THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2017 Cisco Systems, Inc. All rights reserved.
CONTENTS

Full Cisco Trademarks with Software License ?

PREFACE

Preface ix
Audience ix
Related Documentation ix
Communications, Services, and Additional Information x

CHAPTER 1

About Cisco Enterprise NFVIS 1
Benefits of Cisco Enterprise NFVIS 1
Supported Hardware Platforms 2
Key Tasks You can Perform Using Cisco Enterprise NFVIS 3

CHAPTER 2

Installing Cisco Enterprise NFVIS Using the KVM Console 5
Installation Prerequisites 5
Image Signing and Verification 6
RPM Signing 6
RPM Signature Verification 6
Image Integrity Verification Using sha256sum 6
Entering BIOS Setup 7
Installing Cisco Enterprise NFVIS on the Cisco UCS C220 M4 Rack Server or Cisco CSP 2100 7
Logging Into the CIMC GUI 7
Activating a Virtual Device 8
Mapping the Cisco Enterprise NFVIS Image 8
Installing Cisco Enterprise NFVIS on Cisco UCS E-Series Servers 8
Sample Configuration on the Cisco ISR Router to Bring Up a Cisco UCS E Server 10
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing Cisco Enterprise NFVIS on a Cisco ENCS 5100 and 5400</td>
<td>12</td>
</tr>
<tr>
<td>Installing Cisco Enterprise NFVIS on a Cisco ENCS 5104</td>
<td>13</td>
</tr>
<tr>
<td>Setting Up System Configuration</td>
<td>17</td>
</tr>
<tr>
<td>Default System Configuration on the Cisco ENCS</td>
<td>17</td>
</tr>
<tr>
<td>Default System Configuration on the Cisco UCS C220 M4 Server and Cisco CSP 2100</td>
<td>19</td>
</tr>
<tr>
<td>Default System Configuration on the Cisco UCS E-Series Servers</td>
<td>20</td>
</tr>
<tr>
<td>Setting Up Initial Configuration</td>
<td>20</td>
</tr>
<tr>
<td>Configuring VLAN for NFVIS Management Traffic</td>
<td>26</td>
</tr>
<tr>
<td>Configuring System Routes</td>
<td>27</td>
</tr>
<tr>
<td>User Roles and Authentication</td>
<td>28</td>
</tr>
<tr>
<td>Rules for User Passwords</td>
<td>28</td>
</tr>
<tr>
<td>Creating Users and Assigning Roles</td>
<td>29</td>
</tr>
<tr>
<td>Configuring Minimum Length for Passwords</td>
<td>29</td>
</tr>
<tr>
<td>Configuring Password Lifetime</td>
<td>30</td>
</tr>
<tr>
<td>Deactivating Inactive User Accounts</td>
<td>30</td>
</tr>
<tr>
<td>Activating an Inactive User Account</td>
<td>31</td>
</tr>
<tr>
<td>Certification</td>
<td>31</td>
</tr>
<tr>
<td>Secure Copy Command</td>
<td>32</td>
</tr>
<tr>
<td>Configuring the IP Receive ACL</td>
<td>32</td>
</tr>
<tr>
<td>Port 22222 and Management Interface ACL</td>
<td>33</td>
</tr>
<tr>
<td>Configuring Your Banner and Message of the Day</td>
<td>33</td>
</tr>
<tr>
<td>Setting the System Time Manually or With NTP</td>
<td>34</td>
</tr>
<tr>
<td>Enabling or Disabling the Portal Access</td>
<td>35</td>
</tr>
<tr>
<td>Configuring System Logs</td>
<td>36</td>
</tr>
<tr>
<td>Network File System Support</td>
<td>37</td>
</tr>
<tr>
<td>Secure Boot of host</td>
<td>38</td>
</tr>
<tr>
<td>CIMC Control</td>
<td>39</td>
</tr>
<tr>
<td>CIMC Access using NFVIS</td>
<td>39</td>
</tr>
<tr>
<td>BIOS-CIMC Update</td>
<td>40</td>
</tr>
<tr>
<td>NFVIS Password Recovery</td>
<td>40</td>
</tr>
<tr>
<td>DPDK Support on NFVIS</td>
<td>40</td>
</tr>
<tr>
<td>DPDK Support for NFVIS 3.10.x</td>
<td>40</td>
</tr>
<tr>
<td>DPDK VM Migration for NFVIS 3.11.x</td>
<td>41</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Cisco Network Plug-n-Play Support</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>PnP Discovery Methods</td>
</tr>
<tr>
<td></td>
<td>Configuring PnP Discovery Methods</td>
</tr>
<tr>
<td></td>
<td>PnP Action</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>VM Life Cycle Management</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Workflow of VM Life Cycle Management</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Uploading VM Images to an NFVIS Server</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>VM Bootstrap Configuration Options with a VM Deployment</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>OpenStack Configuration Drive Support for Third Party VMs</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Performing Resource Verification</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Configuring Management IP Address</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>VM States</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>VM Deployment Scenarios</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Registering VM Images</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Single VM Deployment</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Steps for Deploying a VM</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Service Chaining of VMs</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Service Chaining with two VM Images</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Steps for Service Chaining with Two VM Images</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Service Chaining of Multiple VMs with Windows or Linux Servers</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Steps for Service Chaining of Multiple VMs with Windows or Linux Servers</td>
<td>68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>SPAN Session or Port Mirroring</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>About SPAN Sessions</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Configuring SPAN Sessions</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Configuration Examples for SPAN Session Scenarios</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Example: SPAN Session Traffic on a Physical Interface</td>
<td>71</td>
</tr>
</tbody>
</table>
Example: SPAN Session Traffic on a LAN SRIOV 72
Example: SPAN Session Traffic on a VLAN 73

CHAPTER 8
Configuring Packet Capture 75

CHAPTER 9
VM Image Packaging 77

VM Image Packaging Utility 77
Contents 77
Usage 78
NFVIS Specific Enhancements 82
VM Packaging Utility Usage Examples 83
Standard VM Image Packaging 84
Generating a VM Package 85
Appendix 85
VM Image Package Files 85
Package Manifest File 86
Bootstrap Configuration File 86
VM Image Properties File 87
Example: Package.mf 91
Example: Image Properties 92
Example: Bootstrap Configuration File 93
Image Properties Template File 93

CHAPTER 10
Upgrading Cisco Enterprise NFVIS 95

CHAPTER 11
Configuring vBranch High Availability 99
Prerequisites for vBranch HA 99
vBranch HA Design and Topology 100
Enable Virtual NIC Failure Detection with Track Feature 101
Isolating LAN and Transit Link Traffic for vBranch HA 103
Packet Flow for vBranch HA 104
Configuration Examples for vBranch HA 105
Example: Active Cisco ENCS Configuration with ISRv1 105
Example: Standby Cisco ENCS Configuration with ISRv2 107
Cisco ENCS Failure Points 108

CHAPTER 12
Cisco ENCS Single WAN IP Deployment Scenarios 113
 Single WAN IP Deployment 113
 Preconfiguring the Cisco ENCS for a Single WAN IP Deployment 114
 Single WAN IP Deployment with Gigabit Ethernet Interface 0/0 115
 Single WAN IP Deployment with the 4G Interface 116

CHAPTER 13
Resetting to Factory Default 119

CHAPTER 14
Event Notifications 121
 nfvisEvent 122
 vmleEvent 133
Preface

This guide provides information about how to install and configure Cisco Enterprise Network Function Virtualization Infrastructure Software (Cisco Enterprise NFVIS) on a supported Cisco hardware device. The guide also provides details on virtual machine deployments, configuration of software features, and life cycle management using Representation State Transfer (REST) application programming interface (API).

Audience

This guide is intended for network administrators and operators who are familiar with basic Linux installation and configuration requirements.

Related Documentation

- API Reference for Cisco Enterprise Network Function Virtualization Infrastructure Software
- Cisco Enterprise Network Function Virtualization Infrastructure Software Command Reference
- Cisco 5400 Enterprise Network Compute System Hardware Installation Guide
- Cisco 5400 Enterprise Network Compute System Data Sheet
- Getting Started Guide for Cisco UCS E-Series Servers and the Cisco UCS E-Series Network Compute Engine
- Cisco UCS C220 M4 Server Installation and Service Guide
- Configuration Guide for Cisco Network Plug and Play on Cisco APIC-EM
Communications, Services, and Additional Information

• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
• To submit a service request, visit Cisco Support.
• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
• To obtain general networking, training, and certification titles, visit Cisco Press.
• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.
CHAPTER 1

About Cisco Enterprise NFVIS

Cisco Enterprise Network Function Virtualization Infrastructure Software (Cisco Enterprise NFVIS) is a Linux-based infrastructure software designed to help service providers and enterprises to design, deploy and manage network services. Cisco Enterprise NFVIS helps dynamically deploy virtualized network functions, such as a virtual router, firewall, and WAN acceleration, on a supported Cisco device. You do not always require a physical device for every network function. Automated provisioning and centralized management also eliminates costly truck rolls.

Cisco Enterprise NFVIS provides a Linux-based virtualization layer to the Cisco Enterprise Network Function Virtualization (ENFV) solution.

Cisco ENFV Solution Overview

The Cisco ENFV solution helps convert your critical network functions into a software which can deploy network services across dispersed locations in minutes. It provides a fully integrated platform that can run on top of a diverse network of both virtual and physical devices with the following primary components:

- Cisco Enterprise NFVIS
- VNFs
- Unified Computing System (UCS) and Enterprise Network Compute System (ENCS) hardware platforms
- Digital Network Architecture Center (DNAC)

For more details on the Cisco ENFV solution, see the Cisco Enterprise Network Functions Virtualization Solution Overview.

- Benefits of Cisco Enterprise NFVIS, on page 1
- Supported Hardware Platforms, on page 2
- Key Tasks You can Perform Using Cisco Enterprise NFVIS, on page 3

Benefits of Cisco Enterprise NFVIS

- Cost effective solution to consolidate multiple physical network appliances into a single server running multiple virtual network functions.
- Flexibility in deploying services quickly and in a timely manner.
- Cloud based VM life cycle management and provisioning.
- In-box life cycle management software to deploy and chain VMs dynamically on the platform.
- Programmable APIs.

Supported Hardware Platforms

Depending on your requirement, you can install Cisco Enterprise NFVIS on the following Cisco hardware platforms:

- Cisco 5100 Series Enterprise Network Compute System (Cisco ENCS)
- Cisco 5400 Series Enterprise Network Compute System (Cisco ENCS)
- Cisco UCS C220 M4 Rack Server
- Cisco Cloud Services Platform 2100 (CSP 2100)
- Cisco ISR4331 with UCS-E140S-M2/K9
- Cisco ISR4351 with UCS-E160D-M2/K9
- Cisco ISR4451-X with UCS-E180D-M2/K9
- Cisco UCS-E160S-M3/K9 Server
- Cisco UCS-E180D-M3/K9
- Cisco UCS-E1120D-M3/K9

Cisco ENCS

The Cisco 5100 and 5400 Series Enterprise Network Compute System combines routing, switching, storage, processing, and a host of other computing and networking activities into a compact one Rack Unit (RU) box. This high-performance unit achieves this goal by providing the infrastructure to deploy virtualized network functions and acting as a server that addresses processing, workload, and storage challenges.

Cisco UCS C220 M4 Rack Server

The Cisco UCS C220 M4 Rack Server is a high-density, general-purpose enterprise infrastructure and application server that delivers world class performance for a wide range of enterprise workloads, including virtualization, collaboration, and bare-metal applications.

Cisco CSP 2100

Cisco Cloud Services Platform 2100 (Cisco CSP 2100) is a software and hardware platform for data center network functions virtualization. This open kernel virtual machine (KVM) platform, with Red Hat Enterprise Linux (RHEL) 7.3 as the base operating system, is designed to host networking virtual services. Cisco CSP 2100 enables network, security, and load balancer teams to quickly deploy any Cisco or third-party network virtual service.

Note
Return Material Authorization (RMA) capability for CSP 2100 is not supported when in use with NFVIS.
Cisco UCS E-Series Server Modules

The Cisco UCS E-Series Servers (E-Series Servers) are the next generation of Cisco UCS Express servers. E-Series Servers are a family of size, weight, and power efficient blade servers that are housed within the Generation 2 Cisco Integrated Services Routers (ISR G2), Cisco 4400, and Cisco 4300 Series Integrated Services Routers. These servers provide a general-purpose compute platform for branch office applications deployed either as bare metal on operating systems, such as Microsoft Windows or Linux; or as virtual machines on hypervisors.

Supported VMs

Currently, the following Cisco supplied VMs and third party VMs are supported:

- Cisco ISRv
- Cisco Adaptive Security Virtual Appliance (ASAv)
- Cisco Virtual Wide Area Application Services (vWAAS)
- Linux Server VM
- Windows Server 2012 VM

Key Tasks You can Perform Using Cisco Enterprise NFVIS

- Perform VM image registration and deployment
- Create new networks and bridges, and assign ports to bridges
- Create custom flavors—a flavor is the customized profile of the VM image
- Perform service chaining of VMs
- Perform VM operations
- Verify system information including CPU, port, memory, and disk statistics

The APIs for performing these tasks are explained in the API Reference for Cisco Enterprise NFVIS.

Note

From a Cisco Enterprise NFVIS command-line interface, you can connect to another server and VMs remotely using the SSH client.
CHAPTER 2

Installing Cisco Enterprise NFVIS Using the KVM Console

- Installation Prerequisites, on page 5
- Image Signing and Verification, on page 6
- Entering BIOS Setup, on page 7
- Installing Cisco Enterprise NFVIS on the Cisco UCS C220 M4 Rack Server or Cisco CSP 2100, on page 7
- Installing Cisco Enterprise NFVIS on Cisco UCS E-Series Servers, on page 8
- Installing Cisco Enterprise NFVIS on a Cisco ENCS 5100 and 5400, on page 12

Installation Prerequisites

Ensure that the following prerequisites are met:

- The IP address is configured for Cisco Integrated Management Controller (CIMC) as well as a login account with administrative privileges.
- The login account is set up with administrative privileges.
- The installation media for Cisco Enterprise NFVIS has an ISO image.
- The IP address of the system (required for remote access) is available.
- Hyper-threading is enabled in BIOS. By default, hyper-threading is enabled in BIOS on the UCS-C, UCS-E and ENCS platforms.

Note

The installation steps are slightly different for Cisco UCS and Cisco ENCS platforms. See the following sections for details:

Installing Cisco Enterprise NFVIS on the Cisco UCS C220 M4 Rack Server or Cisco CSP 2100, on page 7
Installing Cisco Enterprise NFVIS on Cisco UCS E-Series Servers, on page 8
Installing Cisco Enterprise NFVIS on a Cisco ENCS 5100 and 5400, on page 12
Assumptions

- The user is familiar with the supported hardware device, CIMC, Cisco Network Plug and Play, and Cisco Application Policy Infrastructure Controller Enterprise Module (APIC-EM).
- The initial setup of the hardware device is complete, and the device is ready for loading Cisco Enterprise NFVIS.
- The user is familiar with general Linux installation.

For more details on the supported hardware devices, see respective documentation available on Cisco.com.

Image Signing and Verification

Cisco Enterprise NFVIS supports RPM signing and signature verification for all RPM packages in the ISO and upgrade images. You can also verify the integrity of the Cisco Enterprise NFVIS ISO and upgrade images.

RPM Signing

All RPM packages in the Cisco Enterprise NFVIS ISO and upgrade images are signed to ensure cryptographic integrity and authenticity. This guarantees that the RPM packages have not been tampered with and the RPM packages are from Cisco Enterprise NFVIS. The private key, used for signing the RPM packages, is created and securely maintained by Cisco.

RPM Signature Verification

Cisco Enterprise NFVIS verifies all RPM packages during installation or upgrade. The following table describes the Cisco Enterprise NFVIS behavior when the signature verification fails during installation or upgrade.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Enterprise NFVIS 3.7.1 installation</td>
<td>If the signature verification fails while installing Cisco Enterprise NFVIS, the installation is aborted.</td>
</tr>
<tr>
<td>Cisco Enterprise NFVIS upgrade from 3.6.x to Release 3.7.1</td>
<td>The RPM signatures are verified when the upgrade is being performed. If the signature verification fails, an error is logged but the upgrade is completed.</td>
</tr>
<tr>
<td>Cisco Enterprise NFVIS upgrade from Release 3.7.1 to later releases</td>
<td>The RPM signatures are verified when the upgrade image is registered. If the signature verification fails, the upgrade is aborted.</td>
</tr>
</tbody>
</table>

Image Integrity Verification Using sha256sum

RPM signing and signature verification can be done only for the RPM packages available in the Cisco NFVIS ISO and upgrade images. To ensure the integrity of all additional non-RPM files available in the Cisco NFVIS ISO image, a hash of the Cisco NFVIS ISO image is published along with the image. Similarly, a hash of the Cisco NFVIS upgrade image is published along with the image. To verify that the hash of Cisco NFVIS ISO image or upgrade image matches the hash published by Cisco, run the following command and compare the hash with the published hash:
Entering BIOS Setup

This section applies only to ENCS 5400 and UCS-E series routers.

When you enter the BIOS setup for the first time, ensure that you secure the BIOS by setting up an admin-level and a user-level password. You have to set up the admin password when you access the BIOS menu for the first time. The user password (which only gives access to a small subset of BIOS options) must be set inside the BIOS setup menu.

To set up the admin password, press F2 when the system boots up. You will be prompted to set the password.

To set up the user password, after you log in, go to the ‘Security’ tab and set the password.

Installing Cisco Enterprise NFVIS on the Cisco UCS C220 M4 Rack Server or Cisco CSP 2100

This section provides information about a series of tasks you need to perform to install Cisco Enterprise NFVIS on a Cisco UCS C220 M4 Rack Server or Cisco CSP 2100.

Logging Into the CIMC GUI

Before you begin

- Make sure that you have configured the IP address to access CIMC.
- If not installed, install Adobe Flash Player 10 or later on your local system.

For details on how to configure an IP address for CIMC, see the Set up CIMC for UCS C-Series Server guide on cisco.com.

Step 1 In your web browser, enter the IP address that you configured to access CIMC during initial setup.

Step 2 If a security dialog box displays, do the following:
 a) Optional: Select the check box to accept all content from Cisco.
 b) Click Yes to accept the certificate and continue.

Step 3 In the log in window, enter your username and password.

 When logging in for the first time to an unconfigured system, use admin as the username and password as the password.

Step 4 Click Log In.

 The Change Password dialog box only appears the first time you log into CIMC.
Activating a Virtual Device

Step 5 Change the password as appropriate and save.
The CIMC home page is displayed.

Activating a Virtual Device

You will have to launch the KVM Console to activate virtual devices.

Before you begin

Ensure that you have the Java 1.6.0_14 or a higher version installed on your local system.

Step 1 Download the Cisco Enterprise NFVIS image from a prescribed location to your local system.
Step 2 From CIMC, select the Server tab, and click Launch KVM Console.

Note A JNLP file will be downloaded to your system. You must open the file immediately after it is downloaded to avoid the session timeout.

Step 3 Open the renamed .jnlp file. When it prompts you to download Cisco Virtual KVM Console, click Yes. Ignore all security warnings and continue with the launch.
The KVM Console is displayed.

Step 4 From the Virtual Media menu on the KVM Console, select Activate Virtual Devices.
If prompted with an unencrypted virtual media session message, select Accept this session, and click Apply. The virtual devices are activated now.

Mapping the Cisco Enterprise NFVIS Image

Step 1 From the Virtual Media menu on the KVM Console, select Map CD/DVD....
Step 2 Browse for the installation file (ISO) on your local system, and select it.
Step 3 Click Map Device.
The ISO image file is now mapped to the CD/DVD.

Installing Cisco Enterprise NFVIS on Cisco UCS E-Series Servers

Before you begin

- Configure the UCS E interface on the Cisco ISR router.
- Configure the Gigabit Ethernet interface on the Cisco ISR router.
• Ensure that you have the IP address configured for CIMC access as well as a login account with administrative privileges.

• Ensure that the Cisco UCS E server has one of the following supported firmware versions or above:

 • BIOS UCSED.2.5.0.3 or later for UCS-E160D-M2/K9 and UCS-E180D-M2/K9

 • BIOS UCSES.1.5.0.5 or later for UCS-E140S-M2/K9

For more details on how to perform the basic configuration on the Cisco ISR routers, see the following guides:

• Sample Configuration on the Cisco ISR Router to Bring Up a Cisco UCS E Server, on page 10

• Getting Started Guide for Cisco UCS E-Series Servers, Release 1.0(2) Installed in the Cisco ISR 4451-X

For details on how to configure an IP address for CIMC, see the Getting Started Guide for Cisco UCS E-Series Servers, Release 1.0 on cisco.com.

Step 1

Log into CIMC.

For details, see Logging Into the CIMC GUI, on page 7

Step 2

From the **Server** tab, click **Launch KVM Console**.

The KVM Console opens in a separate window.

Step 3

From the KVM console, click the **Virtual Media** tab.

Step 4

In the **Virtual Media** tab, map the virtual media using either of the following methods:

a) Select the **Mapped** check box for the CD/DVD drive containing the operating system.

b) Click **Add Image**, browse, and select the Cisco Enterprise NFVIS ISO image, click **Open** to mount the image, and then select the **Mapped** check box for the mounted image.

You must keep the **Virtual Media** tab open during the installation process. Closing the tab unmaps all virtual media.

Step 5

From the **Server** tab, select **BIOS**.

Step 6

From the **BIOS Actions** area, select **Configure Boot Order**.

The **Configure Boot Order** dialog box appears.

Step 7

From the **Device Types** area, select **CD/DVD Linux Virtual CD/DVD**, and then click **Add**.

Step 8

Select **HDD PCI RAID Adapter**, and then click **Add**.

Step 9

Set the boot order sequence using the **Up** and **Down** options. The **CD/DVD Linux Virtual CD/DVD** boot order option must be the first choice.

Step 10

Click **Apply** to complete the boot order setup.

Step 11

Reboot the server by selecting the **Power Off Server** option from the **Server Summary** page in CIMC.

Step 12

After the server is down, select the **Power On Server** option in CIMC.

When the server reboots, the KVM console will automatically install Cisco Enterprise NFVIS from the virtual CD/DVD drive. The entire installation might take 30 minutes to one hour to complete.

Step 13

After the installation is complete, the system is automatically rebooted from the hard drive. Log into the system when the command prompt changes from "localhost" to "nfvis" after the reboot.

Wait for some time for the system to automatically change the command prompt. If it does not change automatically, press **Enter** to manually change the command prompt from "localhost" to "nfvis". Use **admin** as the login name and **Admin123#** as the default password.
You can verify the installation using the System API or by viewing the system information from the Cisco Enterprise NFV portal.

What to do next

You can verify the default configuration, and set up initial IP configuration to launch the Cisco Enterprise NFV portal. For details, see Setting Up System Configuration.

Sample Configuration on the Cisco ISR Router to Bring Up a Cisco UCS E Server

The following sample configuration shows the basic configuration performed on the Cisco ISR 4451 router with DHCP enabled.

```
Last configuration change at 02:36:37 UTC Thu Feb 18 2016
!
version 15.5
service timestamps debug datetime msec
service timestamps log datetime msec
no platform punt-keepalive disable-kernel-core
!
hostname NFVIS-ISR4451
!
boot-start-marker
boot system bootflash:isr4300-universalk9.03.16.01a.S.155-3.S1a-ext.SPA.bin
boot-end-marker
!
!
no aaa new-model
!
!
!
ip domain name cisco.com
!
!
subscriber templating
!
multilink bundle-name authenticated
!
```
license udi pid ISR4331/K9 sn FDO192207MN
!
ucse subslot 1/0
 imc access-port shared-lom console
 imc ip address 172.19.183.172 255.255.255.0 default-gateway 172.19.183.1
 spanning-tree extend system-id
 redundancy
 mode none
 !
 !
 vlan internal allocation policy ascending
 !
 !
interface GigabitEthernet0/0/0
 ip address 172.19.183.171 255.255.255.0
 media-type rj45
 negotiation auto
 !
interface GigabitEthernet0/0/1
 no ip address
 shutdown
 negotiation auto
 !
interface GigabitEthernet0/0/2
 no ip address
 shutdown
 negotiation auto
 !
interface ucse1/0/0
 ip unnumbered GigabitEthernet0/0/0
 negotiation auto
 switchport mode trunk
 no mop enabled
 no mop sysid
 !
interface ucse1/0/1
 no ip address
 no negotiation auto
 switchport mode trunk
 no mop enabled
 no mop sysid
 !
interface GigabitEthernet0
 vrf forwarding Mgmt-intf
 no ip address
 shutdown
 negotiation auto
 !
interface Vlan1
 no ip address
 shutdown
 !
ip default-gateway 172.19.183.1
ip forward-protocol nd
no ip http server
no ip http secure-server
ip tftp source-interface GigabitEthernet0
ip route 0.0.0.0 0.0.0.0 172.19.183.1
ip route 172.19.183.172 255.255.255.255 ucse1/0/0
ip ssh version 2
!
!
control-plane
!
!
line con 0
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 password lab
login local
 transport input all
 transport output all
!
end

Installing Cisco Enterprise NFVIS on a Cisco ENCS 5100 and 5400

Note
Software or hardware RAID controller setup is not supported with Cisco ENCS in Cisco Enterprise NFVIS Release 3.5.1.

Before you begin
- Make sure that you have configured the IP address to access CIMC.
- If not installed, install Adobe Flash Player 10 or later on your local machine.

For details on how to configure an IP address for CIMC, see the Set up CIMC for UCS C-Series Server and Getting Started Guide for Cisco UCS E-Series Servers and the Cisco UCS E-Series Network Compute Engine on cisco.com.

Step 1
In your web browser, enter the IP address that you configured to access CIMC during initial setup.

Step 2
If a security dialog box displays, do the following:
 a) Optional: Select the check box to accept all content from Cisco.
 b) Click Yes to accept the certificate and continue.

Step 3
In the Log in window, enter your username and password.
When logging in for the first time to an unconfigured system, use admin as the username and password as the password.

Step 4
Click Log In.
The Change Password dialog box only appears the first time you log into CIMC.
Installing Cisco Enterprise NFVIS on a Cisco ENCS 5104

Step 1 Create bootable usb with NFVIS image.

Installing Cisco Enterprise NFVIS Using the KVM Console

Step 5 Change the password as appropriate and save.
The CIMC home page is displayed.

Step 6 From the CIMC Server tab, select Summary, and click Launch KVM Console.
The KVM Console opens in a separate window.

Step 7 From the Virtual Media menu on the KVM Console, select Activate Virtual Devices.
If prompted with an unencrypted virtual media session message, select Accept this session, and click Apply. The virtual devices are activated now.

Step 8 From the Virtual Media menu on the KVM Console, select Map CD/DVD.

Step 9 Browse for the installation file (ISO) on your local system, and select it.

Step 10 Click Map Device.
The ISO image file is now mapped to the CD/DVD.

Step 11 From the CIMC Server tab, select BIOS.

Step 12 From the BIOS Actions area, select Configure Boot Order.
The Configure Boot Order dialog box appears.

Step 13 From the Device Types area, select CD/DVD Linux Virtual CD/DVD, and then click Add.

Step 14 Select HDD, and then click Add.

Step 15 Set the boot order sequence using the Up and Down options. The CD/DVD Linux Virtual CD/DVD boot order option must be the first choice.

Step 16 Click Apply to complete the boot order setup.

Step 17 Reboot the server by selecting the Power Off Server option from the Server Summary page in CIMC.

Step 18 After the server is down, select the Power On Server option in CIMC.

When the server reboots, the KVM console will automatically install Cisco Enterprise NFVIS from the virtual CD/DVD drive. The entire installation might take 30 minutes to one hour to complete.

Step 19 After the installation is complete, the system is automatically rebooted from the hard drive. Log into the system when the command prompt changes from "localhost" to "nfvis" after the reboot.

Wait for some time for the system to automatically change the command prompt. If it does not change automatically, press Enter to manually change the command prompt from "localhost" to "nfvis". Use admin as the login name and Admin123# as the default password.

Note The system prompts you to change the default password at the first login. You must set a strong password as per the on-screen instructions to proceed with the application. You cannot run API commands or proceed with any tasks unless you change the default password at the first login. API will return 401 unauthorized error if the default password is not reset.

Step 20 You can verify the installation using the System API or by viewing the system information from the Cisco Enterprise NFVIS portal.
In this example, we used rufus utility in Windows environment. Rufus utility can be downloaded https://rufus.akeo.ie/.

For this example, following parameters were used to burn bootable NFVIS USB device:

- Device: USB stick
- Partition scheme: MBR
- Filesystem: FAT32
- Cluster size: use default
- Volume label: use default
- Quick format: checked
- Create bootable: select "ISO Image" and click next icon then choose NFVIS image.
- Create extended label: checked

Press Start and wait for completion.

Eject USB thumb drive

Step 2 Insert USB device in one of USB slot in ENCS5104.

Step 3 Power on system.

Step 4 During system boot up, press F6 key.

Press or <F2> to enter setup, <F6> Boot Menu, <F12> Network Boot in 5 seconds or press any key to continue.

Step 5 Once you press F6, you will see the following screenshot to select which device you want to boot from. Select your USB device.

In the following screenshot example, there is STEC USB being used. That display will vary depending on your usb device vendor. Use the arrow key to select that device.
Step 6 Wait until installation is completed. System will be rebooted once installation is done.

Step 7 Log into the system with username admin and Admin123# as a default password

Step 8 You will be prompted and asked to change password at the first login. You must set a strong password per the on-screen instruction to proceed.

Step 9 You can verify the installation status using the System API or command line interface per the NFVIS user guide.

What to do next

You can verify the default configuration, and set up initial IP configuration to launch the Cisco Enterprise NFV portal. For details, see Setting Up System Configuration.
CHAPTER 3

Setting Up System Configuration

- Default System Configuration on the Cisco ENCS, on page 17
- Default System Configuration on the Cisco UCS C220 M4 Server and Cisco CSP 2100, on page 19
- Default System Configuration on the Cisco UCS E-Series Servers, on page 20
- Setting Up Initial Configuration, on page 20
- User Roles and Authentication, on page 28
- Configuring the IP Receive ACL, on page 32
- Configuring Your Banner and Message of the Day, on page 33
- Setting the System Time Manually or With NTP, on page 34
- Enabling or Disabling the Portal Access, on page 35
- Configuring System Logs, on page 36
- Network File System Support, on page 37
- Secure Boot of host, on page 38
- CIMC Control, on page 39
- DPDK Support on NFVIS, on page 40
- Import and Export NFVIS VM, on page 44
- Backup and Restore NFVIS and VM Configurations, on page 45
- Dynamic SR-IOV, on page 47

Default System Configuration on the Cisco ENCS

The diagram below illustrates the default network configuration of Cisco Enterprise NFVIS with the Cisco ENCS.
• LAN ports—Eight physical Gigabit Ethernet ports for inbound and outbound traffic.
• WAN port—You can use one of the dual media Ethernet ports (wan-br and wan2-br) for DHCP connection.
• Bridges—They form a Layer 2 domain between virtual network interface controllers (vNICs) of VMs. A vNIC is used by a virtual machine to provide virtual network interfaces by defining a range of MAC addresses. The default management IP address (192.168.1.1) for the NFVIS host is configured on the management port. Multiple VMs can use the same LAN port for local connectivity.
• Network—It is a segment Layer 2 bridge domain where only the specific VLAN traffic is allowed.

• Reserved VLANs in the LAN network on the ENCS 5400 platform—The VLAN range 2350-2449 is reserved for internal use and should not be used on the external switch ports and for virtual machines in the LAN ports”. Note that this limitation doesn't apply to the WAN ports.

• Internal 192.168.10.00/24 and 192.168.50.0/24 networks—The IP subnet 192.168.10.0/24 and 192.168.50.0/24 are used for the ENCS-5400 internal networks. A user should not use this IP subnet on the NFVIS management network. In the future NFVIS releases, this internal subnet will be isolated so that users can use this for NFVIS management.

Note

The following networks and bridges are automatically configured. You can configure more as required.

- A LAN network (lan-net) and a LAN bridge (lan-br)
- A WAN network (wan-net) and a WAN bridge (wan-br)

wan2-net and wan2-br are the default configurations for ENCS 5400 and ENCS 5100.

The default networks and bridges cannot be deleted.

Default System Configuration on the Cisco UCS C220 M4 Server and Cisco CSP 2100

Configuring the networks in Cisco Enterprise NFVIS allows inbound and outbound traffic and VMs to be service chained. The following diagram illustrates the default network configuration:

Figure 3: Default Network Configuration with Cisco UCS C220 M4 and Cisco CSP 2100

The following networks and bridges are created by default, and cannot be deleted. You can configure more as required.

- A LAN network (lan-net) and a LAN bridge (lan-br)—The default static management IP address (192.168.1.1) for the NFVIS host is configured on the LAN bridge. All other ports for inbound and outbound traffic are associated with the LAN bridge. Any LAN port can be used to access the default static IP address. By default, the hostname is set to "nfvis".
• A WAN network (wan-net) and a WAN bridge (wan-br)—This is created with the "eth0" port, and is configured to enable the DHCP connection.

By default, the first port on the device is associated with the WAN bridge. All the other ports on the device are associated with the LAN bridge.

For more details about the initial setup, see the Installing the Server chapter in the Cisco UCS C220 M4 Server Installation and Service Guide or Cisco Cloud Services Platform 2100 Hardware Installation Guide.

Default System Configuration on the Cisco UCS E-Series Servers

Figure 4: Default Network Configuration with a Cisco UCS E-Series Server

The following networks and bridges are created by default, and cannot be deleted. You can configure more as required.

• A LAN network (lan-net) and a LAN bridge (lan-br)—The default static management IP address (192.168.1.1) for the NFVIS host is configured on the LAN bridge. All other ports for inbound and outbound traffic are associated with the LAN bridge. By default, the hostname is set to "nfvis".

• A WAN network (wan-net) and a WAN bridge (wan-br)—The physical WAN ports are on the Cisco ISR module. They are not externally available on the Cisco UCS E server. The WAN traffic comes from the ISR WAN ports, and goes through the backplane to the Cisco UCS-E server. The backplane has one internal WAN interface (GE0) to establish connection with the Cisco UCS-E server. By default, the "GE0" interface is enabled for the DHCP connection.

For more details on the initial setup, see the Getting Started Guide for Cisco UCS E-Series Servers and the Cisco UCS E-Series Network Compute Engine.

Setting Up Initial Configuration

For initial login, use admin as the default user name, and Admin123# as the default password. Immediately after the initial login, the system prompts you to change the default password. You must set a strong password as per the on-screen instructions to proceed with the application. All other operations are blocked until default password is changed. API will return 401 unauthorized error if the default password is not reset.
If wan-br and wan2-br has not obtained IP addresses through DHCP, the zero touch deployment is terminated. To manually apply the IP configurations answer 'y' and the system proceeds with dhclient on wan-br until the configurations are changed. For dhclient to continue to request IP address for PnP flow on both WAN interfaces answer 'n'.

You must follow the rules to create a strong password:

- Must contain at least one upper case and one lower case letter.
- Must contain at least one number and one special character (# _ - * ?).
- Must contain seven characters or greater. Length should be between 7 and 128 characters.

You can change the default password in three ways:

- Using the Cisco Enterprise NFVIS portal.
- Using the CLI—When you first log into Cisco Enterprise NFVIS through SSH, the system will prompt you to change the password.
- Using PnP (for details, see the Cisco Network Plug-n-Play Support, on page 49).
- Using console - After the initial login using the default password, you are prompted to change the default password.
To commit the target configuration to the active (running) configuration, use the `commit` command in any configuration mode in Cisco Enterprise NFVIS Release 3.5.1 and later. Changes made during a configuration session are inactive until the `commit` command is entered. By default, the commit operation is pseudo-atomic, meaning that all changes must succeed for the entire commit operation to succeed.

Connecting to the System

Using IPv4

The three interfaces that connect the user to the system are the WAN and WAN2 interfaces and the management interface. By default, the WAN interface has the DHCP configuration and the management interface is configured with the static IP address 192.168.1.1. If the system has a DHCP server connected to the WAN interface, the WAN interface will receive the IP address from this server. You can use this IP address to connect to the system.

You can connect to the server locally (with an Ethernet cable) using the static management IP address; to connect to the box remotely using a static IP address, the default gateway needs to be configured.

You can connect to the system in the following three ways:

- **Using the local portal**—After the initial login, you are prompted to change the default password.
- **Using the KVM console**—After the initial login using the default password, you are prompted to change the default password.
- **Using PnP**—After the initial provisioning through PnP, the configuration file pushed by the PNP server must include the new password for the default user (admin).

Using IPv6

IPv6 can be configured in static, DHCP stateful and Stateless Autoconfiguration (SLAAC) mode. By default, DHCP IPv6 stateful is configured on the WAN interface. If DHCP stateful is not enabled on the network, the router advertisement (RA) flag decides which state the network stays in. If the RA shows Managed (M) flag, then the network stays in DHCP mode, even if there is no DHCP server in the network. If the RA shows Other (O) flag, then the network switches from DHCP server to SLAAC mode.

SLAAC provides ipv6 address and default gateway. Stateless dhcp is enabled in the SLAAC mode. If the server has dns and domain configured, then SLAAC also provides those values via stateless dhcp.

Performing Static Configuration without DHCP

Starting from NFVIS 3.10.1 release, for ENCS 5400 and ENCS 5100, wan2-br obtains an IP address from DHCP. To configure default gateway, first use `no bridges bridge wan2-br dhcp` command.

If you want to disable DHCP and use static configuration, initial configuration is done by setting the WAN IP address and/or management IP address, and the default gateway. You can also configure a static IP on a created bridge.

To perform initial configuration on the system without using DHCP:

```
configure terminal
```
When an interface is configured with a static IP address, DHCP is automatically disabled on that interface.

Now you can either use the management IP or WAN IP to access the portal.

To configure static IPv6 on the WAN interface:

```
configure terminal
system settings mgmt ipv6 address 2001:DB8:1:1::72/64
bridges bridge wan-br ipv6 address 2001:DB8:1:1::75/64
system settings default-gw-ipv6 2001:DB8:1:1::76
commit
```

When an interface is configured with a static IPv6 address, DHCP IPv6 is automatically disabled on that interface. There are three options for IPv6 - static, DHCP and SLAAC, out of which only one can be enabled at a time.

Configuring DHCP on the WAN or Management Interface

Starting from NFVIS 3.10.1, you can configure DHCP on any bridge. You can only have one DHCP bridge or management interface active at a time, and cannot have DHCP and default gateway configured at the same time.

You can configure DHCP either on the WAN interface or the management interface; you cannot configure DHCP on both the interfaces simultaneously.

To configure DHCP on any one of the interfaces (WAN or management), delete the default gateway.

To configure DHCP on the management interface:

```
configure terminal
no system settings default-gw
system settings mgmt dhcp
commit
exit
hostaction mgmt-dhcp-renew
```

To configure DHCP IPv6 on the management interface:

```
configure terminal
no system settings default-gw-ipv6
system settings mgmt dhcp-ipv6
commit
exit
hostaction mgmt-dhcp-renew
```
To configure DHCP on the WAN interface:

```shell
configure terminal
no system settings default-gw
system settings wan dhcp
commit
exit
hostaction wan-dhcp-renew
```

Note
Starting from NFVIS 3.10.1, you can configure DHCP IPv6 on any bridge. You can only have one DHCP IPv6 bridge or management interface active at a time, and cannot have DHCP IPv6 and default gateway IPv6 or SLAAC IPv6 configured at the same time.

To configure DHCP IPv6 on the WAN interface:

```shell
configure terminal
no system settings default-gw-ipv6
system settings wan dhcp-ipv6
commit
exit
hostaction wan-dhcp-renew
```

Configuring SLAAC on the WAN or Management Interface

Note
Starting from NFVIS 3.10.1, you can configure SLAAC IPv6 on any bridge. You can only have one SLAAC IPv6 bridge or management interface active at a time, and cannot have SLAAC IPv6 and default gateway IPv6 or DHCP IPv6 configured at the same time.

To configure SLAAC IPv6 on the WAN interface:

```shell
configure terminal
system settings wan slaac-ipv6
commit
```

To configure SLAAC IPv6 on the management interface:

```shell
configure terminal
system settings mgmt slaac-ipv6
commit
```

Verifying Initial Configuration

The `show system settings-native` command is used to verify initial configuration. Use `show bridge-settings` and `show bridge-settings bridge_name` commands to verify the configuration for any bridge on the system.

Extract from the output of the `show system settings-native` command when both WAN and management interfaces have a static configuration:

```shell
system settings-native mgmt ip-info interface lan-br
system settings-native mgmt ip-info ipv4_address 192.168.1.2
system settings-native mgmt ip-info netmask 255.255.255.0
```
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
![Cisco Enterprise Network Function Virtualization Infrastructure Software Configuration Guide, Release 3.5.x](#)
Configuring VLAN for NFVIS Management Traffic

A VLAN is a method of creating independent logical networks within a physical network. VLAN tagging is the practice of inserting a VLAN ID into a packet header in order to identify which VLAN the packet belongs to.

You can configure a VLAN tag on the WAN bridge (wan-br) interface to isolate Cisco Enterprise NFVIS management traffic from VM traffic. You can also configure VLAN on any bridge on the system (wan2-br for ENCS5400 or ENCS 5100, and user-br for all systems)

By default, Wan bridge and LAN bridge are in trunk mode and allows all VLANs. When you configure native VLAN, you must also configure all the allowed VLANs at the same time. The native VLAN becomes the only allowed VLAN if you do not configure all the VLANs. If you want a network that allows only one VLAN, then create another network on top of wan-net and lan-net and make it access network.

Related APIs and Commands

<table>
<thead>
<tr>
<th>APIs</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>• /api/operational/system/settings-native</td>
<td>• system settings hostame</td>
</tr>
<tr>
<td>• /api/config/system/settings</td>
<td>• system settings default-gw</td>
</tr>
<tr>
<td>• /api/operational/bridge-settings</td>
<td>• system settings mgmt ip address</td>
</tr>
<tr>
<td>• /api/config/bridges/bridge/</td>
<td>• system settings mgmt dhcp</td>
</tr>
<tr>
<td></td>
<td>• system settings wan ip address</td>
</tr>
<tr>
<td></td>
<td>• system settings wan dhcp</td>
</tr>
<tr>
<td></td>
<td>• hostaction wan-dhcp-renew</td>
</tr>
<tr>
<td></td>
<td>• hostaction mgmt-dhcp-renew</td>
</tr>
<tr>
<td></td>
<td>• bridges bridge wan-br ip address</td>
</tr>
<tr>
<td></td>
<td>• bridges bridge wan-br dhcp</td>
</tr>
<tr>
<td></td>
<td>• bridges bridge wan2-br ip address</td>
</tr>
<tr>
<td></td>
<td>• bridges bridge wan2-br dhcp</td>
</tr>
<tr>
<td></td>
<td>• bridges bridge user-br ip address</td>
</tr>
<tr>
<td></td>
<td>• bridges bridge user-br dhcp</td>
</tr>
<tr>
<td></td>
<td>• hostaction bridge-dhcp-renew bridge wan-br</td>
</tr>
<tr>
<td></td>
<td>• hostaction bridge-dhcp-renew bridge wan2-br</td>
</tr>
<tr>
<td></td>
<td>• hostaction bridge-dhcp-renew bridge user-br</td>
</tr>
</tbody>
</table>
You cannot have the same VLAN configured for the NFVIS management and VM traffic.

For more details on the VLAN configuration, see the Understanding and Configuring VLANs module in the Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide.

To configure a VLAN:

```
configure terminal
bridges bridge wan-br vlan 120
commit
```

Verifying VLAN Configuration

Run the `show bridge-settings wan-br vlan` command to verify the VLAN configuration as shown below:

```
nfvis# show bridge-settings wan-br vlan
bridges bridge wan-br vlan 120
```

VLAN APIs and Commands

<table>
<thead>
<tr>
<th>VLAN APIs</th>
<th>VLAN Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>• /api/config/bridges/bridge/wan-br/vlan</td>
<td>• bridges bridge wan2-br vlan</td>
</tr>
<tr>
<td>• /api/config/bridges/bridge/wan2-br/vlan</td>
<td>• bridges bridge user-br vlan</td>
</tr>
<tr>
<td>• /api/config/bridges/bridge/user-br/vlan</td>
<td>• show bridge-settings wan-br vlan</td>
</tr>
<tr>
<td>• /api/operational/bridge-settings/bridge/wan-br/vlan</td>
<td>• show bridge-settings wan2-br vlan</td>
</tr>
<tr>
<td>• /api/operational/bridge-settings/bridge/wan2-br/vlan</td>
<td>• show bridge-settings user-br vlan</td>
</tr>
<tr>
<td>• /api/operational/bridge-settings/bridge/user-br/vlan</td>
<td>• show bridge-settings vlan</td>
</tr>
</tbody>
</table>

Configuring System Routes

In addition to the default routes in the system, you can configure additional system routes. This configuration is specifically useful when certain destinations are not reachable through the default routes.

While you can create a route just by providing the destination and prefix length, a valid route requires that you specify either a device or a gateway or both.

To configure additional system routes:

```
configure terminal
system routes route 209.165.201.1 dev lan-br
commit
```

Verifying the System Routes Configuration

To verify the system routes configuration, use the `show system routes` command as shown below:
User Roles and Authentication

Role based access enables the administrator to manage different levels of access to the system's compute, storage, database, and application services. It uses the access control concepts such as users, groups, and rules, which you can apply to individual API calls. You can also keep a log of all user activities.

Table 1: Supported User Roles and Privileges

<table>
<thead>
<tr>
<th>User Role</th>
<th>Privilege</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrators</td>
<td>Owns everything, can perform all tasks including changing of user roles, but cannot delete basic infrastructure. Admin's role cannot be changed; it is always "administrators".</td>
</tr>
<tr>
<td>Operators</td>
<td>Start and stop a VM, and view all information</td>
</tr>
<tr>
<td>Auditors</td>
<td>Read-only permission</td>
</tr>
</tbody>
</table>

Rules for User Passwords

The user passwords must meet the following requirements:

- Must have at least seven characters length or the minimum required length configured by the admin user.
- Must not have more than 128 characters.
- Must contain a digit.
- Must contain one of the following special characters: hash (#), underscore (_), hyphen (-), asterisk (*), and question mark (?).
- Must contain an uppercase character and a lowercase character.
- Must not be same as last five passwords.
Creating Users and Assigning Roles

The administrator can create users and define user roles as required. You can assign a user to a particular user group. For example, the user "test1" can be added to the user group "administrators".

All user groups are created by the system. You cannot create or modify a user group.

To create a user:

```config
configure terminal
rbac authentication users create-user name test1 password Test1_pass role administrators
commit
```

To delete a user:

```config
configure terminal
rbac authentication users delete-user name test1
commit
```

To change the password, use the `rbac authentication users user change-password` command in global configuration mode. To change the user role, use the `rbac authentication users user change-role` command in global configuration mode.

User Management APIs and Commands

<table>
<thead>
<tr>
<th>User Management APIs</th>
<th>User Management Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>• /api/operations/rbac/authentication/users</td>
<td>• rbac authentication users</td>
</tr>
<tr>
<td>/user/<user-name>/change-password</td>
<td>• rbac authentication users user change-password</td>
</tr>
<tr>
<td>• /api/operations/rbac/authentication/users/user</td>
<td>• rbac authentication users user change-role</td>
</tr>
<tr>
<td>/oper/change-role</td>
<td></td>
</tr>
<tr>
<td>• /api/config/rbac/authentication/users/user?deep</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Minimum Length for Passwords

The admin user can configure the minimum length required for passwords of all users. The minimum length must be between 7 to 128 characters. By default, the minimum length required for passwords is set to 7 characters.

```config
configure terminal
rbac authentication min-pwd-length 10
commit
```
Minimum Password Length APIs and Commands

<table>
<thead>
<tr>
<th>APIs</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>/api/config/rbac/authentication/</td>
<td>rbac authentication min-pwd-length</td>
</tr>
</tbody>
</table>

Configuring Password Lifetime

The admin user can configure minimum and maximum lifetime values for passwords of all users and enforce a rule to check these values. The default minimum lifetime value is set to 1 day and the default maximum lifetime value is set to 60 days.

When a minimum lifetime value is configured, the user cannot change the password until the specified number of days have passed. Similarly, when a maximum lifetime value is configured, a user must change the password before the specified number of days pass. If a user does not change the password and the specified number of days have passed, a notification is sent to the user.

Note: The minimum and maximum lifetime values and the rule to check for these values are not applied to the admin user.

configure terminal
rbac authentication password-lifetime enforce true min-days 2 max-days 30
commit

Password Lifetime APIs and Commands

<table>
<thead>
<tr>
<th>APIs</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>/api/config/rbac/authentication/password-lifetime/</td>
<td>rbac authentication password-lifetime</td>
</tr>
</tbody>
</table>

Deactivating Inactive User Accounts

The admin user can configure the number of days after which an unused user account is marked as inactive and enforce a rule to check the configured inactivity period. When marked as inactive, the user cannot login to the system. To allow the user to login to the system, the admin user can activate the user account by using the rbac authentication users user username activate command.

Note: The inactivity period and the rule to check the inactivity period are not applied to the admin user.

configure terminal
rbac authentication account-inactivity enforce true inactivity-days 2
commit
Deactivate Inactive User Accounts APIs and Commands

<table>
<thead>
<tr>
<th>APIs</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>/api/config/rbac/authentication/account-inactivity/</td>
<td>rbac authentication account-inactivity</td>
</tr>
</tbody>
</table>

Activating an Inactive User Account

The admin user can activate the account of an inactive user.

```
configure terminal
rbac authentication users user guest_user activate
commit
```

Activate Inactive User Account APIs and Commands

<table>
<thead>
<tr>
<th>APIs</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>/api/operations/rbac/authentication/users/user/username/activate</td>
<td>rbac authentication users user activate</td>
</tr>
</tbody>
</table>

Certification

Generate Sign-Request

```
fvvis(config)# system certificate signing-request ?
```

Possible completions:

- common-name
- country-code
- locality
- organization
- organization-unit-name
- state

The .csr file will be saved in /data/intdatastore/download/nfvis.csr

Use the scp command to download the file.

Install CA Sign Certificate

After CA sign in, the user needs to use the scp command to upload the file into nfvis.

```
fvvis(config)# system certificate install-cert path file:///<full path of the file>
```

The path needs to start with "file://"

Switch Certificate

```
fvvis(config)# system certificate use-cert cert-type ca-signed
```

nginx process restarts after the switch.
The users cannot access the log files. The log files are added to all the user actions and the user can download and view some of the logs from portal. A notification is generated when the log files reach 75% capacity.

Secure Copy Command

The secure copy (scp) command allows only the admin user to secure copy a file from the Cisco NFVIS to an external system or from an external system to Cisco NFVIS. The scp command is:

```
scp source destination
```

Note For detailed information about how to use the scp command to copy to or from supported locations, see the scp section in *Cisco Enterprise Network Function Virtualization Infrastructure Software Command Reference*.

Examples

The following example copies the sample.txt file from intdatastore to an external system.

```
nfvis# scp intdatastore:sample.txt user@203.0.113.2:/Users/user/Desktop/sample.txt
```

The following example copies the test.txt file from an external system to intdatastore.

```
nfvis# scp user@203.0.113.2:/Users/user/Desktop/test.txt intdatastore:test_file.txt
```

The following example copies the test.txt file from an external system to USB.

```
nfvis# scp user@203.0.113.2:/user/Desktop/my_test.txt usb:usb1/test.txt
```

The following example copies the sample.txt file to an NFS location.

```
nfvis# scp user@203.0.113.2:/user/Desktop/sample.txt nfs:nfs_test/sample.txt
```

The following example copies the sample.txt file from an external system with IPv6 address.

```
nfvis# scp user@[2001:DB8:0:ABCD::1]:/user/Desktop/sample.txt intdatastore:sample.txt
```

The following example copies the nfvis_scp.log file to an external system.

```
nfvis# scp logs:nfvis_scp.log user@203.0.113.2:/Users/user/Desktop/copied_nfvis_scp.log
```

Configuring the IP Receive ACL

To filter out unwanted traffic, you can configure ip-receive-acl to block or allow certain traffic based on the IP address and service ports.

To configure the source network for Access Control List (ACL) access to the management interface:

```
configure terminal
system setting ip-receive-acl 198.0.2.0/24
commit
```

Verifying the Trusted IP Connection

Use the `show running-config system settings ip-receive-ac` command to display the configured source network for ACL access to the management interface.
Port 22222 and Management Interface ACL

Management interface ACL provides the Access Control List (ACL) to restrict the traffic through the management interface for setting up different ACL of subnet inside a big subnet. From 3.7.1 release, port 22222 is closed by default on an NFVIS system.

To open port 22222:

```
configure terminal
system settings ip-receive-acl 0.0.0.0/0 service scpd priority 2 action accept
commit
```

Priority can be set to any number, as long as there is no other ACL that drops packets from same IP with lower priority number.

Use `no system settings ip-receive-acl` to close port 22222. When an entry is deleted from `ip-receive-acl`, all configurations to that source are deleted since the source IP address is the key. To delete one service, configure other services again.

From 3.8.1 release, only an admin user can use the `scp` command on this port to upload or download only from restricted folders like `/data/intdatastore/`.

Use the `show running-config system settings ip-receive-acl` command to verify the interface configuration:

```
nfvis# show running-config system settings ip-receive-acl
system settings ip-receive-acl 10.156.0.0/16
  service [ ssh https scpd ]
  action   accept
  priority 100
```

Configuring Your Banner and Message of the Day

Cisco Enterprise NFVIS supports two types of banners: system-defined and user-defined banners. You cannot edit or delete the system-defined banner, which provides copyright information about the application. Banners are displayed on the login page of the portal.
You can post messages using the Message of the Day option. The message is displayed on the portal's home page when you log into the portal.

To configure your banner and message:

```
configure terminal
banner-motd banner "This is a banner" motd "This is the message of the day"
commit
```

Note Currently, you can create banners and messages in English only. You can view the system-defined banner using the `show banner-motd` command. This command does not display the user-defined banner or message.

Banner and Message APIs and Commands

<table>
<thead>
<tr>
<th>Banner and Message APIs</th>
<th>Banner and Message Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>• /api/config/banner-motd</td>
<td>• banner-motd</td>
</tr>
<tr>
<td>• /api/operational/banner-motd</td>
<td>• show banner-motd</td>
</tr>
</tbody>
</table>

Setting the System Time Manually or With NTP

You can configure the Cisco Enterprise NFVIS system time manually or synchronise with an external time server using Network Time Protocol (NTP).

To set the system time manually:

```
configure terminal
system set-manual-time 2017-01-01T00:00:00
commit
```

Note NTP is automatically disabled when the time clock is set manually.

To set the system time using NTP IPv4:

```
configure terminal
system time ntp preferred_server 209.165.201.20 backup_server 1.ntp.esl.cisco.com
commit
```

To set the system time using NTP IPv6:

```
configure terminal
commit
```
Verifying the System Time Configuration

To verify all system time configuration details, use the `show system time` command in privileged EXEC mode as shown below:

```
nfvis# show system time
system time current-time 2017-01-01T17:35:39+00:00
system time current-timezone "UTC (UTC, +0000)"
```

<table>
<thead>
<tr>
<th>REMOTE</th>
<th>REFID</th>
<th>ST</th>
<th>T</th>
<th>WHEN</th>
<th>POLL</th>
<th>REACH</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset</td>
<td>JITTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*calo-timeserver .GPS. 1 u 4 64 1 69.423
2749736 0.000

* sys.peer and synced, o pps.peer, # selected, + candidate,
- outlyer, . excess, x falseticker, space reject

If the NTP server is invalid, it will not be displayed in the table. Also, when an NTP server is queried, if a response is not received before the timeout, the NTP server will also not be displayed in the table.

System Time APIs and Commands

<table>
<thead>
<tr>
<th>APIs</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>/api/operations/system/set-manual-time</td>
<td>system time</td>
</tr>
<tr>
<td>/api/config/system/time/ntp/preferred_server</td>
<td>show system time</td>
</tr>
<tr>
<td>/api/config/system/time/ntp/backup_server</td>
<td>system set-manual-time</td>
</tr>
<tr>
<td>/api/config/system/time/timezone</td>
<td></td>
</tr>
<tr>
<td>/api/operational/system/time?deep</td>
<td></td>
</tr>
</tbody>
</table>

Enabling or Disabling the Portal Access

The Cisco Enterprise NFVIS portal access is enabled by default. You can disable the access if required.

To disable the portal access:

```
configure terminal
system portal access disabled
commit
```

You can enable the portal access using the `enable` keyword with the `system portal access` command.
Verifying the Portal Access

Use the `show system portal status` command to verify the portal access status as shown below:

```
nfvis# show system portal status
system portal status "access disabled"
```

Portal Access APIs and Commands

<table>
<thead>
<tr>
<th>Portal Access APIs</th>
<th>Portal Access Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>• /api/config/system/portal</td>
<td>• system portal access</td>
</tr>
<tr>
<td>• /api/operational/system/portal/status</td>
<td>• show system portal status</td>
</tr>
</tbody>
</table>

Configuring System Logs

You can view system logs for troubleshooting purpose. There are two log types and five log levels. The two log types are configuration and operational.

The INFO and WARNING log levels are set by default respectively for the configuration and operational log types. You can change them as required. However, the change to the log level is not persisted across a reboot. After a reboot, the default log levels are used.

The following table explains the log levels:

<table>
<thead>
<tr>
<th>Log Level</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBUG</td>
<td>Information, typically of interest only when diagnosing problems.</td>
</tr>
<tr>
<td>INFO</td>
<td>Confirmation that things are working as expected.</td>
</tr>
<tr>
<td>WARNING</td>
<td>An indication that something unexpected happened, or indicative of some problem in the near future (for example, ‘disk space low’). The software application is still working as expected.</td>
</tr>
<tr>
<td>ERROR</td>
<td>Due to a serious problem, the software application is not able to perform some function.</td>
</tr>
<tr>
<td>CRITICAL</td>
<td>A serious error, indicating that the program itself may not be able to continue running.</td>
</tr>
</tbody>
</table>

You can configure system logs using the `system set-log` command in global configuration or privileged EXEC mode:

```
system set-log level error logtype configuration
```

Verifying the System Log Configuration

To verify the system log configuration, use the `show system logging-level` command as shown below:
The Network File System (NFS) is an application where the user can view, store and update the files on a remote device. NFS allows the user to mount all or a part of a file system on a server. NFS uses Remote Procedure Calls (RPC) to route requests between the users and servers.

NFS Mount and Unmount

To mount NFS:

```plaintext
configure terminal
system storage nfs_storage
nfs
100
10.29.173.131
/export/vm/amol
commit
```

To unmount NFS use `no system storage nfs_storage` command.

Image Registration on NFS

Images in tar.gz, ISO and qcow2 format, remote images and images on mounted NFS can be registered on NFS.

To register tar.gz images on NFS:

```plaintext
configure terminal
vm_lifecycle images image myas10 src file:///data/mount/nfs_storage/repository/asav961.tar.gz properties property placement value nfs_storage
commit
```

Similar configuration can be used for the various images formats.

To unregister an image from NFS use `no vm_lifecycle images` command.
Deploy VM on NFS

To deploy a VM on NFS, under deployment vm group use placement type zone_host host nfs_storage command.

Secure Boot of host

Note

This feature is supported only on ENCS 5400. Upgrade BIOS to version 2.6 for this feature. The secure boot feature is only available for release 3.9.1 fresh install.

The secure boot feature prevents malicious software applications and unauthorized operating systems from loading into the system during the system start up process. If secure boot feature is enabled, only the authorized software applications boots up from the device. Each device has keys that allow software with the correct signature to boot up on the device.

This feature ensures that the software applications that boot up on the device are certified by Cisco. The NFVIS 3.9.1 image is signed with Cisco key. If secure boot is enabled the signature is verified during the device boot up. If the verification fails, the image does not boot up.

Secure boot is disabled by default and to enable it you must change firmware configurations from CIMC. Secure boot needs to boot from a separate UEFI partition.

To enable secure boot:

1. Get into CIMC and use show bios detail command to view the BIOS version.

 ENCS# scope bios
 ENCS/bios # show detail
 BIOS:

 BIOS Version: "ENCS54_2.6 (Build Date: 07/12/2018)"
 Boot Order: EFI
 FW Update/Recovery Status: Done, OK
 Active BIOS on next reboot: main
 UEFI Secure Boot: disabled
 ENCS/bios #

2. enable secure boot.

 ENCS/bios # set secure-boot enable
 Setting Value : enable
 Commit Pending.
 ENCS/bios *# commit
 ENCS/bios # show detail
 BIOS:

 BIOS Version: "ENCS54_2.6 (Build Date: 07/12/2018)"
 Boot Order: EFI
 FW Update/Recovery Status: None, OK
 Active BIOS on next reboot: main
 UEFI Secure Boot: enabled
 ENCS/bios #

Legacy boot, UEFI boot and UEFI secure boot are the three boot modes. Secure boot can only be used on a disk that has UEFI partition.
You can configure boot order from CIMC command or portal or from BIOS setup menu. With CIMC you can only configure legacy boot order. BootOrderRules are by default set to Strict and so boot order follows the CIMC configuration. Since CIMC cannot be used to configure UEFI boot order, the BootOrderRules setting must be changed to Loose when secure boot is enabled.

If BootOrderRules is set to Loose, the boot order will follow the BIOS setup menu. When an operating system is installed in secure boot mode, the new UEFI boot option for the OS automatically appears at the top of the BIOS menu boot order list, to boot the installed operating system.

To set BootOrderRule to Loose:

```
ENCS/bios # scope advanced
ENCS/bios/advanced # set BootOrderRules Loose
ENCS/bios/advanced *# commit
Changes to BIOS set-up parameters will require a reboot.
Do you want to reboot the system?[y|N]y
```

CIMC Control

On ENCS 5400, NFVIS administrators have authoritative control of the device. This includes capability to change the IP address used to reach the CIMC and modifying the CIMC and BIOS passwords.

CIMC Access using NFVIS

Note

CIMC access using NFVIS is supported only on ENCS 5400.

When CIMC access is enabled on NFVIS, there is a potential risk of unauthorized ISRv to gain access to the host CIMC and switch management console. You must have authorization from CID or Consent token to gain root access.

To access CIMC using NFVIS WAN or management interface IP address, use the `system settings cimc-access enable` command. Once you configure CIMC access on NFVIS, the stand alone CIMC access using CIMC IP address is disabled and you will be able to access CIMC using NFVIS management interface IP address. The configurations remain on the device even after the device reboot.

When the CIMC access is configured, it enables a few ports to access services like SSH, SNMP, HTTP and HTTPS into the CIMC.

The following port numbers are being used for forwarding services to CIMC:

- 20226 for SNMP
- 20227 for SSH
- 20228 for HTTP
- 20229 for HTTPS

If you are unable to access CIMC using NFVIS, check the show log nfvis_config.log file.

Use `system settings cimc-access disable` to disable this feature.
BIOS-CIMC Update

Starting from 3.8.1 release, for ENCS 5400 router, if existing BIOS/CIMC version is lower than the bundled image in 3.8.1 NFVIS package, it is updated automatically during the NFVIS upgrade or installation. Also the CPU microcode is upgraded. The upgrade time takes longer than the previous releases and the upgrade will be done automatically, and you cannot stop the process once it is initiated.

For ENCS 5100 router, BIOS will be upgraded automatically to a new version but you need to boot up the server manually after the upgrade.

NFVIS Password Recovery

1. Load the NFVIS 3.9.1 image, using the CIMC KVM console.
2. Select Troubleshooting from the Boot Selection menu.
3. Select Rescue a NFVIS Password.
4. Select Continue.
5. Press Return to get a shell.
6. Run the `chroot /mnt/sysimage` command.
7. Run the `/nfvis_password_reset` command to reset the password to admin.
8. Confirm the change in password and enter Exit twice.
 Remove the CD-ROM and reboot NFVIS.
9. Login to NFVIS with the default credentials admin/Admin123#.
 After login to NFVIS, enter a new password at prompt.
10. Connect to NFVIS with the new password.

Note:
You can update and recover NFVIS 3.8.1 and older passwords using NFVIS 3.9.1.

DPDK Support on NFVIS

The Data Plane Development Kit (DPDK) is a set of data plane libraries and network interface controller drivers for fast packet processing.

DPDK Support for NFVIS 3.10.x

DPDK support is enabled only on ENCS 5400 from NFVIS 3.10.1 release. To enable DPDK use `system settings dpdk enable` command. Once DPDK is enabled it cannot be disabled. You can use `factory-default-reset all-except-images-connectivity` to disable DPDK.

To enable DPDK support:
configure terminal
system settings dpdk enable
commit

DPDK can be enabled if:

- No VMs are deployed.
- There are no other bridges created other than the default bridge which is wan-br, wan2-br or lan-br.
- The default bridges are not modified.

DPDK mode is enabled on a bridge, if the bridge is created as part of a network or bridge api without any NIC ports. NIC ports can also be added later to the bridge, if no VMs are deployed on the network associated to the bridge. If a NIC port is added to the bridge, the bridge will switch to non-dpdk mode. Once a bridge enters non-dpdk mode, it will not switch back to DPDK mode again. NFVIS supports DPDK for the interface with virtio driver only.

Note

NFVIS 3.10.x release does not support `tcpdump packetcapture` command on DPDK enabled bridge.

If DPDK is enabled, all VMs deployed will have DPDK and HugePage support. The default hugepage size is 2MB. After DPDK is enabled the system reserves 512 hugepages for Openvswitch operations. Hugepages for VM are allocated dynamically. If the system is not able to allocate HugePages for a newly deployed VM, the VM will boot up in error state. Memory Fragmentation is the main reason why HugePage allocation fails. In this case a reboot can help solve the issue.

Note

DPDK support is only enabled on the bridges without NIC ports.

For a system without Hyper-threading one additional core is reserved by the system and for a system with Hyper-threading two additional logical cores are reserved by the system.

NFVIS does not support changing Hyper-thread option such as disabling after DPDK is enabled with Hyper-thread. The system can be unstable if you change Hyper-thread setting after DPDK is enabled.

DPDK VM Migration for NFVIS 3.11.x

Enhancements to DPDK Support in NFVIS 3.12.x

Service Bridge DPDK Support for New Platforms

Starting from NFVIS 3.12.1 DPDK support is added for service bridges on UCS-C M5, UCS-E M3 and CSP 5000 series. Only the service bridge is supported and the default wan bridge and lan bridge do not support DPDK feature. DPDK is supported on service bridge with or without any pnic. The configuration for service bridge without any pnic is the same as ENCS platform on NFVIS 3.11.1 release, all service bridges will become dpdk-capable after DPDK is enabled. NFVIS system does not require reboot after DPDK is enabled.

DPDK and SR-IOV cannot co-exist on the pnic used for DPDK-capable bridge. The configuration for service bridge with pnic is as followed:
1. (Optional) If pnic ethX-Y is still attached to lan-br, remove it from lan-br.

```config
configure terminal
bridges bridge lan-br
no port ethX-Y
commit
```

2. Remove SR-IOV networks associated with ethX-Y (usually ethX-Y-SRIOV\(^*\)).

```config
configure terminal
no networks network ethX-Y-SRIOV-1
no networks network ethX-Y-SRIOV-2
...
commit
```

3. Disable ethX-Y SRIOV configuration.

```config
configure terminal
pnic ethX-Y
no sriov
nnumvf 0
commit
```

4. Create service bridge with port ethX-Y.

```config
configure terminal
bridges bridge service-br port ethX-Y
networks network service-net bridge service-br
commit
```

5. Enable system-wide DPDK setting.

```config
configure terminal
system settings dpdk enable
commit
```

Note

- You can also enable DPDK before creating service bridge with port ethX-Y.
- Except ENCS 5400 platform, all default bridges (lan-br, wan-br, wan-br2) does not enter DPDK-mode after DPDK is enabled system-wide.
- If you do not remove SR-IOV configuration from pnic ethX-Y, and ethX-Y is a port of service bridge, this service bridge cannot enter DPDK-mode after DPDK is enabled system-wide. If you have to use pnic ethX-Y in DPDK bridge, after removing SR-IOV configuration from ethX-Y, delete old bridge and create new bridge and attach ethX-Y to the new bridge.

Migration for VMs with PNIC associated to DPDK bridge

If DPDK is enabled, all VMs deployed will have DPDK and HugePage support. The default hugepage size is 2MB. After DPDK is enabled, the system will reserve additional 512–2048 contiguous hugepages for DPDK operations. Though hugepages for VM are allocated dynamically, it will cause memory fragmentation and the main reason DPDK enabling process will fail. In this case, a system reboot might help to solve the issue.
If the system can find enough hugepages for DPDK process, not only service bridges will enter DPDK-mode, all VMs’ vnic attached to those bridges will be migrated from virtio to dpdk type (dpdkvhostuserclient):

```
nfvis# support ovs vsctl show | begin service-br
  Bridge service-br
    Port "vnic2"
      Interface "vnic2"
        type: dpdkvhostuserclient
          options: {vhost-server-path="/run/vhostfd/vnic2"}
    Port service-br
      Interface service-br
        type: internal

nfvis# support virsh dumpxml ROUTER | begin interface | until serial
  <interface type='network'>
    <mac address='52:54:00:ae:14:57'/>
    <source network='wan-net'/>
    <target dev='vnic1'/>
    <model type='virtio'/>
      <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
  </interface>
  <interface type='vhostuser'>
    <mac address='52:54:00:3d:ee:1a'/>
    <source type='unix' path="/run/vhostfd/vnic2" mode='server'/>
    <target dev='vnic2'/>
    <model type='virtio'/>
      <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
  </interface>
```

DPDK and Factory Reset

The three commonly-used factory reset configurations disable DPDK.

<table>
<thead>
<tr>
<th>Factory-default-reset configuration</th>
<th>DPDK enabled</th>
<th>Networks kept</th>
<th>Deployment deleted</th>
<th>Registered image deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>all-except-images</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>all-except-images -connectivity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Frequently Seen Failures

- Error when DPDK is enabled.
 - When enabling DPDK, lack of system memory results in an error. Ensure that you have 4 GB contiguous HugePages to enable DPDK. You can also reboot the system.
 - DPDK requires one physical core from each socket. A multi-sockets system (like UCS-C or CSP) can encounter deployments that occupy all cores on one socket and DPDK can fail to enable. Power-off some VM (resource-locking VMs likes ISRv/ASA/vWAAS) and enable VM after DPDK is enabled successfully.
 - If the system is not able to allocate HugePages for a newly deployed VM, the VM will boot up in error state.
Import and Export NFVIS VM

Starting from NFVIS 3.10.1 release, you can backup or export (vmExportAction) and restore or import (vmImportAction) VMs. To backup or restore the whole NFVIS system, refer Backup and Restore NFVIS and VM Configurations.

VM Export and Import Limitations

• The imported VM cannot change datastore.
• The original registered image must exist.
• The OVS network name must be identical to the one used by original deployment.
• NFVIS does not check the disk space before exporting or importing a VM.
• The VM has larger disk footprint compared to original deployment after exporting or importing.

To export a VM ensure that:

• VM is in powered off state.
• Backup file is saved in any NFVIS datastores or USB.
• Provide a backup name for NFVIS to append .vmbkp extension to the backup name.

You can only create and save a VM backup to datastores. The backup file has .bkup extension. To verify the backup:

```
nfvis# show system file-list disk local | display xpath | include backup
/system/file-list/disk/local[si-no='84']/name tiny_backup.vmbkp
```

<table>
<thead>
<tr>
<th>SI NO</th>
<th>NAME</th>
<th>PATH</th>
<th>SIZE</th>
<th>TYPE</th>
<th>DATE MODIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>tiny_backup.vmbkp</td>
<td>/mnt/extdatastore1</td>
<td>17M</td>
<td>VM Backup Package</td>
<td>2019-01-31 19:31:32</td>
</tr>
</tbody>
</table>

To import a VM ensure that:

• The Backup file is placed under NFVIS datastores or USB.
• The registered image used by the original deployed VM is in the same datastore, with same properties.
• The Original deployed VM does not exist on the system.
• OVS network used by the original deployment should exist.
• Restored VM is created with the same datastore with same deployment properties.
• The full path name to backup file is used (for example, /mnt/extdatastore1/backup.vmbkp, not extdatastore1:backup)

```
nfvis# vmImportAction importPath /mnt/extdatastore1/tiny_backup.vmbkp
```

System message at 2019-01-31 19:53:32...
The following examples show export failures:

- Original deployment is not deleted.

```
nfvis# vmImportAction importPath /mnt/extdatastore1/tiny_backup.vmbkp
Error: Exception from action callback: Deployment Configuration :
'SystemAdminTenantIdtiny' already exists , can not be imported/restored due to conflict!
```

- 2. OVS network used by original deployment is deleted.

```
nfvis# vmImportAction importPath /mnt/extdatastore1/tiny_backup.vmbkp
Error: Exception from action callback: Restoration Request rejected, see logs for root cause
```

Backup and Restore NFVIS and VM Configurations

Starting from NFVIS 3.10.1 release, you can backup and restore NFVIS configurations and VMs. You can also restore a backup from one NFVIS device to another if they are running on the same version of NFVIS and have the same platform.

To backup or restore a single VM, use vmImportAction and vmBackupAction APIs.

To backup and save NFVIS and all VM configurations use configuration-only option. To backup and save VM disks, NFVIS and VM configurations use configuration-and-vms option.

You can only create a backup to datastore or uploads directory. The backup file has `.bkup` extension.

The following examples shows the backup options:

```
nfvis# hostaction backup configuration-and-vms file-path intdatastore:sample.bkup

nfvis# hostaction backup configuration-only file-path extdatastore2:sample-dir/sample.bkup
```

The following example shows the backup stored on a USB:

```
nfvis# hostaction backup configuration-only file-path usb:usb1/sample.bkup
```

Use `hostaction backup force-stop` command to stop the running backup.

To restore a previous backup on same NFVIS setup or on a new NFVIS setup use except-connectivity option which preserves connectivity of the NFVIS and restores everything else from backup.

```
nfvis# hostaction restore file-path intdatastore:sample.bkup
```

The following example shows how to restore a backup on a different NFVIS device:
Backup, Restore and Factory-Default-Reset

To restore the system after factory-default-reset using backup or restore, check:

- **Backup file location:**
 - The system backup bundle is saved under `/datastore/uploads/` by default.
 - Factory-default-reset cleans up all files under `/datastore/uploads/`, but leave files under `/datastore/` intact.
 - To restore the system from backup bundle after factory-default-reset, if the backup bundle is saved on any other location, the minimum requirement is to have a connection to the NFVIS to upload the backup bundle.

- **VM restoration if system backup contains VM backups:**
 - VM restoration requires the original image or template registered in NFVIS.
 - Factory-default-reset all clean ups all registered images and uploaded files. You need to configure minimum setup, like host connection and upload registered images to the same datastore.

To save backup bundle from factory-default-reset:

- **Save the backup bundle in remote locations.** Then restore the connectivity and upload the backup bundle after reset.

- **Save backup bundle in local `/datastore/` and not in `/datastore/uploads/`:**

```bash
# Backup & Restore on the same NFVIS box without NFS & USB
# [[ BACKUP ]]
# before executing factory-default-reset
nfvis# nfvis# hostaction backup configuration-only file-path extdatastore1:configBackup-01.bkup
nfvis# system file-copy source /mnt/extdatastore1/uploads/configBackup-01.bkup destination /mnt/extdatastore2/
# after factory-default-reset all-except-images or all-except-images-connectivity,
# file /mnt/extdatastore1/uploads/configBackup-01.bkup will be deleted
# but /mnt/extdatastore2/configBackup-01.bkup won't.
# [[RESTORE]]
# after NFVIS rebooted and login to console, copy file to uploads/ directory
nfvis# system file-copy source /mnt/extdatastore2/configBackup-01.bkup destination /mnt/extdatastore2/uploads/
nfvis# hostaction restore file-path extdatastore2:configBackup-01.bkup
```

For VM restoration:

- **Use all-except-images and all-except-images-connectivity to keep registered images intact.**
Dynamic SR-IOV

Dynamic SR-IOV allows you to enable or disable SR-IOV on a Physical Network Interface Controller (PNIC). You can disable SR-IOV on any PNIC to 0 and enable SR-IOV by setting a value between 1 to maximum virtual functions (maxvfs) supported on PNICs. You can also create and delete SR-IOV networks based on the number of virtual functions (numvfs) set on that PNIC while enabling SR-IOV. Existing fresh installation behavior has not changed. Each PNIC has default number of VFs created and Default SRIOV networks are created. User can use CLI, API or GUI to Enable/Disable SR-IOV on a PNIC or to Create/Delete SR-IOV networks.

Restrictions or Limitations

- The supported platforms are CSP-2100, CSP-5000, UCS-C220-M5X and UCS-E-M3.
- Dynamic SR-IOV is not supported on certain PNICs:
 - PNIC with driver i40e
 - PNIC that does not support SRIOV
- Only switch mode VEB is supported for NFVIS 3.12.1 release.
- Resizing the number of virtual functions is not supported. SR-IOV should be disabled and then enabled with desired number of virtual functions.

Disable SR-IOV on a PNIC

All SR-IOV networks for a PNIC must be deleted. PNIC should not be attached to a bridge.

```
configure terminal
no pnic eth0-1 sriov
commit
```

Enable SR-IOV on a PNIC

To enable SR-IOV on a PNIC, it has to support SR-IOV, numvfs field should be less than maximum supported VFs (maxvfs) on a PNIC and PNIC should not be attached to a bridge.

```
configure terminal
pnic eth0-1 sriov numvfs 20
commit
```

To display SR-IOV state of all PNICs use `show pnic sriov` command. To display SR-IOV state of individual PNIC use `show pnic eth0-1 sriov` command.
Creation of SR-IOV Networks

To create SR-IOV networks, PNIC must have SRIOV enabled and configured with numvfs. The SRIOV network name must have the following format: <pnic_name>-SRIOV-<num> with <pnic_name> as a valid PNIC name and <num> must be greater than 0 and less than numvfs.

To create SR-IOV network in trunk mode:

```bash
configure terminal
networks network eth0-1-SRIOV-1 sriov true
commit
```

To create SR-IOV network in access mode:

```bash
configure terminal
networks network eth0-1-SRIOV-1 sriov true trunk false vlan 30
commit
```

Delete SR-IOV Networks

To delete SR-IOV networks VM should not be attached to the network.

```bash
configure terminal
no networks network eth0-1-SRIOV-1
commit
```

To verify the system networks use `show system networks` command.
Cisco Network Plug-n-Play Support

Note

Starting from 3.10.1 release, NFVIS is integrated with PnP 1.8.

The Cisco Network Plug and Play (Cisco Network PnP) solution provides a simple, secure, unified, and integrated offering for enterprise network customers to ease new branch or campus device rollouts, or for provisioning updates to an existing network. The solution provides a unified approach to provision enterprise networks comprising Cisco routers, switches, and wireless devices with a near zero touch deployment experience. This solution uses Cisco Application Policy Infrastructure Controller Enterprise Module (APIC-EM) to centrally manage remote device deployments.

Currently, you can use the Cisco Network Plug and Play client to:

- Auto discover the server
- Provide device information to the server
- Bulk provisioning of user credentials

Bulk Provisioning of User Credentials

You can change the default username and password of the devices using the Cisco Network PnP client. The Cisco Network PnP server sends the configuration file to Cisco Network PnP clients residing on multiple devices in the network, and the new configuration is automatically applied to all the devices.

For bulk provisioning of user credentials, ensure that you have the necessary configuration file uploaded to the Cisco APIC-EM. The following are the supported configuration formats:

Sample Format 1

```xml
<config xmlns="http://tail-f.com/ns/config/1.0">
  <rbac xmlns="http://www.cisco.com/nfv/rbac">
    <authentication>
      <users>
        <user>
          <name>admin</name>
          <password>Cisco123#</password>
        </user>
      </users>
    </authentication>
  </rbac>
</config>
```
PnP Discovery Methods

When a device is powered on for the first time, the Cisco Network PnP agent discovery process, which is embedded in the device, wakes up in the absence of the startup configuration file, and discovers the IP address of the Cisco Network PnP server located in the Cisco APIC-EM. The Cisco Network PnP agent uses the following discovery methods:

- Static IP address—The IP address of the Cisco Network PnP server is specified using the `set pnp static ip-address` command.
- DHCP with option 43—The Cisco PnP agent automatically discovers the IP address of the Cisco Network PnP server specified in the DHCP option 43 string. For more details on how to configure DHCP for APIC-EM controller auto-discovery, see the Solution Guide for Cisco Network Plug and Play.
- Domain Name System (DNS) lookup—If DHCP discovery fails to get the IP address of the APIC-EM controller, for example, because option 43 is not configured, the Cisco Plug and Play Agent falls back on a DNS lookup method. Based on the network domain name returned by the DHCP server, it constructs a fully qualified domain name (FQDN) for the APIC-EM controller, using the preset hostname "pnpserver".

For more details on the Cisco Network PnP solution and how to upload a configuration file, see the Configuration Guide for Cisco Network Plug and Play on Cisco APIC-EM.

- PnP Discovery Methods, on page 50
- Configuring PnP Discovery Methods, on page 51
- PnP Action, on page 54

Sample Format 2

If you use format 2, the system will internally convert this format into format 1.

```
<aaa xmlns="http://tail-f.com/ns/aaa/1.1">
  <authentication>
    <users>
      <user>
        <name>admin</name>
        <password>User123#</password>
      </user>
    </users>
  </authentication>
</aaa>
```

For more information, see the Configuration Guide for Cisco Network Plug and Play on Cisco APIC-EM.
For more details on how to configure DNS for APIC-EM controller auto-discovery, see the Solution Guide for Cisco Network Plug and Play.

Note

DNS lookup method is not supported in 3.10.1 release.

- Cloud Redirection—This method uses the Cisco Cloud Device Redirect tool available in the Cisco Software Central. The Cisco Plug and Play Agent falls back on the Cloud Redirection method if DNS lookup is not successful.

Configuring PnP Discovery Methods

To enable static mode for PnP discovery using IPv4:

```bash
configure terminal
pnp automatic dhcp disable
pnp automatic dns disable
pnp automatic cco disable
pnp static ip-address 192.0.2.8 port 80
commit
```

To enable static mode for PnP discovery using IPv6:

```bash
configure terminal
pnp automatic dhcp-ipv6 disable
pnp automatic dns-ipv6 disable
pnp automatic cco-ipv6 disable
pnp static ipv6-address 192.0.2.8 port 80
commit
```

Note

Either IPv4 or IPv6 can be enabled at a time.

To enable static mode for PnP discovery using FQDN:

```bash
configure terminal
pnp static ip-address apic-em-fqdn.cisco.com port 80 transport http
commit
```

Note

In FQDN support for PnP, domain names can be specified as an input. FQDN that is configured with IPv6 on a DNS server is not supported.

To enable automatic mode for PnP discovery using IPv4:
By default, the automatic discovery mode for DHCP, DNS, and CCO is enabled. You can enable or disable the options as required. For example, you can enable all options or keep one enabled, and the rest disabled.

```
configure terminal
pnp automatic dhcp enable
pnp automatic dns enable
pnp automatic cco enable
pnp automatic timeout 100
commit
```

To enable automatic mode for PnP discovery using IPv6:

```
configure terminal
pnp automatic dhcp-ipv6 enable
pnp automatic dns-ipv6 enable
pnp automatic cco-ipv6 enable
pnp automatic timeout 30
commit
```

You cannot disable both static and automatic PnP discovery modes at the same time. You must restart PnP action every time you make changes to the PnP discovery configuration. You can do this using the `pnp action command restart`.

Verifying the PnP Status

Use the `show pnp` command in privileged EXEC mode to verify the configuration of PnP discovery methods. The following sample output shows that the static discovery mode is enabled, and the automatic discovery mode is disabled.

```
nfvis# show pnp
pnp status response "PnP Agent is running\n"
```

```
pnp status ip-address 192.0.2.8
pnp status port 80
```

```
pnp status transport ""
pnp status created_by user
pnp status dhcp_opt43 0
pnp status dns_discovery 0
pnp status cco_discovery 0
pnp status timeout 100
```

```
nfvis#
```

```
FcDN
nfvis# show pnp
pnp status response "PnP Agent is running\nservice-connection\n" status: Success\n time: 19:59:38 Feb 27\nbackoff\n status: Success\n time: 19:59:38 Feb 27\n"
pnp status ip-address apic-em-fqdn.cisco.com
pnp status ipv6-address ""
pnp status port 443
pnp status transport https
pnp status cafile /etc/pnp/certs/trustpoint/pnlabel
pnp status created_by user
pnp status dhcp_opt43 0
pnp status dns_discovery 0
```

Cisco Enterprise Network Function Virtualization Infrastructure Software Configuration Guide, Release 3.5.x
The following sample output shows that the static discovery mode is disabled, and the automatic discovery mode is enabled for DHCP, DNS, and CCO:

DHCP
```
nfvis# show pnp
pnp status response "PnP Agent is running\nccli-exec\nstatus: Success\ntime: 18:30:57 Apr 21\nsnserver-connection\nstatus: Success\ntime: 15:40:41 Apr 22\ncertificate-install\nstatus: Success\ntime: 18:31:03 Apr 21\ndevice-auth\nstatus: Success\ntime: 18:31:08 Apr 21\nbackoff\nstatus: Success\ntime: 15:40:41 Apr 22"
pnp status ip-address 192.0.2.8
pnp status port 443
pnp status transport https
pnp status cafile /etc/pnp/certs/trustpoint/pnplabel
pnp status created_by dhcp_discovery
pnp status dhcp_opt43 0
pnp status dns_discovery 0
pnp status cco_discovery 0
pnp status timeout 60
```
PnP Action

You can start, stop, and restart any PnP action using the PnP action command or API.

PnP Action API and Command

<table>
<thead>
<tr>
<th>PnP Action API</th>
<th>PnP Action Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>/api/operations/pnp/action</td>
<td>pnp action command</td>
</tr>
</tbody>
</table>
VM Life Cycle Management

VM life cycle management refers to the entire process of registering, deploying, updating, monitoring VMs, and getting them service chained as per your requirements. You can perform these tasks and more using a set of REST APIs or NETCONF commands or the Cisco Enterprise NFVIS portal.

VM Packaging Format

All VM images are available in the .tar.gz/qcow2/vmdk/img/iso format. All Cisco supplied VMs are available in the prescribed format. Vendors are responsible for packaging all third party VMs in the prescribed format.

- Workflow of VM Life Cycle Management, on page 55
- Uploading VM Images to an NFVIS Server, on page 57
- VM Bootstrap Configuration Options with a VMDeployment, on page 58
- OpenStack Configuration Drive Support for Third Party VMs, on page 59
- Performing Resource Verification, on page 60
- Configuring Management IP Address, on page 61
- VM States, on page 61

Workflow of VM Life Cycle Management

The following diagram depicts the basic workflow of the VM life cycle management using REST APIs:
1. **Register a VM Image**—To register a VM image, you must first copy or download the relevant VM image to the NFVIS server, or host the image on an http or https server. Once you have downloaded the file, you can register the image using the registration API. The registration API allows you to specify the file path to the location (on the http/https server) where the tar.gz file is hosted. Registering the image is a one-time activity. Once an image is registered on the http or https server, and is in active state, you can perform multiple VM deployments using the registered image.

2. **Customizing the Setup**—After registering a VM image, you can optionally create a custom profile or flavor for the VM image if the profiles defined in the image file do not match your requirement. The flavor creation option lets you provide specific profiling details for a VM image, such as the virtual CPU on which the VM will run, and the amount of virtual memory the VM will consume.

 Depending on the topology requirement, you can create additional networks and bridges to attach the VM to during deployment.

3. **Deploy a VM**—A VM can be deployed using the deployment API. The deployment API allows you to provide values to the parameters that are passed to the system during deployment. Depending on the VM you are deploying, some parameters are mandatory and others optional.

4. **Manage and Monitor a VM**—You can monitor a VM using APIs and commands that enable you to get the VM status and debug logs. Using VM management APIs, you can start, stop, or reboot a VM, and view statistics for a VM such as CPU usage.

 A VM can also be managed by changing or updating its profile. You can change a VM's profile to one of the existing profiles in the image file; alternatively, you can create a new custom profile for the VM. The vNICs on a VM can also be added or updated.
Before performing the VM life cycle management tasks, you will have to upload the VM images to the NFVIS server or http/s server.

For details on APIs, see the VM Lifecycle Management APIs chapter in the API Reference for Cisco Enterprise Network Function Virtualization Infrastructure Software.

Uploading VM Images to an NFVIS Server

You can upload VM images to an NFVIS server in the following ways. The files are copied to the default location (/data/intdatastore/uploads) on the host server.

- Copy the images from your local system to the NFVIS server—Use the Image Upload option from the Cisco Enterprise NFVIS portal.
- Copy the images using the USB drive—Ensure that you have plugged the USB drive that contains the required images into the server before mounting the USB drive.
- Copy using the `scp` command (`scp username@external_server:/path/image.tar.gz intdatastore:image.tar.gz`).

From 3.8.1 release, NFVIS supports deleting images while the download is in progress. NFVIS also supports resuming image download after a power outage or lost connectivity.

To copy an image using the USB device:

```
configure terminal
system usb-mount mount ACTIVE
system file-copy usb file name usb1/package/isrv-universalk9.16.03.01.tar.gz
commit
```

Use the `show system file-list disk usb` command in privileged EXEC mode to view a list of files available with the mounted USB drive. To save space, you can delete all unwanted text and TAR files from the default location using the `system file-delete` command in global configuration mode.

Verifying the Image Copied from the USB Drive

After copying the file from the USB drive to the host server, you can verify the file using the `show system file-list disk local` command:

```
nfvis# show system file-list disk local
SI NO NAME PATH SIZE TYPE DATE MODIFIED
1 lastlog-20170314.gz /data/intdatastore/logs/2017-03/14/10-00 337 Other 2017-03-14 21:55:42
2 escmanager-tagged-log.log-20170314.gz /data/intdatastore/logs/2017-03/14/10-00 167K Other
```
VM Lifecyle Management

VM Bootstrap Configuration Options with a VM Deployment

You can include the bootstrap configuration (day zero configuration) of a VM in the VM deployment payload in the following three ways:

- Bundle bootstrap configuration files into the VM package—In this method, the bootstrap configuration variables can be tokenized. Token names must be in bold text. For each tokenized variable, key-value pairs must be provided during deployment in the deployment payload.

- Bootstrap configuration as part of the deployment payload—The entire bootstrap configuration is copied to the payload without tokens.

- Bootstrap configuration file in the NFVIS server—In this method, the configuration file is copied or downloaded to the NFVIS server, and referenced from the deployment payload with the filename including full path.

Related APIs and Commands

<table>
<thead>
<tr>
<th>APIs</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>• /api/operations/system/file-copy/usb/file</td>
<td>• system file-copy usb file name</td>
</tr>
<tr>
<td>• /api/config/system/usb-mount</td>
<td>• system usb-mount mount ACTIVE</td>
</tr>
<tr>
<td></td>
<td>• system file-delete</td>
</tr>
<tr>
<td></td>
<td>• show system file-list disk usb</td>
</tr>
<tr>
<td></td>
<td>• show system file-list disk local</td>
</tr>
</tbody>
</table>
For examples on how to use bootstrap configuration options in the deployment payload, see the API Reference for Cisco Enterprise Network Function Virtualization Infrastructure Software.

OpenStack Configuration Drive Support for Third Party VMs

To enable staging of bootstrap configuration files at the time of a third party VM deployment as per OpenStack standards, the following cloud init format is supported:

```
openstack/content
openstack/content/0000
openstack/content/0001
openstack/latest/meta_data.json
```

In the above sample, the "0000" and "0001" files are the actual bootstrap files from the deployment payload. A third party VM can use the init file to fetch its configuration files.

The following metadata file is used to provide the file path on the configuration drive and reference to the actual bootstrap configuration files.

```json
{
  "files": [ 
    {
      "content_path": "/content/0000",
      "path": "/config/day-0.txt"
    },
    {
      "content_path": "/content/0001",
      "path": "/sample/path/iosxe_config.txt"
    }
  ]
}
```

With this implementation, two copies of the same bootstrap configuration file will be present on the virtual CD-ROM package. The first version at the root (iosxe_config.txt) and the second inside the "openstack/content" folder.

The admin will also have to specify the bootstrap configuration file in the image properties file before packaging the VM.

Example for the Bootstrap Configuration File in the Image Properties File

```bash
--optimize=OPTIMIZE [REQUIRED] optimized VM: --optimize=true/false;
--root_file_disk_bus=ROOT_FILE_DISK_BUS root disk file type:
--root_file_disk_bus=virtio/ide; default is virtio
--virtual_interface_model=VIRTUAL_INTERFACE_MODEL
--virtual_interface_model=rtl8139; default is none
--thick_disk_provisioning=THICK_DISK_PROVISIONING
--thick_disk_provisioning=true; default is false
--bootstrap_cloud_init_bus_type=BOOTSTRAP_CLOUD_INIT_BUS_TYPE
--bootstrap_cloud_init_bus_type=virtio; default is ide
--bootstrap_cloud_init_drive_type=BOOTSTRAP_CLOUD_INIT_DRIVE_TYPE
--bootstrap_cloud_init_drive_type=disk; default is cdrom
--bootstrap=BOOTSTRAP bootstrap file/s for VM (two parameters required in the format of dst:src; dst filename including path has to match exactly to what the VM expects; upto 20 bootstrap files are accepted.)
examples:
--bootstrap ovf-env.xml:file1,ios-xe.txt:file2 for ISRv; both files get mounted at the
```
root level on the VM.
--bootstrap day0-config:filename1 for ASAv
--bootstrap
//:bootstrap.xml, /license/lic.txt:license.txt
bootstrap.xml get mounted as bootstrap.xml at root, and license.txt get mounted as
/license/lic.txt.

Note
If any of the strings in the configuration file has wild characters, wrap the string with this
#$$[]$$# so that the
token/key replacement engine does not consider wild characters as key or token, and looks for key value pairs
to replace during a VM deployment.

For details on the OpenStack standards, visit http://docs.openstack.org.

Performing Resource Verification

Given below are the APIs and commands to perform different types of resource verification:

<table>
<thead>
<tr>
<th>Task</th>
<th>API</th>
<th>Command</th>
</tr>
</thead>
</table>
| To display CPU information for each CPU or the user specified CPU, and the VMs pinned to the CPU | • api/operational/resources/cpu-info/cpus
• /api/operational/resources/cpu-info/cpus/cpu
• /api/operational/resources/cpu-info/cpus/cpu/<cpu-id> | show resources cpu-info cpus |
| To display information on the VMs running in all the physical CPUs or a specific physical CPU in the system | • /api/operational/resources/cpu-info/vnfs
• /api/operational/resources/cpu-info/vnfs/vnf
• /api/operational/resources/cpu-info/vnfs/vnf/<deployment_name>.<vm_group_name> | show resources cpu-info vnfs |
| To get information on the number of CPUs allocated to VMs and the CPUs that are already used by the VMs | /api/operational/resources/cpu-info/allocation | show resources cpu-info allocation |

Note
To display information on all CPUs, VMs pinned to the CPUs, and VMs allocated to the CPUs, use the show resources cpu-info command.

CPU Over-Subscription

Cisco Enterprise NFVIS does not allow CPU over-subscription for low-latency network appliance VMs (for example, Cisco ISRv and Cisco ASAv). However, the CPU over-subscription is allowed for non low-latency VMs (for example, Linux Server VM and Windows Server VM).
Configuring Management IP Address

The following commands need to be executed in a sequence to first delete an exiting subnet and then add a new subnet in the network. For these commands to work, ensure there is no managed VNF’s in the system before you change management network address.

To delete an existing subnet use `no vm_lifecycle networks network int-mgmt-net subnet int-mgmt-net-subnet` command.

To create a new subnet:

```
configure terminal
vm_lifecycle networks network int-mgmt-net subnet int-mgmt-net-subnet address 105.20.0.0
gateway 105.20.0.1 netmask 255.255.255.0 dhcp false
commit
```

VM States

<table>
<thead>
<tr>
<th>VM States</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM_UNDEF_STATE</td>
<td>The initial state of VM or VNF before deployment of this VM.</td>
</tr>
<tr>
<td>VM_DEPLOYING_STATE</td>
<td>VM or VNF is being deployed on to the NFVIS.</td>
</tr>
<tr>
<td>VM_MONITOR_UNSET_STATE</td>
<td>VM or VNF is deployed in the NFVIS but the monitoring rules are not applied.</td>
</tr>
<tr>
<td>VM_MONITOR_DISABLED_STATE</td>
<td>Due to a VM action request or recovery workflow, the monitoring or KPI rules applied on the VM or VNFs were not enabled.</td>
</tr>
<tr>
<td>VM_STOPPING_STATE</td>
<td>VM or VNF is being stopped.</td>
</tr>
<tr>
<td>VM_SHUTOFF_STATE</td>
<td>VM or VNF is in stopped or shutoff state.</td>
</tr>
<tr>
<td>VM_STARTING_STATE</td>
<td>VM or VNF is being started.</td>
</tr>
<tr>
<td>VM_REBOOTING_STATE</td>
<td>VM or VNF is being rebooted.</td>
</tr>
<tr>
<td>VM_INERT_STATE</td>
<td>VM or VNF is deployed but not alive. The KPI monitor is applied and waiting for the VM to become alive.</td>
</tr>
<tr>
<td>VM_ALIVE_STATE</td>
<td>VM or VNF is deployed and successfully booted up or alive as per the monitor or kpi metric.</td>
</tr>
<tr>
<td>VM_UNDEPLOYING_STATE</td>
<td>VM or VNF is being undeployed or terminated.</td>
</tr>
<tr>
<td>VM_ERROR_STATE</td>
<td>VM or VNF will be in error state if deployment or any other operation is failed.</td>
</tr>
</tbody>
</table>
CHAPTER 6

VM Deployment Scenarios

This chapter provides details on the following deployment scenarios using REST APIs. As an example, the Cisco ENCS is used to illustrate these scenarios.

• Single VM deployment
• Service chaining with two VMs
• Service chaining of multiple VMs with Windows or Linux servers

The following VM images are used to explain the deployment scenarios:

• Cisco Integrated Services Router (ISRv)—irsv-03.16.02
• Cisco Adaptive Security Virtual Appliance (ASAv)—asav951-201
• Linux server—ubuntu-14.04.3-server-amd64-disk1

Registering VM Images, on page 63
Service Chaining of VMs, on page 67

Registering VM Images

You must register all VM images before deploying them.

Note

Register all the VM images required for the VM deployment depending on the topology. A VM image registration is done only once per VM image. You can perform multiple VM deployments using the registered VM image.

To register a Cisco ISRv image:

1. Set up the http/https server to host the VM image, or upload the image to the NFVIS server using the local portal or the scp command.
2. Register the Cisco ISRv image using the following API method:

```
```
POST https://<NFVIS_IP>/api/config/vm_lifecycle/images -d '
 '

3. Verify the image status using the following API method:

 curl -k -v -u admin:admin -H 'Accept:application/vnd.yang.data+xml' -H 'Content-Type:application/vnd.yang.data+xml' -X GET
 https://<NFVIS_IP>/api/operational/vm_lifecycle/opdata/images/image/isrv-k9.16.03.01?deep

4. Now, repeat Steps 1 to 3 to register the Cisco ASAv and Linux server images. Ensure that you provide
 the exact image name and source file location when running the API commands.

Note

You can run API commands from any console/server that can reach Cisco Enterprise NFVIS.

Single VM Deployment

In this example, a Cisco ISRv image with three network interfaces is deployed. The following diagram
illustrates the deployment topology:

Figure 6: Single VM Deployment

Steps for Deploying a VM

To deploy a Cisco ISRv image:

1. Verify that all networks required for your deployment are configured.

 curl -k -v -u admin:admin -H 'content-type:application/vnd.yang.data+xml' -X GET
 https://<NFVIS_IP>/api/config/networks?deep
2. Before deploying the VM, you can perform a resource check to ensure that you have sufficient resources for the deployment.

```bash
curl -k -u "admin:admin" -X GET https://<NFVIS_IP>/api/operational/resources/precheck/vnf/newvnf,isrv-small,true?deep
```

3. Deploy the Cisco ISRv VM.

```bash
curl -k -u admin:admin -H Accept:application/vnd.yang.data+xml -H Content-Type:application/vnd.yang.data+xml -X POST https://<NFVIS_IP>/api/config/vm_lifecycle/tenants/tenant/admin/deployments --data "<deployment>
  <name>ISR</name>
  <vm_group>
    <name>ISR</name>
    
    <vm_source></vm_source>
    <vm_target></vm_target>
    <event>
      <type>CREATE_IMAGE</type>
    </event>
  </vmlcEvent>
</notification>
```
Event Notifications

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
</table>
| DELETE_IMAGE | The VM image is unregistered. | ```xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T17:14:51.169+00:00</eventTime>
 <vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
 <status>SUCCESS</status>
 <status_code>200</status_code>
 <status_message>Image deletion completed successfully.</status_message>
 
 <vm_source></vm_source>
 <vm_target></vm_target>
 </vmlcEvent>
</notification>``` |

| CREATE_FLAVOR | A flavor is created. | ```xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T17:12:29.685+00:00</eventTime>
 <vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
 <status>SUCCESS</status>
 <status_code>200</status_code>
 <status_message>Flavor creation completed successfully.</status_message>
 <flavor>ISRv-small</flavor>
 <vm_source></vm_source>
 <vm_target></vm_target>
 </vmlcEvent>
</notification>``` |

| DELETE_FLAVOR | A flavor is deleted. | ```xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T17:14:51.425+00:00</eventTime>
 <vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
 <status>SUCCESS</status>
 <status_code>200</status_code>
 <status_message>Flavor deletion completed successfully.</status_message>
 <flavor>ISRv-small</flavor>
 <vm_source></vm_source>
 <vm_target></vm_target>
 </vmlcEvent>
</notification>``` |
Event Notifications

Event Type	**Notification**	**Description**
VM DEPLOYED | VM DEPLOYED | The VM is deployed.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<notification
  xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
  <eventTime>2016-11-17T17:19:16.927+00:00</eventTime>
  <vmlcEvent
    xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
    <status>SUCCESS</status>
    <status_code>200</status_code>
    <status_message>VIM Driver: VM successfully created, VM Name: [SystemAdminTenant_ROUTER_0_df6733c1-0768-4ae6-8dce-b223edcb036c]</status_message>
    <depname>1479341445</depname>
    <tenant>admin</tenant>
    <tenant_id>AdminTenantId</tenant_id>
    <depid>c64d79db-3a29-41a8-8114-c80d42731a5b</depid>
    <vm_group>ROUTER</vm_group>
    <vm_source>
      <vmid>d18dd252-80c8-44f2-ab66-d4481790bb79</vmid>
      <hostid>NFVIS</hostid>
      <hostname>NFVIS</hostname>
      <interfaces>
        <interface>
          <nicid>0</nicid>
          <port_id>vnet0</port_id>
          <network>int-mgmt-net</network>
          <subnet>N/A</subnet>
          <ip_address>10.20.0.2</ip_address>
          <mac_address>52:54:00:31:c5:7f</mac_address>
          <netmask>255.255.255.0</netmask>
          <gateway>10.20.0.1</gateway>
        </interface>
        <interface>
          <nicid>1</nicid>
          <port_id>vnet1</port_id>
          <network>wan-net</network>
          <subnet>N/A</subnet>
          <mac_address>52:54:00:59:52:41</mac_address>
          <netmask>255.255.255.0</netmask>
          <gateway>172.19.181.152</gateway>
        </interface>
      </interfaces>
    </vm_source>
    <vm_target></vm_target>
    <event>
      <type>VM_DEPLOYED</type>
    </event>
  </vmlcEvent>
</notification>
```
<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
</table>
| VM_ALIVE | The state of a monitored VM becomes ACTIVE. | `<?xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T17:22:47.306+00:00</eventTime>
 <vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
 <status>SUCCESS</status>
 <status_code>200</status_code>
 <status_message>VM_Alive event received, VM ID: [SystemAdminTena_ROUTER_0_df673c1-0768-4ae6-8dce-b223ecdb036c] status_message)
 <depid>c64d79db-3a29-41a8-8114-c80d42731a5b</depid>
 <tenant>admin</tenant>
 <tenant_id>AdminTenantId</tenant_id>
 <hostid>NFVIS</hostid>
 <hostname>NFVIS</hostname>
 <interfaces>
 <interface>
 <nicid>0</nicid>
 <port_id>vnet0</port_id>
 <network>int-mgmt-net</network>
 <subnet>N/A</subnet>
 <ip_address>10.20.0.2</ip_address>
 <mac_address>52:54:00:31:c5:7f</mac_address>
 <netmask>255.255.255.0</netmask>
 <gateway>10.20.0.1</gateway>
 </interface>
 <interface>
 <nicid>1</nicid>
 <port_id>vnet1</port_id>
 <network>wan-net</network>
 <subnet>N/A</subnet>
 <ip_address>172.19.181.152</ip_address>
 <mac_address>52:54:00:59:52:41</mac_address>
 <netmask>255.255.255.0</netmask>
 <gateway>172.19.181.152</gateway>
 </interface>
 </interfaces>
 </vmlcEvent>
</notification>` |
Event Notifications

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM_UNDEPLOYED</td>
<td>The VM is undeployed</td>
<td><code><notification></code></td>
</tr>
</tbody>
</table>

```xml
<?xml version="1.0" encoding="UTF-8"?>
<notification
xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2016-11-17T17:31:40.6+00:00</eventTime>
<vmlcEvent
xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
<status>SUCCESS</status>
<status_code>204</status_code>
<status_message>VIM Driver: VM successfully deleted</status_message>
<depname>1479341445</depname>
<tenant>admin</tenant>
<tenant_id>AdminTenantId</tenant_id>
<depid>c64d79db-3a29-4a8-811-c80d42731a5b</depid>
<vm_group>ROUTER</vm_group>
<vm_source>
<vmid>d18dd252-80c8-44f2-ab66-d4481790bb79</vmid>
<hostid>NFVIS</hostid>
<hostname>NFVIS</hostname>
<interfaces>
  <interface>
    <nicid>0</nicid>
    <port_id>vnet0</port_id>
    <network>int-mgmt-net</network>
    <subnet>N/A</subnet>
    <ip_address>10.20.0.2</ip_address>
    <mac_address>52:54:00:31:c5:7f</mac_address>
    <netmask>255.255.255.0</netmask>
    <gateway>10.20.0.1</gateway>
  </interface>
  <interface>
    <nicid>1</nicid>
    <port_id>vnet1</port_id>
    <network>wan-net</network>
    <subnet>N/A</subnet>
    <mac_address>52:54:00:59:52:41</mac_address>
    <netmask>255.255.255.0</netmask>
    <gateway>172.19.181.152</gateway>
  </interface>
</interfaces>
<vm_target></vm_target>
<event>
  <type>VM_UNDEPLOYED</type>
</event>
</vmlcEvent>
</notification>
```
Event Notifications

Event Type: VM_STOPPED

The VM is stopped per VM action request.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T17:26:05.762+00:00</eventTime>
 <vmlcEvent
 xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
  <status>SUCCESS</status>
  <status_code>200</status_code>
  <status_message>Successfully stopped VM [SystemAdminTenantId-ROUTER_0_df6733c1-0768-4ae6-8dce-b223eccb036c].</status_message>
  <depname>1479341445</depname>
  <tenant>admin</tenant>
  <tenant_id>AdminTenantId</tenant_id>
  <svcid>NULL</svcid>
  <depid>c64d79db-3a29-41a8-8114-c80d42731a5b</depid>
  <vm_source>ROUTER</vm_source>
  <vm_target>
   <event>
    <type>VM_STOPPED</type>
   </event>
  </vm_target>
 </vmlcEvent>
</notification>
```

Event Type: SERVICE_UPDATED

The VM is updated.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T17:51:45.5+00:00</eventTime>
 <vmlcEvent
 xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
  <status>SUCCESS</status>
  <status_code>200</status_code>
  <status_message>Service group update completed successfully.</status_message>
  <depname>1479342258</depname>
  <tenant>admin</tenant>
  <tenant_id>AdminTenantId</tenant_id>
  <depid>827e871a-30d5-4f5f-a05a-263b7ee3a734</depid>
  <vm_source>
   <vmid>d18dd252-80c8-44f2-ab66-d4481790bb79</vmid>
   <hostid>NFVIS</hostid>
   <hostname>NFVIS</hostname>
  </vm_source>
  <vm_target>
   <event>
    <type>SERVICE_UPDATED</type>
   </event>
  </vm_target>
 </vmlcEvent>
</notification>
```
Event Notifications

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
</table>
| VM_STARTED | The VM is started per VM action request. | ```xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T17:26:40.398+00:00</eventTime>
 <vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
 <status>SUCCESS</status>
 <status_code>200</status_code>
 <status_message>Started VM [SystemAdminTena_ROUTER_0_df6733c1-0768-4ae6-8dce-b233ecdb036c].</status_message>
 <depname>1479341445</depname>
 <tenant>admin</tenant>
 <tenant_id>AdminTenantId</tenant_id>
 <svcid>NULL</svcid>
 <depid>c64d799d-3a29-41a8-8114-c80d42731a5b</depid>
 <vm_group>ROUTER</vm_group>
 <vm_source>
 <vmid>d18dd252-80c8-44f2-ab66-d4481790bb79</vmid>
 <hostid>NFVIS</hostid>
 <hostname>NFVIS</hostname>
 </vm_source>
 <vm_target></vm_target>
 </vmlcEvent>
</notification>``` |
<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
</table>
| VM_REBOOTED | The VM is rebooted per VM action request. | ```xml
<?xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2016-11-17T17:36:56.5+00:00</eventTime>
<vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>Rebooted VM [SystemAdminTenat_ROUTER_0_f17f494-8535-4b05-b88d-f0fd2effdc7d]</status_message>
<depid>1479342258</depid>
<tenant>admin</tenant>
<tenant_id>AdminTenantId</tenant_id>
<svcid)NULL</svcid>
<depid>827e871a-30d5-4f5f-a05a-263b7ee3a734</depid>
<vm_group>ROUTER</vm_group>
<vmid>d918a3b1-f2a9-4065-9d8e-2135b0a37d87</vmid>
<hostid>NFVIS</hostid>
<htmlname>NFVIS</hostname>
</vmlcEvent>
</notification>``` |
Event Notifications

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
</table>
| VM_RECOVERY_INIT | A monitored VM is not reachable. | <?xml version="1.0" encoding="UTF-8"?>
 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T16:27:51.627+00:00</eventTime>
 <vmlcEvent
 xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
 <status>SUCCESS</status>
 <status_code>200</status_code>
 <status_message>Recovery event for VM [SystemAdminTenant_ROUTER_0_40ae18be-5930-4d94-95ff-dbb0b56ef12b] triggered. Processing Auto healing. Proceeding with Recovery.</status_message>
 <depname>1479328919</depname>
 <tenant>admin</tenant>
 <tenant_id>AdminTenantId</tenant_id>
 <svcid>NULL</svcid>
 <depid>9e7fe4f8-a5f4-4a6d-aad7-121405be4ba4</depid>
 <vm_group>ROUTER</vm_group>
 <vm_source>
 <vmid>000883fc-77f3-4b9e-aaf6-0f31d88a8f67</vmid>
 <host_id>NFVIS</host_id>
 <hostname>NFVIS</hostname>
 </vm_source>
 <vm_target></vm_target>
 </event>
 <type>VM_RECOVERY_INIT</type>
</event>
</vmlcEvent>
</notification> |
<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
</table>
| VM_RECOVERY_REBOOT | Recovery reboot starts for the monitored VM, which is not reachable. | <xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2016-11-17T16:27:53.979+00:00</eventTime>
 <vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
 <status>SUCCESS</status>
 <status_code>200</status_code>
 <status_message>VM [SystemAdminTenant_ROUTER_0_40ae18be-5930-4d94-95ff-dbb0b56ef12b] is being rebooted.</status_message>
 <depid>1479328919</depid>
 <tenant>admin</tenant>
 <tenant_id>AdminTenantId</tenant_id>
 <svcid>NULL</svcid>
 <depid>9e7fe4f8-4a6d-aad7-121405be4ba4</depid>
 <vm_group>ROUTER</vm_group>
 <vm_source>
 <vmid>000883fc-77f3-4b9e-aaf6-0f31d88a8f67</vmid>
 <hostid>NFVIS</hostid>
 <hostname>NFVIS</hostname>
 </vm_source>
 <vm_target/>
 <event>
 <type>VM_RECOVERY_REBOOT</type>
 </event>
 </vmlcEvent>
</notification> |
Event Notifications

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
</table>
| VM_RECOVERY_COMPLETE | Recovery reboot completes for the monitored VM, which is not reachable. | ```xml
<?xml version="1.0" encoding="UTF-8"?>
<notification
xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2016-11-17T16:31:26.934+00:00</eventTime>
<vmlcEvent
xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>Successfully recovered VM [SystemAdminTen router_0_40ae18be-5930-4d94-ad9f-5b6e12b].</status_message>
<depname>1479328919</depname>
<tenant>admin</tenant>
<tenant_ID>AdminTenantId</tenant_ID>
<svcid>NULL</svcid>
<depid>9e7fe4f8-154f-4a6d-aad7-121405be4ba4</depid>
<vm_group>ROUTER</vm_group>
<vm_source>
<vmid>000883fc-37f3-4b9e-aaf6-0f31d88a8f67</vmid>
<hostid>NFVIS</hostid>
<hostname>NFVIS</hostname>
</vm_source>
<vm_target>
<vmid>000883fc-37f3-4b9e-aaf6-0f31d88a8f67</vmid>
<hostid>NFVIS</hostid>
<hostname>NFVIS</hostname>
</vm_target>
<event>
<type>VM_RECOVERY_COMPLETE</type>
</event>
</vmlcEvent>
</notification>``` |
Event Type | Notification Trigger | Notification Output Example
--- | --- | ---
VM_MONITOR_UNSET | Monitoring is disabled per VM action request. | `<xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2016-11-18T13:36:43.613+00:00</eventTime>
<vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>Unset monitor completed successfully</status_message>
<depname>1479413090</depname>
<tenant>admin</tenant>
<tenant_id>AdminTenantId</tenant_id>
<svcid>NULL</svcid>
<depid>742dd335-330c-4bf0-a75d-a44003c645c5</depid>
<vm_group>ROUTER</vm_group>
<vm_source>
<vmid>23ec3793-37ab-4ec2-a978-a10e08585fdd</vmid>
<hostid>NFVIS</hostid>
<hostname>NFVIS</hostname>
</vm_source>
<vm_target>
<event>
<type>VM_MONITOR_UNSET</type>
</event>
</vmlcEvent>
</notification>`

VM_MONITOR_SET | Monitoring is enabled per VM action request. | `<xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2016-11-18T13:40:15.276+00:00</eventTime>
<vmlcEvent xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>Set monitor completed successfully</status_message>
<depname>1479413090</depname>
<tenant>admin</tenant>
<tenant_id>AdminTenantId</tenant_id>
<svcid>NULL</svcid>
<depid>742dd335-330c-4bf0-a75d-a44003c645c5</depid>
<vm_group>ROUTER</vm_group>
<vm_source>
<vmid>23ec3793-37ab-4ec2-a978-a10e08585fdd</vmid>
<hostid>NFVIS</hostid>
<hostname>NFVIS</hostname>
</vm_source>
<vm_target>
<event>
<type>VM_MONITOR_SET</type>
</event>
</vmlcEvent>
</notification>`
<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM UPDATED</td>
<td>VM's flavor is changed.</td>
<td></td>
</tr>
</tbody>
</table>
Event Type | **Trigger** | **Notification Output Example**
---|---|---
- | | ```xml
<?xml version="1.0" encoding="UTF-8"?>
<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2017-12-08T00:50:39.034+00:00</eventTime>
<vmlcEvent
 xmlns="http://www.cisco.com/nfvis/vm_lifecycle">
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>VM is resized with flavor [ISRv-medium].</status_message>
<user_name>admin</user_name>
<depname>1512766000</depname>
<tenant>admin</tenant>
<tenant_id>adminUUID</tenant_id>
<depid>92c11aa1-f6dd-47d1-948f-c8c65b9ef70f</depid>
<vm_group>ROUTER</vm_group>
<vm_source>
<vmlc id="1a6f587e-2779-4087-b84d-c0a2c8a481b1">
<vmname>1512766000_ROUTER_0_60d15064-0c6d-49b9-aa4a-80587f626004</vmname>
<brickname>NFVIS</brickname>
<host_id>NFVIS</host_id>
<hostname>nfvis</hostname>
</vm_source>
<interfaces>
<interface>
<nic_id>0</nic_id>
[type]virtual[/type]
[port_id]vnic0[/port_id]
<network>int-mgmt-net[/network]
<subnet>N/A[/subnet]
<ip_address>10.20.0.3[/ip_address]
<mac_address>52:54:00:3c:ee:5b[/mac_address]
<netmask>255.255.255.0[/netmask]
<gateway>10.20.0.1[/gateway]
</interface>
<interface>
<nic_id>1</nic_id>
[type]virtual[/type]
[port_id]vnic1[/port_id]
<network>wan-net[/network]
<subnet>N/A[/subnet]
<mac_address>52:54:00:70:06:4a[/mac_address]
<netmask>255.255.255.0[/netmask]
<gateway>172.19.181.152[/gateway]
</interface>
<interface>
<nic_id>2</nic_id>
[type]virtual[/type]
[port_id]vnic2[/port_id]
<network>lan-net[/network]
<subnet>N/A[/subnet]
<mac_address>52:54:00:c7:30:1c[/mac_address]
<netmask>255.255.255.0[/netmask]
<gateway>192.168.1.1[/gateway]
</interface>
</interfaces>
<event>
<type>VM_UPDATED[/type]
</event>
```
Event Type  | Notification Trigger | Notification Output Example
---|---|---
<xml version="1.0" encoding="UTF-8">
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2017-12-08T00:50:39.06+00:00</eventTime>
<vmlcEvent xmlns='http://www.cisco.com/nfvis/vm_lifecycle'>
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>Service group update completed successfully</status_message>
<user_name>admin</user_name>
<depname>1512766000</depname>
<tenant>admin</tenant>
<tenant_id>adminUUID</tenant_id>
<depid>92c11aa1-f6dd-47d1-948f-c8c65b9ef70f</depid>
<event>
<type>SERVICE_UPDATED</type>
</event>
</vmlcEvent>
<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM_UPDATED</td>
<td>VNIC is added, deleted or updated.</td>
<td></td>
</tr>
</tbody>
</table>
### Event Notifications

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Notification Trigger</th>
<th>Notification Output Example</th>
</tr>
</thead>
</table>
|            |                      | `<xml version="1.0" encoding="UTF-8"?>
<notification
xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2017-12-08T02:10:56.184+00:00</eventTime>
<vmlcEvent
xmlns='http://www.cisco.com/nfvis/vm_lifecycle'>
<status>SUCCESS</status>
<status_code>200</status_code>
<status_message>Added 1 interface: [managed, net=my-net-1, nicid=3]
Updated 2 interface: [managed, net=lan-net, nicid=1],[managed,
net=wan-net, nicid=2]</status_message>
<user_name>admin</user_name>
<depid>92c11aa1-f6dd-47d1-948f-c8c65b9ef70f</depid>
<vm_group>ROUTER</vm_group>
<vm_source>
<vmid>1a6f587e-2779-4087-b84d-c0a2c8a481b1</vmid>
</vm_source>
<vname>1512766000_ROUTER_0_60d15064-0c6d-49b9-aa4a-80587f626004</vname>
<hostname>nfvis</hostname>
<interfaces>
    <interface>
        <nicid>0</nicid>
        <type>virtual</type>
        <port_id>vnic0</port_id>
        <network>int-mgmt-net</network>
        <subnet>N/A</subnet>
        <ip_address>10.20.0.3</ip_address>
        <mac_address>52:54:00:3c:ee:5b</mac_address>
        <netmask>255.255.255.0</netmask>
        <gateway>10.20.0.1</gateway>
    </interface>
    <interface>
        <nicid>1</nicid>
        <type>virtual</type>
        <port_id>vnic1</port_id>
        <network>lan-net</network>
        <subnet>N/A</subnet>
        <mac_address>52:54:00:70:06:4a</mac_address>
        <netmask>255.255.255.0</netmask>
        <gateway>192.168.1.1</gateway>
    </interface>
    <interface>
        <nicid>2</nicid>
        <type>virtual</type>
        <port_id>vnic2</port_id>
        <network>wan-net</network>
        <subnet>N/A</subnet>
        <mac_address>52:54:00:c7:30:1c</mac_address>
        <netmask>255.255.255.0</netmask>
        <gateway>172.19.181.152</gateway>
    </interface>
</interfaces>
</vmlcEvent></notification>` |
### Event Type | Notification Trigger | Notification Output Example
--- | --- | ---
| | | `<network>my-net-1</network>
<subnet>N/A</subnet>
<mac_address>52:54:00:66:b5:c1</mac_address>
</interface>
</interfaces>
</vm_source>
<event>
  <type>VM_UPDATED</type>
</event>
</vmlcEvent>`