

Board-To-Board (BTB) Interface Connector

This chapter contains the following sections:

- BTB Interface Connector Overview, on page 1
- ESR6300 Board-To-Board Connector (J1), on page 3
- Power and I/O Signals at the ESR BTB Connector, on page 4

BTB Interface Connector Overview

The board-to-board (BTB) connector provides the power input and the interface to external devices. This connector belongs to the SEARAY[®] Connector Series from SAMTEC. Depending on the mating connector selected by the integrator, the series supports a stacking height from 7mm to 18mm (not all increments are supported). The BTB connector on the ESR is the SAMTEC SEAF-40-05.0-S-06-2-A-K 240-pin female connector.

Complete information on the connector can be found at the Samtec website:

https://www.samtec.com/connectors/high-speed-board-to-board/high-density-arrays/searay

Note This figure is a partial view of the PCB to highlight the connector.

The following table lists the mating connector (SEAM lead style) options that are available to achieve specific stacking heights when coupled with the ESR (-05.0 SEAF lead style).

Mating Connector	ESR Connector J1-05.0
SEAM Lead Style	SEAF Lead Style
-02.0	7mm
-03.0	8mm
-03.5	8.5mm
-05.5	N/A
-06.5	11.5mm
-07.0	12mm
-09.0	14mm

Mating Connector	ESR Connector J1-05.0		
SEAM Lead Style	SEAF Lead Style		
-11.0	16mm		
-13.0(not tooled)	18mm		

ESR6300 Board-To-Board Connector (J1)

PIN #	Row A	Row B	Row C	Row D	Row E	R
1	+5V	+5V	+5V	+5V	+5V	+
2	+5V	+5V	+5V	+5V	+5V	+:
3	GND	GND	GND	GND	GND	G
4	GND	GND	GND	GND	GND	G
5	+3.3V	+3.3V	+3.3V	+3.3V	+3.3V	R
6	GND	GND	GND	GND	GND	G
7	P4_MDI3_N	GND	P4_MDI2_N	GND	PCIE_REFCLK_P	
8	P4_MDI3_P	GND	P4_MDI2_P	GND	PCIE_REFCLK_N	G
9	GND	P4_MDI1_N	GND	P4_MDI0_N	GND	A
10	GND	P4_MDI1_P	GND	P4_MDI0_P	GND	P
11	P3_MDI3_N	GND	P3_MDI2_N	GND	PIM_SGMII_RX_P	D
12	P3_MDI3_P	GND	P3_MDI2_P	GND	PIM_SGMII_RX_N	P
13	GND	P3_MDI1_N	GND	P3_MDI0_N	GND	U
14	GND	P3_MDI1_P	GND	P3_MDI0_P	GND	U
15	P2_MDI3_N	GND	P2_MDI2_N	GND	PIM_SGMII_TX_P	G
16	P2_MDI3_P	GND	P2_MDI2_P	GND	PIM_SGMII_TX_N	C
17	GND	P2_MDI1_N	GND	P2_MDI0_N	GND	C
18	GND	P2_MDI1_P	GND	P2_MDI0_P	GND	C
19	P1_MDI3_N	GND	P1_MDI2_N	GND	USBA_DP	C
20	P1_MDI3_P	GND	P1_MDI2_P	GND	USBA_DN	G
21	GND	P1_MDI1_N	GND	P1_MDI0_N	GND	C

PIN #	Row A	Row B	Row C	Row D	Row E	Row F
22	GND	P1_MDI1_P	GND	P1_MDI0_P	GND	CP_U
23	PIM_USB3_TX_N	GND	PIM_USB3_RX_P	GND	PIM_USB2_DP	R0_L
24	PIM_USB3_TX_P	GND	PIM_USB3_RX_N	GND	PIM_USB2_DN	R1_L
25	GND	USB3A_TX_N	GND	USB3A_RX_P	GND	C0_L
26	GND	USB3A_TX_P	GND	USB3A_RX_N	GND	C1_L
27	SSD_TX_SERDES_P	GND	SSD_RX_SERDES_P	GND	PIM_UA2_TXD	GND
28	SSD_TX_SERDES_N	GND	SSD_RX_SERDES_N	GND	PIM_UA2_RXD	P5_L
29	GND	SFP_2_TXD_P	GND	SFP_2_RXD_P	GND	SFP1
30	GND	SFP_2_TXD_N	GND	SFP_2_RXD_N	GND	P6_L
31	P6_MDI3_N	GND	P6_MDI2_N	GND	PIM_GPS	SFP2
32	P6_MDI3_P	GND	P6_MDI2_P	GND	ALM_LED_RED	GND
33	GND	P6_MDI1_P	GND	P6_MDI0_N	GND	AP_U
34	GND	P6_MDI1_N	GND	P6_MDI0_P	GND	AP_U
35	P5_MDI2_N	GND	P5_MDI1_N	GND	VPN_LED_GRN	GND
36	P5_MDI2_P	GND	P5_MDI1_P	GND	EVK_INT_L	I2C3_
37	GND	P5_MDI3_N	GND	P5_MDI0_P	GND	I2C3_
38	GND	P5_MDI3_P	GND	P5_MDI0_N	GND	GND
39	SFP_1_TXD_P	GND	SFP_1_RXD_P	GND	I2C2_SCL	SYS_
40	SFP_1_TXD_N	GND	SFP_1_RXD_N	+1.8V_OUT	I2C2_SDA	SYS_

Power and I/O Signals at the ESR BTB Connector

This section contains tables describing the control signals for different components. In the following tables, you will see the terms PU and PD. These stand for:

- PU = Pull-Up resistor
- PD = Pull-Down resistor

Note Differential pairs should be mostly routed on inner layers where the impedance tolerance is controlled better. Outer layers should only be used for very short differential pair traces (less than 0.25").

Power Signals

Signal Name	Direction	Terminations	Description	Levels
+5V	IN	—	+5V Power Input to ESR board	5V DC
+3.3V	IN	—	+3.3V Power Input to ESR board	3.3V DC
RTC_3.0V	IN	Series 1K resistor required at Host	+3.0V RTC Battery Power Input to ESR board	3.0V DC
		Note 6		
GND	—	—	Ground	GND
+1.8V_OUT	OUT		 +1.8V output from ESR board Caution 1.8V source is only intended for use as a WAN port center tap voltage as shown in the reference design schematic. 50mA is the max that can be drawn from that 1.8V output. See EVK Schematics below for further detail. 	1.8V DC
P3V3_TRIM			Trim signal to margin 3.3V +/-5%See reference design schematic for proper usage.(For test purposes only. Leave unconnected if not used.)	
DCIN_PWR_GOOD Note 8	IN	50K PU at ESR Note 1	 External Power Supply Status Detect input (3.3V digital signal at the ESR connector). Can be used as an early power failure detect of the main power source. Active High (0 = Power Supply status is not good. 1 = Power Supply status is good.) 	3.3V CMOS

Note 1: Signal driver can be open drain with a strong pullup (4.7K to 10K), or can be driven by 3.3V push-pull levels. A pull-down is not allowed on this signal. Can be left unconnected if not used.

Note 6: Series 1K current-limiting resistor is required on the host board for the RTC 3.0V battery.

Note 8: (currently not supported by software for graceful shutdown, but could be in the future). Used for successful CPU power up and boot. Must be driven or pulled high at powerup, or left open (because it is already pulled up by the ESR and keeps it in a "good" state for proper power up and CPU boot if left open).

Figure 1: EVK Schematic

LED Control Signals

Signal Name	Direction	Terminations	Description	Levels
SYS_LED_GRN_L	OUT	10K PD at ESR	System Green LED Enable (active low)	3.3V CMOS
		Note 3		
		270 Ohm series resistor at Host.		
		Note 7		
SYS_LED_YEL_L	OUT	10K PD at ESR	System Yellow LED Enable (active low)	3.3V CMOS
		Note 3		
		270 Ohm series resistor at Host.		
		Note 7		
ALM_LED_RED	OUT	1K PD at ESR	Alarm Red LED Enable (active high)	3.3V CMOS
		Note 3		
		270 Ohm series resistor at Host.		
		Note 7		
VPN_LED_GRN	OUT	4.7K PU at ESR	VPN Green LED Enable (active high)	3.3V CMOS
		Note 3		
		270 Ohm series resistor at Host.		
		Note 7		

Signal Name	Direction	Terminations	Description	Levels
R0_LED	OUT	270 Ohm series resistor at	Row 0 LED control for LAN Ports GE 1/1 and GE 1/0.	3.3V CMOS
		Host.	(controls cathode-side of 2 single-color LEDs).	
		Note 7	Cathode-side LED Enable (driven by Ethernet Switch on ESR) - Active Low.	
			Tie to Cathode side of two single-color Green LEDs through a resistor to each (e.g., 270 ohms for a 5mA forward current on each of the 2 LEDs).	
C0_LED	OUT	4.7K PD at ESR Note 3	Column 0 LED control for LAN Ports GE 1/2 and GE 1/0.	3.3V CMOS
			(controls anode-side of 2 single-color LEDs).	
			(Anode-side LED Enable (driven by Ethernet Switch on ESR) - Active high.	
			Tie DIRECTLY to Anode side of two single-color Green LEDs.	
R1_LED	OUT	270 Ohm series resistor at Host.	Row 1 LED control for LAN Ports GE 1/3 and GE 1/2 .	3.3V CMOS
		Note 7	(controls cathode-side of 2 single-color LEDs).	
			Cathode-side LED Enable (driven by Ethernet Switch on ESR) - Active Low.	
			Tie to Cathode side of two single-color Green LEDs through a resistor to each (for example, 270 ohms for a 5mA forward current on each of the 2 LEDs).	
C1_LED	OUT	4.7K PD at ESR Note 3	Column 1 LED control for LAN Ports GE 1/3 and GE 1/1 .	3.3V CMOS
			(controls anode-side of 2 single-color LEDs).	
			(Anode-side LED Enable (driven by Ethernet Switch on ESR) - Active high.	
			Tie DIRECTLY to Anode side of two single-color Green LEDs.	
P5_LED_GRN	OUT	270 Ohm series resistor at Host.	WAN Copper Port (GE 0/0) LED Enable (controlled by Ethernet PHY on ESR) - Active High	3.3V CMOS
		Note 7		
SFP1_LED_YEL	OUT	270 Ohm series resistor at Host.	WAN SFP Port (SFP 0/0) LED Enable (controlled by Ethernet PHY on ESR) - Active High	3.3V CMOS
		Note 7		

Signal Name	Direction	Terminations	Description	Levels
P6_LED_GRN	OUT	270 Ohm series resistor at Host. Note 7	WAN Copper Port (GE 0/1) LED Enable (controlled by Ethernet PHY on ESR) - Active High	3.3V CMOS
SFP2_LED_YEL	OUT	270 Ohm series resistor at Host. Note 7	WAN SFP Port (SFP 0/1) LED Enable (controlled by Ethernet PHY on ESR) - Active High	3.3V CMOS

Note 3: PU/PD to signals already exist on Cisco ESR, PIM, SFP, or SSD modules. No need to add any more. If you do add redundant parallel PU/PD, it should be weak (10K to 100K). Do not add a strong PU/PD for the purpose of overriding it to the opposite state. Some existing ESR PUs and PDs set the default configuration of the ESR CPU and should not be changed, as they are necessary during system reset to configure bootup settings. However, after any system reset (after system boots up), those signals are free to be driven and free to change states.

Note 7: Series current-limiting resistor is required on host board for the LED driving signals. LEDs on host board should be chosen so that they operate well at 5mA forward current.

See the following figure for a design reference.

Figure 2: LAN and SFP LED Reference Design

The Marvell Ethernet PHY chip set controls the LEDs, simply implement as shown in the reference design schematics. The Marvell chip minimizes the number of control lines by row and column to convey the correct link state and activity indication for all 4 ports. Cisco software does not control the ethernet port LEDs directly.

Gigabit Ethernet Port Signals

Signal Name	Direction	Terminations	Description	Levels	Impedance
SFP_2_TXD_[P/N]	OUT	Series Caps at SFP	Port 6 (WAN SFP 0/1) SFP Transmit Differential Pair	1.6V Max LVDS	100 Ohm Differential +/-10% (inner layers)
		Note 2			+/-15% (outer layers
SFP_2_RXD_[P/N]	IN	Series Caps at	Port 6 (WAN SFP 0/1) SFP Receive	2.1V Max LVDS	100 Ohm Differential
		Note 2			+/-10% (inner layers)
					+/-15% (outer layers
SFP_1_TXD_[P/N]	OUT	Series Caps at SFP	Port 5 (WAN SFP 0/0) SFP Transmit Differential Pair	1.6V Max LVDS	100 Ohm Differential
		Note 2			+/-10% (inner layers)
					+/-15% (outer layers
SFP_1_RXD_[P/N]	IN	Series Caps at SFP	Port 5 (WAN SFP 0/0) SFP Receive Differential Pair	2.1V Max LVDS	100 Ohm Differential
		Note 2			+/-10% (inner layers)
					+/-15% (outer layers
P6_MDI[30]_[P/N	BI —	31 —	Port 6 (WAN GE 0/1) MDI Differential Pairs for 10/100/1000 Gigabit Ethernet Copper Ports	2.8V Max MDI	100 Ohm Differential
]					+/-10% (inner layers)
					+/-15% (outer layers
P5_MDI[30]_[P/N	BI	BI —	Port 5 (WAN GE 0/0) MDI Differential Pairs for 10/100/1000 Gigabit Ethernet Copper Ports	2.8V Max MDI	100 Ohm Differential
]					+/-10% (inner layers)
					+/-15% (outer layers
P4_MDI[30]_[P/N	BI		Port 4 (LAN GE 1/3) MDI Differential	1.4V Max MDI	100 Ohm Differential
]			Copper Ports		+/-10% (inner layers)
					+/-15% (outer layers
P3_MDI[30]_[P/N	BI	_	Port 3 (LAN GE 1/2) MDI Differential	1.4V Max MDI	100 Ohm Differential
]			Copper Ports		+/-10% (inner layers)
					+/-15% (outer layers
P2_MDI[30]_[P/N	BI	_	Port 2 (LAN GE 1/1) MDI Differential	1.4V Max MDI	100 Ohm Differential
]			Pairs for 10/100/1000 Gigabit Ethernet Copper Ports		+/-10% (inner layers)
					+/-15% (outer layers
P1_MDI[30]_[P/N	BI		Port 1 (LAN GE 1/0) MDI Differential	1.4V Max MDI	100 Ohm Differential
]]			Pairs for 10/100/1000 Gigabit Ethernet Copper Ports		+/-10% (inner layers)
					+/-15% (outer layers

I

Note 2: Series AC-coupling caps to SERDES signals already exist on Cisco ESR, PIM or SFP module. No need to add any more.

Module Interface Signals

Signal Name	Direction	Terminations	Description	Levels	Impedance
PCIE_REFCLK_[P/N]	OUT	If not used, keep open. The router will disable the PCIE reference clock when no PCIe is present.	PCIe 100MHz Differential Pair Reference Clock for Pluggable or SSD Module	1.6V Max LVDS	100 Ohm Differential +/-10% (inner layers) +-15% (outer layers
PIM_SGMII_TX_[P/N]	OUT	Series Caps at PIM Note 2	SGMII Transmit Differential Pair for Pluggable Module (Can be PCIe TX also)	1.6V Max LVDS	100 Ohm Differential +/-10% (inner layers) +-15% (outer layers
PIM_SGMII_RX_[P/N]	IN	Series Caps at ESR Note 2	SGMII Receive Differential Pair for Pluggable Module (Can be PCIe RX also)	1.6V Max LVDS	100 Ohm Differential +/-10% (inner layers) +-15% (outer layers
PIM_USB3_TX_[P/N]	OUT	Series Caps at ESR Note 2	USB 3.0 Transmit Differential Pair for Pluggable Module	1.2V Max USB	90 Ohm Differential +/-10% (inner layers) +-15% (outer layers
PIM_USB3_RX_[P/N]	IN	Series Caps at PIM Note 2	USB 3.0 Receive Differential Pair for Pluggable Module	1.2V Max USB	90 Ohm Differential +/-10% (inner layers) +-15% (outer layers
PIM_USB2_[DP/DN]	BI	2x 15K PD at ESR	USB 2.0 Differential Pair for Pluggable Module	3.6V Max USB	90 Ohm Differential +/-10% (inner layers) +-15% (outer layers
PIM_UA2_TXD	OUT	10K PU at PIM Note 3	UART2 Transmit Data for Pluggable Module	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +-15% (outer layers
PIM_UA2_RXD	IN	4.7K PU at ESR Note 3	UART2 Receive Data for Pluggable Module	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +-15% (outer layers
SSD_TX_SERDES_[P/N]	OUT	Series Caps at Host Note 4	SERDES Transmit Differential Pair for SSD Module (Can be SATA or PCIe)	1.6V Max LVDS	100 Ohm Differential +/-10% (inner layers) +-15% (outer layers

Signal Name	Direction	Terminations	Description	Levels	Impedance
SSD_RX_SERDES_[P/N]	IN	Series Caps at ESR Note 2	SERDES Receive Differential Pair for SSD Module (Can be SATA or PCIe)	1.6V Max LVDS	100 Ohm Differential +/-10% (inner layers) +-15% (outer layers
PIM_PWR_EN	OUT	1K PD at PIM Note 3	Power Enable signal for the Pluggable Module. Active high (0 = disable Pluggable power. 1 = Enable Pluggable power.)	3.3V CMOS	
PIM_GPS	IN	4.7K PU at ESRIf not used, keep open. The router will pull it up and keep it in an idle state. Note 3	GPS Pulse Per Second Timing signal from Pluggable Module	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +-15% (outer layers

Note 2: Series AC-coupling caps to SERDES signals already exist on Cisco ESR, PIM or SFP module. No need to add any more.

Note 3: PU/PD to signals already exist on Cisco ESR, PIM, SFP, or SSD modules. No need to add any more. If you do add redundant parallel PU/PD, it should be weak (10K to 100K). Do not add a strong PU/PD for the purpose of overriding it to the opposite state. Some existing ESR PUs and PDs set the default configuration of the ESR CPU and should not be changed.

Note 4: Series caps required on the host board for these SERDES signals.

External Port Signals

Signal Name	Direction	Terminations	Description	Levels	Impedance
USB3A_TX_[P/N]	OUT	Series Caps at ESR Note 2	USB 3.0 Transmit Differential Pair for External USB Host Port	1.2V Max USB	90 Ohm Differential +/-10% (inner layers) +-15% (outer layers
USB3A_RX_[P/N]	IN	Series Caps at Host Note 4	USB 3.0 Receive Differential Pair for External USB Host Port	1.2V Max USB	90 Ohm Differential +/-10% (inner layers) +-15% (outer layers
USBA_[DP/DN]	BI	2x 15K PD at ESR	USB 2.0 Differential Pair for External USB Host Port	3.6V Max USB	90 Ohm Differential +/-10% (inner layers) +-15% (outer layers

Signal Name	Direction	Terminations	Description	Levels	Impedance
USBA_5V_EN	OUT	1K PD at ESR Note 3	Enable 5V output of the external USB Host Port. Active High (0 = disable 5V USB output. 1 = enable USB 5V output)	3.3V CMOS	
USBA_OC_L	IN	10K PU at Host Note 5	Over Current Detect of the external USB Host Port. Active Low (0 = USB host port 5V is in overcurrent condition. 1 = Normal Operation)	3.3V CMOS	
CP_UA0_DTR	OUT	10K PU at Host Note 5	UART0 DTR flow control signal for external RS232 Serial Port	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
CP_UA0_DSR	IN	4.7K PU at ESR Note 3	UART0 DSR flow control signal for external RS232 Serial Port	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
CP_UA0_RTS	OUT	10K PU at Host Note 5	UART0 RTS flow control signal for external RS232 Serial Port	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
CP_UA0_CTS	IN	4.7K PU at ESR Note 3	UART0 CTS flow control signal for external RS232 Serial Port	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
CP_UA0_TXD	OUT	10K PU at Host Note 5	UART0 Transmit Data for external RS232 Serial Port	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
CP_UA0_RXD	IN	4.7K PU at ESR Note 3	UART0 Receive Data for external RS232 Serial Port	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
AP_UA0_TXD	OUT	1K PD at ESR Note 3	Transmit Data for Console Port	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
AP_UA0_RXD	IN	100K PU at Host Note 5	Receive Data for Console Port	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers

Signal Name	Direction	Terminations	Description	Levels	Impedance
ALM_IN_L	IN	4.7K PU at ESRIf not used, keep open. The router will pull it up and keep it in an idle state. Note 3	Alarm Input (3.3V digital signal at the ESR connector). Active Low (0 = external alarm port is closed. 1 = external alarm port is open circuit)	3.3V CMOS	
PUSHBUTTON_L	IN	4.7K PU at ESRIf not used, keep open. The router will pull it up and keep it in an idle state. Note 3	Pushbutton Detect Input (3.3V digital signal at the ESR connector). Active Low (0 = pushbutton is closed. 1 = pushbutton is open).	3.3V CMOS	

Note 2: Series AC-coupling caps to SERDES signals already exist on Cisco ESR, PIM or SFP module. No need to add any more.

Note 3: PU/PD to signals already exist on Cisco ESR, PIM, SFP, or SSD modules. No need to add any more. If you do add redundant parallel PU/PD, it should be weak (10K to 100K). Do not add a strong PU/PD for the purpose of overriding it to the opposite state. Some existing ESR PUs and PDs set the default configuration of the ESR CPU and should not be changed.

Note 4: Series caps required on the host board for these SERDES signals.

Note 5: PU/PD are required on the host board for these signals.

Miscellaneous Control Signals

Signal Name	Direction	Terminations	Description	Levels	Impedance
EVK_INT_L	IN	4.7K PU at ESR Note 3	Reserved for Interrupt input to the ESR CPU from the host board. Currently not used by the Cisco Software to detect interrupts from the host motherboard. User should leave this signal unconnected, as the ESR provides the pullup.	3.3V CMOS	
I2C2_SCL	OUT	4.7K PU at ESR Note 3	Output Clock for I2C bus #2 to host board	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
I2C2_SDA	BI	4.7K PU at ESR Note 3	Bidirectional Data for I2C bus #2 to host board	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers
I2C3_SCL	OUT	4.7K PU at ESR Note 3	Output Clock for I2C bus #3 to host board	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers) +/-15% (outer layers

Signal Name	Direction	Terminations	Description	Levels	Impedance
I2C3_SDA	BI	4.7K PU at ESR	Bidirectional Data for I2C bus #3 to host board	3.3V CMOS	50 Ohm Single-Ended +/-10% (inner layers)
		Note 3			+/-15% (outer layers

Note 3: PU/PD to signals already exist on Cisco ESR, PIM, SFP, or SSD modules. No need to add any more. If you do add redundant parallel PU/PD, it should be weak (10K to 100K). Do not add a strong PU/PD for the purpose of overriding it to the opposite state. Some existing ESR PUs and PDs set the default configuration of the ESR CPU and should not be changed.