

MPLS Traffic Engineering Nonstop Routing Support

Note

This technology is not applicable for the Cisco ASR 900 RSP3 Module.

The MPLS Traffic Engineering Nonstop Routing Support feature assists the Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) routing devices to recover from an interruption in service. This feature also defines the checkpoint and recovery scheme for the devices.

- Prerequisites for MPLS Traffic Engineering Nonstop Routing Support, on page 1
- Restrictions for MPLS Traffic Engineering Nonstop Routing Support, on page 2
- Information About MPLS Traffic Engineering Nonstop Routing Support, on page 2
- How to Configure MPLS Traffic Engineering Nonstop Routing Support, on page 3
- Verifying MPLS Traffic Engineering Nonstop Routing Support, on page 4
- Configuration Examples for MPLS Traffic Engineering Nonstop Routing Support, on page 5
- Additional References for MPLS Traffic Engineering Nonstop Routing Support, on page 12
- Feature Information for MPLS Traffic Engineering Nonstop Routing Support, on page 13

Prerequisites for MPLS Traffic Engineering Nonstop Routing Support

Your network must support the following Cisco features before you enable Multiprotocol Label Switching (MPLS) Traffic Engineering (TE):

- MPLS
- Cisco Express Forwarding
- Intermediate System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF)

Before enabling MPLS TE Nonstop Routing (NSR), a full-mode check needs to be done by the system to verify if the **mpls traffic-eng nsr** command is permitted or is restricted due to conflicts or user privileges.

Restrictions for MPLS Traffic Engineering Nonstop Routing Support

Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) and Resource Reservation Protocol (RSVP) Graceful Restart (GR) are both mutually exclusive recovery mechanisms. Hence, MPLS TE NSR cannot be enabled when RSVP GR is enabled.

Information About MPLS Traffic Engineering Nonstop Routing Support

MPLS Traffic Engineering Nonstop Routing Support Overview

Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) enables routing devices to recover from an interruption in service. The MPLS TE NSR functionality defines a checkpoint for the control plane of the routing devices. Resource Reservation Protocol (RSVP) Graceful Restart (GR) is another method for recovering and restarting interrupted services.

To avoid conflict and guarantee deterministic behavior, only one of the above mentioned recovery methods can be configured at a given time.

The MPLS TE NSR feature differs from the RSVP GR feature in the following ways:

- MPLS TE NSR devices are fully independent and do not rely on neighbor nodes for a stateful switchover (SSO) recovery.
- MPLS TE NSR supports the SSO recovery of Fast Reroute (FRR) active tunnels.
- MPLS TE NSR has an active standby mode. This helps with most of the recovery states being created before the SSO recovery actually happens, ensuring a faster recovery after SSO.
- MPLS TE NSR **show** commands display recovery information in standby mode as well.
- Label switched paths (LSPs) which are not fully signaled, do not resume signaling after an interruption and will go down on SSO.

How to Configure MPLS Traffic Engineering Nonstop Routing Support

Configuring MPLS Traffic Engineering Nonstop Routing Support

Procedure

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	• Enter your password if prompted.	
	Device> enable		
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Device# configure terminal		
Step 3	ip cef	Enables standard Cisco Express Forwarding operations.	
	Example:		
	Device(config)# ip cef		
Step 4	mpls traffic-eng nsr	Enables the MPLS Traffic Engineering (TE)	
	Example:	Non-Stop Routing (NSR) functionality on a device.	
	Device(config)# mpls traffic-eng nsr	Note Enabling the MPLS TE NSR functionality automatically enables the Resource Reservation Protocol (RSVP) NSR functionality as well.	
Step 5	end	Exits global configuration mode and returns to privileged EXEC mode.	
	Example:		
	Device(config)# end		

Verifying MPLS Traffic Engineering Nonstop Routing Support

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Device> enable	
Step 2	show mpls traffic-eng nsr Example: Device# show mpls traffic-eng nsr counters TE NSR counters database TE NSR check pointed data oos TE NSR out of sync database summary TE NSR summary Output modifiers <cr></cr>	Displays options to obtain Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) configuration information such as the database status, counter numbers, devices which are out of sync, and the summary of all the devices.
Step 3	show mpls traffic-eng nsr counters Example: Device# show mpls traffic-eng nsr counters	Displays information about the data structures or states that are successfully created or removed, along with errors counts.
Step 4	<pre>show mpls traffic-eng nsr database Example: Device# show mpls traffic-eng nsr database</pre>	Displays information pertaining to the write and read databases supporting MPLS TE NSR. The write and read databases store the data that is used for recovering TE state on a standby device after stateful switchover (SSO).
Step 5	<pre>show mpls traffic-eng nsr oos Example: Device# show mpls traffic-eng nsr oos</pre>	Displays information pertaining to the out of sync databases supporting MPLS TE NSR. The out of sync databases indicate the devices whose states are not in sync with each other.
Step 6	show mpls traffic-eng nsr summary Example: Device# show mpls traffic-eng nsr summary	Displays a summary of MPLS TE NSR information such as the current TE NSR state (standby-hot / recovering / staling / active), recovery time, and the recovery result (success / failure).
Step 7	<pre>end Example: Device(config)# end</pre>	Exits privileged EXEC mode.

Configuration Examples for MPLS Traffic Engineering Nonstop Routing Support

Example: Configuring MPLS Traffic Engineering Nonstop Routing Support

The following example shows how to configure Multiprotocol (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) support on a device:

```
enable
  configure terminal
  ip cef
  mpls traffic-eng nsr
  end
```

Example: Verifying MPLS Traffic Engineering Nonstop Routing Support

Displaying MPLS Traffic Engineering Nonstop Routing Support Verification Options

The following example shows how to display the options that help you verify Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) information:

Verifying MPLS Traffic Engineering Nonstop Routing Support Counters

The following example shows how to verify information about the data structures or states that are successfully created or removed, along with errors counts:

```
enable
  show mpls traffic-eng nsr counters

State: Active

Bulk sync
  Last bulk sync was successful (entries sent: 24)
  initiated: 1

Send timer
  started: 7

Checkpoint Messages (Items) Sent
```

```
Succeeded: 13 (101)
   Acks accepted:13 (101)
   Acks ignored: (0)
 Nacks: 0 (0)
Failed: 0 (0)
              0 (0)
 Buffer alloc: 13
Buffer freed: 13
 Checkpoint Messages Transformed:
   On Send:
     Succeeded:
    Failed:
    Transformations: 0
   On Recv:
    Succeeded: 0
Failed: 0
     Failed:
                     0
     Transformations: 0
 Negotiation:
              1
   Started:
   Finished:
   Failed to Start:
   Messages:
    Sent:
       Send succeeded: 5
      Send failed: 0
      Buffer allocated:
Buffer freed:
                             5
      Buffer freed:
      Buffer alloc failed: 0
     Received:
      Succeeded:
                      7
      Buffer freed:
      Failed:
                       0
 Tnit:
   Succeeded:
                     1
   Failed:
                       0
 Session Registration:
   Succeeded:
                      Ω
   Failed:
 Session Unregistration:
   Succeeded: 0
   Failed:
Errors:
 None
```

Verifying MPLS Traffic Engineering Nonstop Routing Support Databases

The following example shows how to verify information pertaining to the write and read databases supporting MPLS TE NSR. The write and read databases store the data that is used for recovering TE state on a standby device after Stateful Switchover (SSO):

```
Device# show mpls traffic-eng nsr database if-autotun
IF_AUTOTUN WRITE DB

Header:
State: Checkpointed Action: Add
```

```
Seq #: 14
                         Flags: 0x0
 Data:
   te_nsr_seq_num: 28
   Tunnel ID: 100 (if handle: 25), prot if handle: 3
   template unit: n/a, dest: 10.2.0.1, flags=0x0
IF AUTOTUN READ DB
Device# show mpls traffic-eng nsr database lsp-ac ?
 | Output modifiers
 <cr>
Device# show mpls traffic-eng nsr database lsp-ac
LM Tunnel WRITE DB:
Tun ID: 1 LSP ID: 11 (P2MP)
 SubGrp ID: 1
 SubGrp Orig: 10.1.0.1
 Dest: 10.2.0.1
 Sender: 10.1.0.1 Ext. Tun ID: 10.1.0.1
 Header:
   State: Checkpointed
                        Action: Add
   Seq #: 7
                         Flags: 0x0
   TE NSR Seq #: 14
LM Tunnel READ DB:
Device# show mpls traffic-eng nsr database internal
Write DB:
                 Checkpointed
  Entry Type
                or Ack-Pending Send-Pending
    PCALC Node
                  0
                                           0
    PCALC Link
                              0
                                           0
                         0
    PCALC Auto-Mes
                                           Ω
    PCALC SRLG
                                          0
    lm tunnel t
                                          0
                            0
0
0
                                         0
    NSR LSP FRR
    nsr if autotun
                                           0
    nsr tspvif set
                                           0
                            0
                                         0
    nsr_slsp_head
Read DB:
                  Checkpointed
  Entry Type
                 5
    PCALC Node
    PCALC Link
                            12
    PCALC Auto-Mesh
                           0
    PCALC SRLG
    lm_tunnel_t
                            5
    NSR LSP FRR
                             0
    nsr if autotun
                             0
    nsr tspvif setup
                             3
    nsr_slsp_head
TE NSR Sequence Bulk Sync List:
Entries: 0; next avail seq num: 132
TE NSR Sequence State Creation List:
Entries: 30; next expected seq num: 132
  Seq Num: 7 EntryPtr: 0x5A03B208
    Type: PCALC Node Action: Add Bundle Seq #: 1
  Seq Num: 8 EntryPtr: 0x5A0B8B38
    Type: PCALC Link Action: Add Bundle Seq #: 2
  Seq Num: 9 EntryPtr: 0x5A0B8DA0
```

```
Type: PCALC Link Action: Add Bundle Seg #: 2
   Seq Num: 10 EntryPtr: 0x59FF1BB0
    Type: PCALC Node Action: Add Bundle Seg #: 1
   Seq Num: 11 EntryPtr: 0x5A0B9008
    Type: PCALC Link Action: Add Bundle Seq #: 2
   Seq Num: 32 EntryPtr: 0x586F2A50
    Type: PCALC Node Action: Add Bundle Seq #: 4
   Seq Num: 33 EntryPtr: 0x5949FC58
    Type: PCALC Link Action: Add Bundle Seq #: 5
   Seq Num: 34 EntryPtr: 0x5949FEC0
    Type: PCALC Link Action: Add Bundle Seq #: 5
   Seq Num: 60 EntryPtr: 0x5725BC30
    Type: lm tunnel t Action: Add Bundle Seq #: 12
   Seq Num: 61 EntryPtr: 0x5725BE00
    Type: nsr tspvif setup Action: Add Bundle Seq #: 12
   Seq Num: 62 EntryPtr: 0x59FC9E80
    Type: nsr_slsp_head Action: Add Bundle Seq #: 12
   Seq Num: 79 EntryPtr: 0x59296190
    Type: lm_tunnel_t Action: Add Bundle Seq #: 16
   Seg Num: 80 EntryPtr: 0x59296360
    Type: nsr tspvif setup Action: Add Bundle Seq #: 16
   Seq Num: 81 EntryPtr: 0x571EB7F8
   Type: nsr_slsp_head Action: Add Bundle Seq #: 16
Seq Num: 98 EntryPtr: 0x5A04B770
    Type: lm tunnel t Action: Add Bundle Seq #: 20
   Seq Num: 99 EntryPtr: 0x59296108
    Type: nsr tspvif setup Action: Add Bundle Seq #: 20
   Seq Num: 100 EntryPtr: 0x57258670
    Type: nsr slsp head Action: Add Bundle Seq #: 20
   Seq Num: 101 EntryPtr: 0x5A060348
    Type: lm tunnel t Action: Add Bundle Seg #: 20
   Seq Num: 102 EntryPtr: 0x5A03B2B0
    Type: nsr_slsp_head Action: Add Bundle Seq #: 20
   Seq Num: 103 EntryPtr: 0x5B1F12B0
    Type: lm tunnel t Action: Add Bundle Seq #: 20
   Seq Num: 1\overline{04} EntryPtr: 0x5A03B400
    Type: nsr slsp head Action: Add Bundle Seq #: 20
   Seq Num: 121 EntryPtr: 0x57258358
    Type: PCALC Node Action: Add Bundle Seg #: 21
   Seq Num: 122 EntryPtr: 0x59FAF080
    Type: PCALC Link Action: Add Bundle Seq #: 22
   Seq Num: 123 EntryPtr: 0x59502AC0
    Type: PCALC Link Action: Add Bundle Seq #: 23
   Seq Num: 124 EntryPtr: 0x594AE918
    Type: PCALC Link Action: Add Bundle Seq #: 21
   Seq Num: 125 EntryPtr: 0x59502120
    Type: PCALC Link Action: Add Bundle Seq #: 23
   Seq Num: 126 EntryPtr: 0x59FAFA20
    Type: PCALC Link Action: Add Bundle Seq #: 22
   Seq Num: 129 EntryPtr: 0x59FC9CC0
    Type: PCALC Node Action: Add Bundle Seq #: 24
   Seq Num: 130 EntryPtr: 0x5A060518
    Type: PCALC Link Action: Add Bundle Seq #: 24
   Seq Num: 131 EntryPtr: 0x59FAFC88
    Type: PCALC Link Action: Add Bundle Seq #: 24
Device# show mpls traffic-eng nsr database lsp-frr
LSP-FRR WRITE DB
Tun ID: 1
          LSP ID: 10
                        (P2MP)
  SubGrp ID: 1
  SubGrp Orig: 10.1.0.1
  Dest: 10.2.0.1
  Sender: 10.1.0.1
                     Ext. Tun ID: 10.1.0.1
```

```
Header:
    State: Checkpointed
                           Action: Add
   Seq #: 45
                           Flags: 0x0
  Data:
   te_nsr_seq_num: 164
   LSP Protected if num: 3 (Ethernet0/0)
    LSP Next-Hop Info: rrr id 10.2.0.1, address 10.2.0.1, label 17
   LSP Next-Next-Hop Info: rrr id 0.0.0.0, address 0.0.0.0, label 16777216
   LSP Hold Priority: 7
   LSP bw_type: any pool
   LSP desired_bit_type: 0x0n
                                LSP Backup ERO address 10.1.2.2
   LSP advertise bw: NO
LSP-FRR READ DB
Device# show mpls traffic-eng nsr database lsp-frr filter destination ?
 Hostname or A.B.C.D IP addr or name of destination (tunnel tail)
Device# show mpls traffic-eng nsr database lsp-frr filter lsp-id ?
 <0-65535> LSP ID
Device# show mpls traffic-eng nsr database lsp-frr filter source ?
 Hostname or A.B.C.D IP addr or name of sender (tunnel head)
Device# show mpls traffic-eng nsr database lsp-frr filter tunnel-id ?
  <0-65535> tunnel ID
Device# show mpls traffic-eng nsr database lsp-head
SLSP HEAD WRITE DB
  Tun ID: 0 (P2P), lsp id: 7
 Header:
   State: Checkpointed
                          Action: Add
                           Flags: 0x0
   Seq #: 6
  Data:
    te nsr seq num: 18
   bandwidth: 5, thead flags: 0x1, popt: 1
    feature flags: none
    output if num: 11, output nhop: 10.1.3.2
   backup output if num: 0
    output_tag: 19
   backup output tag: 16777218
    RRR path setup info
     Destination: 10.3.0.1, Id: 10.3.0.1 Router Node (ospf) flag:0x0
      IGP: ospf, IGP area: 0, Number of hops: 3, metric: 128
      Hop 0: 10.1.3.2, Id: 10.2.0.1 Router Node (ospf), flag:0x0
      Hop 1: 10.2.3.3, Id: 10.3.0.1 Router Node (ospf), flag:0x0
      Hop 2: 10.3.0.1, Id: 10.3.0.1 Router Node (ospf), flag:0x0
SLSP HEAD READ DB
Device# show mpls traffic-eng nsr database lsp-head filter destination ?
 Hostname or A.B.C.D IP addr or name of destination (tunnel tail)
Device# show mpls traffic-eng nsr database lsp-head filter lsp-id ?
  <0-65535> LSP ID
Device# show mpls traffic-eng nsr database lsp-head filter source ?
 Hostname or A.B.C.D IP addr or name of sender (tunnel head)
Device# show mpls traffic-eng nsr database lsp-head filter tunnel-id ?
 <0-65535> tunnel ID
Device# show mpls traffic-eng nsr database pcalc auto-mesh
```

```
PCALC Auto-Mesh WRITE DB:
  PCALC Auto-Mesh READ DB:
Device# show mpls traffic-eng nsr database pcalc nbr
PCALC Link WRITE DB:
 Header:
   State: Checkpointed Action: Add
                          Flags: 0x0
   Seq #: 4
   TE NSR Seq #: 26
   IGP Id:10.1.2.2 Area:0 Nbr IGP Id:10.1.2.2 IP:10.1.2.1 Nbr IP:0.0.0.0 Framgment ID
                       Nbr IP:0.0.0.0 Framgment ID:1
   Intf ID Local:0 Remote:0
PCALC Link READ DB:
Device# show mpls traffic-eng nsr database pcalc node
PCALC Node WRITE DB:
 Header:
   State: Checkpointed
                         Action: Add
   Seq #: 4
                           Flags: 0x0
   TE NSR Seq #: 25
   Router Id 10.1.0.1
   node id 1
   num links 2
   tlvs_len 0
   flags 0x6
   rid_frag_id 0
   bcid_mismatch 0
   incarnation 0
Device# show mpls traffic-eng nsr database pcalc srlg
PCALC SRLGs WRITE DB:
PCALC SRLGs READ DB:
Device# show mpls traffic-eng nsr database summary
MPLS-TE Non-Stop-Routing is ENABLED
Write DB Coalescing: INACTIVE
Write DB:
 Send-Pending:
                  0
                35
                   0
 Ack-Pending:
 Checkpointed:
                35
 Total
Read DB:
                  0
 Total
            :
Device# show mpls traffic-eng nsr database tun-setup
TSPVIF SETUP WRITE DB
 Tun ID: 0, lsp_id: 7
 Header:
   State: Checkpointed
                         Action: Add
   Seq #: 6
                           Flags: 0x0
  Data:
   te nsr seq num: 17
   Setup Evt: allocating current tspsetup, chkpt flags: 0x0
TSPVIF SETUP READ DB
```

Verifying MPLS Traffic Engineering Nonstop Routing Support Out-of-Sync Databases

The following example shows how to verify information pertaining to the out-of-sync databases supporting MPLS TE NSR. The out-of-sync databases indicate the **active and standby RSP** whose states are not in sync with each other:

```
enable
show mpls traffic-eng nsr oos
 Tunnel: 4000
 Time created: 02/20/13-12:03:13
 Time synced: 02/20/13-12:03:14
 Kev:
   Source:
                           10.2.0.1
   Destination:
   ID:
                            4000
   Ext Tun ID:
                            10.1.0.1
                             4
   Instance:
   Slsp p2mp ID:
   Slsp p2mp subgroup ID: 0
   Slsp p2mp subgroup origin: 0
 RSVP States:
   Signal:
                Unknown
   Fast-Reroute: Disabled
   Delete State: True
 TE States:
   Signal: Unknown
   Fast-Reroute: Disabled
   Delete State: True
 Update History:
   Total number of updates: 2
     Update Time: 02/20/13-12:03:13
       Client Updating: RSVP
       Update State:
         Signal:
                     Unknown
         Fast-Reroute: Unknown
         Delete State: True
     Update Time: 02/20/13-12:03:14
       Client Updating: TE
       Update State:
         Signal:
                      Unknown
         Fast-Reroute: Unknown
         Delete State: True
```

Verifying MPLS Traffic Engineering Nonstop Routing Support Information Summary

The following example shows how to view a summary of MPLS TE NSR information such as the current TE NSR state (standby-hot / recovering / staling / active), recovery time, and the recovery result (success / failure):

```
enable
  show mpls traffic-eng nsr summary
  State:
```

Graceful-Restart: Disabled
HA state: Active
Checkpointing: Allowed
Messages:
Send timer: not running (Interval: 1000 msec)
Items sent per Interval: 200
CF buffer size used: 3968

Additional References for MPLS Traffic Engineering Nonstop Routing Support

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Command List, All Releases
Multiprotocol Label Switching High Availability Configuration Guide	Cisco IOS XE Multiprotocol Label Switching High Availability Configuration Guide
MPLS TE commands	Cisco IOS Multiprotocol Label Switching Command Reference

Standards and RFCs

Standard/RFC	Title
RFC 2205	Resource Reservation Protocol (RSVP)

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	

Feature Information for MPLS Traffic Engineering Nonstop Routing Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for MPLS Traffic Engineering Nonstop Routing Support

Feature Name	Releases	Feature Information
MPLS Traffic Engineering Nonstop Routing Support	Cisco IOS XE Release 3.10S, 3.13S	The MPLS Traffic Engineering Non-Stop Routing Support feature assists the Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) routing devices to recover from an interruption in service. The MPLS TE Nonstop Routing (NSR) support functionality also defines the checkpoint and recovery scheme for the devices. From Cisco IOS XE 3.13S, support was provided for ASR 903. The following commands were introduced: mpls traffic-eng nsr and show mpls traffic-eng nsr.

Feature Information for MPLS Traffic Engineering Nonstop Routing Support