H-VPLS N-PE Redundancy for MPLS Access

The H-VPLS N-PE Redundancy for MPLS Access feature enables two network provider edge (N-PE) devices to provide failover services to a user provider edge (U-PE) device in a hierarchical virtual private LAN service (H-VPLS). Having redundant N-PE devices provides improved stability and reliability against link and node failures.

- Finding Feature Information, on page 1
- Prerequisites for H-VPLS N-PE Redundancy for MPLS Access, on page 1
- Restrictions for H-VPLS N-PE Redundancy for MPLS Access, on page 2
- Information About H-VPLS N-PE Redundancy for MPLS Access, on page 2
- How to Configure H-VPLS N-PE Redundancy for MPLS Access, on page 3
- Configuration Examples for H-VPLS N-PE Redundancy for MPLS Access, on page 5
- Additional References, on page 6
- Glossary, on page 7

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for H-VPLS N-PE Redundancy for MPLS Access

- Before configuring this feature, configure your hierarchical virtual private LAN service (H-VPLS) network and make sure it is operating correctly.

- To provide faster convergence, you can enable the MPLS Traffic Engineering—Fast Reroute feature in the Multiprotocol Label Switching (MPLS) core.

- Enable the L2VPN Pseudowire Redundancy feature on the user provider edge (U-PE) devices for MPLS access.
Restrictions for H-VPLS N-PE Redundancy for MPLS Access

- This feature cannot be used with the VPLS Autodiscovery feature on pseudowires that attach to user provider edge (U-PE) devices. When you create the virtual private LAN service (VPLS), you can manually create the virtual forwarding interface (VFI).
- You cannot configure more than one pseudowire to carry the bridge protocol data unit (BPDU) information between the network provider edge (N-PE) devices.
- You cannot configure a local loopback address as a neighbor when you configure the H-VPLS N-PE Redundancy feature on N-PE devices.
- Only two N-PE devices can be connected to each U-PE device.

Information About H-VPLS N-PE Redundancy for MPLS Access

How H-VPLS N-PE Redundancy for MPLS Access

In a network configured with the H-VPLS N-PE Redundancy feature, the user provider edge (U-PE) device is connected to two network provider edge (N-PE) devices. This feature provides a level of redundancy that can tolerate both link and device faults. If a failure occurs in the network that disables one N-PE device from transmitting data, the other N-PE device takes over.

H-VPLS N-PE Redundancy with MPLS Access Based on Pseudowire Redundancy

For the H-VPLS Redundancy with MPLS Access feature based on pseudowire redundancy, the Multiprotocol Label Switching (MPLS) network has pseudowires to the virtual private LAN service (VPLS) core network provider edge (N-PE) devices.

As shown in the figure below, one pseudowire transports data between the user provider edge (U-PE) device and its peer N-PE devices. When a failure occurs along the path of the U-PE device, the backup pseudowire and the redundant N-PE device become active and start transporting data.
How to Configure H-VPLS N-PE Redundancy for MPLS Access

Configuring the VPLS Pseudowire Between the N-PE Devices

Configuring network provider edge (N-PE) redundancy in a hierarchical Virtual Private LAN service (H-VPLS) network requires that you define the VPLS pseudowire for transporting bridge protocol data unit (BPDU) packets (described here) and that you connect that pseudowire to the native VLAN (described in the next task). This configuration provides a redundancy that provides improved reliability against link and node failures.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2 vfi name manual
4. vpn id id-number
5. bridge-domain bridge-id
6. neighbor remote-router-id vc-id {encapsulation encapsulation-type | pw-class pw-name} [no-split-horizon]
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 3
`l2 vfi name manual`
Example:
Device(config)# l2 vfi vfitest1 manual
Creates a Layer 2 virtual forwarding interface (VFI) and enters Layer 2 VFI manual configuration mode.

Step 4
`vpn id id-number`
Example:
Device(config-vfi)# vpn id 10
Specifies the VPN ID.

Step 5
`bridge-domain bridge-id`
Configures the router to derive bridge domains from the encapsulation VLAN list.

Step 6
`neighbor remote-router-id vc-id {encapsulation encapsulation-type | pw-class pw-name} [no-split-horizon]`
Example:
Device(config-vfi)# neighbor 10.2.2.2 3 encapsulation mpls
Specifies the peer IP address of the redundant N-PE device and the type of tunnel signaling and encapsulation mechanism.

Step 7
`end`
Example:
Device(config-vfi)# end
Exits Layer 2 VFI manual configuration mode and returns to privileged EXEC mode.

Example
You can also configure the VPLS pseudowire between the N-PE devices using this alternate method.

```
RoutDeviceer> enable
Device# configure terminal
Device(config)# l2vpn vfi context vfi110
Device(config-vfi)# vpn id 10
Device(config-vfi)# exit
Device(config)# bridge-domain 100
Device(config-bdomain)# member vfi vfi110
Device(config-vfi)# member 172.16.10.2 4 encapsulation mpls
Device(config-vfi)# end
```
Configuration Examples for H-VPLS N-PE Redundancy for MPLS Access

Example: H-VPLS N-PE Redundancy for MPLS Access

The figure below shows a configuration that is set up for the H-VPLS N-PE Redundancy with MPLS Access feature.

Figure 2: H-VPLS N-PE Redundancy with MPLS Access Topology

The table below shows the configuration of two network provider edge (N-PE) devices.

Table 1: Example: H-VPLS N-PE Redundancy for MPLS Access

<table>
<thead>
<tr>
<th>N-PE1</th>
<th>N-PE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 vfi 12trunk manual</td>
<td>12 vfi 12trunk manual</td>
</tr>
<tr>
<td>vpn id 10</td>
<td>vpn id 10</td>
</tr>
<tr>
<td>bridge-domain 10</td>
<td>bridge-domain 10</td>
</tr>
<tr>
<td>neighbor 10.4.4.4 encapsulation mpls</td>
<td>neighbor 10.2.2.2 encapsulation mpls</td>
</tr>
<tr>
<td>spanning-tree mode mst</td>
<td>spanning-tree mode mst</td>
</tr>
<tr>
<td>spanning-tree extend system-id</td>
<td>spanning-tree extend system-id</td>
</tr>
<tr>
<td>spanning-tree mst configuration revision 10</td>
<td>spanning-tree mst configuration revision 10</td>
</tr>
<tr>
<td>instance 1 vlan 20</td>
<td>instance 1 vlan 20</td>
</tr>
<tr>
<td>interface GigabitEthernet 0/5/2 service instance 5 ethernet encapsulation dot1q 10 bridge-domain 10</td>
<td>interface GigabitEthernet 0/5/2 service instance 5 ethernet encapsulation dot1q 10 bridge-domain 10</td>
</tr>
</tbody>
</table>
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>L2VPN pseudowire redundancy</td>
<td>“L2VPN Pseudowire Redundancy” feature module in the MPLS Layer 2 VPNs Configuration Guide.</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www3.ietf.org/proceedings/06mar/IDs/draft-ietf-l2vpn-vpls-ldp-08.txt</td>
<td>Virtual Private LAN Services over MPLS</td>
</tr>
<tr>
<td>draft-ietf-pwe3-vccv-10.txt</td>
<td>Pseudo Wire Virtual Circuit Connectivity Verification (VCCV)</td>
</tr>
<tr>
<td>draft-ietf-pwe3-oam-msg-map-03.txt</td>
<td>Pseudo Wire (PW) OAM Message Mapping</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowire Emulation Edge-to-Edge MIBs for Ethernet, Frame Relay, and ATM Services</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Glossary

CE device—customer edge device. A device that belongs to a customer network, which connects to a PE device to utilize MPLS VPN network services.

LAN—local-area network. High-speed, low-error data network covering a relatively small geographic area. LANs connect workstations, peripherals, terminals, and other devices in a single building or other geographically limited areas.

MPLS—Multiprotocol Label Switching. A packet-forwarding technology, used in the network core, that applies data link layer labels to tell switching nodes how to forward data, resulting in faster and more scalable forwarding than network layer routing normally can do.

MSTP—Multiple Spanning Tree Protocol. MSTP enables multiple VLANs to be mapped to the same spanning-tree instance, reducing the number of spanning-tree instances needed to support a large number of VLANs.

N-PE—network provider edge device. This device acts as a gateway between the MPLS core and edge domains.

PE device—provider edge device. The PE device is the entry point into the service provider network. The PE device is typically deployed on the edge of the network and is administered by the service provider.

pseudowire—A pseudowire is a virtual connection that, in the context of VPLS, connects two SVIs. It is a mechanism that carries the elements of an emulated service from one PE device to one or more PE devices over a packet switched network (PSN). A pseudowire is bidirectional and consists of a pair of unidirectional MPLS virtual circuits (VCs). A pseudowire can be used to connect a point-to-point circuit.

QinQ—An IEEE 802.1Q VLAN tunnel. A mechanism for constructing multipoint Layer 2 VPN using Ethernet switches.
redundancy—The duplication of devices, services, or connections so that, in the event of a failure, they can perform the work of those that failed.

router—A network layer device that uses one or more metrics to determine the optimal path along which network traffic should be forwarded. Routers forward packets from one network to another based on network layer information.

spanning tree—Loop-free subset of a network topology.

U-PE—user provider edge device. This device connects CE devices to the service.

VFI—virtual forwarding instance. A VFI is a collection of data structures used by the data plane, software-based or hardware-based, to forward packets to one or more VCs.

VLAN—Virtual LAN. Group of devices on one or more LANs that are configured (using management software) so that they can communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments.

VPLS—Virtual Private LAN Service. VPLS describes an architecture that delivers Layer 2 service that emulates an Ethernet LAN across a wide-area network (WAN) and inherits the scaling characteristics of a LAN.

VPLS redundancy—Also called N-PE redundancy. Allows U-PEs to be dual-honed (to their N-PEs) in a loop-free topology with MPLS or QinQ as the access or aggregation domain.

VPN—Virtual Private Network. Allows IP traffic to travel securely over public TCP/IP networks and the Internet by encapsulating and encrypting all IP packets. VPN uses a tunnel to encrypt all information at the IP level.