish sessions to multiple devices, the hostname helps you keep track of where you enter commands. The default hostname depends on your platform. For multiple context mode, the hostname that you set in the system execution space appears in the command line prompt for all contexts. The hostname that you optionally set within a context does not appear in the command line, but can be used by the <code>banner</code> command <code>$(hostname)</code> token.</td>
</tr>
</tbody>
</table>

Example:

```
hostname(config)# hostname farscape
farscape(config)#
```

Setting the Domain Name

To set the domain name, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>domain-name name</code></td>
<td>Specifies the domain name for the ASA. The ASA appends the domain name as a suffix to unqualified names. For example, if you set the domain name to “example.com” and specify a syslog server by the unqualified name of “jupiter,” then the ASA qualifies the name to “jupiter.example.com.” The default domain name is default.domain.invalid. For multiple context mode, you can set the domain name for each context, as well as within the system execution space.</td>
</tr>
</tbody>
</table>

Example:

```
hostname(config)# domain-name example.com
```

```
Feature History for the Hostname, Domain Name, and Passwords

Table 1-1 lists each feature change and the platform release in which it was implemented.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Platform Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of the default Telnet password</td>
<td>9.0(2)</td>
<td>To improve security for management access to the ASA, the default login password for Telnet was removed; you must manually set the password before you can log in using Telnet. Note: The login password is only used for Telnet if you do not configure Telnet user authentication (the <code>aaa authentication telnet console</code> command). Formerly, when you cleared the password, the ASA restored the default of “cisco.” Now when you clear the password, the password is removed. The login password is also used for Telnet sessions from the switch to the ASASM (see the <code>session</code> command). For initial ASASM access, you must use the <code>service-module session</code> command, until you set a login password. We modified the following command: <code>passwd</code>.</td>
</tr>
</tbody>
</table>

Setting the Date and Time

Note: Do not set the date and time for the ASASM; it receives these settings from the host switch.

This section includes the following topics:
- Setting the Time Zone and Daylight Saving Time Date Range, page 1-5
- Setting the Date and Time Using an NTP Server, page 1-6
- Setting the Date and Time Manually, page 1-7
Setting the Date and Time

To set the time zone and daylight saving time date range, perform the following steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>clock timezone zone [-]hours [minutes]</code></td>
<td>Sets the time zone. By default, the time zone is UTC and the daylight saving time date range is from 2:00 a.m. on the first Sunday in April to 2:00 a.m. on the last Sunday in October.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Where <code>zone</code> specifies the time zone as a string, for example, <strong>PST</strong> for Pacific Standard Time.</td>
</tr>
<tr>
<td>hostname(config)# clock timezone PST -8</td>
<td>The [-]hours value sets the number of hours of offset from UTC. For example, PST is -8 hours.</td>
</tr>
<tr>
<td></td>
<td>The <code>minutes</code> value sets the number of minutes of offset from UTC.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>To change the date range for daylight saving time from the default, enter one of the following commands. The default recurring date range is from 2:00 a.m. on the second Sunday in March to 2:00 a.m. on the first Sunday in November.</td>
</tr>
<tr>
<td>`clock summer-time zone date {day month</td>
<td>month day} year hh:mm [day month</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>The <code>zone</code> value specifies the time zone as a string, for example, <strong>PDT</strong> for Pacific Daylight Time.</td>
</tr>
<tr>
<td>hostname(config)# clock summer-time PDT 1 April 2010 2:00 60</td>
<td>The <code>day</code> value sets the day of the month, from 1 to 31. You can enter the day and month as <strong>April 1</strong> or as <strong>1 April</strong>, depending on your standard date format.</td>
</tr>
<tr>
<td></td>
<td>The <code>month</code> value sets the month as a string. You can enter the day and month as <strong>April 1</strong> or as <strong>1 April</strong>, depending on your standard date format.</td>
</tr>
<tr>
<td></td>
<td>The <code>year</code> value sets the year using four digits, for example, <strong>2004</strong>. The year range is 1993 to 2035.</td>
</tr>
<tr>
<td></td>
<td>The <code>hh:mm</code> value sets the hour and minutes in 24-hour time.</td>
</tr>
<tr>
<td></td>
<td>The <code>offset</code> value sets the number of minutes to change the time for daylight saving time. By default, the value is 60 minutes.</td>
</tr>
<tr>
<td><code>clock summer-time zone recurring [week weekday month hh:mm week weekday month hh:mm] [offset]</code></td>
<td>Specifies the start and end dates for daylight saving time, in the form of a day and time of the month, and not a specific date in a year. This command enables you to set a recurring date range that you do not need to change yearly.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>The <code>zone</code> value specifies the time zone as a string, for example, <strong>PDT</strong> for Pacific Daylight Time.</td>
</tr>
<tr>
<td>hostname(config)# clock summer-time PDT recurring first Monday April 2:00 60</td>
<td>The <code>week</code> value specifies the week of the month as an integer between 1 and 4 or as the words <strong>first</strong> or <strong>last</strong>. For example, if the day might fall in the partial fifth week, then specify the word <strong>last</strong>.</td>
</tr>
<tr>
<td></td>
<td>The <code>weekday</code> value specifies the day of the week: <strong>Monday</strong>, <strong>Tuesday</strong>, <strong>Wednesday</strong>, and so on.</td>
</tr>
<tr>
<td></td>
<td>The <code>month</code> value sets the month as a string.</td>
</tr>
<tr>
<td></td>
<td>The <code>hh:mm</code> value sets the hour and minutes in 24-hour time.</td>
</tr>
<tr>
<td></td>
<td>The <code>offset</code> value sets the number of minutes to change the time for daylight savings time. By default, the value is 60 minutes.</td>
</tr>
</tbody>
</table>
## Setting the Date and Time Using an NTP Server

To obtain the date and time from an NTP server, perform the following steps:

### Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables authentication with an NTP server.</td>
</tr>
<tr>
<td><code>ntp authenticate</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>hostname(config)# ntp authenticate</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Specifies an authentication key ID to be a trusted key, which is required for authentication with an NTP server.</td>
</tr>
<tr>
<td><code>ntp trusted-key key_id</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>hostname(config)# ntp trusted-key 1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Sets a key to authenticate with an NTP server.</td>
</tr>
<tr>
<td><code>ntp authentication-key key_id md5 key</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>hostname(config)# ntp authentication-key 1 md5 aNiceKey</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Identifies an NTP server.</td>
</tr>
<tr>
<td><code>ntp server ip_address [key key_id] [source interface_name] [prefer]</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>hostname(config)# ntp server 10.1.1.1 key 1 prefer</code></td>
<td></td>
</tr>
</tbody>
</table>

The `key_id` argument is the ID you set in Step 2 using the `ntp trusted-key` command, and the `key` argument is a string up to 32 characters long.

The `prefer` keyword sets this NTP server as the preferred server if multiple servers have similar accuracy. NTP uses an algorithm to determine which server is the most accurate and synchronizes to that one. If servers are of similar accuracy, then the `prefer` keyword specifies which of those servers to use. However, if a server is significantly more accurate than the preferred one, the ASA uses the more accurate one. For example, the ASA uses a server of stratum 2 over a server of stratum 3 that is preferred.

You can identify multiple servers; the ASA uses the most accurate server.

**Note** In multiple context mode, set the time in the system configuration only.
Setting the Date and Time Manually

To set the date and time manually, enter the following command:

**Detailed Steps**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`clock set hh:mm:ss [month day</td>
<td>Sets the date time manually.</td>
</tr>
<tr>
<td>day month] year</td>
<td>The <code>hh:mm:ss</code> argument sets the hour, minutes, and seconds in 24-hour</td>
</tr>
<tr>
<td></td>
<td>time. For example, enter <code>20:54:00</code> for 8:54 pm.</td>
</tr>
<tr>
<td></td>
<td>The <code>day</code> value sets the day of the month, from 1 to 31. You can enter</td>
</tr>
<tr>
<td></td>
<td>the day and month as <code>april 1</code> or as <code>1 april</code>, for example, depending</td>
</tr>
<tr>
<td></td>
<td>on your standard date format.</td>
</tr>
<tr>
<td></td>
<td>The <code>month</code> value sets the month. Depending on your standard date</td>
</tr>
<tr>
<td></td>
<td>format, you can enter the day and month as <code>april 1</code> or as <code>1 april</code>.</td>
</tr>
<tr>
<td></td>
<td>The <code>year</code> value sets the year using four digits, for example, <code>2004</code>.</td>
</tr>
<tr>
<td></td>
<td>The year range is from 1993 to 2035.</td>
</tr>
<tr>
<td></td>
<td>The default time zone is UTC. If you change the time zone after you</td>
</tr>
<tr>
<td></td>
<td>enter the <code>clock set</code> command using the <code>clock timezone</code> command, the</td>
</tr>
<tr>
<td></td>
<td>time automatically adjusts to the new time zone.</td>
</tr>
<tr>
<td></td>
<td>This command sets the time in the hardware chip, and does not save the</td>
</tr>
<tr>
<td></td>
<td>time in the configuration file. This time endures reboots. Unlike the</td>
</tr>
<tr>
<td></td>
<td>other <code>clock</code> commands, this command is a privileged EXEC command.</td>
</tr>
<tr>
<td></td>
<td>To reset the clock, you need to set a new time with the <code>clock set</code></td>
</tr>
<tr>
<td></td>
<td>command.</td>
</tr>
</tbody>
</table>

Example:

```
hostname# clock set 20:54:00 april 1 2004
```

Configuring the Master Passphrase

This section includes the following topics:

- Information About the Master Passphrase, page 1-7
- Licensing Requirements for the Master Passphrase, page 1-8
- Guidelines and Limitations, page 1-8
- Adding or Changing the Master Passphrase, page 1-8
- Disabling the Master Passphrase, page 1-10
- Recovering the Master Passphrase, page 1-11
- Feature History for the Master Passphrase, page 1-12

Information About the Master Passphrase

The master passphrase allows you to securely store plain text passwords in encrypted format and provides a key that is used to universally encrypt or mask all passwords, without changing any functionality. Features that use the master passphrase include the following:

- OSPF
• EIGRP
• VPN load balancing
• VPN (remote access and site-to-site)
• Failover
• AAA servers
• Logging
• Shared licenses

**Licensing Requirements for the Master Passphrase**

<table>
<thead>
<tr>
<th>Model</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models</td>
<td>Base License.</td>
</tr>
</tbody>
</table>

**Guidelines and Limitations**

This section includes the guidelines and limitations for this feature.

**Context Mode Guidelines**

Supported in single and multiple context mode.

**Failover Guidelines**

If failover is enabled but no failover shared key is set, an error message appears if you change the master passphrase, informing you that you must enter a failover shared key to protect the master passphrase changes from being sent as plain text.

**Adding or Changing the Master Passphrase**

This procedure will only be accepted in a secure session, for example by console, SSH, or ASDM via HTTPS.

To add or change the master passphrase, perform the following steps:
### Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

- `key config-key password-encryption [new_passphrase [old_passphrase]]`

  **Example:**
  
  ```
 hostname(config)# key config-key password-encryption
 Old key: bumblebee
 New key: haverford
 Confirm key: haverford
  ```

  Sets the passphrase used for generating the encryption key. The passphrase must be between 8 and 128 characters long. All characters except a backspace and double quotes are accepted for the passphrase.

  If you do not enter the new passphrase in the command, you are prompted for it.

  To change the passphrase, you must enter the old passphrase.

  See the “Examples” section on page 1-10 for examples of the interactive prompts.

  **Note**
  
  Use the interactive prompts to enter passwords to avoid having the passwords logged in the command history buffer.

  Use the `no key config-key password-encrypt` command with caution, because it changes the encrypted passwords into plain text passwords. You can use the `no` form of this command when downgrading to a software version that does not support password encryption.

| **Step 2**

- `password encryption aes`

  **Example:**
  
  ```
 hostname(config)# password encryption aes
  ```

  Enables password encryption. As soon as password encryption is enabled and the master passphrase is available, all the user passwords will be encrypted. The running configuration will show the passwords in the encrypted format.

  If the passphrase is not configured at the time that password encryption is enabled, the command will succeed in anticipation that the passphrase will be available in the future.

  If you later disable password encryption using the `no password encryption aes` command, all existing encrypted passwords are left unchanged, and as long as the master passphrase exists, the encrypted passwords will be decrypted, as required by the application.

| **Step 3**

- `write memory`

  **Example:**
  
  ```
 hostname(config)# write memory
  ```

  Saves the runtime value of the master passphrase and the resulting configuration. If you do not enter this command, passwords in startup configuration may still be visible if they were not saved with encryption previously.

  In addition, in multiple context mode the master passphrase is changed in the system context configuration. As a result, the passwords in all contexts will be affected. If the `write memory` command is not entered in the system context mode, but not in all user contexts, then the encrypted passwords in user contexts may be stale. Alternatively, use the `write memory all` command in the system context to save all configurations.
Examples

The following example shows that no previous key was present:

```
hostname (config)# key config-key password-encryption 12345678
```

The following example shows that a key already exists:

```
Hostname (config)# key config-key password-encryption 23456789
Old key: 12345678
```

In the following example, you want to key in interactively, but a key already exists. The Old key, New key, and Confirm key prompts appear on your screen if you enter the `key config-key password-encryption` command and press Enter to access interactive mode.

```
hostname (config)# key config-key password-encryption
Old key: 12345678
New key: 23456789
Confirm key: 23456789
```

In the following example, you want to key in interactively, but no key is present. The New key and Confirm key prompts appear on your screen if you are in interactive mode.

```
hostname (config)# key config-key password-encryption
New key: 12345678
Confirm key: 12345678
```

Disabling the Master Passphrase

Disabling the master passphrase reverts encrypted passwords into plain text passwords. Removing the passphrase might be useful if you downgrade to a previous software version that does not support encrypted passwords.

You must know the current master passphrase to disable it. If you do not know the passphrase, see the “Recovering the Master Passphrase” section on page 1-11.

This procedure will only be accepted in a secure session, that is, by Telnet, SSH, or ASDM via HTTPS.
To disable the master passphrase, perform the following steps:

### Detailed Steps

#### Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>no key config-key password-encryption [old_passphrase]</code></td>
<td>Removes the master passphrase. If you do not enter the passphrase in the command, you are prompted for it.</td>
</tr>
</tbody>
</table>

**Example:**

```
hostname(config)# no key config-key password-encryption old_passphrase
```

*Warning! You have chosen to revert the encrypted passwords to plain text. This operation will expose passwords in the configuration and therefore exercise caution while viewing, storing, and copying configuration.*

Old key: bumblebee

#### Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td><code>write memory</code></td>
<td>Saves the runtime value of the master passphrase and the resulting configuration. The non-volatile memory containing the passphrase will be erased and overwritten with the 0xFF pattern.</td>
</tr>
</tbody>
</table>

**Example:**

```
hostname(config)# write memory
```

In multiple mode, the master passphrase is changed in the system context configuration. As a result, the passwords in all contexts will be affected. If the `write memory` command is not entered in the system context mode, but not in all user contexts, then the encrypted passwords in user contexts may be stale. Alternatively, use the `write memory all` command in the system context to save all configurations.

### Recovering the Master Passphrase

You cannot recover the master passphrase. If the master passphrase is lost or unknown, you can remove it.

To remove the master passphrase, perform the following steps:

#### Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>write erase</code></td>
<td>Removes the master key and the configuration that includes the encrypted passwords.</td>
</tr>
</tbody>
</table>

**Example:**

```
hostname(config)# write erase
```

**Step 2**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td><code>reload</code></td>
</tr>
</tbody>
</table>

**Example:**

```
hostname(config)# reload
```
Feature History for the Master Passphrase

Table 1-2 lists each feature change and the platform release in which it was implemented.

**Table 1-2 Feature History for the Master Passphrase**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Platform Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Passphrase</td>
<td>8.3(1)</td>
<td>We introduced this feature. We introduced the following commands:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>key config-key password-encryption, password encryption aes, clear configure password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>encryption aes, show running-config password encryption aes, show password encryption.</td>
</tr>
<tr>
<td>Password Encryption Visibility</td>
<td>8.4(1)</td>
<td>We modified the <strong>show password encryption</strong> command.</td>
</tr>
</tbody>
</table>

**Configuring the DNS Server**

Some ASA features require use of a DNS server to access external servers by domain name; for example, the Botnet Traffic Filter feature requires a DNS server to access the dynamic database server and to resolve entries in the static database. Other features, such as the **ping** or **traceroute** command, let you enter a name that you want to ping or traceroute, and the ASA can resolve the name by communicating with a DNS server. Many SSL VPN and certificate commands also support names.

**Note**
The ASA has limited support for using the DNS server, depending on the feature. For example, most commands require you to enter an IP address and can only use a name when you manually configure the **name** command to associate a name with an IP address and enable use of the names using the **names** command.

For information about dynamic DNS, see the “Configuring DDNS” section on page 1-2.

**Prerequisites**

Make sure that you configure the appropriate routing for any interface on which you enable DNS domain lookup so you can reach the DNS server. See the “Information About Routing” section on page 1-1 for more information about routing.

**Detailed Steps**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>dns domain-lookup interface_name</code></td>
<td>Enables the ASA to send DNS requests to a DNS server to perform a name lookup for supported commands.</td>
</tr>
</tbody>
</table>

Example:

```
hostname(config)# dns domain-lookup inside
```
Performing Password Recovery

This section includes the following topics:

- Recovering Passwords for the ASA, page 1-13
- Disabling Password Recovery, page 1-14

Recovering Passwords for the ASA

To recover passwords for the ASA, perform the following steps:

Step 1 Connect to the ASA console port according to the instructions in “Accessing the ASA Services Module Command-Line Interface” section on page 1-2 or the “Accessing the Appliance Command-Line Interface” section on page 1-1.

Step 2 Power off the ASA, and then power it on.

Step 3 After startup, press the Escape key when you are prompted to enter ROMMON mode.

Step 4 To update the configuration register value, enter the following command:

```
rommon #1> confreg 0x41
Update Config Register (0x41) in NVRAM...
```

Step 5 To set the ASA to ignore the startup configuration, enter the following command:

```
rommon #1> confreg
```

The ASA displays the current configuration register value, and asks whether you want to change it:

```
Current Configuration Register: 0x00000041
Configuration Summary:
 boot default image from Flash
 ignore system configuration
```

```
Do you wish to change this configuration? y/n [n]: y
```

Step 6 Record the current configuration register value, so you can restore it later.

Step 7 At the prompt, enter Y to change the value.
Performing Password Recovery

The ASA prompts you for new values.

**Step 8**  Accept the default values for all settings, except for the "disable system configuration?" value.

**Step 9**  At the prompt, enter **Y**.

**Step 10**  Reload the ASA by entering the following command:
```
rommon #2> boot
Launching BootLoader...
Boot configuration file contains 1 entry.
```
```
Loading disk0:/asa800-226-k8.bin... Booting...Loading...
```

The ASA loads the default configuration instead of the startup configuration.

**Step 11**  Access the privileged EXEC mode by entering the following command:
```
hostname#
```
```
enable
```

**Step 12**  When prompted for the password, press **Enter**.

The password is blank.

**Step 13**  Load the startup configuration by entering the following command:
```
hostname# copy startup-config running-config
```

**Step 14**  Access the global configuration mode by entering the following command:
```
hostname# configure terminal
```

**Step 15**  Change the passwords, as required, in the default configuration by entering the following commands:
```
hostname(config)# password password
hostname(config)# enable password password
hostname(config)# username name password password
```

**Step 16**  Load the default configuration by entering the following command:
```
hostname(config)# no config-register
```

The default configuration register value is 0x1. For more information about the configuration register, see the command reference.

**Step 17**  Save the new passwords to the startup configuration by entering the following command:
```
hostname(config)# copy running-config startup-config
```

---

Disabling Password Recovery

To disable password recovery to ensure that unauthorized users cannot use the password recovery mechanism to compromise the ASA, enter the following command:

```
noservice password-recovery
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>no service password-recovery</td>
<td>Disables password recovery.</td>
</tr>
</tbody>
</table>

**Example:**
```
hostname (config)# no service password-recovery
```

---
On the ASA, the **no service password-recovery** command prevents you from entering ROMMON mode with the configuration intact. When you enter ROMMON mode, the ASA prompts you to erase all Flash file systems. You cannot enter ROMMON mode without first performing this erasure. If you choose not to erase the Flash file system, the ASA reloads. Because password recovery depends on using ROMMON mode and maintaining the existing configuration, this erasure prevents you from recovering a password. However, disabling password recovery prevents unauthorized users from viewing the configuration or inserting different passwords. In this case, to restore the system to an operating state, load a new image and a backup configuration file, if available.

The **service password-recovery** command appears in the configuration file for information only. When you enter the command at the CLI prompt, the setting is saved in NVRAM. The only way to change the setting is to enter the command at the CLI prompt. Loading a new configuration with a different version of the command does not change the setting. If you disable password recovery when the ASA is configured to ignore the startup configuration at startup (in preparation for password recovery), then the ASA changes the setting to load the startup configuration as usual. If you use failover, and the standby unit is configured to ignore the startup configuration, then the same change is made to the configuration register when the **no service password recovery** command replicates to the standby unit.

**Monitoring DNS Cache**

The ASA provides a local cache of DNS information from external DNS queries that are sent for certain clientless SSL VPN and certificate commands. Each DNS translation request is first looked for in the local cache. If the local cache has the information, the resulting IP address is returned. If the local cache cannot resolve the request, a DNS query is sent to the various DNS servers that have been configured. If an external DNS server resolves the request, the resulting IP address is stored in the local cache with its corresponding hostname.

To monitor the DNS cache, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dns-hosts</td>
<td>Show the DNS cache, which includes dynamically learned entries from a DNS server as well as manually entered name and IP addresses using the <strong>name</strong> command.</td>
</tr>
</tbody>
</table>