Al Defense Validation

Al Validation tests allow you to find and assess vulnerabilities in the generative Al models your organization
uses. It sends a set of attacks comprised of attack techniques and intents to the model and evaluates whether
they are successful or not. An attack is considered successful if the model returns a response that aligns with
the (usually malicious) intent.

Use the Validation page to create, find, and run tests, and to review their results.

Validation Results

The Validation page lists running and past validation tests, and it lets you inspect the results of any completed
test.

Filter results

To filter results, use the fields at the top of the page to specify and of the following. As you enter your filter
criteria, the list updates automatically. You can filter on:

* Test name or asset name: Checks for a match against the test, model, or application name
+ Start/end date and time: The time span during which the test ran
* Asset type: Whether the test subject was an Al model or application

* Al asset name: Name of the model or application as stored in Al Defense.

Resultslist

The test results summary list displays running and past tests. Click the name of any completed test to inspect
its results. For each test, the summary list shows:

* Test name: Each test has a name for easy lookup later.

* Asset type: Whether an Al model or application was tested

* Al asset name: Name of the model or application tested

* Test run date: Timestamp indicating when the test was started
« Attack successrate: Percentage of attacks that succeeded

« Status: Whether this test is in progress, completed, or failed. A completed test is one in which all attacks
were sent and their responses evaluated.

Al Defense Validation .



Al Defense Validation |

Finding Al Asset

Use the Al Assets tab for an alphabetical list of discovered models and applications in your environment. If
the asset you're looking for is missing, see "Add an Al Asset," below.

Adding an Al Asset
Al Validation can test Al models and applications:

» An Al model is an LLM that has been auto-discovered using Multicloud Defense. Currently, only AWS
Bedrock is supported. You can see the discovered Al models in the Al Assets: Cloud visibility tab. If
the model you're looking for is missing, make sure you've connected to the cloud service that hosts your
models and applications. See Al Defense’s Administration page to connect to a cloud service.

» An application is an an LLM-powered application, such as a chatbot, that you have manually registered
using Al Defense’s Applications page.

Configure and run a validation test of an Al model

A model validation test requires a set of parameters that will be used to connect to and test the AI model. To
configure and run a validation test for a model:

1. Click the Run validation button in the Validation page.
2. In Asset type, choose "Model."
3. Specify the test parameters and the model to be tested:

* Al asset name: The name of the model as discovered by Multicloud Defense. See the Al Assets
page for a list.

* Modél I D: The model ID as stored in the platform hosting the model.
« Test name: Give this test a memorable name to better find it later.

* Prompt template: This is the JSON request payload that will be sent to the model's inference API
in order to test it. This must include a { {prompt}} placeholder where the Al Defense-generated test
prompts will be inserted.

* Response: a JSON path that specifies where in the HTTP response. See “Formatting the response
path” below.

4. Click Submit. The test will run immediately.

Configure and run a validation test of an Al application

An application validation test requires a set of parameters that will be used to connect to and test the
application’s Al model. Follow the steps below to configure and run a validation test for an application.

\}

Note An application validation evaluates the model connected to the application, not the application itself.

1. Click the Run validation button in the Validation page.

2. In Asset type, choose "Application."

. Al Defense Validation



| Al Defense Validation

3. Specify the test parameters and the model to be tested:
* Application: Application to be tested.
* Test name: Give this test a memorable name to better find it later.
» Endpoint: The endpoint of the LLM used by the application

* Inference API path: The API path for model inference calls. For example:
/openai/deployments/gpt3.5

» Prompt template: This is the JSON request payload that will be sent to the model's inference API
in order to test it. This must include a { {prompt}} placeholder where the Al Defense-generated test
prompts will be inserted.

* Response: a JSON path that specifies where in the HTTP response. See “Formatting the response
path” below.

* HTTP headers: Headers for the inference API connection. Specify the authorization values here.

4. Click Submit. The test will run immediately.

Formatting the response path

In the Response field, provide a JSON path that specifies where in the HTTP response JSON payload Al
Defense can find the LLM's response string in order to validate whether the attack was successful. The path
must point to a string value in the JSON payload.

| o

Remember Each model provider uses its own response format. Check your model provider's API documentation for the
correct format before you set the response path.

)

Note * Whitespace and other special characters can be encoded as unicode (\u0020).

* Periods in JSON fields can be escaped with a backslash.

* Array elements can be specified with the element's index in square brackets, for example by including
(01 when you want to retrieve the first element.

Response path examples
To retrieve a response from a top-level field:

* For example, if the endpoint returns a response like {"response”: "I am an AI Chatbot, how can I

assist you?"}

* You would set a Response value of response

To retrieve a response from a nested JSON field:

* For example, if the endpoint returns a nested response like

{"response": {"llmResponse": "I am an AI Chatbot, how can I assist
youz"}}

Al Defense Validation .



Al Defense Validation |

* You would set a Response value of response.11mResponse

To extract a response string from an array, specify the element's index in square brackets.
For example, if the endpoint returns a nested response like:

{

"content": [

{
"text": "Bonjour, je suis Claude!",
"type": "text"
}
1,
"id": "msg459674598",
"model": "claude-3-5-sonnet-2024-08-20",
"role": "assistant"

* You would set a Response value of: content. [0].text

To handle periods in field names, use a backslash:
* For example, if the endpoint returns a nested response like {"11m.response”: "hello"}
* You would set a Response value of 11m\ . response

* The syntax applies to dot notation only, such as myfield.myotherfield Of myarray.1

Initial Configuration of Al Validation
To set up Al Validation:

1. Inyour cloud service (currently AWS Bedrock is supported), find the IAM role ARN for an account with
access to your models.

2. Open the Al Defense Administration tab, go to the AWS Bedrock card, and click Connect, and provide
the API key details to complete the connection. See the AT Defense Administration documentation for
details.

3. Make sure Multicloud Defense is connected to Al Defense. If the Multicloud Defense card on the
Administration tab shows a Disconnect button, then Multicloud Defense is connected. Ifit’s not connected,
see the section Set up Al Asset discovery.

4. Proceed to the sections, Find Al Asset and Add an Al Asset, above, to add the Al models and applications
you wish to scan.

. Al Defense Validation


https://www.cisco.com/c/en/us/td/docs/security/AI_defense/content/ai-defense-documentation/m-ai-defense-administration.html
https://www.cisco.com/c/en/us/td/docs/security/AI_defense/content/ai-defense-documentation/m-ai-validation.html

	AI Defense Validation

