Implementing Multicast Routing on Cisco IOS XR Software

Multicast routing is a bandwidth-conserving technology that reduces traffic by simultaneously delivering a single stream of information to potentially thousands of corporate recipients and homes. Applications that take advantage of multicast routing include video conferencing, corporate communications, distance learning, and distribution of software, stock quotes, and news.

This document assumes that you are familiar with IPv4 multicast routing configuration tasks and concepts for Cisco IOS XR Software.

Multicast routing allows a host to send packets to a subset of all hosts as a group transmission rather than to a single host, as in unicast transmission, or to all hosts, as in broadcast transmission. The subset of hosts is known as group members and are identified by a single multicast group address that falls under the IP Class D address range from 224.0.0.0 through 239.255.255.255.

Note
NCS 6000 does not support multicast over PWHE interfaces.

Feature History for Configuring Multicast Routing on the Cisco NCS 6000 Series Routers

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 5.0.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 6.1.2</td>
<td>Point-to-Multipoint Traffic Engineering with GTM feature was introduced.</td>
</tr>
<tr>
<td>Release 6.1.2</td>
<td>MLDP Edge feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Multicast Routing, on page 2
- Information About Implementing Multicast Routing, on page 2
- Multicast VPN IPv6 over IPv4 GRE, on page 91
- Point-to-Multipoint Traffic Engineering with GTM, on page 94
- Multicast Label Distribution Protocol (MLDP) Edge, on page 98
- Enabling multicast on PW-HE interfaces, on page 104
- Configuring Route Policy for Static RPF, on page 106
- Native Multicast Collapsed Forwarding, on page 108
Prerequisites for Implementing Multicast Routing

- You must install and activate the multicast package.
- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- You must be familiar with IPv4 multicast routing configuration tasks and concepts.
- Unicast routing must be operational.

Note

PW-EH interface is supported from Cisco IOS XR, Release 6.3.1. Multicast Routing is not supported on the PW-EH interface for now.

If below configuration in Example 1 is enabled, please disable multicast routing in PW-EH interface manually using the CLI commands in Example 2.

Example 1:

```plaintext
multicast-routing
address-family ipv4
  interface all enable
!
```

Example 2:

```plaintext
interface PW-Ether1
  disable
```

Information About Implementing Multicast Routing

Key Protocols and Features Supported in the Cisco IOS XR Software Multicast Routing Implementation

Multicast Routing Functional Overview

Traditional IP communication allows a host to send packets to a single host (unicast transmission) or to all hosts (broadcast transmission). Multicast provides a third scheme, allowing a host to send a single data stream to a subset of all hosts (group transmission) at about the same time. IP hosts are known as group members.

Packets delivered to group members are identified by a single multicast group address. Multicast packets are delivered to a group using best-effort reliability, just like IP unicast packets.
The multicast environment consists of senders and receivers. Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message.

A multicast address is chosen for the receivers in a multicast group. Senders use that group address as the destination address of a datagram to reach all members of the group.

Membership in a multicast group is dynamic; hosts can join and leave at any time. There is no restriction on the location or number of members in a multicast group. A host can be a member of more than one multicast group at a time.

How active a multicast group is and what members it has can vary from group to group and from time to time. A multicast group can be active for a long time, or it may be very short-lived. Membership in a group can change constantly. A group that has members may have no activity.

Many multimedia applications involve multiple participants. Multicast is naturally suitable for this communication paradigm.

Multicast Routing Implementation

Cisco IOS XR Software supports the following protocols to implement multicast routing:

- IGMP used between hosts on a LAN and the routers on that LAN to track the multicast groups of which hosts are members.

- Protocol Independent Multicast in sparse mode (PIM-SM) is used between routers so that they can track which multicast packets to forward to each other and to their directly connected LANs.

- Protocol Independent Multicast in Source-Specific Multicast (PIM-SSM) is similar to PIM-SM with the additional ability to report interest in receiving packets from specific source addresses (or from all but the specific source addresses), to an IP multicast address.

- PIM Bidirectional is a variant of the Protocol Independent Multicast suit of routing protocols for IP multicast. PIM-BIDIR is designed to be used for many-to-many applications within individual PIM domains.

This image shows IGMP and PIM-SM operating in a multicast environment.
PIM-SM, PIM-SSM, and PIM-BIDIR

Protocol Independent Multicast (PIM) is a multicast routing protocol used to create multicast distribution trees, which are used to forward multicast data packets. PIM is an efficient IP routing protocol that is “independent” of a routing table, unlike other multicast protocols such as Multicast Open Shortest Path First (MOSPF) or Distance Vector Multicast Routing Protocol (DVMRP).

Cisco IOS XR Software supports Protocol Independent Multicast in sparse mode (PIM-SM), Protocol Independent Multicast in Source-Specific Multicast (PIM-SSM), and Protocol Independent Multicast in Bi-directional mode (BIDIR) permitting these modes to operate on your router at the same time.

PIM-SM and PIM-SSM supports one-to-many applications by greatly simplifying the protocol mechanics for deployment ease. Bidir PIM helps deploy emerging communication and financial applications that rely on a many-to-many applications model. BIDIR PIM enables these applications by allowing them to easily scale to a very large number of groups and sources by eliminating the maintenance of source state.

PIM-SM Operations

PIM in sparse mode operation is used in a multicast network when relatively few routers are involved in each multicast and these routers do not forward multicast packets for a group, unless there is an explicit request for the traffic.

For more information about PIM-SM, see the PIM-Sparse Mode, on page 8.

PIM-SSM Operations

PIM in Source-Specific Multicast operation uses information found on source addresses for a multicast group provided by receivers and performs source filtering on traffic.

• By default, PIM-SSM operates in the 232.0.0.0/8 multicast group range for IPv4. To configure these values, use the ssm range command.
• If SSM is deployed in a network already configured for PIM-SM, only the last-hop routers must be upgraded with Cisco IOS XR Software that supports the SSM feature.

• No MSDP SA messages within the SSM range are accepted, generated, or forwarded.

Restrictions for PIM-SM and PIM-SSM, and PIM BIDIR

Interoperability with SSM

PIM-SM operations within the SSM range of addresses change to PIM-SSM. In this mode, only PIM (S,G) join and prune messages are generated by the router, and no (S,G) RP shared tree or (*,G) shared tree messages are generated.

IGMP Version

To report multicast memberships to neighboring multicast routers, hosts use IGMP, and all routers on the subnet must be configured with the same version of IGMP.

A router running Cisco IOS XR Software does not automatically detect Version 1 systems. You must use the `version` command in router IGMP configuration submode to configure the IGMP version.

Internet Group Management Protocol

Cisco IOS XR Software provides support for Internet Group Management Protocol (IGMP) over IPv4. IGMP a means for hosts to indicate which multicast traffic they are interested in and for routers to control and limit the flow of multicast traffic throughout the network. Routers build state by means of IGMP messages; that is, router queries and host reports.

A set of queries and hosts that receive multicast data streams from the same source is called a multicast group. Hosts use IGMP messages to join and leave multicast groups.

Note

IGMP messages use group addresses, which are Class D IP addresses. The high-order four bits of a Class D address are 1110. Host group addresses can be in the range 224.0.0.0 to 239.255.255.255. The address 224.0.0.0 is guaranteed not to be assigned to any group. The address 224.0.0.1 is assigned to all systems on a subnet. The address 224.0.0.2 is assigned to all routers on a subnet.

IGMP Versions

The following points describe IGMP versions 1, 2, and 3:

• IGMP Version 1 provides for the basic query-response mechanism that allows the multicast router to determine which multicast groups are active and for other processes that enable hosts to join and leave a multicast group.

• IGMP Version 2 extends IGMP allowing such features as the IGMP query timeout and the maximum query-response time. See RFC 2236.

• IGMP Version 3 permits joins and leaves for certain source and group pairs instead of requesting traffic from all sources in the multicast group.
IGMP Routing Example

Figure 2: IGMPv3 Signaling, on page 6 illustrates two sources, 10.0.0.1 and 10.0.1.1, that are multicasting to group 239.1.1.1. The receiver wants to receive traffic addressed to group 239.1.1.1 from source 10.0.0.1 but not from source 10.0.1.1. The host must send an IGMPv3 message containing a list of sources and groups (S, G) that it wants to join and a list of sources and groups (S, G) that it wants to leave. Router C can now use this information to prune traffic from Source 10.0.1.1 so that only Source 10.0.0.1 traffic is being delivered to Router C.

Figure 2: IGMPv3 Signaling

![IGMPv3 Signaling Diagram](image)

Note

When configuring IGMP, ensure that all systems on the subnet support the same IGMP version. The router does not automatically detect Version 1 systems. Configure the router for Version 2 if your hosts do not support Version 3.

Configuring IGMP Per Interface States Limit

The IGMP Per Interface States Limit sets a limit on creating OLEs for the IGMP interface. When the set limit is reached, the group is not accounted against this interface but the group can exist in IGMP context for some other interface.

The following configuration sets a limit on the number of group memberships created on an interface as a result of receiving IGMP or MLD membership reports.

```
routing igmp mld [vrf <vrfname>]
```
interface <ifname>
 (no) maximum groups-per-interface <max> [threshold <threshold>]
 ![acl]
![
where,
<ifname> is the interface name
<max> is the maximum limit on the groups
<threshold> is the threshold number of groups at which point a syslog warning message will be issued
<acl> provides an option for selective accounting. If provided, only groups or (S,G)s that are permitted by
the ACL is accounted against the limit. Groups or (S, G)s that are denied by the ACL are not accounted against
the limit. If not provided, all the groups are accounted against the limit.
The following messages are displayed when the threshold limit is reached for IGMP:

igmp[1160]: %ROUTING-IPV4_IGMP-4-OOR_THRESHOLD_REACHED : Threshold for Maximum number of
group per interface has been reached 3: Groups joining will soon be throttled.
Config a higher max or take steps to reduce states

igmp[1160]: %ROUTING-IPV4_IGMP-4-OOR_LIMIT_REACHED : Maximum number of group per interface
has been reached 6: Groups joining is throttled.
Config a higher max or take steps to reduce states

Limitations

• If a user has configured a maximum of 20 groups and has reached the maximum number of groups, then
no more groups can be created. If the user reduces the maximum number of groups to 10, the 20 joins
will remain and a message of reaching the maximum is displayed. No more joins can be added until the
number of groups has reached less than 10.

• If a user already has configured a maximum of 30 joins and add a max of 20, the configuration occurs
displaying a message that the maximum has been reached. No state change occurs and also no more joins
can occur until the threshold number of groups is brought down below the maximum number of groups.

Protocol Independent Multicast

Protocol Independent Multicast (PIM) is a routing protocol designed to send and receive multicast routing
updates. Proper operation of multicast depends on knowing the unicast paths towards a source or an RP. PIM
relies on unicast routing protocols to derive this reverse-path forwarding (RPF) information. As the name
PIM implies, it functions independently of the unicast protocols being used. PIM relies on the Routing
Information Base (RIB) for RPF information.

The Cisco IOS XR implementation of PIM is based on RFC 4601 Protocol Independent Multicast - Sparse
Mode (PIM-SM): Protocol Specification. For more information, see RFC 4601 and the Protocol Independent
Multicast (PIM): Motivation and Architecture Internet Engineering Task Force (IETF) Internet draft.

Note
Cisco IOS XR Software supports PIM-SM, PIM-SSM, and PIM Version 2 only. PIM Version 1 hello messages
that arrive from neighbors are rejected.
PIM-Sparse Mode

Typically, PIM in sparse mode (PIM-SM) operation is used in a multicast network when relatively few routers are involved in each multicast. Routers do not forward multicast packets for a group, unless there is an explicit request for traffic. Requests are accomplished using PIM join messages, which are sent hop by hop toward the root node of the tree. The root node of a tree in PIM-SM is the rendezvous point (RP) in the case of a shared tree or the first-hop router that is directly connected to the multicast source in the case of a shortest path tree (SPT). The RP keeps track of multicast groups, and the sources that send multicast packets are registered with the RP by the first-hop router of the source.

As a PIM join travels up the tree, routers along the path set up the multicast forwarding state so that the requested multicast traffic is forwarded back down the tree. When multicast traffic is no longer needed, a router sends a PIM prune message up the tree toward the root node to prune (or remove) the unnecessary traffic. As this PIM prune travels hop by hop up the tree, each router updates its forwarding state appropriately. Ultimately, the forwarding state associated with a multicast group or source is removed. Additionally, if prunes are not explicitly sent, the PIM state will timeout and be removed in the absence of any further join messages.

PIM-SM is the best choice for multicast networks that have potential members at the end of WAN links.

PIM-Source Specific Multicast

In many multicast deployments where the source is known, protocol-independent multicast-source-specific multicast (PIM-SSM) mapping is the obvious multicast routing protocol choice to use because of its simplicity. Typical multicast deployments that benefit from PIM-SSM consist of entertainment-type solutions like the ETTH space, or financial deployments that completely rely on static forwarding.

PIM-SSM is derived from PIM-SM. However, whereas PIM-SM allows for the data transmission of all sources sending to a particular group in response to PIM join messages, the SSM feature forwards traffic to receivers only from those sources that the receivers have explicitly joined. Because PIM joins and prunes are sent directly towards the source sending traffic, an RP and shared trees are unnecessary and are disallowed. SSM is used to optimize bandwidth utilization and deny unwanted Internet broadcast traffic. The source is provided by interested receivers through IGMPv3 membership reports.

In SSM, delivery of datagrams is based on (S,G) channels. Traffic for one (S,G) channel consists of datagrams with an IP unicast source address S and the multicast group address G as the IP destination address. Systems receive traffic by becoming members of the (S,G) channel. Signaling is not required, but receivers must subscribe or unsubscribe to (S,G) channels to receive or not receive traffic from specific sources. Channel subscription signaling uses IGMP to include mode membership reports, which are supported only in Version 3 of IGMP (IGMPv3).

To run SSM with IGMPv3, SSM must be supported on the multicast router, the host where the application is running, and the application itself. Cisco IOS XR Software allows SSM configuration for an arbitrary subset of the IP multicast address range 224.0.0.0 through 239.255.255.255. When an SSM range is defined, existing IP multicast receiver applications do not receive any traffic when they try to use addresses in the SSM range, unless the application is modified to use explicit (S,G) channel subscription.

DNS-based SSM Mapping

DNS-based SSM mapping enables you to configure the last hop router to perform a reverse DNS lookup to determine sources sending to groups (see the figure below). When DNS-based SSM mapping is configured, the router constructs a domain name that includes the group address G and performs a reverse lookup into the DNS. The router looks up IP address resource records (IP A RR) to be returned for this constructed domain name and uses the returned IP addresses as the source addresses associated with this group. SSM mapping supports up to 20 sources for each group. The router joins all sources configured for a group.
The SSM mapping mechanism that enables the last hop router to join multiple sources for a group can be used to provide source redundancy for a TV broadcast. In this context, the redundancy is provided by the last hop router using SSM mapping to join two video sources simultaneously for the same TV channel. However, to prevent the last hop router from duplicating the video traffic, it is necessary that the video sources utilize a server-side switchover mechanism where one video source is active while the other backup video source is passive. The passive source waits until an active source failure is detected before sending the video traffic for the TV channel. The server-side switchover mechanism, thus, ensures that only one of the servers is actively sending the video traffic for the TV channel.

To look up one or more source addresses for a group G that includes G1, G2, G3, and G4, the following DNS resource records (RRs) must be configured on the DNS server:

| IN A source-address-2 |
| IN A source-address-n |

The \textit{multicast-domain} argument is a configurable DNS prefix. The default DNS prefix is in-addr.arpa. You should only use the default prefix when your installation is either separate from the internet or if the group names that you map are global scope group addresses (RFC 2770 type addresses that you configure for SSM) that you own.

The \textit{timeout} argument configures the length of time for which the router performing SSM mapping will cache the DNS lookup. This argument is optional and defaults to the timeout of the zone in which this entry is configured. The timeout indicates how long the router will keep the current mapping before querying the DNS server for this group. The timeout is derived from the cache time of the DNS RR entry and can be configured for each group/source entry on the DNS server. You can configure this time for larger values if you want to minimize the number of DNS queries generated by the router. Configure this time for a low value if you want to be able to quickly update all routers with new source addresses.

\textbf{Note}

See your DNS server documentation for more information about configuring DNS RRs.
To configure DNS-based SSM mapping in the software, you must configure a few global commands but no per-channel specific configuration is needed. There is no change to the configuration for SSM mapping if additional channels are added. When DNS-based SSM mapping is configured, the mappings are handled entirely by one or more DNS servers. All DNS techniques for configuration and redundancy management can be applied to the entries needed for DNS-based SSM mapping.

Configuring PIM Per Interface States Limit

The PIM Per Interface States Limit sets a limit on creating OLEs for the PIM interface. When the set limit is reached, the group is not accounted against this interface but the group can exist in PIM context for some other interface.

The following configuration sets a limit on the number of routes for which the given interface may be an outgoing interface as a result of receiving a PIM J/P message.

```conffile
router pim | pim6 [vrf <vrfname>]  
interface <ifname>  
    maximum route-interfaces <max> [threshold <threshold>] [<acl>] 

where,  
<ifname> is the interface name 
<max> is the maximum limit on the groups  
<threshold> is the threshold number of groups at which point a syslog warning message will be issued  
<acl> provides an option for selective accounting. If provided, only groups or (S,G)s that are permitted by the ACL is accounted against the limit. Groups or (S, G)s that are denied by the ACL are not accounted against the limit. If not provided, all the groups are accounted against the limit.

The following messages are displayed when the threshold limit is reached for PIM:

pim[1157]: %ROUTING-IPV4_PIM-4-CAC_STATE_THRESHOLD : The interface GigabitEthernet0_2_0_0 threshold number (4) allowed states has been reached. State creation will soon be throttled. Configure a higher state limit value or take steps to reduce the number of states.

pim[1157]: %ROUTING-IPV4_PIM-3-CAC_STATE_LIMIT : The interface GigabitEthernet0_2_0_0 maximum number (5) of allowed states has been reached. State creation will not be allowed from here on. Configure a higher maximum value or take steps to reduce the number of states.

**Limitations**

- If a user has configured a maximum of 20 groups and has reached the maximum number of groups, then no more groups/OLEs can be created. If the user now decreases the maximum number to 10, the 20 joins/OLE will remain and a message of reaching the max is displayed. No more joins/OLE can be added at this point until it has reached less than 10.

- If a user already has configured a maximum of 30 joins/OLEs and add a max of 20, the configuration occurs displaying a message that the max has been reached. No states will change but no more joins/OLEs can happen until the number is brought down below the maximum number of groups.
• Local interest joins are added, even if the limit has reached and is accounted for it.

**PIM Shared Tree and Source Tree (Shortest Path Tree)**

In PIM-SM, the rendezvous point (RP) is used to bridge sources sending data to a particular group with receivers sending joins for that group. In the initial setup of state, interested receivers receive data from senders to the group across a single data distribution tree rooted at the RP. This type of distribution tree is called a shared tree or rendezvous point tree (RPT) as illustrated in Figure 4: Shared Tree and Source Tree (Shortest Path Tree), on page 11. Data from senders is delivered to the RP for distribution to group members joined to the shared tree.

*Figure 4: Shared Tree and Source Tree (Shortest Path Tree)*

Unless the **spt-threshold infinity** command is configured, this initial state gives way as soon as traffic is received on the leaf routers (designated router closest to the host receivers). When the leaf router receives traffic from the RP on the RPT, the router initiates a switch to a data distribution tree rooted at the source sending traffic. This type of distribution tree is called a **shortest path tree** or **source tree**. By default, the Cisco IOS XR Software switches to a source tree when it receives the first data packet from a source.

The following process describes the move from shared tree to source tree in more detail:

1. Receiver joins a group; leaf Router C sends a join message toward RP.
2. RP puts link to Router C in its outgoing interface list.
3. Source sends data; Router A encapsulates data in Register and sends it to RP.
4. RP forwards data down the shared tree to Router C and sends a join message toward Source. At this point, data may arrive twice at the RP, once encapsulated and once natively.
5. When data arrives natively (unencapsulated) at RP, RP sends a register-stop message to Router A.
6. By default, receipt of the first data packet prompts Router C to send a join message toward Source.

7. When Router C receives data on (S,G), it sends a prune message for Source up the shared tree.

8. RP deletes the link to Router C from outgoing interface of (S,G). RP triggers a prune message toward Source.

Join and prune messages are sent for sources and RPs. They are sent hop by hop and are processed by each PIM router along the path to the source or RP. Register and register-stop messages are not sent hop by hop. They are exchanged using direct unicast communication between the designated router that is directly connected to a source and the RP for the group.

Tip

The spt-threshold infinity command lets you configure the router so that it never switches to the shortest path tree (SPT).

**Multicast-Intact**

The multicast-intact feature provides the ability to run multicast routing (PIM) when Interior Gateway Protocol (IGP) shortcuts are configured and active on the router. Both Open Shortest Path First, version 2 (OSPFv2), and Intermediate System-to-Intermediate System (IS-IS) support the multicast-intact feature. Multiprotocol Label Switching Traffic Engineering (MPLS-TE) and IP multicast coexistence is supported in Cisco IOS XR Software by using the mpls traffic-eng multicast-intact IS-IS or OSPF router command. See *Routing Configuration Guide for Cisco NCS 6000 Series Routers* for information on configuring multicast intact using IS-IS and OSPF commands.

You can enable multicast-intact in the IGP when multicast routing protocols (PIM) are configured and IGP shortcuts are configured on the router. IGP shortcuts are MPLS tunnels that are exposed to IGP. The IGPs route the IP traffic over these tunnels to destinations that are downstream from the egress router of the tunnel (from an SPF perspective). PIM cannot use IGP shortcuts for propagating PIM joins because reverse path forwarding (RPF) cannot work across a unidirectional tunnel.

When you enable multicast-intact on an IGP, the IGP publishes a parallel or alternate set of equal-cost next-hops for use by PIM. These next-hops are called mcast-intact next-hops. The mcast-intact next-hops have the following attributes:

- They are guaranteed not to contain any IGP shortcuts.
- They are not used for unicast routing but are used only by PIM to look up an IPv4 next hop to a PIM source.
- They are not published to the Forwarding Information Base (FIB).
- When multicast-intact is enabled on an IGP, all IPv4 destinations that were learned through link-state advertisements are published with a set equal-cost mcast-intact next-hops to the RIB. This attribute applies even when the native next-hops have no IGP shortcuts.
- In IS-IS, the max-paths limit is applied by counting both the native and mcast-intact next-hops together. (In OSPFv2, the behavior is slightly different.)
**Designated Routers**

Cisco routers use PIM-SM to forward multicast traffic and follow an election process to select a designated router (DR) when there is more than one router on a LAN segment.

The designated router is responsible for sending PIM register and PIM join and prune messages toward the RP to inform it about host group membership.

If there are multiple PIM-SM routers on a LAN, a designated router must be elected to avoid duplicating multicast traffic for connected hosts. The PIM router with the highest IP address becomes the DR for the LAN unless you choose to force the DR election by use of the `dr-priority` command. The DR priority option allows you to specify the DR priority of each router on the LAN segment (default priority = 1) so that the router with the highest priority is elected as the DR. If all routers on the LAN segment have the same priority, the highest IP address is again used as the tiebreaker.

*Figure 5: Designated Router Election on a Multiaccess Segment, on page 14* illustrates what happens on a multiaccess segment. Router A (10.0.0.253) and Router B (10.0.0.251) are connected to a common multiaccess Ethernet segment with Host A (10.0.0.1) as an active receiver for Group A. As the Explicit Join model is used, only Router A, operating as the DR, sends joins to the RP to construct the shared tree for Group A. If Router B were also permitted to send (*, G) joins to the RP, parallel paths would be created and Host A would receive duplicate multicast traffic. When Host A begins to source multicast traffic to the group, the DR’s responsibility is to send register messages to the RP. Again, if both routers were assigned the responsibility, the RP would receive duplicate multicast packets.

If the DR fails, the PIM-SM provides a way to detect the failure of Router A and to elect a failover DR. If the DR (Router A) were to become inoperable, Router B would detect this situation when its neighbor adjacency with Router A timed out. Because Router B has been hearing IGMP membership reports from Host A, it already has IGMP state for Group A on this interface and immediately sends a join to the RP when it becomes the new DR. This step reestablishes traffic flow down a new branch of the shared tree using Router B. Additionally, if Host A were sourcing traffic, Router B would initiate a new register process immediately after receiving the next multicast packet from Host A. This action would trigger the RP to join the SPT to Host A, using a new branch through Router B.

**Tip**

Two PIM routers are neighbors if there is a direct connection between them. To display your PIM neighbors, use the `show pim neighbor` command in EXEC mode.
DR election process is required only on multiaccess LANs. The last-hop router directly connected to the host is the DR.

**Rendezvous Points**

When PIM is configured in sparse mode, you must choose one or more routers to operate as a rendezvous point (RP). A rendezvous point is a single common root placed at a chosen point of a shared distribution tree, as illustrated in Figure 4: Shared Tree and Source Tree (Shortest Path Tree), on page 11. A rendezvous point can be either configured statically in each box or learned through a dynamic mechanism.

PIM DRs forward data from directly connected multicast sources to the rendezvous point for distribution down the shared tree. Data is forwarded to the rendezvous point in one of two ways:

- Encapsulated in register packets and unicast directly to the rendezvous point by the first-hop router operating as the DR
- Multicast forwarded by the RPF forwarding algorithm, described in the Reverse-Path Forwarding, on page 16, if the rendezvous point has itself joined the source tree.

The rendezvous point address is used by first-hop routers to send PIM register messages on behalf of a host sending a packet to the group. The rendezvous point address is also used by last-hop routers to send PIM join and prune messages to the rendezvous point to inform it about group membership. You must configure the rendezvous point address on all routers (including the rendezvous point router).
A PIM router can be a rendezvous point for more than one group. Only one rendezvous point address can be used at a time within a PIM domain. The conditions specified by the access list determine for which groups the router is a rendezvous point.

You can either manually configure a PIM router to function as a rendezvous point or allow the rendezvous point to learn group-to-RP mappings automatically by configuring Auto-RP or BSR. (For more information, see the Auto-RP, on page 15 section that follows and PIM Bootstrap Router, on page 15.)

**Auto-RP**

Automatic route processing (Auto-RP) is a feature that automates the distribution of group-to-RP mappings in a PIM network. This feature has these benefits:

- It is easy to use multiple RPs within a network to serve different group ranges.
- It allows load splitting among different RPs.
- It facilitates the arrangement of RPs according to the location of group participants.
- It avoids inconsistent, manual RP configurations that might cause connectivity problems.

Multiple RPs can be used to serve different group ranges or to serve as hot backups for each other. To ensure that Auto-RP functions, configure routers as candidate RPs so that they can announce their interest in operating as an RP for certain group ranges. Additionally, a router must be designated as an RP-mapping agent that receives the RP-announcement messages from the candidate RPs, and arbitrates conflicts. The RP-mapping agent sends the consistent group-to-RP mappings to all remaining routers. Thus, all routers automatically determine which RP to use for the groups they support.

**Tip**

By default, if a given group address is covered by group-to-RP mappings from both static RP configuration, and is discovered using Auto-RP or PIM BSR, the Auto-RP or PIM BSR range is preferred. To override the default, and use only the RP mapping, use the `rp-address override` keyword.

**PIM Bootstrap Router**

The PIM bootstrap router (BSR) provides a fault-tolerant, automated RP discovery and distribution mechanism that simplifies the Auto-RP process. This feature is enabled by default allowing routers to dynamically learn the group-to-RP mappings.

PIM uses the BSR to discover and announce RP-set information for each group prefix to all the routers in a PIM domain. This is the same function accomplished by Auto-RP, but the BSR is part of the PIM Version 2 specification. The BSR mechanism interoperates with Auto-RP on Cisco routers.

To avoid a single point of failure, you can configure several candidate BSRs in a PIM domain. A BSR is elected among the candidate BSRs automatically. Candidates use bootstrap messages to discover which BSR has the highest priority. The candidate with the highest priority sends an announcement to all PIM routers in the PIM domain that it is the BSR.

Routers that are configured as candidate RPs unicast to the BSR the group range for which they are responsible. The BSR includes this information in its bootstrap messages and disseminates it to all PIM routers in the domain. Based on this information, all routers are able to map multicast groups to specific RPs. As long as a router is receiving the bootstrap message, it has a current RP map.
Reverse-Path Forwarding

Reverse-path forwarding (RPF) is an algorithm used for forwarding multicast datagrams. It functions as follows:

- If a router receives a datagram on an interface it uses to send unicast packets to the source, the packet has arrived on the RPF interface.
- If the packet arrives on the RPF interface, a router forwards the packet out the interfaces present in the outgoing interface list of a multicast routing table entry.
- If the packet does not arrive on the RPF interface, the packet is silently discarded to prevent loops.

PIM uses both source trees and RP-rooted shared trees to forward datagrams; the RPF check is performed differently for each, as follows:

- If a PIM router has an (S,G) entry present in the multicast routing table (a source-tree state), the router performs the RPF check against the IP address of the source for the multicast packet.
- If a PIM router has no explicit source-tree state, this is considered a shared-tree state. The router performs the RPF check on the address of the RP, which is known when members join the group.

Sparse-mode PIM uses the RPF lookup function to determine where it needs to send joins and prunes. (S,G) joins (which are source-tree states) are sent toward the source. (*,G) joins (which are shared-tree states) are sent toward the RP.

Multicast Non-Stop Routing

Multicast Non-Stop Routing (NSR) enables the router to synchronize the multicast routing tables on both the active and standby RSPs so that during an HA scenario like an RSP failover there is no loss of multicast data. Multicast NSR is enabled through the multicast processes being hot standby. Multicast NSR supports both Zero Packet Loss (ZPL) and Zero Topology Loss (ZTL). With Multicast NSR, there is less CPU churn and no multicast session flaps during a failover event.

Multicast NSR is enabled by default, however, if any unsupported features like BNG or Snooping are configured, Multicast performs Non-Stop Forwarding (NSF) functionality during failover events. When Multicast NSR is enabled, multicast routing state is synchronized between the active and standby RSPs. Once the synchronization occurs, each of the multicast processes signal the NSR readiness to the system. For the multicast processes to support NSR, the processes must be hot standby compliant. That is, the processes on active and standby RSPs both have to be in synchronization at all times. The active RSP receives packets from the network and makes local decisions while the standby receives packet from the network and synchronizes it with the active RSPs for all the local decisions. Once the state is determined, a check is performed to verify if the states are synchronized. If the states are synchronized, a signal in the form NSR_READY is conveyed to the NSR system.

With NSR, in the case of a failover event, routing changes are updated to the forwarding plane immediately. With NSF, there is an NSF hold time delay before routing changes can be updated.

Non-Supported Features

The following features are unsupported on NG NSR:

- IGMP and MLD Snooping
- BNG
Failure Scenarios in NSR

If a switchover occurs before all multicast processes issue an NSR_READY signal, the proceedings revert back to the existing NSF behavior. Also, on receiving the GO_ACTIVE signal from the multicast processes, the following events occur in processes that have not signaled NSR_READY:

1. IGMP starts the NSF timer for one minute.
2. PIM starts the NSF timer for two minutes.
3. MSDP resets all peer sessions that are not synchronized.

Multicast VPN

Multicast VPN (MVPN) provides the ability to dynamically provide multicast support over MPLS networks. MVVPN introduces an additional set of protocols and procedures that help enable a provider to support multicast traffic in a VPN.

Note

PIM-Bidir is not supported on MVPN.

There are two ways MCAST VPN traffic can be transported over the core network:

- Rosen GRE (native): MVPN uses GRE with unique multicast distribution tree (MDT) forwarding to enable scalability of native IP Multicast in the core network. MVPN introduces multicast routing information to the VPN routing and forwarding table (VRF), creating a Multicast VRF. In Rosen GRE, the MCAST customer packets (c-packets) are encapsulated into the provider MCAST packets (p-packets), so that the PIM protocol is enabled in the provider core, and mrib/mfib is used for forwarding p-packets in the core.

- MLDP ones (Rosen, partition): MVPN allows a service provider to configure and support multicast traffic in an MPLS VPN environment. This type supports routing and forwarding of multicast packets for each individual VPN routing and forwarding (VRF) instance, and it also provides a mechanism to transport VPN multicast packets across the service provider backbone. In the MLDP case, the regular label switch path forwarding is used, so core does not need to run PIM protocol. In this scenario, the c-packets are encapsulated in the MPLS labels and forwarding is based on the MPLS Label Switched Paths (LSPs) similar to the unicast case.

In both the above types, the MVPN service allows you to build a Protocol Independent Multicast (PIM) domain that has sources and receivers located in different sites.

To provide Layer 3 multicast services to customers with multiple distributed sites, service providers look for a secure and scalable mechanism to transmit customer multicast traffic across the provider network. Multicast VPN (MVPN) provides such services over a shared service provider backbone, using native multicast technology similar to BGP/MPLS VPN.

MVPN emulates MPLS VPN technology in its adoption of the multicast domain (MD) concept, in which provider edge (PE) routers establish virtual PIM neighbor connections with other PE routers that are connected to the same customer VPN. These PE routers thereby form a secure, virtual multicast domain over the provider network. Multicast traffic is then transmitted across the core network from one site to another, as if the traffic were going through a dedicated provider network.
Multi-instance BGP is supported on multicast and MVPN. Multicast-related SAFIs can be configured on multiple BGP instances.

**Multicast VPN Routing and Forwarding**

Dedicated multicast routing and forwarding tables are created for each VPN to separate traffic in one VPN from traffic in another.

The VPN-specific multicast routing and forwarding database is referred to as MVRF. On a PE router, an MVRF is created when multicast is enabled for a VRF. Protocol Independent Multicast (PIM), and Internet Group Management Protocol (IGMP) protocols run in the context of MVRF, and all routes created by an MVRF protocol instance are associated with the corresponding MVRF. In addition to VRFs, which hold VPN-specific protocol states, a PE router always has a global VRF instance, containing all routing and forwarding information for the provider network.

**Multicast Distribution Tree Tunnels**

The multicast distribution tree (MDT) can span multiple customer sites through provider networks, allowing traffic to flow from one source to multiple receivers. For MLDP, the MDT tunnel are called Labeled MDT (LMDT).

Secure data transmission of multicast packets sent from the customer edge (CE) router at the ingress PE router is achieved by encapsulating the packets in a provider header and transmitting the packets across the core. At the egress PE router, the encapsulated packets are decapsulated and then sent to the CE receiving routers.

Multicast distribution tree (MDT) tunnels are point-to-multipoint. A MDT tunnel interface is an interface that MVRF uses to access the multicast domain. It can be deemed as a passage that connects an MVRF and the global MVRF. Packets sent to an MDT tunnel interface are received by multiple receiving routers. Packets sent to an MDT tunnel interface are encapsulated, and packets received from a MDT tunnel interface are decapsulated.

*Figure 6: Virtual PIM Peer Connection over an MDT Tunnel Interface*

![Figure 6: Virtual PIM Peer Connection over an MDT Tunnel Interface](image)

Encapsulating multicast packets in a provider header allows PE routers to be kept unaware of the packets’ origin—all VPN packets passing through the provider network are viewed as native multicast packets and are routed based on the routing information in the core network. To support MVPN, PE routers only need to support native multicast routing.

MVPN also supports optimized VPN traffic forwarding for high-bandwidth applications that have sparsely distributed receivers. A dedicated multicast group can be used to encapsulate packets from a specific source,
and an optimized MDT can be created to send traffic only to PE routers connected to interested receivers. This is referred to data MDT.

The rate at which the MVPN traffic switches over from the default to data MDT is $1/n$ the configured threshold value, where $n$ represents the number of slices in an incoming line card.

**InterAS Support on Multicast VPN**

The Multicast VPN Inter-AS Support feature enables service providers to provide multicast connectivity to VPN sites that span across multiple autonomous systems. This feature was added to MLDP profile that enables Multicast Distribution Trees (MDTs), used for Multicast VPNs (MVPNs), to span multiple autonomous systems.

There are two types of MVPN inter-AS deployment scenarios:

- **Single-Provider Inter-AS**—A service provider whose internal network consists of multiple autonomous systems.
- **Intra-Provider Inter-AS**—Multiple service providers that need to coordinate their networks to provide inter-AS support.

To establish a Multicast VPN between two autonomous systems, a MDT-default tunnel must be setup between the two PE routers. The PE routers accomplish this by joining the configured MDT-default group. This MDT-default group is configured on the PE router and is unique for each VPN. The PIM sends the join based on the mode of the groups, which can be PIM SSM, or sparse mode.

---

**Note**

PIM-Bidir is not supported on MVPN.

**Benefits of MVPN Inter-AS Support**

The MVPN Inter-AS Support feature provides these benefits to service providers:

- Increased multicast coverage to customers that require multicast to span multiple services providers in an MPLS Layer 3 VPN service.
- The ability to consolidate an existing MVPN service with another MVPN service, as in the case of a company merger or acquisition.

**InterAS Option A**

InterAS Option A is the basic Multicast VPN configuration option. In this option, the PE router partially plays the Autonomous System Border Router (ASBR) role in each Autonomous System (AS). Such a PE router in each AS is directly connected through multiple VRF bearing subinterfaces. MPLS label distribution protocol need not run between these InterAS peering PE routers. However, an IGP or BGP protocol can be used for route distribution under the VRF.

The Option A model assumes direct connectivity between PE routers of different autonomous systems. The PE routers are attached by multiple physical or logical interfaces, each of which is associated with a given VPN (through a VRF instance). Each PE router, therefore, treats the adjacent PE router like a customer edge (CE) router. The standard Layer 3 MPLS VPN mechanisms are used for route redistribution with each autonomous system; that is, the PEs use exterior BGP (eBGP) to distribute unlabeled IPv4 addresses to each other.
Option A allows service providers to isolate each autonomous system from the other. This provides better control over routing exchanges and security between the two networks. However, Option A is considered the least scalable of all the inter-AS connectivity options.

InterAS Option B

InterAS Option B is a model that enables VPNv4 route exchanges between the ASBRs. This model also distributes BGP MVPN address family. In this model, the PE routers use internal BGP (iBGP) to redistribute labeled VPNv4 routes either to an ASBR or to route reflector of which an ASBR is a client. These ASBRs use multiprotocol eBGP (MP-eBGP) to advertise VPNv4 routes into the local autonomous systems. The MP-eBGP advertises VPNv4 prefix and label information across the service provider boundaries. The advertising ASBR router replaces the two-level label stack, which it uses to reach the originating PE router and VPN destination in the local autonomous system, with a locally allocated label before advertising the VPNv4 route. This replacement happens because the next-hop attribute of all routes advertised between the two service providers is reset to the ASBR router's peering address, thus making the ASBR router the termination point of the label-switched path (LSP) for the advertised routes. To preserve the LSP between ingress and egress PE routers, the ASBR router allocates a local label that is used to identify the label stack of the route within the local VPN network. This newly allocated label is set on packets sent towards the prefix from the adjacent service provider.

Option B enables service providers to isolate both autonomous systems with the added advantage that it scales to a higher degree than Option A.

In the InterAS Option B model, only BGP-AD profiles are supported:

- MLDP MS-PMSI MP2MP with BGP-AD (profile 4)
- Rosen GRE with or without BGP-AD (profile 9)

Profile 9 is only supported with leaking root address into IGP.

MLDP MS-PMSI MP2MP with BGP-AD (profile 5) is not supported.

InterAS Option C

InterAS Option C allows exchange of VPNv4 routes between router reflectors (RRs) using multihop eBGP peering sessions. In this model, the MP-eBGP exchange of VPNv4 routes between the RRs of different autonomous systems is combined with the next hops for these routes exchanges between corresponding ASBR routers. This model also distributes BGP MVPN address family along with VPNv4. This model neither allows the VPNv4 routes to be maintained nor distributes by the ASBRs. ASBRs maintains labeled IPv4 routes to the PE routers within its autonomous system and uses eBGP to distribute these routes to other autonomous systems. In any transit autonomous systems, the ASBRs uses eBGP to pass along the labeled IPv4 routes, resulting in the creation of a LSP from the ingress PE router to the egress PE router.
Option C model uses the multihop functionality to allow the establishment for MP-eBGP peering sessions as the RR's of different autonomous systems are not directly connected. The RR's also do not reset the next-hop attribute of the VPNv4 routes when advertising them to adjacent autonomous systems as these do not attract the traffic for the destinations that they advertise, making it mandatory to enable the exchange of next hops. These are just a relay station between the source and receiver PEs. The PE router next-hop addresses for the VPNv4 routes, thus, are exchanged between ASBR routers. The exchange of these addresses between autonomous systems is accomplished by redistributing the PE router /32 addresses between the autonomous systems or by using BGP label distribution.

**Note**

Option C normally is deployed only when each autonomous system belongs to the same overall authority, such as a global Layer 3 MPLS VPN service provider with global autonomous systems.

In the InterAS Option C model, these profiles are supported:

- Rosen MLDP without BGP-AD (profile 1)
- MLDP MS-PMISI MP2MP with BGP-AD (profile 4)
- MLDP MS-PMISI MP2MP with BGP-AD (profile 5)
- MLDP VRF in-band signaling (profile 6)
- Rosen GRE with BGP-AD (profile 9)

**BGP Requirements**

PE routers are the only routers that need to be MVPN-aware and able to signal remote PEs with information regarding the MVPN. It is fundamental that all PE routers have a BGP relationship with each other, either directly or through a route reflector, because the PE routers use the BGP peering address information to derive the RPF PE peer within a given VRF.

PIM-SSM MDT tunnels cannot be set up without a configured BGP MDT address-family, because you establish the tunnels, using the BGP connector attribute.

See the Implementing BGP on Cisco IOS XR Software module of the *Routing Configuration Guide for Cisco NCS 6000 Series Routers* for information on BGP support for Multicast VPN.

**Multicast and MVPNv4 over v4GRE Interfaces**

Different types of networks rely on the third party network security to attain a secure IP multicast service, which encrypts and decrypts IP unicast traffic across untrusted core network through point-to-point tunnel. Therefore, the customer multicast traffic must be delivered as unicast traffic with encryption across untrusted core network. This is obtained by using generic routing encapsulation (GRE) tunneling to deliver multicast traffic as unicast through tunnel interfaces. Both Multicast and MVPN-v4 over GRE is supported.

- Multicast over v4-GRE Interfaces: Customer networks which are transporting Native IP Multicast across un-trusted core via IPv4 unicast GRE tunnels and encryption.
- MVPN-v4 over GRE Interfaces: Customer networks which are transporting L3VPN multicast services (mVPN-GRE) across an un-trusted core via IPv4 unicast GRE tunnels and encryption.
IPv6 Multicast and MVPNv6 over GRE are not supported.

Multicast interface features for GRE tunnels are applied when the inner packet is forwarding through multicast forwarding chain. However, the unicast interface features for GRE underlying interface are applied when the outer transport packet is forwarding through unicast forwarding chain. Thus, multicast interface features such as boundary ACL and TTL threshold are applicable and supported for unicast GRE tunnel just as other multicast main or sub interfaces. However, QoS for unicast GRE tunnel are applied at its underlying physical interface instead of applied on tunnel interface itself.

After setting up unicast routing protocol, the unicast GRE tunnels are treated as interfaces similar to that of a main or sub interface. The unicast GRE tunnels can participate in multicast routing when these are added to multicast routing protocols as multicast enabled interfaces. The unicast GRE tunnels are also used as the accepting or the forwarding interfaces of a multicast route.

**Concatenation of Unicast GRE Tunnels for Multicast Traffic**

This concatenation of unicast GRE tunnels refers to connecting trusted network islands by terminating one unicast GRE tunnel and relaying multicast forwarding to olist that includes different unicast GRE tunnels.

**TTL Threshold**

GRE enables to workaround networks containing protocols that have limited hop counts. Multicast traffic of mVPN-GRE from encapsulation provider edge (PE) router to decapsulation PE router is considered one hop, and customer packet TTL should be decremented by one number, irrespective of mid-point P routers between these PE routers.

The TTL on GRE transport header is derived from the configuration of GRE tunnel interface, and is decremented when traffic travels from encapsulation PE to decapsulation PE router via P routers. However, for concatenated unicast GRE tunnels, TTL on GRE transport header is reset when the router terminates one unicast GRE tunnel and forwards multicast packet to another unicast GRE tunnel.

GRE keep-alive message and the frequency of keep-alive message generation is 1 pps. Static police rate in LC remain 1000 pps to accommodate max 500 unicast GRE tunnel. However, the GRE key is not supported.

**Segmented Multicast - Overview**

IOS-XR supports the NextGen (NG) Multicast VPns with BGP (Border Gateway Protocol) MVPN SAFI (Sub AFI). NextGen MVPN defines a set of auto-discovery and C-multicast Route types that supports different MVPN features. The set of standards that extend MVPN-SAFI for Global Table Multicast (GTM) and to support MVPN in the presence of Segmented Cores is called as Segmented Multicast.

In Segmented Core MVPN, the Layer-3 VPN core or the GTM core is divided into multiple Segments. These segments can be multiple OSPF areas, Intermediate System - Intermediate System (IS-IS) levels, or multiple IGP instances, within an Autonomous System (AS) or across multiple ASes. Multicast core-trees are generally built from Ingress-PE to Egress-PE. With Segmented cores, separate multicast trees are present in each segment, and the border routers stitch the multicast trees between segments.
Border router refers to an Area Border Router (ABR) or an Autonomous System Border Router (ASBR). In certain cases, the routers are the aggregation routers, connected to two segments in a network. These border routers are attached to two Intra-AS segments. They may also be connected to ASBRs in other ASes at the same time.

To support Segmented Core, BGP has to be enabled between the Provider Edge (PE) and the Border Routers, and between the Border routers as well. BGP sessions are used to exchange Unicast routing information (for sources, RPs, and so on) and MVPN SAFI. Unicast routing information is exchanged with either Multicast SAFI (SAFI-2) or Unicast SAFI (SAFI-1) protocols.

The Segmented Core procedures change the way BGP A-D routes are sent between PEs. The C-multicast Routes (Types 6 and 7) are unaffected and only required on the PEs. An additional support is provided to facilitate the split behavior, where Types 1, 3, 4, 5 are to be sent from PEs to Border routers, while Types 6 and 7 are sent to a Service RR. The Service RR only peers with the PEs. This is achieved by adding the Inter-Area Segmented NH EC (SNH-EC) to the A-D routes alone and having a BGP policy to announce or block MVPN SAFI routes with and without SNH-ECs. Segmented Multicast and MVPNs are supported for LSM trees only.

### Segmented Multicast - Examples

#### Segmented Core Single AS

In the following figure, a single AS runs OSPF in the core. The core has a Backbone Area (0) and non-zero Areas for each site. A path from an Ingress PE to an Egress PE traverses through an Ingress non-zero Area (iPE to iABRs), Area 0 (iABR to eABRs), and the Egress non-zero Area (eABR to ePEs). In the following figure, only the PEs and the border routers (ABRs) are used, however, there can be multiple P-routers between the PE and ABR or between ABRs.

With Segmented Multicast, when there is a need to build an I-PMSI or S-PMSI tunnel between iPE and ePE, the tunnel is built with multiple core-trees. The iPE builds a core-tree to iABRs, and later the iABR builds a separate core-tree to the set of eABRs. The iABR then stitches the two core-trees, such that packets arriving on the non-zero Area core-tree will be forwarded out of the Area-0 core-tree. The Egress ABR (eABR) also performs a similar stitching between two core-trees to forward traffic to the Egress PEs (ePEs).

The example shows OSPF areas, however, the same concept is supported on IS-IS IGP as well.
Multiple ASes

The following example shows the case of segments spanning across multiple ASes. In most of the cases, the core tree on the DMZ link is Ingress Replication.

Segmented Multicast - Examples

Segmented Core Single AS

In the following figure, a single AS runs OSPF in the core. The core has a Backbone Area (0) and non-zero Areas for each site. A path from an Ingress PE to an Egress PE traverses through an Ingress non-zero Area (iPE to iABRs), Area 0 (iABR to eABRs), and the Egress non-zero Area (eABR to ePEs). In the following figure, only the PEs and the border routers (ABRs) are used, however, there can be multiple P-routers between the PE and ABR or between ABRs.
With Segmented Multicast, when there is a need to build an I-PMSI or S-PMSI tunnel between iPE and ePE, the tunnel is built with multiple core-trees. The iPE builds a core-tree to iABRs, and later the iABR builds a separate core-tree to the set of eABRs. The iABR then stitches the two core-trees, such that packets arriving on the non-zero Area core-tree will be forwarded out of the Area-0 core-tree. The Egress ABR (eABR) also performs a similar stitching between two core-trees to forward traffic to the Egress PEs (ePEs).

The example shows OSPF areas, however, the same concept is supported on IS-IS IGP as well.

**Multiple ASes**

The following example shows the case of segments spanning across multiple ASes. In most of the cases, the core tree on the DMZ link is Ingress Replication.
Segmented Multicast Stitching with inter-AS Solution

The segmented multicast stitching with inter-AS solution ensures that the ABR and ASBR having an incoming core type is switched to a different or same core type. iABR is the tail for the P2MP/MLDP tree of the ingress non-zero area, however, it can be a bud for the P2MP/MLDP tree on the ingress ASBR. The ingress LC decapsulates the incoming packet, and the encapsulated ID model is used to encapsulate the packet with the egress core type. When the egress core type is P2MP, the incoming label is replaced with the head local label of the outgoing P2MP core.

In the case where there are label receivers for the same core, the ingress LC creates two copies - one for the bud case and the other for encapsulation of the next core. The impact of sending two copies to the fabric will be similar to that of other existing implementations such as IRB and PBB-EVPN.

Working of Segmented Multicast Stitching

The working of the Segmented Multicast stitching is explained in the following steps:

1. iABR is the tail for the P2MP/MLDP tree of the ingress non-zero area. Similarly, eABR is the tail for the P2MP/MLDP tree of the zero-area core. At the iABR tail node's ingress LC, the encapsulation ID of the core zero area tree is downloaded.

2. The incoming label lookup on the tail node indicates that this is a stitching case, and decapsulates, and picks up the tunnel label/encapsulation ID of the next segment and initiate forwarding on to the next core type.

3. In the case of a bud scenario, the ingress LC at the ABR creates two copies when the incoming label indicates the need for stitching. One copy is used for stitching, and the other copy for regular bud node forwarding. For the bud scenario, 2 sets of (FGID, MGID) is required
   - one for the stitching
   - other for regular bud node forwarding

4. Control packets: PIM packets are exchanged between iPE and ePE. BGP packets are exchanged between iPE/iABR, iABR/eABR, and eABR/ePE.

5. OAM packets: OAM packets are placed on the incoming core and stitched across to the next core.

Configuring Segmented Multicast Stitching

You must configure segmented color on the PEs and optionally segment-border route policy on the ABRs/ASBRs for Segmented Multicast. When the segment-border router policy is not configured, the downstream core inherits the core type of the upstream core.

Configuration on a PE Router

SUMMARY STEPS

1. configure
2. multicast-routing vrf<vrf-name>
3. address-family ipv4
4. bgp auto-discovery mldp
5. segmented color color
6. commit
Implementing Multicast Routing on Cisco IOS XR Software

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 multicast-routing vrf&lt;vrf-name&gt;</td>
<td>Enters multicast configuration mode for the specified VRF. Note that the default configuration mode for multicast routing is default vrf (if the non-default VRF name is not specified).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3 address-family ipv4</td>
<td>Enters the address-family submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4 bgp auto-discovery mldp</td>
<td>Enables BGP auto discovery on the MLDP core tree.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 5 segmented color color</td>
<td>Enables segmented multicast and also enables Color Opaque Extended Community. The range of the color is 0 to 4294967295.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration on a ABR/ASBR

SUMMARY STEPS

1. configure
2. multicast-routing
3. address-family ipv4
4. mdt segment-border route-policy route-policy-name
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 multicast-routing</td>
<td>Enters the multicast configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3 address-family ipv4</td>
<td>Enters the address-family submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables segmented multicast on the border router for the specified route policy.</td>
</tr>
</tbody>
</table>

### Step 4

**mdt segment-border route-policy route-policy-name**

**Example:**

```
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)#
mdt segment-border route-policy blue
```

### Step 5

```
commit
```

---

## MVPN Static P2MP TE

This feature describes the Multicast VPN (MVPN) support for Multicast over Point-to-Multipoint-Traffic Engineering (P2MP-TE). Currently, Cisco IOS-XR software supports P2MP-TE only in the Global table and the (S, G) route in the global table can be mapped to P2MP-TE tunnels. However, this feature now enables service providers to use P2MP-TE tunnels to carry VRF multicast traffic. Static mapping is used to map VRF (S, G) traffic to P2MP-TE tunnels, and BGP-AD is used to send P2MP BGP opaque that includes VRF-based P2MP FEC as MDT Selective Provider Multicast Service Interface (S-PMSI).

The advantages of the MVPN support for Multicast over P2MP-TE are:

- Supports traffic engineering such as bandwidth reservation, bandwidth sharing, forwarding replication, explicit routing, and Fast ReRoute (FRR).
- Supports the mapping of multiple multicast streams onto tunnels.

### Figure 7: Multicast VRF

![Multicast VRF Diagram]

On PE1 router, multicast S,G (video) traffic is received on a VRF interface. The multicast S,G routes are statically mapped to P2MP-TE tunnels. The head-end then originates an S-PMSI (Type-3) BGP-AD route, for each of the S, Gs, with a PMSI Tunnel Attribute (PTA) specifying the P2MP-TE tunnel as the core-tree. The type of the PTA is set to RSVP-TE P2MP LSP and the format of the PTA Tunnel-identifier <Extended Tunnel ID, Reserved, Tunnel ID, P2MP ID>, as carried in the RSVP-TE P2MP LSP SESSION Object. Multiple S, G A-D routes can have the same PMSI Tunnel Attribute.

The tail-end PEs (PE2, PE3) receive and cache these S-PMSI updates (sent by all head-end PEs). If there is an S,G Join present in the VRF, with the Upstream Multicast Hop (UMH) across the core, then the PE looks...
for an S-PMSI announcement from the UMH. If an S-PMSI route is found with a P2MP-TE PTA, then the PE associates the tail label(s) of the Tunnel, with that VRF. When a packet arrives on the P2MP-TE tunnel, the tail-end removes the label and does an S,G lookup in the 'associated' VRF. If a match is found, the packet is forwarded as per its outgoing information.

**Multitopology Routing**

Multitopology routing allows you to manipulate network traffic flow when desirable (for example, to broadcast duplicate video streams) to flow over non-overlapping paths.

PIM uses a routing policy that supports matching on source or group address to select the topology in which to look up the reverse-path forwarding (RPF) path to the source. If you do not configure a policy, the existing behavior (to select a default table) remains in force.

Currently, IS-IS and PIM routing protocols alone support multitopology-enabled network.

**Label Switched Multicast (LSM) Multicast Label Distribution Protocol (mLDP) based Multicast VPN (mVPN) Support**

Label Switch Multicast (LSM) is MPLS technology extensions to support multicast using label encapsulation. Next-generation MVPN is based on Multicast Label Distribution Protocol (mLDP), which can be used to build P2MP and MP2MP LSPs through a MPLS network. These LSPs can be used for transporting both IPv4 and IPv6 multicast packets, either in the global table or VPN context.

**Benefits of LSM mLDP based MVPN**

LSM provides these benefits when compared to GRE core tunnels that are currently used to transport customer traffic in the core:

- It leverages the MPLS infrastructure for transporting IP multicast packets, providing a common data plane for unicast and multicast.
- It applies the benefits of MPLS to IP multicast such as Fast ReRoute (FRR) and
- It eliminates the complexity associated PIM.

**Configuring mLDP MVPN**

The mLDP MVPN configuration enables IPv4 multicast packet delivery using MPLS. This configuration uses MPLS labels to construct default and data Multicast Distribution Trees (MDTs). The MPLS replication is used as a forwarding mechanism in the core network. For mLDP MVPN configuration to work, ensure that the global MPLS mLDP configuration is enabled. To configure MVPN extranet support, configure the source multicast VPN Routing and Forwarding (mVRF) on the receiver Provider Edge (PE) router or configure the receiver mVRF on the source PE. mLDP MVPN is supported for both intranet and extranet.
P2MP and MP2MP Label Switched Paths

mLDP is an application that sets up Multipoint Label Switched Paths (MP LSPs) in MPLS networks without requiring multicast routing protocols in the MPLS core. mLDP constructs the P2MP or MP2MP LSPs without interacting with or relying upon any other multicast tree construction protocol. Using LDP extensions for MP LSPs and Unicast IP routing, mLDP can setup MP LSPs. The two types of MP LSPs that can be setup are Point-to-Multipoint (P2MP) and Multipoint-to-Multipoint (MP2MP) type LSPs.

A P2MP LSP allows traffic from a single root (ingress node) to be delivered to a number of leaves (egress nodes), where each P2MP tree is uniquely identified with a 2-tuple (root node address, P2MP LSP identifier). A P2MP LSP consists of a single root node, zero or more transit nodes, and one or more leaf nodes, where typically root and leaf nodes are PEs and transit nodes are P routers. A P2MP LSP setup is receiver-driven and is signaled using mLDP P2MP FEC, where LSP identifier is represented by the MP Opaque Value element. MP Opaque Value carries information that is known to ingress LSRs and Leaf LSRs, but need not be interpreted by transit LSRs. There can be several MP LSPs rooted at a given ingress node, each with its own identifier.

A MP2MP LSP allows traffic from multiple ingress nodes to be delivered to multiple egress nodes, where a MP2MP tree is uniquely identified with a 2-tuple (root node address, MP2MP LSP identifier). For a MP2MP LSP, all egress nodes, except the sending node, receive a packet sent from an ingress node.

A MP2MP LSP is similar to a P2MP LSP, but each leaf node acts as both an ingress and egress node. To build an MP2MP LSP, you can setup a downstream path and an upstream path so that:

- Downstream path is setup just like a normal P2MP LSP
- Upstream path is setup like a P2P LSP towards the upstream router, but inherits the downstream labels from the downstream P2MP LSP.

Packet Flow in mLDP-based Multicast VPN

For each packet coming in, MPLS creates multiple out-labels. Packets from the source network are replicated along the path to the receiver network. The CE1 router sends out the native IP multicast traffic. The PE1 router imposes a label on the incoming multicast packet and replicates the labeled packet towards the MPLS core.
network. When the packet reaches the core router (P), the packet is replicated with the appropriate labels for the MP2MP default MDT or the P2MP data MDT and transported to all the egress PEs. Once the packet reaches the egress PE, the label is removed and the IP multicast packet is replicated onto the VRF interface.

**Realizing a mLDP-based Multicast VPN**

There are different ways a Label Switched Path (LSP) built by mLDP can be used depending on the requirement and nature of application such as:

- P2MP LSPs for global table transit Multicast using in-band signaling.
- P2MP/MP2MP LSPs for MVPN based on MI-PMSI or Multidirectional Inclusive Provider Multicast Service Instance (Rosen Draft).
- P2MP/MP2MP LSPs for MVPN based on MS-PMSI or Multidirectional Selective Provider Multicast Service Instance (Partitioned E-LAN).

The Cisco NCS 6000 Series Router performs the following important functions for the implementation of mLDP:

1. Encapsulating VRF multicast IP packet with GRE/Label and replicating to core interfaces (imposition node).
2. Replicating multicast label packets to different interfaces with different labels (Mid node).
3. Decapsulate and replicate label packets into VRF interfaces (Disposition node).

**Characteristics of mLDP Profiles**

The characteristics of various mLDP profiles are listed in this section.

**Profile 4: MS-PMSI-mLDP-MP2MP with BGP-AD**

These are the characteristics of this profile:

- MP2MP mLDP trees are used in the core.
- The multicast traffic can be SM or SSM.
- Extranet, Hub and Spoke, CsC, Customer-RP-discovery (Embedded-RP, AutoRP, and BSR) are supported.
- Inter-AS Options A, B, and C are supported. VRF-Route-Import EC is announced in VPN-IP routes.
- Each PE sends Hellos only on the trees rooted on that PE. With this, in deployment scenarios, where the number of source PEs are much lesser than the total number of PEs in the MVPN, results in a huge reduction of PIM neighbors.

**Configuration rules for profiles**

**Rules for mLDP profiles (profile- 4)**

- MVPN must be enabled under bgp, if only profile 2 is configured.
- Support only for static RP for customer RP.
MLDP inband signaling

MLDP inband signaling allows the core to create (S,G) or (*,G) state without using out-of-band signaling such as BGP or PIM. It is supported in VRF (and in the global context). Both IPv4 and IPv6 multicast groups are supported.

In MLDP Inband signaling, one can configure an ACL range of multicast (S,G). This (S,G) can be transported in MLDP LSP. Each multicast channel (S,G), is 1 to 1 mapped to each tree in the inband tree. The (S,G) join, through IGMP/MLD/PIM, will be registered in MRIB, which is the client of MLDP.

MLDP In-band signalling supports transiting PIM (S,G) or (*,G) trees across a MPLS core without the need for an out-of-band protocol. In-band signaling is only supported for shared-tree-only forwarding (also known as sparse-mode threshold infinity). PIM Sparse-mode behavior is not supported (switching from (*,G) to (S,G).

The details of the MLDP profiles are discussed in the Multicast Configuration Guide for Cisco NCS 6000 Series Routers.

Summary of Supported MVPN Profiles

This table summarizes the supported MVPN profiles:

<table>
<thead>
<tr>
<th>Profile Number</th>
<th>Name</th>
<th>Opaque-value</th>
<th>BGP-AD</th>
<th>Data-MDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MS- PMSI (Partition)</td>
<td>Type 1 - Source-PE:Global-ID</td>
<td>I- PMSI with empty PTA</td>
<td>BGP-AD</td>
</tr>
<tr>
<td></td>
<td>MLDP MP2MP with BGP-AD</td>
<td></td>
<td>MS- PMSI for partition mdt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S- PMSI for data-mdt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S- PMSI cust RP-discovery trees</td>
<td></td>
</tr>
</tbody>
</table>

LSP-switch for P2MP-TE

Turnaround for P2MP-TE can be handled by LSP-switch with a partitioned profile. For partitioned profiles, there is no core tree (where all the PEs join). When the traffic arrives at the ingress PE, it is forwarded to the RP-PE on a LSP. The RP-PE must then switch the traffic to a different LSP for all the non-RP PE receivers.

MLDP Loop-Free Alternative Fast Reroute

Background

Generally, in a network, a network topology change, caused by a failure in a network, results in a loss of connectivity until the control plane convergence is complete. There can be various levels of loss of connectivity depending on the performance of the control plane, fast convergence tuning, and leveraged technologies of the control plane on each node in the network.

The amount of loss of connectivity impacts some loss-sensitive applications, which have severe fault tolerance (typically of the order of hundreds of milliseconds and up to a few seconds). In order to ensure that the loss
of connectivity conforms to such applications, a technology implementation for data plane convergence is essential. Fast Reroute (FRR) is one of such technologies that is primarily applicable to the network core. With the FRR solution, at each node, the backup path is pre-computed, and the traffic is routed through this backup path. As a result, the reaction to failure is local; immediate propagation of the failure and subsequent processing on to other nodes is not required. With FRR, if the failure is detected quickly, a loss of connectivity as low as 10s of milliseconds is achieved.

Loop-Free Alternative Fast Reroute

IP Loop Free Alternative FRR is a mechanism that enables a router to rapidly switch traffic to a pre-computed or a pre-programmed loop-free alternative (LFA) path (Data Plane Convergence), following either an adjacent link and node failure, or an adjacent link or node failure in both IP and LDP networks. The LFA path is used to switch traffic till the router installs the new primary next-hops based upon the changed network topology (Control Plane Convergence).

The goal of LFA FRR is to reduce the loss of connectivity to tens of milliseconds by using a pre-computed alternative next-hop, in the case where the selected primary next-hop fails.

There are two approaches to computing LFA paths:

- **Link-based (per-link):** In link-based LFA paths, all prefixes reachable through the primary (protected) link share the same backup information. This means that the whole set of prefixes sharing the same primary also shares the repair and FRR ability.

- **Prefix-based (per-prefix):** Prefix-based LFAs allow computing backup information for each prefix. This means that the repair and backup information computed for a given prefix using prefix-based LFA may be different from the one computed by link-based LFA.

Node-protection support is available with per-prefix LFA FRR on ISIS currently. It uses a tie-breaker mechanism in the code to select node-protecting backup paths.

The per-prefix LFA approach is preferred to the per-link LFA approach for the following reasons:

- Better node failure resistance.
- Better coverage: Each prefix is analyzed independently.
- Better capacity planning: Each flow is backed up on its own optimized shortest path.

mLDP LFA FRR

The point-to-point physical or bundle interface FRR mechanism is supported on mLDP, on Cisco ASR 9000 Series routers. FRR with LFA backup is supported on mLDP. When there is a link failure, mLDP automatically sets up and chooses the backup path. With this implementation, you must configure the physical or bundle interface for unicast traffic, so that the mLDP can act as an mLDP FRR.

LFA FRR support on mLDP is a per-prefix backup mechanism. As part of computing the LFA backup for a remote IP, the LFA backup paths for the loopback address of the downstream intermediate nodes are also computed. mLDP uses this small subset of information, by using the loopback address of the peer to compute the LFA backup path.

---

**Note**

Both IPv4 and IPv6 traffic is supported on the mLDP LFA FRR solution.
**Supported MLDP Profiles**

The list of supported mLDP profiles are:

- MVPN-MLDP Inband Signaling
  - Global Inband Profile
  - VRF Inband Profile
- MVPN Rosen MLDP
- MVPN Partitioned MLDP

**Supported Line Cards And Interfaces**

The supported line cards include Cisco ASR 9000 Enhanced Ethernet Line Card and Cisco ASR 9000 High Density 100GE Ethernet line cards; and the supported interface types include: Physical interface, Bundle interface, and the Bundle VLANs (Local Shut).

**Advantages of LFA FRR**

The following are the advantages of the LFA FRR solution:

- The backup path for the traffic flow is pre-computed.
- Reaction to failure is local, an immediate propagation and processing of failure on to other nodes is not required.
- If the failure is detected in time, the loss of connectivity of up to 10s of milliseconds can be achieved. Prefix independency is the key for a fast switchover in the forwarding table.
- The mechanism is locally significant and does not impact the Interior Gateway Protocol (IGP) communication channel.
- LFA next-hop can protect against:
  - a single link failure
  - failure of one of more links within a shared risk link group (SRLG)
  - any combination of the above

**MLDP LFA FRR - Features**

The following are the features of mLDP LFA FRR solution:

- Supports both IPv4 and IPv6 traffic
- Supports all the mLDP profiles
- Supports the LAG interfaces and sub-interfaces in the core
- Supports ECMP primary paths
- Supports both ISIS and OSPF routing protocols
- Supports switchover time of less than 50 milliseconds
• Supports switchover time to be independent of the number of multicast routes that has to be switched over.

Limitations of LFA FRR

The following are some of the known limitations of the LFA FRR solution:

• When a failure that is more extensive than that which the alternate was intended to protect occurs, there is the possibility of temporarily looping traffic (micro looping until Control Plane Convergence).
• Topology dependent. For example, either MPLS or MLDP dependent.
• Complex implementation.
• The solution is currently not supported on all platforms.

MLDP LFA FRR - Working

To enable FRR for mLDP over physical or bundle interfaces, LDP session-protection has to be configured. The sequence of events that occur in an mLDP LFA FRR scenario is explained with the following example:

Figure 9: MLDP LFA FRR - Setup

In this figure:
1. Router A is the source provider edge router, and the next Hop is Router B.
2. The primary path is Router A -> Router B -> Router D, and the backup path is from Router A -> Router C -> Router B -> Router D. The backup path is pre-computed by IGP through LFA prefix-based selection.
3. Backup tunnels are configured for Link A or auto-tunnels are enabled.
4. MLDP LSP is build from D, B, and A towards the root.
5. Router A installs a downstream forwarding replication over link A to Router B. This entry has both the primary interface (Link A) and the backup tunnel programmed.

Figure 10: Link Failure
When a link failure occurs on Link A:

1. Traffic over Link A is rerouted over the backup tunnel by imposing the traffic engineering (TE) label 20 towards mid Router C.
2. Router C performs penultimate hop popping (PHP) and removes the outer label 20.
3. Router B receives the mLDP packets with label 17 and forwards to Router D.

*Figure 11: Re-optimization - Make-Before-Break*

During re-optimization:

1. mLDP is notified that the root is reachable through Router C, and mLDP converges. With this, a new mLDP path is built to router A through Router C.
2. Router A forwards packets natively with old label 17 and also new label 22.
3. Router B drops traffic carried from new label 22 and forwards traffic with label 17.
4. Router B uses make-before-break (MBB) trigger to switch from either physical or bundle interface to native, label 17 to 21.
5. Router B prunes off the physical or bundle interface with a label withdraw to router A.

**MLDP LFA FRR - Behavior**

In the following scenarios, S is source router, D is the destination router, E is primary next hop, and N_1 is the alternative next hop.

*Figure 12: LFA FRR Behavior - LFA Available*

With LFA FRR, the source router S calculates an alternative next hop N_1 to forward traffic towards the destination router D through N_1, and installs N_1 as a the alternative next hop. On detecting the link failure between routers S and E, router S stops forwarding traffic destined for router D towards E through the failed link; instead it forwards the traffic to a pre-computed alternate next hop N_1, until a new SPF is run and the results are installed.
In the above scenario, if the link cost between the next hop N_1 and the destination router D is increased to 30, then the next hop N_1 would no longer be a loop-free alternative. (The cost of the path, from the next hop N_1 to the destination D through the source S, would be 17, while the cost from the next hop N_1 directly to destination D would be 30). Thus, the existence of a LFA next hop is dependent on the topology and the nature of the failure, for which the alternative is calculated.

**LFA Criteria**

In the above example, the LFA criteria of whether N is to be the LFA next-hop is met when:

\[
\text{Cost of path (N_1, D) < Cost of path (N_1, S) + Cost of path (E, S) + Cost of path (D, E)}
\]

Downstream Path criteria, which is subset of LFA, is met when:

\[
\text{Cost of path (N_1, D) < Cost of path (E, S) + Cost of path (D, E)}
\]

**Link Protecting LFA**

In the above illustration, if router E fails, then both router S and router N detects a failure and switch to their alternates, causing a forwarding loop between both routers S and N. Thus, the Link Protecting LFA causes Loop on Node Failure; however, this can be avoided by using a down-stream path, which can limit the coverage of alternates. Router S will be able to use router N as a downstream alternate, however, router N cannot use S. Therefore, N would have no alternate and would discard the traffic, thus avoiding the micro-looping.

**Node Protecting LFA**

Link and node protecting LFA guarantees protection against either link or node failure. Depending on the protection available at the downstream node, the downstream path provides protection against a link failure; however, it does not provide protection against a node failure, thereby preventing micro looping.

The criteria for LFA selection priority is that: the Link and Node protecting LFA is greater than the Link Protecting Downstream is greater than the Link Protecting LFA.
Configurations to Enable LFA FRR

Key Configurations To Enable LFA FRR

The key configurations to enable LFA FRR feature include:

- Router OSPF configuration
  The various configurations available under OSPF are:
  - Enabling Per-Prefix LFA
  - Excluding Interface from Using Backup
  - Adding Interfaces to LFA Candidate List
  - Restricting LFA Candidate List
  - Limiting Per-Prefix Calculation by Prefix Priority
  - Disabling Load Sharing of Backup Paths

- Router ISIS configuration
- Bidirectional Forwarding Detection (BFD) configuration
- MPLS configuration
  The various configurations available under MPLS are:
  - MBB (MLDP) configuration
  - Make Before Break (MBB) Delay X <sec> Delete Y <sec>
  - Configure FRR Timer for Scale Number of MLDP LSPs

Configuring Router OSPF LFA FRR

In OSPF configuration, configure per-prefix link based LFA to enable the LFA FRR feature. The detailed configuration steps with an example follows:

SUMMARY STEPS

1. configure
2. router ospf 0
3. area 0
4. interface Bundle-Ether10
5. fast-reroute per-prefix
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong> router ospf 0</td>
<td>Enters the OSPF configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(config)# router ospf 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> area 0</td>
<td>Enters the area submode under the OSPF configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(config-ospf)# area 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interface Bundle-Ether10</td>
<td>Enters the interface submode configuration, under OSPF area submode.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(config-ospf-ar)# interface Bundle-Ether10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> fast-reroute per-prefix</td>
<td>Enables the per-prefix mode of LFA calculation on the specified interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(config-ospf-ar-if)# fast-reroute per-prefix</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

**Example: Configuration to Enable OSPF LFA FRR**

```
! router ospf {tag}
area {area-id}
interface {interface}
fast-reroute per-prefix enable
!
```

**Enabling Per Prefix LFA**

Lists the steps required to enable per-prefix LFA mode of LFA calculation using OSPF configuration.

**SUMMARY STEPS**

1. configure
2. router ospf 0
3. area 0
4. interface Bundle-Ether10
5. fast-reroute per-prefix
6. commit
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> router ospf 0</td>
<td>Enters the OSPF configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# router ospf 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> area 0</td>
<td>Enters the area sub mode under the OSPF configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ospf)# area 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interface Bundle-Ether10</td>
<td>Enters the interface sub mode configuration, under OSPF area sub mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ospf-ar)# interface Bundle-Ether10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> fast-reroute per-prefix</td>
<td>Enables the per-prefix mode of LFA backup path calculation on the specified interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ospf-ar-if)# fast-reroute per-prefix</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

### Adding Interfaces to LFA Candidate List

Lists the steps required to add an interface to the LFA candidate list.

### SUMMARY STEPS

1. configure
2. router ospf 0
3. area 0
4. interface Bundle-Ether10
5. fast-reroute per-prefix lfa-candidate
6. commit

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action | Purpose |
--- | --- |
**Step 2** | **router ospf 0**  
Example:  
RP/0/RP0/CPU0:router(config)#router ospf 0 | Enters the OSPF configuration mode. |
**Step 3** | **area 0**  
Example:  
RP/0/RP0/CPU0:router(config-ospf)# area 0 | Enters the area submode under the OSPF configuration mode. |
**Step 4** | **interface Bundle-Ether10**  
Example:  
RP/0/RP0/CPU0:router(config-ospf-ar)# interface Bundle-Ether10 | Enters the interface submode configuration, under OSPF area submode. |
**Step 5** | **fast-reroute per-prefix lfa-candidate**  
Example:  
RP/0/RP0/CPU0:router(config-ospf-ar-if)# fast-reroute per-prefix lfa-candidate Bundle-Ether10 | Adds the listed interface to the LFA candidate list to compute backup paths.  
**Note**  
By default, no interfaces are on the LFA candidate list. |
**Step 6** | **commit** |  
Exclude Interface from Backup  
Lists the steps required to exclude an interface from using backup paths for LFA calculation using OSPF configuration. |

### SUMMARY STEPS

1. configure  
2. router ospf 0  
3. area 0  
4. interface Bundle-Ether10  
5. fast-reroute per-prefix exclude  
6. commit

### DETAILED STEPS

| Command or Action | Purpose |
--- | --- |
**Step 1** | **configure**  
Example:  
RP/0/RP0/CPU0:router# configure | Enters global configuration mode. |
**Step 2** | **router ospf 0**  
Example:  
RP/0/RP0/CPU0:router(config)#router ospf 0 | Enters the OSPF configuration mode. |
Restricting the Backup Interfaces to the LFA Candidate List

Lists the steps required to restrict the backup interface to the LFA candidate list.

**SUMMARY STEPS**

1. configure
2. router ospf 0
3. area 0
4. interface Bundle-Ether10
5. fast-reroute per-prefix use-candidate-only
6. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the OSPF configuration mode.</td>
</tr>
<tr>
<td>router ospf 0</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)#router ospf 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters the area submode under the OSPF configuration mode.</td>
</tr>
<tr>
<td>area 0</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ospf)# area 0</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> interface Bundle-Ether10</td>
<td>Enters the interface submode configuration, under OSPF area submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ospf-ar)# interface Bundle-Ether10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> fast-reroute per-prefix use-candidate-only</td>
<td>Restricts the calculation of the backup paths to only the interfaces</td>
</tr>
<tr>
<td>Example:</td>
<td>listed on the LFA candidate list.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ospf-ar-if)# fast-reroute per-prefix use-candidate-only</td>
<td>Note By default, the <code>fast-reroute per-prefix use-candidate-only</code> is</td>
</tr>
<tr>
<td></td>
<td>disabled.</td>
</tr>
<tr>
<td><strong>Step 6</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

### Limiting the Per-Prefix Calculation by Prefix-Priority

Lists the steps required to limit the per-prefix calculation by prefix-priority.

**SUMMARY STEPS**

1. configure
2. router ospf 0
3. area 0
4. interface Bundle-Ether10
5. fast-reroute per-prefix prefix-limit {priority}
6. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> router ospf 0</td>
<td>Enters the OSPF configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)#router ospf 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> area 0</td>
<td>Enters the area submode under the OSPF configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ospf)# area 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interface Bundle-Ether10</td>
<td>Enters the interface submode configuration, under OSPF area submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ospf-ar)# interface Bundle-Ether10</td>
<td></td>
</tr>
</tbody>
</table>
Disabling Load Sharing of the Backup Paths

Lists the steps required to disable the load sharing of the backup paths.

**SUMMARY STEPS**

1. configure
2. router ospf 0
3. area 0
4. interface Bundle-Ether10
5. fast-reroute per-prefix load-sharing disable
6. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> router ospf 0</td>
<td>Enters the OSPF configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# router ospf 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> area 0</td>
<td>Enters the area submode under the OSPF configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ospf)# area 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interface Bundle-Ether10</td>
<td>Enters the interface submode configuration, under OSPF area submode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ospf-ar)# interface Bundle-Ether10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> fast-reroute per-prefix load-sharing disable</td>
<td>Disables the load sharing of the backup paths.</td>
</tr>
<tr>
<td>Example:</td>
<td>It is used to control the load-balancing of the backup paths on a per-prefix basis.</td>
</tr>
</tbody>
</table>
### Configuring Router ISIS LFA FRR

In ISIS configuration, configure fast-reroute per-prefix to enable the LFA FRR feature.

#### SUMMARY STEPS

1. **configure**
2. **router isis instance id**
3. **net network-entity-title**
4. **nsr**
5. **nsf cisco**
6. **address-family ipv4 unicast**
7. **commit**
8. **interface GigabitEthernet0/0/1/1**
9. **address-family ipv4 unicast**
10. **fast-reroute per-prefix**
11. **interface GigabitEthernet0/0/1/7**
12. **commit**

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>RP/0/RP0/CPU0:router(config-isis)# <strong>configure</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>router isis instance id</strong></td>
<td>Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>RP/0/RP0/CPU0:router(config)# <strong>router isis MCAST</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>net network-entity-title</strong></td>
<td>Configures network entity titles (NETs) for the routing instance.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>RP/0/RP0/CPU0:router(config-isis)# <strong>net 49.0001.0000.0000.0001.00</strong></td>
<td></td>
</tr>
</tbody>
</table>

Note: By default, load-balancing of per-prefixes across all backup paths is enabled.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 nsr</td>
<td>Enables nonstop routing.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-isis)# nsr</td>
<td></td>
</tr>
<tr>
<td>Step 5 nsf cisco</td>
<td>Specifies that nonstop forwarding.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-isis)# nsf cisco</td>
<td></td>
</tr>
<tr>
<td>Step 6 address-family ipv4 unicast</td>
<td>Enters the address-family submode. This is supported only on unicast topologies.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
<tr>
<td>Step 8 interface GigabitEthernet0/0/1/1</td>
<td>Enters the interface submode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-isis-af)# interface GigabitEthernet0/0/1/1</td>
<td></td>
</tr>
<tr>
<td>Step 9 address-family ipv4 unicast</td>
<td>Enters the address-family submode. This is supported on unicast topologies only.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-isis-if-af)# address-family ipv4 unicast</td>
<td></td>
</tr>
<tr>
<td>Step 10 fast-reroute per-prefix</td>
<td>Enables LFA FRR.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-isis-if-af)# fast-reroute per-prefix</td>
<td></td>
</tr>
<tr>
<td>Step 11 interface GigabitEthernet0/0/1/7</td>
<td>Enters the interface submode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-isis-af)# interface GigabitEthernet0/0/1/7</td>
<td></td>
</tr>
<tr>
<td>Step 12 commit</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring Bidirectional Forwarding Detection**

When a local interface is down, that is, due to either a fiber cut or because of interface shutdown configuration is run, it can take a long delay in the order of tens of milliseconds for the remote peer to detect the link disconnection; so, to quickly detect the remote shut on physical port or on bundle interfaces, the physical port and bundle interfaces must be running Bidirectional Forwarding Detection (BFD) to ensure faster failure detection.
SUMMARY STEPS

1. configure
2. router ospf instance id
3. nsr
4. router-id instance id
5. nsf instance name
6. address-family ipv4 unicast
7. area instance id
8. bfd minimum-interval value
9. bfd fast-detect
10. bfd multiplier value
11. fast-reroute per-prefix
12. mpls traffic-eng
13. interface instance id
14. bfd fast-detect
15. fast-reroute per-prefix
16. commit
17. interface instance id
18. bfd fast-detect
19. fast-reroute per-prefix
20. commit
21. interface loopback0

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>RP/0/RP0/CPU0:router# configure</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>router ospf instance id Enters the OSPF routing configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>RP/0/RP0/CPU0:router(config)#router ospf 0</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>nsr Enables nonstop routing.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>RP/0/RP0/CPU0:router(config-ospf)# nsr</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>router-id instance id Specifies the router ID of the particular IPv4 address.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>RP/0/RP0/CPU0:router(config-ospf)# router-id 21.21.21.21</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>nsf instance name Enters the interface submode configuration, under OSPF mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>6</td>
<td><code>address-family ipv4 unicast</code></td>
</tr>
<tr>
<td>7</td>
<td><code>area instance id</code></td>
</tr>
<tr>
<td>8</td>
<td><code>bfd minimum-interval value</code></td>
</tr>
<tr>
<td>9</td>
<td><code>bfd fast-detect</code></td>
</tr>
<tr>
<td>10</td>
<td><code>bfd multiplier value</code></td>
</tr>
<tr>
<td>11</td>
<td><code>fast-reroute per-prefix</code></td>
</tr>
<tr>
<td>12</td>
<td><code>mpls traffic-eng</code></td>
</tr>
<tr>
<td>13</td>
<td><code>interface instance id</code></td>
</tr>
<tr>
<td>14</td>
<td><code>bfd fast-detect</code></td>
</tr>
<tr>
<td>Step 15</td>
<td>fast-reroute per-prefix</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Example:</td>
<td>fast-reroute per-prefix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 16</th>
<th>commit</th>
<th>Configures the specified interface.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Step 17</th>
<th>interface instance id</th>
<th>Configures the specified interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>interface instance id</td>
<td>RP/0/RP0/CPU0:router(config-ospf-af)# interface Bundle-Ether100.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 18</th>
<th>bfd fast-detect</th>
<th>Configures bidirectional forwarding detection to fast detection.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>bfd fast-detect</td>
<td>RP/0/RP0/CPU0:router(config-ospf-af-if)# bfd fast-detect</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 19</th>
<th>fast-reroute per-prefix</th>
<th>Enables the per-prefix mode of LFA calculation on the specified interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>fast-reroute per-prefix</td>
<td>RP/0/RP0/CPU0:router(config-ospf-af-if)# fast-reroute per-prefix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 20</th>
<th>commit</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Step 21</th>
<th>interface loopback0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>interface loopback0</td>
<td>RP/0/RP0/CPU0:router(config)# interface loopback0</td>
</tr>
</tbody>
</table>

---

**Example**

```
router ospf 0
nsr
 router-id 21.21.21.21
nsf cisco
 address-family ipv4 unicast
 area 0
 bfd minimum-interval 3
 bfd fast-detect
 bfd multiplier 2
 fast-reroute per-prefix
mpls traffic-eng
 interface Bundle-Ether100.1
 bfd fast-detect
 fast-reroute per-prefix
!
 interface Bundle-Ether100.2
 bfd fast-detect
 fast-reroute per-prefix
!
 interface Loopback0
!
```
In the above configuration example, `bfd minimum-interval 3` and `bfd multiplier 2` is configured; this means, that when a core-facing interface of a remote peer is down, the router detects this disconnect event in as short a time as 6 milliseconds.

### Configuring MPLS LFA FRR

**Before you begin**

In MPLS configuration, configure session protection to support LFA FRR feature. The detailed configuration steps and an example follows.

### SUMMARY STEPS

1. configure
2. router ospf 0
3. nsr
4. graceful-restart
5. router-id 20.20.20.20
6. session protection
7. address-family ipv4
8. commit

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>configure</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf 0</td>
<td>Enters the LDP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>mpls ldp</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)#mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>nsr</td>
<td>Configures non-stop routing.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>nsr</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-ldp)# nsr</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>graceful-restart</td>
<td>Restarts the interface.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>graceful-restart</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-ldp)# graceful-restart</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>router-id 20.20.20.20</td>
<td>Configures a router-id for the LDP process.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>router-id 20.20.20.20</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>session protection</code></td>
<td>Enables LFA FRR in the per-prefix mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-ldp)# session protection</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Step 7**              |                                              |
| `address-family ipv4`   | Enters address family configuration mode.    |
| **Example:**            |                                              |
| `RP/0/RP0/CPU0:router(config-ldp)# address-family ipv4` | |

| **Step 8**              |                                              |
| `commit`                |                                              |

**Example**

**Example: Configuration to enable MLDP LFA FRR**

```
mpls ldp
 nsr
 graceful-restart
! router-id 20.20.20.20
 session protection
 address-family ipv4
!
```

**Make Before Break Configuration for LFA FRR**

Make Before Break (MBB) is an inherent nature of MLDP. In MBB configuration, configure forwarding recursive to enable LFA FRR feature. If forwarding recursive is not configured, MLDP uses non-recursive method to select MLDP core facing interface towards next hop. The detailed configuration steps and an example follows.

**SUMMARY STEPS**

1. configure
2. mpls ldp
3. log
4. neighbor
5. nsr
6. graceful-restart
7. commit
8. mldp
9. address-family ipv4
10. forwarding recursive
11. make-before-break delay {seconds}
12. commit
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure</td>
<td>Enters global configuration mode. Example: <code>RP/0/RP0/CPU0:router# configure</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>mpls ldp</td>
<td>Enters the LDP configuration mode. Example: <code>RP/0/RP0/CPU0:router(config)# mpls ldp</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>log</td>
<td>Enters the log sub mode under the LDP sub mode. Example: <code>RP/0/RP0/CPU0:router(config-ldp)# log</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>neighbor</td>
<td>Configures the specified neighbor to the MLDP policy. Example: <code>RP/0/RP0/CPU0:router(config-ldp-log)# neighbor</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>nsr</td>
<td>Configures non-stop routing. Example: <code>RP/0/RP0/CPU0:router(config-ldp-log)# nsr</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>graceful-restart</td>
<td>Reverts the interface. Example: <code>RP/0/RP0/CPU0:router(config-ldp)# graceful-restart</code></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>mldp</td>
<td>Enters the MLDP sub mode under the LDP sub mode. Example: <code>RP/0/RP0/CPU0:router(config-ldp)# mldp</code></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>address-family ipv4</td>
<td>Enters the Address Family sub mode under the MLDP sub mode. Example: <code>RP/0/RP0/CPU0:router(config-ldp-mldp-af)# address-family ipv4</code></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>forwarding recursive</td>
<td>Enables LFA FRR. Example: <code>RP/0/RP0/CPU0:router(config-ldp-mldp-af)# forwarding recursive</code></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>make-before-break delay {seconds}</td>
<td>Sets the make-before-break delay to the specified number of seconds. Example: <code>RP/0/RP0/CPU0:router(config-ldp-mldp-af)# make-before-break delay 60</code></td>
</tr>
</tbody>
</table>
Example

Example Configuration Example of MBB for LFA FRR

```plaintext
mpls ldp
log
neighbor
nsr
graceful-restart
!
mldp
address-family ipv4
forwarding recursive
make-before-break delay 60
!
!
```

**Configuring Make Before Break Delay and Delete**

By default, MBB is set to 10 seconds. You can configure different MBB timing to determine when the merge node starts to accept the new label.

**SUMMARY STEPS**

1. configure
2. mpls ldp
3. mldp
4. address-family ipv4
5. make-before-break delay {seconds}
6. make-before-break delay {seconds} delete {seconds}
7. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>mpls ldp</td>
<td>Enters the LDP configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)#mpls ldp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>mldp</td>
<td>Enters the MLDP sub mode under the LDP sub mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ldp)#mldp</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 4</strong> address-family ipv4</td>
<td>Enters the Address Family sub mode under the MLDP sub mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ldp-mldp)#</td>
<td></td>
</tr>
<tr>
<td>address-family ipv4</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> make-before-break delay {seconds}</td>
<td>Sets the Make Before Break delay to 90 seconds.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ldp-mldp-af)#</td>
<td></td>
</tr>
<tr>
<td>make-before-break delay 90</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> make-before-break delay {seconds} delete {seconds}</td>
<td>Sets the Make Before Break delete delay to 60 seconds.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ldp-mldp-af)#</td>
<td></td>
</tr>
<tr>
<td>make-before-break delay 90 delete 60</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

**Example: Make Before Break Delay And Delete**

```
mldp
address-family ipv4
make-before-break delay ?
<0-600> Forwarding delay in seconds
make-before-break delay 90 ?
<0-60> Delete delay in seconds
make-before-break delay 90 delete 60 !
! In the above configuration example, the MBB (delay) period is set of 90 seconds.
The merge node starts accepting new label 90 seconds after detecting the link disconnection towards the head node.
The delete delay is set to 60 seconds; that is, when MBB expires, the time period after which the merge node sends old label delete request to head node is 60 seconds. The default value is zero. The range of delete delay is from 30 to 60, for scale LSPs.
```

**Configuring FRR Time for Scalable Number of mLDP LSPs**

In a scalable setup with more than 500 LSPs, when an FRR occurs, the unicast Internet Gateway Protocol (IGP) converges faster than multicast updates (LMRIB to FIB) for MLDP label updates. As a result, FIB can mark off FRR bit in 2 seconds after an FRR event, where MLDP label hardware programing is not complete in the egress LC hosting backup path.

The command **frr-holdtime** configures frr-holdtime to be proportional to the scale number of LSPs. The recommended frr-holdtime value is either the same, or lesser than the MBB delay timer. This ensures that the egress LC is in FRR state after the primary path down event.

When not configured, the default frr-holdtimer, in seconds, is set to 2.
SUMMARY STEPS

1. configure
2. cef platform lsm frr-holdtime <seconds>
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> cef platform lsm frr-holdtime &lt;seconds&gt;</td>
<td>Configures frr-holdtime to be proportional to the scale number of LSPs. In this case, configures the frr-holdtime to 30 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# cef platform lsm frr-holdtime 30</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

**Example: Configure FRR Holdtime**

```
cef platform lsm frr-holdtime ?
<3-180> Time in seconds
cef platform lsm frr-holdtime 45
commit
!
```

**MLDP Carrier Supporting Carrier Based MVPN**

The carrier-supporting-carrier (CSC) feature enables one MPLS VPN-based service provider to allow other service providers to use a segment of its backbone network. The service provider that provides the segment of backbone network to the other provider is called the backbone carrier, whereas the service provider that uses the backbone network is called the customer carrier. The customer carrier can be either an ISP itself or a BGP or MPLS VPN service provider, and can run an IP or MPLS in its network in former and later cases respectively. In either case, MPLS is run in backbone network and between the backbone and the customer carrier (on PE-CE link).
In the above illustration, P-PE and P routers are a part of backbone carrier. Customer carrier PE is labeled C-PE. The link between P-PE and C-PE is on VRF on P-PE and global table on C-PE. LDP/MLDP sessions run in VRF context on P-PEs link towards C-PE. There is an iBGP sessions between P-PEs exchanging vpnv4 addresses.

**MLDP CsC - Restrictions**

The following are the limitations of the MLDP CsC solution:

- P2MP LSPs are supported for CsC, however, no MP2MP support is provided.
- MBB cannot be enabled per VRF. It is either to be enabled for all VRFs or none can be enabled.
- MBB delay can be configured per VRF only.

**CsC Configuration Example - Overview**

The following figure describes an example configuration of the CsC feature:
The network consists of:

- Two cores: Inner and outer cores.
  - Inner Core: includes P-PE and P routers.
  - Outer Core: includes P-PE routers which are connected directly to C-PE routers.
  - VRF-lite: more than one C-PE connected to the same P-PE.

- IGP: [OSPF] on inner core routers in the global table (not on VRFs)

- BGP:
  - BGP/iBGP between P-PE routers.
  - eBGP between C-PE and P-PE routers.

  **Note**  
  C-PE and P-PE are directly connected.

- Static Routing: between C-PE and P-PE to trigger a creation of a label

- MLDPMPLS:
  - Two types of sessions: Global table of P-PE and P routers (of the inner core) and VRF of the P-PE routers and the global table of the C-PE routers.
  - Peer model: a P2MP tree is created in the inner core for each P2MP that exists in the outer core. When data MDT is selected, one LSP is created for each Mroute.

- PIM/Multicast: Not run either in the inner or outer cores. The inner core is transparent to PIM. Only profiles 12 and 14 are applicable.

**MC-15: Basic VRF and Interface Configuration**
vrf vpn101
  vpn id 1:1
  address-family ipv4 unicast
    import route-target
      1:1
    !
    export route-target
      1:1
    !
    !
    ! Loopback interfaces
    interface Loopback0
      ipv4 address 15.15.15.15 255.255.255.255
    interface Loopback101
      vrf vpn101
      ipv4 address 101.1.1.1 255.255.255.255
    !
    ! core interface
    interface TenGigE0/0/1/3
      ipv4 address 192.168.7.1 255.255.255.0
    !
    ! vrf interface
    interface TenGigE0/1/0/23
      vrf vpn101
      ipv4 address 192.168.89.1 255.255.255.0 transceiver permit pid all
  !
route-policy p2mp
  set core-tree mldp-default
end-policy
! route-policy pass-all
  pass
end-policy
! router static
  address-family ipv4 unicast
    0.0.0.0/0 172.18.51.1
  !
  vrf vpn101
  address-family ipv4 unicast
    192.168.89.2/32 TenGigE0/1/0/23
    192.168.90.2/32 TenGigE0/1/0/21
  !
  !
  router ospf 0
  nsr
  router-id 15.15.15.15
  area 0
    mpls traffic-eng
      interface Loopback0
    !
      interface TenGigE0/0/1/3
    !
    !
    mpls traffic-eng router-id 15.15.15.15
  !
  router bgp 100
  nsr
  mvpn
```plaintext
bgp router-id 15.15.15.15
bgp graceful-restart
address-family vpnv4 unicast
!
neighbor 17.17.17.17
 remote-as 100
 update-source Loopback0
 address-family vpnv4 unicast
!
!
vrf vpn101
 rd 1:1
 address-family ipv4 unicast
 redistribute connected
 redistribute static
 allocate-label all
!
neighbor 192.168.89.2
 remote-as 101
 address-family ipv4 labeled-unicast
 route-policy pass-all in
 route-policy pass-all out
 as-override
!
neighbor 192.168.90.2
 remote-as 101
 address-family ipv4 labeled-unicast
 route-policy pass-all in
 route-policy pass-all out
 as-override
!
!
mpls traffic-eng
 interface TenGigE0/0/1/3
!
!
mpls ldp
 log
 neighbor
!
 nsr
 graceful-restart
 mldp
 address-family ipv4
 carrier-supporting-carrier
 make-before-break delay 100
 recursive-fec
!
router-id 15.15.15.15
session protection
interface TenGigE0/0/1/3
!
vrf vpn101
 router-id 101.1.1.1
 address-family ipv4
!
interface TenGigE0/1/0/21
 address-family ipv4
!
```
MC-30: Basic VRF and Interface Configuration

vrf vpn101
  vpn id 10:1
  address-family ipv4 unicast
  import route-target 10:1
  export route-target 10:1
  address-family ipv6 unicast
  import route-target 10:1
  export route-target 10:1

interface Loopback0
  ipv4 address 30.30.30.30 255.255.255.255
interface Loopback101
  ipv4 address 101.4.1.1 255.255.255.255
interface Loopback1100
  vrf vpn101
  ipv4 address 101.4.100.1 255.255.255.255
interface Loopback1111
  ipv4 address 101.4.1.11 255.255.255.255

Core interface
interface TenGigE0/7/1/3
  ipv4 address 192.168.89.2 255.255.255.0 transceiver permit pid all
  route-policy p2mp
    set core-tree mldp-default
  end-policy

  route-policy CSC-PEER
    if destination in (192.168.89.1/32) then
      pass
    endif
  end-policy

  route-policy pass-all
    pass
  end-policy

  route-policy rosen-mldp
    set core-tree mldp-default
  end-policy

  router static
    address-family ipv4 unicast
      0.0.0.0/0 172.18.51.1
      192.168.89.1/32 TenGigE0/7/1/3
router bgp 101
nsr
bgp router-id 192.168.89.2
bgp graceful-restart
address-family ipv4 unicast
    redistribute connected
    redistribute static route-policy CSC-PEER
    allocate-label all
address-family vpnv4 unicast
address-family vpnv6 unicast
address-family ipv4 mvpn
address-family ipv6 mvpn
neighbor 101.3.1.1
    remote-as 101
    update-source Loopback101
    address-family vpnv4 unicast
    address-family vpnv6 unicast
    address-family ipv4 mvpn
    address-family ipv6 mvpn
neighbor 101.5.1.1
    remote-as 101
    update-source Loopback101
    address-family vpnv4 unicast
    address-family vpnv6 unicast
    address-family ipv4 mvpn
    address-family ipv6 mvpn
neighbor 192.168.89.1
    remote-as 100
ebgp-multihop 55
    address-family ipv4 labeled-unicast
        route-policy pass-all in
        route-policy pass-all out
vrf vpn101
    rd 10:1
    address-family ipv4 unicast
        redistribute connected
    address-family ipv6 unicast
        redistribute connected
    address-family ipv4 mvpn
    address-family ipv6 mvpn

mpls ldp
log
neighbor
! nsr
graceful-restart
mldp
address-family ipv4
!
router-id 101.4.1.1
session protection
interface TenGigE0/7/1/3
!
multicast-routing
address-family ipv4
 mdt source Loopback101
 interface all enable
!
address-family ipv6
 mdt source Loopback101
 interface all enable
!

vrf vpn101
address-family ipv4
 mdt source Loopback1111
 rate-per-route
 interface all enable
 accounting per-prefix
 bgp auto-discovery mldp
!
 mdt default mldp p2mp
!
address-family ipv6
 mdt source Loopback1112
 rate-per-route
 interface all enable
 accounting per-prefix
 bgp auto-discovery mldp
interface all enable
!
inter-as
!
 mdt default mldp p2mp
 mdt data 5
!
!

router pim
address-family ipv4
 hello-interval 600
 join-prune-interval 180
 nsf lifetime 180
!

vrf vpn101
address-family ipv4
 rpf topology route-policy p2mp
 hello-interval 600
 join-prune-interval 180
 mdt c-multicast-routing bgp
!
 rp-address 101.3.1.11
 log neighbor changes
 bsr candidate-bsr 101.4.100.1 hash-mask-len 32 priority 1
bsr candidate-rp 101.4.100.1 priority 192 interval 60
!
address-family ipv6
  rpf topology route-policy p2mp
  hello-interval 600
!
!

Configuration Changes for CsC

The following are the configuration changes that are required for supporting CsC solution:

Configuration Changes for IGP for CsC

The following are the configuration changes that are required for IGP for supporting CsC solution:

- OSPF configuration: on the two inner core P-PE routers, MC15 and MC17.
- Static routes: required for CsC features, are configured on the eBGP links between P-PE and C-PE.

The IGP configurations will be similar to the following:

On MC15

```plaintext
router ospf 0
 nsr
 router-id 15.15.15.15
 area 0
 mpls traffic-eng
 interface Loopback0
 !
 interface TenGigE0/0/1/3
 !
 !
 mpls traffic-eng router-id 15.15.15.15
!
```

On MC17

```plaintext
router ospf 0
 nsr
 router-id 17.17.17.17
 area 0
 mpls traffic-eng
 interface Loopback0
 !
 interface TenGigE0/2/1/1
 !
 !
 mpls traffic-eng router-id 17.17.17.17
!
```

On MC30, eBGP link between P-PE

```plaintext
router static
 address-family ipv4 unicast
 0.0.0.0/0 172.18.51.1
 192.168.89.1/32 TenGigE0/7/1/3
!”
On MC15, eBGP link between C-PE

```
router static
  address-family ipv4 unicast
  0.0.0.0/0 172.18.51.1
!
  vrf vpn101
  address-family ipv4 unicast
    192.168.89.2/32 TenGigE0/1/0/23
    192.168.90.2/32 TenGigE0/1/0/21
!
```

Configuration Changes for Supporting MLDP CsC

The following are the configuration changes that are required for supporting mLDP CsC solution:

- Enable MLDP globally.
- Enable LDP under VRF. This enables MLDP on same VRF.
- Enable the MLDP-specific VRF configurations (like the MBB, recursive forwarding, and so on) under the MLDP VRF submode.
- Configure the new Carrier supporting Carrier knob, added under global MLDP submode, on ingress P-PE routers.

The MLDP configuration will be similar to the following:

On MC30, C-PE router

```
mls ldp
  log
  neighbor
  !
  nsr
  graceful-restart
  mldp
  address-family ipv4
  !
  router-id 101.4.1.1
  session protection
  interface TenGigE0/7/1/3
  !
```

On MC15, P-PE router

```
mls traffic-eng
  interface TenGigE0/0/1/3
  !
mls ldp
  log
  neighbor
  !
  nsr
  graceful-restart
  mldp
  address-family ipv4
  carrier-supporting-carrier
```
make-before-break delay 100
 recursive-fec
!
! router-id 15.15.15.15
! session protection
! interface TenGigE0/0/1/3
!
! vrf vpn101
! router-id 101.1.1.1
! address-family ipv4
!
! interface TenGigE0/1/0/21
! address-family ipv4
!
! interface TenGigE0/0/23
! address-family ipv4

Configuration Changes for iBGP and eBGP for CsC

The following are the configuration changes that are required for iBGP and eBGP for supporting CsC solution:

- Configure iBGP between P-PE routers.
- Configure eBGP between P-PE and C-PE.

The configurations will be similar to the following:

On MC15, iBGP between P-PE

```plaintext
router bgp 100
  nsr
  mvpn
  bgp router-id 15.15.15.15
  bgp graceful-restart
  address-family vpnv4 unicast
!
  neighbor 17.17.17.17
  remote-as 100
  update-source Loopback0
  address-family vpnv4 unicast
!
!
  vrf vpn101
  rd 1:1
  address-family ipv4 unicast
  redistribute connected
  redistribute static
  allocate-label all
!
  neighbor 192.168.89.2
  remote-as 101
  address-family ipv4 labeled-unicast
  route-policy pass-all in
  route-policy pass-all out
  as-override
!
!
  neighbor 192.168.90.2
  remote-as 101
  address-family ipv4 labeled-unicast
  route-policy pass-all in
```
configuration changes for iBGP and eBGP for CsC

route-policy pass-all out
as-override
!

On MC30, eBGP between P-PE and C-PE

router bgp 101
 nsr
 bgp router-id 192.168.89.2
 bgp graceful-restart
 address-family ipv4 unicast
 redistribute connected
 redistribute static route-policy CSC-PEER
 allocate-label all
 !
 address-family vpnv4 unicast
 !
 address-family vpnv6 unicast
 !
 address-family ipv4 mvpn
 !
 address-family ipv6 mvpn
 !
negotiation 101.3.1.1
 remote-as 101
 update-source Loopback101
 address-family vpnv4 unicast
 !
 address-family vpnv6 unicast
 !
 address-family ipv4 mvpn
 !
 address-family ipv6 mvpn
 !
 neighbor 101.3.1.1
 remote-as 101
 update-source Loopback101
 address-family vpnv4 unicast
 !
 address-family vpnv6 unicast
 !
 address-family ipv4 mvpn
 !
 address-family ipv6 mvpn
 !
 neighbor 101.5.1.1
 remote-as 101
 update-source Loopback101
 address-family vpnv4 unicast
 !
 address-family vpnv6 unicast
 !
 address-family ipv4 mvpn
 !
 address-family ipv6 mvpn
 !
 neighbor 192.168.89.1
 remote-as 100
 address-family ipv4 labeled-unicast
 route-policy pass-all in
 route-policy pass-all out
 !
vrf vpn101
 rd 10:1
 address-family ipv4 unicast
 redistribute connected
 !
 address-family ipv6 unicast
 redistribute connected
 !
 address-family ipv4 mvpn
 !
Configuration Changes for Multicast for CsC

The following are the configuration changes that are required for Multicast for supporting CsC solution.

Multicast is active only in C-network on C-PE routers.

The configurations will be similar to the following:

On MC27

```
multicast-routing
  address-family ipv4
    mdt source Loopback101
    interface all enable
    !
    address-family ipv6
    mdt source Loopback101
    interface all enable
    !
  vrf vpn101
  address-family ipv4
    mdt source Loopback1111
    rate-per-route
    interface all enable
    accounting per-prefix
    bgp auto-discovery mldp
    !
    mdt default mldp p2mp
    mdt data 5
    !
    address-family ipv6
    mdt source Loopback1112
    rate-per-route
    interface all enable
    accounting per-prefix
    bgp auto-discovery mldp
    inter-as
    !
    mdt default mldp p2mp
    mdt data 5
    !
    !
```

```
router pim
  address-family ipv4
    auto-rp mapping-agent TenGigE0/0/2/0 scope 11 interval 60
    auto-rp candidate-rp TenGigE0/0/2/0 scope 10 group-list 224-4 interval 60
    nsf lifetime 180
    !
  vrf vpn101
  address-family ipv4
    rpf topology route-policy p2mp
    hello-interval 1
    mdt c-multicast-routing bgp
```
Multipoint Label Distribution Protocol Route Policy Map

Multipoint Label Distribution Protocol Route Policy Map

Multicast supports Multipoint Label Distribution Protocol Route Policy Map, wherein Multipoint Label Distribution Protocol uses the route policy maps to filter Label Mappings and selectively apply the configuration features on Cisco IOS-XR operating system.

Route policy map for configuration commands:

The route policy map for the configuration commands provide you the flexibility to selectively enable some of the mLDP features such as Make Before Break (MBB), Multicast only FRR (MoFRR) features, and so on, on the applicable LSPs. Features like Make Before Break (MBB), Multicast only FRR (MoFRR), etc. can be enabled on mLDP on IOS-XR operating system. When each of these features are enabled, they are enabled for all of the mLDP Labeled-Switched Paths (LSPs) irrespective of whether they are applicable for the particular LSP or not. For example, MoFRR is used for IPTV over mLDP in-band signaled P2MP LSPs, but not for the generic MVPN using a MP2MP LSPs. Using the route policy map, you can configure mLDP to to selectively enable some of the features.

Route policy for label mapping filtering:

The route policy map for the Label Mapping filtering provides a way to prevent the mLDP from crossing over from one plane to another in the event of a failure.

Generally, the LSPs based on mLDP are built on unicast routing principle, and the LSPs follow unicast routing as well. However, some networks are built on the concept of dual-plane design, where an mLDP LSP is created in each of the planes to provide redundancy. In the event of a failure, mLDP crosses over to another plane. To prevent mLDP from crossing over, mLDP Label Mappings are filtered either in an inbound or outbound direction.

mLDP uses the existing RPL policy infrastructure in IOS-XR. With the existing RPL policy, mLDP FECs are created and compared with the real mLDP FEC for filtering and configuration commands. (To create mLDP FECs for filtering, create a new RPL policy (specific for mLDP FECs) with the necessary show and configuration commands.) An mLDP FEC consists of 3 tuples: a tree type, root node address, and the opaque encoding, which uniquely identifies the mLDP LSP. An opaque encoding has a different TLV encoding associated with it. For each of the different opaque TLV, a unique RPL policy is to be created since the information in the mLDP opaque encoding is different.

The implementation of mLDP FEC based RPL filter is done in both RPL and LDP components.

• mLDP FEC

The mLDP FEC Route Policy Filtering is a combination of a root node and opaque types.

• Root Node:

Filtering is allowed only at the root node in combination with opaque types.
• Opaque Types:
The following are the opaque types allowed to create the Route Policies.
 • IPV4 In-band type
 • IPV6 In-band type
 • VPNv4 In-band type
 • VPNv6 In-band type
 • MDT Rosen model (VPN-ID) type
 • Global ID type
 • Static ID type
 • Recursive FEC type
 • VPN Recursive FEC type

• mLDP Label Mapping Filtering:
Label mapping filtering is supported either in inbound or outbound directions, based on the user preference. All default policies applicable in the neighborhood are supported by Label Mapping Filtering.

• mLDP Feature Filtering:
The RPL policy allows selective features to be enabled, applies to the following feature configuration commands:
 • MoFRR
 • Make Before Break
 • Recursive FEC

Configuring mLDP User Interface (Opaque Types) Using the Routing Policy

Perform this task to configure the LDP user interface using the route policy to filter Label Mappings and selectively apply the configuration features. LDP interface can be configured using the various available mLDP opaque parameters like the Global ID, IPv4, IPv6, MDT, Recursive, Recursive RD, Static ID, VPNv4, and VPNv6.

See the Implementing Routing Policy on Cisco ASR 9000 Series Router module of for a list of the supported attributes and operations that are valid for policy filtering.

Configuring the mLDP User Interface for LDP Opaque Global ID Using the Routing Policy

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp opaque global-id 32-bit decimal number then pass endif
4. end-policy
5. commit
6. Use the show command to verify the configuration: `show running-config route-policy mldp_policy`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the Route-policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td>route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)#route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures the mLDP global id to the specific global-id.</td>
</tr>
<tr>
<td>if mldp opaque global-id 32-bit decimal number then pass endif</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque global-id then pass endif</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end-policy</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>An example output is as shown:</td>
</tr>
<tr>
<td>Use the show command to verify the configuration: <code>show running-config route-policy mldp_policy</code></td>
<td></td>
</tr>
<tr>
<td>Wed Jun 18 11:41:09.333 IST</td>
<td></td>
</tr>
<tr>
<td>route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>if mldp opaque global-id 10 then pass endif</td>
<td></td>
</tr>
<tr>
<td>end-policy</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the mLDP User Interface for LDP Opaque IPv4 Using the Routing Policy

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp opaque ipv4 [ipv4 address] ipv4 address range] then pass endif
4. end-policy
5. commit
6. Use the show command to verify the configuration: `show running-config route-policy mldp_policy`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>route-policy mldp_policy</td>
<td>Enters the Route-policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)#route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>if mldp opaque ipv4 [ipv4 address</td>
<td>ipv4 address range] then pass endif</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque ipv4 then pass endif</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end-policy</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Use the show command to verify the configuration: <code>show running-config route-policy mldp_policy</code></td>
<td>An example output is as shown:</td>
</tr>
<tr>
<td>Example:</td>
<td>Sun Jun 22 20:03:34.308 IST</td>
<td>route-policy mldp_policy</td>
</tr>
<tr>
<td></td>
<td>if mldp opaque IPv4 10.0.0.1 224.1.1.1 then pass endif</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end-policy</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the mLDP User Interface for LDP Opaque IPv6 Using the Routing Policy

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp opaque ipv6 [ipv6 address|ipv6 address range] then pass endif
4. end-policy
5. commit
6. Use the show command to verify the configuration: `show running-config route-policy mldp_policy`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>route-policy mldp_policy</td>
<td>Enters the Route-policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)#route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>if mldp opaque ipv6 [ipv6 address</td>
<td>ipv6 address range] then pass endif</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque ipv6 then pass endif</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end-policy</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Use the show command to verify the configuration: <code>show running-config route-policy mldp_policy</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Sun Jun 22 20:03:34.308 IST</td>
<td></td>
</tr>
<tr>
<td>route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>if mldp opaque ipv6 10::1 ff05::1 then pass endif</td>
<td></td>
</tr>
<tr>
<td>end-policy</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the mLDP User Interface for LDP Opaque MDT Using the Routing Policy

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp opaque mdt [1:1] then pass endif
4. end-policy
5. commit
6. Use the show command to verify the configuration: `show running-config route-policy mldp_policy`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 route-policy mldp_policy</td>
<td>Enters the Route-policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>Step 3 if mldp opaque mdt [1:1] then pass endif</td>
<td>Configures the mLDP VPNID to the specific MDT number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque mdt then pass endif</td>
<td></td>
</tr>
<tr>
<td>Step 4 end-policy</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
<tr>
<td>Step 6 Use the show command to verify the configuration: show running-config route-policy mldp_policy</td>
<td>Example outputs are as shown:</td>
</tr>
<tr>
<td></td>
<td>Sun Jun 22 20:03:34.308 IST</td>
</tr>
<tr>
<td></td>
<td>route-policy mldp_policy</td>
</tr>
<tr>
<td></td>
<td>if mldp opaque mdt 1:1 0 then pass endif</td>
</tr>
<tr>
<td></td>
<td>end-policy</td>
</tr>
<tr>
<td></td>
<td>route-policy mldp_policy</td>
</tr>
<tr>
<td></td>
<td>if mldp opaque mdt any 10 then pass endif</td>
</tr>
<tr>
<td></td>
<td>end-policy</td>
</tr>
</tbody>
</table>

Configuring the mLDP User Interface for LDP Opaque Static ID Using the Routing Policy

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp opaque static-id 32-bit decimal number then pass endif
4. end-policy
5. commit
6. Use the show command to verify the configuration: **show running-config route-policy mldp_policy**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>route-policy mldp_policy</td>
<td>Enters the Route-policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)#route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>if mldp opaque static-id 32-bit decimal number then pass endif</td>
<td>Configures the mLDP static id to the specific static id.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque static-id then pass endif</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end-policy</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Use the show command to verify the configuration: show running-config route-policy mldp_policy</td>
<td>An example output is as shown below:</td>
</tr>
</tbody>
</table>
| **Example:** | Wed Jun 18 11:41:09.333 IST
route-policy mldp_policy
if mldp opaque static-id 10 then
 pass
endif
end-policy
! | |

Configuring the mLDP User Interface for LDP Opaque Recursive Using the Routing Policy

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp opaque recursive then pass endif
4. end-policy
5. commit
6. Use the show command to verify the configuration: `show running-config route-policy mldp_policy`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>route-policy mldp_policy</td>
<td>Enters the Route-policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)#route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>if mldp opaque recursive then pass endif</td>
<td>Configures the mLDP recursive variable.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque recursive then pass endif</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>end-policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Use the show command to verify the configuration: <code>show running-config route-policy mldp_policy</code></td>
<td>An example output is as shown:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon Jun 23 11:46:15.559 IST route-policy mldp_policy if mldp opaque recursive then pass endif end-policy !</td>
</tr>
</tbody>
</table>

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp opaque recursive -rd [2:2] then pass endif
4. end-policy
5. commit
6. Use the show command to verify the configuration: `show running-config route-policy mldp_policy`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 route-policy mldp_policy</td>
<td>Enters the Route-policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>Step 3 if mldp opaque recursive -rd [2:2] then pass endif</td>
<td>Configures the mLDP recursive to the specified variable.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque recursive-rd then pass endif</td>
<td></td>
</tr>
<tr>
<td>Step 4 end-policy</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
<tr>
<td>Step 6 Use the show command to verify the configuration: show running-config route-policy mldp_policy</td>
<td>An example output is as shown:</td>
</tr>
<tr>
<td></td>
<td>Mon Jun 23 12:15:37.512 IST</td>
</tr>
<tr>
<td></td>
<td>route-policy mldp_policy</td>
</tr>
<tr>
<td></td>
<td>if mldp opaque recursive-rd 2:2 then pass endif</td>
</tr>
<tr>
<td></td>
<td>endif</td>
</tr>
<tr>
<td></td>
<td>end-policy</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
</tbody>
</table>

Configuring the mLDP User Interface for LDP Opaque VPNv4 Using the Routing Policy

Summary Steps

1. configure
2. route-policy mldp_policy
3. if mldp opaque vpnv4 [2:2] then pass endif
4. if mldp opaque vpnv4 [2:2 10.1.1.1 232.1.1.1] then pass endif
5. end-policy
6. commit
7. Use the show command to verify the configuration: show running-config route-policy mldp_policy
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: configure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>route-policy mldp_policy</td>
<td>Enters the Route-policy configuration mode, where you can define the route policy.</td>
</tr>
<tr>
<td></td>
<td>Example: route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>if mldp opaque vpnv4 [2:2] then pass endif</td>
<td>Configures the mLDP vpnv4 variable to the specified variable.</td>
</tr>
<tr>
<td></td>
<td>Example: if mldp opaque vpnv4 then pass endif</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque vpnv4 then pass endif</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>if mldp opaque vpnv4 [2:2 10.1.1.1 232.1.1.1] then pass endif</td>
<td>Configures the mLDP vpnv4 variable to the specified range of variable addresses.</td>
</tr>
<tr>
<td></td>
<td>Example: if mldp opaque vpnv4 then pass endif</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque vpnv4 then pass endif</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end-policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: end-policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-rpl)# end-policy</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Use the show command to verify the configuration: show running-config route-policy mldp_policy</td>
<td>Example outputs are as shown:</td>
</tr>
<tr>
<td></td>
<td>Sun Jun 22 20:03:34.308 IST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if mldp opaque vpnv4 2:2 10.1.1.1 232.1.1.1 then</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>endif</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end-policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>route-policy mldp_policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if mldp opaque vpnv4 any 0.0.0.0 224.1.1.1 then</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>endif</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end-policy</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the mLDP User Interface for LDP Opaque VPNv6 Using the Routing Policy

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp opaque vpnv6 [2:2] then pass endif
4. if mldp opaque vpnv6 [2:2 10::1 FF05::1] then pass endif
5. end-policy
6. commit
7. Use the show command to verify the configuration: **show running-config route-policy mldp_policy**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | configure | Enters global configuration mode.
Example:
RP/0/RP0/CPU0:router# configure |
| Step 2 | route-policy mldp_policy | Enters the Route-policy configuration mode, where you can define the route policy.
Example:
RP/0/RP0/CPU0:router(config)#route-policy mldp_policy |
| Step 3 | if mldp opaque vpnv6 [2:2] then pass endif | Configures the mLDP vpnv6 variable to the specified variable.
Example:
RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque vpnv4 then pass endif |
| Step 4 | if mldp opaque vpnv6 [2:2 10::1 FF05::1] then pass endif | Configures the mLDP vpnv6 variable to the specified variable range of addresses.
Example:
RP/0/RP0/CPU0:router(config-rpl)# if mldp opaque vpnv6 then pass endif |
| Step 5 | end-policy | |
Example:
RP/0/RP0/CPU0:router(config-rpl)# end-policy |
| Step 6 | commit | |
| Step 7 | Use the show command to verify the configuration: **show running-config route-policy mldp_policy** | An example output is as shown:
Sun Jun 22 20:03:34.308 IST
route-policy mldp_policy
if mldp opaque vpnv6 2:2 10::1 ff05::1 then
pass
endif
end-policy
! |

Configuring mLDP FEC at the Root Node

Perform this task to configure mLDP FEC at the root node using the route policy to filter Label Mappings and selectively apply the configuration features. Currently, mLDP FEC is configured to filter at the IPV4 root node address along with the mLDP opaque types.
Configuring the mLDP FEC at the Root Node Using the Route Policy

SUMMARY STEPS

1. configure
2. route-policy mldp_policy
3. if mldp root
4. end-policy
5. commit
6. Use the show command to verify the configuration: `show running-config route-policy mldp_policy`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>configure</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	route-policy mldp_policy	Enters the Route-policy configuration mode, where you can define the route policy.
	Example:	
	RP/0/RP0/CPU0:router(config)#route-policy	
	mldp_policy	

Step 3	if mldp root	Configures the mLDP root address to the specified IPv4 IP address.
	Example:	
	RP/0/RP0/CPU0:router(config-rpl)# if mldp root[ipv4 address] then pass endif	

Step 4	end-policy	
	Example:	
	RP/0/RP0/CPU0:router(config-rpl)# end-policy	

| Step 5 | commit | |

Step 6	Use the show command to verify the configuration: `show running-config route-policy mldp_policy`	The current configuration output is as shown:
		route-policy mldp_policy
		if mldp root 10.0.0.1 then
		pass
		endif
		end-policy
		!

Example of an MLDP Route Policy which shows the filtering option of a Root Node IPv4 address and mLDP Opaque IPv4 address

Show configuration output for the mLDP root IPv4 address and mLDP opaque IPv4 address range
route-policy mldp_policy
 if mldp root 10.0.0.1 and mldp opaque ipv4 192.168.3.1 232.2.2.2 then
 pass
 endif
end-policy

Configuring the mLDP User Interface to Filter Label Mappings

Label mapping filtering is supported either in inbound or outbound directions, based on the user preference. All default policies applicable in the neighborhood are supported by Label Mapping Filtering.

SUMMARY STEPS

1. **configure**
2. **mpls ldp mldp**
3. **address-family ipv4**
4. **neighbor[ipv4 ip address]route-policy mldp_policy in | out**
5. **end-policy**
6. **commit**
7. Use the show command to verify the configuration: `show running-config route-policy mldp_policy`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RPO/CPU0:router# configure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mpls ldp mldp</td>
<td>Enters the LDP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RPO/CPU0:router(config)# mpls ldp mldp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>address-family ipv4</td>
<td>Enters the MLDP address family configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RPO/CPU0:router(config-ldp-mldp)# address-family ipv4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>neighbor[ipv4 ip address]route-policy mldp_policy in</td>
<td>Configures the specified neighborhood IPv4 IP address to the MLDP policy as either inbound or outbound route policy.</td>
</tr>
<tr>
<td></td>
<td>out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RPO/CPU0:router(config-ldp-mldp)# neighbor ipv4 ip address route-policy mldp_policy in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end-policy</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the mLDP User Interface for Feature Filtering

RPL policy allows the user to selectively enable features for filtering.

Configuring the mLDP User Interface for Feature Filtering - MoFRR

SUMMARY STEPS

1. configure
2. mpls ldp mldp
3. mofrr route-policy mldp_policy
4. end
5. commit
6. Use the show command to verify the configuration: `show running-config mpls ldp mldp`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router# configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls ldp mldp</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config)# mpls ldp mldp</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>mofrr route-policy mldp_policy</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-ldp-mldp)# mofrr route-policy mldp_policy</code></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 4 | end
Example: RP/0/RP0/CPU0:router(config-ldp-mldp)# end

Step 5 | commit

Step 6 | Use the show command to verify the configuration: **show running-config mpls ldp mldp**
An example output is as shown:

```
Wed Jun 25 12:46:52.177 IST
mpls ldp
mldp
address-family ipv4
make-before-break delay 0
mofrr route-policy mldp_policy
neighbor route-policy mldp_policy out
neighbor 1.1.1.1 route-policy mldp_policy in
neighbor 1.1.1.1 route-policy mldp_policy out
neighbor 2.2.2.2 route-policy mldp_policy out
recursive-fec route-policy mldp_policy
!
!
```

An example output showing the mLDP MoFRR output

```
RP/0/1/CPU0:GSR3#sh mpls mldp database opaque-type ipv4
mLDP database
LSM-ID: 0x00019  Type: P2MP  Uptime: 03:25:15
FEC Root : 10.0.0.1
Opaque decoded : [ipv4 0.0.0.0 224.1.1.1]
Features : MoFRR
Upstream neighbor(s):
   10.0.0.1:0  [Active]  Uptime: 03:25:15
   Next Hop   : 10.0.3.3
   Interface  : GigabitEthernet0/2/1/1
   Local Label (D) : 16028
Downstream client(s):
   LDP 10.0.0.2:0  Uptime: 03:25:15
   Next Hop   : 10.0.4.2
   Interface  : GigabitEthernet0/2/1/2
   Remote label (D) : 16029
```

Configuring the mLDP User Interface for Feature Filtering - Make-before-break

SUMMARY STEPS

1. configure
2. mpls ldp mldp
3. address-family ipv4
4. make-before-break route-policy mldp_policy
5. end
6. commit
7. Use the show command to verify the configuration: `show running-config mpls ldp mldp`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router#</td>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>mpls ldp mldp</code></td>
<td>Enters the LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>mpls ldp mldp</code></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)#</td>
<td><code>mpls ldp mldp</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>address-family ipv4</code></td>
<td>Enters the LDP address family configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>address-family ipv4</code></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ldp-mldp)#</td>
<td><code>address-family ipv4</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>make-before-break route-policy mldp_policy</code></td>
<td>Configures the specified feature to the MLDP policy to be allowed to be selected for filtering.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>make-before-break route-policy mldp_policy</code></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ldp-mldp-af)#</td>
<td><code>make-before-break route-policy mldp_policy</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ldp-mldp-af)#</td>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>commit</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Use the show command to verify the configuration: <code>show running-config mpls ldp mldp</code></td>
<td>An example output is as shown:</td>
</tr>
</tbody>
</table>

```
Wed Jun 25 13:05:31.303 IST
mpls ldp
mldp
address-family ipv4
make-before-break delay 0
make-before-break route-policy mldp_policy
mofrr route-policy mldp_policy
neighbor route-policy mldp_policy out
neighbor 1.1.1.1 route-policy mldp_policy in
neighbor 1.1.1.1 route-policy mldp_policy out
neighbor 2.2.2.2 route-policy mldp_policy out
!  
!  
```

An example output showing the mLDP make-before-break output

```
RP/0/1/CPU0:GSR3#sh mpls mldp database opaque-type ipv4
mLDP database
```
Configuring the mLDP User Interface for Feature Filtering - Recursive FEC

SUMMARY STEPS

1. configure
2. mpls ldp mldp
3. address-family ipv4
4. recursive-fec route-policy rfec
5. end
6. commit
7. Use the show command to verify the configuration: `show running-config mpls ldp mldp`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls ldp mldp</td>
<td>Enters the LDP configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# mpls ldp mldp</td>
<td></td>
</tr>
<tr>
<td>Step 3 address-family ipv4</td>
<td>Enters the LDP address family configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ldp-mldp)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 4 recursive-fec route-policy rfec</td>
<td>Configures the specified feature to the mLDP policy to be allowed to be selected for filtering.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ldp-mldp)# recursive-fec route-policy rfec</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
An example output showing the mLDP make-before-break output

RP/0/1/CPU0:GSR3#sh mpls mldp database opaque-type ipv4
mLDP database
LSM-ID: 0x040019 Type: P2MP Uptime: 03:25:15
FEC Root : 10.0.0.1
Opaque decoded : [ipv4 0.0.0.0 224.1.1.1]
Features : MoFRR MBB RFEC
Upstream neighbor(s):
 10.0.0.1:0 [Active] Uptime: 03:25:15
 Next Hop : 10.0.3.3
 Interface : GigabitEthernet0/2/1/1
 Local Label (D) : 16028
Downstream client(s):
 LDP 10.0.0.2:0 Uptime: 03:25:15
 Next Hop : 10.0.4.2
 Interface : GigabitEthernet0/2/1/2
 Remote label (D) : 16029

Limitations of Route Policy Map

Limitations:

The following are the limitations of the route policy map:

- After changing the Route Policy filter to be more restrictive, the mLDP label bindings that were earlier allowed are not removed. You have to run the `clear mpls ldp neighbor` command to clear the mLDP database.

- If you select a less restrictive filter, mLDP initiates a wildcard label request in order to install the mLDP label bindings that were denied earlier.
Next-Generation Multicast VPN

Next-Generation Multicast VPN (NG-MVPN) offers more scalability for Layer 3 VPN multicast traffic. It allows point-to-multipoint Label Switched Paths (LSP) to be used to transport the multicast traffic between PEs, thus allowing the multicast traffic and the unicast traffic to benefit from the advantages of MPLS transport, such as traffic engineering and fast re-route. This technology is ideal for video transport as well as offering multicast service to customers of the layer 3 VPN service.

NG-MVPN supports:

- VRF Route-Import and Source-AS Extended Communities
- Upstream Multicast Hop (UMH) and Duplicate Avoidance
- Leaf AD (Type-4) and Source-Active (Type-5) BGP AD messages
- Default-MDT with mLDP P2MP trees and with Static P2MP-TE tunnels
- BGP C-multicast Routing
- RIB-based Extranet with BGP AD
- Accepting (*,G) S-PMSI announcements
- Egress-PE functionality for Ingress Replication (IR) core-trees
- Enhancements for PIM C-multicast Routing
- Migration of C-multicast Routing protocol
- PE-PE ingress replication
- Dynamic P2MP-TE tunnels
- Flexible allocation of P2MP-TE attribute-sets
- Data and partitioned MDT knobs
- Multi-instance BGP support
- SAFI-129 and VRF SAFI-2 support
- Anycast-RP using MVPN SAFI

PE-PE Ingress Replication

The ingress PE replicates a C-multicast data packet belonging to a particular MVPN and sends a copy to all or a subset of the PEs that belong to the MVPN. A copy of the packet is tunneled to a remote PE over a Unicast Tunnel to the remote PE.

IR-MDT represents a tunnel that uses IR as the forwarding method. It is usually, one IR-MDT per VRF, with multiple labeled switch paths (LSP) under the tunnel.
When PIM learns of Joins over the MDT (using either PIM or BGP C-multicast Routing), it downloads IP S,G routes to the VRF table in MRIB, with IR-MDT forwarding interfaces. Each IR-MDT forwarding interface has a LSM-ID allocated by PIM. Currently, LSM-ID is managed by mLDP and can range from 0 to 0xFFFFF (20-bits). For IR, the LSM-ID space is partitioned between mLDP and IR. For IR tunnels, the top (20th) bit is always be set, leading to a range of 0x80000 to 0xFFFFF. mLDP’s limit is 0 to 0x7FFFFF.

Multicast IRB

Multicast IRB provides the ability to route multicast packets between a bridge group and a routed interface using a bridge-group virtual interface (BVI). It can be enabled with multicast-routing. THE BVI is a virtual interface within the router that acts like a normal routed interface. For details about BVI, refer Interface and Hardware Component Configuration Guide for Cisco NCS 6000 Series Routers

BV interfaces are added to the existing VRF routes and integrated with the replication slot mask. After this integration, the traffic coming from a VRF BVI is forwarded to the VPN.

Supported bridge port types

- Bundles
- Satellites
- EFPs (physical, vlans, etc)
- Pseudowires

Restrictions

- Supported only on Ethernet line cards and enhanced ethernet line cards.
- Support only for IPv4
- Supports IGMP snooping

Multicast IRB

The CE-PE is collapsed into 1 router (IRB) and IGMP snooping is enabled on the BVI.

BVI type is included in a multicast VRF. After the BVI slot mask is included in the VRF route slot mask, the traffic from the VRF BVI is forwarded to the VPN/ core.

Multicast support for PW-HE interfaces

Multicast support for Pseudowire Head-end (PW-HE) interfaces is available only on the enhanced ethernet cards.

Multicast support is available under these circumstances:

- IPv4 and IPv6 multicast traffic forwarding over the L3 PW-HE interface/sub-interface. PW-HE interface type can be PW-ether (VC4 or VC5) or PW-iw (VC11). IPv6 multicast is not available on VC11.

- L3 PW-HE interfaces/sub-interfaces in global, MVPNv4 and MVPNv6 VRFs.

- L3 PW-HE interface/sub-interfaces in MVPNv4 and MVPNv6 where the core can be GRE or MLDP.

- PIM-SM, PIM-SSM (PE-CE), MSDP and PIM Auto-RP over the PW-HE interface.
Multicast Source Discovery Protocol

Multicast Source Discovery Protocol (MSDP) is a mechanism to connect multiple PIM sparse-mode domains. MSDP allows multicast sources for a group to be known to all rendezvous points (RPs) in different domains. Each PIM-SM domain uses its own RPs and need not depend on RPs in other domains.

An RP in a PIM-SM domain has MSDP peering relationships with MSDP-enabled routers in other domains. Each peering relationship occurs over a TCP connection, which is maintained by the underlying routing system.

MSDP speakers exchange messages called Source Active (SA) messages. When an RP learns about a local active source, typically through a PIM register message, the MSDP process encapsulates the register in an SA message and forwards the information to its peers. The message contains the source and group information for the multicast flow, as well as any encapsulated data. If a neighboring RP has local joiners for the multicast group, the RP installs the S, G route, forwards the encapsulated data contained in the SA message, and sends PIM joins back towards the source. This process describes how a multicast path can be built between domains.

Although you should configure BGP or Multiprotocol BGP for optimal MSDP interdomain operation, this is not considered necessary in the Cisco IOS XR Software implementation. For information about how BGP or Multiprotocol BGP may be used with MSDP, see the MSDP RPF rules listed in the Multicast Source Discovery Protocol (MSDP), Internet Engineering Task Force (IETF) Internet draft.

Multicast Nonstop Forwarding

The Cisco IOS XR Software nonstop forwarding (NSF) feature for multicast enhances high availability (HA) of multicast packet forwarding. NSF prevents hardware or software failures on the control plane from disrupting the forwarding of existing packet flows through the router.

The contents of the Multicast Forwarding Information Base (MFIB) are frozen during a control plane failure. Subsequently, PIM attempts to recover normal protocol processing and state before the neighboring routers time out the PIM hello neighbor adjacency for the problematic router. This behavior prevents the NSF-capable router from being transferred to neighbors that will otherwise detect the failure through the timed-out adjacency. Routes in MFIB are marked as stale after entering NSF, and traffic continues to be forwarded (based on those routes) until NSF completion. On completion, MRIB notifies MFIB and MFIB performs a mark-and-sweep to synchronize MFIB with the current MRIB route information.

Multicast Configuration Submodes

Cisco IOS XR Software moves control plane CLI configurations to protocol-specific submodes to provide mechanisms for enabling, disabling, and configuring multicast features on a large number of interfaces.

Cisco IOS XR Software allows you to issue most commands available under submodes as one single command string from the global or XR config mode.

For example, the `ssm` command could be executed from the PIM configuration submode like this:
Implementing Multicast Routing on Cisco IOS XR Software

Multicast-Routing Configuration Submode

When you issue the `multicast-routing ipv4` command, all default multicast components (PIM, IGMP, MFWD, and MRIB) are automatically started, and the CLI prompt changes to “config-mcast-ipv4” indicating that you have entered multicast-routing configuration submode.

PIM Configuration Submode

When you issue the `router pim` command, the CLI prompt changes to “config-pim-ipv4,” indicating that you have entered the default pim address-family configuration submode.

IGMP Configuration Submode

When you issue the `router igmp` command, the CLI prompt changes to “config-igmp,” indicating that you have entered IGMP configuration submode.

MSDP Configuration Submode

When you issue the `router msdp` command, the CLI prompt changes to “config-msdp,” indicating that you have entered router MSDP configuration submode.

Understanding Interface Configuration Inheritance

Cisco IOS XR Software allows you to configure commands for a large number of interfaces by applying command configuration within a multicast routing submode that could be inherited by all interfaces. To override the inheritance mechanism, you can enter interface configuration submode and explicitly enter a different command parameter.

For example, in the following configuration you could quickly specify (under router PIM configuration mode) that all existing and new PIM interfaces on your router will use the hello interval parameter of 420 seconds. However, Packet-over-SONET/SDH (POS) interface 0/1/0/1 overrides the global interface configuration and uses the hello interval time of 210 seconds.

Understanding Interface Configuration Inheritance Disablement

As stated elsewhere, Cisco IOS XR Software allows you to configure multiple interfaces by applying configurations within a multicast routing submode that can be inherited by all interfaces.
To override the inheritance feature on specific interfaces or on all interfaces, you can enter the address-family IPv4 submode of multicast routing configuration mode, and enter the `interface-inheritance disable` command together with the `interface type interface-path-id` or `interface all` command. This causes PIM or IGMP protocols to disallow multicast routing and to allow only multicast forwarding on those interfaces specified. However, routing can still be explicitly enabled on specified individual interfaces.

For related information, see Understanding Enabling and Disabling Interfaces, on page 90

Understanding Enabling and Disabling Interfaces

When the Cisco IOS XR Software multicast routing feature is configured on your router, by default, no interfaces are enabled.

To enable multicast routing and protocols on a single interface or multiple interfaces, you must explicitly enable interfaces using the `interface` command in multicast routing configuration mode.

To set up multicast routing on all interfaces, enter the `interface all` command in multicast routing configuration mode. For any interface to be fully enabled for multicast routing, it must be enabled specifically (or be default) in multicast routing configuration mode, and it must not be disabled in the PIM and IGMP configuration modes.

For example, in the following configuration, all interfaces are explicitly configured from multicast routing configuration submode:

```
RP/0/RP0/CPU0:router(config)# multicast-routing
RP/0/RP0/CPU0:router(config-mcast)# interface all enable
```

To disable an interface that was globally configured from the multicast routing configuration submode, enter interface configuration submode, as illustrated in the following example:

```
RP/0/RP0/CPU0:router(config-mcast)# interface GigabitEthernet0 pos 0/1/0/0
RP/0/RP0/CPU0:router(config-mcast-default-ipv4-if)# disable
```

Multicast Routing Information Base

The Multicast Routing Information Base (MRIB) is a protocol-independent multicast routing table that describes a logical network in which one or more multicast routing protocols are running. The tables contain generic multicast routes installed by individual multicast routing protocols. There is an MRIB for every logical network in which the router is configured. MRIBs do not redistribute routes among multicast routing protocols; they select the preferred multicast route from comparable ones, and they notify their clients of changes in selected attributes of any multicast route.

Multicast Forwarding Information Base

Multicast Forwarding Information Base (MFIB) is a protocol-independent multicast forwarding system that contains unique multicast forwarding entries for each source or group pair known in a given network. There is a separate MFIB for every logical network in which the router is configured. Each MFIB entry resolves a given source or group pair to an incoming interface (IIF) for reverse forwarding (RPF) checking and an outgoing interface list (olist) for multicast forwarding.
MSDP MD5 Password Authentication

MSDP MD5 password authentication is an enhancement to support Message Digest 5 (MD5) signature protection on a TCP connection between two Multicast Source Discovery Protocol (MSDP) peers. This feature provides added security by protecting MSDP against the threat of spoofed TCP segments being introduced into the TCP connection stream.

MSDP MD5 password authentication verifies each segment sent on the TCP connection between MSDP peers. The `password clear` command is used to enable MD5 authentication for TCP connections between two MSDP peers. When MD5 authentication is enabled between two MSDP peers, each segment sent on the TCP connection between the peers is verified.

Note

MSDP MD5 authentication must be configured with the same password on both MSDP peers to enable the connection between them. The 'password encrypted' command is used only for applying the stored running configuration. Once you configure the MSDP MD5 authentication, you can restore the configuration using this command.

MSDP MD5 password authentication uses an industry-standard MD5 algorithm for improved reliability and security.

Multicast VPN IPv6 over IPv4 GRE

MVPN Overview

Multicast VPN is based on the multicast domain, in which PE routers establish virtual PIM neighbor connections with other PE routers connected to the same customer VPN, and form a secure, virtual multicast domain over the provider network. Customer multicast traffic is transmitted across the core from one site to another as if the traffic flows through a dedicated provider network.

Secure data transmission is achieved by encapsulating customer multicast packets in a provider header using GRE encapsulation at Ingress PE routers and then transmitting the new provider packets across the core. At Egress PE routers, packets are decapsulated to reveal the original customer packet and they are sent to CE routers downstream. The encapsulation and decapsulation operations and the packet transmission inside the core are abstracted by the use of a new virtual tunnel interface called MDT (Multicast Distribution Tree) tunnel.

To separate one VPN's traffic from another VPN's traffic, dedicated multicast routing and forwarding tables are created for each VPN. VPN-specific multicast routing and forwarding database is referred to as MVRF. On a PE router, when multicast is enabled for a VRF, a MVRF is created. Multicast routing protocols like PIM, IGMP, and MSDP run in the context of a MVRF. Similarly, all routes created by a MVRF protocol instance are associated with the corresponding MVRF. In addition to MVRFs, which holds VPN specific protocol states, a PE router always has a global VRF, which contains all the routing and forwarding information for the provider network.

Encapsulating customer packets in a provider header makes P routers unaware of the origin of the packets. Instead, all VPN packets passing through the provider network are viewed as native multicast packets and are routed according to the routing information in the core network. P routers do not keep any customer routing information. To support MVPN, they only need to support native multicast routing. PE routers, on the other hand, are upgraded to handle MVPN. Avoiding changes to P routers significantly reduces the risk associated with MVPN deployment, and therefore guarantees the stability of the provider network.
Due to the separation of customer and provider routing information, customers and providers are free to use their own multicast configurations, and choose different PIM modes, such as SM, BIDIR, and SSM.

Note that any packet sent to the default MDT tunnel is forwarded to all the PE routers that are part of the customer VRF, irrespective of whether they are interested in the particular customer VRF route, or not.

MVPN IPv6 over IPv4 GRE

MVPN IPv6 traffic can be carried over IPv4 GRE multicast tunnels using the standard GRE tunneling technique that is designed to provide the services to implement any standard point-to-point encapsulation scheme. As in IPv6 manually configured tunnels, GRE tunnels are links between two points, with a separate tunnel for each link. The tunnels are not tied to a specific passenger or transport protocol, but, in this case, carry IPv6 as the passenger protocol with the GRE as the carrier protocol and IPv4 or IPv6 as the transport protocol.

The primary use of GRE tunnels is for stable connections that require regular secure communication between two edge devices or between an edge device and an end system.

MVPN IPv6 over IPv4 GRE Support

Protocol Independent Multicast in Sparse Mode (PIM-SM) supports this feature at the customer side and Protocol Independent Multicast in Source-Specific Multicast (PIM-SSM) supports this feature at the core. This feature is supported only on Profile 0 (Rosen GRE without BGP AD).

Traffic Forwarding Behavior

This section describes the traffic forwarding scheme in terms of operations of the Encap (CE to PE) and Decap (PE to CE) directions for ingress and egress LCs.

Figure 17: Forwarding Scheme

In Figure 1, the VRF interfaces are customer facing. The Core interfaces face the SP Core. A customer packet enters the Encap PE router and gets forwarded to the core, in addition to another VRF interface (local switching). Similarly, on the Decap PE router, the packet from the core gets forwarded to the VRF interface, in addition to another core interface (the only path to reach another Core P/PE router is through this PE).

Encapsulation PE

Ingress (VRF interface)

1. From the interface UIDB, the ucode knows whether the packet arrived on a VRF interface and also knows the VRF table ID.

2. Route lookup takes place in the VRF table (s1, g1, VRF table ID).

3. Packet matches VRF route (s1, g1).
4. The route lookup provides the following information:
 - Flag to indicate whether the packet needs encapsulation
 - Encap ID
 - FGID

5. Packet is forwarded to the fabric with encap ID and FGID.

Egress (Core / VRF interfaces)

On egress LC:
 - Receive packets from fabric after replication.
 - Encap ID lookup takes place. The Encap-ID result has pointers to each encapsulation chain.
 - Encapsulates the packet and sends over the core.
 - If there are local receivers on this router, Encap-ID result indicates the same. Forwards the packet natively.

Decapsulation PE

Ingress (Core)

1. The interface UIDB indicates that it is not a VRF interface.
2. Route lookup takes place in the global table, packet matches global route (S,G).
3. RPF check is done using the physical input interface of the packet.
4. The core route lookup yields:
 - A flag indicating whether this is a tunnel route (tunnel flag)
 - A flag indicating whether the outer header should be stripped (decap flag). It is used when the core route does not have any core interfaces in the olist.
 - Tunnel UIDB

5. If the decap flag is set, packet is decapsulated and forwarded to fabric with tunnel UIDB.

Egress (Core / VRF interfaces)

The egress processing is identical to the Encap PE case described earlier, except that after decapsulating the packet, the following additional steps are taken:
 - The incoming interface is set to the tunnel interface.
 - The RPF check is done to ensure that we can accept the packet from the tunnel interface.
 - Lookup takes place on VRF table based on the tunnel UIDB and forwards the packet to the customer.

MVPN IPv6 over IPv4 GRE Configuration: Examples

These examples show how to configure MVPN IPv6 over IPv4 GRE:
Point-to-Multipoint Traffic Engineering with GTM

Point-to-Multipoint Traffic Engineering Overview

The Point-to-Multipoint (P2MP) Resource Reservation Protocol-Traffic Engineering (RSVP-TE) solution allows service providers to implement IP multicast applications, such as IPTV and real-time video, broadcast over the MPLS label switch network. The RSVP-TE protocol is extended to signal point-to-point (P2P) and P2MP label switched paths (LSPs) across the MPLS networks. By using RSVP-TE extensions as defined in RFC 4875, multiple sub-LSPs are signaled for a given TE source.

Service providers use native IP multicast in both core and access network for providing services like IPTV or content delivery. This requires running a multicast routing protocol in both their core network and their access network.

With the proliferation of MPLS in IP network, it is increasingly popular for ISP to leverage MPLS technology for transporting IP multicast traffic. One popular demand is to use TE-FRR for transporting mission critical multicast data over the network. In the event of link or node failure, FRR allows traffic to quickly recover from network failures and thus minimizes any traffic disruption.
Most of the label distribution mechanisms (RSVP-TE, LDP and BGP) primarily focus on signaling P2P (Point-to-Point) LSP. Because there is always a single source and destination for each flow, the P2P LSP is sufficient for IP unicast. In multicast, however, the source is sending traffic to an arbitrary group of hosts. In fact, multicast data distribution is often represented as a "tree" where the source is the root and receivers are "leaf" of the tree.

For optimal traffic utilization, the IP/MPLS core routers perform label replication to support the transport of multicast traffic. In such cases, the LSP is described as P2MP. The P2MP LSP is capable of determining optimal branch points in the IP/MPLS network and therefore offers better link utilization.

The following technologies are supported to apply MPLS for multicast service:

- Ingress Node makes a mapping between multicast traffic and a LSP in order to forward the multicast traffic to the LSP.
- RSVP-TE signals and establishes a P2MP LSP in order to forward the multicast traffic over the LSP.
- MPLS forwarding scheme supports the labeled packet replication similar to that of the the IP multicast forwarding scheme.
- Egress Node conducts a special RPF check because the multicast traffic is encapsulated with MPLS and no multicast routing protocol runs in the core network.

P2MP TE with GTM

P2MP TE with GTM (Global Table Multicast) is available only in the Global table. The (S,G) route in the global table can be mapped to P2MP TE tunnels. However, this feature now enables service providers to use P2MP TE tunnels to carry VRF multicast traffic. Static mapping is used to map VRF (S, G) traffic to P2MP TE tunnels, and BGP-AD is used to send P2MP BGP opaque that includes VRF-based P2MP FEC as MDT Selective Provider Multicast Service Interface (S-PMSI).

Note

For P2MP GTM profile, only tail node (egress) functionality is supported. NCS6k as only decap node (egress) is supported for P2MP GTM profile.

Global Table Multicast and Egress PE

Multicast routing information that is not specific to VPNs is stored in a router's "global table", rather than in a VRF; therefore, it is known as "Global Table Multicast" (GTM).

In the case where global table multicast uses PIM-SM in ASM (Any Source Multicast) mode, the inter-area P2MP service LSP can be used to carry traffic either on a shared (*,G) or a source (S,G) tree.

An egress PE learns the (S/*,G) of a multicast stream as a result of receiving IGMP or PIM messages on one of its IP multicast interfaces. This (S/*,G) forms the P2MP FEC of the inter-area P2MP service LSP. For each of such a P2MP FEC, a distinct inter-area P2MP service LSP may exist, or multiple FECs may be carried over a single P2MP service LSP using a wildcard (*,*) S-PMSI.

For P2MP TE GTM profile, only tail node (egress) functionality is supported in Release 6.1.1. Only static RP-RP selection type is supported for P2MP TE GTM profile. The following are not supported:

- Bud node scenario
- Auto RP - RP selection type
P2MP TE Functional Overview

Tunnel Head
At the Headend, RSVP-TE signals and establishes a P2MP TE LSP. In order to forward the multicast traffic over the P2MP TE LSP, the multipoint tunnel interface is enabled for multicast forwarding. In addition, IGMPv2/IGMPv3 or MLDv2 is statically configured to forward multicast streams on the P2MP tunnel. Additionally, MPLS and RSVP-TE are activated on each MPLS core-facing interface.

Midpoint
At mid node, no multicast routing protocol runs. Therefore, there is no configuration related to the multicast routing. However, a global configuration is required for activating LMRIB function in the multicast package. This configuration is set at all nodes that process P2MP LSPs.

MPLS and RSVP-TE are activated on each MPLS core-facing interface.

The mid-node signals and establishes a P2MP TE LSP according to the signaling message from the upstream node. This node conducts the label packet replication for forwarding the packet to each downstream node.

Tunnel Tail
At the Tailend, RSVP-TE signals and establishes a P2MP TE LSP. MPLS and RSVP-TE are thus configured on each MPLS core-facing interface.

PIM and PIMv6 conduct a special RPF check for the packet that is received from MPLS core.

Instead of the normal IP RPF check, the tail end node checks whether the packet comes from the correct headend, or not. If not, this node drops the received packet.

P2MP TE Forwarding Methodology

P2MP TE tunnel based forwarding uses a two-stage forwarding model. On the P2MP tunnel head, on the ingress line card, IP multicast packets are encapsulated as MPLS using a local label corresponding to the P2MP tunnel. These packets are multicast over the fabric to egress line cards hosting the P2MP tunnel. At the tunnel midpoint and tail, on ingress line card, packets are received as MPLS and sent to egress LC as MPLS. Therefore, on P2MP tunnel head, midpoint and tailend, multicast packets are received as MPLS on the egress LC. Egress LC processes these packets and replicates them on each outgoing leg of the P2MP tunnel by swapping the top label with the outgoing label for each leg. The egress LC can also pop the label and send the packet to MFIB for forwarding the packet as pure IP on a bud node or tunnel tail along with the RPF information. The RPF check is performed by the MFIB when forwarding the packet as pure IP.

Egress PE

On the Egress PE, incoming packet on P2MP tunnel is MPLS. On the ingress LC, the MPLS table lookup that is based on the top MPLS label gives FGIDs (Primary and Backup FGIDs) and FRR (Fast Reroute) active information. The MPLS packet is sent over the fabric using the FGID if FRR is not active on the tunnel. If FRR is active on the tunnel, the packet is sent over the fabric using the backup FGID.

The processing on the egress LC on the egress PE is exactly same as the processing on the egress LC on the ingress PE.

For P2MP TE GTM profile, only tail node (egress) functionality is supported in Release 6.1.2.
Fast Reroute

Fast Reroute (FRR) is a mechanism to minimize interruptions in traffic delivery, as a result of link failures, to a TE Label Switched Path (LSP) destination. FRR enables temporarily fast switching of LSP traffic along an alternative backup path around a network failure, until the TE tunnel source signals a new end-to-end LSP.

To facilitate FRR, the FIB process on each node gets informed of the protected interface going down. The high priority FIB FRR thread receives the notification and takes FRR action to quickly reroute the traffic to the backup tunnel, within a short duration of time (in the order of ms). Then the FIB FRR thread pulses the FIB main thread which performs FRR recovery actions. Finally, RSVP moves the sub-LSPs over to the backup-tunnel.

Tunnel Reoptimization

When a router looks to determined whether there is a better path for tunnels that are already up, the process is known as tunnel reoptimization. P2MP tunnel reoptimization takes place at the tunnel headend. During tunnel reoptimization the whole LSP tree is recomputed and signaled.

P2MP TE with GTM Configuration

This section shows how to configure Point-to-Multipoint TE with GTM.

```
router bgp 65488
  address-family ipv4 mvpn
    global-table-multicast

  af-group IPV4_MULTICAST-GTM address-family ipv4 mvpn
    next-hop-self

  neighbor-group BBR-PEERS
    address-family ipv4 mvpn
      use af-group IPV4_MULTICAST-GTM

route-policy GTM
  set core-tree p2mp-te-default
end-policy

router pim
  address-family ipv4
    rp: 100.1.2.1
    maximum routes 200000

multicast-routing
  address-family ipv4
    interface all enable
    # uplinks and crosslinks disabled
    interface POS0/6/0/1
deable
```

Implementing Multicast Routing on Cisco IOS XR Software
Multicast Label Distribution Protocol (MLDP) Edge

The Multicast Label Distribution Protocol (MLDP) feature is enhanced to support the edges; that is, the encapsulation (headend) and the decapsulation (tailend) at the Provider Edge (PE).

The MLDP Edge feature enables service providers to extend the existing MPLS backbone network for multicast services. This feature extends the functionality from midpoint to support the edges - the headend and the tailend.

Earlier, Profile 4- MS-PMSI MLDP MP2MP (Multipoint-to-Multipoint) with BGP AD was supported at the core, now it is supported on the edge, both on encap and decap.

The following characteristics support Profile 4:

- MP2MP MLDP trees
- BGP AD enabled
- Customer traffic may be SM or SSM
- IPv4 and IPv6 supported

MLDP Edge Configuration: Example

This example shows how to configure MDT MLDP MP2MP MVPN with BGP-AD:

```
router bgp 100
```
mpls
bgp router-id 100.0.0.1
bgp graceful-restart
address-family ipv4 unicast
address-family vpv4 unicast
address-family ipv6 unicast
address-family vpv6 unicast
address-family ipv4 mvpn
address-family ipv6 mvpn

neighbor 100.0.0.3
remote-as 100
update-source Loopback0
address-family ipv4 unicast
next-hop-self
address-family vpv4 unicast
address-family vpv6 unicast
address-family ipv4 mvpn
address-family ipv6 mvpn

neighbor 100.0.0.4
remote-as 100
update-source Loopback0
address-family ipv4 unicast
next-hop-self
address-family vpv4 unicast
address-family vpv6 unicast
address-family ipv4 mvpn
address-family ipv6 mvpn

vrf p4_v46
rd 104:1
address-family ipv4 unicast
address-family ipv6 unicast
address-family ipv4 mvpn
address-family ipv6 mvpn
neighbor 15.0.0.2
remote-as 200
address-family ipv4 unicast
route-policy PASS in
route-policy PASS out
as-override
neighbor 2008:15::2
remote-as 200
address-family ipv6 unicast
route-policy PASS in
route-policy PASS out
as-override

mpls ldp
router-id 100.0.0.1
mldp
make-before-break delay 30 0

interface TenGigE0/0/0/0
!
multicast-routing
 address-family ipv4
 mdt source Loopback0
 rate-per-route
 interface all enable
 accounting per-prefix
!
address-family ipv6
 rate-per-route
 interface all enable
 accounting per-prefix
!
vrf p4_v46
 address-family ipv4
 bgp auto-discovery mldp
 mdt partitioned mldp ipv4 mp2mp
 rate-per-route
 interface all enable
 accounting per-prefix
!
address-family ipv6
 bgp auto-discovery mldp
 mdt partitioned mldp ipv4 mp2mp
 rate-per-route
 interface all enable
 accounting per-prefix
!
router pim
 vrf p4_v46
 address-family ipv4
 rpf topology route-policy partition-mp2mp
!
 address-family ipv6
 rpf topology route-policy partition-mp2mp
!
end

route-policy partition-mp2mp
 set core-tree mldp-partitioned-mp2mp
end-policy

Verifying MLDP Edge Control Plane and Trouble Shooting: Examples

The following sequence of examples show how to verify MLDP Edge control plane and troubleshoot on a router:

```bash
show pim vrf vrf_104 ipv4 neighbor
```

Thu Oct 8 15:08:42.077
PIM neighbors in VRF vrf_104
Flag: B - Bidir capable, P - Proxy capable, DR - Designated Router, E - ECMP Redirect
* indicates the neighbor created for this router

<table>
<thead>
<tr>
<th>Neighbor Address</th>
<th>Interface</th>
<th>Uptime</th>
<th>Expires</th>
<th>DR pri</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.104.1*</td>
<td>TenGigE0/1/0/4/104</td>
<td>00:02:28</td>
<td>00:01:27</td>
<td>1</td>
<td>(DR) B</td>
</tr>
<tr>
<td>10.1.104.2</td>
<td>TenGigE0/1/0/4/104</td>
<td>00:02:27</td>
<td>00:01:28</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
show mrib vrf vrf_104 ipv4 route 232.1.2.4

Thu Oct 8 15:08:42.666 UTC

(10.1.104.2,232.1.2.4) RPF nbr: 10.1.104.2 Flags: RPF MT^M
MT Slot: 5/2/4
Up: 00:02:27
Incoming Interface List
 TenGigE0/1/0/4/4.104 Flags: A, Up: 00:02:27
Outgoing Interface List
 Lmdtvrf/104 Flags: F LMI MT MA TR, Up: 00:02:27

show mfib vrf vrf_104 ipv4 route 232.1.2.4 detail

Thu Oct 8 15:08:43.160 UTC

IP Multicast Forwarding Information Base

(10.1.104.2,232.1.2.4), Flags: EID , FGID: 29087, -1, 29088 , Up: 00:02:28
Last Used: never
SW Forwarding Counts: 0/0/0
SW Replication Counts: 0/0/0
SW Failure Counts: 0/0/0/0/0
Route ver: 0xad86
MVPN Info :
Associated Table ID : 0xe0000000
 MDT Handle: 0x0, MDT Probe:N [N], Rate:Y, Acc:Y
 MDT SW Ingress Encap V4/V6, Egress decap: 0 / 0, 0
 Encap ID: 7, RPF ID: 0
 Local Receiver: False, Turnaround: False
 In AMT List: False
 Lmdtvrf/104 Flags: F LMI TR, Up:00:02:28 (stale, mt,)
 TenGigE0/1/0/4/4.104 Flags: A, Up:00:02:28 (stale, mt,)
RP/0/RP0/CP00:NCS-MLDP-R1#
show pim vrf vrf_104 ipv4 group-map

Thu Oct 8 15:08:43.680 UTC

IP PIM Group Mapping Table
(* indicates group mappings being used)
(+ indicates BSR group mappings active in MRIB)
Group Range Proto Client Groups RP address Info 224.0.1.39/32* DM
perm 0 0.0.0.0 224.0.1.40/32* DM perm 1 0.0.0.0
224.0.0.0/24* NO perm 0 0.0.0.0 232.0.0.0/8* SSM
config 100 0.0.0.0 224.0.0.0/4* SM config 0 100.1.255.104
RPF: De3,100.1.255.104 (us)
224.0.0.0/4 SM static 0 0.0.0.0 RPF: Null,0.0.0.0

show bgp vrf vrf_104 ipv4 mvpn

Thu Oct 8 15:08:44.456 UTC
BGP VRF vrf_104, state: Active
BGP Route Distinguisher: 104:1 VRF ID: 0x60000006
BGP router identifier 100.1.255.254, local AS number 200
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 521
BGP main routing table version 521
BGP NSR Initial initsync version 14 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0 Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 104:1 (default for vrf vrf_104)
*> [1][100.1.255.254]/40
 0.0.0.0 0 i
*>i[1][100.2.255.254]/40
 100.2.255.254 100 0 i
*> [3][0][0.0.0.0][0][0.0.0.0][100.1.255.254]/120
 0.0.0.0 0 i
*>i[3][0][0.0.0.0][0][0.0.0.0][100.2.255.254]/120
 100.2.255.254 100 0 i
*> [3][32][10.1.104.2][32][232.1.2.4][100.1.255.254]/120
 0.0.0.0 0 i
*> [3][32][10.1.104.2][32][232.1.2.5][100.1.255.254]/120
 0.0.0.0 0 i

show mpls mldp neighbors

Thu Oct 8 15:08:45.607 UTC
mMLDP neighbor database
MLDP peer ID : 100.3.255.254:0, uptime 01:17:33 Up, Capabilities : GR, Typed
Wildcard FEC, P2MP, MP2MP, MBB
Target Adj : No
Upstream count : 0
Branch count : 305
LDP GR : Enabled
: Instance: 1
Label map timer : never
Policy filter in : Path count : 4
Path(s) : 31.3.0.1 TenGigE0/0/0/0/9 LDP
: 31.6.0.1 TenGigE0/0/0/0/9 LDP
: 31.7.0.1 TenGigE0/0/0/0/9 LDP
: 31.8.0.1 TenGigE0/0/0/0/9 LDP
Adj list : 31.3.0.1 TenGigE0/0/0/0/9
<table>
<thead>
<tr>
<th>Peer addr list</th>
<th>100.3.255.254</th>
<th>4.4.2.12</th>
<th>30.1.0.1</th>
<th>32.2.0.1</th>
<th>32.3.0.1</th>
<th>32.4.0.1</th>
<th>32.1.0.1</th>
<th>32.1.0.1</th>
<th>31.6.0.1</th>
<th>31.7.0.1</th>
<th>31.8.0.1</th>
<th>31.6.0.1</th>
<th>31.7.0.1</th>
<th>31.8.0.1</th>
</tr>
</thead>
</table>

show mrib vrf vrf_104 ipv4 route summary

Thu Oct 8 15:08:46.116 UTC
MRIB Route Summary for VRF vrf_104
No. of group ranges = 5
No. of (*,G) routes = 1
No. of (S,G) routes = 100
No. of Route x Interfaces (RxI) = 100
Total No. of Interfaces in all routes = 202

show mvpn vrf vrf_104 ipv4 context detail | in HLI

Thu Oct 8 15:08:46.592 UTC
MLDP Number of Roots: 0 (Local: 0), HLI: 0x00000, Rem HLI: 0x00000 Partitioned MDT: Configured, MP2MP (RD:Not added, ID:Added), HLI: 0x00007, Loc Label: 24002, Remote: Configured ID: 3 (0x15587a8), Ctrl Trees : 0/0/0, Ctrl ID: 0 (0x0), IR Ctrl ID: 0 (0x0), Ctrl HLI: 0x00000 P2MP Def MDT ID: 0 (0x0), added: 0, HLI: 0x00000, Cfg: 0/0 Bidir HLI: 0x00000

show mpls mldp database 0x00007

Thu Oct 8 15:08:47.137 UTC
mLDP database
LSM-ID: 0x00007 Type: MP2MP Uptime: 01:22:20 FEC Root : 100.1.255.254 (we are the root) Opaque decoded : [global-id 3] Features : MBB Upstream neighbor(s) : None Downstream client(s):
LDP 100.3.255.254:0 Uptime: 00:02:33 Next Hop : 31.7.0.1 Interface : TenGigE0/1/0/4/2 Remote label (D) : 24212 Local label (U) : 24236 PIM MDT Uptime: 01:22:20 Egress intf : Lmdtvrf/104 Table ID : IPv4: 0xe0000000 IPv6: 0xe0080000 HLI : 0x000007 Ingress : Yes Local Label : 24002 (internal)
Enabling multicast on PW-HE interfaces

This task enables multicast on PW-HE interfaces.

SUMMARY STEPS

1. configure
2. multicast-routing [address-family {ipv4 | ipv6}]
3. interface pw-ether1
4. enable
5. exit
6. vrf vrf-name
7. address-family ipv4
8. interface type interface path-id
9. enable
10. exit
11. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters multicast routing configuration mode.</td>
</tr>
<tr>
<td>Step 2 multicast-routing [address-family {ipv4</td>
<td>ipv6}]</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# multicast-routing address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface pw-ether1</td>
<td>Enables multicast routing on pseudowire interfaces.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-mcast-ipv4)# interface pw-ether1</td>
<td></td>
</tr>
<tr>
<td>Step 4 enable</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-mcast-ipv4)# enable</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-mcast-ipv4)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 6
vrf vrf-name
Example:
RP/0/RP0/CPU0:router (config-mcast) # vrf v1

Enters the vrf configuration mode.

Step 7
address-family ipv4
Example:
RP/0/RP0/CPU0:router(config)# address-family ipv4

Enters the IPv4 address-family configuration mode.

Step 8
interface type interface path-id
Example:
RP/0/RP0/CPU0:router (config-mcast-vrf-v4) # interface pw-ether2

Enters the vrf mode for the specified pw interface.

Step 9
enable
Example:
RP/0/RP0/CPU0:router(config-mcast-ipv4)# enable

Enables multicast routing on the pw interface in the vrf.

Step 10
exit
Example:
RP/0/RP0/CPU0:router(config-mcast-ipv4)# exit

Exits the current configuration mode.
Note This step can be used, more than once.

Step 11
commit

Static join

The static join can be achieved with IGMP or MLD. The `router mld` or `router igmp` commands can be used to enter the MLD or IGMP modes respectively. The examples section (later in this chapter) includes the examples for both the cases.

SUMMARY STEPS

1. configure
2. router mld
3. interface type interface-path-id
4. static-group ip-group-address source-address
5. exit
6. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 router mld</td>
<td>Enters the MLD multicast routing configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# router mld</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enters the pseudowire interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-mld)# interface pw-ether1</td>
<td></td>
</tr>
<tr>
<td>Step 4 static-group ip-group-address source-address</td>
<td>Enables pw-ether1 interface to statistically join a multicast group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-mld-default-if)# static-group ff35::e100 2000:10::1</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note This step can be used, more than once.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-mcast-ipv4)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Route Policy for Static RPF

SUMMARY STEPS

1. configure
2. router static
3. address-family[ipv4 |]multicast | unicast]destination prefix interface-typeinterface-path-id
4. exit
5. route-policy policy-name
6. set rpf-topology policy-nameaddress-family[ipv4 |]multicast | unicasttopologyname
7. end route-policy
8. router pim address-family[ipv4 |]
9. rpf topology route-policy policy-name pim policy
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router static</code></td>
<td>Enables a static routing process.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>router static</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config) # <code>router static</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`address-family [ipv4]</td>
<td>[multicast</td>
</tr>
<tr>
<td></td>
<td>Example: <code>address-family ipv4 multicast 202.93.100.4/32</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-static) # <code>address-family ipv4 multicast 202.93.100.4/32</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>exit</code></td>
<td>Exits from the address family configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>exit</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-ipv4-afi) # <code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>route-policy [policy-name]</code></td>
<td>Configures the route policy to select the RPF topology.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>route-policy [policy-name]</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config) # <code>route-policy [policy-name]</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>`set rpf-topology [policy-name] address-family [ipv4]</td>
<td>[multicast</td>
</tr>
<tr>
<td></td>
<td>Example: `set rpf-topology [policy-name] address-family [ipv4]</td>
<td>[multicast</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-rpl) # `set rpf-topology [policy-name] address-family [ipv4]</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>p1 ipv4 multicast topology t1</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>end route-policy</code></td>
<td>Ends the route policy.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>end route-policy</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-rpl) # <code>end route-policy</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>router pim address-family [ipv4]</code></td>
<td>Enters the PIM address-family configuration sub-mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>router pim address-family [ipv4]</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config) # <code>router pim address-family [ipv4]</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>rpf topology route-policy [policy-name] pim policy</code></td>
<td>Selects the RPF topology for the configured route-policy.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>rpf topology route-policy [policy-name] pim policy</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config) # <code>rpf topology route-policy [policy-name] pim policy</code></td>
<td></td>
</tr>
</tbody>
</table>
Native Multicast Collapsed Forwarding

The collapsed forwarding (COFO) feature supports native multicast traffic. COFO multicast routing supports:

- IPv4 and IPv6
- SM and SSM
- Static RP, BSR and Auto-RP

PIM Bidirectional with COFO native multicast is not supported.

Multicast Traffic Replication Scenerio

The multicast traffic replication depends on the incoming and outgoing interface. The supported replication scenario is listed below:

- Ingress traffic from physical interface and outgoing interface is either CSI or physical.
- Ingress traffic from CSI interface and outgoing interface is physical.

The non supported replication scenario is listed below:

- CSI to CSI interface
- To multiple CSI on same MSE (Multi Service Edge)
- To CSI and non-CSI (to another SDR) on same MSE

Configure Native Multicast with COFO

Consider below topology where two SDRs (P and PE1) are connected to PE and PE/CE routers. The SDRs are connected through CSI interface (CSI1).
Enable multicast routing on CSI interface (CSI1):

```
multicast-routing
  address-family ipv4
    interface CSI1
      accounting per-prefix
  !
  address-family ipv6
    interface CSI1
      accounting per-prefix
```

Verification

Check if CSI interface is in Inlist (incoming interface) on the P router:

```
RP/0/RP0/CPU0:PE#sh mrib route 226.1.1.1 detail
(*,226.1.1.1) Ver: 0x56376418 RPF nbr: 192.1.1.1 Flags: C RPF, FGID: 27120, -1, -1 ,
  Retry_flags:0
  Up: 01:07:22
  Incoming Interface List
    CSI1 Flags: A, Up: 01:07:22
    Outgoing Interface List
      Bundle-Ether5 (0/3/1) Flags: F NS, Up: 01:07:22
((2.8.1.2,226.1.1.1) Ver: 0x5ffc071a RPF nbr: 192.1.1.1 Flags: RPF, FGID: 150865, -1, -1 ,
  Retry_flags:0
  Up: 01:05:59
  Incoming Interface List
    CSI1 Flags: A, Up: 01:05:59
    Outgoing Interface List
      Bundle-Ether5 (0/3/1) Flags: F NS, Up: 01:05:59
```

Check if CSI interface is in Olist (outgoing interface) on the PE router. Also note down the FGID value for CSI1 interface:

```
RP/0/RP0/CPU0:PE#sh mrib route 226.1.1.1 detail
(*,226.1.1.1) Ver: 0x6db746fc RPF nbr: 2.2.2.2 Flags: C RPF, FGID: 204324, -1, -1 ,
```
Implementing Multicast Routing on Cisco IOS XR Software

Configure Native Multicast with COFO

Retry_flags: 0
Up: 01:00:42
Incoming Interface List
 Decaps tunnel0 Flags: A NS, Up: 01:00:42
Outgoing Interface List
 CSI1 Flags: F NS, Up: 01:00:42
 Bundle-Ether7 (0/1/1) Flags: F NS, Up: 00:58:29
 TenGigE0/0/0/0 Flags: NS LI, Up: 01:00:30
 HundredGigE0/6/0/7 Flags: F NS LI, Up: 00:57:21
(2.8.1.2, 226.1.1.1) Ver: 0x6cd0bc19 RPF nbr: 2.8.1.2 Flags: L RPF, FGID: 53285, -1, -1, Retry_flags: 0
Up: 01:00:10
Incoming Interface List
 TenGigE0/1/0/1/8 Flags: A, Up: 01:00:10
Outgoing Interface List
 CSI1 Flags: F NS, Up: 01:00:10
 Bundle-Ether7 (0/1/1) Flags: F NS, Up: 00:58:29
 TenGigE0/0/0/0/0 Flags: F NS, Up: 01:00:10
 HundredGigE0/6/0/7 Flags: F NS, Up: 00:57:19

Check the FGID 53285 info to view the member nodeset:

```
RP/0/RP0/CPU0:PE# sh mrib fgid info 53285
FGID (type) : 53285 (Primary)
Context : IP (0xe0000000, 2.8.1.2, 226.1.1.1/32)
FGID bitmap : 0x0000000000000000 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 0x0000000000000000 0x0000000000000000
FGID chkpt context : TRUE
FGID chkpt context :
  table_id 0xe0000000 group 0xe2010101/32 source 0x02080102
FGID chkpt info : 0x23000000
Fgid in batch : NO
Secondary node count : 0
```

In PI retry list : NO

You can see the collapsed member nodeset in the below command output:

```
RP/0/RP0/CPU0:PE# sh mrib cofo ip-multicast 226.1.1.1/32
MRIB Collapsed Forwarding DB -- IP Multicast Info:
  (*, 226.1.1.1)
    Origin: REMOTE
    Receive Count: 1
    Last Received: Thu Oct 12 03:18:55 2017
    Nodeset: 0/3/1
(2.8.1.2, 226.1.1.1)
    Origin: REMOTE
    Receive Count: 1
    Last Received: Thu Oct 12 04:13:30 2017
    Nodeset: 0/3/1
```

Check the MRIB COFO database to verify local and remote multicast routes:

```
RP/0/RP0/CPU0:PE# sh mrib cofo summary
MRIB COFO DB Summary:
Type                           Local | Remote
--Number of (*,G) entries | 0 | 100
```
In the above output, the *Local* entries show local routes and *Remote* entries show collapsed route from remote SDR.

Collapsed Forwarding for P2MP-TE GTM Profile

In collapsed forwarding (COFO), inter SDR traffic is handled by the internal fabric itself without requiring the external cables. A newly created SDR interface functions as a point-to-point virtual interface, connecting SDR routers in the system. This virtual interface that connects two SDRs to each other is known as cross SDR interconnect (CSI) interface.

The collapsed forwarding feature supports Multicast over Point-to-Multipoint-Traffic Engineering (P2MP-TE) GTM profile.

Note

In Cisco IOS XR Release 6.4.1, COFO P2MP TE GTM supports only egress (tail node) functionality.

The figure shows collapsed forwarding topology for P2MP-TE GTM.

![Collapsed Forwarding Topology](image)

An auto tunnel is formed from headend to the tail, a source-to-leaf path. The tail will share route details using BGP with headend.

From the tailnode (INET-RI) the label and FGID values are collapsed to the midnode (SU). The traffic from the midnode will make use of these values to reach the correct egress line card of the tailnode.

The other characteristics include:
• P2MP-TE COFO is next-next-hop (NNH) based.
• Collapse of label and FGID information is from tail to mid.

Collapsed Forwarding Global Table Multicast and Egress PE

In the case where global table multicast uses PIM-SM in ASM (Any Source Multicast) mode, the inter-area P2MP service LSP can be used to carry traffic either on a shared (*,G) or a source (S,G) tree.

An egress PE learns the SSM of a multicast stream as a result of receiving IGMP or PIM messages on one of its IP multicast interfaces. This SSM forms the P2MP FEC of the inter-area P2MP service LSP. For each of such a P2MP FEC, a distinct inter-area P2MP service LSP may exist, or multiple FECs may be carried over a single P2MP service LSP using a wildcard (*,*) S-PMSI.

The following are not supported for CSI:

• (*, G)
• Bud node and branch scenario
• P2MP TE GTM profile for IPv6
• P2MP TE headend

Functional Overview of P2MP TE for CSI

Tunnel Head

At the Headend, RSVP-TE signals and establishes a P2MP TE LSP. In order to forward the multicast traffic over the P2MP TE LSP, the multipoint tunnel interface is enabled for multicast forwarding.

Additionally, MPLS and RSVP-TE are activated on each MPLS core-facing interface.

Midpoint

At mid node, no multicast routing protocol runs. Therefore, there is no configuration related to the multicast routing. However, a global configuration is required for activating LMRIB function in the multicast package. This configuration is set at all nodes that process P2MP LSPs.

MPLS and RSVP-TE are activated on each MPLS core-facing interface.

The mid-node signals and establishes a P2MP TE LSP according to the signaling message from the upstream node. This node conducts the label packet replication for forwarding the packet to each downstream node.

Tunnel Tail

At the Tailend, RSVP-TE signals and establishes a P2MP TE LSP. MPLS and RSVP-TE are thus configured on each MPLS core-facing interface.

PIM conduct a special RPF check for the packet that is received from MPLS core.

Instead of the normal IP RPF check, the tail end node checks whether the packet comes from the correct headend, or not. If not, this node drops the received packet.
Configuring Collapsed Forwarding for P2MP-TE GTM Profile

Configuring collapsed forwarding for P2MP-TE GTM involves multicast configuration for:

- Headend
- Midnode
- Tailend

Multicast Configuration on Headend

```config
mpls traffic-eng
auto-tunnel p2mp
tunnel-id min 2001 max 3001
!
multicast-routing
address-family ipv4
  mdt source Loopback0
  export-rt 701:0
  import-rt 701:0
  rate-per-route
  interface all enable
  accounting per-prefix
  bgp auto-discovery p2mp-te
!
  mdt default p2mp-te
  mdt data p2mp-te 1000 immediate-switch
!
router bgp 4134
  nsr
  mvpn
  bgp router-id 1.1.1.1
  bgp log neighbor changes detail
  address-family ipv4 unicast
  redistribute connected
  allocate-label all
!
  address-family ipv4 multicast
  redistribute connected
!
  address-family ipv4 mvpn
  global-table-multicast
!
```

Multicast Configuration on Midnode

```config
multicast-routing
address-family ipv4
  interface CSI12
disable
!
rate-per-route
accounting per-prefix
!```
Multicast Configuration on Tailend

```
multicast-routing
 address-family ipv4
 interface CSI12
disable
!
 mdt source Loopback0
 export-rt 701:0
 import-rt 701:0
 maximum disable
 rate-per-route
 interface all enable
 accounting per-prefix
 bgp auto-discovery p2mp-te
 receiver-site
!
 mdt default p2mp-te
!
router pim
 address-family ipv4
 rpf topology route-policy GTM
 mdt c-multicast-routing bgp
!
!
route-policy GTM
 set core-tree p2mp-te-default
end-policy
!
router bgp 4134
 address-family ipv4 multicast
 redistribute connected

```

Verification

From the tailnode (INET-RJ) the label and FGID values are collapsed to the midnode (SU). The traffic from the midnode will make use of these values to reach the correct egress line card of the tailnode.

To view and verify the collapsed label and FGID info:

1. In the headend-using the tunnel number, find out incoming and outgoing label associated with that tunnel
2. In the midnode-using the tunnel number, find out incoming and outgoing label associated with that tunnel. Use the incoming label to find out FGID

Headend

Use the `show mrib route` command to find out the tunnel that multicast traffic is using. In our topology, the traffic is using tunnel 2516.

Use the `show mrib mpls for tunnels 2516` to find out incoming and outgoing label associated with tunnel 2516:

```
SDR-1#sh mrib mpls for tunnels 2516
Thu Aug 3 13:56:58.415 IST
```
LSP information (RSVP-TE) :
Name: ------, Role: Head
Tunnel-ID: 2516, P2MP-ID: 2516, LSP-ID: 10002
Source Address: 1.1.1.1, Extended-ID: 1.1.1.1
Incoming Label : 24832
Transported Protocol : IPv4
Explicit Null : IPv6 Explicit Null
IP lookup : disabled

Outsegment Info #1 [M/Swap]:

The incoming label is 24832 and outgoing label 24809.

**Midnode**

Use the *show mrib mpls for tunnels 2516* to find out incoming and outgoing label associated with the tunnel 2516 in the midnode:

```
sh mrib mpls for tunnels 2516
Thu Aug 3 13:56:58.415 IST
LSP information (RSVP-TE) :
Name: ------, Role: Mid
Tunnel-ID: 2516, P2MP-ID: 2516, LSP-ID: 10002
Source Address: 1.1.1.1, Extended-ID: 1.1.1.1
Incoming Label : 24809
Transported Protocol : IPv4
Explicit Null : IPv6 Explicit Null
IP lookup : disabled

Outsegment Info #1 [M/Swap]:
```

The incoming label is 24809 and outgoing label is 24833. The outgoing label of headend is now the incoming label for midnode.

Use the *sh mpls forwarding labels 24809 hardware ingress detail location* command to find out FGID:

```
sh mpls forwarding labels 24809 hardware ingress detail location 0/1/CPU1
Thu Aug 3 13:57:15.023 IST
Local Outgoing Prefix Outgoing Next Hop Bytes
Label Label or ID Interface Switched
------ ----------- ------------------ ------------ --------------- ------------
24935 P2MP TE: 2516
24833 P2MP TE: 2516 CS12 192.168.12.2 N/A

HW Walk:
NPU #1
LEAF: 0x241859e0 (Offset: 0)
HW: 0x000006 00000000 00000000 10f25340
entrytype : P2MP leaf : 0
dccheck : 0
islabellptr : 0
islabel : 0
ggppa : 0
tag : 0
label : 24935
prefixlen : 0
qosgroup : 0
nextptr : 0x10f2534
unentries : 1

MPLS P2MP RX: 0x10f2534 (Offset: 0)
HW: 0x6167092 00000100 04dcd000 04dcd000
label : 24935
label valid: 1
stats_ptr : 0
fgid : 0x4dcd
bkup fgid : 0x4dcd
```
Configuration Examples for Implementing Multicast Routing on Software

This section provides the following configuration examples:

**DNS-based SSM Mapping: Example**

The following example illustrates DNS-based SSM Mapping configuration.
Preventing Auto-RP Messages from Being Forwarded on Software: Example

This example shows that Auto-RP messages are prevented from being sent out of the interface 0/3/0/0. It also shows that access list 111 is used by the Auto-RP candidate and access list 222 is used by the **boundary** command to contain traffic on interface 0/3/0/0.

```
ipv4 access-list 111
 10 permit 224.1.0.0 0.0.255.255 any
 20 permit 224.2.0.0 0.0.255.255 any
!
!Access list 111 is used by the Auto-RP candidate.
!
ipv4 access-list 222
 10 deny any host 224.0.1.39
 20 deny any host 224.0.1.40
!
!Access list 222 is used by the boundary command to contain traffic (on /3/0/0) that is sent to groups 224.0.1.39 and 224.0.1.40.
!
router pim
 auto-rp mapping-agent loopback 2 scope 32 interval 30
 auto-rp candidate-rp loopback 2 scope 15 group-list 111 interval 30
 multicast-routing
```
Inheritance in MSDP on Software: Example

The following MSDP commands can be inherited by all MSDP peers when configured under router MSDP configuration mode. In addition, commands can be configured under the peer configuration mode for specific peers to override the inheritance feature.

- connect-source
- sa-filter
- ttl-threshold

If a command is configured in both the router msdp and peer configuration modes, the peer configuration takes precedence.

In the following example, MSDP on Router A filters Source-Active (SA) announcements on all peer groups in the address range 226/8 (except IP address 172.16.0.2); and filters SAs sourced by the originator RP 172.16.0.3 to 172.16.0.2.

MSDP peers (172.16.0.1, 172.16.0.2, and 172.17.0.1) use the loopback 0 address of Router A to set up peering. However, peer 192.168.12.2 uses the IPv4 address configured on the interface to peer with Router A.

**Router A**

```plaintext
interface /3/0/0
boundary 222
!

Inheritance in MSDP on Software: Example
```

```plaintext
ipv4 access-list 111
10 deny ip host 172.16.0.3 any
20 permit any any
!
ipv4 access-list 112
10 deny any 226.0.0.0 0.255.255.255
30 permit any any
!
router msdp
connect-source loopback 0
sa-filter in rp-list 111
sa-filter out rp-list 111
peer 172.16.0.1
!
peer 172.16.0.2
 sa-filter out list 112
!
peer 172.17.0.1
!
peer 192.168.12.2
 connect-source /2/0/0
!
```
MoFRR Provider Edge Configuration: Example

The following example shows Tail PE configuration details. Here, joins for (1.1.1.1, 232.1.1.1) will be sent as joins for (1.1.1.1, 232.1.1.1.1) and joins for (3.3.1.1, 232.1.1.1).

```
config
router pim
 mofrr
flow mofrr_acl
 join source 1.1.1.1 to 3.3.0.0 masklen 16
 rpf-vector 1.1.1.1 masklen 16 10.1.1.1 20.1.1.1
 rpf-vector 3.3.1.1 masklen 16 30.1.1.1 40.1.1.1
ipv4 access-list extended mofrr_acl
 ! 10 permit ipv4 any 232.1.1.1
```

Configuring Route Policy for Static RPF: Example

```
routing static
 address-family ipv4 multicast
 202.93.192.74 /32 202.40.148.11

! route-policy pim-policy
 set rpf-topology ipv4 multicast topology default
end-policy
!
router pim
 address-family ipv4
 rpf topology route-policy pim-policy
```

Configuration Examples for multicast support on PW-HE

Enabling multicast

```
configure
 multicast-routing
 address-family ipv4
 interface pw-ether1
 enable
 vrf v1
 address-family ipv4
 interface pw-ether2
 enable

!
```

Configuring Static Join (with IGMP)

```
configure
 router igmp
 interface pw-ether1
 static-group 225.0.0.1
 static-group 225.0.0.2 10.1.1.1

!```
Configuring Static Join (with MLD)

configure
router mld
interface pw-ether2
static-group ff15::e100
static-group ff15::e100 2000:10::1
!
!

Configuring MVPN Static P2MP TE: Examples

Configuring MVPN P2MP on Ingress PE: Example

multicast-routing
 address-family ipv4
 mdt source Loopback0
 interface all enable
 !
vrf vrf1
 address-family ipv4
 bgp auto-discovery rsvpte
 mdt static p2mp-te tunnel-mte1
 interface all enable
 !
router igmp
vrf vrf1
interface tunnel-mte1
 static-group 232.1.1.1 192.1.1.2
 !

Configuring MVPN P2MP BGP: Example

router bgp 100
bgp router-id 110.110.110.110
address-family ipv4 unicast
address-family vpnv4 unicast
address-family ipv4 mvpn
 !
neighbor 130.130.130.130
 remote-as 100
 update-source Loopback0
 address-family ipv4 unicast
 address-family vpnv4 unicast
 address-family ipv4 mvpn
 !
vrf vrf1
 rd 1:1
 bgp router-id 110.110.110.110
 address-family ipv4 unicast
 redistribute connected
 address-family ipv4 mvpn
 !
 !
Configuring MVPN P2MP on Egress PE: Example

```
multicast-routing
address-family ipv4
  mdt source Loopback0
  interface all enable
!
vrf vrf1
  address-family ipv4
    core-tree-protocol rsvp-te group-list mvpn-acl
    interface all enable
!
ipv4 access-list mvpn-acl
  10 permit ipv4 host 192.1.1.2 host 232.1.1.1
  20 permit ipv4 any host 232.1.1.2
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast command reference document</td>
<td>Multicast Command Reference for Cisco NCS 6000 Series Routers</td>
</tr>
<tr>
<td>Getting started material</td>
<td></td>
</tr>
<tr>
<td>Modular quality of service command reference document</td>
<td></td>
</tr>
<tr>
<td>Routing command reference and configuration documents</td>
<td>Routing Command Reference for Cisco NCS 6000 Series Routers</td>
</tr>
<tr>
<td></td>
<td>Routing Configuration Guide for Cisco NCS 6000 Series Routers</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>System Security Configuration Guide for Cisco NCS 6000 Series Routers</td>
</tr>
</tbody>
</table>