

Any Transport over MPLS

This module describes how to configure Any Transport over MPLS (AToM) transports data link layer (Layer 2) packets over a Multiprotocol Label Switching (MPLS) backbone. AToM enables service providers to connect customer sites with existing Layer 2 networks by using a single, integrated, packet-based network infrastructure--a Cisco MPLS network. Instead of using separate networks with network management environments, service providers can deliver Layer 2 connections over an MPLS backbone. AToM provides a common framework to encapsulate and transport supported Layer 2 traffic types over an MPLS network core.

AToM supports the following like-to-like transport types:

- ATM Adaptation Layer Type-5 (AAL5) over MPLS
- ATM Cell Relay over MPLS
- Ethernet over MPLS (port modes)
- Circuit Emulation (CEM)

Note

For information on ATM Cell relay and Circuit Emulation(CEM), see Configuring Pseudowire.

- Finding Feature Information, on page 2
- Prerequisites for Any Transport over MPLS, on page 2
- General Restrictions, on page 2
- ATM AAL5 over MPLS Restrictions, on page 3
- Ethernet over MPLS (EoMPLS) Restrictions, on page 3
- Tunnel Selection Restrictions, on page 3
- Remote Ethernet Port Shutdown Restrictions, on page 4
- Information About Any Transport over MPLS, on page 4
- How to Configure Any Transport over MPLS, on page 12
- Configuration Examples for Any Transport over MPLS, on page 46
- Additional References for Any Transport over MPLS, on page 62
- Feature Information for Any Transport over MPLS, on page 62

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Any Transport over MPLS

- IP routing must be configured in the core so that the provider edge (PE) routers can reach each other via IP.
- MPLS must be configured in the core so that a label-switched path (LSP) exists between the PE routers.
- A loopback interface must be configured for originating and terminating Layer 2 traffic. Ensure that the
 PE routers can access the other router's loopback interface. Note that the loopback interface is not needed
 in all cases. For example, tunnel selection does not need a loopback interface when AToM is directly
 mapped to a traffic engineering (TE) tunnel.

General Restrictions

- Address format--Configure the Label Distribution Protocol (LDP) router ID on all PE routers to be a loopback address with a /32 mask. Otherwise, some configurations might not function properly.
- For PTPoIP configuration with explicit Null MPLS encapsulation, when a Transparent Clock (TC) is placed between a PTP master and a PTP slave, the TC does not update the correction field.
- Ethernet over MPLS (EoMPLS) VC statistics are not supported on the Cisco RSP3 module.
- Virtual Circuit (VC) counters are not supported on the Cisco RSP3 module.

Note VC counters are enabled by default.

- 4000 virtual circuits are supported on the on the Cisco RSP3 module.
- TE-FRR with BGP labels for layer 2 and layer 3 VPNs must terminate on the BGP gateway because of the four-label limitation.
- If an AToM tunnel spans different service providers that exchange MPLS labels using IPv4 Border Gateway Protocol (BGP) (RFC 3107), you add a label to the stack. The maximum MPLS label stack is four (FRR label, TE label, LDP label, VC label).
- BGP PIC Edge with EoMPLS using BGP label Unicast (RFC 3107) requires the **bgp mpls-local-label** command to be explicitly enabled under the Router BGP process. This limitation is applicable only on the Cisco RSP3 module.

 Hot standby pseudowire (HSPW) convergence without pseudowire grouping increments linearly. For example, for a thousand virtual circuits, it requires about 54 seconds of convergence time. This is applicable only for the Cisco RSP3 Module.

Clear interface is not the recommended way to measure the convergence numbers.

- With two ECMP paths, load sharing on L2VPN traffic occurs based on odd or even MPLS VC labels. If L2VPN circuits have either odd or even MPLS VC labels, load sharing is not performed. But if L2VPN circuits have a combination of both odd and even MPLS VC labels, then the odd MPLS VC labels circuits will select one link whereas the even MPLS VC labels circuits will select another link.
- Flow-Aware Transport (FAT) Load Balancing over VPLS is not supported.

ATM AAL5 over MPLS Restrictions

• AAL5 over MPLS is supported only in SDU mode.

Ethernet over MPLS (EoMPLS) Restrictions

- The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet.
- The subinterface on the adjoining CE router must be on the same VLAN as the PE router.
- Ethernet over MPLS supports VLAN packets that conform to the IEEE 802.1Q standard. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames. The Inter-Switch Link (ISL) protocol is not supported between the PE and CE routers.
- The AToM control word is supported. However, if the peer PE does not support a control word, the control word is disabled.
- Ethernet packets with hardware-level cyclic redundancy check (CRC) errors, framing errors, and runt
 packets are discarded on input.

Tunnel Selection Restrictions

- The selected path should be an LSP destined to the peer PE router.
- The selected tunnel must be an MPLS TE tunnel.
- If you specify an IP address, that address must be the IP address of the loopback interface on the remote PE router. The address must have a /32 mask. There must be an LSP destined to that selected address. The LSP need not be a TE tunnel.

Remote Ethernet Port Shutdown Restrictions

This feature is not symmetrical if the remote PE router is running an older version image or is on another platform that does not support the EoMPLS remote Ethernet port shutdown feature and the local PE is running an image which supports this feature.

Remote Ethernet Port Shutdown is supported only on EFP with encapsulation default.

Information About Any Transport over MPLS

To configure AToM, you must understand the following concepts:

How AToM Transports Layer 2 Packets

AToM encapsulates Layer 2 frames at the ingress PE and sends them to a corresponding PE at the other end of a pseudowire, which is a connection between the two PE routers. The egress PE removes the encapsulation and sends out the Layer 2 frame.

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You set up the connection, called a pseudowire, between the routers. You specify the following information on each PE router:

- The type of Layer 2 data that will be transported across the pseudowire, such as Ethernet, Frame Relay, or ATM
- The IP address of the loopback interface of the peer PE router, which enables the PE routers to communicate
- A unique combination of peer PE IP address and VC ID that identifies the pseudowire

The following example shows the basic configuration steps on a PE router that enable the transport of Layer 2 packets. Each transport type has slightly different steps.

Step 1 defines the interface or subinterface on the PE router:

```
Router# interface
interface-type interface-number
```

Step 2 configures an ethernet service instance on an interface and enters service instance configuration mode:

```
Router(config-if)#service instance number ethernet WORD
Router(config-if)# service instance 393 ethernet ethernet1
```

Step 3 specifies the encapsulation type for the interface, such as dot1q:

```
Router(config-if-srv)# encapsulation
encapsulation-type
```

Step 4 does the following:

- Makes a connection to the peer PE router by specifying the LDP router ID of the peer PE router.
- Specifies a 32-bit unique identifier, called the VC ID, which is shared between the two PE routers.

The combination of the peer router ID and the VC ID must be unique on the router. Two circuits cannot use the same combination of peer router ID and VC ID.

 Specifies the tunneling method used to encapsulate data in the pseudowire. AToM uses MPLS as the tunneling method.

Router(config-if-srv)# xconnect
peer-router-id vcid
encapsulation mpls

As an alternative, you can set up a pseudowire class to specify the tunneling method and other characteristics. For more information, see the Configuring the Pseudowire Class, on page 12.

How AToM Transports Layer 2 Packets Using Commands Associated with L2VPN Protocol-Based Feature

ATOM encapsulates Layer 2 frames at the ingress PE and sends them to a corresponding PE at the other end of a pseudowire, which is a connection between the two PE routers. The egress PE removes the encapsulation and sends out the Layer 2 frame.

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You set up the connection, called a pseudowire, between the routers. You specify the following information on each PE router:

- The type of Layer 2 data that will be transported across the pseudowire, such as Ethernet, Frame Relay, or ATM
- The IP address of the loopback interface of the peer PE router, which enables the PE routers to communicate
- A unique combination of peer PE IP address and VC ID that identifies the pseudowire

The following example shows the basic configuration steps on a PE router that enable the transport of Layer 2 packets. Each transport type has slightly different steps.

Step 1 defines the interface or subinterface on the PE router:

```
Router# interface
interface-type interface-number
Router(config)# interface gi 0/1/0
```

Step 2 configures an ethernet service instance on an interface and enters service instance configuration mode:

Router(config-if)#service instance number ethernet WORD Router(config-if)# service instance 393 ethernet ethernet1

Step 3 specifies the encapsulation type for the interface, such as dot1q:

```
Router(config-if)# encapsulation
encapsulation-type
```

Router(config-if-srv)# encapsulation dot1q 393

Step 3 does the following:

• Makes a connection to the peer PE router by specifying the LDP router ID of the peer PE router.

Any Transport over MPLS

• Specifies a 32-bit unique identifier, called the VC ID, which is shared between the two PE routers.

The combination of the peer router ID and the VC ID must be unique on the router. Two circuits cannot use the same combination of peer router ID and VC ID.

 Specifies the tunneling method used to encapsulate data in the pseudowire. AToM uses MPLS as the tunneling method.

```
Router(config)# interface pseudowire 100
Router(config-if)# encapsulation mpls
Router(config-if)# neighbor 10.0.0.1 123
Router(config-if)# exit
!
Router(config)# l2vpn xconnect context A
Router(config-xconnect)# member pseudowire 100
Router (config-xconnect)# member gigabitethernet0/1/0 service instance 393
Router(config-xconnect)# exit
```

As an alternative, you can set up a pseudowire class to specify the tunneling method and other characteristics. For more information, see the Configuring the Pseudowire Class, on page 12.

Benefits of AToM

The following list explains some of the benefits of enabling Layer 2 packets to be sent in the MPLS network:

- The AToM product set accommodates many types of Layer 2 packets, including Ethernet and Frame Relay, across multiple Cisco router platforms. This enables the service provider to transport all types of traffic over the backbone and accommodate all types of customers.
- AToM adheres to the standards developed for transporting Layer 2 packets over MPLS. This benefits
 the service provider that wants to incorporate industry-standard methodologies in the network. Other
 Layer 2 solutions are proprietary, which can limit the service provider's ability to expand the network
 and can force the service provider to use only one vendor's equipment.
- Upgrading to AToM is transparent to the customer. Because the service provider network is separate from the customer network, the service provider can upgrade to AToM without disruption of service to the customer. The customers assume that they are using a traditional Layer 2 backbone.

MPLS Traffic Engineering Fast Reroute

Note

For the supported combinations of MPLS TE FRR on Cisco RSP3 Module, see the *MPLS Traffic Engineering Path Link and Node Protection Configuration Guide*.

AToM can use MPLS traffic engineering (TE) tunnels with fast reroute (FRR) support. AToM VCs can be rerouted around a failed link or node at the same time as MPLS and IP prefixes.

Enabling fast reroute on AToM does not require any special commands; you can use standard fast reroute commands. At the ingress PE, an AToM tunnel is protected by fast reroute when it is routed to an FRR-protected TE tunnel. Both link and node protection are supported for AToM VCs at the ingress PE.

Maximum Transmission Unit Guidelines for Estimating Packet Size

The following calculation helps you determine the size of the packets traveling through the core network. You set the maximum transmission unit (MTU) on the core-facing interfaces of the P and PE routers to accommodate packets of this size. The MTU should be greater than or equal to the total bytes of the items in the following equation:

```
Core MTU >= (Edge MTU + Transport header + AToM header + (MPLS label stack * MPLS label size))
```

The following sections describe the variables used in the equation.

Edge MTU

The edge MTU is the MTU for the customer-facing interfaces.

Transport Header

The Transport header depends on the transport type. The table below lists the specific sizes of the headers.

Transport Type	Packet Size
AAL5	0-32 bytes
Ethernet VLAN	18 bytes
Ethernet Port	14 bytes
Frame Relay DLCI	2 bytes for Cisco encapsulation, 8 bytes for Internet Engineering Task Force (IETF) encapsulation
HDLC	4 bytes
РРР	4 bytes

Table 1: Header Size of Packets

AToM Header

The AToM header is 4 bytes (control word). The control word is optional for Ethernet, PPP, HDLC, and cell relay transport types. The control word is required for Frame Relay and ATM AAL5 transport types.

MPLS Label Stack

The MPLS label stack size depends on the configuration of the core MPLS network:

- AToM uses one MPLS label to identify the AToM VCs (VC label). Therefore, the minimum MPLS label stack is one for directly connected AToM PEs, which are PE routers that do not have a P router between them.
- If LDP is used in the MPLS network, the label stack size is two (the LDP label and the VC label).
- If a TE tunnel instead of LDP is used between PE routers in the MPLS network, the label stack size is two (the TE label and the VC label).

- If a TE tunnel and LDP are used in the MPLS network (for example, a TE tunnel between P routers or between P and PE routers, with LDP on the tunnel), the label stack is three (TE label, LDP label, VC label).
- If you use MPLS fast reroute in the MPLS network, you add a label to the stack. The maximum MPLS label stack in this case is four (FRR label, TE label, LDP label, VC label).
- If AToM is used by the customer carrier in an MPLS VPN Carrier Supporting Carrier environment, you add a label to the stack. The maximum MPLS label stack in the provider carrier network is four (FRR label, TE label, LDP label, VC label).
- BGP PIC Edge with EoMPLS using BGP label Unicast (RFC 3107) requires the **bgp mpls-local-label** command to be explicitly enabled under the Router BGP process. This limitation is applicable only on the Cisco RSP3 module.
- If an AToM tunnel spans different service providers that exchange MPLS labels using IPv4 Border Gateway Protocol (BGP) (RFC 3107), you add a label to the stack. The maximum MPLS label stack is four (FRR label, TE label, LDP label, VC label)
- TE-FRR with BGP labels for layer 2 and layer 3 VPNs must terminate on the BGP gateway because of the four-label limitation.

Other circumstances can increase the MPLS label stack size. Therefore, analyze the complete data path between the AToM tunnel endpoints and determine the maximum MPLS label stack size for your network. Then multiply the label stack size by the size of the MPLS label.

Hot standby pseudowire (HSPW) convergence without pseudowire grouping increments linearly, with a thousand virtual circuits taking 54 seconds of convergence time. This is applicable only on the Cisco RSP3 Module.

Estimating Packet Size Example

The estimated packet size in the following example is 1526 bytes, based on the following assumptions:

- The edge MTU is 1500 bytes.
- The transport type is Ethernet VLAN, which designates 18 bytes for the transport header.
- The AToM header is 0, because the control word is not used.
- The MPLS label stack is 2, because LDP is used. The MPLS label is 4 bytes.

```
Edge MTU + Transport header + AToM header + (MPLS label stack * MPLS label) = Core MTU 1500 + 18 + 0 + (2 * 4 ) = 1526
```

You must configure the P and PE routers in the core to accept packets of 1526 bytes.

Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown

This Cisco IOS XE feature allows a service provider edge (PE) router on the local end of an Ethernet over MPLS (EoMPLS) pseudowire to detect a remote link failure and cause the shutdown of the Ethernet port on the local customer edge (CE) router. Because the Ethernet port on the local CE router is shut down, the router does not lose data by continuously sending traffic to the failed remote link. This is beneficial if the link is configured as a static IP route.

The figure below illustrates a condition in an EoMPLS WAN, with a down Layer 2 tunnel link between a CE router (Customer Edge 1) and the PE router (Provider Edge 1). A CE router on the far side of the Layer 2 tunnel (Customer Edge 2), continues to forward traffic to Customer Edge 1 through the L2 tunnel.

Figure 1: Remote Link Outage in EoMPLS WAN

Previous to this feature, the Provider Edge 2 router could not detect a failed remote link. Traffic forwarded from Customer Edge 2 to Customer Edge 1 would be lost until routing or spanning tree protocols detected the down remote link. If the link was configured with static routing, the remote link outage would be even more difficult to detect.

With this feature, the Provider Edge 2 router detects the remote link failure and causes a shutdown of the local Customer Edge 2 Ethernet port. When the remote L2 tunnel link is restored, the local interface is automatically restored as well. The possibility of data loss is thus diminished.

With reference to the figure above, the Remote Ethernet Shutdown sequence is generally described as follows:

- 1. The remote link between Customer Edge 1 and Provider Edge 1 fails.
- Provider Edge 2 detects the remote link failure and disables the transmit laser on the line card interface connected to Customer Edge 2.
- **3.** An RX_LOS error alarm is received by Customer Edge 2 causing Customer Edge 2 to bring down the interface.
- 4. Provider Edge 2 maintains its interface with Customer Edge 2 in an up state.
- 5. When the remote link and EoMPLS connection is restored, the Provider Edge 2 router enables the transmit laser.
- 6. The Customer Edge 2 router brings up its downed interface.

This feature is enabled by default for Ethernet over MPLS (EoMPLS). You can also enable this feature by using the **remote link failure notification** command in xconnect configuration mode as shown in the following example:

```
pseudowire-class eompls
encapsulation mpls
!
interface GigabitEthernet1/0/0
xconnect 10.13.13.13 1 pw-class eompls
remote link failure notification
!
```

This feature can be disabled using the **no remote link failure notification** command in xconnect configuration mode. Use the **show ip interface brief** privileged EXEC command to display the status of all remote L2 tunnel links. Use the **show interface** privileged EXEC command to show the status of the L2 tunnel on a specific interface.

Note The **no remote link failure notification** command will not give notification to clients for remote attachment circuit status down.

Note

Remote Ethernet Port Shutdown is supported only on EFP with encapsulation default.

Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown Using Commands Associated with L2VPN Protocol-Based Feature

This Cisco IOS XE feature allows a service provider edge (PE) router on the local end of an Ethernet over MPLS (EoMPLS) pseudowire to detect a remote link failure and cause the shutdown of the Ethernet port on the local customer edge (CE) router. Because the Ethernet port on the local CE router is shut down, the router does not lose data by continuously sending traffic to the failed remote link. This is beneficial if the link is configured as a static IP route.

The figure below illustrates a condition in an EoMPLS WAN, with a down Layer 2 tunnel link between a CE router (Customer Edge 1) and the PE router (Provider Edge 1). A CE router on the far side of the Layer 2 tunnel (Customer Edge 2), continues to forward traffic to Customer Edge 1 through the L2 tunnel.

Previous to this feature, the Provider Edge 2 router could not detect a failed remote link. Traffic forwarded from Customer Edge 2 to Customer Edge 1 would be lost until routing or spanning tree protocols detected the down remote link. If the link was configured with static routing, the remote link outage would be even more difficult to detect.

With this feature, the Provider Edge 2 router detects the remote link failure and causes a shutdown of the local Customer Edge 2 Ethernet port. When the remote L2 tunnel link is restored, the local interface is automatically restored as well. The possibility of data loss is thus diminished.

With reference to the figure above, the Remote Ethernet Shutdown sequence is generally described as follows:

- 1. The remote link between Customer Edge 1 and Provider Edge 1 fails.
- 2. Provider Edge 2 detects the remote link failure and disables the transmit laser on the line card interface connected to Customer Edge 2.
- **3.** An RX_LOS error alarm is received by Customer Edge 2 causing Customer Edge 2 to bring down the interface.
- 4. Provider Edge 2 maintains its interface with Customer Edge 2 in an up state.
- 5. When the remote link and EoMPLS connection is restored, the Provider Edge 2 router enables the transmit laser.

6. The Customer Edge 2 router brings up its downed interface.

This feature is enabled by default for Ethernet over MPLS (EoMPLS). You can also enable this feature by using the **remote link failure notification** command in xconnect configuration mode as shown in the following example:

```
l2vpn xconnect context con1
member GigabitEthernet1/0/0 service-instance 300
member Pseudowire 100
remote link failure notification
```

This feature can be disabled using the **no remote link failure notification** command in xconnect configuration mode. Use the **show ip interface brief** privileged EXEC command to display the status of all remote L2 tunnel links. Use the **show interface** privileged EXEC command to show the status of the L2 tunnel on a specific interface.

Note The **no remote link failure notification** command will not give notification to clients for remote attachment circuit status down.

Flow-Aware Transport (FAT) Load Balancing

Note

The FAT-PW feature is supported only in the RSP3 module and only with the new CLI.

The Flow-Aware Transport of MPLS Pseudowires feature enables load balancing of packets within the same pseudowire by further classifying the packets into different flows by adding a flow label at the bottom of the MPLS label stack.

Equal Cost Multi-Path

The Flow-Aware Transport Pseudowire (FAT-PW) is used to load-balance traffic in the core when Equal Cost Multiple Paths (ECMP) exist. The existing Load Balance technique does the load balance among multiple pseudowires by choosing different ECMP paths, based on the Virtual Circuit (VC) Label. This does not suffice the load balance of traffic within a pseudowire.

A flow label is a unique identifier to distinguish a flow within the pseudowire and is generated based on source and destination MAC address along with source and destination IP address. The flow label has EOS (End of Label Stack) bit SET and inserted before the VC label and after the control word, if necessary. Calculation and pushing of the flow label is done by an ingress PE, enabled by FAT-PW configuration. Egress PE discards the flow label and no decisions are taken based on that label.

All core routers do a load balance based on the bottom-most label, which is a flow-label in FAT-PW. Hence you get the advantage of distributing flows over ECMP paths.

The figure below shows the various paths through which the data can be transmitted in an ECMP.

Figure 3: Equal Cost Multi-Path

- Without any load-balancing, the pseudowire can use any one path of the four options, for example consider the red path (PE1 > P1 > P2 > PE2)
- If PE1 is able to do load-balancing, then both PE1 and PE2 can be utilized, for example consider the red and gray paths (PE1 > P3 > P4 > PE2)
- With flow labels inserted on PE1, all paths can be utilized, for example red, black, blue, and gray paths

How to Configure Any Transport over MPLS

This section explains how to perform a basic AToM configuration and includes the following procedures:

Configuring the Pseudowire Class

Note In simple configurations, this task is optional. You need not specify a pseudowire class if you specify the tunneling method as part of the **xconnect** command.

- You must specify the **encapsulation mpls** command as part of the pseudowire class or as part of the **xconnect** command for the AToM VCs to work properly. If you omit the **encapsulation mpls** command as part of the **xconnect** command, you receive the following error:
- % Incomplete command.

SUMMARY STEPS

- 1. enable
- 2. configure terminal

- 3. pseudowire-class name
- 4. encapsulation mpls

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	pseudowire-class name	Establishes a pseudowire class with a name that you specify
	Example:	and enters pseudowire class configuration mode.
	Router(config)# pseudowire-class atom	
Step 4	encapsulation mpls	Specifies the tunneling encapsulation.
	Example:	
	Router(config-pw)# encapsulation mpls	

Configuring the Pseudowire Class Using Commands Associated with L2VPN Protocol-Based Feature

Note

In simple configurations, this task is optional. You need not specify a pseudowire class if you specify the tunneling method as part of the **l2vpn xconnect context** command.

• You must specify the **encapsulation mpls** command as part of the pseudowire class or as part of the **l2vpn xconnect context** command for the AToM VCs to work properly. If you omit the **encapsulation mpls** command as part of the **l2vpn xconnect context** command, you receive the following error:

% Incomplete command.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- 3. interface pseudowire name
- 4. encapsulation mpls

5. neighbor peer-address vcid-value

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
_	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface pseudowire name	Establishes an interface pseudowire with a name that you
	Example:	specify and enters pseudowire class configuration me
	Router(config)# interface pseudowire atom	
Step 4	encapsulation mpls	Specifies the tunneling encapsulation.
	Example:	
	Router(config-pw-class)# encapsulation mpls	
Step 5	neighbor peer-address vcid-value	Specifies the peer IP address and virtual circuit (VC) ID
	Example:	value of a Layer 2 VPN (L2VPN) pseudowire.
	Router(config-pw-class)# neighbor 33.33.33.3 1	

Changing the Encapsulation Type and Removing a Pseudowire

Once you specify the **encapsulation mpls** command, you cannot remove it using the **no encapsulation mpls** command.

Those methods result in the following error message:

Encapsulation changes are not allowed on an existing pw-class.

To remove the **encapsulation mpls** command, you must delete the pseudowire with the **no pseudowire-class** command.

To change the type of encapsulation, remove the pseudowire using the **no pseudowire-class** command and reconfigure the pseudowire to specify the new encapsulation type.

Changing the Encapsulation Type and Removing a Pseudowire Using Commands Associated with the L2VPN Protocol-Based Feature

Once you specify the **encapsulation mpls** command, you cannot remove it using the **no encapsulation mpls** command.

Those methods result in the following error message:

% Cannot remove encapsulation on existing pseudowire

To remove the **encapsulation mpls** command, you must delete the pseudowire with the **no interface pseudowire** command.

To change the type of encapsulation, remove the pseudowire using the **no template type pseudowire** command and reconfigure the pseudowire to specify the new encapsulation type.

Configuring ATM AAL5 over MPLS

Configuring ATM AAL5 over MPLS on PVCs

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** interface type slot / subslot / port [. subinterface]
- 4. pvc [name] vpi / vci l2transport
- 5. encapsulation aal5
- 6. xconnect peer-router-id vcid encapsulation mpls
- 7. end
- 8. show mpls l2transport vc

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface type slot / subslot / port [. subinterface]	Specifies the interface type and enters interface
	Example:	configuration mode.
	Router(config)# interface atm1/0/0	

I

	Command or Action	Purpose
Step 4	<pre>pvc [name] vpi / vci l2transport Example: Router(config-if)# pvc 1/200 l2transport</pre>	 Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode. The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.
Step 5	<pre>encapsulation aal5 Example: Router(config-if-atm-l2trans-pvc)# encapsulation aal5</pre>	Specifies ATM AAL5 encapsulation for the PVC. Make sure you specify the same encapsulation type on the PE and customer edge (CE) routers.
Step 6	<pre>xconnect peer-router-id vcid encapsulation mpls Example: Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls</pre>	Binds the attachment circuit to a pseudowire VC.
Step 7	<pre>end Example: Router(config-if-atm-l2trans-pvc)# end</pre>	Exits to privileged EXEC mode.
Step 8	<pre>show mpls l2transport vc Example: Router# show mpls l2transport vc</pre>	Displays output that shows ATM AAL5 over MPLS is configured on a PVC.

Examples

The following is sample output from the **show mpls l2transport vc** command that shows that ATM AAL5 over MPLS is configured on a PVC:

Router# show	mpls l2transport vc			
Local intf	Local circuit	Dest address	VC ID	Status
ATM1/0	ATM AAL5 1/100	10.4.4.4	100	UP

Configuring ATM AAL5 over MPLS on PVCs using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3**. **interface** *type slot* / *subslot* / *port*[. *subinterface*]
- 4. pvc [name] vpi / vci l2transport

- 5. encapsulation aal5
- 6. end
- 7. interface pseudowire *number*
- 8. encapsulation mpls
- 9. neighbor peer-address vcid-value
- **10.** exit
- **11. l2vpn xconnect context** *context-name*
- **12. member pseudowire** *interface-number*
- **13.** member atm interface-number pvc vpi / vci
- 14. end
- **15.** show l2vpn atom vc

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	<pre>interface type slot / subslot / port[. subinterface] Example:</pre>	Specifies the interface type and enters interface configuration mode.
	Device(config)# interface atm1/0/0	
Step 4	pvc [<i>name</i>] vpi / vci l2transport Example:	Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.
	Device(config-if)# pvc 1/200 l2transport	• The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.
Step 5	encapsulation aal5	Specifies ATM AAL5 encapsulation for the PVC. Make
	Example:	sure you specify the same encapsulation type on the PE and customer edge (CE) routers.
	<pre>Device(config-if-atm-l2trans-pvc)# encapsulation aal5</pre>	
Step 6	end	Exits to privileged EXEC mode.
	Example:	
	Device(config-if-atm-l2trans-pvc)# end	

I

	Command or Action	Purpose
Step 7	interface pseudowire number	Specifies the pseudowire interface and enters interface
	Example:	configuration mode.
	Device(config)# interface pseudowire 100	
Step 8	encapsulation mpls	Specifies that Multiprotocol Label Switching (MPLS) is
	Example:	used as the data encapsulation method.
	<pre>Device(config-if)# encapsulation mpls</pre>	
Step 9	neighbor peer-address vcid-value	Specifies the peer IP address and virtual circuit (VC) ID
	Example:	value of the Layer 2 VPN (L2VPN) pseudowire.
	Device(config-if)# neighbor 10.13.13.13 100	
Step 10	exit	Exits interface configuration mode.
	Example:	
	Device(config-if)# exit	
Step 11	12vpn xconnect context context-name	Creates a Layer 2 VPN (L2VPN) cross connect context
	Example:	and enters xconnect configuration mode.
	Device(config)# 12vpn xconnect context con1	
Step 12	member pseudowire interface-number	Specifies a member pseudowire to form a Layer 2 VPN
	Example:	(L2VPN) cross connect.
	Device(config-xconnect)# member pseudowire 100	
Step 13	member atm interface-number pvc vpi / vci	Specifies the location of the ATM member interface.
	Example:	
	Device(config-xconnect)# member atm 100 pvc 1/200	
Step 14	end	Exits to privileged EXEC mode.
	Example:	
	Device(config-xconnect)# end	
Step 15	show l2vpn atom vc	Displays output that shows ATM AAL5 over MPLS is
	Example:	configured on a PVC.
	Device# show l2vpn atom vc	

Examples

The following is sample output from the **show l2vpn atom vc** command that shows that ATM AAL5 over MPLS is configured on a PVC:

Device# show	v 12vpn atom vc			
Local intf	Local circuit	Dest address	VC ID	Status
ATM1/0	ATM AAL5 1/100	10.4.4.4	100	UP

Configuring ATM AAL5 over MPLS in VC Class Configuration Mode

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** vc-class atm vc-class-name
- 4. encapsulation *layer-type*
- 5. exit
- **6**. **interface** *type slot* / *subslot* / *port* [. *subinterface*]
- 7. class-int vc-class-name
- 8. pvc [name] vpi / vci l2transport
- 9. xconnect peer-router-id vcid encapsulation mpls
- 10. end
- **11**. show atm class-links

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	vc-class atm vc-class-name	Creates a VC class and enters VC class configuration
	Example:	mode.
	Router(config)# vc-class atm aal5class	
Step 4	encapsulation layer-type	Configures the AAL and encapsulation type.
	Example:	

	Command or Action	Purpose
	Router(config-vc-class)# encapsulation aal5	
Step 5	exit	Exits VC class configuration mode.
	Example:	
	Router(config-vc-class)# exit	
Step 6	interface type slot / subslot / port[.subinterface]	Specifies the interface type enters interface configuration
	Example:	mode.
	Router(config)# interface atm1/0/0	
Step 7	class-int vc-class-name	Applies a VC class to the ATM main interface or
	Example:	subinterface.
	Router(config-if)# class-int aal5class	Note You can also apply a VC class to a PVC.
Step 8	pvc [name] vpi / vci l2transport	Creates or assigns a name to an ATM PVC and enters
	Example:	L2transport PVC configuration mode.
	Router(config-if)# pvc 1/200 l2transport	• The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.
Step 9	xconnect peer-router-id vcid encapsulation mpls	Binds the attachment circuit to a pseudowire VC.
	Example:	
	Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls	
Step 10	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-if-atm-l2trans-pvc)# end	
Step 11	show atm class-links	Displays the type of encapsulation and that the VC class
	Example:	was applied to an interface.
	Router# show atm class-links	

Examples

In the following example, the command output from the **show atm class-links** command verifies that ATM AAL5 over MPLS is configured as part of a VC class. The command output shows the type of encapsulation and that the VC class was applied to an interface.

```
Router# show atm class-links 1/100
Displaying vc-class inheritance for ATM1/0/0.0, vc 1/100:
```

```
no broadcast - Not configured - using default
encapsulation aal5 - VC-class configured on main interface
```

Configuring ATM AAL5 over MPLS in VC Class Configuration Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** vc-class atm vc-class-name
- 4. encapsulation *layer-type*
- 5. exit
- 6. interface type slot / subslot / port [. subinterface]
- 7. class-int *vc-class-name*
- 8. pvc [name] vpi / vci l2transport
- 9. exit
- **10.** interface pseudowire *number*
- **11**. encapsulation mpls
- **12.** neighbor peer-address vcid-value
- **13**. exit
- 14. l2vpn xconnect context context-name
- **15.** member pseudowire interface-number
- **16.** member atm interface-number
- 17. end
- **18**. show atm class-links

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	vc-class atm vc-class-name	Creates a VC class and enters VC class configuration
	Example:	mode.
	Router(config)# vc-class atm aal5class	

	Command or Action	Purpose
Step 4	encapsulation layer-type	Configures the AAL and encapsulation type.
	Example:	
	Router(config-vc-class)# encapsulation aal5	
Step 5	exit	Exits VC class configuration mode.
	Example:	
	Router(config-vc-class)# exit	
Step 6	<pre>interface type slot / subslot / port[.subinterface]</pre>	Specifies the interface type enters interface configuration
	Example:	mode.
	Router(config)# interface atm1/0/0	
Step 7	class-int vc-class-name	Applies a VC class to the ATM main interface or
	Example:	Submerrace.
	Router(config-if)# class-int aal5class	
Step 8	pvc [name] vpi / vci l2transport	Creates or assigns a name to an ATM PVC and enters
	Example:	L2transport PVC configuration mode.
	Router(config-if)# pvc 1/200 l2transport	• The I2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.
Step 9	exit	Exits interface configuration mode.
	Example:	
	Router(config-if)# exit	
Step 10	interface pseudowire number	Specifies the pseudowire interface and enters interface
	Example:	configuration mode.
	Router(config)# interface pseudowire 100	
Step 11	encapsulation mpls	Specifies that Multiprotocol Label Switching (MPLS) is
	Example:	used as the data encapsulation method.
	Router(config-if)# encapsulation mpls	
Step 12	neighbor peer-address vcid-value	Specifies the peer IP address and virtual circuit (VC) ID
	Example:	value of the Layer 2 VPIN (L2VPIN) pseudowire.
	Router(config-if)# neighbor 10.0.0.1 123	

I

	Command or Action	Purpose
Step 13	exit	Exits interface configuration mode.
	Example:	
	Router(config-if)# exit	
Step 14	12vpn xconnect context context-name	Creates a Layer 2 VPN (L2VPN) cross connect context
	Example:	and enters xconnect configuration mode.
	Router(config)# 12vpn xconnect context con1	
Step 15	member pseudowire interface-number	Specifies a member pseudowire to form a Layer 2 VPN
	Example:	(L2VPN) cross connect.
	Router(config-xconnect)# member pseudowire 100	
Step 16	member atm interface-number	Specifies the location of the ATM member interface.
	Example:	
	Device(config-xconnect)# member atm 100	
Step 17	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-if-atm-l2trans-pvc)# end	
Step 18	show atm class-links	Displays the type of encapsulation and that the VC class
	Example:	was applied to an interface.
	Router# show atm class-links	

Examples

In the following example, the command output from the **show atm class-links** command verifies that ATM AAL5 over MPLS is configured as part of a VC class. The command output shows the type of encapsulation and that the VC class was applied to an interface.

```
Router# show atm class-links 1/100
Displaying vc-class inheritance for ATM1/0/0.0, vc 1/100:
no broadcast - Not configured - using default
encapsulation aal5 - VC-class configured on main interface
```

Configuring Ethernet over MPLS

Configuring Ethernet over MPLS with VLAN ID Rewrite

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- 3. interface gigabitethernet slot / subslot / port
- 4. no ip address
- 5. negotiation auto
- 6. service instance *id* ethernet
- 7. encapsulation dot1q vlan-id
- 8. xconnect peer-router-id vcid encapsulation mpls
- 9. remote circuit id remote-vlan-id
- 10. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface gigabitethernet slot / subslot / port	Specifies the Gigabit Ethernet subinterface and enters
	Example:	subinterface configuration mode.
	Router(config)# interface GigabitEthernet0/2/4	
Step 4	no ip address	Specifies that there is no IP address assigned to the
	Example:	interface.
	Router(config-if)# no ip address	
Step 5	negotiation auto	Enables the auto negotiation protocol.
	Example:	
	Router(config-if)# negotiation auto	
Step 6	service instance <i>id</i> ethernet	Configures an ethernet service instance on an interface
	Example:	and enters service instance configuration mode.

	Command or Action	Purpose
	Router(config-if)# service instance 100 ethernet	
Step 7	encapsulation dot1q vlan-id	Enables the subinterface to accept 802.1Q VLAN packets.
	Example:	
	Router(config-subif)# encapsulation dot1q 100	
Step 8	xconnect <i>peer-router-id vcid</i> encapsulation mpls Example:	Binds the attachment circuit to a pseudowire VC and enters xconnect configuration mode.
	Router(config-subif) # xconnect 10.0.0.1 123 encapsulation mpls	
Step 9	<pre>remote circuit id remote-vlan-id Example: Router(config-subif-xconn)# remote circuit id 101</pre>	(Optional) Enables you to use VLAN interfaces with different VLAN IDs at both ends of the tunnel.
Step 10	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-subif-xconn)# end	

Configuring Ethernet over MPLS with VLAN ID Rewrite Using Commands Associated with the L2VPN Protocol-Based Feature

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. interface gigabitethernet slot / subslot / port
- 4. service instance number ethernet number
- 5. encapsulation dot1q vlan-id
- 6. end
- 7. interface pseudowire *number*
- 8. encapsulation mpls
- 9. neighbor peer-address vcid-value
- 10. exit
- **11. l2vpn xconnect context** *context-name*
- **12.** member pseudowire *interface-number*
- **13.** member gigabitethernet interface-number
- 14. remote circuit id remote-vlan-id
- 15. end
- **16.** show controllers eompls forwarding-table

I

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface gigabitethernet slot / subslot / port	Specifies the Gigabit Ethernet subinterface and enters
	Example:	subinterface configuration mode.
	Router(config)# interface gigabitethernet4/0/0	
Step 4	service instance number ethernet number	
	Example:	
	Router(config-if)#service instance 393 ethernet	
Step 5	encapsulation dot1q vlan-id	Enables the subinterface to accept 802.1Q VLAN packets.
	Example:	
	Router(config-subif)# encapsulation dot1q 100	
Step 6	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-subif)# end	
Step 7	interface pseudowire number	Specifies the pseudowire interface and enters interface
	Example:	configuration mode.
	Router(config)# interface pseudowire 100	
Step 8	encapsulation mpls	Specifies that Multiprotocol Label Switching (MPLS) is
	Example:	used as the data encapsulation method.
	Router(config-if)# encapsulation mpls	
Step 9	neighbor peer-address vcid-value	Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.
	Example:	
	Router(config-if)# neighbor 10.0.0.1 123	

	Command or Action	Purpose
Step 10	exit	Exits interface configuration mode.
	Example:	
	Router(config-if)# exit	
Step 11	12vpn xconnect context context-name	Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.
	Example:	
	Router(config)# l2vpn xconnect context con1	
Step 12	member pseudowire interface-number	Specifies a member pseudowire to form a Layer 2 VPN
	Example:	(L2VPN) cross connect.
	Router(config-xconnect)# member pseudowire 100	
Step 13	member gigabitethernet interface-number	Specifies the location of the Gigabit Ethernet member
	Example:	interface.
	Router(config-xconnect)# member gigabitethernet4/0/0 service-instance 393	
Step 14	remote circuit id remote-vlan-id	(Optional) Enables you to use VLAN interfaces with
	Example:	different VLAN IDs at both ends of the tunnel.
	Router(config-xconnect)# remote circuit id 101	
Step 15	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-xconnect)# end	
Step 16	show controllers eompls forwarding-table	Displays information about VLAN ID rewrite.
	Example:	
	Router# show controllers eompls forwarding-table	

Example

```
RSP3-RT1#show ethernet service instance id HYPERLINK "tel:1002"1002 interface gi 0/1/0 det
Service Instance ID: HYPERLINK "tel:1002"1002
Service Instance Type: Static
Associated Interface: GigabitEthernet0/1/0
Associated EVC:
L2protocol drop
CE-Vlans:
Encapsulation: dot1q HYPERLINK "tel:1002"1002 vlan protocol type 0xHYPERLINK "tel:8100"8100
Rewrite: ingress tag pop 1 symmetric
Interface Dot1q Tunnel Ethertype: 0xHYPERLINK "tel:8100"8100
```

```
State: Up
EFP Statistics:
Pkts In Bytes In Pkts Out Bytes Out
0 0 0 0
RSP3-RT1#
```

Configuring Tunnel Selection

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. pseudowire-class name
- 4. encapsulation mpls
- $\textbf{5. preferred-path {interface tunnel tunnel-number | peer{ip-address | host-name}} [disable-fallback]$
- 6. exit
- 7. interface type slot / subslot / port
- 8. encapsulation encapsulation-type
- 9. xconnect peer-router-id vcid pw-class name

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	pseudowire-class name	Establishes a pseudowire class with a name that you specif
	Example:	and enters pseudowire configuration mode.
	Router(config)# pseudowire-class ts1	
Step 4	encapsulation mpls	Specifies the tunneling encapsulation. For AToM, the
	Example:	encapsulation type is mpls.
	Router(config-pw)# encapsulation mpls	
Step 5	preferred-path { interface tunnel <i>tunnel-number</i> peer { <i>ip-address</i> <i>host-name</i> } { Gisable-fallback]	Specifies the MPLS traffic engineering tunnel or IP address or hostname to be used as the preferred path.
	Example:	

	Command or Action	Purpose
	Router(config-pw)# preferred path peer 10.18.18.18	
Step 6	<pre>exit Example: Router(config-pw)# exit</pre>	Exits from pseudowire configuration mode and enables the Tunnel Selection feature.
Step 7	<pre>interface type slot / subslot / port Example: Router(config)# interface atm1/1/0</pre>	Specifies an interface type and enters interface configuration mode.
Step 8	<pre>encapsulation encapsulation-type Example: Router(config-if) # encapsulation aal5</pre>	Specifies the encapsulation for the interface.
Step 9	<pre>xconnect peer-router-id vcid pw-class name Example: Router(config-if) # xconnect 10.0.0.1 123 pw-class ts1</pre>	Binds the attachment circuit to a pseudowire VC.

Examples

In the following sample output from the **show mpls l2transport vc** command includes the following information about the VCs:

- VC 101 has been assigned a preferred path called Tunnel1. The default path is disabled, because the preferred path specified that the default path should not be used if the preferred path fails.
- VC 150 has been assigned an IP address of a loopback address on PE2. The default path can be used if the preferred path fails.

Command output that is in **boldface** font shows the preferred path information.

```
Router# show mpls l2transport vc detail
Local interface: Gi0/0/0.1 up, line protocol up, Eth VLAN 222 up
Destination address: 10.16.16.16, VC ID: 101, VC status: up
Preferred path: Tunnel1, active
Default path: disabled
Tunnel label: 3, next hop point2point
Output interface: Tu1, imposed label stack {17 16}
Create time: 00:27:31, last status change time: 00:27:31
Signaling protocol: LDP, peer 10.16.16.16:0 up
MPLS VC labels: local 25, remote 16
Group ID: local 0, remote 6
MTU: local 1500, remote 1500
Remote interface description:
Sequencing: receive disabled, send disabled
VC statistics:
```

```
packet totals: receive 10, send 10
   byte totals: receive 1260, send 1300
   packet drops: receive 0, send 0
Local interface: ATM1/0/0 up, line protocol up, ATM AAL5 0/50 up
 Destination address: 10.16.16.16, VC ID: 150, VC status: up
   Preferred path: 10.18.18.18, active
   Default path: ready
   Tunnel label: 3, next hop point2point
   Output interface: Tu2, imposed label stack {18 24}
  Create time: 00:15:08, last status change time: 00:07:37
  Signaling protocol: LDP, peer 10.16.16.16:0 up
   MPLS VC labels: local 26, remote 24
   Group ID: local 2, remote 0
   MTU: local 4470, remote 4470
   Remote interface description:
  Sequencing: receive disabled, send disabled
  VC statistics:
   packet totals: receive 0, send 0
   byte totals: receive 0, send 0
   packet drops: receive 0, send 0
```

Troubleshooting Tips

To debug ATM cell packing, issue the debug atm cell-packing command.

Configuring Tunnel Selection Using Commands Associated with L2VPN Protocol-Based Feature

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- 3. template type pseudowire name
- 4. encapsulation mpls
- 5. preferred-path {interface tunnel tunnel-number | peer {ip-address | hostname}} [disable-fallback]
- 6. exit
- 7. interface type slot / subslot / port[. subinterface]
- 8. encapsulation encapsulation-type
- **9**. end
- 10. interface pseudowire number
- **11.** source template type pseudowire *name*
- 12. neighbor peer-address vcid-value
- 13. end
- 14. l2vpn xconnect context context-name
- 15. member pseudowire interface-number
- 16. member ip-address vc-id encapsulation mpls
- 17. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	template type pseudowire name	Creates a template pseudowire with a name that you specify
	Example:	and enters pseudowire configuration mode.
_	Router(config)# template type pseudowire ts1	
Step 4	encapsulation mpls	Specifies the tunneling encapsulation. For AToM, the
	Example:	encapsulation type is mpis.
	Router(config-pw)# encapsulation mpls	
Step 5	<pre>preferred-path {interface tunnel tunnel-number peer {ip-address hostname}} [disable-fallback]</pre>	Specifies the MPLS traffic engineering tunnel or IP address or hostname to be used as the preferred path.
	Example:	
	Router(config-pw) # preferred path peer 10.18.18.18	
Step 6	exit	Exits from pseudowire configuration mode and enables
	Example:	the Tunnel Selection feature.
	Router(config-pw)# exit	
Step 7	<pre>interface type slot / subslot / port[. subinterface]</pre>	Specifies an interface type and enters interface
	Example:	configuration mode.
	Router(config)# interface atm1/1/0	
Step 8	encapsulation encapsulation-type	Specifies the encapsulation for the interface.
	Example:	
	Router(config-if)# encapsulation aal5	
Step 9	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

	Command or Action	Purpose
Step 10	interface pseudowire <i>number</i>	Specifies the pseudowire interface and enters interface configuration mode.
	Router(config)# interface pseudowire 100	
Step 11	source template type pseudowire <i>name</i> Example:	Configures the source template of type pseudowire named ts1.
	Router(config-if)# source template type pseudowire ts1	
Step 12	neighbor peer-address vcid-value Example:	Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.
	Router(config-if)# neighbor 10.0.0.1 123	
Step 13	end Example:	Exits to privileged EXEC mode.
	Router(config-if)# end	
Step 14	12vpn xconnect context context-name Example:	Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.
	Router(config)# 12vpn xconnect context con1	
Step 15	member pseudowire <i>interface-number</i> Example:	Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.
	Router(config-xconnect)# member pseudowire 100	
Step 16	member <i>ip-address vc-id</i> encapsulation mpls Example:	Creates the VC to transport the Layer 2 packets.
	Router(config-xconnect)# member 10.0.0.1 123 encapsulation mpls	
Step 17	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-xconnect)# end	

Troubleshooting Tips using the commands associated with the L2VPN Protocol-Based CLIs feature

You can use the **debug l2vpn atom vc event** command to troubleshoot tunnel selection. For example, if the tunnel interface that is used for the preferred path is shut down, the default path is enabled. The **debug l2vpn atom vc event** command provides the following output:

ATOM SMGR [10.2.2.2, 101]: Processing imposition update, vc_handle 62091860, update_action 3, remote_vc_label 16 ATOM SMGR [10.2.2.2, 101]: selected route no parent rewrite: tunnel not up ATOM SMGR [10.2.2.2, 101]: Imposition Programmed, Output Interface: Et3/2

Setting Experimental Bits with AToM

Note

Only EoMPLS and CEM is supported .

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. class-map class-name
- 4. match any
- 5. policy-map policy-name
- 6. class class-name
- 7. set mpls experimental value
- 8. exit
- 9. exit
- 10. interface type slot / subslot / port
- **11.** service-policy input *policy-name*
- **12**. end
- **13.** show policy-map interface interface-name [vc [vpi /] vci] [dlci dlci] [input | output]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	class-map class-name	Specifies the user-defined name of the traffic class and
	Example:	enters class map configuration mode.
	Router(config)# class-map class1	

I

	Command or Action	Purpose
Step 4	match any	Specifies that all packets will be matched. Use only the
	Example:	results.
	Router(config-cmap) # match any	
Step 5	policy-map policy-name	Specifies the name of the traffic policy to configure and
	Example:	enters policy-map configuration mode.
	Router(config-cmap)# policy-map policy1	
Step 6	class class-name	Specifies the name of a predefined traffic class, which was
	Example:	configured with the class-map command, used to classi traffic to the traffic policy and enters policy-map class
	Router(config-pmap)# class class1	configuration mode.
Step 7	set mpls experimental value	Designates the value to which the MPLS bits are set if the
	Example:	packets match the specified policy map.
	Router(config-pmap-c)# set mpls experimental 7	
Step 8	exit	Exits policy-map class configuration mode.
	Example:	
	Router(config-pmap-c)# exit	
Step 9	exit	Exits policy-map configuration mode.
	Example:	
	Router(config-pmap)# exit	
Step 10	interface type slot / subslot / port	Specifies the interface type and enters interface
	Example:	configuration mode.
	Router(config)# interface atm1/0/0	
Step 11	service-policy input policy-name	Attaches a traffic policy to an interface.
	Example:	
	Router(config-if)# service-policy input policy1	
Step 12	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-if)# end	
Step 13	show policy-map interface interface-name [vc [vpi I] vci] [dlci dlci] [input output]	Displays the traffic policy attached to an interface.

 Command or Action	Purpose
Example:	
Router# show policy-map interface serial3/0/0	

Enabling the Control Word

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. pseudowire-class cw_enable
- 4. encapsulation mpls
- 5. control-word
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	pseudowire-class cw_enable	Enters pseudowire class configuration mode.
	Example:	
	Router(config)# pseudowire-class cw_enable	
Step 4	encapsulation mpls	Specifies the tunneling encapsulation.
	Example:	• For AToM, the encapsulation type is MPLS.
	Router(config-pw-class)# encapsulation mpls	
Step 5	control-word	Enables the control word.
	Example:	
	Router(config-pw-class)# control-word	
Step 6	end	Exits to privileged EXEC mode.
	Example:	

I

 Command or Action	Purpose
Router(config-pw-class)# end	

Enabling the Control Word using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. interface pseudowire number
- 4. encapsulation mpls
- 5. control-word include
- 6. neighbor peer-address vcid-value
- 7. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface pseudowire number	Creates an interface pseudowire with a value that you
	Example:	specify and enters pseudowire configuration mode.
	Router(config)# interface pseudowire 1	
Step 4	encapsulation mpls	Specifies the tunneling encapsulation.
	Example:	• For AToM, the encapsulation type is mpls.
	Router(config-pw)# encapsulation mpls	
Step 5	control-word include	Enables the control word.
	Example:	
	Router(config-pw)# control-word include	

	Command or Action	Purpose
Step 6	neighbor peer-address vcid-value Example:	Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.
	Router(config-pw)# neighbor 10.0.0.1 123	
Step 7	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-pw)# end	

Configuring MPLS AToM Remote Ethernet Port Shutdown

Note

• The Any Transport over MPLS (AToM): Remote Ethernet Port Shutdown feature is automatically enabled by default when an image with the feature supported is loaded on the router.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. pseudowire-class** [*pw-class-name*]
- 4. encapsulation mpls
- 5. exit
- 6. interface type slot / subslot / port
- 7. service instance *number* ethernet *number*
- 8. encapsulation default
- 9. xconnect peer-ip-address vc-id pw-class pw-class-name
- 10. no remote link failure notification
- **11**. remote link failure notification
- 12. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

I

	Command or Action	Purpose
Step 3	pseudowire-class [pw-class-name] Example:	Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.
	Router(config)# pseudowire-class eompls	
Step 4	encapsulation mpls Example:	Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.
	Router(config-pw)# encapsulation mpls	
Step 5	exit Example:	Exits to global configuration mode.
Step 6	Router(config-pw)# exit interface type slot / subslot / port Example: Router (config)# interface GigabitEthernet1/0/0	Configures an interface type and enters interface configuration mode.
Step 7	<pre>service instance number ethernet number Example: Router(config-if)# service instance 393 ethernet</pre>	Configures an ethernet service instance on an interface and enters service instance configuration mode.
Step 8	<pre>encapsulation default Example: Router(config-if-srv)# encapsulation default</pre>	Specifies the encapsulation type for the interface, such as dot1q.NoteRemote ethernet port shutdown is supported only with encapsulation default.
Step 9	xconnect peer-ip-address vc-id pw-class pw-class-name Example: Router(config-if) # xconnect 10.1.1.1 1 pw-class eompls	Binds an attachment circuit to a pseudowire, and configures an Any Transport over MPLS (AToM) static pseudowire.
Step 10	<pre>no remote link failure notification Example: Router(config-if-xconn)# remote link failure notification</pre>	Disables MPLS AToM remote link failure notification and shutdown.
Step 11	remote link failure notification Example: Router(config-if-xconn) # remote link failure notification	Enables MPLS AToM remote link failure notification and shutdown.

	Command or Action	Purpose
Step 12	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-if-xconn)# end	

Configuring MPLS AToM Remote Ethernet Port Shutdown using the commands associated with the L2VPN Protocol-Based CLIs feature

Note The Any Transport over MPLS (AToM): Remote Ethernet Port Shutdown feature is automatically enabled by default when an image with the feature supported is loaded on the router.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3. template type pseudowire** [*pseudowire-name*]
- 4. encapsulation mpls
- 5. exit
- 6. interface type slot / subslot / port
- 7. interface pseudowire *number*
- 8. source template type pseudowire
- 9. neighbor peer-address vcid-value
- 10. end
- **11. l2vpn xconnect context** *context-name*
- 12. no remote link failure notification
- **13**. remote link failure notification
- 14. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	

I

	Command or Action	Purpose
Step 3	template type pseudowire [pseudowire-name] Example:	Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.
	Device(config)# template type pseudowire eompls	
Step 4	encapsulation mpls Example:	Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.
	Device(config-pw)# encapsulation mpls	
Step 5	exit	Exits to global configuration mode.
	Example:	
	Device(config-pw)# exit	
Step 6	interface type slot subslot port	Configures an interface type and enters interface
	Example:	configuration mode.
	<pre>Device(config)# interface GigabitEthernet1/0/0</pre>	
Step 7	interface pseudowire number	Specifies the pseudowire interface.
	Example:	
	<pre>Device(config-if)# interface pseudowire 100</pre>	
Step 8	source template type pseudowire	Configures the source template of type pseudowire named
	Example:	eompis.
	<pre>Device(config-if)# source template type pseudowire eompls</pre>	
Step 9	neighbor peer-address vcid-value	Specifies the peer IP address and virtual circuit (VC) ID
	Example:	value of a Layer 2 VPN (L2VPN) pseudowire.
	Device(config-if)# neighbor 10.1.1.1 1	
Step 10	end	Exits to privileged EXEC mode.
	Example:	
	Device(config-if)# end	
Step 11	12vpn xconnect context context-name	Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.
	Example:	
	Device(config)# 12vpn xconnect context con1	

	Command or Action	Purpose
Step 12	no remote link failure notification Example:	Disables MPLS AToM remote link failure notification and shutdown.
	Device(config-xconnect)# no remote link failure notification	
Step 13	remote link failure notification Example:	Enables MPLS AToM remote link failure notification and shutdown.
	<pre>Device(config-xconnect)# remote link failure notification</pre>	
Step 14	end	Exits to privileged EXEC mode.
	Example:	
	Device(config-xconnect)# end	

Configuring Flow-Aware Transport (FAT) Load Balancing

Before you begin

Note that this configuration is applicable only on the NCS 4206 and NCS 4216 systems.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** interface *slot* / *subslot* / *port* [. *subinterface*]
- 4. mtu mtu-value
- 5. no ip address [*ip-address-mask*] [secondary]
- 6. load-interval seconds
- 7. service instance *id* ethernet
- 8. encapsulation dot1q vlan-id
- 9. rewrite ingress tag pop *number* [symmetric]
- 10. enable
- **11**. configure terminal
- 12. interface pseudowire name
- **13**. encapsulation mpls
- 14. neighbor peer-address vcid-value
- **15**. signaling protocol ldp
- **16**. load-balance flow-label both
- **17. l2vpn xconnect context** *context-name*
- 18. member pseudowire interface-number group context-name priority number
- **19.** member TenGigabitEthernet interface-number service-instance id
- 20. end

- **21**. show l2vpn atom vc detail
- **22**. show ssm id

DETAILED STEPS

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	• Enter your password if prompted.	
	Device> enable		
Step 2	configure terminal	Enters global configuration mode.	
•	Example:		
	Device# configure terminal		
Step 3	interface <i>slot</i> / <i>subslot</i> / <i>port</i> [. <i>subinterface</i>]	Specifies the interface type and enters interface	
	Example:	configuration mode.	
	Device(Config)# interface tengigabitethernet0/5/2		
Step 4	mtu mtu-value	Specifies the MTU value for the interface. The MTU value	
	Example:	specified at the interface level can be inherited by a subinterface.	
	Device(Config-if)# mtu 9216		
Step 5	no ip address [ip-address-mask] [secondary]	Disables IP processing.	
	Example:		
	Device(Config-if)# no ip address		
Step 6	load-interval seconds	Enables the length of time for which data is used to	
-	Example:	compute load statistics.	
	Device(Config-if)# load-interval 30		
Step 7	service instance <i>id</i> ethernet	Configures an Ethernet service instance on an interface and enters service instance configuration mode	
	Example:	and enters service instance configuration mode.	
	Device(Config-if)# service instance 1 ethernet		
Step 8	encapsulation dot1q vlan-id	Defines the matching criteria to map 802.1Q frames ingress	
	Example:	on an interface to the appropriate service instance.	
	Device(Config-if-srv)# encapsulation dot1q 1		

	Command or Action	Purpose
Step 9	rewrite ingress tag pop <i>number</i> [symmetric] Example:	(Optional) Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance and the tag to be removed from a packet.
	<pre>Device(Config-if-srv)# rewrite ingress tag pop 1 symmetric</pre>	
Step 10	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 11	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 12	interface pseudowire name	Establishes a pseudowire with a name that you specify,
	Example:	and enters pseudowire class configuration mode.
	Device(config)# interface pseudowire 1	
Step 13	encapsulation mpls	Specifies the tunneling encapsulation.
	Example:	• For AToM, the encapsulation type is mpls.
	Device(config-pw-class)# encapsulation mpls	
Step 14	neighbor peer-address vcid-value	Specifies the peer IP address and virtual circuit (VC) ID
	Example:	value of a Layer 2 VPN (L2VPN) pseudowire.
	Device(config-pw-class)# neighbor 4.4.4.4 1	
Step 15	signaling protocol ldp	Specifies that the Label Distribution Protocol (LDP) is
	Example:	configured for the pseudowire class.
	Device(config-pw-class)# signaling protocol ldp	
Step 16	load-balance flow-label both	Enables the Flow-Aware Transport of MPLS Pseudowire
	Example:	recommended that you use both as the option for
	Device(config-pw-class)# load-balance flow-label both	flow-label. However, if you choose not to use both, you can either use load-balance flow-label transmit or load-balance flow-label receive if necessary.
Step 17	12vpn xconnect context context-name	Creates a Layer 2 VPN (L2VPN) cross connect context
	Example:	and enters xconnect configuration mode.
	Device(config-pw-class)# l2vpn xconnect context FAT1	

	Command or Action	Purpose
Step 18	member pseudowire <i>interface-number</i> group <i>context-name</i> priority <i>number</i>	Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.
	Example:	
	Device(config-pw-class)# member pseudowire 1 group FAT1 priority 1	
Step 19	member TenGigabitEthernet <i>interface-number</i> service-instance <i>id</i>	Specifies the location of the Gigabit Ethernetmember interface.
	Example:	
	Device(config-pw-class)# member TenGigabitEthernet0/5/2 service-instance 1	
Step 20	end	Exits to privileged EXEC mode.
	Example:	
	Device(config-pw-class)# end	
Step 21	show l2vpn atom vc detail	Displays detailed output that shows information about the
	Example:	now labels configured for the pseudowire.
	Device# show l2vpn atom vc detail	
Step 22	show ssm id	Displays information for all Segment Switching Manager
	Example:	(55M) IDS.
	Device# show ssm id	

Examples

The following is sample output from the **show mpls l2transport vc detail** command that shows information about the VC details:

```
Device# show mpls l2transport vc 1 detail
Local interface: Te0/5/2 up, line protocol up, Eth VLAN 1 up
Interworking type is Ethernet
Destination address: 4.4.4.4, VC ID: 1, VC status: up
Output interface: BD12, imposed label stack {23 16}
Preferred path: not configured
Default path: active
Next hop: 12.0.0.2
Create time: 23:12:54, last status change time: 23:09:05
Last label FSM state change time: 23:09:02
Signaling protocol: LDP, peer 4.4.4.4:0 up
Targeted Hello: 1.1.1.1(LDP Id) -> 4.4.4.4, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
```

```
LDP route watch
                                      : enabled
    Label/status state machine : established, LruRru
    Last local dataplane status rcvd: No fault
    Last BFD dataplane status rcvd: Not sent
    Last BFD peer monitor status rcvd: No fault
    Last local AC circuit status rcvd: No fault
    Last local AC circuit status sent: No fault
    Last local PW i/f circ status rcvd: No fault
    Last local LDP TLV
                        status sent: No fault
    Last remote LDP TLV
                         status rcvd: No fault
    Last remote LDP ADJ
                         status rcvd: No fault
 MPLS VC labels: local 27, remote 16
  Group ID: local 8, remote 8
 MTU: local 9216, remote 9216
 Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: On
SSO Descriptor: 4.4.4.4/1, local label: 27
Dataplane:
 SSM segment/switch IDs: 32870/4116 (used), PWID: 1
VC statistics:
 transit packet totals: receive 0, send 0
  transit byte totals: receive 0, send 0
transit packet drops: receive 0, seq error 0, send 0
```

Device# show ssm id

The following is sample output from the **show ssm id** command that shows information for all Segment Switching Manager (SSM) IDs:

```
SSM Status: 1 switch
 Switch-ID 4116 State: Open
   Segment-ID: 168039 Type: Vlan[3]
     Switch-ID:
                                    4116
     Physical intf:
                                    Local
     Allocated By:
                                    This CPU
     Locked By:
                                   STP
                                           [1]
      Circuit status:
                                   UP
                                            [1]
   Class:
                                  SSS
     State:
                                   Active
      AC Switching Context:
                                    Te0/5/2
     SSS Info : Switch Handle 2365587479 Ckt 0x458088DC
     Interworking Eth, Encap Len 4, Boardencap Len 0, MTU 9216,
     AC Encap [4 bytes]
       8100 0001
    Class:
                                  ADJ
      State:
                                    Active
     AC Adjacency context:
     adjacency = 0x45817160 [complete] RAW TenGigabitEthernet0/5/2:1
     AC Encap [4 bytes]
        8100 0001
      1stMem: 168039 2ndMem: 0 ActMem: 168039
    Segment-ID: 32870 Type: AToM[17]
     Switch-ID:
                                    4116
                                    This CPU
     Allocated By:
     Locked By:
                                    SIP
                                            [1]
    Class:
                                  SSS
     State:
                                    Active
    Class:
                                  ADJ
     State:
                                    Active
```

Limitations of FAT-PW

- Load balance does not work when flow-aware transport pseudowire is configured with remote loop-free alternate and loop-free alternate configurations with Cisco IOS XE Everest 16.5.1 release version.
- Flow-label generation algorithm is modified if the Port-channel hashing algorithm is modified using command line interface.
- Starting Cisco IOS XE Fuji 16.9.x, Flow aware transport feature (FAT) is supported on VPLS on the RSP3 module.

Configuration Examples for Any Transport over MPLS

Example: ATM over MPLS

The table below shows the configuration of ATM over MPLS on two PE routers.

PE1	PE2	
mpls label protocol ldp	mpls label protocol ldp	
mpls ldp router-id Loopback0 force	mpls ldp router-id Loopback0 force	
!	!	
interface Loopback0	interface Loopback0	
ip address 10.16.12.12 255.255.255.255	ip address 10.13.13.13 255.255.255.255	
!		
interface ATM4/0/0	interface ATM4/0/0	
pvc 0/100 l2transport	pvc 0/100 l2transport	
encapsulation aal0	encapsulation aal0	
xconnect 10.13.13.13 100 encapsulation mpls	xconnect 10.16.12.12 100 encapsulation mpls	
!	!	
interface ATM4/0/0.300 point-to-point	interface ATM4/0/0.300 point-to-point	
no ip directed-broadcast	no ip directed-broadcast	
no atm enable-ilmi-trap	no atm enable-ilmi-trap	
pvc 0/300 l2transport	pvc 0/300 l2transport	
encapsulation aal0	encapsulation aal0	
xconnect 10.13.13.13 300 encapsulation mpls	xconnect 10.16.12.12 300 encapsulation mpls	

Table 2: ATM over MPLS Configuration Example

Example: Ethernet over MPLS with MPLS Traffic Engineering Fast Reroute

The following configuration example and the figure show the configuration of Ethernet over MPLS with fast reroute on ATOM PE routers.

Routers PE1 and PE2 have the following characteristics:

- A TE tunnel called Tunnel41 is configured between PE1and PE2, using an explicit path through a link called L1. AToM VCs are configured to travel through the FRR-protected tunnel Tunnel41.
- The link L1 is protected by FRR, the backup tunnel is Tunnel1.

• PE2 is configured to forward the AToM traffic back to PE1 through the L2 link.

Figure 4: Fast Reroute Configuration

PE1 Configuration

```
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback1 force
!
pseudowire-class T41
encapsulation mpls
preferred-path interface Tunnel41 disable-fallback
T.
pseudowire-class IP1
encapsulation mpls
preferred-path peer 10.4.0.1 disable-fallback
interface Loopback1
ip address 10.0.0.27 255.255.255.255
1
interface Tunnel1
ip unnumbered Loopback1
 tunnel destination 10.0.0.1
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 1 1
tunnel mpls traffic-eng bandwidth 10000
tunnel mpls traffic-eng path-option 1 explicit name FRR
I
interface Tunnel41
ip unnumbered Loopback1
 tunnel destination 10.0.0.4
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 1 1
 tunnel mpls traffic-eng bandwidth 1000
 tunnel mpls traffic-eng path-option 1 explicit name name-1
tunnel mpls traffic-eng fast-reroute
interface POS0/0/0
description pelname POS8/0/0
ip address 10.1.0.2 255.255.255.252
mpls traffic-eng tunnels
mpls traffic-eng backup-path Tunnel1
crc 16
clock source internal
pos ais-shut
pos report lrdi
ip rsvp bandwidth 155000 155000
interface POS0/3/0
description pelname POS10/1/0
ip address 10.1.0.14 255.255.255.252
mpls traffic-eng tunnels
crc 16
clock source internal
```

ip rsvp bandwidth 155000 155000 1 interface gigabitethernet3/0/0.1 encapsulation dot1Q 203 xconnect 10.0.0.4 2 pw-class IP1 interface gigabitethernet3/0/0.2 encapsulation dot1Q 204 xconnect 10.0.0.4 4 pw-class T41 Т router ospf 1 network 10.0.0.0 0.255.255.255 area 0 mpls traffic-eng router-id Loopback1 mpls traffic-eng area 0 Т ip classless ip route 10.4.0.1 255.255.255.255 Tunnel41 ip explicit-path name xxxx-1 enable next-address 10.4.1.2 next-address 10.1.0.10

P Configuration

```
ip cef
mpls traffic-eng tunnels
interface Loopback1
ip address 10.0.0.1 255.255.255.255
1
interface FastEthernet1/0/0
ip address 10.4.1.2 255.255.255.0
mpls traffic-eng tunnels
ip rsvp bandwidth 10000 10000
1
interface POS8/0/0
description xxxx POS0/0
ip address 10.1.0.1 255.255.255.252
mpls traffic-eng tunnels
pos ais-shut
pos report lrdi
ip rsvp bandwidth 155000 155000
1
interface POS10/1/0
description xxxx POS0/3
ip address 10.1.0.13 255.255.255.252
mpls traffic-eng tunnels
ip rsvp bandwidth 155000 155000
Т
router ospf 1
network 10.0.0.0 0.255.255.255 area 0
mpls traffic-eng router-id Loopback1
mpls traffic-eng area 0
```

PE2 Configuration

ip cef
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback1 force
!

```
interface Loopback1
ip address 10.0.0.4 255.255.255.255
interface loopback 2
ip address 10.4.0.1 255.255.255.255
interface Tunnel27
ip unnumbered Loopback1
 tunnel destination 10.0.27
tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng autoroute announce
 tunnel mpls traffic-eng priority 1 1
 tunnel mpls traffic-eng bandwidth 1000
 tunnel mpls traffic-eng path-option 1 explicit name xxxx-1
1
interface FastEthernet0/0/0.2
encapsulation dot1Q 203
xconnect 10.0.0.27 2 encapsulation mpls
interface FastEthernet0/0/0.3
encapsulation dot10 204
xconnect 10.0.0.27 4 encapsulation mpls
ļ
interface FastEthernet1/1/0
ip address 10.4.1.1 255.255.255.0
mpls traffic-eng tunnels
ip rsvp bandwidth 10000 10000
router ospf 1
network 10.0.0.0 0.255.255.255 area 0
mpls traffic-eng router-id Loopback1
mpls traffic-eng area 0
1
ip explicit-path name xxxx-1 enable
next-address 10.4.1.2
next-address 10.1.0.10
```

Example: Ethernet over MPLS with MPLS Traffic Engineering Fast Reroute Using Commands Associated with L2VPN Protocol-Based Feature

The following configuration example and the figure show the configuration of Ethernet over MPLS with fast reroute on ATOM PE routers.

Routers PE1 and PE2 have the following characteristics:

- A TE tunnel called Tunnel41 is configured between PE1and PE2, using an explicit path through a link called L1. AToM VCs are configured to travel through the FRR-protected tunnel Tunnel41.
- The link L1 is protected by FRR, the backup tunnel is Tunnel1.
- PE2 is configured to forward the AToM traffic back to PE1 through the L2 link.

Figure 5: Fast Reroute Configuration

PE1 Configuration

```
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback1 force
template type pseudowire T41
 encapsulation mpls
preferred-path interface Tunnel41 disable-fallback
1
template type pseudowire IP1
 encapsulation mpls
preferred-path peer 10.4.0.1 disable-fallback
1
interface Loopback1
ip address 10.0.0.27 255.255.255.255
Т
interface Tunnel1
ip unnumbered Loopback1
 tunnel destination 10.0.0.1
 tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 1 1
 tunnel mpls traffic-eng bandwidth 10000
tunnel mpls traffic-eng path-option 1 explicit name FRR
interface Tunnel41
ip unnumbered Loopback1
 tunnel destination 10.0.0.4
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng priority 1 1
 tunnel mpls traffic-eng bandwidth 1000
 tunnel mpls traffic-eng path-option 1 explicit name name-1
tunnel mpls traffic-eng fast-reroute
!
interface POS0/0/0
description pelname POS8/0/0
 ip address 10.1.0.2 255.255.255.252
mpls traffic-eng tunnels
mpls traffic-eng backup-path Tunnel1
 crc 16
clock source internal
pos ais-shut
pos report lrdi
ip rsvp bandwidth 155000 155000
!
interface POS0/3/0
description pelname POS10/1/0
 ip address 10.1.0.14 255.255.255.252
mpls traffic-eng tunnels
crc 16
 clock source internal
ip rsvp bandwidth 155000 155000
!
interface gigabitethernet3/0/0.1
 encapsulation dot10 203
interface pseudowire 100
source template type pseudowire T41
neighbor 10.0.0.4 2
12vpn xconnect context con1
1
interface gigabitethernet3/0/0.2
encapsulation dot1Q 204
```

```
interface pseudowire 100
 source template type pseudowire IP1
neighbor 10.0.0.4 4
1
12vpn xconnect context con2
!
router ospf 1
network 10.0.0.0 0.255.255.255 area 0
mpls traffic-eng router-id Loopback1
mpls traffic-eng area 0
1
ip classless
ip route 10.4.0.1 255.255.255.255 Tunnel41
ip explicit-path name xxxx-1 enable
next-address 10.4.1.2
next-address 10.1.0.10
```

P Configuration

```
ip cef
mpls traffic-eng tunnels
1
interface Loopback1
ip address 10.0.0.1 255.255.255.255
interface FastEthernet1/0/0
ip address 10.4.1.2 255.255.255.0
mpls traffic-eng tunnels
ip rsvp bandwidth 10000 10000
interface POS8/0/0
description xxxx POS0/0
ip address 10.1.0.1 255.255.255.252
mpls traffic-eng tunnels
pos ais-shut
pos report lrdi
ip rsvp bandwidth 155000 155000
interface POS10/1/0
description xxxx POS0/3
ip address 10.1.0.13 255.255.255.252
mpls traffic-eng tunnels
ip rsvp bandwidth 155000 155000
!
router ospf 1
network 10.0.0.0 0.255.255.255 area 0
mpls traffic-eng router-id Loopback1
mpls traffic-eng area 0
```

PE2 Configuration

```
ip cef
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback1 force
!
interface Loopback1
ip address 10.0.0.4 255.255.255
!
interface loopback 2
```

```
ip address 10.4.0.1 255.255.255.255
interface Tunnel27
ip unnumbered Loopback1
tunnel destination 10.0.0.27
tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 1 1
 tunnel mpls traffic-eng bandwidth 1000
tunnel mpls traffic-eng path-option 1 explicit name xxxx-1
Т
interface FastEthernet0/0/0.2
encapsulation dot10 203
interface pseudowire 100
encapsulation mpls
neighbor 10.0.0.1 123
12vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1
1
interface FastEthernet0/0/0.3
 encapsulation dot1Q 204
interface pseudowire 100
encapsulation mpls
neighbor 10.0.0.1 123
L
12vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1
!
interface FastEthernet1/1/0
ip address 10.4.1.1 255.255.255.0
mpls traffic-eng tunnels
ip rsvp bandwidth 10000 10000
!
router ospf 1
network 10.0.0.0 0.255.255.255 area 0
mpls traffic-eng router-id Loopback1
mpls traffic-eng area 0
Т
ip explicit-path name xxxx-1 enable
next-address 10.4.1.2
next-address 10.1.0.10
```

Example: Configuring Tunnel Selection

The following example shows how to set up two preferred paths for PE1. One preferred path specifies an MPLS traffic engineering tunnel. The other preferred path specifies an IP address of a loopback address on PE2. There is a static route configured on PE1 that uses a TE tunnel to reach the IP address on PE2.

PE1 Configuration

```
mpls label protocol ldp
mpls traffic-eng tunnels
tag-switching tdp router-id Loopback0
pseudowire-class pw1
encapsulation mpls
preferred-path interface Tunnel1 disable-fallback
!
pseudowire-class pw2
```

```
encapsulation mpls
preferred-path peer 10.18.18.18
interface Loopback0
ip address 10.2.2.2 255.255.255.255
no ip directed-broadcast
no ip mroute-cache
1
interface Tunnel1
ip unnumbered Loopback0
no ip directed-broadcast
tunnel destination 10.16.16.16
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 7 7
 tunnel mpls traffic-eng bandwidth 1500
tunnel mpls traffic-eng path-option 1 explicit name path-tu1
interface Tunnel2
ip unnumbered Loopback0
no ip directed-broadcast
tunnel destination 10.16.16.16
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng priority 7 7
 tunnel mpls traffic-eng bandwidth 1500
tunnel mpls traffic-eng path-option 1 dynamic
1
interface gigabitethernet0/0/0
no ip address
no ip directed-broadcast
no negotiation auto
!
interface gigabitethernet0/0/0.1
encapsulation dot1Q 222
no ip directed-broadcast
xconnect 10.16.16.16 101 pw-class pw1
I.
interface ATM1/0/0
no ip address
no ip directed-broadcast
no atm enable-ilmi-trap
no atm ilmi-keepalive
pvc 0/50 l2transport
 encapsulation aal5
 xconnect 10.16.16.16 150 pw-class pw2
interface FastEthernet2/0/1
ip address 10.0.0.1 255.255.255.0
no ip directed-broadcast
tag-switching ip
mpls traffic-eng tunnels
ip rsvp bandwidth 15000 15000
I.
router ospf 1
log-adjacency-changes
network 10.0.0.0 0.0.0.255 area 0
network 10.2.2.2 0.0.0.0 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
L.
ip route 10.18.18.18 255.255.255.255 Tunnel2
ip explicit-path name path-tul enable
next-address 10.0.0.1
index 3 next-address 10.0.0.1
```

PE2 Configuration

```
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback0
interface Loopback0
ip address 10.16.16.16 255.255.255.255
no ip directed-broadcast
no ip mroute-cache
interface Loopback2
ip address 10.18.18.18 255.255.255.255
no ip directed-broadcast
1
interface FastEthernet1/1/0
ip address 10.0.0.2 255.255.255.0
no ip directed-broadcast
mpls traffic-eng tunnels
mpls ip
no cdp enable
ip rsvp bandwidth 15000 15000
1
interface FastEthernet1/1/1
no ip address
no ip directed-broadcast
no cdp enable
1
interface FastEthernet1/1/1.1
encapsulation dot1Q 222
no ip directed-broadcast
no cdp enable
mpls l2transport route 10.2.2.2 101
Т
interface ATM5/0/0
no ip address
no ip directed-broadcast
no atm enable-ilmi-trap
no atm ilmi-keepalive
pvc 0/50 l2transport
 encapsulation aal5
 xconnect 10.2.2.2 150 encapsulation mpls
router ospf 1
log-adjacency-changes
network 10.0.0.0 0.0.0.255 area 0
network 10.16.16.16 0.0.0.0 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
```

Example: Configuring Tunnel Selection Using Commands Associated with L2VPN Protocol-Based Feature

The following example shows how to set up two preferred paths for PE1. One preferred path specifies an MPLS traffic engineering tunnel. The other preferred path specifies an IP address of a loopback address on PE2. There is a static route configured on PE1 that uses a TE tunnel to reach the IP address on PE2.

PE1 Configuration

```
mpls label protocol ldp
```

```
mpls traffic-eng tunnels
tag-switching tdp router-id Loopback0
template type pseudowire pw1
encapsulation mpls
preferred-path interface Tunnell disable-fallback
template type pseudowire pw2
encapsulation mpls
preferred-path peer 10.18.18.18
interface Loopback0
ip address 10.2.2.2 255.255.255.255
no ip directed-broadcast
no ip mroute-cache
T.
interface Tunnel1
ip unnumbered Loopback0
no ip directed-broadcast
tunnel destination 10.16.16.16
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 7 7
 tunnel mpls traffic-eng bandwidth 1500
 tunnel mpls traffic-eng path-option 1 explicit name path-tul
interface Tunnel2
ip unnumbered Loopback0
no ip directed-broadcast
 tunnel destination 10.16.16.16
 tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 7 7
tunnel mpls traffic-eng bandwidth 1500
tunnel mpls traffic-eng path-option 1 dynamic
!
interface gigabitethernet0/0/0
no ip address
no ip directed-broadcast
no negotiation auto
1
interface gigabitethernet0/0/0.1
encapsulation dot1Q 222
no ip directed-broadcast
interface pseudowire 100
source template type pseudowire pw1
 neighbor 10.16.16.16 101
12vpn xconnect context con1
interface ATM1/0/0
no ip address
no ip directed-broadcast
no atm enable-ilmi-trap
no atm ilmi-keepalive
pvc 0/50 l2transport
 encapsulation aal5
 interface pseudowire 100
 source template type pseudowire pw2
neighbor 10.16.16.16 150
12vpn xconnect context con1
interface FastEthernet2/0/1
ip address 10.0.0.1 255.255.255.0
no ip directed-broadcast
tag-switching ip
```

```
mpls traffic-eng tunnels
ip rsvp bandwidth 15000 15000
!
router ospf 1
log-adjacency-changes
network 10.0.0.0.0.0.255 area 0
network 10.2.2.2 0.0.0.0 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
!
ip route 10.18.18.18 255.255.255.255 Tunnel2
!
ip explicit-path name path-tul enable
next-address 10.0.0.1
index 3 next-address 10.0.0.1
```

PE2 Configuration

```
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback0
interface Loopback0
ip address 10.16.16.16 255.255.255.255
no ip directed-broadcast
no ip mroute-cache
interface Loopback2
ip address 10.18.18.18 255.255.255.255
no ip directed-broadcast
1
interface FastEthernet1/1/0
 ip address 10.0.0.2 255.255.255.0
no ip directed-broadcast
mpls traffic-eng tunnels
mpls ip
no cdp enable
 ip rsvp bandwidth 15000 15000
1
interface FastEthernet1/1/1
no ip address
no ip directed-broadcast
no cdp enable
1
interface FastEthernet1/1/1.1
encapsulation dot1Q 222
no ip directed-broadcast
no cdp enable
mpls l2transport route 10.2.2.2 101
1
interface ATM5/0/0
no ip address
no ip directed-broadcast
no atm enable-ilmi-trap
no atm ilmi-keepalive
pvc 0/50 l2transport
 encapsulation aal5
 interface pseudowire 100
   encapsulation mpls
   neighbor 10.2.2.2 150
I
12vpn xconnect context A
  member pseudowire 100
  member GigabitEthernet0/0/0.1
```

```
!
router ospf 1
log-adjacency-changes
network 10.0.0.0 0.0.0.255 area 0
network 10.16.16.16 0.0.0.0 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
```

Example: Configuring MTU Values in xconnect Configuration Mode for L2VPN Interworking

The following example shows an L2VPN Interworking example. The PE1 router has a serial interface configured with an MTU value of 1492 bytes. The PE2 router uses xconnect configuration mode to set a matching MTU of 1492 bytes, which allows the two routers to form an interworking VC. If the PE2 router did not set the MTU value in xconnect configuration mode, the interface would be set to 1500 bytes by default and the VC would not come up.


```
Note
```

L2VPN interworking is not supported on Cisco ASR 900 RSP3 Module.

PE1 Configuration

```
pseudowire-class atom-ipiw
 encapsulation mpls
interworking ip
interface Loopback0
ip address 10.1.1.151 255.255.255.255
I.
interface Serial2/0/0
mtu 1492
no ip address
encapsulation ppp
no fair-queue
serial restart-delay 0
xconnect 10.1.1.152 123 pw-class atom-ipiw
interface Serial4/0/0
ip address 10.151.100.1 255.255.255.252
 encapsulation ppp
mpls ip
serial restart-delay 0
!
router ospf 1
log-adjacency-changes
network 10.1.1.151 0.0.0.0 area 0
network 10.151.100.0 0.0.0.3 area 0
!
mpls ldp router-id Loopback0
```

PE2 Configuration

```
pseudowire-class atom-ipiw
encapsulation mpls
interworking ip
```

```
interface Loopback0
ip address 10.1.1.152 255.255.255.255
1
interface FastEthernet0/0/0
no ip address
xconnect 10.1.1.151 123 pw-class atom-ipiw
 mtu 1492
!
interface Serial4/0/0
ip address 10.100.152.2 255.255.255.252
 encapsulation ppp
mpls ip
serial restart-delay 0
Т
router ospf 1
log-adjacency-changes
network 10.1.1.152 0.0.0.0 area 0
network 10.100.152.0 0.0.0.3 area 0
!
mpls ldp router-id Loopback0
```

The **show mpls l2transport binding** command shows that the MTU value for the local and remote routers is 1492 bytes.

PE1

```
Router# show mpls 12transport binding
Destination Address: 10.1.1.152, VC ID: 123
   Local Label: 105
        Cbit: 1,
                  VC Type: PPP,
                                  GroupID: 0
        MTU: 1492, Interface Desc: n/a
        VCCV: CC Type: CW [1], RA [2]
             CV Type: LSPV [2]
    Remote Label: 205
                   VC Type: FastEthernet,
                                              GroupID: 0
       Cbit: 1,
       MTU: 1492,
                   Interface Desc: n/a
       VCCV: CC Type: RA [2]
             CV Type: LSPV [2]
Router# show mpls 12transport vc detail
Local interface: Serial2/0/0 up, line protocol up, PPP up
  MPLS VC type is PPP, interworking type is IP
  Destination address: 10.1.1.152, VC ID: 123, VC status: up
    Output interface: Serial4/0/0, imposed label stack {1003 205}
    Preferred path: not configured
   Default path: active
   Next hop: point2point
  Create time: 00:25:29, last status change time: 00:24:54
  Signaling protocol: LDP, peer 10.1.1.152:0 up
    Targeted Hello: 10.1.1.151(LDP Id) -> 10.1.1.152
    Status TLV support (local/remote)
                                       : enabled/supported
     Label/status state machine
                                       : established, LruRru
     Last local dataplane status rcvd: no fault
     Last local SSS circuit status rcvd: no fault
     Last local SSS circuit status sent: no fault
     Last local LDP TLV status sent: no fault
     Last remote LDP TLV
                            status rcvd: no fault
   MPLS VC labels: local 105, remote 205
    Group ID: local n/a, remote 0
   MTU: local 1492, remote 1492
    Remote interface description:
  Sequencing: receive disabled, send disabled
  VC statistics:
```

```
packet totals: receive 30, send 29
byte totals: receive 2946, send 3364
packet drops: receive 0, send 0
```

PE2

```
Router# show mpls 12transport binding
Destination Address: 10.1.1.151, VC ID: 123
   Local Label: 205
       Cbit: 1,
                   VC Type: FastEthernet,
                                              GroupID: 0
                  Interface Desc: n/a
       MTU: 1492,
       VCCV: CC Type: RA [2]
             CV Type: LSPV [2]
    Remote Label: 105
       Cbit: 1,
                   VC Type: FastEthernet,
                                             GroupID: 0
                   Interface Desc: n/a
       MTU: 1492,
        VCCV: CC Type: CW [1], RA [2]
             CV Type: LSPV [2]
Router# show mpls 12transport vc detail
Local interface: Fe0/0/0 up, line protocol up, FastEthernet up
  MPLS VC type is FastEthernet, interworking type is IP
  Destination address: 10.1.1.151, VC ID: 123, VC status: up
   Output interface: Se4/0/0, imposed label stack {1002 105}
    Preferred path: not configured
   Default path: active
   Next hop: point2point
  Create time: 00:25:19, last status change time: 00:25:19
  Signaling protocol: LDP, peer 10.1.1.151:0 up
    Targeted Hello: 10.1.1.152(LDP Id) -> 10.1.1.151
    Status TLV support (local/remote) : enabled/supported
                                      : established, LruRru
     Label/status state machine
     Last local dataplane status rcvd: no fault
     Last local SSS circuit status rcvd: no fault
     Last local SSS circuit status sent: no fault
     Last local LDP TLV
                          status sent: no fault
     Last remote LDP TLV
                           status rcvd: no fault
   MPLS VC labels: local 205, remote 105
    Group ID: local n/a, remote 0
   MTU: local 1492, remote 1492
   Remote interface description:
  Sequencing: receive disabled, send disabled
  VC statistics:
   packet totals: receive 29, send 30
    byte totals: receive 2900, send 3426
   packet drops: receive 0, send 0
```

Examples: Configuring Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown

The following example shows how to enable remote Ethernet port shutdown:

```
configure terminal
!
pseudowire-class eompls
encapsulation mpls
!
interface GigabitEthernet1/0/0
xconnect 10.1.1.1 1 pw-class eompls
remote link failure notification
```

The following example shows how to disable remote Ethernet port shutdown:

```
configure terminal
!
pseudowire-class eompls
encapsulation mpls
!
interface GigabitEthernet1/0/0
xconnect 10.1.1.1 1 pw-class eompls
no remote link failure notification
```

The related show command output reports operational status for all remote L2 Tunnels by interface.

```
Router# show interface G1/0/0

GigabitEthernet1/0/0 is L2 Tunnel remote down, line protocol is up

Hardware is GigMac 4 Port GigabitEthernet, address is 0003.ff4e.12a8 (bia 0003.ff4e.12a8)

Internet address is 10.9.9.2/16

MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec, rely 255/255, load 1/255

Router# show ip interface brief

Interface IP-Address OK? Method Status Protocol

GigabitEthernet2/0/0 unassigned YES NVRAM L2 Tunnel remote down up

GigabitEthernet2/1/0 unassigned YES NVRAM administratively down down
```

Note

Remote Ethernet port shutdown is enabled by default when EVC "default encapsulation" is configured.

Examples: Configuring Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown Using Commands Associated with L2VPN Protocol-Based Feature

The following example shows how to enable remote Ethernet port shutdown:

```
configure terminal
!
template type pseudowire eompls
encapsulation mpls
!
interface GigabitEthernet1/0/0
interface pseudowire 100
source template type pseudowire eompls
neighbor 10.1.1.1 1
!
l2vpn xconnect context con1
remote link failure notification
```

The following example shows how to disable remote Ethernet port shutdown:

```
configure terminal
!
template type pseudowire eompls
encapsulation mpls
!
interface GigabitEthernet1/0/0
interface pseudowire 100
source template type pseudowire eompls
neighbor 10.1.1.1 1
!
```

```
l2vpn xconnect context con1
  no remote link failure notification
```

The related show command output reports operational status for all remote L2 Tunnels by interface.

```
Router# show interface G1/0/0

GigabitEthernet1/0/0 is L2 Tunnel remote down, line protocol is up

Hardware is GigMac 4 Port GigabitEthernet, address is 0003.ff4e.12a8 (bia 0003.ff4e.12a8)

Internet address is 10.9.9.2/16

MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec, rely 255/255, load 1/255

Router# show ip interface brief

Interface IP-Address OK? Method Status Protocol

GigabitEthernet2/0/0 unassigned YES NVRAM L2 Tunnel remote down up

GigabitEthernet2/1/0 unassigned YES NVRAM administratively down down
```

Additional References for Any Transport over MPLS

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Command List, All Releases
MPLS commands	Cisco IOS Multiprotocol Label Switching Command Reference

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for Any Transport over MPLS

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 3: Feature Information for Any Transport over MPLS

Feature Name	Releases	Feature Information
Any Transport over MPLS (AToM)	Cisco IOS XE Release 3.18SP	This feature was introduced on the NCS 4200 Series.

I