

# **Implementing IS-IS**

Integrated Intermediate System-to-Intermediate System (IS-IS), Internet Protocol Version 4 (IPv4), is a standards-based Interior Gateway Protocol (IGP). The Cisco software implements the IP routing capabilities described in International Organization for Standardization (ISO)/International Engineering Consortium (IEC) 10589 and RFC 1195, and adds the standard extensions for single topology and multitopology IS-IS for IP Version 6 (IPv6).

This module describes how to implement IS-IS (IPv4 and IPv6) on your Cisco IOS XR network.

- Prerequisites for Implementing IS-IS, on page 1
- Implementing IS-IS, on page 1
- Information About Implementing IS-IS, on page 1
- Configuration Examples for Implementing IS-IS, on page 60
- Where to Go Next, on page 62
- Additional References, on page 62

# **Prerequisites for Implementing IS-IS**

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

# Implementing IS-IS

Multiple IS-IS instances can exist on the same physical interface. However, you must configure different instance-id for every instance that shares the same physical interface.

Alternatively, you can also create dot1q sub-interfaces and configure each dot1q sub-interface to different IS-IS instances.

# **Information About Implementing IS-IS**

To implement IS-IS you need to understand the following concepts:

### **IS-IS Functional Overview**

Small IS-IS networks are typically built as a single area that includes all routers in the network. As the network grows larger, it may be reorganized into a backbone area made up of the connected set of all Level 2 routers from all areas, which is in turn connected to local areas. Within a local area, routers know how to reach all system IDs. Between areas, routers know how to reach the backbone, and the backbone routers know how to reach other areas.

The IS-IS routing protocol supports the configuration of backbone Level 2 and Level 1 areas and the necessary support for moving routing information between the areas. Routers establish Level 1 adjacencies to perform routing within a local area (intra-area routing). Routers establish Level 2 adjacencies to perform routing between Level 1 areas (interarea routing).

Each IS-IS instance can support either a single Level 1 or Level 2 area, or one of each. By default, all IS-IS instances automatically support Level 1 and Level 2 routing. You can change the level of routing to be performed by a particular routing instance using the **is-type** command.

Multiple IS-IS instances can exist on the same physical interface. However, you must configure different instance-id for every instance that shares the same physical interface.

Alternatively, you can also create dot1q sub-interfaces and configure each dot1q sub-interface to different IS-IS instances.

## **Key Features Supported in the Cisco IOS XR IS-IS Implementation**

The Cisco IOS XR implementation of IS-IS conforms to the IS-IS Version 2 specifications detailed in RFC 1195 and the IPv6 IS-IS functionality based on the Internet Engineering Task Force (IETF) IS-IS Working Group draft-ietf-isis-ipv6.txt document.

The following list outlines key features supported in the Cisco IOS XR implementation:

- Single topology IPv6
- Multitopology
- Nonstop forwarding (NSF), both Cisco proprietary and IETF
- · Three-way handshake
- Mesh groups
- Multiple IS-IS instances
- Configuration of a broadcast medium connecting two networking devices as a point-to-point link
- Fast-flooding with different threads handling flooding and shortest path first (SPF).



Note

For information on IS-IS support for Bidirectional Forwarding Detection (BFD), see *Interface and Hardware Component Configuration Guide for Cisco NCS 6000 Series Routers* and *Interface and Hardware Component Command Reference for the Cisco NCS 6000 Series Routers*.

### **IS-IS Configuration Grouping**

Cisco IOS XR groups all of the IS-IS configuration in router IS-IS configuration mode, including the portion of the interface configurations associated with IS-IS. To display the IS-IS configuration in its entirety, use the **show running router isis** command. The command output displays the running configuration for all configured IS-IS instances, including the interface assignments and interface attributes.

### **IS-IS Configuration Modes**

The following sections show how to enter each of the configuration modes. From a mode, you can enter the **?** command to display the commands available in that mode.

### **Router Configuration Mode**

The following example shows how to enter router configuration mode:

```
RP/0/RP0/CPU0:router# configuration
RP/0/RP0/CPU0:router(config)# router isis isp
RP/0/RP0/CPU0:router(config-isis)#
```

### **Router Address Family Configuration Mode**

The following example shows how to enter router address family configuration mode:

```
RP/0/RP0/CPU0:router(config) # router isis isp
RP/0/RP0/CPU0:router(config-isis) # address-family
ipv4 u
nicast
RP/0/RP0/CPU0:router(config-isis-af) #
```

### **Interface Configuration Mode**

The following example shows how to enter interface configuration mode:

```
RP/0/RP0/CPU0:router(config)# router isis isp
RP/0/RP0/CPU0:router(config-isis)# interface GigabitEthernet 0
/3/0/0
RP/0/RP0/CPU0:router(config-isis-if)#
```

### **Interface Address Family Configuration Mode**

The following example shows how to enter interface address family configuration mode:

```
RP/0/RP0/CPU0:router(config) # router isis isp
RP/0/RP0/CPU0:router(config-isis) # interface
GigabitEthernet 0 /3/0/0
RP/0/RP0/CPU0:router(config-isis-if) # address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-if-af) #
```

### **IS-IS Interfaces**

IS-IS interfaces can be configured as one of the following types:

- Active—advertises connected prefixes and forms adjacencies. This is the default for interfaces.
- Passive—advertises connected prefixes but does not form adjacencies. The passive command is used to
  configure interfaces as passive. Passive interfaces should be used sparingly for important prefixes such
  as loopback addresses that need to be injected into the IS-IS domain. If many connected prefixes need
  to be advertised then the redistribution of connected routes with the appropriate policy should be used
  instead.
- Suppressed—does not advertise connected prefixes but forms adjacencies. The **suppress** command is used to configure interfaces as suppressed.
- Shutdown—does not advertise connected prefixes and does not form adjacencies. The **shutdown** command is used to disable interfaces without removing the IS-IS configuration.

## **Multitopology Configuration**

The software supports multitopology for IPv6 IS-IS unless single topology is explicitly configured in IPv6 address-family configuration mode.



Note

IS-IS supports IP routing and not Open Systems Interconnection (OSI) Connectionless Network Service (CLNS) routing.

### IPv6 Routing and Configuring IPv6 Addressing

By default, IPv6 routing is disabled in the software. To enable IPv6 routing, you must assign IPv6 addresses to individual interfaces in the router using the **ipv6 enable** or **ipv6 address** command. See the Network Stack IPv4 and IPv6 Commands on module of *IP Addresses and Services Command Reference for Cisco NCS 6000 Series Routers*.

### **Limit LSP Flooding**

Limiting link-state packets (LSP) may be desirable in certain "meshy" network topologies. An example of such a network might be a highly redundant one such as a fully meshed set of point-to-point links over a nonbroadcast multiaccess (NBMA) transport. In such networks, full LSP flooding can limit network scalability. One way to restrict the size of the flooding domain is to introduce hierarchy by using multiple Level 1 areas and a Level 2 area. However, two other techniques can be used instead of or with hierarchy: Block flooding on specific interfaces and configure mesh groups.

Both techniques operate by restricting the flooding of LSPs in some fashion. A direct consequence is that although scalability of the network is improved, the reliability of the network (in the face of failures) is reduced because a series of failures may prevent LSPs from being flooded throughout the network, even though links exist that would allow flooding if blocking or mesh groups had not restricted their use. In such a case, the link-state databases of different routers in the network may no longer be synchronized. Consequences such as persistent forwarding loops can ensue. For this reason, we recommend that blocking or mesh groups be used only if specifically required, and then only after careful network design.

### Flood Blocking on Specific Interfaces

With this technique, certain interfaces are blocked from being used for flooding LSPs, but the remaining interfaces operate normally for flooding. This technique is simple to understand and configure, but may be more difficult to maintain and more error prone than mesh groups in the long run. The flooding topology that IS-IS uses is fine-tuned rather than restricted. Restricting the topology too much (blocking too many interfaces) makes the network unreliable in the face of failures. Restricting the topology too little (blocking too few interfaces) may fail to achieve the desired scalability.

To improve the robustness of the network in the event that all nonblocked interfaces drop, use the **csnp-interval** command in interface configuration mode to force periodic complete sequence number PDUs (CSNPs) packets to be used on blocked point-to-point links. The use of periodic CSNPs enables the network to become synchronized.

### **Mesh Group Configuration**

Configuring mesh groups (a set of interfaces on a router) can help to limit flooding. All routers reachable over the interfaces in a particular mesh group are assumed to be densely connected with each router having at least one link to every other router. Many links can fail without isolating one or more routers from the network.

In normal flooding, a new LSP is received on an interface and is flooded out over all other interfaces on the router. With mesh groups, when a new LSP is received over an interface that is part of a mesh group, the new LSP is not flooded over the other interfaces that are part of that mesh group.

### Maximum LSP Lifetime and Refresh Interval

By default, the router sends a periodic LSP refresh every 15 minutes. LSPs remain in a database for 20 minutes by default. If they are not refreshed by that time, they are deleted. You can change the LSP refresh interval or maximum LSP lifetime. The LSP interval should be less than the LSP lifetime or else LSPs time out before they are refreshed. In the absence of a configured refresh interval, the software adjusts the LSP refresh interval, if necessary, to prevent the LSPs from timing out.

## **Single-Topology IPv6 Support**

Single-topology IPv6 support on Cisco IOS XR software software allows IS-IS for IPv6 to be configured on interfaces along with an IPv4 network protocol. All interfaces must be configured with the identical set of network protocols, and all routers in the IS-IS area (for Level 1 routing) or the domain (for Level 2 routing) must support the identical set of network layer protocols on all interfaces.

In single-topology mode, IPv6 topologies work with both narrow and wide metric styles in IPv4 unicast topology. During single-topology operation, one shortest path first (SPF) computation for each level is used to compute both IPv4 and IPv6 routes. Using a single SPF is possible because both IPv4 IS-IS and IPv6 IS-IS routing protocols share a common link topology.

## **Multitopology IPv6 for IS-IS**

Multitopology IPv6 for IS-IS assumes that multitopology support is required as soon as it detects interfaces configured for both IPv6 and IPv4 within the IS-IS stanza.

Because multitopology is the default behavior in the software, you must explicitly configure IPv6 to use the same topology as IPv4 to enable single-topology IPv6. Configure the **single-topology** command in IPv6 router address family configuration submode of the IS-IS router stanza.

The following example shows multitopology IS-IS being configured in IPv6.

```
router isis isp
net 49.0000.0000.0001.00
interface POSO/3/0/0
  address-family ipv6 unicast
  metric-style wide level 1
  exit
!
interface POSO/3/0/0
ipv6 address 2001::1/64
```

### **IS-IS Authentication**

Authentication is available to limit the establishment of adjacencies by using the **hello-password** command, and to limit the exchange of LSPs by using the **lsp-password** command.

IS-IS supports plain-text authentication, which does not provide security against unauthorized users. Plain-text authentication allows you to configure a password to prevent unauthorized networking devices from forming adjacencies with the router. The password is exchanged as plain text and is potentially visible to an agent able to view the IS-IS packets.

When an HMAC-MD5 password is configured, the password is never sent over the network and is instead used to calculate a cryptographic checksum to ensure the integrity of the exchanged data.

IS-IS stores a configured password using simple encryption. However, the plain-text form of the password is used in LSPs, sequence number protocols (SNPs), and hello packets, which would be visible to a process that can view IS-IS packets. The passwords can be entered in plain text (clear) or encrypted form.

To set the domain password, configure the **lsp-password** command for Level 2; to set the area password, configure the **lsp-password** command for Level 1.

The keychain feature allows IS-IS to reference configured keychains. IS-IS key chains enable hello and LSP keychain authentication. Keychains can be configured at the router level (in the case of the **lsp-password** command) and at the interface level (in the case of the **hello-password** command) within IS-IS. These commands reference the global keychain configuration and instruct the IS-IS protocol to obtain security parameters from the global set of configured keychains.

IS-IS is able to use the keychain to implement hitless key rollover for authentication. ey rollover specification is time based, and in the event of clock skew between the peers, the rollover process is impacted. The configurable tolerance specification allows for the accept window to be extended (before and after) by that margin. This accept window facilitates a hitless key rollover for applications (for example, routing and management protocols).

### **Nonstop Forwarding**

On Cisco IOS XR software, IS-IS NSF minimizes the amount of time a network is unavailable to its users following the restart of the IS-IS process.

When the IS-IS process restarts, all routing peers of that device usually detect that the device went down and then came back up. This transition results in what is called a *routing flap*, which could spread across multiple routing domains. Routing flaps caused by routing restarts create routing instabilities, which are detrimental to the overall network performance. NSF helps to suppress routing flaps, thus reducing network instability.

NSF allows for the forwarding of data packets to continue along known routes while the routing protocol information is being restored following the process restarts. When the NSF feature is configured, peer networking devices do not experience routing flaps. To preserve routing across RP failover events, NSR must be configured in addition to NSF.

When the Cisco IOS XR router running IS-IS routing performs the process restarts, the router must perform two tasks to resynchronize its link-state database with that of its IS-IS neighbors. First, it must relearn the available IS-IS neighbors on the network without causing a reset of the neighbor relationship. Second, it must reacquire the contents of the link-state database for the network.

The IS-IS NSF feature offers two options when configuring NSF:

- IETF NSF
- Cisco NSF

If neighbor routers on a network segment are NSF-aware, meaning that they are running a software version that supports RFC5306, they assist a router configured with **nsf ietf** command that is restarting. IETF NSF enables the neighbor routers provide adjacency and link-state information to help rebuild the routing information following a failover.

In Cisco IOS XR software, Cisco NSF checkpoints (stores persistently) all the state necessary to recover from a restart without requiring any special cooperation from neighboring routers. The state is recovered from the neighboring routers, but only using the standard features of the IS-IS routing protocol. This capability makes Cisco NSF suitable for use in networks in which other routers have not used the IETF standard implementation of NSF.



Note

If you configure IETF NSF on the Cisco IOS XR router and a neighbor router does not support IETF NSF, the affected adjacencies flap, but nonstop forwarding is maintained to all neighbors that do support IETF NSF. A restart reverts to a cold start if no neighbors support IETF NSF.



Note

ISIS, as a routing protocol, supports shorter hello intervals for neighbor adjacency management. However, the nonstop forwarding or routing feature on Cisco routers only work for default hello interval. When a failover occurs, there is a delay before the hello messages are sent and before the system is ready to send or receive the packets. The nonstop forwarding or routing feature is supported with a default hello interval or multiplier to overcome this delay. BFD, which runs on line cards, is responsible to fast-detect the loss of connectivity so there is no need to shorten hello interval.



Note

Currently, a user can configure an aggressive hello-interval (lower than the default of 10 seconds for peer-to-peer session). But, if NSF is configured as a recovery for RP switchover, the default hello interval has to be used so that the sessions do not run into the risk of flapping during switchover.

Using LAN adjacencies in high availability (HA) scenarios is not recommended, since there is no designated intermediate system (DIS) redundancy in the protocol and traffic will either drop or be rerouted temporarily during DIS re-election.

### **ISIS NSR**

Non Stop Routing (NSR) suppresses IS-IS routing changes for devices with redundant route processors during processor switchover events (RP failover or ISSU), reducing network instability and downtime. When Non Stop Routing is used, switching from the active to standby RP have no impact on the other IS-IS routers in the network. All information needed to continue the routing protocol peering state is transferred to the standby processor prior to the switchover, so it can continue immediately upon a switchover.

To preserve routing across process restarts, NSF must be configured in addition to NSR.

## **Configuring IS-IS Adjacency Stagger**

Certain events like process restart or reload can involve a significant processing overhead. Updating routing tables with all adjacencies, maintaining them, and synchronizing the database with each adjacent router requires a lot of bandwidth. These processes may require large number of packets being sent and/or received, depending on the state of the database on the routers. If packets are dropped in any direction, it can lead to an unstable state.

We cannot prevent events like process restart or reload, but we can handle such events better by limiting the number of adjacencies that area being established simultaneously. To limit the number of adjacencies from getting established simultaneously, you can configure adjacency stagger. By configuring IS-IS adjacency stagger, you can specify the initial number neighbourhood routers from which adjacencies can fully form after a process restart or reload. If you configure IS-IS adjacency stagger, you can also specify the subsequent number of simultaneous neighbors that are allowed to form adjacency.

#### Restrictions

- IS-IS adjacency stagger is only supported on point-to-point interfaces and not on LAN interfaces.
- IS-IS adjacency stagger is not supported with NSF (non-stop forwarding) mechanisms.

#### **Configuration Example**

To configure IS-IS adjacency stagger on a point-to-point interface, you must use the following configuration steps:

- **1.** Configure IS-IS.
- **2.** Configure adjacency stagger.

#### Configuration

```
/* Enter the global configuration mode and configure IS-IS */
Router# config
Router(config)# router isis 1
/* Configure IS-IS adjacency stagger */
Router(config-isis)# adjacency stagger 2 3
Router(config-isis)# commit
```

### **Multi-Instance IS-IS**

You can configure up to eight IS-IS instances. MPLS can run on multiple IS-IS processes as long as the processes run on different sets of interfaces. Each interface may be associated with only a single IS-IS instance. Cisco IOS XR software prevents the double-booking of an interface by two instances at configuration time—two instances of MPLS configuration causes an error.

Because the Routing Information Base (RIB) treats each of the IS-IS instances as equal routing clients, you must be careful when redistributing routes between IS-IS instances. The RIB does not know to prefer Level 1 routes over Level 2 routes. For this reason, if you are running Level 1 and Level 2 instances, you must enforce the preference by configuring different administrative distances for the two instances.

## **Multiprotocol Label Switching Traffic Engineering**

The MPLS TE feature enables an MPLS backbone to replicate and expand the traffic engineering capabilities of Layer 2 ATM and Frame Relay networks. MPLS is an integration of Layer 2 and Layer 3 technologies.

For IS-IS, MPLS TE automatically establishes and maintains MPLS TE label-switched paths across the backbone by using Resource Reservation Protocol (RSVP). The route that a label-switched path uses is determined by the label-switched paths resource requirements and network resources, such as bandwidth. Available resources are flooded by using special IS-IS TLV extensions in the IS-IS. The label-switched paths are explicit routes and are referred to as traffic engineering (TE) tunnels.

### **Overload Bit on Router**

The overload bit is a special bit of state information that is included in an LSP of the router. If the bit is set on the router, it notifies routers in the area that the router is not available for transit traffic. This capability is useful in four situations:

- 1. During a serious but nonfatal error, such as limited memory.
- 2. During the startup and restart of the process. The overload bit can be set until the routing protocol has converged. However, it is not employed during a normal NSF restart or failover because doing so causes a routing flap.
- **3.** During a trial deployment of a new router. The overload bit can be set until deployment is verified, then cleared.
- **4.** During the shutdown of a router. The overload bit can be set to remove the router from the topology before the router is removed from service.

## Overload Bit Configuration During Multitopology Operation

Because the overload bit applies to forwarding for a single topology, it may be configured and cleared independently for IPv4 and IPv6 during multitopology operation. For this reason, the overload is set from the router address family configuration mode. If the IPv4 overload bit is set, all routers in the area do not use the router for IPv4 transit traffic. However, they can still use the router for IPv6 transit traffic.

### IS-IS Overload Bit Avoidance

The IS-IS overload bit avoidance feature allows network administrators to prevent label switched paths (LSPs) from being disabled when a router in that path has its Intermediate System-to-Intermediate System (IS-IS) overload bit set.

When the IS-IS overload bit avoidance feature is activated, all nodes with the overload bit set, including head nodes, mid nodes, and tail nodes, are ignored, which means that they are still available for use with label switched paths (LSPs).



Note

The IS-IS overload bit avoidance feature does *not* change the default behavior on nodes that have their overload bit set if those nodes are not included in the path calculation (PCALC).

The IS-IS overload bit avoidance feature is activated using the following command:

mpls traffic-eng path-selection ignore overload

The IS-IS overload bit avoidance feature is deactivated using the **no** form of this command:

no mpls traffic-eng path-selection ignore overload

When the IS-IS overload bit avoidance feature is deactivated, nodes with the overload bit set cannot be used as nodes of last resort.

### **Default Routes**

You can force a default route into an IS-IS routing domain. Whenever you specifically configure redistribution of routes into an IS-IS routing domain, the Cisco IOS XR software does not, by default, redistribute the default route into the IS-IS routing domain. The **default-information originate** command generates a *default route* into IS-IS, which can be controlled by a route policy. You can use the route policy to identify the level into which the default route is to be announced, and you can specify other filtering options configurable under a route policy. You can use a route policy to conditionally advertise the default route, depending on the existence of another route in the routing table of the router.

### **Attached Bit on an IS-IS Instance**

The attached bit is set in a router that is configured with the **is-type** command and **level-1-2** keyword. The attached bit indicates that the router is connected to other areas (typically through the backbone). This functionality means that the router can be used by Level 1 routers in the area as the default route to the backbone. The attached bit is usually set automatically as the router discovers other areas while computing its Level 2 SPF route. The bit is automatically cleared when the router becomes detached from the backbone.



Note

If the connectivity for the Level 2 instance is lost, the attached bit in the Level 1 instance LSP would continue sending traffic to the Level 2 instance and cause the traffic to be dropped.

To simulate this behavior when using multiple processes to represent the **level-1-2** keyword functionality, you would manually configure the attached bit on the Level 1 process.

### **IS-IS Support for Route Tags**

The IS-IS Support for route tags feature provides the capability to associate and advertise a tag with an IS-IS route prefix. Additionally, the feature allows you to prioritize the order of installation of route prefixes in the RIB based on a tag of a route. Route tags may also be used in route policy to match route prefixes (for example, to select certain route prefixes for redistribution).

## **MPLS Label Distribution Protocol IGP Synchronization**

Multiprotocol Label Switching (MPLS) Label Distribution Protocol (LDP) Interior Gateway Protocol (IGP) Synchronization ensures that LDP has completed label exchange before the IGP path is used for switching. MPLS traffic loss can occur in the following two situations:

- When an IGP adjacency is established, the router begins forwarding packets using the new adjacency before LDP has exchanged labels with peers on that link.
- When an LDP session closes, the router continues to forward traffic using the link associated with the LDP peer rather than using an alternate path with an established LDP session.

This feature provides a mechanism to synchronize LDP and IS-IS to minimize MPLS packet loss. The synchronization is accomplished by changing the link metric for a neighbor IS-IS link-state packet (LSP), based on the state of the LDP session.

When an IS-IS adjacency is established on a link but the LDP session is lost or LDP has not yet completed exchanging labels, IS-IS advertises the maximum metric on that link. In this instance, LDP IS-IS synchronization is not yet achieved.



Note

In IS-IS, a link with a maximum wide metric (0xFFFFFF) is not considered for shortest path first (SPF). Therefore, the maximum wide metric of -1 (0XFFFFFE) is used with MPLS LDP IGP synchronization.

When LDP IS-IS synchronization is achieved, IS-IS advertises a regular (configured or default) metric on that link.

### MPLS LDP-IGP Synchronization Compatibility with LDP Graceful Restart

LDP graceful restart protects traffic when an LDP session is lost. If a graceful restart-enabled LDP session fails, MPLS LDP IS-IS synchronization is still achieved on the interface while it is protected by graceful restart. MPLS LDP IGP synchronization is eventually lost under the following circumstances:

- LDP fails to restart before the LDP graceful restart reconnect timer expires.
- The LDP session on the protected interface fails to recover before the LDP graceful restart recovery timer expires.

### MPLS LDP-IGP Synchronization Compatibility with IGP Nonstop Forwarding

IS-IS nonstop forwarding (NSF) protects traffic during IS-IS process restarts and route processor (RP) failovers. LDP IS-IS synchronization is supported with IS-IS NSF only if LDP graceful restart is also enabled over the interface. If IS-IS NSF is not enabled, the LDP synchronization state is not retained across restarts and failovers.

### **Label Distribution Protocol IGP Auto-configuration**

Label Distribution Protocol (LDP) Interior Gateway Protocol (IGP) auto-configuration simplifies the procedure to enable LDP on a set of interfaces used by an IGP instance. LDP IGP auto-configuration can be used on a large number interfaces (for example, when LDP is used for transport in the core) and on multiple IGP instances simultaneously.

This feature supports the IPv4 address family for the default VPN routing and forwarding (VRF) instance.

LDP IGP auto-configuration can also be explicitly disabled on individual interfaces under LDP using the **igp auto-config disable** command. This allows LDP to receive all IGP interfaces except the ones explicitly disabled.

See the MPLS configuration guide for information on configuring LDP IGP auto-configuration.

## MPLS TE Forwarding Adjacency

MPLS TE forwarding adjacency allows a network administrator to handle a traffic engineering, label switch path (LSP) tunnel as a link in an Interior Gateway Protocol (IGP) network, based on the Shortest Path First (SPF) algorithm. A forwarding adjacency can be created between routers in the same IS-IS level. The routers can be located multiple hops from each other. As a result, a TE tunnel is advertised as a link in an IGP network, with the cost of the link associated with it. Routers outside of the TE domain see the TE tunnel and use it to compute the shortest path for routing traffic throughout the network.

MPLS TE forwarding adjacency is considered in IS-IS SPF only if a two-way connectivity check is achieved. This is possible if the forwarding adjacency is bidirectional or the head end and tail end routers of the MPLS TE tunnel are adjacent.

The MPLS TE forwarding adjacency feature is supported by IS-IS. For details on configuring MPLS TE forwarding adjacency, see the MPLS Configuration Guide.

## **MPLS TE Interarea Tunnels**

MPLS TE interarea tunnels allow you to establish MPLS TE tunnels that span multiple IGP areas (Open Shorted Path First [OSPF]) and levels (IS-IS), removing the restriction that required that both the tunnel headend and tailend routers be in the same area. The IGP can be either IS-IS or OSPF. See the Configuring MPLS Traffic Engineering for IS-IS, on page 31 for information on configuring MPLS TE for IS-IS.

For details on configuring MPLS TE interarea tunnels, see the MPLS Configuration Guide.

### **IP Fast Reroute**

The IP Fast Reroute (IPFRR) loop-free alternate (LFA) computation provides protection against link failure. Locally computed repair paths are used to prevent packet loss caused by loops that occur during network reconvergence after a failure. See IETF draft-ietf-rtgwg-ipfrr-framework-06.txt and draft-ietf-rtgwg-lf-conv-frmwk-00.txt for detailed information on IPFRR LFA.

IPFRR LFA is different from Multiprotocol Label Switching (MPLS) as it is applicable to networks using conventional IP routing and forwarding. See *MPLS Configuration Guide for Cisco NCS 6000 Series Routers* for information on configuring MPLS IPFRR.

### **IS-IS Over GRE Interfaces**

Cisco IOS XR software provides the capability to run IS-IS protocols over Generic Routing Encapsulation (GRE) tunnel interfaces.

For more information on GRE tunnel interfaces, see Implementing BGP on Cisco IOS XR software module.

## **Unequal Cost Multipath Load-balancing for IS-IS**

The unequal cost multipath (UCMP) load-balancing adds the capability with intermediate system-to-intermediate system (IS-IS) to load-balance traffic proportionally across multiple paths, with different cost.

Generally, higher bandwidth paths have lower IGP metrics configured, so that they form the shortest IGP paths. With the UCMP load-balancing enabled, IGP can use even lower bandwidth paths or higher cost paths for traffic, and can install these paths to the forwarding information base (FIB). IS-IS IGP still installs multiple paths to the same destination in FIB, but each path will have a 'load metric/weight' associated with it. FIB uses this load metric/weight to decide the amount of traffic that needs to be sent on a higher bandwidth path and the amount of traffic that needs to be sent on a lower bandwidth path.

The UCMP computation is provided under IS-IS per address family, enabling UCMP computation for a particular address family. The UCMP configuration is also provided with a prefix-list option, which would limit the UCMP computation only for the prefixes present in the prefix-list. If prefix-list option is not provided, UCMP computation is done for the reachable prefixes in IS-IS. The number of UCMP nexthops to be considered and installed is controlled using the **variance** configuration. Variance value identifies the range for the UCMP path metric to be considered for installation into routing information base (RIB) and is defined in terms of a percentage of the primary path metric. Total number of paths, including ECMP and UCMP paths together is limited by the max-path configuration or by the max-path capability of the platform.

Enabling the UCMP configuration indicates that IS-IS should perform UCMP computation for the all the reachable ISIS prefixes or all the prefixes in the prefix-list, if the prefix-list option is used. The UCMP computation happens only after the primary SPF and route calculation is completed. There would be a delay of ISIS\_UCMP\_INITIAL\_DELAY (default delay is 100 ms) milliseconds from the time route calculation is completed and UCMP computation is started. UCMP computation will be done before fast re-route computation. Fast re-route backup paths will be calculated for both the primary equal cost multipath (ECMP) paths and the UCMP paths. Use the **ucmp delay-interval** command to configure the delay between primary SPF completion and start of UCMP computation.

To manually change each path's bandwidth to adjust UCMP ratio, use the **bandwidth**command in interface configuration mode.

UCMP ratio can be adjusted by any of the following ways:

- By using the **bandwidth** command in interface configuration mode to manually change the UCMP ratio.
- By adjusting the ISIS metric on the links.

There is an option to exclude an interface from being used for UCMP computation. If it is desired that a particular interface should not be considered as a UCMP nexthop, for any prefix, then use the **ucmp exclude interface** command to configure the interface to be excluded from UCMP computation.

More than 32 ECMP and UCMP paths are not supported for these features:

- LI
- GRE

- BVI
- NetFlow
- Satellite
- MCAST
- SPAN
- PWHE
- ABF
- P2MP
- MVPN
- VPLS
- L2TPv3
- LISP
- VIDMON
- PBR

## **Enabling IS-IS and Configuring Level 1 or Level 2 Routing**

This task explains how to enable IS-IS and configure the routing level for an area.



Note

Configuring the routing level in Step 4 is optional, but is highly recommended to establish the proper level of adjacencies.

#### Before you begin

Although you can configure IS-IS before you configure an IP address, no IS-IS routing occurs until at least one IP address is configured.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- **3. net** *network-entity-title*
- **4.** is-type { level-1 | level-1-2 | level-2-only }
- **5.** Use the **commit** or **end** command.
- **6. show isis** [instance instance-id] **protocol**

|        | Command or Action                                                                    | Purpose                                                                                                                                                                                                                                                                                                                     |
|--------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                            | Enters XR Config mode.                                                                                                                                                                                                                                                                                                      |
|        | Example:                                                                             |                                                                                                                                                                                                                                                                                                                             |
|        | RP/0/RP0/CPU0:router# configure                                                      |                                                                                                                                                                                                                                                                                                                             |
| Step 2 | router isis instance-id                                                              | Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.                                                                                                                                                                                                               |
|        | Example:                                                                             |                                                                                                                                                                                                                                                                                                                             |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                                        | • By default, all IS-IS instances are automatically Level 1 and Level 2. You can change the level of routing to be performed by a particular routing instance by using the <b>is-type</b> router configuration command.                                                                                                     |
| Step 3 | net network-entity-title                                                             | Configures network entity titles (NETs) for the routing instance.                                                                                                                                                                                                                                                           |
|        | Example:  RP/0/RP0/CPU0:router(config-isis)# net 47.0004.004d.0001.0001.0c11.1110.00 | <ul> <li>Specify a NET for each routing instance if you are<br/>configuring multi-instance IS-IS.</li> </ul>                                                                                                                                                                                                                |
|        |                                                                                      | • This example configures a router with area ID 47.0004.004d.0001 and system ID 0001.0c11.1110.00.                                                                                                                                                                                                                          |
|        |                                                                                      | To specify more than one area address, specify additional NETs. Although the area address portion of the NET differs, the systemID portion of the NET must match exactly for all of the configured items.                                                                                                                   |
| Step 4 | is-type { level-1   level-1-2   level-2-only }                                       | (Optional) Configures the system type (area or backbone                                                                                                                                                                                                                                                                     |
|        | Example:                                                                             | router).                                                                                                                                                                                                                                                                                                                    |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# is-type level-2-only</pre>                   | • By default, every IS-IS instance acts as a <b>level-1-2</b> router.                                                                                                                                                                                                                                                       |
|        | Tever-2-only                                                                         | • The <b>level-1</b> keyword configures the software to perform Level 1 (intra-area) routing only. Only Level 1 adjacencies are established. The software learns about destinations inside its area only. Any packets containing destinations outside the area are sent to the nearest <b>level-1-2</b> router in the area. |
|        |                                                                                      | • The <b>level-2-only</b> keyword configures the software to perform Level 2 (backbone) routing only, and the router establishes only Level 2 adjacencies, either with other Level 2-only routers or with <b>level-1-2</b> routers.                                                                                         |
|        |                                                                                      | • The <b>level-1-2</b> keyword configures the software to perform both Level 1 and Level 2 routing. Both Level 1 and Level 2 adjacencies are established. The router acts as a border router between the Level 2 backbone and its Level 1 area.                                                                             |

|        | Command or Action                            | Purpose                                                                                       |
|--------|----------------------------------------------|-----------------------------------------------------------------------------------------------|
| Step 5 | Use the <b>commit</b> or <b>end</b> command. | <b>commit</b> —Saves the configuration changes and remains within the configuration session.  |
|        |                                              | end —Prompts user to take one of these actions:                                               |
|        |                                              | • Yes — Saves configuration changes and exits the configuration session.                      |
|        |                                              | • No —Exits the configuration session without committing the configuration changes.           |
|        |                                              | • Cancel —Remains in the configuration session, without committing the configuration changes. |
| Step 6 | show isis [instance instance-id] protocol    | (Optional) Displays summary information about the IS-IS                                       |
|        | Example:                                     | instance.                                                                                     |
|        | RP/0/RP0/CPU0:router# show isis protocol     |                                                                                               |

## **Configuring Single Topology for IS-IS**

After an IS-IS instance is enabled, it must be configured to compute routes for a specific network topology.

This task explains how to configure the operation of the IS-IS protocol on an interface for an IPv4 or IPv6 topology.

#### Before you begin



Note

To enable the router to run in single-topology mode, configure each of the IS-IS interfaces with all of the address families enabled and "single-topology" in the address-family IPv6 unicast in the IS-IS router stanza. You can use either the IPv6 address family or both IPv4 and IPv6 address families, but your configuration must represent the set of all active address families on the router. Additionally, explicitly enable single-topology operation by configuring it in the IPv6 router address family submode.

Two exceptions to these instructions exist:

- 1. If the address-family stanza in the IS-IS process contains the **adjacency-check disable** command, then an interface is not required to have the address family enabled.
- 2. The single-topology command is not valid in the ipv4 address-family submode.

The default metric style for single topology is narrow metrics. However, you can use either wide metrics or narrow metrics. How to configure them depends on how single topology is configured. If both IPv4 and IPv6 are enabled and single topology is configured, the metric style is configured in the **address-family ipv4** stanza. You may configure the metric style in the **address-family ipv6** stanza, but it is ignored in this case. If only IPv6 is enabled and single topology is configured, then the metric style is configured in the **address-family ipv6** stanza.

#### **SUMMARY STEPS**

- 1. configure
- 2. interface type interface-path-id
- **3.** Do one of the following:
  - ipv4 address address mask
  - ipv6 address ipv6-prefix | prefix-length [ eui-64 ]
  - ipv6 address ipv6-address { / prefix-length | link-local }
  - ipv6 enable
- 4. exit
- 5. router isis instance-id
- **6. net** *network-entity-title*
- 7. address-family ipv6 [unicast]
- 8. single-topology
- 9. exit
- **10. interface** *type interface-path-id*
- 11. circuit-type { level-1 | level-1-2 | level-2-only }
- 12. address-family { ipv4 | ipv6 } [ unicast ]
- **13.** Use the **commit** or **end** command.
- **14.** show isis [instance instance-id] interface [type interface-path-id] [detail] [level { 1 | 2 }]
- **15.** show isis [instance instance-id] topology [systemid system-id][level  $\{1 \mid 2\}$ ] [summary ]

|        | Command or Action                                                                                                                                                                                   | Purpose                                                                                                                                                                                                                                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                                                                                                                                           | Enters XR Config mode.                                                                                                                                                                                                                                                                                    |
|        | Example:                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |
|        | RP/0/RP0/CPU0:router# configure                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |
| Step 2 | interface type interface-path-id                                                                                                                                                                    | Enters interface configuration mode.                                                                                                                                                                                                                                                                      |
|        | Example:                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                           |
|        | <pre>RP/0/RP0/CPU0:router(config)# interface GigabitEthernet 0/1/0/3</pre>                                                                                                                          |                                                                                                                                                                                                                                                                                                           |
| Step 3 | Do one of the following:  • ipv4 address address mask  • ipv6 address ipv6-prefix / prefix-length [ eui-64 ]  • ipv6 address ipv6-address { / prefix-length   link-local }  • ipv6 enable  Example: | Defines the IPv4 address for the interface. An IP address is required on all interfaces in an area enabled for IS-IS if any one interface is configured for IS-IS routing.  or  Specifies an IPv6 network assigned to the interface and enables IPv6 processing on the interface with the eui-64 keyword. |

|        | Command or Action                                                                                                                                                                                               | Purpose                                                                                                                                                                                                                                                                                                                                                                    |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | RP/0/RP0/CPU0:router(config-if)# ipv4 address 10.0.1.3 255.255.255.0                                                                                                                                            | Specifies an IPv6 address assigned to the interface and enables IPv6 processing on the interface with the <b>link-local</b> keyword.                                                                                                                                                                                                                                       |
|        | Or  RP/0/RP0/CPU0:router(config-if) # ipv6 address 3ffe:1234:c18:1::/64 eui-64 RP/0/RP0/CPU0:router(config-if) # ipv6 address FE80::260:3EFF:FE11:6770 link-local RP/0/RP0/CPU0:router(config-if) # ipv6 enable | or Automatically configures an IPv6 link-local address on the interface while also enabling the interface for IPv6 processing.                                                                                                                                                                                                                                             |
|        | or                                                                                                                                                                                                              | The link-local address can be used only to communicate with nodes on the same link.                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                                                                                 | • Specifying the <b>ipv6 address</b> <i>ipv6-prefix l prefix-length</i> interface configuration command without the <b>eui-64</b> keyword configures site-local and global IPv6 addresses.                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                 | • Specifying the <b>ipv6 address</b> <i>ipv6-prefix l prefix-length</i> command with the <b>eui-64</b> keyword configures site-local and global IPv6 addresses with an interface ID in the low-order 64 bits of the IPv6 address. Only the 64-bit network prefix for the address needs to be specified; the last 64 bits are automatically computed from the interface ID. |
|        |                                                                                                                                                                                                                 | • Specifying the <b>ipv6 address</b> command with the <b>link-local</b> keyword configures a link-local address on the interface that is used instead of the link-local address that is automatically configured when IPv6 is enabled on the interface.                                                                                                                    |
| Step 4 | exit                                                                                                                                                                                                            | Exits interface configuration mode, and returns the router                                                                                                                                                                                                                                                                                                                 |
|        | Example:                                                                                                                                                                                                        | to XR Config mode.                                                                                                                                                                                                                                                                                                                                                         |
|        | RP/0/RP0/CPU0:router(config-if)# exit                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            |
| Step 5 | router isis instance-id  Example:                                                                                                                                                                               | Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.                                                                                                                                                                                                                                                              |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                                                                                                                                                                   | • By default, all IS-IS instances are Level 1 and Level 2. You can change the level of routing to be performed by a particular routing instance by using the <b>is-type</b> command.                                                                                                                                                                                       |
| Step 6 | net network-entity-title                                                                                                                                                                                        | Configures NETs for the routing instance.                                                                                                                                                                                                                                                                                                                                  |
|        | Example:  RP/0/RP0/CPU0:router(config-isis) # net 47.0004.004d.0001.0001.0c11.1110.00                                                                                                                           | Specify a NET for each routing instance if you are configuring multi-instance IS-IS. You can specify a name for a NET and for an address.                                                                                                                                                                                                                                  |

|         | Command or Action                                                                                                  | Purpose                                                                                                                                                                                                           |
|---------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                    | This example configures a router with area ID 47.0004.004d.0001 and system ID 0001.0c11.1110.00.                                                                                                                  |
|         |                                                                                                                    | To specify more than one area address, specify additional NETs. Although the area address portion of the NET differs, the system ID portion of the NET must match exactly for all of the configured items.        |
| Step 7  | <pre>address-family ipv6 [unicast] Example:  RP/0/RP0/CPU0:router(config-isis) # address-family ipv6 unicast</pre> | Specifies the IPv6 address family and enters router address family configuration mode.  • This example specifies the unicast IPv6 address family.                                                                 |
| Step 8  | single-topology Example:                                                                                           | (Optional) Configures the link topology for IPv4 when IPv6 is configured.                                                                                                                                         |
|         | RP/0/RP0/CPU0:router(config-isis-af)# single-topology                                                              | • The <b>single-topology</b> command is valid only in IPv6 submode. The command instructs IPv6 to use the single topology rather than the default configuration of a separate topology in the multitopology mode. |
|         |                                                                                                                    | • See the Single-Topology IPv6 Support, on page 5 for more information.                                                                                                                                           |
| Step 9  | exit Example:                                                                                                      | Exits router address family configuration mode, and returns the router to router configuration mode.                                                                                                              |
|         | RP/0/RP0/CPU0:router(config-isis-af)# exit                                                                         |                                                                                                                                                                                                                   |
| Step 10 | <pre>interface type interface-path-id Example:  RP/0/RP0/CPU0:router(config-isis)# interface</pre>                 | Enters interface configuration mode.                                                                                                                                                                              |
|         | GigabitEthernet 0/1/0/3                                                                                            |                                                                                                                                                                                                                   |
| Step 11 | circuit-type { level-1   level-1-2   level-2-only }                                                                | (Optional) Configures the type of adjacency.                                                                                                                                                                      |
|         | Example:                                                                                                           | The default circuit type is the configured system type (configured through the <b>is-type</b> command).                                                                                                           |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if)# circuit-type level-1-2</pre>                                            | • Typically, the circuit type must be configured when the router is configured as only <b>level-1-2</b> and you want to constrain an interface to form only <b>level-1</b> or <b>level-2-only</b> adjacencies.    |
| Step 12 | address-family { ipv4   ipv6 } [ unicast ]  Example:                                                               | Specifies the IPv4 or IPv6 address family, and enters interface address family configuration mode.                                                                                                                |

|         | Command or Action                                                                            | Purpose                                                                                       |
|---------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast</pre>                 | This example specifies the unicast IPv4 address family on the interface.                      |
| Step 13 | Use the <b>commit</b> or <b>end</b> command.                                                 | <b>commit</b> —Saves the configuration changes and remains within the configuration session.  |
|         |                                                                                              | end —Prompts user to take one of these actions:                                               |
|         |                                                                                              | • Yes — Saves configuration changes and exits the configuration session.                      |
|         |                                                                                              | • No —Exits the configuration session without committing the configuration changes.           |
|         |                                                                                              | • Cancel —Remains in the configuration session, without committing the configuration changes. |
| Step 14 | show isis [instance instance-id] interface [type interface-path-id] [detail] [level {1   2}] | (Optional) Displays information about the IS-IS interface.                                    |
|         | Example:                                                                                     |                                                                                               |
|         | RP/0/RP0/CPU0:router# show isis interface GigabitEthernet 0/1/0/1                            |                                                                                               |
| Step 15 | show isis [instance instance-id] topology [systemid system-id] [level { 1   2 }] [summary]   | (Optional) Displays a list of connected routers in all areas.                                 |
|         | Example:                                                                                     |                                                                                               |
|         | RP/0/RP0/CPU0:router# show isis topology                                                     |                                                                                               |

## **Controlling LSP Flooding for IS-IS**

Flooding of LSPs can limit network scalability. You can control LSP flooding by tuning your LSP database parameters on the router globally or on the interface. This task is optional.

Many of the commands to control LSP flooding contain an option to specify the level to which they apply. Without the option, the command applies to both levels. If an option is configured for one level, the other level continues to use the default value. To configure options for both levels, use the command twice. For example:

```
RP/0/RP0/CPU0:router(config-isis)# lsp-refresh-interval 1200 level 2
RP/0/RP0/CPU0:router(config-isis)# lsp-refresh-interval 1100 level 1
```

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. **lsp-refresh-interval** seconds [ level  $\{1 \mid 2\}$ ]

- 4. lsp-check-interval seconds [level {1 | 2}]
- 5.  $lsp-gen-interval \ \{ [initial-wait initial \mid secondary-wait secondary \mid maximum-wait maximum ] ... \} [level \ \{ 1 \mid 2 \} ]$
- 6. **lsp-mtu** bytes [ level  $\{1 \mid 2\}$ ]
- 7. max-lsp-lifetime seconds [ level  $\{1 \mid 2\}$ ]
- 8. ignore-lsp-errors disable
- **9. interface** type interface-path-id
- **10. Isp-interval** *milliseconds* [ **level**  $\{1 \mid 2\}$ ]
- 11. csnp-interval seconds [ level  $\{1 \mid 2\}$ ]
- 12. retransmit-interval seconds [ level  $\{1 \mid 2\}$ ]
- **13.** retransmit-throttle-interval milliseconds [level  $\{1 \mid 2\}$ ]
- **14. mesh-group** { *number* | **blocked** }
- **15.** Use the **commit** or **end** command.
- **16.** show isis interface [ type interface-path-id | level  $\{1 \mid 2\}$ ] [ brief ]
- 17. show isis [instance instance-id] database [level {1 | 2}][detail | summary | verbose][\* | lsp-id]
- **18.** show isis [instance instance-id] lsp-log [level  $\{1 \mid 2\}$ ]
- 19. show isis database-log [ level  $\{1 \mid 2\}$ ]

|        | Command or Action                                                        | Purpose                                                                                                                                          |
|--------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                | Enters XR Config mode.                                                                                                                           |
|        | Example:                                                                 |                                                                                                                                                  |
|        | RP/0/RP0/CPU0:router# configure                                          |                                                                                                                                                  |
| Step 2 | router isis instance-id  Example:                                        | Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.                                    |
|        | <pre>RP/0/RP0/CPU0:router(config)# router isis isp</pre>                 | • You can change the level of routing to be performed by a particular routing instance by using the <b>is-type</b> router configuration command. |
| Step 3 |                                                                          | (Optional) Sets the time between regeneration of LSPs that                                                                                       |
|        | Example:                                                                 | contain different sequence numbers                                                                                                               |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# lsp-refresh-interval 10800</pre> | • The refresh interval should always be set lower than the <b>max-lsp-lifetime</b> command.                                                      |
| Step 4 | lsp-check-interval seconds [ level { 1   2 }]                            | (Optional) Configures the time between periodic checks of the entire database to validate the checksums of the LSPs in the database.             |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# lsp-check-interval 240</pre>     | This operation is costly in terms of CPU and so should<br>be configured to occur infrequently.                                                   |

|         | Command or Action                                                                                                              | Purpose                                                                                                                                                                                                                                                                                                                                               |
|---------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 5  | Isp-gen-interval { [ initial-wait initial   secondary-wait secondary   maximum-wait maximum ] } [ level { 1   2 } ]   Example: | (Optional) Reduces the rate of LSP generation during periods of instability in the network. Helps reduce the CPU load on the router and number of LSP transmissions to its IS-IS neighbors.                                                                                                                                                           |
|         | RP/0/RP0/CPU0:router(config-isis)# lsp-gen-interval maximum-wait 15 initial-wait 5                                             | During prolonged periods of network instability, repeated recalculation of LSPs can cause an increased CPU load on the local router. Further, the flooding of these recalculated LSPs to the other Intermediate Systems in the network causes increased traffic and can result in other routers having to spend more time running route calculations. |
| Step 6  | lsp-mtu   bytes [ level { 1   2 }]   Example:                                                                                  | (Optional) Sets the maximum transmission unit (MTU) size of LSPs.                                                                                                                                                                                                                                                                                     |
|         | RP/0/RP0/CPU0:router(config-isis)# lsp-mtu 1300                                                                                |                                                                                                                                                                                                                                                                                                                                                       |
| Step 7  | max-lsp-lifetime seconds [ level { 1   2 }]                                                                                    | (Optional) Sets the initial lifetime given to an LSP originated by the router.                                                                                                                                                                                                                                                                        |
|         | RP/0/RP0/CPU0:router(config-isis)# max-lsp-lifetime 11000                                                                      | This is the amount of time that the LSP persists in the database of a neighbor unless the LSP is regenerated or refreshed.                                                                                                                                                                                                                            |
| Step 8  | ignore-lsp-errors disable                                                                                                      | (Optional) Sets the router to purge LSPs received with                                                                                                                                                                                                                                                                                                |
|         | Example:                                                                                                                       | checksum errors.                                                                                                                                                                                                                                                                                                                                      |
|         | <pre>RP/0/RP0/CPU0:router(config-isis)# ignore-lsp-errors disable</pre>                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| Step 9  | interface type interface-path-id                                                                                               | Enters interface configuration mode.                                                                                                                                                                                                                                                                                                                  |
|         | Example:                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                       |
|         | <pre>RP/0/RP0/CPU0:router(config-isis)# interface GigabitEthernet 0/1/0/3</pre>                                                |                                                                                                                                                                                                                                                                                                                                                       |
| Step 10 | lsp-interval milliseconds [ level { 1   2 }]                                                                                   | (Optional) Configures the amount of time between each                                                                                                                                                                                                                                                                                                 |
|         | Example:                                                                                                                       | LSP sent on an interface.                                                                                                                                                                                                                                                                                                                             |
|         | RP/0/RP0/CPU0:router(config-isis-if)# lsp-interval                                                                             |                                                                                                                                                                                                                                                                                                                                                       |
| Step 11 | csnp-interval seconds [ level { 1   2 }]                                                                                       | (Optional) Configures the interval at which periodic CSNP                                                                                                                                                                                                                                                                                             |
|         | Example:                                                                                                                       | packets are sent on broadcast interfaces.                                                                                                                                                                                                                                                                                                             |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if)# csnp-interval 30 level 1</pre>                                                      | Sending more frequent CSNPs means that adjacent<br>routers must work harder to receive them.                                                                                                                                                                                                                                                          |

|         | Command or Action                                                                                      | Purpose                                                                                                                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                        | Sending less frequent CSNP means that differences<br>in the adjacent routers may persist longer.                                                                                                                                |
| Step 12 | retransmit-interval seconds [level $\{1 \mid 2\}$ ] Example:                                           | (Optional) Configures the amount of time that the sending router waits for an acknowledgment before it considers that the LSP was not received and subsequently resends.                                                        |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if)# retransmit-interval 60</pre>                                | <pre>RP/0/RP0/CPU0:router(config-isis-if)# retransmit-interval 60</pre>                                                                                                                                                         |
| Step 13 | retransmit-throttle-interval milliseconds [ level { 1   2 }]                                           | (Optional) Configures the amount of time between retransmissions on each LSP on a point-to-point interface.                                                                                                                     |
|         | <pre>Example:  RP/0/RP0/CPU0:router(config-isis-if)# retransmit-throttle-interval 1000</pre>           | This time is usually greater than or equal to the lsp-interval command time because the reason for lost LSPs may be that a neighboring router is busy. A longer interval gives the neighbor more time to receive transmissions. |
| Step 14 | mesh-group { number   blocked }  Example:                                                              | (Optional) Optimizes LSP flooding in NBMA networks with highly meshed, point-to-point topologies.                                                                                                                               |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if)# mesh-group blocked</pre>                                    | This command is appropriate only for an NBMA network with highly meshed, point-to-point topologies.                                                                                                                             |
| Step 15 | Use the <b>commit</b> or <b>end</b> command.                                                           | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                                                                                                    |
|         |                                                                                                        | end —Prompts user to take one of these actions:                                                                                                                                                                                 |
|         |                                                                                                        | • Yes — Saves configuration changes and exits the configuration session.                                                                                                                                                        |
|         |                                                                                                        | • No —Exits the configuration session without committing the configuration changes.                                                                                                                                             |
|         |                                                                                                        | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                                                                                                   |
| Step 16 | show isis interface [ type interface-path-id   level { 1   2 }] [ brief ]                              | (Optional) Displays information about the IS-IS interface.                                                                                                                                                                      |
|         | Example:                                                                                               |                                                                                                                                                                                                                                 |
|         | <pre>RP/0/RP0/CPU0:router# show isis interface GigabitEthernet 0/1/0/1 brief</pre>                     |                                                                                                                                                                                                                                 |
| Step 17 | show isis [instance instance-id] database [level { 1   2 }] [ detail   summary   verbose] [*   lsp-id] | (Optional) Displays the IS-IS LSP database.                                                                                                                                                                                     |
|         | Example:                                                                                               |                                                                                                                                                                                                                                 |

|         | Command or Action                                          | Purpose                                            |
|---------|------------------------------------------------------------|----------------------------------------------------|
|         | RP/0/RP0/CPU0:router# show isis database level 1           |                                                    |
| Step 18 | show isis [instance instance-id] lsp-log [level { 1   2 }] | (Optional) Displays LSP log information.           |
|         | Example:                                                   |                                                    |
|         | RP/0/RP0/CPU0:router# show isis lsp-log                    |                                                    |
| Step 19 | show isis database-log [ level { 1   2 }]                  | (Optional) Display IS-IS database log information. |
|         | Example:                                                   |                                                    |
|         | RP/0/RP0/CPU0:router# show isis database-log level 1       |                                                    |

## **Configuring Nonstop Forwarding for IS-IS**

This task explains how to configure your router with NSF that allows the Cisco IOS XR software to resynchronize the IS-IS link-state database with its IS-IS neighbors after a process restart. The process restart could be due to an:

- RP failover (for a warm restart)
- Simple process restart (due to an IS-IS reload or other administrative request to restart the process)
- IS-IS software upgrade

In all cases, NSF mitigates link flaps and loss of user sessions. This task is optional.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- **3.** nsf { cisco | ietf }
- 4. nsf interface-expires number
- 5. nsf interface-timer seconds
- **6. nsf lifetime** *seconds*
- **7.** Use the **commit** or **end** command.
- **8. show running-config** [ *command* ]

|        | Command or Action               | Purpose                |
|--------|---------------------------------|------------------------|
| Step 1 | configure                       | Enters XR Config mode. |
|        | Example:                        |                        |
|        | RP/0/RP0/CPU0:router# configure |                        |

|        | Command or Action                                             | Purpose                                                                                                                                                                                                        |
|--------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 2 | router isis instance-id  Example:                             | Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.                                                                                                  |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                 | • You can change the level of routing to be performed by a particular routing instance by using the <b>is-type</b> router configuration command.                                                               |
| Step 3 | nsf { cisco   ietf }                                          | Enables NSF on the next restart.                                                                                                                                                                               |
|        | Example:  RP/0/RP0/CPU0:router(config-isis)# nsf ietf         | Enter the <b>cisco</b> keyword to run IS-IS in heterogeneous<br>networks that might not have adjacent NSF-aware<br>networking devices.                                                                         |
|        |                                                               | • Enter the <b>ietf</b> keyword to enable IS-IS in homogeneous networks where <i>all</i> adjacent networking devices support IETF draft-based restartability.                                                  |
| Step 4 | nsf interface-expires number  Example:                        | Configures the number of resends of an acknowledged NSF-restart acknowledgment.                                                                                                                                |
|        | RP/0/RP0/CPU0:router(config-isis)# nsf<br>interface-expires 1 | If the resend limit is reached during the NSF restart,<br>the restart falls back to a cold restart.                                                                                                            |
| Step 5 | nsf interface-timer seconds  Example:                         | Configures the number of seconds to wait for each restart acknowledgment.                                                                                                                                      |
|        | RP/0/RP0/CPU0:router(config-isis) nsf interface-timer 15      |                                                                                                                                                                                                                |
| Step 6 | nsf lifetime seconds  Example:                                | Configures the maximum route lifetime following an NSF restart.                                                                                                                                                |
|        | RP/0/RP0/CPU0:router(config-isis)# nsf lifetime 20            | This command should be configured to the length of time required to perform a full NSF restart because it is the amount of time that the Routing Information Base (RIB) retains the routes during the restart. |
|        |                                                               | <ul> <li>Setting this value too high results in stale routes.</li> <li>Setting this value too low could result in routes purged too soon.</li> </ul>                                                           |
| Step 7 | Use the <b>commit</b> or <b>end</b> command.                  | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                                                                                   |
|        |                                                               | end —Prompts user to take one of these actions:                                                                                                                                                                |
|        |                                                               | • Yes — Saves configuration changes and exits the configuration session.                                                                                                                                       |
|        |                                                               | • No —Exits the configuration session without committing the configuration changes.                                                                                                                            |

|        | Command or Action                                                                                              | Purpose                                                                                                                                                                                                                                                                                                                      |
|--------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                | Cancel —Remains in the configuration session, without committing the configuration changes.                                                                                                                                                                                                                                  |
| Step 8 | <pre>show running-config [ command ] Example:  RP/0/RP0/CPU0:router# show running-config router isis isp</pre> | <ul> <li>(Optional) Displays the entire contents of the currently running configuration file or a subset of that file.</li> <li>• Verify that "nsf" appears in the IS-IS configuration of the NSF-aware device.</li> <li>• This example shows the contents of the configuration file for the "isp" instance only.</li> </ul> |

# **Configuring ISIS-NSR**

#### Step 1 configure

#### **Example:**

RP/0/RP0/CPU0:router# configure

Enters XR Config mode.

#### Step 2 router isis instance-id

#### Example:

RP/0/RP0/CPU0:router(config) # router isis 1

Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.

#### Step 3 nsr

#### Example:

RP/0/RP0/CPU0:router(config-isis)# nsr

Configures the NSR feature.

#### **Step 4** Use the **commit** or **end** command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

- Yes Saves configuration changes and exits the configuration session.
- No —Exits the configuration session without committing the configuration changes.
- Cancel —Remains in the configuration session, without committing the configuration changes.

#### Step 5 show isis nsr adjacency

#### **Example:**

```
RP/0/RP0/CPU0:router
# show isis nsr adjacency
System Id Interface SNPA State Hold Changed NSF IPv4 BFD IPv6 BFD
R1-v1S Nii0 *PtoP* Up 83 00:00:33 Yes None None
```

Displays adjacency information.

#### Step 6 show isis nsr status

#### **Example:**

Displays the NSR status information.

#### Step 7 show isis nsr statistics

#### **Example:**

RP/0/RP0/CPU0:router router#show isis nsr statistics IS-IS test NSR(v1a) MANDATORY STATS : V1 Standby V2 Active V2 V1 Active Standby L1 ADJ: 0 0 0 0 L2 ADJ: 2 2 0 0 LIVE INTERFACE: 4 4 0 Ω 0 PTP INTERFACE: 1 1 0 LAN INTERFACE: 2 2 0 0 LOOPBACK INTERFACE: 1 1 0 Ω TE Tunnel: 1 0 0 TE LINK: 2 0 0 NSR OPTIONAL STATS : 0 0 L1 LSP: 0 4 0 L2 LSP: 4 0 IPV4 ROUTES: 3 3 0 0 IPV6 ROUTES: 4 0

Shows number of ISIS adjacencies, lsps, routes, tunnels, Te links on active and standby routers.

## **Configuring Authentication for IS-IS**

This task explains how to configure authentication for IS-IS. This task is optional.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3.  $lsp-password { hmac-md5 | text } { clear | encrypted } password [ level { 1 | 2 } ] [ send-only ] [ snp send-only ]]$
- **4. interface** *type interface-path-id*
- 5. hello-password  $\{ \text{hmac-md5} \mid \text{text} \} \{ \text{clear} \mid \text{encrypted} \} \text{ password} [ \text{level} \{ 1 \mid 2 \} ] [ \text{send-only} ]$
- **6.** Use the **commit** or **end** command.

|        | Command or Action                                                                                                   | Purpose                                                                                                                                                                                                                                    |
|--------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                                                           | Enters XR Config mode.                                                                                                                                                                                                                     |
|        | Example:                                                                                                            |                                                                                                                                                                                                                                            |
|        | RP/0/RP0/CPU0:router# configure                                                                                     |                                                                                                                                                                                                                                            |
| Step 2 | <pre>router isis instance-id Example:  RP/0/RP0/CPU0:router(config) # router isis isp</pre>                         | Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.  • You can change the level of routing to be performed by a particular routing instance by using the <b>is-type</b> command. |
| Step 3 | lsp-password { hmac-md5   text } { clear   encrypted } password [ level { 1   2 }] [ send-only ] [ snp send-only ]] | Configures the LSP authentication password.  • The <b>hmac-md5</b> keyword specifies that the password is used in HMAC-MD5 authentication.                                                                                                 |
|        | <pre>Example:  RP/0/RP0/CPU0:router(config-isis)# lsp-password</pre>                                                | The <b>text</b> keyword specifies that the password uses cleartext password authentication.                                                                                                                                                |
|        | hmac-md5 clear password1 level 1                                                                                    | The clear keyword specifies that the password is unencrypted when entered.                                                                                                                                                                 |
|        |                                                                                                                     | • The <b>encrypted</b> keyword specifies that the password is encrypted using a two-way algorithm when entered.                                                                                                                            |
|        |                                                                                                                     | • The <b>level 1</b> keyword sets a password for authentication in the area (in Level 1 LSPs and Level SNPs).                                                                                                                              |
|        |                                                                                                                     | • The <b>level 2</b> keywords set a password for authentication in the backbone (the Level 2 area).                                                                                                                                        |
|        |                                                                                                                     | • The <b>send-only</b> keyword adds authentication to LSP and sequence number protocol data units (SNPs) when                                                                                                                              |

|        | Command or Action                                                                                  | Purpose                                                                                                                                                                                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                    | they are sent. It does not authenticate received LSPs or SNPs.  • The snp send-only keyword adds authentication to SNPs when they are sent. It does not authenticate received SNPs.  Note To disable SNP password checking, the snp send-only keywords must be specified in the |
|        |                                                                                                    | lsp-password command.                                                                                                                                                                                                                                                           |
| Step 4 | interface type interface-path-id                                                                   | Enters interface configuration mode.                                                                                                                                                                                                                                            |
|        | Example:                                                                                           |                                                                                                                                                                                                                                                                                 |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# interface GigabitEthernet 0/1/0/3</pre>                    |                                                                                                                                                                                                                                                                                 |
| Step 5 | hello-password { hmac-md5   text } { clear   encrypted } password [ level { 1   2 }] [ send-only ] | Configures the authentication password for an IS-IS interface.                                                                                                                                                                                                                  |
|        | Example:                                                                                           |                                                                                                                                                                                                                                                                                 |
|        | RP/0/RP0/CPU0:router(config-isis-if)#hello-password text clear mypassword                          |                                                                                                                                                                                                                                                                                 |
| Step 6 | Use the <b>commit</b> or <b>end</b> command.                                                       | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                                                                                                                                                    |
|        |                                                                                                    | end —Prompts user to take one of these actions:                                                                                                                                                                                                                                 |
|        |                                                                                                    | <ul> <li>Yes — Saves configuration changes and exits the<br/>configuration session.</li> </ul>                                                                                                                                                                                  |
|        |                                                                                                    | • No —Exits the configuration session without committing the configuration changes.                                                                                                                                                                                             |
|        |                                                                                                    | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                                                                                                                                                   |

## **Configuring Keychains for IS-IS**

This task explains how to configure keychains for IS-IS. This task is optional.

Keychains can be configured at the router level ( lsp-password command) and at the interface level ( hello-password command) within IS-IS. These commands reference the global keychain configuration and instruct the IS-IS protocol to obtain security parameters from the global set of configured keychains. The router-level configuration (lsp-password command) sets the keychain to be used for all IS-IS LSPs generated by this router, as well as for all Sequence Number Protocol Data Units (SN PDUs). The keychain used for HELLO PDUs is set at the interface level, and may be set differently for each interface configured for IS-IS.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. I sp-password keychain  $keychain-name [level {1 | 2}][send-only][snp send-only]$
- **4. interface** type interface-path-id
- 5. h ello-password keychain  $keychain-name [level {1 | 2}][send-only]$
- **6.** Use the **commit** or **end** command.

|        | Command or Action                                                                       | Purpose                                                                                                                     |
|--------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                               | Enters XR Config mode.                                                                                                      |
|        | Example:                                                                                |                                                                                                                             |
|        | RP/0/RP0/CPU0:router# configure                                                         |                                                                                                                             |
| Step 2 | router isis instance-id                                                                 | Enables IS-IS routing for the specified routing instance,                                                                   |
|        | Example:                                                                                | and places the router in router configuration mode.                                                                         |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                                           | • You can change the level of routing to be performed by a particular routing instance by using the <b>is-type</b> command. |
| Step 3 | l sp-password keychain keychain-name [ level { 1   2 }] [ send-only ] [ snp send-only ] | Configures the keychain.                                                                                                    |
|        | Example:                                                                                |                                                                                                                             |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# lsp-password keychain isis_a level 1</pre>      |                                                                                                                             |
| Step 4 | interface type interface-path-id                                                        | Enters interface configuration mode.                                                                                        |
|        | Example:                                                                                |                                                                                                                             |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# interface GigabitEthernet 0/1/0/3</pre>         |                                                                                                                             |
| Step 5 | h ello-password keychain keychain-name [ level { 1   2 }] [ send-only ]                 | Configures the authentication password for an IS-IS interface.                                                              |
|        | Example:                                                                                |                                                                                                                             |
|        | RP/0/RP0/CPU0:router(config-isis-if)#hello-passwordkeychain isis_b                      |                                                                                                                             |
| Step 6 | Use the <b>commit</b> or <b>end</b> command.                                            | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                |
|        |                                                                                         | end —Prompts user to take one of these actions:                                                                             |
|        |                                                                                         | • Yes — Saves configuration changes and exits the configuration session.                                                    |

| Command or Action | Purpose                                                                                       |
|-------------------|-----------------------------------------------------------------------------------------------|
|                   | No —Exits the configuration session without committing the configuration changes.             |
|                   | • Cancel —Remains in the configuration session, without committing the configuration changes. |

## **Configuring MPLS Traffic Engineering for IS-IS**

This task explains how to configure IS-IS for MPLS TE. This task is optional.

For a description of the MPLS TE tasks and commands that allow you to configure the router to support tunnels, configure an MPLS tunnel that IS-IS can use, and troubleshoot MPLS TE, see *Implementing MPLS Traffic Engineering on MPLS Configuration Guide for Cisco NCS 6000 Series Routers* 

#### Before you begin

Your network must support the MPLS Cisco IOS XR software feature before you enable MPLS TE for IS-IS on your router.



Note

You must enter the commands in the following task list on every IS-IS router in the traffic-engineered portion of your network.



Note

MPLS traffic engineering currently does not support routing and signaling of LSPs over unnumbered IP links. Therefore, do not configure the feature over those links.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [ unicast ]
- 4. mpls traffic-eng level  $\{1 \mid 2\}$
- **5. mpls traffic-eng router-id** { *ip-address* | *interface-name interface-instance* }
- 6. metric-style wide [ level  $\{1 \mid 2\}]$
- **7.** Use the **commit** or **end** command.
- 8. show isis [instance instance-id] mpls traffic-eng tunnel
- 9. show isis [instance instance-id] mpls traffic-eng adjacency-log
- 10. show isis [instance instance-id] mpls traffic-eng advertisements

|        | Command or Action                                                                                  | Purpose                                                                                                                                                             |
|--------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                                          | Enters XR Config mode.                                                                                                                                              |
|        | Example:                                                                                           |                                                                                                                                                                     |
|        | RP/0/RP0/CPU0:router# configure                                                                    |                                                                                                                                                                     |
| Step 2 | router isis instance-id                                                                            | Enables IS-IS routing for the specified routing instance,                                                                                                           |
|        | Example:                                                                                           | and places the router in router configuration mode.                                                                                                                 |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                                                      | <ul> <li>You can change the level of routing to be performed<br/>by a particular routing instance by using the is-type<br/>router configuration command.</li> </ul> |
| Step 3 | address-family { ipv4   ipv6 } [ unicast ]                                                         | Specifies the IPv4 or IPv6 address family, and enters router                                                                                                        |
|        | Example:                                                                                           | address family configuration mode.                                                                                                                                  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)#address-family ipv4 unicast</pre>                           |                                                                                                                                                                     |
| Step 4 | mpls traffic-eng level $\{1 \mid 2\}$                                                              | Configures a router running IS-IS to flood MPLS TE link                                                                                                             |
|        | Example:                                                                                           | information into the indicated IS-IS level.                                                                                                                         |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-af) # mpls traffic-eng level 1</pre>                         |                                                                                                                                                                     |
| Step 5 | <b>mpls traffic-eng router-id</b> { <i>ip-address</i>   <i>interface-name interface-instance</i> } | Specifies that the MPLS TE router identifier for the n is the given IP address or an IP address associated with                                                     |
|        | Example:                                                                                           | the given interface.                                                                                                                                                |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-af)# mpls traffic-eng router-id loopback0</pre>              |                                                                                                                                                                     |
| Step 6 | metric-style wide [level {1   2}]                                                                  | Configures a router to generate and accept only wide link                                                                                                           |
|        | Example:                                                                                           | metrics in the Level 1 area.                                                                                                                                        |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-af)# metric-style wide level 1</pre>                         |                                                                                                                                                                     |
| Step 7 | Use the <b>commit</b> or <b>end</b> command.                                                       | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                                        |
|        |                                                                                                    | end —Prompts user to take one of these actions:                                                                                                                     |
|        |                                                                                                    | • Yes — Saves configuration changes and exits the configuration session.                                                                                            |
|        |                                                                                                    | • No —Exits the configuration session without committing the configuration changes.                                                                                 |
|        |                                                                                                    | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                                       |

|         | Command or Action                                                                       | Purpose                                                       |
|---------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Step 8  | show isis [instance instance-id] mpls traffic-eng tunnel                                | (Optional) Displays MPLS TE tunnel information.               |
|         | Example:                                                                                |                                                               |
|         | RP/0/RP0/CPU0:router# show isis instance isp mpls traffic-eng tunnel                    |                                                               |
| Step 9  | show isis [instance instance-id] mpls traffic-eng adjacency-log                         | (Optional) Displays a log of MPLS TE IS-IS adjacency changes. |
|         | Example:                                                                                |                                                               |
|         | RP/0/RP0/CPU0:router# show isis instance isp mpls traffic-eng adjacency-log             |                                                               |
| Step 10 | show isis [instance instance-id] mpls traffic-eng advertisements                        | (Optional) Displays the latest flooded record from MPLS TE.   |
|         | Example:                                                                                |                                                               |
|         | <pre>RP/0/RP0/CPU0:router# show isis instance isp mpls traffic-eng advertisements</pre> |                                                               |

## **Tuning Adjacencies for IS-IS**

This task explains how to enable logging of adjacency state changes, alter the timers for IS-IS adjacency packets, and display various aspects of adjacency state. Tuning your IS-IS adjacencies increases network stability when links are congested. This task is optional.

For point-to-point links, IS-IS sends only a single hello for Level 1 and Level 2, which means that the level modifiers are meaningless on point-to-point links. To modify hello parameters for a point-to-point interface, omit the specification of the level options.

The options configurable in the interface submode apply only to that interface. By default, the values are applied to both Level 1 and Level 2.

The **hello-password** command can be used to prevent adjacency formation with unauthorized or undesired routers. This ability is particularly useful on a LAN, where connections to routers with which you have no desire to establish adjacencies are commonly found.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. log adjacency changes
- **4. interface** type interface-path-id
- **5.** hello-padding { disable | sometimes } [ level { 1 | 2 } ]
- 6. hello-interval seconds [level  $\{1 \mid 2\}$ ]
- 7. hello-multiplier multiplier [ level  $\{1 \mid 2\}$ ]
- 8. h ello-password  $\{ \text{hmac-md5} \mid \text{text} \} \{ \text{clear} \mid \text{encrypted} \}$  password  $[ \text{level} \{ 1 \mid 2 \} ] [ \text{send-only} ]$

- **9.** Use the **commit** or **end** command.
- **10. show isis** [ **instance** *instance-id* ] **adjacency** *t ype interface- path-id* ] [ **detail** ] [ **systemid** *system-id* ]
- **11.** show isis adjacency-log
- **12. show isis** [instance instance-id] interface [type interface-path-id][brief | detail][level { 1 | 2 }]
- **13. show isis** [instance instance-id] **neighbors** [interface-type interface-instance] [summary] [ detail] [systemid system-id]

|        | Command or Action                                                               | Purpose                                                                                                                                        |
|--------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                       | Enters XR Config mode.                                                                                                                         |
|        | Example:                                                                        |                                                                                                                                                |
|        | RP/0/RP0/CPU0:router# configure                                                 |                                                                                                                                                |
| Step 2 | router isis instance-id                                                         | Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.                                  |
|        | Example:                                                                        |                                                                                                                                                |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                                   | <ul> <li>You can change the level of routing to be performed<br/>by a particular routing instance by using the is-type<br/>command.</li> </ul> |
| Step 3 | log adjacency changes                                                           | Generates a log message when an IS-IS adjacency changes                                                                                        |
|        | Example:                                                                        | state (up or down).                                                                                                                            |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# log adjacency changes</pre>             |                                                                                                                                                |
| Step 4 | interface type interface-path-id                                                | Enters interface configuration mode.                                                                                                           |
|        | Example:                                                                        |                                                                                                                                                |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# interface GigabitEthernet 0/1/0/3</pre> |                                                                                                                                                |
| Step 5 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | Configures padding on IS-IS hello PDUs for an IS-IS interface on the router.                                                                   |
|        | Example:                                                                        | Hello padding applies to only this interface and not to all interfaces.                                                                        |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-if) # hello-padding sometimes</pre>       |                                                                                                                                                |
| Step 6 | hello-interval seconds [ level { 1   2 }]                                       | Specifies the length of time between hello packets that the software sends.                                                                    |
|        | Example:                                                                        |                                                                                                                                                |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-if)#hello-interval 6</pre>                |                                                                                                                                                |

|         | Command or Action                                                                                      | Purpose                                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 7  | <b>hello-multiplier</b> <i>multiplier</i> [ <b>level</b> { 1   2 }] <b>Example:</b>                    | Specifies the number of IS-IS hello packets a neighbor must miss before the router should declare the adjacency as down.                                                     |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if)# hello-multiplier 10</pre>                                   | A higher value increases the networks tolerance for<br>dropped packets, but also may increase the amount<br>of time required to detect the failure of an adjacent<br>router. |
|         |                                                                                                        | Conversely, not detecting the failure of an adjacent router can result in greater packet loss.                                                                               |
| Step 8  | h ello-password { hmac-md5   text } { clear   encrypted } password [ level { 1   2 } ] [ send-only ]   | Specifies that this system include authentication in the hello packets and requires successful authentication of the                                                         |
|         | Example:                                                                                               | hello packet from the neighbor to establish an adjacency.                                                                                                                    |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if)# hello-password text clear mypassword</pre>                  |                                                                                                                                                                              |
| Step 9  | Use the <b>commit</b> or <b>end</b> command.                                                           | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                                                 |
|         |                                                                                                        | end —Prompts user to take one of these actions:                                                                                                                              |
|         |                                                                                                        | • Yes — Saves configuration changes and exits the configuration session.                                                                                                     |
|         |                                                                                                        | • No —Exits the configuration session without committing the configuration changes.                                                                                          |
|         |                                                                                                        | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                                                |
| Step 10 | show isis [instance instance-id] adjacency type interface- path-id] [detail] [systemid system-id]      | (Optional) Displays IS-IS adjacencies.                                                                                                                                       |
|         | Example:                                                                                               |                                                                                                                                                                              |
|         | RP/0/RP0/CPU0:router# show isis instance isp adjacency                                                 |                                                                                                                                                                              |
| Step 11 | show isis adjacency-log                                                                                | (Optional) Displays a log of the most recent adjacency                                                                                                                       |
|         | Example:                                                                                               | state transitions.                                                                                                                                                           |
|         | RP/0/RP0/CPU0:router# show isis adjacency-log                                                          |                                                                                                                                                                              |
| Step 12 | show isis [instance instance-id] interface [type interface-path-id] [brief   detail] [level { 1   2 }] | (Optional) Displays information about the IS-IS interface.                                                                                                                   |
|         | Example:                                                                                               |                                                                                                                                                                              |
|         | <pre>RP/0/RP0/CPU0:router# show isis interface GigabitEthernet 0/1/0/1 brief</pre>                     |                                                                                                                                                                              |

|         | Command or Action                                                                                                                           | Purpose                                                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Step 13 | <pre>show isis [ instance instance-id ] neighbors [ interface-type interface-instance ] [ summary ] [ detail ] [ systemid system-id ]</pre> | (Optional) Displays information about IS-IS neighbors. |
|         | Example:                                                                                                                                    |                                                        |
|         | RP/0/RP0/CPU0:router# show isis neighbors summary                                                                                           |                                                        |

### Setting SPF Interval for a Single-Topology IPv4 and IPv6 Configuration

This task explains how to make adjustments to the SPF calculation to tune router performance. This task is optional.

Because the SPF calculation computes routes for a particular topology, the tuning attributes are located in the router address family configuration submode. SPF calculation computes routes for Level 1 and Level 2 separately.

When IPv4 and IPv6 address families are used in a single-topology mode, only a single SPF for the IPv4 topology exists. The IPv6 topology "borrows" the IPv4 topology; therefore, no SPF calculation is required for IPv6. To tune the SPF calculation parameters for single-topology mode, configure the **address-family ipv4 unicast** command.

The incremental SPF algorithm can be enabled separately. When enabled, the incremental shortest path first (ISPF) is not employed immediately. Instead, the full SPF algorithm is used to "seed" the state information required for the ISPF to run. The startup delay prevents the ISPF from running for a specified interval after an IS-IS restart (to permit the database to stabilize). After the startup delay elapses, the ISPF is principally responsible for performing all of the SPF calculations. The reseed interval enables a periodic running of the full SPF to ensure that the iSFP state remains synchronized.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [ unicast ]
- **4. spf-interval** {[ **initial-wait** *initial* | **secondary-wait** *secondary* | **maximum-wait** *maximum* ] ...} [ **level** { 1 | 2 }]
- **5.** ispf [level {1 | 2}]
- **6.** Use the **commit** or **end** command.
- 7. show isis [instance instance-id] [[ipv4 | ipv6 | afi-all] [unicast | safi-all]] spf-log [level {1 | 2}] [ispf | fspf | prc | nhc] [detail | verbose] [last number | first number]

|        | Command or Action               | Purpose                |
|--------|---------------------------------|------------------------|
| Step 1 | configure                       | Enters XR Config mode. |
|        | Example:                        |                        |
|        | RP/0/RP0/CPU0:router# configure |                        |

|        | Command or Action                                                                                                                                                             | Purpose                                                                                                                                                    |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step 2 | router isis instance-id  Example:                                                                                                                                             | Enables IS-IS routing for the specified routing instance, and places the router in router configuration mode.                                              |  |  |
|        | Router(config)# router isis isp                                                                                                                                               | • You can change the level of routing to be performed by a particular routing instance by using the <b>is-type</b> router configuration command.           |  |  |
| Step 3 | address-family { ipv4   ipv6 } [ unicast ]  Example:                                                                                                                          | Specifies the IPv4or IPv6 address family, and enters route address family configuration mode.                                                              |  |  |
|        | Router(config-isis)#address-family ipv4 unicast                                                                                                                               |                                                                                                                                                            |  |  |
| Step 4 | spf-interval {[initial-wait initial   secondary-wait secondary   maximum-wait maximum]} [level { 1                                                                            | (Optional) Controls the minimum time between successive SPF calculations.                                                                                  |  |  |
|        | [ 2 }] Example:                                                                                                                                                               | <ul> <li>This value imposes a delay in the SPF computation<br/>after an event trigger and enforces a minimum elapsed<br/>time between SPF runs.</li> </ul> |  |  |
|        | Router(config-isis-af)# spf-interval initial-wait 10 maximum-wait 30                                                                                                          | If this value is configured too low, the router can lost too many CPU resources when the network is unstable.                                              |  |  |
|        |                                                                                                                                                                               | Configuring the value too high delays changes in the network topology that result in lost packets.                                                         |  |  |
|        |                                                                                                                                                                               | The SPF interval does not apply to the running of the ISPF because that algorithm runs immediately on receiving a changed LSP.                             |  |  |
| Step 5 | ispf [level { 1   2 }]                                                                                                                                                        | (Optional) Configures incremental IS-IS ISPF to calculate                                                                                                  |  |  |
|        | Example:                                                                                                                                                                      | network topology.                                                                                                                                          |  |  |
|        | Router(config-isis-af)# ispf                                                                                                                                                  |                                                                                                                                                            |  |  |
| Step 6 | Use the <b>commit</b> or <b>end</b> command.                                                                                                                                  | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                               |  |  |
|        |                                                                                                                                                                               | end —Prompts user to take one of these actions:                                                                                                            |  |  |
|        |                                                                                                                                                                               | • Yes — Saves configuration changes and exits the configuration session.                                                                                   |  |  |
|        |                                                                                                                                                                               | No —Exits the configuration session without committing the configuration changes.                                                                          |  |  |
|        |                                                                                                                                                                               | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                              |  |  |
| Step 7 | show isis [instance instance-id][[ipv4   ipv6   afi-all] [unicast   safi-all]] spf-log [level {1   2}][ispf   fspf   prc   nhc][detail   verbose][last number   first number] | (Optional) Displays how often and why the router has run a full SPF calculation.                                                                           |  |  |

| Command or Action                         | Purpose |
|-------------------------------------------|---------|
| Example:                                  |         |
| Router# show isis instance 1 spf-log ipv4 |         |

## **Customizing Routes for IS-IS**

This task explains how to perform route functions that include injecting default routes into your IS-IS routing domain and redistributing routes learned in another IS-IS instance. This task is optional.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. set-overload-bit [on-startup {  $delay \mid$  wait-for-bgp } ] [level { 1 | 2 }]
- 4. address-family { ipv4 | ipv6 } [ unicast ]
- **5. default-information originate** [ **route-policy** *route-policy-name* ]
- **6.** redistribute isis instance [level-1 | level-2 | level-1-2] [metric metric] [metric-type { internal | external }] [policy policy-name]
- **7.** Do one of the following:
  - summary-prefix address | prefix-length [level { 1 | 2 }]
  - summary-prefix ipv6-prefix | prefix-length [ level { 1 | 2 }]
- 8. maximum-paths route-number
- **9. distance** weight [address/prefix-length [route-list-name]]
- **10.** attached-bit send { always-set | never-set }
- **11.** Use the **commit** or **end** command.

|        | Command or Action                                      | Purpose                                                                                                                                                                                            |
|--------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                              | Enters XR Config mode.                                                                                                                                                                             |
|        | Example:                                               |                                                                                                                                                                                                    |
|        | RP/0/RP0/CPU0:router# configure                        |                                                                                                                                                                                                    |
| Step 2 | router isis instance-id                                | Enables IS-IS routing for the specified routing process,                                                                                                                                           |
|        | Example:                                               | and places the router in router configuration mode.                                                                                                                                                |
|        | RP/0/RP0/CPU0:router(config)# router isis isp          | • By default, all IS-IS instances are automatically Level 1 and Level 2. You can change the level of routing to be performed by a particular routing instance by using the <b>is-type</b> command. |
| Step 3 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (Optional) Sets the overload bit.                                                                                                                                                                  |

|        | Command or Action                                                                                                                                      | Purpose                                                                                                                                                                                                                                                                                     |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | <pre>Example:  RP/0/RP0/CPU0:router(config-isis)# set-overload-bit</pre>                                                                               | Note The configured overload bit behavior does not apply to NSF restarts because the NSF restart does not set the overload bit during restart.                                                                                                                                              |  |  |
|        |                                                                                                                                                        | When the wait-for-bgp keyword is used, BGP will not send convergence notification, if it does not have the IPv4 or IPv6 address-family configured in the default VRF.                                                                                                                       |  |  |
| Step 4 | address-family { ipv4   ipv6 } [ unicast ]  Example:  RP/0/RP0/CPU0:router(config-isis) # address-family                                               | Specifies the IPv4 or IPv6 address family, and enters route address family configuration mode.                                                                                                                                                                                              |  |  |
| Step 5 | default-information originate [route-policy route-policy-name]                                                                                         | (Optional) Injects a default IPv4 or IPv6 route into an IS-IS routing domain.                                                                                                                                                                                                               |  |  |
|        | Example:  RP/0/RP0/CPU0:router(config-isis-af)# default-information originate                                                                          | <ul> <li>The route-policy keyword and route-policy-name argument specify the conditions under which the IPv4 or IPv6 default route is advertised.</li> <li>If the route-policy keyword is omitted, then the IPv4 or IPv6 default route is unconditionally advertised at Level 2.</li> </ul> |  |  |
| Step 6 | redistribute isis instance [level-1   level-2   level-1-2 ] [metric metric] [metric-type { internal   external }] [policy policy-name]  Example:       | (Optional) Redistributes routes from one IS-IS instance into another instance.  • In this example, an IS-IS instance redistributes Level 1 routes from another IS-IS instance.                                                                                                              |  |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-af)# redistribute isis 2 level-1</pre>                                                                           |                                                                                                                                                                                                                                                                                             |  |  |
| Step 7 | Do one of the following:  • summary-prefix address / prefix-length [ level { 1   2 }]  • summary-prefix ipv6-prefix / prefix-length [ level { 1   2 }] | (Optional) Allows a Level 1-2 router to summarize Level 1 IPv4 and IPv6 prefixes at Level 2, instead of advertising the Level 1 prefixes directly when the router advertises the summary.  • This example specifies an IPv4 address and mask.                                               |  |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-af) # summary-prefix 10.1.0.0/16 level 1 or</pre>                                                                | This example specifies an IPv6 prefix, and the command must be in the form documented in RFC 2373 in which the address is specified in hexadecimal using 16-bit values between colons.                                                                                                      |  |  |
|        | RP/0/RP0/CPU0:router(config-isis-af)# summary-prefix 3003:xxxx::/24 level 1                                                                            | <ul> <li>Note that IPv6 prefixes must be configured only in<br/>the IPv6 router address family configuration submode,</li> </ul>                                                                                                                                                            |  |  |

| Command or Action                                                             | Purpose                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               | and IPv4 prefixes in the IPv4 router address family configuration submode.                                                                                                                                                                                                                                                                       |
| maximum-paths route-number  Example:                                          | (Optional) Configures the maximum number of parallel paths allowed in a routing table.                                                                                                                                                                                                                                                           |
| <pre>RP/0/RP0/CPU0:router(config-isis-af)# maximum-paths 16</pre>             |                                                                                                                                                                                                                                                                                                                                                  |
| distance weight [ address / prefix-length [ route-list-name ]]                | (Optional) Defines the administrative distance assigned to routes discovered by the IS-IS protocol.                                                                                                                                                                                                                                              |
| Example:                                                                      | A different administrative distance may be applied for IPv4 and IPv6.                                                                                                                                                                                                                                                                            |
| RP/0/RP0/CPU0:router(config-isis-af)# distance 90                             |                                                                                                                                                                                                                                                                                                                                                  |
| attached-bit send { always-set   never-set }                                  | (Optional) Configures an IS-IS instance with an attached                                                                                                                                                                                                                                                                                         |
| Example:                                                                      | bit in the Level 1 LSP.                                                                                                                                                                                                                                                                                                                          |
| <pre>RP/0/RP0/CPU0:router(config-isis-af)# attached-bit send always-set</pre> |                                                                                                                                                                                                                                                                                                                                                  |
| Use the <b>commit</b> or <b>end</b> command.                                  | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                                                                                                                                                                                                                     |
|                                                                               | end —Prompts user to take one of these actions:                                                                                                                                                                                                                                                                                                  |
|                                                                               | • Yes — Saves configuration changes and exits the configuration session.                                                                                                                                                                                                                                                                         |
|                                                                               | • No —Exits the configuration session without committing the configuration changes.                                                                                                                                                                                                                                                              |
|                                                                               | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                                                                                                                                                                                                                    |
|                                                                               | maximum-paths route-number  Example:  RP/0/RP0/CPU0:router(config-isis-af)# maximum-paths 16  distance weight [address/prefix-length [ route-list-name]]  Example:  RP/0/RP0/CPU0:router(config-isis-af)# distance 90  attached-bit send {always-set   never-set }  Example:  RP/0/RP0/CPU0:router(config-isis-af)# attached-bit send always-set |

## **Configuring MPLS LDP IS-IS Synchronization**

This task explains how to enable Multiprotocol Label Switching (MPLS) Label Distribution Protocol (LDP) IS-IS synchronization. MPLS LDP synchronization can be enabled for an address family under interface configuration mode. Only IPv4 unicast address family is supported. This task is optional.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. interface type interface-path-id
- 4. address-family ipv4 unicast
- **5.** mpls ldp sync [ level { 1 | 2 }]
- **6.** Use the **commit** or **end** command.

#### **DETAILED STEPS**

|        | Command or Action                                                         | Purpose                                                                                                                                                                                                  |  |  |
|--------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step 1 | configure                                                                 | Enters XR Config mode.                                                                                                                                                                                   |  |  |
|        | Example:                                                                  |                                                                                                                                                                                                          |  |  |
|        | RP/0/RP0/CPU0:router# configure                                           |                                                                                                                                                                                                          |  |  |
| Step 2 | router isis instance-id                                                   | Enables IS-IS routing for the specified routing process, and places the router in router configuration mode.                                                                                             |  |  |
|        | Example:                                                                  |                                                                                                                                                                                                          |  |  |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                             | By default, all IS-IS instances are automatically<br>Level 1 and Level 2. You can change the level of<br>routing to be performed by a particular routing instanc<br>by using the <b>is-type</b> command. |  |  |
| Step 3 | interface type interface-path-id                                          | Enters interface configuration mode.                                                                                                                                                                     |  |  |
|        | Example:                                                                  |                                                                                                                                                                                                          |  |  |
|        | RP/0/RP0/CPU0:router(config-isis)# interface<br>GigabitEthernet 0/1/0/3   |                                                                                                                                                                                                          |  |  |
| Step 4 | address-family ipv4 unicast                                               | Specifies the IPv4 address family and enters router address                                                                                                                                              |  |  |
|        | Example:                                                                  | amily configuration mode.                                                                                                                                                                                |  |  |
|        | RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast         |                                                                                                                                                                                                          |  |  |
| Step 5 | mpls ldp sync [ level { 1   2 }]                                          | Enables MPLS LDP synchronization for the IPv4 address                                                                                                                                                    |  |  |
|        | Example:                                                                  | family under interface GigabitEthernet 0/1/0/3.                                                                                                                                                          |  |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-if-af)# mpls ldp sync level 1</pre> |                                                                                                                                                                                                          |  |  |
| Step 6 | Use the <b>commit</b> or <b>end</b> command.                              | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                                                                             |  |  |
|        |                                                                           | end —Prompts user to take one of these actions:                                                                                                                                                          |  |  |
|        |                                                                           | • Yes — Saves configuration changes and exits the configuration session.                                                                                                                                 |  |  |
|        |                                                                           | • No —Exits the configuration session without committing the configuration changes.                                                                                                                      |  |  |
|        |                                                                           | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                                                                            |  |  |

# **Tagging IS-IS Interface Routes**

This optional task describes how to associate a tag with a connected route of an IS-IS interface.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [ unicast ]
- 4. metric-style wide [transition][level {1 | 2}]
- 5. exit
- **6. interface** *type number*
- 7. address-family  $\{ ipv4 \mid ipv6 \} [ unicast ]$
- 8. tag tag
- **9.** Use the **commit** or **end** command.
- 10. show isis [ ipv4 | ipv6 | afi-all ] [ unicast | safi-all ] route [ detail ]

|        | Command or Action                                                          | Purpose                                                                                                |
|--------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                  | Enters XR Config mode.                                                                                 |
|        | Example:                                                                   |                                                                                                        |
|        | RP/0/RP0/CPU0:router# configure                                            |                                                                                                        |
| Step 2 | router isis instance-id                                                    | Enables IS-IS routing for the specified routing process,                                               |
|        | Example:                                                                   | and places the router in router configuration mode. In this example, the IS-IS instance is called isp. |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                              |                                                                                                        |
| Step 3 | address-family { ipv4   ipv6 } [ unicast ]                                 | Specifies the IPv4 or IPv6 address family, and enters router                                           |
|        | Example:                                                                   | address family configuration mode.                                                                     |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast</pre>  |                                                                                                        |
| Step 4 | metric-style wide [transition][level {1   2}]                              | Configures a router to generate and accept only wide link metrics in the Level 1 area.                 |
|        | Example:                                                                   |                                                                                                        |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-af)# metric-style wide level 1</pre> |                                                                                                        |
| Step 5 | exit                                                                       | Exits router address family configuration mode, and returns                                            |
|        | Example:                                                                   | the router to router configuration mode.                                                               |
|        | RP/0/RP0/CPU0:router(config-isis-af)# exit                                 |                                                                                                        |
| Step 6 | interface type number                                                      | Enters interface configuration mode.                                                                   |
|        | Example:                                                                   |                                                                                                        |
|        | RP/0/RP0/CPU0:router(config-isis)# interface<br>GigabitEthernet 0/1/0/3    |                                                                                                        |

|         | Command or Action                                                                | Purpose                                                                                       |  |
|---------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Step 7  | address-family { ipv4   ipv6 } [ unicast ]  Example:                             | Specifies the IPv4 or IPv6 address family, and enters address family configuration mode.      |  |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast</pre>     |                                                                                               |  |
| Step 8  | tag tag Example:                                                                 | Sets the value of the tag to associate with the advertised connected route.                   |  |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if-af)# tag 3</pre>                        |                                                                                               |  |
| Step 9  | Use the <b>commit</b> or <b>end</b> command.                                     | <b>commit</b> —Saves the configuration changes and remain within the configuration session.   |  |
|         |                                                                                  | end —Prompts user to take one of these actions:                                               |  |
|         |                                                                                  | • Yes — Saves configuration changes and exits the configuration session.                      |  |
|         |                                                                                  | • No —Exits the configuration session without committing the configuration changes.           |  |
|         |                                                                                  | • Cancel —Remains in the configuration session, without committing the configuration changes. |  |
| Step 10 | show isis [ ipv4   ipv6   afi-all ] [ unicast   safi-all ] route [ detail ]      | Displays tag information. Verify that all tags are present in the RIB.                        |  |
|         | Example:                                                                         |                                                                                               |  |
|         | <pre>RP/0/RP0/CPU0:router(config-isis-if-af) # show isis ipv4 route detail</pre> |                                                                                               |  |

# **Setting the Priority for Adding Prefixes to the RIB**

This optional task describes how to set the priority (order) for which specified prefixes are added to the RIB. The prefixes can be chosen using an access list (ACL), prefix list, or by matching a tag value.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. address-family { ipv4 | ipv6 } [ unicast ]
- 4. metric-style wide  $[transition][level \{1 \mid 2\}]$
- 5. spf prefix-priority [level {1 | 2}] { critical | high | medium } { access-list-name | tag tag }
- **6.** Use the **commit** or **end** command.

#### **DETAILED STEPS**

|        | Command or Action                                                                                               | Purpose                                                                                            |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| Step 1 | configure                                                                                                       | Enters XR Config mode.                                                                             |  |  |
|        | Example:                                                                                                        |                                                                                                    |  |  |
|        | RP/0/RP0/CPU0:router# configure                                                                                 |                                                                                                    |  |  |
| Step 2 | router isis instance-id                                                                                         | Enables IS-IS routing for the specified routing process, and                                       |  |  |
|        | Example:                                                                                                        | places the router in router configuration mode. In this example, the IS-IS instance is called isp. |  |  |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                                                                   |                                                                                                    |  |  |
| Step 3 | address-family { ipv4   ipv6 } [ unicast ]                                                                      | Specifies the IPv4 or IPv6 address family, and enters router                                       |  |  |
|        | Example:                                                                                                        | address family configuration mode.                                                                 |  |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast</pre>                                       |                                                                                                    |  |  |
| Step 4 | metric-style wide [transition][level {1   2}]                                                                   | Configures a router to generate and accept only wide-link                                          |  |  |
|        | Example:                                                                                                        | metrics in the Level 1 area.                                                                       |  |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-af)# metric-style wide level 1</pre>                                      |                                                                                                    |  |  |
| Step 5 | <pre>spf prefix-priority [ level { 1   2 }] { critical   high   medium } { access-list-name   tag   tag }</pre> | Installs all routes tagged with the value 3 first.                                                 |  |  |
|        | Example:                                                                                                        |                                                                                                    |  |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-af)# spf prefix-priority high tag 3</pre>                                 |                                                                                                    |  |  |
| Step 6 | Use the <b>commit</b> or <b>end</b> command.                                                                    | <b>commit</b> —Saves the configuration changes and remains within the configuration session.       |  |  |
|        |                                                                                                                 | end —Prompts user to take one of these actions:                                                    |  |  |
|        |                                                                                                                 | <ul> <li>Yes — Saves configuration changes and exits the<br/>configuration session.</li> </ul>     |  |  |
|        |                                                                                                                 | • No —Exits the configuration session without committing the configuration changes.                |  |  |
|        |                                                                                                                 | Cancel —Remains in the configuration session, without committing the configuration changes.        |  |  |

# **Configuring IP Fast Reroute Loop-free Alternate**

This optional task describes how to enable the IP fast reroute (IPFRR) loop-free alternate (LFA) computation to converge traffic flows around link failures.



Note

To enable node protection on broadcast links, IPFRR and bidirectional forwarding detection (BFD) must be enabled on the interface under IS-IS.

#### Before you begin



Note

IPFRR is supported on the Cisco IOS XR. IPv4 address families and single-level interfaces are supported.

Multiprotocol Label Switching (MPLS) FRR and IPFRR cannot be configured on the same interface simultaneously.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. interface type interface-path-id
- 4. circuit-type { level-1 | level-1-2 | level-2-only }
- 5. address-family ipv4 unicast
- **6.** ipfrr lfa  $\{ level \{ 1 \mid 2 \} \}$
- 7. ipfrr lfa exclude interface type interface-path-id
- **8.** Use the **commit** or **end** command.

| ·      | Command or Action                                                               | Purpose                                                                                            |
|--------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                       | Enters XR Config mode.                                                                             |
|        | Example:                                                                        |                                                                                                    |
|        | RP/0/RP0/CPU0:router# configure                                                 |                                                                                                    |
| Step 2 | router isis instance-id                                                         | Enables IS-IS routing for the specified routing process, and                                       |
|        | Example:                                                                        | places the router in router configuration mode. In this example, the IS-IS instance is called isp. |
|        | RP/0/RP0/CPU0:router(config)# router isis isp                                   |                                                                                                    |
| Step 3 | interface type interface-path-id                                                | Enters interface configuration mode.                                                               |
|        | Example:                                                                        |                                                                                                    |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# interface GigabitEthernet 0/1/0/3</pre> |                                                                                                    |
| Step 4 | circuit-type { level-1   level-1-2   level-2-only }                             | (Optional) Configures the type of adjacency.                                                       |
|        | Example:                                                                        |                                                                                                    |

|        | Command or Action                                                                                    | Purpose                                                                                                                                             |  |  |
|--------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | <pre>RP/0/RP0/CPU0:router(config-isis-if)# circuit-type level-1</pre>                                |                                                                                                                                                     |  |  |
| Step 5 | address-family ipv4 unicast  Example:                                                                | Specifies the IPv4 address family, and enters router address family configuration mode.                                                             |  |  |
|        | RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4 unicast                                    |                                                                                                                                                     |  |  |
| Step 6 | <pre>ipfrr lfa { level { 1   2 }} Example:  RP/0/RP0/CPU0:router(config-isis-if-af)# ipfrr lfa</pre> | Specifies the IP fast reroute loop-free alternate computation on link or node failures.                                                             |  |  |
| Step 7 | ipfrr lfa exclude interface type interface-path-id  Example:                                         | (Optional) Excludes an interface from the IP fast reroute loop-free alternate computation.                                                          |  |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-if-af)#ipfrr lfa exclude interface POS 0/1/0/4</pre>           |                                                                                                                                                     |  |  |
| Step 8 | Use the <b>commit</b> or <b>end</b> command.                                                         | <b>commit</b> —Saves the configuration changes and remains within the configuration session.                                                        |  |  |
|        |                                                                                                      | <ul> <li>end —Prompts user to take one of these actions:</li> <li>Yes — Saves configuration changes and exits the configuration session.</li> </ul> |  |  |
|        |                                                                                                      | No —Exits the configuration session without committing the configuration changes.                                                                   |  |  |
|        |                                                                                                      | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                       |  |  |

### **Configure Remote Loop-Free Alternate Paths for IS-IS**

IP Fast Re-Route (FRR) with Loop-Free Alternate (LFA) paths uses only the immediate next hops (directly-connected neighbors) as backups to a destination. Though this works well in most topologies, it fails in ring topologies, because the immediate next hop is likely to use the source router itself to forward traffic, thereby creating loops.

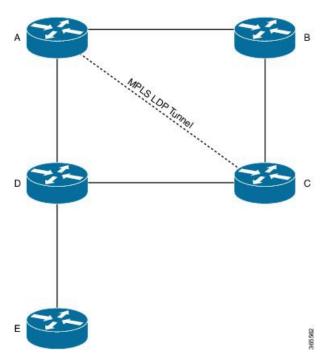
As a result, during link failures, extended LFA or Remote LFA (RLFA) is required to enable the router to use a non-directly connected next hop as backup. RLFA ensures that this nearest non-connected neighbor does not loop back to the source router.

RLFA uses an LDP tunnel between source and backup routers and is implemented in IPv4, IPv6, and MPLS networks. When the network converges, micro-loops can form due to inconsistencies in the forwarding tables of different routers. RLFA also provides a mechanism to avoid micro-loops.

Remote LFA is suitable for incremental deployment within a network, including a network that is already deploying LFA.

#### Remote LFA Process

The remote LFA process on the source router involves:


- 1. For a protected link between the source router and the immediate next hop, the IGP (OSPF or IS-IS) computes the remote LFA backup path by using the PQ algorithm.
- 2. The IGP updates the RIB table with the remote LFA path information.
- **3.** LDP establishes a session with the remote router to exchange labels for prefixes.
- 4. LDP sets up MPLS forwarding for the protected prefix, and the corresponding backup path.
- 5. On link failure, and fast reroute trigger, the remote LFA backup path is activated with less than 50 millisecond convergence time.
- **6.** The backup path is active until the IGP converges to the new primary path.

#### **Remote LFA Topology**

Consider the topology in the following figure. The best path from Source Router A to Destination Router E is through Router D. The best backup path for this route would be: Router A -> B -> C -> D -> Router E. Because Router B uses Router A as its primary next hop, this backup path cannot be used and LFA fails in this topology.

As a result, by implementing RLFA, Router A calculates its nearest non-directly connected neighbor that does not route back to it. In this example, Router A chooses Router C as its RLFA backup, and uses LDP to establish a tunnel between them. Traffic from Router A is routed to Router C on fast reroute trigger.

Figure 1: Remote LFA Topology



#### Configuration

To configure RLFA with IS-IS, use the following steps.

1. Configure the interface(s) of the router.

```
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#interface gigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:router(config-if)#ipv4 address 10.1.1.1 255.255.255.0
RP/0/RP0/CPU0:router(config-if)#no shutdown
RP/0/RP0/CPU0:router(config-if)#exit
RP/0/RP0/CPU0:router(config-if)#interface gigabitEthernet 0/0/0/2
RP/0/RP0/CPU0:router(config-if)#ipv4 address 10.10.10.1 255.255.255.0
RP/0/RP0/CPU0:router(config-if)#no shutdown
RP/0/RP0/CPU0:router(config-if)#exit
RP/0/RP0/CPU0:router(config-if)#ipv4 address 10.10.10.1 255.255.255.255
RP/0/RP0/CPU0:router(config-if)#ipv4 address 10.10.10.1 255.255.255.255
RP/0/RP0/CPU0:router(config-if)#ipv4 address 10.10.10.1 255.255.255.255
RP/0/RP0/CPU0:router(config-if)#no shutdown
RP/0/RP0/CPU0:router(config-if)#exit
```

2. Configure IS-IS.

```
RP/0/RP0/CPU0:router(config) #router isis rlfa
RP/0/RP0/CPU0:router(config-isis) #net 10.0001.0001.000
cted
```

**3.** Configure RLFA for IS-IS.

```
RP/0/RP0/CPU0:router(config-isis) # interface gigabitEthernet 0/0/0/1
RP/0/RP0/CPU0:router(config-isis-if) #address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-isis-if-af) #fast-reroute per-prefix remote-lfa tunnel mpls-ldp
RP/0/RP0/CPU0:router(config-isis-if-af) #fast-reroute per-prefix remote-lfa maximum-metric
20
RP/0/RP0/CPU0:router(config-isis-if-af) #exit
RP/0/RP0/CPU0:router(config-isis-if) # exit
RP/0/RP0/CPU0:router(config-isis-if) # exit
```

The **maximum-metric** command is required to limit the range of remote LFAs. The **microloop avoidance** command is used to avoid micro-loops by delaying the convergence of all or protected prefixes (as configured in this example). For more information on these commands, see the *Cisco ASR 9000 Series Aggregation Services Router Routing Command Reference*.

**4.** Commit your configuration.

```
RP/0/RP0/CPU0:router(config)#commit
```

**5.** Confirm your configuration.

```
RP/0/RP0/CPU0:router(config) #show running-config
...
!
interface GigabitEthernet0/0/0/1
ipv4 address 10.1.1.1 255.255.255.0
!
interface GigabitEthernet0/0/0/2
ipv4 address 10.10.10.1 255.255.255.0
shutdown
interface loopback0
ipv4 address 10.1.1.1 255.255.255
shutdown
...
!
router isis rlfa
```

```
microloop avoidance protected

net 10.0001.0001.0001.00

interface GigabitEthernet0/0/0/1

address-family ipv4 unicast

fast-reroute per-prefix remote-lfa tunnel mpls-ldp

fast-reroute per-prefix remote-lfa maximum-metric 20

!

!
```

#### **Sample Verification Outputs**

You can run the show commands mentioned in this section to verify whether RLFA is operational in your network. This section lists the sample outputs that are retrieved depending on your network topology.

#### **RIB Verification**

Verify the presence of the remote backup paths in the RIB.

```
RP/0/RP0/CPU0:router#show route 10.1.1.1/32
Routing entry for 10.1.1.1/32
  Known via "isis rlfa", distance 110, metric 20, type extern 2
  Installed Sep 8 15:18:33.214 for 2d00h
  Routing Descriptor Blocks
   13.0.0.3, from 10.1.1.1, via GigabitEthernet0/0/0/1, Protected
   131.1.1.4, from 10.10.10.1 via GigabitEthernet0/0/0/2, Backup (remote)
RP/0/RP0/CPU0:router#show route 10.1.1.1/32 detail
Routing entry for 10.1.1.1/32
  Known via "isis rlfa", distance 110, metric 20, type extern 2
  Installed Sep 8 15:18:33.214 for 2d00h
  Routing Descriptor Blocks
   13.0.0.3, from 10.1.1.1, via GigabitEthernet0/0/0/1, Protected
     Path id: 1
                   Path ref count: 0
     Backup path id: 33
   131.1.1.4, from 10.10.10.1 via GigabitEthernet0/0/0/2, Backup (remote)
     Remote LFA is 4.4.4.4
      Path id: 33 Path refcount:1
```

#### **IS-IS Verification**

Verify the presence of the remote backup paths in the IS-IS topology table.

```
Maximum parallel path count: 8

L1 3.3.3.3/32 [20/115]
    via 30.1.1.2, GigabitEthernet0/0/0/2, rt3
        FRR backup via 20.1.1.2, GigabitEthernet0/0/0/1, rt2 /*□ Local LFA backup display*/

L1 40.1.1.0/24 [20/115]
    via 30.1.1.2, GigabitEthernet0/0/0/2, rt3
        Remote FRR backup via rt5 [12.12.12], via 20.1.1.2, GigabitEthernet0/0/0/1, rt2

/* Remote LFA backup display */
```

#### **FIB Verification**

Verify the presence of remote backup paths in the FIB.

Load distribution: 0 (refcount 2)

Hash OK Interface

```
RP/0/RP0/CPU0:router# show cef 10.1.1.1 detail
10.1.1.1/32, version 6, internal 0x4004001 (ptr 0x1d5977f4) [1], 0x0 (0x1d563344), 0x450
(0x1dbab050)
Updated Apr 27 13:36:03.013
remote adjacency to GigabitEthernet0/2/0/0
 Prefix Len 32, traffic index 0, precedence routine (0), priority 3
 gateway array (0x1d42b878) reference count 3, flags 0x28000d0, source 1sd (3), 0 backups
                [2 type 5 flags 0x10101 (0x1da3c230) ext 0x0 (0x0)]
 LW-LDI[type=5, refc=3, ptr=0x1d563344, sh-ldi=0x1da3c230]
  via 2.2.2.3, GigabitEthernet0/2/0/0, 0 dependencies, weight 0, class 0, protected [flags
 0 \times 4001
   path-idx 0 bkup-idx 1 [0x1dc560cc 0x0]
   next hop 2.2.2.3
    local label 16011
                           labels imposed {16001}
   via 1.1.1.2, GigabitEthernet0/1/0/0, 2 dependencies, weight 0, class 0, backup (remote)
 [flags 0x300]
   path-idx 1 [0x1dc22110 0x0]
   next hop 1.1.1.2
   remote adjacency
    local label 16011
                           labels imposed {16002 16003}
```

0 Y GigabitEthernet0/2/0/0 remote

Address

#### RP/0/RP0/CPU0:router# show mpls forwarding prefix 10.1.1.1/32

|       | Outgoing<br>Label          | Prefix<br>or ID            | Outgoing<br>Interface    | Next Hop | Bytes<br>Switched |
|-------|----------------------------|----------------------------|--------------------------|----------|-------------------|
| 16011 | 16001<br>{16002<br>16003 } | 10.1.1.1/32<br>10.1.1.1/32 | SIO/2/CPU0<br>FIO/1/CPU0 |          | 0                 |

RP/0/RP0/CPU0:router# show mpls forwarding prefix 10.1.1.1/32 detail

```
Version: 5, Priority: 3
    MAC/Encaps: 0/4, MTU: 8000
    Label Stack (Top -> Bottom): { 16001 }
    Packets Switched: 0
                                   FI0/1/CPU0 1.1.1.2
      { 16002
                  10.1.1.1/32
       16003 }
    Updated Apr 29 14:25:09.770
    Path Flags: 0x300 [ IDX:1 BKUP-REMOTE ]
    MAC/Encaps: 0/4, MTU: 1500
    Label Stack (Top -> Bottom): { 16002 16003 }
    Packets Switched: 0
______
RP/0/RP0/CPU0:router# show mpls forwarding prefix 10.1.1.1/32
                                                      Bytes
Local Outgoing Prefix
                               Outgoing
                                          Next Hop
               or ID
Label Label
                                Interface
                                                         Switched
16011 16001
{16002
              10.1.1.1/32
10.1.1.1/32
                                 GI0/1/CPU0 2.2.2.3
                                                         Ω
                                GI0/2/CPU0 1.1.1.2
     16003 }
RP/0/RP0/CPU0:router# show mpls forwarding prefix 10.1.1.1/32 detail
                                                      Bytes
Local Outgoing Prefix
                               Outgoing
                                          Next Hop
Label Label
               or ID
                                Interface
                                                         Switched
16011 16001
                                 GI0/1/CPU0 2.2.2.3
               10.1.1.1/32
    Updated Apr 29 14:25:09.770
    Path Flags: 0x400 [ BKUP-IDX:1 (0x1dc460cc) ]
    Version: 5, Priority: 3
    MAC/Encaps: 0/4, MTU: 8000
    Label Stack (Top -> Bottom): { 16001 }
    Packets Switched: 0
      { 16002
                  10.1.1.1/32
                                GI0/2/CPU0 1.1.1.2
       16003 }
    Updated Apr 29 14:25:09.770
    Path Flags: 0x300 [ IDX:1 BKUP-REMOTE ]
    MAC/Encaps: 0/4, MTU: 1500
    Label Stack (Top -> Bottom): { 16002 16003 }
    Packets Switched: 0
RP/0/RP0/CPU0:router# show cef fast-reroute
                Next Hop
                                 Interface
10.1.1.1/32 2.18.6.2
                             Bundle-Ether100
                18.6.2
                                GigabitEthernet0/6/1/9.11
10.2.1.1/32
             2.18.6.2
                              Bundle-Ether100
                13.1.11.2
                                 GigabitEthernet0/6/1/9.11
10.3.1.1/32
             2.18.6.2
                              Bundle-Ether100
                13.1.11.2
                                 GigabitEthernet0/6/1/9.11
```

#### **MPLS LDP Verification**

Verify the presence of remote backup paths in the MPLS LDP forwarding database.

```
RP/0/RP0/CPU0:router# show mpls ldp forwarding 10.1.1.1/32
Codes:
   - = GR label recovering, (!) = LFA FRR Pure Backup path
```

```
{} = Label stack with multi-line output for a routing path
 G = GR, S = Stale, R = Remote LFA FRR Backup
                                Outgoing
                                                                Flags
              Label Label
                                              Next Hop
               In Out
                                   Interface
10.1.1.1/32 16001 16002 Gi0/0/0/1 12.1.0.2 Gi0/0/0/2 13.1.0.3
                                    Gi0/0/0/1 12.1.0.2
                                                             (!) G R
                       16004 }
                                              (4.4.4.4)
                                                                G
RP/0/RP0/CPU0:router# show mpls ldp forwarding 10.1.1.1/32 detail
Codes:
 - = GR label recovering, (!) = LFA FRR Pure Backup path
 {} = Label stack with multi-line output for a routing path
 G = GR, S = Stale, R = Remote LFA FRR Backup
              Label Label
                                  Outgoing
                                              Next Hop
              In Out
                                   Interface
                                                                 G S R
10.1.1.1/32 16001 16002 Gi0/0/0/1 12.1.0.2
                       [ Protected; path-id 1 backup-path-id 33;
                        peer 2.2.2.2:0 ]
                       { 16003 Gi0/0/0/2 13.1.0.3
                                                13.1.0.3 (!) G R (4.4.4.4) G
                        16004 }
                       [ Backup (remote); path-id 33; peer 3.3.3.3:0
                        remote LFA 4.4.4.4, remote peer 4.4.4.4:0 ]
 Routing update : Apr 23 17:22:33.102 (00:08:02 ago)
 Forwarding update: Apr 23 17:22:47.183 (00:07:48 ago)
RP/0/RP0/CPU0:router# show mpls ldp forwarding summary
Forwarding Server (LSD):
 Connected: Yes
 Forwarding State Holdtime: 120 sec
Forwarding States:
Rewrites:
Prefix:
     Total: 5 (4 with ECMP, 1 LFA FRR protected)
     Labelled:
   Paths:
     Total: 10 (1 backup [1 remote], 2 LFA FRR protected)
     Labelled: 10 (1 backup)
MPLS LSD Verification
Verify the presence of remote backup paths in the MPLS LSD forwarding database.
RP/0/RP0/CPU0:router# show mpls lsd forwarding labels 16001
In_Label, (ID), Path_Info: <Type>
16001, (IPv4, 'default':4U, 10.1.1.1/32), 2 Paths
  1/2: IPv4-rLFA, 'default':4U, Gi0/0/0/1, nh=12.1.0.2, lbl=16002, tun id=0,
          flags=0x0 () [Protected]
  2/2: IPv4-rLFA, 'default':4U, Gi0/0/0/2, nh=13.1.0.3, lbls={ 16003, 16004 }, tun_id=0,
   flags={ 0x4008 (Retain, Remote-Backup), 0x8 (Retain) } [Backup]
```

```
RP/0/RP0/CPU0:router# show mpls lsd forwarding labels 16001 detail
In Label, (ID), Path Info: <Type>
16001, (IPv4, 'default':4U, 10.1.1.1/32), 2 Paths
  1/2: IPv4-rLFA, 'default':4U, Gi0/0/0/1, nh=12.1.0.2, lbl=16002, tun id=0,
           flags=0x0 () [Protected]
           path-id=1, backup-path-id=33
  2/2: IPv4-rLFA, 'default':4U, Gi0/0/0/2, nh=13.1.0.3, lbls={ 16003, 16004 }, tun id=0,
           flags={ 0x4008 (Retain, Remote-Backup), 0x8 (Retain) } [Backup]
           path-id=33, backup-path-id=0
BCDL priority:3, LSD queue:15, version:103
     Installed Apr 23 17:22:47.183 (00:17:09 ago)
RP/0/RP0/CPU0:router# show mpls lsd forwarding summary
Messages: 22
Forwarding updates: 34
Rewrites: 9
 FPTs:
   Label: 9
   IPv4: 5
 MOIs: 13
   IPv4 paths: 10 (1 backup [1 remote], 2 protected)
   IP subscriber: 0
```

#### Ingress Forwarding Chain Verification (Backup over Non-TE)

Verify the presence of remote backup paths in the ingress forwarding chain.

```
RP/0/RP0/CPU0:router#show cef 10.1.1.1 hard in det loc 0/1/CPU0
Sat May 12 05:16:47.929 UTC
10.10.10.10/32, version 5475, internal 0x4004001 (ptr 0x5f9582f0) [1], 0x0 (0x5f29cf94),
0x450 (0x6058e35c)
Updated May 12 05:05:51.294
. . .
Print Flags: 00000000
 INGRESS PLU
  SW: 08300200 00000004 00040000 00263b00
  HW: 08300200 00000004 00040000 00263b00
 entry_type:
                   FWD rpf ptr: 0x00300200
                          BGP policy a/c:
                     1
 prefix len:
                    0 BAO id:
QoS group:
                     1 next ptr: 0x0000263b
 num entries:
 label ptr: 0x00000000
                         Label(0) Ptr(0)
   Load info:
   Flag: 0x00860001
   TLU Channel: 1 Addr: 0x0000263b
   ENTRY
               Ω
     SW: 00000000 00712426 b4040002 00000001
     HW: 00000000 00712426 b4040002 00000001
   PBTS:
                   0 extra 131i:
                  FWD
   entry type:
                        next ptr:
                                       0x00712426
   is label: 0 is label ptr:
   num of entries:
                    1
   tunnel_encap_ptr: 0x00000000
   next-hop: 180.4.0.2
      TLU Channel: 2 Addr: 0x00712426
```

```
ENTRY
                  0
       SW: 00000008 00000000 03e82000 20460b00
       HW: 00000008 00000000 03e82000 20460b00
       label1: 16002 label2:
                                                16003
       label 3: 16009
       num of labels:
                             next ptr: 0x0020460b
 frr Flags
                  : 0x28c /* New flag to indicate that LFA is over PQ */
 Primary adjacency
T<sub>2</sub> T<sub>1</sub>oad info
 TLU Channel: 3 Addr: 0x20460b
  [HW: 0x00010000 0x00000000 0x00000000 0x30040b00]
   num. entries : 1
   num. labels : 0
   label 1 : 0
next ptr
            : 0x30040b
L2 Load Balancing Entry
 TLU Channel: 4 Addr: 0x30040b
   Entry[0]
    [HW: 0x00000004 0x00000084 0x01280440 0x00050000]
     dest. addr : 0x4
     sponge queue
                       : 132
                      : 0x128044
     egress port : 0x2
rp destined : no
     service destined : no
     rp drop : no
     hash type
     uidb index
                        : 0x5
 FRR backup info
 FRR Flags
                            : 0x28c /* updated to indicate PQ is active */
 Cached backup adjacency
 Cached backup num. entries : 1
     protected num. entries : 1
     backup is a tunnel : yes
     backup tunnel local label: 16007
     remote LFA active: 1
  Shared TLU Channel: 4 Addr: 0x300a02
   Entry[0]
    [HW: 0x00000004 0x00000086 0x01280480 0x00070000]
     dest. addr : 0x4
                       : 134
     sponge queue
     egress port : 0x128048
     rp destined
     rp destined : no
service destined : no
     rp drop
                        : no
     hash type
                       : 0
     uidb index
                       : 0x7
    Load distribution: 0 (refcount 3)
   Hash OK Interface
                                      Address
         Y TenGigE0/2/0/4
                                      180.4.0.2
```

### **Configuring IS-IS Overload Bit Avoidance**

This task describes how to activate IS-IS overload bit avoidance.

#### Before you begin

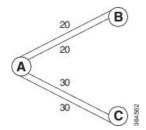
The IS-IS overload bit avoidance feature is valid only on networks that support the following Cisco IOS XR features:

- MPLS
- IS-IS

#### **SUMMARY STEPS**

- 1. configure
- 2. mpls traffic-eng path-selection ignore overload

#### **DETAILED STEPS**


| -      | Command or Action                                                             | Purpose                                 |
|--------|-------------------------------------------------------------------------------|-----------------------------------------|
| Step 1 | configure                                                                     | Enters XR Config mode.                  |
|        | Example:                                                                      |                                         |
|        | RP/0/RP0/CPU0:router# configure                                               |                                         |
| Step 2 | mpls traffic-eng path-selection ignore overload                               | Activates IS-IS overload bit avoidance. |
|        | Example:                                                                      |                                         |
|        | RP/0/RP0/CPU0:router(config)# mpls traffic-eng path-selection ignore overload |                                         |

### **ISIS Link Group**

The ISIS Link-Group feature allows you to define a group or set of links, and raise or lower their ISIS metric according to a predefined number of active links.

When the total number of active links (in terms of ISIS adjacency) in a group falls below the configured number or members, a predefined offset is applied on the remaining active links. When the total number of active links in a group is reverted, ISIS restores the configured metric by removing the offset.

In the example below, Router A has to exit through router B and C. In between A and B there are two layer 3 links with the same ISIS metric (20). There is a similar setup between A and C (30). In normal operations, the traffic from A goes through B. If the ISIS Link-Group is not configured, even when the link between A and B fails, traffic is still routed through B. However, with ISIS Link-Group, you can set an offset of 20 with minimum-members of 2. Thus, if a link between A and B fails, the metric is raised to 40 (configured (20) + offset (20)), and so the traffic is routed to C. Further, you can define another ISIS Link-Group, this time between A and C. If a link between B and C fails, you can raise the offset to 20, and thus traffic is routed back to B.



### **Configure Link Group Profile**

Perform this task to configure Intermediate System-to-Intermediate System (IS-IS) link group profiles:

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- **3.** link-group link-group-name { [ metric-offset count | maximum ] | [ minimum-members count | revert-members count ] }
- **4.** Use the **commit** or **end** command.
- 5. show isis interface
- 6. show isis lsp

|        | Command or Action                                                                                                   | Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | configure                                                                                                           | Enters XR Config mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | Example:                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | RP/0/RP0/CPU0:router# configure                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Step 2 | router isis instance-id                                                                                             | Enters IS-IS configuration submode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | Example:                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | RP/0/RP0/CPU0:router(config)# router isis purple                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Step 3 | link-group link-group-name { [ metric-offset count   maximum ]   [ minimum-members count   revert-members count ] } | <ul> <li>Specifies link-group values. Following are the valid values:</li> <li>metric-offset: Configures the metric offset for link group. The range is 1-16777214. The default metric offset range is between 1-63 for narrow metric; and 1-16777214 for wide metric.</li> <li>The maximum option here sets the maximum wide metric offset. All routers exclude this link from their SPF.</li> <li>minimum-members: Configures the minimum number of members in the link group. The range is 2-64.</li> </ul> |

|        | Command or Action                            | • revert-members: Configures the number of members after which to revert in the link group. The range is 2-64.                                                                        |  |
|--------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        |                                              |                                                                                                                                                                                       |  |
|        |                                              | Note A link-group is only active after the minimum-members and offset-metric are configured in the profile. The revert-members is default to minimum-members if it is not configured. |  |
| Step 4 | Use the <b>commit</b> or <b>end</b> command. | commit —Saves the configuration changes and remains within the configuration session.  end —Prompts user to take one of these actions:                                                |  |
|        |                                              |                                                                                                                                                                                       |  |
|        |                                              | • Yes — Saves configuration changes and exits the configuration session.                                                                                                              |  |
|        |                                              | • No —Exits the configuration session without committing the configuration changes.                                                                                                   |  |
|        |                                              | • Cancel —Remains in the configuration session, without committing the configuration changes.                                                                                         |  |
| Step 5 | show isis interface                          | (Optional) If link-group is configured on the interface, when                                                                                                                         |  |
|        | Example:                                     | showing the IS-IS interface-related topology, this command displays the link-group and current <b>offset-metric</b> value.                                                            |  |
|        | RP/0/RP0/CPU0:router# show isis interface    |                                                                                                                                                                                       |  |
| Step 6 | show isis lsp                                | (Optional) Displays the updated metric value.                                                                                                                                         |  |
|        | Example:                                     |                                                                                                                                                                                       |  |
|        | RP/0/RP0/CPU0:router# show isis lsp          |                                                                                                                                                                                       |  |

#### **Configure Link Group Profile: Example**

The following is an example configuration, along with the show isis interface output:

```
router isis 1
is-type level-2-only
net 49.1111.0000.0000.0006.00
link-group foo
metric-offset 100
revert-members 4
minimum-members 2
!
address-family ipv4 unicast
metric-style wide
!
interface GigabitEthernet0/0/0/1
point-to-point
address-family ipv4 unicast
```

#### link-group foo

```
RP/0/RSP0/CPU0:Iguazu#sh isis interface gig 0/0/0/1
Thu Jun 11 14:55:32.565 CEST
GigabitEthernet0/0/0/1
                          Enabled
 Adjacency Formation:
                          Enabled
 Prefix Advertisement:
                          Enabled
 IPv4 BFD:
                          Disabled
 IPv6 BFD:
                          Disabled
 BFD Min Interval:
                          150
 BFD Multiplier:
 Circuit Type:
                          level-2-only (Interface circuit type is level-1-2)
 Media Type:
 Circuit Number:
                          Ω
 Extended Circuit Number: 36
 Next P2P IIH in:
                           8 s
 LSP Rexmit Queue Size:
                          0
 Level-2
   Adjacency Count:
                          1
   LSP Pacing Interval:
                          33 ms
   PSNP Entry Queue Size: 0
  CLNS I/O
   Protocol State:
                           Uр
                           1497
   MTU:
   SNPA:
                           0026.9829.af19
   Layer-2 MCast Groups Membership:
     All ISs:
                          Yes
  IPv4 Unicast Topology: Enabled
   Adjacency Formation:
                          Running
   Prefix Advertisement:
                          Running
   Metric (L1/L2):
                          110/110
   Weight (L1/L2):
                          0/0
   MPLS Max Label Stack:
                         1
   MPLS LDP Sync (L1/L2): Disabled/Disabled
   Link-Group (L1/L2):
                          Configured/Configured
     Metric-Offset (L1/L2):100/100
  IPv4 Address Family:
                          Enabled
   Protocol State:
   Forwarding Address(es): 100.5.6.6
   Global Prefix(es):
                       100.5.6.0/24
 LSP transmit timer expires in 0 ms
  LSP transmission is idle
  Can send up to 9 back-to-back LSPs in the next 0 ms
```

### **Configure Link Group Interface**

Perform this task to configure link group under Intermediate System-to-Intermediate System (IS-IS) interface and address-family sub-mode:



Note

One IS-IS interface and address-family can specify only one link-group association. The default is for both levels regardless of the current circuit-type. The link-group association can be specified for one level only if configured.

#### **SUMMARY STEPS**

- 1. configure
- 2. router isis instance-id
- 3. interface type interface-path-id
- 4. address-family ipv4  $\mid$  ipv6 [ unicast ]
- **5.** link-group link-group-name [ level  $\{1 \mid 2 \}$  ]
- **6.** Use the **commit** or **end** command.
- 7. show isis interface

|        | Command or Action                                                                                        | Purpose                                                                                      |  |
|--------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Step 1 | configure                                                                                                | Enters XR Config mode.                                                                       |  |
|        | Example:                                                                                                 |                                                                                              |  |
|        | RP/0/RP0/CPU0:router# configure                                                                          |                                                                                              |  |
| Step 2 | router isis instance-id                                                                                  | Enters IS-IS configuration submode.                                                          |  |
|        | Example:                                                                                                 |                                                                                              |  |
|        | RP/0/RP0/CPU0:router(config)# router isis purple                                                         |                                                                                              |  |
| Step 3 | interface type interface-path-id                                                                         | Enters interface configuration mode.                                                         |  |
|        | Example:                                                                                                 |                                                                                              |  |
|        | RP/0/RP0/CPU0:router(config-isis)# interface<br>GigabitEthernet 0/1/0/3                                  |                                                                                              |  |
| Step 4 | address-family ipv4   ipv6 [ unicast ]                                                                   | Specifies the IPv6 address family and enters router address family configuration mode.       |  |
|        | Example:                                                                                                 |                                                                                              |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis)# address-family ipv4 unicast</pre>                                | This example specifies the unicast IPv4 address family.                                      |  |
| Step 5 | link-group link-group-name [ level {1   2 } ]                                                            | Specifies the link-group name and sets the tag at the level                                  |  |
|        | Example:                                                                                                 | specified.                                                                                   |  |
|        | <pre>RP/0/RP0/CPU0:router(config-isis-if)# )#address-family ipv4 unicast link-group access level 1</pre> |                                                                                              |  |
| Step 6 | Use the <b>commit</b> or <b>end</b> command.                                                             | <b>commit</b> —Saves the configuration changes and remains within the configuration session. |  |
|        |                                                                                                          | end —Prompts user to take one of these actions:                                              |  |
|        |                                                                                                          | • Yes — Saves configuration changes and exits the configuration session.                     |  |

|        | Command or Action                         | Purpose                                                                                       |
|--------|-------------------------------------------|-----------------------------------------------------------------------------------------------|
|        |                                           | • No —Exits the configuration session without committing the configuration changes.           |
|        |                                           | • Cancel —Remains in the configuration session, without committing the configuration changes. |
| Step 7 | show isis interface                       | (Optional) If link-group is configured on the interface, when                                 |
|        | Example:                                  | showing the IS-IS interface-related topology, this command displays the link-group value.     |
|        | RP/0/RP0/CPU0:router# show isis interface |                                                                                               |

# **Configuration Examples for Implementing IS-IS**

This section provides the following configuration examples:

## Configuring Single-Topology IS-IS for IPv6: Example

The following example shows single-topology mode being enabled. An IS-IS instance is created, the NET is defined, IPv6 is configured along with IPv4 on an interface, and IPv4 link topology is used for IPv6.

This configuration allows POS interface 0/3/0/0 to form adjacencies for both IPv4 and IPv6 addresses.

```
router isis isp
net 49.0000.0000.0001.00
address-family ipv6 unicast
  single-topology
interface POSO/3/0/0
  address-family ipv4 unicast
!
  address-family ipv6 unicast
!
  exit
!
interface POSO/3/0/0
  ipv4 address 10.0.1.3 255.255.255.0
  ipv6 address 2001::1/64
```

## Configuring Multitopology IS-IS for IPv6: Example

The following example shows multitopology IS-IS being configured in IPv6.

```
router isis isp
net 49.0000.0000.0001.00
interface POSO/3/0/0
  address-family ipv6 unicast
  metric-style wide level 1
  exit
!
interface POSO/3/0/0
```

```
ipv6 address 2001::1/64
```

### **Redistributing IS-IS Routes Between Multiple Instances: Example**

The following example shows usage of the **attached-bit send always-set** and **redistribute** commands. Two instances, instance "1" restricted to Level 1 and instance "2" restricted to Level 2, are configured.

The Level 1 instance is propagating routes to the Level 2 instance using redistribution. Note that the administrative distance is explicitly configured higher on the Level 2 instance to ensure that Level 1 routes are preferred.

Attached bit is being set for the Level 1 instance since it is redistributing routes into the Level 2 instance. Therefore, instance "1" is a suitable candidate to get from the area to the backbone.

```
router isis 1
   is-type level-2-only
   net 49.0001.0001.0001.0001.00
   address-family ipv4 unicast
   distance 116
   redistribute isis 2 level 2
  interface GigabitEthernet 0/3/0/0
   address-family ipv4 unicast
  router isis 2
  is-type level-1
   net 49.0002.0001.0001.0002.00
   address-family ipv4 unicast
attached-
bit send always-
set
  interface GigabitEthernet 0/1/0/0
   address-family ipv4 unicast
```

## **Tagging Routes: Example**

The following example shows how to tag routes.

```
route-policy isis-tag-55
end-policy !
route-policy isis-tag-555
  if destination in (5.5.5.0/24 eq 24) then
    set tag 555
    pass
    else
        drop
    endif
end-policy !
router static
address-family ipv4 unicast
    0.0.0.0/0 2.6.0.1
    5.5.5.0/24 Null0
```

```
!
router isis uut
net 00.0000.0000.12a5.00
address-family ipv4 unicast
metric-style wide
redistribute static level-1 route-policy isis-tag-555
spf prefix-priority critical tag 13
spf prefix-priority high tag 444
spf prefix-priority medium tag 777
```

## **Configuring IS-IS Overload Bit Avoidance: Example**

The following example shows how to activate IS-IS overload bit avoidance:

```
config
  mpls traffic-eng path-selection ignore overload
```

The following example shows how to deactivate IS-IS overload bit avoidance:

```
config
  no mpls traffic-eng path-selection ignore overload
```

## Where to Go Next

To implement more IP routing protocols, see the following document modules in *Routing Configuration Guide for Cisco NCS 6000 Series Routers*:

- Implementing OSPF
- Implementing BGP
- Implementing EIGRP
- Implementing RIP

### **Additional References**

The following sections provide references related to implementing IS-IS.

#### **Related Documents**

| Related Topic                                                                                                     | Document Title                                                 |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| IS-IS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples | Routing Command Reference for Cisco NCS 6000 Series<br>Routers |

| Related Topic                            | Document Title                                                                                                                                                                               |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPLS TE feature information              | Implementing MPLS Traffic Engineering on module in MPLS Configuration Guide for Cisco NCS 6000 Series Routers                                                                                |
| Bidirectional Forwarding Detection (BFD) | Interface and Hardware Component Configuration Guide for<br>Cisco NCS 6000 Series Routers and Interface and Hardware<br>Component Command Reference for the Cisco NCS 6000<br>Series Routers |

### **Standards**

| Standards                                | Title                                                                                                     |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Draft-ietf-isis-ipv6-05.txt              | Routing IPv6 with IS-IS, by Christian E. Hopps                                                            |
| Draft-ietf-isis-wg-multi-topology-06.txt | <i>M-ISIS: Multi Topology (MT) Routing in IS-IS</i> , by Tony Przygienda, Naiming Shen, and Nischal Sheth |
| Draft-ietf-isis-traffic-05.txt           | IS-IS Extensions for Traffic Engineering, by Henk Smit and Toni<br>Li                                     |
| Draft-ietf-isis-restart-04.txt           | Restart Signaling for IS-IS, by M. Shand and Les Ginsberg                                                 |
| Draft-ietf-isis-igp-p2p-over-lan-05.txt  | Point-to-point operation over LAN in link-state routing protocols, by Naiming Shen                        |
| Draft-ietf-rtgwg-ipfrr-framework-06.txt  | IP Fast Reroute Framework, by M. Shand and S. Bryant                                                      |
| Draft-ietf-rtgwg-lf-conv-frmwk-00.txt    | A Framework for Loop-free Convergence, by M. Shand and S. Bryant                                          |

### **MIBs**

| MBs | MIBs Link                                                                                                                                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _   | To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu:<br>https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index |

### **RFCs**

| RFCs        | Title                                                        |
|-------------|--------------------------------------------------------------|
| RFC<br>1142 | OSI IS-IS Intra-domain Routing Protocol                      |
| RFC<br>1195 | Use of OSI IS-IS for Routing in TCP/IP and Dual Environments |
| RFC<br>2763 | Dynamic Hostname Exchange Mechanism for IS-IS                |

| RFCs        | Title                                                    |
|-------------|----------------------------------------------------------|
| RFC<br>2966 | Domain-wide Prefix Distribution with Two-Level IS-IS     |
| RFC<br>2973 | IS-IS Mesh Groups                                        |
| RFC<br>3277 | IS-IS Transient Blackhole Avoidance                      |
| RFC<br>3373 | Three-Way Handshake for IS-IS Point-to-Point Adjacencies |
| RFC<br>3567 | IS-IS Cryptographic Authentication                       |
| RFC<br>4444 | IS-IS Management Information Base                        |

#### **Technical Assistance**

| Description                                                                                                                                                                                                                                                         | Link                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content. | http://www.cisco.com/<br>techsupport |