Configuring Multicast Admission Control

This module describes how to implement multicast admission control in an IP multicast network. Multicast admission control features are configured on multicast-enabled routers to prevent control plane overload, ensure proper resource allocation, and provide multicast Call Admission Control (CAC) capabilities.

• Finding Feature Information, on page 1
• Prerequisites for Configuring Multicast Admission Control, on page 1
• Information About Configuring Multicast Admission Control, on page 1
• How to Configure Multicast Admission Control, on page 8
• Configuration Examples for Configuring Multicast Admission Control, on page 16
• Additional References, on page 20

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring Multicast Admission Control

IP multicast is enabled and the Protocol Independent Multicast (PIM) interfaces are configured using the tasks described in the “Configuring Basic IP Multicast” module.

Information About Configuring Multicast Admission Control

Multicast Admission Control

As the popularity of network video applications grows among consumers, admission control functions—which govern transmission and reception of multicast traffic based on available network resources—are vital. Without admission control, some users may receive degraded multicast streams, rendering programs unwatchable, and
Multicast Admission Control Features

The Cisco IOS software supports the following multicast admission control features:

- **Global and Per MVRF Mroute State Limit**

  The `ip multicast route-limit` command allows for the configuration of global and per MVRF state limiters, which impose limits on the number of multicast routes (mroutes) that can be added to the global table or to a particular Multicast Virtual Routing and Forwarding (MVRF) table.

  - **IGMP State Limit**

    This feature allows for the configuration of IGMP state limiters, which impose limits on mroute states resulting from Internet Group Management Protocol (IGMP) membership reports (IGMP joins).

  - **Per Interface Mroute State Limit**

    This feature allows for the configuration of per interface mroute state limiters, which impose mroute state limits for different access control list (ACL)-classified sets of multicast traffic on an interface.

  - **Bandwidth-Based CAC for IP Multicast**

    This feature allows for the configuration of bandwidth-based multicast CAC policies, which allow for bandwidth-based CAC on a per interface basis.

These admission control features may be invoked by service providers and enterprise network administrators based on different criteria, including the service package an end user has purchased or the privileges an enterprise user is entitled to.

Global and Per MVRF Mroute State Limit

The `ip multicast route-limit` command allows for the configuration of global and per MVRF mroute state limiters, which impose limits on the number of mroutes that can be added to the global table or to a particular MVRF table, respectively.
Global mroutestate limiters are used to limit the number of mroutes that can be added to the global table on a router. Configuring a global mroute state limiter can protect a router in the event of a multicast DoS attack (by preventing mroutes from overrunning the router).

Per VRF mroutestate limiters are used to limit the number of mroutes that can be added to an MVRF table on a Multicast VPN (MVPN) provider edge (PE) router. Configuring per MVRF mroute state limits can be used to ensure the fair sharing of mroutes between different MVRFs on an MVPN PE router.

Global and Per MVRF Mroute State Limit Feature Design

Global and per MVRF mroute state limiters are configured using the `ip multicast route-limit` command in global configuration mode. The syntax of the `ip multicast route-limit` command is as follows:

```
ip multicast [vrf vrf-name] route-limit limit [threshold]
```

Issuing the `ip multicast route-limit` command without the optional `vrf` keyword and `vrf-name` arguments configures a global mroute state limiter. The optional `vrf` keyword and `vrf-name` arguments are used with the `ip multicast limit` command to configure per MVRF mroute state limiters.

---

**Note**

When configuring global and per VRF mroute state limiters, you can only configure one limit for the global table and one limit per MVRF table.

The value specified for the required `limit` argument defines the maximum number of mroutes that can be added to either the global table or a particular MVRF table, respectively.

---

**Note**

Global and per MVRF mroute state limiters operate independently and can be used alone or together, depending upon the admission control requirements of your network.

In addition, for both global and per MVRF mroute state limiters, the optional `threshold` argument is available to set mroute threshold limits.

Mechanics of Global and Per MVRF Mroute State Limiters

The mechanics of global and per MVRF mroute state limiters are as follows:

- Each time the state for an mroute is created on a router, the Cisco IOS software checks to see if the limit for the global mroute state limiter (if the mroute is associated with the global table) or the limit for the per MVRF mroute state limiter (if the mroute is associated with the MVRF table) has been reached.

- States for mroutes that exceed the configured limit for the global or the per MVRF mroute state limiter are not created on the router, and a warning message in the following format is generated:

```
% MROUTE-4-ROUTELIMIT : <current mroute count> exceeded multicast route-limit of
<mroute limit value>
```

- When an mroute threshold limit is also configured for the global or the per MVRF mroute state limiter, each time the state for an mroute is created on a router, the Cisco IOS software also checks to see if the mroute threshold limit has been reached. If the mroute threshold limit is exceeded, a warning message in the following format is generated:
Warning messages continue to be generated until the number of mroutes exceeds the configured limit or until the number of mroute states falls below the configured mroute threshold limit.

IGMP State Limit

The IGMP State Limit feature allows for the configuration of IGMP state limiters, which impose limits on mroute states resulting from IGMP membership reports (IGMP joins) on a global or per interface basis. Membership reports exceeding the configured limits are not entered into the IGMP cache. This feature can be used to prevent DoS attacks or to provide a multicast CAC mechanism in network environments where all the multicast flows roughly utilize the same amount of bandwidth.

Note

IGMP state limiters impose limits on the number of mroute states resulting from IGMP, IGMP v3lite, and URL Rendezvous Directory (URD) membership reports on a global or per interface basis.

IGMP State Limit Feature Design

• Configuring IGMP state limiters in global configuration mode specifies a global limit on the number of IGMP membership reports that can be cached.

• Configuring IGMP state limiters in interface configuration mode specifies a limit on the number of IGMP membership reports on a per interface basis.

• Use ACLs to prevent groups or channels from being counted against the interface limit. A standard or an extended ACL can be specified. A standard ACL can be used to define the (*.G) state to be excluded from the limit on an interface. An extended ACLs can be used to define the (S,G) state to be excluded from the limit on an interface. An extended ACL also can be used to define the (*,G) state to be excluded from the limit on an interface, by specifying 0.0.0.0 for the source address and source wildcard—referred to as (0,G)—in the permit or deny statements that compose the extended access list.

• You can only configure one global limit per device and one limit per interface.

Mechanics of IGMP State Limiters

The mechanics of IGMP state limiters are as follows:

• Each time a router receives an IGMP membership report for a particular group or channel, the Cisco IOS software checks to see if either the limit for the global IGMP state limiter or the limit for the per interface IGMP state limiter has been reached.

• If only a global IGMP state limiter has been configured and the limit has not been reached, IGMP membership reports are honored. When the configured limit has been reached, subsequent IGMP membership reports are then ignored (dropped) and a warning message in one of the following formats is generated:

%IGMP-6-IGMP_GROUP_LIMIT: IGMP limit exceeded for <group (*.group address)> on <interface type number> by host <ip address>
• If only per interface IGMP state limiters are configured, then each limit is only counted against the
interface on which it was configured.

• If both a global IGMP state limiter and per interface IGMP state limiters are configured, the limits
configured for the per interface IGMP state limiters are still enforced but are constrained by the global
limit.

**Per Interface Mroute State Limit**

The Per Interface Mroute State Limit feature provides the capability to limit the number of mroute states on
an interface for different ACL-classified sets of multicast traffic. This feature can be used to prevent DoS
attacks or to provide a multicast CAC mechanism when all the multicast flows roughly utilize the same amount
of bandwidth.

The Per Interface Mroute State Limit feature essentially is a complete superset of the IGMP State Limit feature
(with the exception that it does not support a global limit). The Per Interface Mroute State Limit feature,
moreover, is more flexible and powerful (albeit more complex) than the IGMP State Limit feature but is not
intended to be a replacement for it because there are applications that suit both features.

The main differences between the Per Interface Mroute State Limit feature and the IGMP State Limit feature
are as follows:

• The Per Interface Mroute State Limit feature allows multiple limits to be configured on an interface,
whereas the IGMP State Limit feature allows only one limit to be configured on an interface. The Per
Interface Mroute State Limit feature, thus, is more flexible than the IGMP State Limit feature in that it
allows multiple limits to be configured for different sets of multicast traffic on an interface.

• The Per Interface Mroute State Limit feature can be used to limit both IGMP and PIM joins, whereas
the IGMP State Limit feature can only be used to limit IGMP joins. The IGMP State Limit feature, thus,
is more limited in application in that it is best suited to be configured on an edge router to limit the number
of groups that receivers can join on an outgoing interface. The Per Interface Mroute State Limit feature
has a wider application in that it can be configured to limit IGMP joins on an outgoing interface, to limit
PIM joins (for Any Source Multicast [ASM] groups or Source Specific Multicast [SSM] channels) on
an outgoing interface connected to other routers, to limit sources behind an incoming interface from
sending multicast traffic, or to limit sources directly connected to an incoming interface from sending
multicast traffic.

Although the PIM Interface Mroute State Limit feature allows you to limit both IGMP and PIM joins, it does
not provide the capability to limit PIM or IGMP joins separately because it does not take into account whether
the state is created as a result of an IGMP or PIM join. As such, the IGMP State Limit feature is more specific
in application because it specifically limits IGMP joins.

• The Per Interface Mroute State Limit feature allows you to specify limits according to the direction of
traffic; that is, it allows you to specify limits for outgoing interfaces, incoming interfaces, and for incoming
interfaces having directly connected multicast sources. The IGMP State Limit feature, however, only
can be used to limit outgoing interfaces. The Per Interface State Mroute State Limit feature, thus, is wider
in scope in that it can be used to limit mroute states for both incoming and outgoing interfaces from both sources and receivers, whereas the IGMP State Limit feature is more narrow in scope in that it can only be used to limit mroute states for receivers on an LAN by limiting the number of IGMP joins on an outgoing interface.

Both the IGMP State Limit and Per Interface Mroute State Limit features provide a rudimentary multicast CAC mechanism that can be used to provision bandwidth utilization on an interface when all multicast flows roughly utilize the same amount of bandwidth. The Bandwidth-Based CAC for IP Multicast feature, however, offers a more flexible and powerful alternative for providing multicast CAC in network environments where IP multicast flows utilize different amounts of bandwidth.

**Per Interface Mroute State Limit Feature Design**

The Per Interface Mroute State Limit feature is configured using the `ip multicast limit` command in interface configuration mode. An `ip multicast limit` command configured on an interface is called an per interface mroute state limiter. A per interface mroute state limiter is defined by direction, ACL, and maximum number of mroutes. Each per interface mroute state limiter maintains a counter to ensure that the maximum number of mroutes is not exceeded.

The following forms of the `ip multicast limit` command are available to configure per interface mroute state limiters:

- **ip multicast limit access-list max-entries**

  This command limits mroute state creation for an ACL-classified set of traffic on an interface when the interface is an outgoing (egress) interface, and limits mroute outgoing interface list (olist) membership when the interface is an incoming (ingress) Reverse Path Forwarding (RPF) interface.

  This type of per interface mroute state limiter limits mroute state creation--by accounting each time an mroute permitted by the ACL is created or deleted--and limits mroute olist membership--by accounting each time that an mroute olist member permitted by the ACL is added or removed.

  Entering this form of the command (that is, with no optional keywords) is equivalent to specifying the `ip multicast limit rpf` and `ip multicast limit out` forms of the command.

- **ip multicast limit connected access-list max-entries**

  This command limits mroute state creation for an ACL-classified set of multicast traffic on an incoming (RPF) interface that is directly connected to a multicast source by accounting each time that an mroute permitted by the ACL is created or deleted.

- **ip multicast limit out access-list max-entries**

  This command limits mroute olist membership on an outgoing interface for an ACL-classified set of multicast traffic by accounting each time that an mroute olist member permitted by the ACL is added or removed.

- **ip multicast limit rpf access-list max-entries**

  This command limits mroute state creation for an ACL-classified set of multicast traffic on an incoming (RPF) interface by accounting each time an mroute permitted by the ACL is created or deleted.

  For the required `access-list` argument, specify the ACL that defines the IP multicast traffic to be limited on an interface. A standard or extended ACL can be specified. Standard ACLs can be used to define the (*, G) state to be limited on an interface. Extended ACLs can be used to define the (S, G) state to be limited on an interface. Extended ACLs also can be used to define the (*, G) state to be limited on an interface, by specifying
Mechanics of Per Interface Mroute State Limiters

The mechanics of per interface mroutestate limiters are as follows:

- Each time the state for an mroutecreated or deleted and each time an olist member is added or removed, the software searches for a corresponding per interface mroute state limiter that matches the mroute.

- When an mroute is created or deleted, the software searches for a per interface mroute state limiter configured on the incoming (RPF) interface that matches the mroute to be created or deleted. When an olist member is added or removed, the software searches for a per interface mroute state limiter configured on the outgoing interface that matches the mroute to be added or removed.

- A top-down search is performed using the list of configured per interface mroute state limiters. Only per interface mroute state limiters that match the direction of traffic are considered. The first per interface mroute state limiter that matches is used for limiting (sometimes referred to as accounting). A match is found when the ACL permits the mroute state.

- When a match is found, the counter of the per interface mroute state limiter is updated (increased or decreased). If no per interface mroute state limiter is found that matches an mroute, no accounting is performed for the mroute (because there is no counter to update).

- The amount with which to update the counter is called the cost (sometimes referred to as the cost multiplier). The default cost is 1.

Note

A per interface mroute state limiter always allows the deletion of an mroutewhere the removal of an interface from the olist. In those cases, the respective per interface mroute state limiter decreases the counter by the value of the cost multiplier. In addition, RPF changes to an existing mroute are always allowed (in order to not affect existing traffic). However, a per interface mroute state limiter only allows the creation of an mroute or the addition of an mroute olist member if adding the cost does not exceed the maximum number of mroutes permitted.

Tips for Configuring Per Interface Mroute State Limiters

- To ensure that all mroutes are accounted, you can configure a per interface mroute state limiter whose ACL contains a permit-any statement and set the value of zero (0) for maximum entries. Configuring an mroute state limiter in this manner effectively denies all fall through states, which may be a way to prevent a multicast DoS attack in and out of the interface.

- When creating an ACL, remember that, by default, the end of the ACL contains an implicit deny-any statement for everything if it did not find a match before reaching the end.

- An explicit deny statement for a specific mroute in an ACL can be used to specify the state that will not match the ACL which will prevent the ACL from being accounted. If an mroute matches a deny statement, the search immediately continues to the next configured mroute state limiter. Configuring an explicit deny statement in an ACL can be more efficient than forcing the mroute to fall through an ACL by using an implicit deny-any statement at the end of the ACL.
How to Configure Multicast Admission Control

Configuring Global and Per MVRF Mroute State Limiters

Perform the following optional tasks to configure global and per MVRF mroutestate limiters.

Global mroutestate limiters are used to limit the number of mroutes that can be added to the global table on a router. Configuring a global mroute state limiter can protect a router in the event of a multicast DoS attack (by preventing mroutes from overrunning the router).

Per VRF mroutestate limiters are used to limit the number of mroutes that can be added to an MVRF table on an MVPN PE router. Configuring per MVRF mroutestate limits can be used to ensure the fair sharing of mroutes between different MVRFs on an MVPN PE router.

---

**Note**

Global and per MVRF mroutestate limiters operate independently and can be used alone or together, depending upon the admission control requirements of your network.

**Note**

When configuring global and per VRF mroutestate limiters, you can only configure one limit for the global table and one limit per MVRF table.

The following tasks explain how to configure global and per MVRF mroutestate limiters:

**Prerequisites**

- These tasks assume that IP multicast has been enabled and that the PIM interfaces have been configured using the tasks described in the “Configuring Basic IP Multicast” module.

- Before configuring per MVRF mroutestate limiters, the MVRFs on the PE router must be configured using the tasks described in the “Configuring Multicast VPN” module.

**Configuring a Global Mroute State Limiter**

Perform this task to limit the number of mroutes that can be added to the global table. States for mroutes that exceed the global mroute limit will not be created.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ip multicast route-limit limit [threshold]`
4. `end`
5. `show ip mroute count`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Limits the number of mroutes that can be added to the global table.</td>
</tr>
<tr>
<td><code>ip multicast route-limit limit [threshold]</code></td>
<td>- For the required <code>limit</code> argument, specify the limit on the number of mroutes that can be added to the global table. The range is from 1 to 2147483647. - Use the optional <code>threshold</code> argument to set an mroute threshold limit. The range is from 1 to 2147483647. - Maximum number of mroute state limits supported globally is 1000.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# ip multicast route-limit 1500 1460</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Ends the current configuration session and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>(Optional) Displays mroute data and packet count statistics.</td>
</tr>
<tr>
<td><code>show ip mroute count</code></td>
<td>- Use this command to verify the number of mroutes in the global table.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# show ip mroute count</td>
</tr>
</tbody>
</table>

### What to Do Next

Proceed to the Configuring Per MVRF Mroute State Limiters, on page 9 task to configure per MVRF mroute state limiters on a PE router.

### Configuring Per MVRF Mroute State Limiters

Perform this optional task to configure per MVRF mroute state limiters to limit the number of mroutes that can be added to a particular MVRF table. This feature can be configured on a PE router to ensure the fair sharing of mroutes between different MVRFs on the router. States for mroutes that exceed the per MVRF mroute limiter are not created.

### SUMMARY STEPS

1. `enable`
2. configure terminal
3. ip multicast vrf vrf-name route-limit limit [threshold]
4. Repeat Step 3 to configure additional per VRF mroute state limiters for other VRFs on an MVPN PE router.
5. end
6. show ip mroute vrf vrf-name count

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ip multicast vrf vrf-name route-limit limit [threshold]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# ip multicast vrf red route-limit 1500 1460</td>
</tr>
<tr>
<td></td>
<td>Limits the number of mroutes that can be added to a particular MVRF table.</td>
</tr>
<tr>
<td></td>
<td>• For the vrf keyword and vrf-name argument, specify the MVRF for which to apply the limit.</td>
</tr>
<tr>
<td></td>
<td>• For the required limit argument, specify the limit on the number of mroutes that can be added to the MVRF table (for the specified MVRF). The range is from 1 to 2147483647.</td>
</tr>
<tr>
<td></td>
<td>• Use the optional threshold argument to set an mroute threshold limit. The range is from 1 to 2147483647.</td>
</tr>
<tr>
<td></td>
<td>• Maximum number of mroute state limits supported on MVRF level is 1000.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Repeat Step 3 to configure additional per VRF mroute state limiters for other VRFs on an MVPN PE router.</td>
</tr>
<tr>
<td></td>
<td>--</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# end</td>
</tr>
<tr>
<td></td>
<td>Ends the current configuration session and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show ip mroute vrf vrf-name count</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# show ip mroute vrf red count</td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays mroute data and packet count statistics related to the specified MVRF.</td>
</tr>
<tr>
<td></td>
<td>• Use this command to verify the number of mroutes in a particular MVRF table.</td>
</tr>
</tbody>
</table>
Configuring IGMP State Limiters

Note
IGMP state limiters impose limits on the number of mroute states resulting from IGMP, IGMP v3 lite, and URD membership reports on a global or per interface basis.

Prerequisites

• These tasks assume that IP multicast has been enabled and that the PIM interfaces have been configured using the tasks described in the “Configuring Basic IP Multicast” module.

• All ACLs you intend to apply to per interface IGMP state limiters should be configured prior to beginning this configuration task; otherwise, IGMP membership reports for all groups and channels are counted against the configured limits. For information about how to configure ACLs, see the “Creating an IP Access List and Applying It to an Interface” module.

Configuring Global IGMP State Limiters

Perform this optional task to configure one global IGMP state limiter per device.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip igmp limit number
4. end
5. show ip igmp groups

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>ip igmp limit number</td>
<td>Configures a global limit on the number of mroute states resulting from IGMP membership reports (IGMP joins).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip igmp limit 150</td>
<td></td>
</tr>
</tbody>
</table>
**What to Do Next**

Proceed to the Configuring Per Interface IGMP State Limiters, on page 12 task to configure per interface IGMP state limiters.

**Configuring Per Interface IGMP State Limiters**

Perform this optional task to configure a per interface IGMP state limiter.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip igmp limit number [except access-list]`
5. Do one of the following:
   - `exit`
   - `end`
6. `show ip igmp interface [type number]`
7. `show ip igmp groups`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| enable
| Example: Device> enable |
| Enables privileged EXEC mode.
| • Enter your password if prompted. |
| **Step 2**
| configure terminal
| Example: Device# configure terminal |
| Enters global configuration mode. |
| **Step 3**
| interface type number |
| Enters interface configuration mode. |
### Configuring Per Interface Mroute State Limiters

Perform this task to prevent DoS attacks or to provide a multicast CAC mechanism for controlling bandwidth when all multicast flows utilize approximately the same amount of bandwidth.

**Before you begin**

All ACLs to be applied to per interface mroute state limiters must be configured prior to beginning this configuration task; otherwise, the limiters are ignored. For information about how to configure ACLs, see the “Creating an IP Access List and Applying It to an Interface” module of the Security Configuration Guide: Access Control Lists guide.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip multicast limit [connected | out | rpf] access-list max-entries`
5. Repeat Step 4 to configure additional per interface mroute state limiters on this interface.
6. Repeat Steps 3 and Step 4 to configure per interface mroute state limiters on additional interfaces.
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface type number</td>
<td>Enters interface configuration mode for the specified interface type and number.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# interface GigabitEthernet0/0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip multicast limit [connected</td>
<td>out</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# ip multicast limit 15 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repeat Step 4 to configure additional per interface mroute state limiters on this interface.</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repeat Steps 3 and Step 4 to configure per interface mroute state limiters on additional interfaces.</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

### What to Do Next

Proceed to the Monitoring Per Interface Mroute State Limiters and Bandwidth-Based Multicast CAC Policies task to monitor per interface mroute state limiters.

### Monitoring Per Interface Mroute State Limiters and Bandwidth-Based Multicast CAC Policies

Perform this optional task to monitor per interface mroute state limiters and bandwidth-based multicast CAC policies.
SUMMARY STEPS

1. **enable**
2. **debug ip mrouting limits** [group-address]
3. **show ip multicast limit** type number
4. **clear ip multicast limit** [type number]

DETAILED STEPS

**Step 1**  enable

**Example:**

Device> enable

Enables privileged EXEC mode.

- Enter your password if prompted.

**Step 2**  **debug ip mrouting limits** [group-address]

Displays debugging information about configured per interface mroute state limiters and bandwidth-based multicast CAC policies.

The following output is from the **debug ip mrouting limits** command. The output displays the following events:

- An mroute state being created and the corresponding per interface mroute state limiter counter being increased by the default cost of 1 on incoming Ethernet interface 1/0.

- An mroute olist member being removed from the olist and the corresponding per interface mroute limiter being decreased by the default cost of 1 on outgoing Ethernet interface 1/0.

- An mroute being denied by the per interface mroute state limiter because the maximum number of mroute states has been reached.

- An mroute state being created and the corresponding per interface mroute state limiter counter being increased by the cost of 2 on incoming Ethernet interface 1/0.

- An mroute olist member being removed from the olist and the corresponding per interface mroute limiter being decreased by a cost of 2 on outgoing Ethernet interface 1/0.

**Example:**

device# debug ip mrouting limits

MRL(0): incr-ed acl 'rpf-list' to (13 < max 32), [n:0,p:0], (main) GigabitEthernet0/0, (10.41.0.41, 225.30.200.60)
MRL(0): decr-ed acl 'out-list' to (10 < max 32), [n:0,p:0], (main) GigabitEthernet0/0, (*, 225.40.202.60)
MRL(0): Add mroute (10.43.0.43, 225.30.200.60) denied for GigabitEthernet0/2, acl std-list, (16 = max 16)
MRL(0): incr-ed limit-acl 'rpf-list' to (12 < max 32), cost-acl 'cost-list' cost 2, [n:0,p:0], (main) GigabitEthernet0/0, (10.41.0.41, 225.30.200.60)
MRL(0): decr-ed limit-acl 'out-list' to (8 < max 32), cost-acl 'cost-list' cost 2, [n:0,p:0], (main) GigabitEthernet0/0, (*, 225.40.202.60)

**Step 3**  **show ip multicast limit** type number
Displays counters related to mroute state limiters configured on the interfaces on the router.

For each per interface mroute state limiter shown in the output, the following information is displayed:

- The direction of traffic that the per mroute state limiter is limiting.

- The ACL referenced by the per interface mroute state limiter that defines the IP multicast traffic being limited.

- Statistics, enclosed in parenthesis, which track the current number of mroutes being limited less the configured limit. Each time the state for an mroute is created or deleted and each time an outgoing interface list (olist) member is added or removed, the counters for matching per interface mroute state limiters are increased or decreased accordingly.

- The exceeded counter, which tracks the total number of times that the limit configured for the per interface mroute state limiter has been exceeded. Each time an mroute is denied due to the configured limit being reached, the exceeded counter is increased by a value of 1.

The following is sample output from the `show ip multicast limit` command with the `type number` arguments. In this example, information about mroute state limiters configured on Gigabit Ethernet interface 0/0 is displayed.

**Example:**

```
Device# show ip multicast limit GigabitEthernet 0/0
Interface GigabitEthernet 0/0
  Multicast Access Limits
  out acl out-list (1 < max 32) exceeded 0
  rpf acl rpf-list (6 < max 32) exceeded 0
  con acl conn-list (0 < max 32) exceeded 0
```

**Step 4**

`clear ip multicast limit [type number]`

Resets the exceeded counter for per interface mroute state limiters.

The following example shows how to reset exceeded counters for per interface mroute state limiters configured on Gigabit Ethernet interface 0/0:

**Example:**

```
Device# clear ip multicast limit interface GigabitEthernet 0/0
```

---

### Configuration Examples for Configuring Multicast Admission Control

#### Configuring Global and Per MVRF Mroute State Limiters Example

The following example shows how to configure a global mroute state limiter. In this example, a global mroute state limiter is configured with an mroute limit of 1500 and an mroute threshold limit of 1460.

```
ip multicast route-limit 1500 1460
```

The following is a sample mroute threshold warning message. The output shows that the configured mroute threshold limit of 1460 has been exceeded by one mroute.
%MROUTE-4-ROUTELIMITWARNING : multicast route-limit warning 1461 threshold 1460

The following is a sample mroute exceeded warning message. The output shows that the configured mroute limit of 1500 has been exceeded by one mroute. States for mroutes that exceed the configured limit for the global mroute state limiter are not created on the router.

%MROUTE-4-ROUTELIMIT : 1501 routes exceeded multicast route-limit of 1500

Example: Configuring IGMP State Limiters

The following example shows how to configure IGMP state limiters to provide multicast CAC in a network environment where all the multicast flows roughly utilize the same amount of bandwidth.

This example uses the topology illustrated in the figure.

Figure 1: IGMP State Limit Example Topology

In this example, a service provider is offering 300 Standard Definition (SD) TV channels. Each SD channel utilizes approximately 4 Mbps.

The service provider must provision the Gigabit Ethernet interfaces on the PE device connected to the Digital Subscriber Line Access Multiplexers (DSLAMs) as follows: 50% of the link’s bandwidth (500 Mbps) must be available to subscribers of the Internet, voice, and video on demand (VoD) service offerings while the remaining 50% (500 Mbps) of the link’s bandwidth must be available to subscribers of the SD channel offerings.

Because each SD channel utilizes the same amount of bandwidth (4 Mbps), per interface IGMP state limiters can be used to provide the necessary CAC to provision the services being offered by the service provider. To determine the required CAC needed per interface, the total number of channels is divided by 4 (because each channel utilizes 4 Mbps of bandwidth). The required CAC needed per interface, therefore, is as follows:
500Mbps / 4Mbps = 125 mroutes

Once the required CAC is determined, the service provider uses the results to configure the per IGMP state limiters required to provision the Gigabit Ethernet interfaces on the PE device. Based on the network’s CAC requirements, the service provider must limit the SD channels that can be transmitted out a Gigabit Ethernet interface (at any given time) to 125. Configuring a per interface IGMP state limit of 125 for the SD channels provisions the interface for 500 Mbps of bandwidth, the 50% of the link’s bandwidth that must always be available (but never exceeded) for the SD channel offerings.

The following configuration shows how the service provider uses a per interface mroute state limiter to provision interface Gigabit Ethernet 0/0 for the SD channels and Internet, Voice, and VoD services being offered to subscribers:

```plaintext
interface GigabitEthernet0/0
description --- Interface towards the DSLAM ---

ip igmp limit 125
```

**Example Configuring Per Interface Mroute State Limiters**

The following example shows how to configure per interface mroute state limiters to provide multicast CAC in a network environment where all the multicast flows roughly utilize the same amount of bandwidth.

This example uses the topology illustrated in the figure.

*Figure 2: Per Interface Mroute State Limit Example Topology*

In this example, a service provider is offering 300 SD TV channels. The SD channels are being offered to customers in three service bundles (Basic, Premium, and Gold), which are available to customers on a subscription basis. Each bundle offers 100 channels to subscribers, and each channel utilizes approximately 4 Mbps of bandwidth.
The service provider must provision the Gigabit Ethernet interfaces on the PE device connected to DSLAMs as follows: 50% of the link’s bandwidth (500 Mbps) must be available to subscribers of their Internet, voice, and VoD service offerings while the remaining 50% (500 Mbps) of the link’s bandwidth must be available to subscribers of their SD channel bundle service offerings.

For the 500 Mbps of the link’s bandwidth that must always be available to (but must never be exceeded by) the subscribers of the SD channel bundles, the interface must be further provisioned as follows:

- 60% of the bandwidth must be available to subscribers of the basic service (300 Mbps).
- 20% of the bandwidth must be available to subscribers of the premium service (100 Mbps).
- 20% of the bandwidth must be available to subscribers of the gold service (100 Mbps).

Because each SD channel utilizes the same amount of bandwidth (4 Mbps), per interface mroute state limiters can be used to provide the necessary CAC to provision the services being offered by the service provider. To determine the required CAC needed per interface, the number of channels for each bundle is divided by 4 (because each channel utilizes 4 Mbps of bandwidth). The required CAC needed per interface, therefore, is as follows:

- Basic Services: 300 / 4 = 75
- Premium Services: 100 / 4 = 25
- Gold Services: 100 / 4 = 25

Once the required CAC required per SD channel bundle is determined, the service provider uses the results to configure the mroute state limiters required to provision the Gigabit Ethernet interfaces on the PE device for the services being offered to subscribers behind the DSLAMs:

- For the Basic Services bundle, the service provider must limit the number of Basic Service SD channels that can be transmitted out a Gigabit Ethernet interface (at any given time) to 75. Configuring an mroute state limit of 75 for the SD channels offered in the Basic Service bundle provisions the interface for 300 Mbps of bandwidth (the 60% of the link’s bandwidth that must always be available to [but never exceeded by] the subscribers of the Basic Services bundle).

- For the Premium Services bundle, the service provider must limit the number of Premium Service SD channels that can be transmitted out a Gigabit Ethernet interface (at any given time) to 25. Configuring an mroute state limit of 25 for the SD channels offered in the Premium Service bundle provisions the interface for 100 Mbps of bandwidth (the 20% of the link’s bandwidth that must always be available to [but never exceeded by] the subscribers of the Premium Service bundle).

- For the Gold Services bundle, the service provider must limit the number of Gold Service SD channels that can be transmitted out a Gigabit Ethernet interface (at any given time) to 25. Configuring an mroute state limit of 25 for the SD channels offered in the Gold Service bundle provisions the interface for 100 Mbps of bandwidth (the 20% of the link’s bandwidth that must always be available to [but never exceeded by] the subscribers of the Gold Service bundle).

The service provider then configures three ACLs to be applied to per interface mroute state limiters. Each ACL defines the SD channels for each SD channel bundle to be limited on an interface:

- acl-basic--The ACL that defines the SD channels offered in the basic service.
- acl-premium--The ACL that defines the SD channels offered in the premium service.
- acl-gold--The ACL that defines the SD channels offered in the gold service.
These ACLs are then applied to per interface mroutestate limiters configured on the PE device’s Gigabit Ethernet interfaces.

For this example, three per interface mroutestate limiters are configured on Gigabit Ethernet interface 0/0 to provide the multicast CAC needed to provision the interface for the SD channel bundles being offered to subscribers:

- An mroutestate limit of 75 for the SD channels that match acl-basic.
- An mroutestate limit of 25 for the SD channels that match acl-premium.
- An mroutestate limit of 25 for the SD channels that match acl-gold.

The following configuration shows how the service provider uses per interface mroutestate limiters to provision Gigabit Ethernet interface 0/0 for the SD channel bundles and Internet, Voice, and VoD services being offered to subscribers:

```plaintext
interface GigabitEthernet0/0
description --- Interface towards the DSLAM ---
ip multicast limit out acl-basic 75
ip multicast limit out acl-premium 25
ip multicast limit out acl-gold 25
```

Additional References

The following sections provide references related to configuring multicast admission control.

**Related Documents**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the IP multicast technology area</td>
<td>“IP Multicast Technology Overview” module</td>
</tr>
<tr>
<td>Concepts, tasks, and examples for configuring an IP multicast network using PIM</td>
<td>“Configuring a Basic IP Multicast Network” module</td>
</tr>
<tr>
<td>Concepts, tasks, and examples for using MSDP to interconnection multiple PIM-SM domains</td>
<td>“Using MSDP to Interconnect Multiple PIM-SM Domains” module</td>
</tr>
<tr>
<td>Multicast commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td><em>Cisco IOS IP Multicast Command Reference</em></td>
</tr>
</tbody>
</table>

**Standards**

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>