

MLDP In-Band Signaling/Transit Mode

This module contains information for configuring Multicast Label Distribution Protocol (MLDP) in-band signaling to enable the MLDP core to create (S,G) or (*,G) state without using out-of-band signaling such as Border Gateway protocol (BGP) or Protocol Independent Multicast (PIM).

- Finding Feature Information, on page 1
- Restrictions for MLDP In-Band Signaling, on page 1
- Information About MLDP In-Band Signaling/Transit Mode, on page 1
- How to Configure MLDP In-Band Signaling/Transit Mode, on page 2
- Configuration Examples for MLDP In-Band Signaling/Transit Mode, on page 3

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to https://cfnng.cisco.com/. An account on Cisco.com is not required.

Restrictions for MLDP In-Band Signaling

- MLDP in-band signaling supports SOURCE-SPECIFIC MULTICAST (SSM) multicast traffic only.
- MLDP in-band signaling is not supported in the same VRF for which Rosen Model MLDP-based MVPN or GRE-based MVPN is configured.

Information About MLDP In-Band Signaling/Transit Mode

MLDP In-Band Signaling/Transit Mode

Multicast Label Distribution Protocol (MLDP)-supported multicast VPN (MVPN) allows VPN multicast streams to be aggregated over a VPN-specific tree. No customer state is created in the MLDP core;, there is

only state for default and data multicast distribution trees (MDTs). In certain scenarios, the state created for VPN streams is limited and does not appear to be a risk or limiting factor. In these scenarios, MLDP can build in-band MDTs that are transit Label Switched Paths (LSPs).

Trees used in a VPN space are MDTs. Trees used in the global table are transit point-to-multipoint (P2MP) or multipoint-to-multipoint (MP2MP) LSPs. In both cases, a single multicast stream (VPN or not) is associated with a single LSP in the MPLS core. The stream information is encoded in the Forwarding Equivalence Class (FEC) of the LSP. This is in-band signaling.

MLDP in-band signaling uses access control lists (ACLs) with the range of the multicast (S, G) to be transported by the MLDP LSP. Each multicast channel (S, G) maps, one-to-one, to each tree in the in-band tree. The (S,G) join is registered in the Multicast Routing Information Base (MRIB), which is a client of MLDP. Each MLDP LSP is identified by the FEC of [(S,G) + RD], where RD is the Route Distinquisher (RD) obtained from BGP. This differs from MLDP-based MVPN, where the identity is in a FEC of [MDT #, VPN ID, Tree #]).

The ingress Provider Edge (PE) device uses the FEC to decode the stream information and associate the multicast stream with the LSP (in the FEC). This service model is only applicable for transporting Protocol Independent Multicast (PIM) source-specific multicast (SSM) traffic. There is no need to run PIM over the LSP because the stream signaling is done in-band.

The MLDP In-Band Signaling/Transit Mode feature is supported on IPv4 and IPv6 networks. MLDP in-band signaling and MLDP-based MVPN cannot be supported in the same VRF.

How to Configure MLDP In-Band Signaling/Transit Mode

Enabling In-Band Signaling on a PE Device

Before you begin

- VRF instances for in-band signaling must be configured.
- Access control lists (ACLs) for controlling streams must be configured.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	

	Command or Action	Purpose
Step 3	ip multicast [vrf vrf] mpls mldp [range acl]	Brings up the MLDP MRIB process and registers MLDP with the MRIB.
	Example:	
	Device (config) # ip multicast vrf vrf1 mpls mldp	• To enable in-band signaling globally, use this command without the vrf <i>vrf</i> keyword and argument combination.
		• To identify streams for in-band signaling, use this command with the range keyword on the egress PE.

Configuration Examples for MLDP In-Band Signaling/Transit Mode

Example: In-Band Signaling

```
vrf definition cul
rd 1:1
 vpn id 1:1
address-family ipv4
 route-target export 1:1
 route-target import 1:1
exit-address-family
ip multicast-routing distributed
ip multicast-routing vrf cul distributed
ip multicast mpls mldp
ip multicast vrf cul mpls mldp
mpls label protocol ldp
\ensuremath{\mathsf{mpls}} ldp session protection
mpls ldp igp sync holddown 10000
mpls ldp discovery targeted-hello accept
no mpls mldp forwarding recursive
redundancy
mode sso
interface Loopback0
ip address 10.10.10.3 255.255.255.255
ip ospf 100 area 0
load-interval 30
interface Loopback1
vrf forwarding cul
ip address 33.33.33.1 255.255.255.0
ip pim sparse-mode
load-interval 30
```

```
interface GigabitEthernet0/2/0
ip address 13.0.0.2 255.255.255.0
ip ospf 100 area 0
negotiation auto
mpls ip
mpls label protocol ldp
 cdp enable
ip rsvp bandwidth
interface GigabitEthernet0/2/1
no ip address
negotiation auto
 service instance 1 ethernet
 encapsulation dot1g 1
 rewrite ingress tag pop 1 symmetric
 bridge-domain 1
interface BDI1
vrf forwarding cul
ip address 31.0.1.1 255.255.0.0
ip pim sparse-mode
ip igmp version 3
load-interval 30
router ospf 100
router-id 10.10.10.3
timers throttle spf 50 200 5000
 timers throttle 1sa 50 200 5000
timers lsa arrival 100
network 10.0.0.1 0.0.0.0 area 0
!
router bgp 100
bgp log-neighbor-changes
neighbor 10.10.10.1 remote-as 100
neighbor 10.10.10.1 update-source Loopback0
neighbor 10.10.10.2 remote-as 100
neighbor 10.10.10.2 update-source Loopback0
 address-family ipv4
 redistribute connected
 neighbor 10.10.10.1 activate
 neighbor 10.10.10.1 send-community extended
 neighbor 10.10.10.2 activate
 neighbor 10.10.10.2 send-community extended
 exit-address-family
 address-family ipv4 mvpn
 neighbor 10.10.10.1 activate
 neighbor 10.10.10.1 send-community extended
  neighbor 10.10.10.2 activate
 neighbor 10.10.10.2 send-community extended
 exit-address-family
 address-family vpnv4
 neighbor 10.10.10.1 activate
 neighbor 10.10.10.1 send-community extended
 neighbor 10.10.10.2 activate
 neighbor 10.10.10.2 send-community extended
 exit-address-family
 address-family ipv4 vrf cu1
 redistribute connected
 exit-address-family
```

```
! address-family ipv4 vrf cu10 redistribute connected ! ip pim ssm range SSM-range ip pim mpls source Loopback0 ! ip pim vrf cu1 ssm range SSM-range ! ! ip access-list standard SSM-range permit 226.0.0.0 0.255.255.255
```

Example: In-Band Signaling