
Regular Expression for URL Filtering and DNS
Security

Regular Expressions

A regular expression is a pattern (a phrase, number, or more complex pattern) the CLI String Search feature
matches against show or more command output. Regular expressions are case-sensitive and allow for complex
matching requirements. Simple regular expressions include entries like Serial, misses, or 138. Complex regular
expressions include entries like 00210... , (is), or [Oo]utput.

A regular expression can be a single-character pattern or a multiple-character pattern. That is, a regular
expression can be a single character that matches the same single character in the command output or multiple
characters that match the samemultiple characters in the command output. The pattern in the command output
is referred to as a string. This section describes creating both single-character patterns and multiple-character
patterns. It also discusses creating more complex regular expressions using multipliers, alternation, anchoring,
and parentheses.

Single-Character Patterns

The simplest regular expression is a single character that matches the same single character in the command
output. You can use any letter (A-Z, a-z) or digit (0-9) as a single-character pattern. You can also use other
keyboard characters (such as ! or ~) as single-character patterns, but certain keyboard characters have special
meaning when used in regular expressions. The table below lists the keyboard characters that have special
meaning.

Table 1: Characters with Special Meaning

Special MeaningCharacter

Matches any single character, including white space..

Matches 0 or more sequences of the pattern.*

Matches 1 or more sequences of the pattern.+

Matches 0 or 1 occurrences of the pattern.?

Matches the beginning of the string.^

Matches the end of the string.$

Regular Expression for URL Filtering and DNS Security
1

Special MeaningCharacter

Matches a comma (,), left brace ({), right brace (}), left parenthesis ((), right
parenthesis ()), the beginning of the string, the end of the string, or a space.

_(underscore)

To use these special characters as single-character patterns, remove the special meaning by preceding each
character with a backslash (\). The following examples are single-character patterns matching a dollar sign,
an underscore, and a plus sign, respectively.

\$ _ \+

You can specify a range of single-character patterns to match against command output. For example, you can
create a regular expression that matches a string containing one of the following letters: a, e, i, o, or u. Only
one of these characters must exist in the string for pattern matching to succeed. To specify a range of
single-character patterns, enclose the single-character patterns in square brackets ([]). For example,

[aeiou]matches any one of the five vowels of the lowercase alphabet, while [abcdABCD] matches any one
of the first four letters of the lower- or uppercase alphabet.

You can simplify ranges by entering only the endpoints of the range separated by a dash (-). Simplify the
previous range as follows:

[a-dA-D]

To add a dash as a single-character pattern in your range, include another dash and precede it with a backslash:

[a-dA-D\-]

You can also include a right square bracket (]) as a single-character pattern in your range, as shown
here:[a-dA-D\-\]]

The previous example matches any one of the first four letters of the lower- or uppercase alphabet, a dash, or
a right square bracket.

You can reverse the matching of the range by including a caret (^) at the start of the range. The following
example matches any letter except the ones listed:

[^a-dqsv]

The following example matches anything except a right square bracket (]) or the letter d:

[^\]d]

Multiple-Character Patterns

When creating regular expressions, you can also specify a pattern containing multiple characters. You create
multiple-character regular expressions by joining letters, digits, or keyboard characters that do not have special
meaning. For example, a4% is a multiple-character regular expression. Insert a backslash before the keyboard
characters that have special meaning when you want to indicate that the character should be interpreted literally.

With multiple-character patterns, order is important. The regular expression a4% matches the character a
followed by a 4 followed by a % sign. If the string does not have a4%, in that order, pattern matching fails.
The multiple-character regular expression a.uses the special meaning of the period character to match the
letter a followed by any single character. With this example, the strings ab, a!, or a2 are all valid matches for
the regular expression.

You can remove the special meaning of the period character by inserting a backslash before it. For example,
when the expression a\. is used in the command syntax, only the string a. will be matched.

Regular Expression for URL Filtering and DNS Security
2

Regular Expression for URL Filtering and DNS Security

You can create a multiple-character regular expression containing all letters, all digits, all keyboard characters,
or a combination of letters, digits, and other keyboard characters. For example, telebit3107v32bis is a valid
regular expression.

Multipliers

You can createmore complex regular expressions that instruct Cisco IOS software tomatchmultiple occurrences
of a specified regular expression. To do so, you use some special characters with your single-character and
multiple-character patterns. The table below lists the special characters that specify “multiples” of a regular
expression.

Table 2: Special Characters Used as Multipliers

DescriptionCharacter

Matches 0 or more single-character or multiple-character patterns.*

Matches 1 or more single-character or multiple-character patterns.+

Matches 0 or 1 occurrences of a single-character or multiple-character pattern.?

The following example matches any number of occurrences of the letter a, including none:

a*

The following pattern requires that at least one letter a be in the string to be matched:

a+

The following pattern matches the string bb or bab:

ba?b

The following string matches any number of asterisks (*):

**

To use multipliers with multiple-character patterns, you enclose the pattern in parentheses. In the following
example, the pattern matches any number of the multiple-character string ab:

(ab)*

As a more complex example, the following pattern matches one or more instances of alphanumeric pairs, but
not none (that is, an empty string is not a match):

([A-Za-z][0-9])+

The order for matches using multipliers (*, +, or ?) is to put the longest construct first. Nested constructs are
matched from outside to inside. Concatenated constructs are matched beginning at the left side of the construct.
Thus, the regular expressionmatches A9b3, but not 9Ab3 because the letters are specified before the numbers.

Alternation

Alternation allows you to specify alternative patterns to match against a string. You separate the alternative
patterns with a vertical bar (|). Exactly one of the alternatives can match the string. For example, the regular
expression codex|telebit matches the string codex or the string telebit, but not both codex and telebit.

Regular Expression for URL Filtering and DNS Security
3

Regular Expression for URL Filtering and DNS Security

Anchoring

You can instruct Cisco IOS software to match a regular expression pattern against the beginning or the end
of the string. That is, you can specify that the beginning or end of a string contain a specific pattern. You
“anchor” these regular expressions to a portion of the string using the special characters shown in the table
below.

Table 3: Special Characters Used for Anchoring

DescriptionCharacter

Matches the beginning of the string.^

Matches the end of the string.$

For example, the regular expression ^conmatches any string that starts with con, and $sole matches any string
that ends with sole.

In addition to indicating the beginning of a string, the ^ symbol can be used to indicate the logical function
“not” when used in a bracketed range. For example, the expression [^abcd] indicates a range that matches
any single letter, as long as it is not the letters a, b, c, or d.

Contrast these anchoring characters with the special character underscore (_). Underscorematches the beginning
of a string (^), the end of a string ($), parentheses (()), space (), braces ({}), comma (,), or underscore (_).
With the underscore character, you can specify that a pattern exist anywhere in the string. For example,

1300 matches any string that has 1300 somewhere in the string. The string 1300 can be preceded by or end
with a space, brace, comma, or underscore. So, although {1300_matches the regular expression _1300_, 21300
and 13000 do not.

Using the underscore character, you can replace long regular expression lists. For example, instead of specifying
^1300()()1300${1300,,1300,{1300},1300,(1300 you can specify simply _1300_.

Parentheses for Recall

As shown in the “Multipliers” section, you use parentheses with multiple-character regular expressions to
multiply the occurrence of a pattern. You can also use parentheses around a single- or multiple-character
pattern to instruct the Cisco IOS software to remember a pattern for use elsewhere in the regular expression.

To create a regular expression that recalls a previous pattern, you use parentheses to indicate memory of a
specific pattern and a backslash (\) followed by a number to reuse the remembered pattern. The number
specifies the occurrence of a parentheses in the regular expression pattern. If you have more than one
remembered pattern in your regular expression, then \1 indicates the first remembered pattern, and \2 indicates
the second remembered pattern, and so on.

The following regular expression uses parentheses for recall:

a(.)bc(.)\1\2

This regular expression matches an a followed by any character (call it character no. 1), followed by bc
followed by any character (character number 2), followed by character no. 1 again, followed by character
number. 2 again. So, the regular expression can match aZbcTZT. The software remembers that character
number 1 is Z and character number 2 is T and then uses Z and T again later in the regular expression.

Regular Expression for URL Filtering and DNS Security
4

Regular Expression for URL Filtering and DNS Security

	Regular Expression for URL Filtering and DNS Security

