

New Features for Cisco IOS XE 17.8.1

This chapter contains the following sections:

- Cellular Serviceability Enhancements, on page 1
- GNMI Broker (GNMIB) Update, on page 2
- gRPC Network Operations Interface Update, on page 2
- Raw Socket Feature Enhancement, on page 2
- SCADA Enhancement for TNB, on page 2
- DLEP and Credit Based Radio Aware Routing Support, on page 3

Cellular Serviceability Enhancements

Enhancements have been made for cellular and GPS features as follows:

Trigger points and debug code can be enabled via controller cellular CLIs for generating and trap the debug data automatically without manual intervention. The following CLI options are available:

The debug data includes the following:

- Context Based debug logs (tracebacks, and GPS locations).
- Well formatted debug messages.
- Vendor specific debug data at a broader range.

The debug logs are located in the following location of flash:

```
router#dir flash:servelogs
Directory of bootflash:/servelogs/

259340 -rw- 122 Sep 7 2021 17:40:44 +00:00 gpslog-slot5-20210907-174044
259339 -rw- 1734 Sep 7 2021 12:14:07 +00:00 celllog-slot5-20210905-164628
```

GPS and cellular log files are created separately with file names using the timestamp at the time of the creation. These files are created as follows:

• If the existing file has reached 10Mb, a new file will be created.

• A new file will be created if the feature (GPS, or cellular) is completely disabled, and then re-enabled.

GNMI Broker (GNMIB) Update

The GNMI Broker (GNMIB) has been extended to support the gRPC Network Operations Interface (gNOI) reset.proto service. This service provides functionality for restoring the device to its factory defaults via gRPC.

When the service is executed, it behaves similarly to the 'factory-reset all' command, and subsequently triggering a reload. Additionally, the service will maintain the current booted image. The additional steps below will be taken to comply with the reset proto service:

- Set the rommon BOOT variable to the current booted image and maintain it through reload following factory-reset
- Enable autoboot to bring the device up on the current booted image following factory-reset.

gRPC Network Operations Interface Update

gNOI is the gRPC Network Operations Interface. gNOI defines a set of gRPC-based microservices for executing operational commands and procedure on network devices, such as OS Install, Activate, and Verification.

Through gNOI os.proto will be possible to perform operating system related tasks such as OS activation, install, detailed overview, internal OS commands, and finally to output a summary of OS operations.

Furthermore, gNOI os.proto can also be used to display the gnmib detailed state, check the gnmib operational statistics, and also to output modifiers.

Raw Socket Feature Enhancement

This enhancement allows the user to input the maximum number of retries available to the write socket. The range of the number of retries goes from 1 to 1000. The default number of retries is 10. To accommodate this feature, a new CLI has been created, **raw-socket tcp max-retries** <1-1000>. <1-1000> is the maximum number of retries.

SCADA Enhancement for TNB

This enhancement provides compatibility with TNB's WG RTUs, including the following:

- TNB RTUs require Reset-Link message to be sent out along with Link-Status message to ensure correct initialization of the serial. The feature can be selectively turned on using the new configuration CLI scada-gw protocol force reset-link.
- When clock passthru is enabled and if the router hasn't received the timestamp from the DNP3-IP master, the router's hardware time will be sent downstream to RTU. Upon receiving a new timestamp from DNP3-IP master, the router will start sending the new timestamp sourced from DNP3-IP master to RTU.
- The number of bufferable DNP3 events in memory will be increased from 600 to 10000.

- The **scada-gw protocol interlock** command will be supported for DNP3. Previously, the support only existed for T101/T104. With this new enhancement, the router will disconnect Serial link if the DNP3-IP master is down or unreachable. Similarly, when the Serial link to RTU is down, the TCP connection to DNP3-IP master will be untethered.
- Custom "requests" will be automatically ordered based on priority so that the user can specify them in any order that they would like to.

DLEP and Credit Based Radio Aware Routing Support

DLEP Support

DLEP addresses the challenges faced when merging IP routing and radio frequency (RF) communications. Cisco provides capabilities that enable:

- Optimal route selection based on feedback from radios
- Faster convergence when nodes join and leave the network
- Efficient integration of point-to-point, point-to-multipoint and broadcast multi-access radio topologies with multi-hop routing
- Flow-controlled communications between the radio and its partner router using rate-based Quality of Service (QoS) policies
- Dynamic shaping of fluctuating RF bandwidth in near real time to provide optimized use of actual RF bandwidth

Credit Based Radio Aware Routing Support

Radio-Aware Routing (RAR) is a mechanism that uses radios to interact with the routing protocol OSPFv3 to signal the appearance, disappearance, and link conditions of one-hop routing neighbors.

In a large mobile networks, connections to the routing neighbors are often interrupted due to distance and radio obstructions. When these signals do not reach the routing protocols, protocol timers are used to update the status of a neighbor. Routing protocols have lengthy timer, which is not recommended in mobile networks.

PPPoE extensions are used when the router communicates with the radio. In the Cisco IOS implementation of PPPoE, each individual session is represented by virtual access interface (connectivity to a radio neighbor) on which, QoS can be applied with these PPPoE extensions.

RFC5578 provides extensions to PPPoE to support credit-based flow control and session-based real time link metrics, which are very useful for connections with variable bandwidth and limited buffering capabilities (such as radio links).

Complete details can be found in Radio Aware Routing and Dynamic Link Exchange Protocol

DLEP and Credit Based Radio Aware Routing Support