THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2017–2019 Cisco Systems, Inc. All rights reserved.
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Options (for vCenter Server and vSphere Web Client)</td>
</tr>
<tr>
<td>Deploying the Cisco CSR 1000v OVA to the VM</td>
</tr>
<tr>
<td>Deploying the Cisco CSR 1000v OVA to the VM</td>
</tr>
<tr>
<td>Deploying the Cisco CSR 1000v OVA to the VM using vSphere</td>
</tr>
<tr>
<td>Deploying the Cisco CSR 1000v OVA to the VM using vSphere</td>
</tr>
<tr>
<td>Restrictions and Requirements</td>
</tr>
<tr>
<td>Deploying the OVA to the VM</td>
</tr>
<tr>
<td>Editing the Basic Properties of Cisco CSR 1000v using vSphere</td>
</tr>
<tr>
<td>Editing the Custom Properties of Cisco CSR 1000v using vSphere</td>
</tr>
<tr>
<td>Deploying the Cisco CSR 1000v to the VM using COT</td>
</tr>
<tr>
<td>Deploying the Cisco CSR 1000v OVA to the VM using COT</td>
</tr>
<tr>
<td>Downloading COT</td>
</tr>
<tr>
<td>Editing the Basic Properties of Cisco CSR 1000v using COT</td>
</tr>
<tr>
<td>Editing the Custom Properties of Cisco CSR 1000v using COT</td>
</tr>
<tr>
<td>cot edit-properties</td>
</tr>
<tr>
<td>cot inject-config</td>
</tr>
<tr>
<td>Deploying the Cisco CSR 1000v VM using COT</td>
</tr>
<tr>
<td>Example</td>
</tr>
<tr>
<td>Manually Creating the VM and Installing the Cisco CSR 1000v Software Using the .iso File (VMware ESXi)</td>
</tr>
<tr>
<td>Overview of Tasks for Manually Creating the Cisco CSR 1000v VM</td>
</tr>
<tr>
<td>Manually Creating the Cisco CSR 1000v VM Using the .iso File (VMware ESXi)</td>
</tr>
<tr>
<td>Increasing Performance on VMware ESXi Configurations</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE Gibraltar 16.10</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE Fuji 16.9</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE Fuji 16.8</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE Fuji 16.7</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE Everest 16.6</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE Everest 16.5</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE Everest 16.4</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE Denali 16.3</td>
</tr>
<tr>
<td>VMware Requirements—Cisco IOS XE 3.x</td>
</tr>
<tr>
<td>VMware VM Requirements—Cisco IOS XE 3.x</td>
</tr>
<tr>
<td>Installation Requirements—Cisco IOS XE 3.x</td>
</tr>
</tbody>
</table>
CHAPTER 6

Installing the Cisco CSR 1000v in Citrix XenServer Environments 107

Corix XenServer Support Information 107
Installation Requirements for Citrix XenServer: Cisco IOS XE Gibraltar 16.10 and 16.11 releases 108
Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer) 109
Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.9 110
Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.8 111
Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.7 112
Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.6 112
Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.5 113
Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.4 113
Installation Requirements for Citrix XenServer: Cisco IOS XE 16.3 114
Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x 115

CHAPTER 7

Installing the Cisco CSR 1000v in KVM Environments 117

Kernel Virtual Machine Support Information 117
KVM Support on OpenStack 118
Installation Requirements for KVM—Cisco IOS XE Gibraltar 16.10 and 16.11 releases 118
Creating a Cisco CSR 1000v KVM Instance 119
Creating the Cisco CSR 1000v VM Using the Self-installing .Run Package 119
Installation Procedure 119
Creating the Cisco CSR 1000v VM Using the virt-manager GUI Tool 120
Creating the Cisco CSR 1000v VM Using virt-manager with qcow2 or ISO Image 120
Creating the Cisco CSR 1000v VM Using virt-manager—Add Serial Port 121
Creating the Cisco CSR 1000v VM Using virt-manager—Add Hard Disk 121
Creating a Bootstrap Day0 Configuration for virt-manager 122
Creating the Cisco CSR 1000v VM Using virt-install with qcow2 Image 123
Creating the Cisco CSR 1000v VM Using virt-install with ISO Image 124
Creating a Bootstrap Day0 Configuration for virt-install 125
Creating the Cisco CSR 1000v on OpenStack 126
Selecting a Cisco CSR 1000v Installation Image 126
Creating the Instance Using the OpenStack Command Line Tool 126
Creating the Instance Using the OpenStack Dashboard 127
Troubleshooting for Creating the Instance using OpenStack 128
Bootstrapping the CSR Configuration 129
 Bootstrap Properties 129
 Example ovf-env.xml File 130
 Example iosxe_config.txt File 131
Increasing Performance on KVM Configurations 132
Cloning the VM 133
Configure the halt_poll_ns Parameter 133
Installation Requirements for KVM—Cisco IOS XE Fuji 16.9 134
Installation Requirements for KVM—Cisco IOS XE Fuji 16.8 135
Installation Requirements for KVM—Cisco IOS XE Fuji 16.7 135
Installation Requirements for KVM—Cisco IOS XE Everest 16.6 136
Installation Requirements for KVM—Cisco IOS XE Everest 16.5 137
Installation Requirements for KVM—Cisco IOS XE Denali 16.4 137
Installation Requirements for KVM Cisco using IOS XE Denali 16.3 138
Installation Requirements for KVM—Cisco IOS XE 3.x 138

CHAPTER 8
Installing the Cisco CSR 1000v in Microsoft Hyper-V Environments 141
Microsoft Hyper-V Support Information 141
Microsoft Hyper-V Limitations 142
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Gibraltar 16.10 and 16.11 releases 142
Manually Creating the Cisco CSR 1000v VM using the .iso File (Microsoft Hyper-V) 143
 Prerequisites 143
 Prerequisites for Manually Creating the CSR 1000v VM using the .iso File 143
 Configuring the Server Manager Settings 143
Creating the VM 144
Configuring the VM Settings 145
 Launching the VM to Boot the Cisco CSR 1000v 147
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.9 147
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.8 148
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.7 149
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Everest 16.6 149
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Everest 16.5 150
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Everest 16.4 151
Installation Requirements for Microsoft Hyper-V Cisco IOS XE Denali 16.3.1 151
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x 152

CHAPTER 9
Booting the Cisco CSR 1000v and Accessing the Console 153
Booting the Cisco CSR 1000v as the VM 153
Accessing the Cisco CSR 1000v Console 156
Accessing the Cisco CSR 1000v Through the Virtual VGA Console 156
Accessing the Cisco CSR 1000v Through the Virtual Serial Port 156
Introduction to Accessing the Cisco CSR 1000v through the Virtual Serial Port 156
Creating Serial Console Access in VMware ESXi 156
Creating the Serial Console Access in KVM 157
Creating the Serial Console Access in Microsoft Hyper-V 158
Opening a Telnet Session to the Cisco CSR 1000v Console on the Virtual Serial Port 159
Changing the Console Port Access After Installation 160
License Installation 161

CHAPTER 10
Installing Cisco CSR 1000v Licenses 163
Activating Cisco CSR 1000v Licenses 163
Cisco Software Licensing (CSL) 164
Installing CSL Evaluation Licenses for Cisco IOS XE 3.13S and Later 164
Installing CSL Regular Licenses for Cisco IOS XE 3.13S and Later 166
Configuring an Interface for 10 Gbps Maximum Throughput 169
Installing CSL Feature Add-on Licenses for Cisco IOS XE 3.13S and Later 170
Understanding the Cisco CSR 1000v Memory Allocation 170
Further Information about Memory Add-on Licenses 171
Installing Memory Add-on License 172
Information About Installing Broadband Feature License 175
Installing Broadband Feature License 175
Troubleshooting CSL License Issues 178
Determining the License Status 178
Migrating Technology Package Licenses to Cisco IOS XE 3.13S 179
Determining the AWS License Type 180
Cisco Smart Licensing 181
Prerequisites for Cisco Smart Licensing 181
Configuring Call Home for Smart Licensing 181
Enabling Cisco Smart Licensing 183
Smart Licensing System Messages 184
Registering the Router with the Cisco Licensing Cloud 202
Registering the Router with the Cisco Licensing Cloud (CSSM satellite) 203
Re-establishing Connectivity to the Cisco Smart Call Home Server when IPv6 is Configured 205
 Re-establishing Connectivity 205
Requesting Cisco Smart License Throughput Level Licenses 205
Requesting Memory Add-on License 207
Requesting Smart License Broadband license 207
Manually Renewing the ID Certificate 208
Manually Renewing the License 208
Unregistering a Device from Cisco Smart Licensing 209
Disabling Cisco Smart Licensing 209
License Out-of-Compliance Behavior 210
License Behavior with no Connectivity to the Smart Licensing Server 210
Activating Permanent License Reservation 212
 Introduction to Activating Permanent License Reservation 212
 Activating Permanent License Reservation 212
 Deactivating Permanent License Reservation 213
Enabling Utility Reporting 214
 Utility Reporting—Overview 214
 Utility Reporting—Prerequisites 214
 How to Enable Utility Reporting 214
 Verifying Utility Reporting 215
Troubleshooting Cisco Smart License Issues 217
 Determining Device Registration Information 217
 Additional Commands for Troubleshooting 217
Understanding the License-Based Restriction on Aggregate Bandwidth 217
Managing Throughput Notifications 219
Requesting a New Virtual UDI 220
Cisco Software Licensing (IOS XE 3.12 or Earlier) 221
 Activating CSL Evaluation Licenses for Cisco IOS XE 3.12S and Earlier 221
 Installing CSL Regular Licenses for Cisco IOS XE 3.12S and Earlier 223
Chapter 11

Upgrading the Cisco IOS XE Software

- Prerequisites for the Software Upgrade Process 227
- Saving Backup Copies of Your Old System Image and Configuration 229
- Using TFTP or Remote Copy Protocol to Copy the System Image into Boot Flash Memory 230
- Loading the New System Image from the Cisco IOS XE Software 232
- Loading the New System Image from GRUB Mode 236
- Saving Backup Copies of Your New System Image and Configuration 238
- Rebooting the Cisco CSR 1000v 239

Chapter 12

Mapping Cisco CSR 1000v Network Interfaces to VM Network Interfaces

- Mapping Cisco CSR 1000v Network Interfaces to VM Network Interfaces 241
 - Mapping the Router Network Interfaces to vNICs 241
 - Adding and Deleting Network Interfaces on the Cisco CSR 1000v 243
 - Removing a vNIC from a Running VM 244
 - Cisco CSR 1000v Network Interfaces and VM Cloning 244
 - Mapping Cisco CSR 1000v Network Interfaces with vSwitch Interfaces 245

Chapter 13

Configuring the vCPU Distribution across the Data, Control and Service Planes

- Information About vCPU Allocation and Distribution 249
 - vCPU Distribution: Control Plane Extra heavy 249
 - vCPU Distribution: Control Plane heavy 250
 - vCPU Distribution: Data Plane heavy 250
 - vCPU Distribution: Data Plane normal 250
 - vCPU Distribution: Service Plane heavy 251
 - vCPU Distribution: Service Plane medium 251
- How to Boot the Cisco CSR 1000v with an OVA image 251
- How to Configure vCPU Distribution across the Data, Control and Service Planes 252
- Determine the Active vCPU Distribution Template 252

Chapter 14

Accessing and Using GRUB Mode

- About GRUB Mode and the Configuration Register 253
- Accessing GRUB Mode 254
- Using the GRUB Menu 255
Enabling Management by REST API 305

CHAPTER 16

Introduction 305

Enabling REST API Support During Cisco CSR 1000v OVA Deployment 305

Enabling REST API Support Using the Cisco IOS XE CLI 307

Introduction to REST API Configuration Options 307

Enabling REST API Support 307

Configuring the Shared Management Interface to Support the REST API 308

Configuring the Dual Management Interface to Support the REST API 310

Configuring the REST API Local Port and AutoSave Options 312

Displaying Call Home Configuration Information 292

Examples 293

Default Settings 297

Alert Group Trigger Events and Commands 298

Message Contents 298

Sample Syslog Alert Notification in XML Format 302

Configuring Diagnostic Signatures 286

Configuring Diagnostic Signatures 286

Prerequisites for Diagnostic Signatures 287

Information About Diagnostic Signatures 287

Diagnostic Signatures Overview 287

Diagnostic Signature Downloading 288

Diagnostic Signature Workflow 288

Diagnostic Signature Events and Actions 288

Diagnostic Signature Event Detection 289

Diagnostic Signature Actions 289

Diagnostic Signature Variables 289

How to Configure Diagnostic Signatures 289

Configuring the Call Home Service for Diagnostic Signatures 289

Configuring Diagnostic Signatures 291

Configuration Examples for Diagnostic Signatures 292

Sending Call Home Alert Group Messages Manually 283

Submitting Call Home Analysis and Report Requests 284

Manually Sending Command Output Message for One Command or a Command List 285
Information About Factory Reset 343
Prerequisites for Performing Factory Reset 344
Restrictions for Performing a Factory Reset 344
How to Perform a Factory Reset 344
Restoring Smart Licensing after a Factory Reset 345
What Happens after a Factory Reset 346

CHAPTER 21

Configure High Availability 349
Overview of High Availability Version 3 349
Topologies Supported 351
Redundancy Nodes 351
Event Types 352
High Availability Versions and OS Compatibility 352
What’s New in High Availability Version 3 353
Configure High Availability Version 3 353
Configuring IOX and the Guestshell on Cisco IOS XE 354
Configure a Tunnel Between Cisco CSR 1000v Routers 355
Configuring EIGRP over Virtual Tunnel Interfaces 356
Verify the Tunnel Surface 357
Configure the BFD Peer Router 358
Install the High Availability Package 358
Verify High Availability in Guestshell 359
Set the Path Environment Variable 359
Configure the Redundancy Nodes 360
Show Node 361
Delete a Node 361
Recover deleted virtual disk 361
Configuring High Availability in the Cloud Provider Network 362
Trigger the failover Using EEM 362
Configure High Availability for CSR 1000v Running on Azure 363
Create Binding to BFD Peer 363
Configure Cloud Specific Redundancy Parameters 363
Create a Redundancy Node 364
Set Redundancy Node Parameters 365
CHAPTER 22

Troubleshooting Cisco CSR 1000v VM Issues 397
 Verifying the Cisco CSR 1000v Hardware and VM Requirements 397
 Troubleshooting Network Connectivity Issues 397
 Troubleshooting VM Performance Issues 398
 Troubleshooting—MTU 398
 Troubleshooting—Memory 398
 Troubleshooting—Network Packets 398
 Troubleshooting—Throughput 399
 Troubleshooting—Instruction Extensions 399
 IP address Inconsistency Issues on the vSphere Web Client 399

CHAPTER 23

Rehosting the Cisco CSR 1000v License 401
 Voluntarily Rehosting the License to a New VM 401
 Obtaining a Rehost License if the System Fails 403

CHAPTER 24

Configuring VRF Route Sharing between Multiple VRFs 405
 Information About VRF Route sharing for Multiple VRFs 405
 Benefits of VRF Route Sharing 406
 Limitations of VRF Route Sharing 406
 Prerequisites of VRF Route Sharing 407
 Configuring VRF Route Sharing 407
 Verifying VRF Route Sharing 409

CHAPTER 25

Using the Web User Interface 411
 Web User Interface Management 411
 Setting Up Factory Default Device Using Web UI 411
 Using Basic or Advanced Mode Setup Wizard 412
 Configure LAN Settings 413
 Configure Primary WAN Settings 413
 Configure Secondary WAN Settings 414
 Configure Security Settings 414
Preface

This preface describes the objectives and organization of this document and explains how to find additional information on related products and services. This preface contains the following sections:

Objectives

This document provides an overview of software functionality that is specific to the Cisco CSR 1000v Series Cloud Services Router. It is not intended as a comprehensive guide to all of the software features that can be run using the Cisco CSR 1000v Series router, but only the software aspects that are specific to this router.

For information on general software features that are also available on the Cisco CSR 1000v Series router, see the Cisco IOS XE technology guides for that specific software feature.

Related Documentation

This section refers you to other documentation that also might be useful as you configure your Cisco CSR 1000v router. The documentation listed below is available online. The following documents cover other important information for the Cisco CSR 1000v:

- Cisco CSR 1000V Documentation Roadmap, Cisco IOS XE Denali 16.x
- Cisco CSR 1000V Series Cloud Services Router Release Notes, Cisco IOS XE 3S
- Cisco CSR 1000V Series Cloud Services Router Release Notes for Cisco IOS XE Denali 16.x
- Cisco CSR 1000V Series Cloud Services Router Deployment Guide for Amazon Web Services
- Cisco CSR 1000v Deployment Guide for Microsoft Azure

For information on commands, see one of the following resources:

- **Cisco IOS XE Software Command References**
- **Command Lookup Tool** (cisco.com login required)

Document Conventions

This documentation uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^ or Ctrl</td>
<td>The ^ and Ctrl symbols represent the Control key. For example, the key combination ^D or Ctrl-D means hold down the Control key while you press the D key. Keys are indicated in capital letters but are not case sensitive.</td>
</tr>
<tr>
<td>string</td>
<td>A string is a nonquoted set of characters shown in italics. For example, when setting an SNMP community string to public, do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
</tbody>
</table>

Command syntax descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Bold text indicates commands and keywords that you enter exactly as shown.</td>
</tr>
<tr>
<td>italics</td>
<td>Italic text indicates arguments for which you supply values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td></td>
<td>A vertical line indicates a choice within an optional or required set of keywords or arguments.</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
</tbody>
</table>

Nested sets of square brackets or braces indicate optional or required choices within optional or required elements. For example:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x {y</td>
<td>z}]</td>
</tr>
</tbody>
</table>

Examples use the following conventions:
### Convention	Description
screen | Examples of information displayed on the screen are set in Courier font.
bold screen | Examples of text that you must enter are set in Courier bold font.
< > | Angle brackets enclose text that is not printed to the screen, such as passwords.
! | An exclamation point at the beginning of a line indicates a comment line. (Exclamation points are also displayed by the Cisco IOS XE software for certain processes.)
[] | Square brackets enclose default responses to system prompts.

The following conventions are used to attract the attention of the reader:

- **Note**
 - Means *reader take note*. Notes contain helpful suggestions or references to materials that may not be contained in this manual.

- **Caution**
 - Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Obtaining Documentation and Submitting a Service Request

For information about obtaining documentation, submitting a service request, and gathering additional information, see *What’s New in Cisco Product Documentation*, which lists all new and revised Cisco technical documentation.
Introduction

Virtual Routers

The Cisco CSR 1000v Cloud Services Router provides a cloud-based virtual router deployed on a virtual machine (VM) instance on x86 server hardware. It supports a subset of Cisco IOS XE software features and technologies, providing Cisco IOS XE security and switching features on a virtualization platform.

The Cisco Integrated Services Virtual Router (Cisco ISRv) is very similar to the Cisco CSR 1000v. It provides a virtual IOS XE operating system for routing and forwarding on the Enterprise Network Compute System (ENCS) platform.

When the Cisco CSR 1000v is deployed on a VM, the Cisco IOS XE software functions just as if it were deployed on a traditional Cisco hardware platform.

Features

The Cisco CSR 1000v includes a virtual Route Processor and a virtual Forwarding Processor (FP) as part of its architecture. It supports a subset of Cisco IOS XE software features and technologies.

The Cisco CSR 1000v can provide secure connectivity from an enterprise location, such as a branch office or data center, to the public or private cloud.
The Cisco CSR 1000v is deployed as a virtual machine on a hypervisor. Optionally, you can use a virtual switch (vSwitch), depending on your deployment. You can use selected Cisco equipment for some components. The supported components will depend on your software release.

Benefits of Virtualization Using the Cisco CSR 1000v Series Cloud Services Router

The Cisco CSR 1000v Series uses the benefits of virtualization in the cloud to provide the following:

- **Hardware independence**
 Because the Cisco CSR 1000v runs on a virtual machine, it can be supported on any x86 hardware that the virtualization platform supports.

- **Sharing of resources**
 The resources used by the Cisco CSR 1000v are managed by the hypervisor, and resources can be shared among VMs. The amount of hardware resources that the VM server allocates to a specific VM can be reallocated to another VM on the server.

- **Flexibility in deployment**
 You can easily move a VM from one server to another. Thus, you can move the Cisco CSR 1000v from a server in one physical location to a server in another physical location without moving any hardware resources.

Software Configuration and Management Using the Cisco IOS XE CLI

You can perform software configuration and management of the Cisco CSR 1000v using the following methods:

- Provision a serial port in the VM and connect to access the Cisco IOS XE CLI commands.
- Use the virtual VGA console or the console on the virtual serial port to access the Cisco IOS XE CLI commands.

Note

A serial port can be used to manage a Cisco CSR 1000v VM only if the underlying hypervisor supports associating a serial port with a VM. For example, the Citrix XenServer environment does not support serial port association. See your hypervisor documentation for details.

- Use remote SSH/Telnet to access the Cisco IOS XE CLI commands.

The Cisco CSR 1000v also supports management and configuration using the following products:

- Cisco IOS XE REST API
- Cisco Prime Network Services Controller

For more information, see "Management Support", from Managing the Router Using Cisco Configuration Professional, on page 48 onwards.
Router Interfaces

The Cisco CSR 1000v router interfaces perform the same functionality as those on hardware-based Cisco routers. The Cisco CSR 1000v interfaces function as follows:

• Interfaces are logically named as the Gigabit Ethernet (GE) interfaces.
• The available interface numbering depends on the Cisco CSR 1000v version.

(Cisco IOS XE Release 3.11S and later, and Denali 16.2 and later) The interface numbering is as follows:

• Interface port numbering is from 1 and up to the number of interfaces supported.
• GigabitEthernet interface 0 is no longer supported beginning with this release.
• You can designate any interface as the management interface. You can change the management interface when deploying the OVA template on first-time installation.

(Cisco IOS XE Release 3.10S and earlier) The interface numbering is as follows:

• Interface port numbering is from 0 and up to the number of interfaces supported.
• Gigabit Ethernet interface 0 is reserved for the management interface used for obtaining the licenses and upgrading software.

• At first boot, the Cisco CSR 1000v router interfaces are mapped to the vNIC interfaces on the VM based on the vNIC enumeration to the Cisco CSR 1000v; on subsequent boot, the Cisco CSR 1000v router interfaces are mapped to the vNIC MAC address.

If upgrading to Cisco IOS XE Release 3.11S from an earlier release, we recommend you update your configuration to remove the GigabitEthernet 0 management interface before upgrading. Because the GigabitEthernet 0 interface is no longer supported beginning with Cisco IOS XE Release 3.11S, you will receive system errors if the upgraded configuration includes this interface.

For more information, see the “Mapping Cisco CSR 1000v Network Interfaces to VM Network Interfaces” section on page 11-1.

Virtual Machine Requirements

The Cisco CSR 1000v runs only on a virtual machine. This section describes the virtual machine requirements for the router.

• Virtual Machines, on page 7
• Hypervisor Support, on page 8
• Server Requirements, on page 31

Virtual Machines

A virtual machine (VM) is a software implementation of a computing environment in which an operating system (OS) or program can be installed and run. The VM typically emulates a physical computing environment, but requests for CPU, memory, hard disk, network and other hardware resources are managed by a virtualization layer which translates these requests to the underlying physical hardware.
You can deploy an Open Virtualization Archive (OVA) file. The OVA file package simplifies the process of deploying a VM by providing a complete definition of the parameters and resource allocation requirements for the new VM.

An OVA file consists of a descriptor (.ovf) file, a storage (.vmdk) file and a manifest (.mf) file.

- ovf file—Descriptor file which is an xml file with extension .ovf which consists of all the metadata about the package. It encodes all the product details, virtual hardware requirements and licensing.
- vmdk file—File format that encodes a single virtual disk from a VM.
- mf file—Optional file that stores the SHA key generated during packaging.

You can also install the Cisco CSR 1000v using an .iso file and manually create the VM in the hypervisor.

For more information, see the “Installation Overview” section on page 3-1.

Hypervisor Support

A hypervisor enables multiple operating systems to share a single hardware host machine. While each operating system appears to have the dedicated use of the host's processor, memory, and other resources; the hypervisor controls and allocates only needed resources to each operating system and ensures that the operating systems (VMs) do not disrupt each other.

Supported Hypervisor Types

Installation of the Cisco CSR 1000v is supported on selected **Type 1** (native, bare metal) hypervisors. Installation is not supported on **Type 2** (hosted) hypervisors, such as VMware Fusion, VMware Player, or Virtual Box.

Amazon Cloud Marketplace

The Cisco CSR 1000v is available in the Amazon Cloud Marketplace. (For use with Cisco IOS XE Release 3.11S through 3.16.2S, and Cisco IOS XE Denali 16.3.1 and later.) For more information, see the Cisco CSR 1000V Series Cloud Services Router Deployment Guide for Amazon Web Services.

Microsoft Azure Marketplace

The Cisco CSR 1000v is available in the Microsoft Azure Marketplace. For more information, see the Cisco CSR 1000V Series Cloud Services Router Deployment Guide for Microsoft Azure.

Hypervisor Versions for Cisco IOS XE Denali 16.3.1 and Later

The following hypervisors/versions are supported by Cisco CSR 1000v on Cisco IOS XE Denali 16.3.1 and later. If you are using older versions of Cisco IOS XE, see Hypervisor Versions—Cisco IOS XE 3.x, on page 9.

VMware ESXi

Server 6.0 update2 (instance running vm11)—recommended. Fully tested and meets performance benchmarks

Server 5.5 update3 (instance running vm10)

Although 5.5 update 3 is supported for Cisco IOS XE Denali 16.3.1 and later, we recommend using VMware ESXi Server 6.0 update 2 instead.
Kernel Based Virtual Machine (KVM)
RHEL 7.2—recommended
RHEL 7.1
Citrix XenServer
6.5—recommended
6.2
Microsoft Hyper-V
Windows Server 2012-R2, Hyper-V Mgr 6.3.9600.16384—recommended

Amazon Web Services
C4 and T2 instance types—recommended
C3 instance types—supported (in Cisco IOS XE 3.11 to IOS XE 3.17)
See "Amazon Web Services" in Hypervisor Support, on page 8.

Microsoft Azure
Standard D2 and Standard D3—recommended
Standard D4—supported
See "Microsoft Azure" in Hypervisor Support, on page 8.

Hypervisor Versions—Cisco IOS XE 3.x
The following table lists the supported hypervisor versions for older software releases (Cisco IOS XE 3.x).

Note
For recent hypervisor versions see Hypervisor Versions for Cisco IOS XE Denali 16.3.1 and Later, on page 8.

Table 1: Support Matrix for Hypervisor Versions

<table>
<thead>
<tr>
<th>Cisco CSR 1000v IOS XE Release</th>
<th>VMware ESXi</th>
<th>Citrix XenServer</th>
<th>Kernel Based Virtual Machine (KVM)</th>
<th>Microsoft Hyper-V</th>
<th>Amazon Web Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9S</td>
<td>5.0</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
| 3.10S | 5.05.1 | 6.0.2 | • Linux KVM based on Red Hat Enterprise Linux 6.3¹
• Red Hat Enterprise Virtualization 3.1 | Not supported | Not supported |
<table>
<thead>
<tr>
<th>Cisco CSR 1000v IOS XE Release</th>
<th>VMware/ESXi/Citrix XenServer</th>
<th>Kernel Based Virtual Machine (KVM)</th>
<th>Microsoft Hyper-V</th>
<th>Amazon Web Services</th>
</tr>
</thead>
</table>
| 3.11S | 5.05.1 | • Linux KVM based on Red Hat Enterprise Linux 6.31
 • Red Hat Enterprise Virtualization 3.1
 • Ubuntu 12.04.03 LTS Server 64 Bits² | Not supported | Supported |
| 3.12S | 5.05.15.5² | • Linux KVM based on Red Hat Enterprise Linux 6.31
 • Ubuntu 12.04.03 LTS Server 64 Bits² | Windows Server 2012 R2 | Supported |
| 3.13S | 5.05.15.54 | • Linux KVM based on Red Hat Enterprise Linux 6.31
 • Ubuntu 12.04.03 LTS Server 64 Bits² | Windows Server 2012 R2 | Supported |
| 3.14S | 5.05.15.54 | • Linux KVM based on Red Hat Enterprise Linux 6.5
 • Ubuntu 14.04 LTS Server 64 Bits² | Windows Server 2012 R2 | Supported |
| 3.15S | 5.05.15.5⁶ | • Linux KVM based on Red Hat Enterprise Linux 6.6
 • Ubuntu 14.04 LTS Server 64 Bits² | Windows Server 2012 R2 | Supported |
| 3.16S | 5.05.15.5⁶/6.0³⁷ | • Linux KVM based on Red Hat Enterprise Linux 6.6
 • Ubuntu 14.04 LTS Server 64 Bits² | Windows Server 2012 R2 | Supported until Cisco IOS XE 3.16.2 |
| 3.17S | 5.05.15.56.0 | • Linux KVM based on Red Hat Enterprise Linux 7.1²
 • Ubuntu 14.04 LTS Server 64 Bits² | Windows Server 2012 R2 | Not supported |

For later versions of Cisco IOS XE, see Hypervisor Versions for Cisco IOS XE Denali 16.3.1 and Later, on page 8

Cisco CSR 1000v and Cisco ISRv Software Configuration Guide
Hypervisor vNIC Requirements

Depending on the Cisco CSR 1000v release version, each of the hypervisors supports different virtual network interface card (vNIC) types. The Cisco CSR 1000v also supports a different maximum number of vNICs depending on the hypervisor. Some versions and hypervisors also support the ability to add and remove vNICs without powering down the VM (for example, vNIC Hot Add/Remove).

The VMXNET3, VIF and Virtio NIC types listed in the table are para-virtualized NICs.

See also Supported I/O Modes and Drivers, on page 25.

Note: PCI Passthrough: enic is not supported in Cisco IOS XE Denali 16.3.1 and higher.

The following sections list the supported vNICs and the minimum number of vNICs supported for each VM instance. Choose a section, depending on the release of Cisco IOS XE which you are using.

Hypervisor vNIC Requirements for Cisco IOS XE Gibraltar 16.10 and 16.11 releases

<table>
<thead>
<tr>
<th>vNIC Requirements for VMware ESXi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VMXNET3 ixgbe(Intel 10Gb PCI Express NIC Driver), ixgbevf, i40evf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
vNIC Requirements for VMware ESXi

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

vNIC Requirements for Citrix XenServer

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>7</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for KVM

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>Virtio, ixgbevf, ixgbe, i40evf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

vNIC Requirements for Microsoft Hyper-V

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for Microsoft Azure

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Requirements for Amazon Web Services (AWS)</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap), ixgbevf</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

Hypervisor vNIC Requirements for Cisco IOS XE Fuji 16.9

<table>
<thead>
<tr>
<th>vNIC Requirements for VMware ESXi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VMXNET3 ixgbe(Intel 10Gb PCI Express NIC Driver), ixgbevf, i40evf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Citrix XenServer</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>7</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for KVM</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>Virtio, ixgbevf, ixgbe, i40evf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Requirements for KVM</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Microsoft Hyper-V</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Microsoft Azure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Amazon Web Services (AWS)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap), ixgbevf</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for VMware ESXi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VMXNET3 ixgbe(Intel 10Gb PCI Express NIC Driver), ixgbevf, i40evf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Hypervisor vNIC Requirements for Cisco IOS XE Fuji 16.8
<table>
<thead>
<tr>
<th>vNIC Requirements for VMware ESXi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vNIC Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Citrix XenServer</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>7</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for KVM</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>Virtio, ixgbevf, ixgbe, i40evf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Microsoft Hyper-V</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Microsoft Azure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
</tbody>
</table>
Hypervisor vNIC Requirements for Cisco IOS XE Fuji 16.7

vNIC Requirements for Microsoft Azure

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for Amazon Web Services (AWS)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap), ixgbevf</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

Hypervisor vNIC Requirements for Cisco IOS XE Fuji 16.7

vNIC Requirements for VMware ESXi

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VMXNET3 ixgbe(Intel 10Gb PCI Express NIC Driver), ixgbevf, i40evf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

vNIC Requirements for Citrix XenServer

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>7</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for KVM

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>Virtio, ixgbevf, ixgbe, i40evf</td>
</tr>
</tbody>
</table>
vNIC Requirements for KVM

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

vNIC Requirements for Microsoft Hyper-V

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for Microsoft Azure

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for Amazon Web Services (AWS)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap), ixgbevf</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Two-Step Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>
Hypervisor vNIC Requirements for Cisco IOS XE Everest 16.6

<table>
<thead>
<tr>
<th>vNIC Requirements for VMware ESXi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VMXNET3 ixgbe(Intel 10Gb PCI Express NIC Driver) ixgbevf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Citrix XenServer</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>7</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for KVM</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>Virtio, ixgbevf, ixgbe</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Microsoft Hyper-V</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Microsoft Azure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Requirements for Microsoft Azure</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Amazon Web Services (AWS)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap), ixgbevf</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

Hypervisor vNIC Requirements for Cisco IOS XE Everest 16.5

<table>
<thead>
<tr>
<th>vNIC Requirements for VMware ESXi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VMXNET3 ixgbe(Intel 10Gb PCI Express NIC Driver) ixgbevf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Citrix XenServer</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>7</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for KVM</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>Virtio, ixgbevf, ixgbe</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>
vNIC Requirements for Microsoft Hyper-V

<table>
<thead>
<tr>
<th>NIC Types Supported</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for Microsoft Azure

<table>
<thead>
<tr>
<th>NIC Types Supported</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for Amazon Web Services (AWS)

<table>
<thead>
<tr>
<th>NIC Types Supported</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VIF-netfront(pmap), ixgbevf</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

Hypervisor vNIC Requirements for Cisco IOS XE Everest 16.4

vNIC Requirements for VMware ESXi

<table>
<thead>
<tr>
<th>NIC Types Supported</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VMXNET3 ixgbe(Intel 10Gb PCI Express NIC Driver) ixgbevf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

vNIC Requirements for Citrix XenServer

<table>
<thead>
<tr>
<th>NIC Types Supported</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VIF-netfront(pmap)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>7</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>
vNIC Requirements for Citrix XenServer

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for KVM

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>Virtio, ixgbevf, ixgbe</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

vNIC Requirements for Microsoft Hyper-V

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for Microsoft Azure

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>4</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

vNIC Requirements for Amazon Web Services (AWS)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap), ixgbevf</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>
Hypervisor vNIC Requirements for Cisco IOS XE Denali 16.3

<table>
<thead>
<tr>
<th>vNIC Requirements for VMware ESXi</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VMXNET3 ixgbe (Intel 10Gb PCI Express NIC Driver) ixgbevf</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support (Intel 10Gb PCI Express NIC Driver)</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Citrix XenServer</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>7</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for KVM</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>Virtio, ixgbevf, ixgbe</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>Yes</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Microsoft Hyper-V</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>8</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vNIC Requirements for Microsoft Azure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>NetVSC</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>4</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
</tbody>
</table>
Hypervisor vNIC Requirements for Microsoft Azure

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

Hypervisor vNIC Requirements for Amazon Web Services (AWS)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Types Supported</td>
<td>VIF-netfront(pmap), ixgbevf</td>
</tr>
<tr>
<td>vNIC Hot Add Support</td>
<td>No</td>
</tr>
<tr>
<td>vNIC Hot Remove Support</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>No</td>
</tr>
</tbody>
</table>

Hypervisor vNIC Requirements for Cisco IOS XE 3S Releases

Table 2: Cisco CSR 1000v vNIC Support for Cisco IOS XE 3S Releases

<table>
<thead>
<tr>
<th>Cisco IOS XE Release:</th>
<th>3.9S</th>
<th>3.10S, 3.11S</th>
<th>3.12S</th>
<th>3.13S, 3.14S, 3.15S</th>
<th>3.16S, 3.17S</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware ESXi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIC Types Supported</td>
<td>VMXNET3</td>
<td>VMXNET3</td>
<td>VMXNET3</td>
<td>VMXNET3 ixgbe (Intel 10Gb PCI Express NIC Driver)</td>
<td>VMXNET3 ixgbe (Intel 10Gb PCI Express NIC Driver) enic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>vNIC Hot Add/Remove Support(Prior to release 3.15S, vNIC Hot Remove requires reloading the Cisco CSR 1000v. This is applicable only when using the VMXNET3 driver.)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<p>| Citrix XenServer | | | | | |
| NIC Types Supported | | VIF | VIF | VIF ixgbevf (Intel 10Gb PCI Express NIC Driver) | VIF ixgbevf (Intel 10Gb PCI Express NIC Driver) |
| | | | | | |
| Max. number of vNICs per VM instance | — | 7 | 7 | 7 | 7 |
| vNIC Hot Add/Remove Support | — | No | No | No | No |</p>
<table>
<thead>
<tr>
<th>Cisco IOS XE Release:</th>
<th>3.9S</th>
<th>3.10S, 3.11S</th>
<th>3.12S</th>
<th>3.13S, 3.14S, 3.15S</th>
<th>3.16S, 3.17S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>—</td>
<td>—</td>
<td>Yes (from release 3.12.1S)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KVM</td>
<td>—</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio ixgbevf, ixgbe (Intel 10Gb PCI Express NIC Driver)</td>
<td>Virtio ixgbevf, ixgbe (Intel 10Gb PCI Express NIC Driver)</td>
</tr>
<tr>
<td>NIC Types Supported</td>
<td>—</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio ixgbevf, ixgbe (Intel 10Gb PCI Express NIC Driver)</td>
<td>Virtio ixgbevf, ixgbe (Intel 10Gb PCI Express NIC Driver)</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>—</td>
<td>10</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>vNIC Hot Add/Remove Support</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(Prior to release 3.15S, vNIC Hot Remove requires reloading the Cisco CSR 1000v. This is applicable only when using the Virtio driver)</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>—</td>
<td>—</td>
<td>Yes (from release 3.12.1S)</td>
<td>Yes (Requires the host hardware to support the Intel VT-d or AMD IOMMU specification. SR-IOV is not supported with Virtual LANs (VLANs))</td>
<td>Yes (Requires the host hardware to support the Intel VT-d or AMD IOMMU specification. SR-IOV is not supported with Virtual LANs (VLANs))</td>
</tr>
<tr>
<td>Microsoft Hyper-V</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NIC Types Supported</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Max. number of vNICs per VM instance</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>vNIC Hot Add/Remove Support</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Single Root I/O virtualization (SR-IOV) Support</td>
<td>—</td>
<td>—</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Amazon Web Services</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NIC Types Supported</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(For Cisco IOS XE 3.11 and later), aws-vif(pmap)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>aws-vif(pmap)</td>
<td>aws-vif(pmap)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(Up until Cisco IOS XE 3.16.2) aws-vif(pmap), aws-ixgbevf(SRIOV)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Supported I/O Modes and Drivers

The Cisco CSR 1000v operates within a virtualization environment. Data I/O involves communication between one or more vNICs of the guest OS in which the CSR is operating, and the physical NIC accessed by the host OS.

Modes

Beginning with Cisco IOS XE 3.16S and also including Cisco IOS XE Denali 16.3.1 and later, the Cisco CSR 1000v supports several modes of communication between the vNICs and the physical hardware:

- **Para Virtual**
- **PCI Passthrough**
- **Single Root I/O Virtualization (SR-IOV)**
- **Cisco Virtual Machine Fabric Extender (VM-FEX)**

The figure below, "Cisco CSR 1000v I/O Routing Between vNIC of Guest OS and Hardware NIC of Host", shows the I/O routing options.
Figure 1: Cisco CSR 1000v I/O Routing Between vNIC of Guest OS and Hardware NIC of Host

Drivers
The following table indicates the drivers required to support various I/O modes.

- **Para Virtual**
 - VMXNET3 (ESXi)
 - Virtio (KVM)
 - VIF-netfront (Xen)
 - NetVSC (Hyper-V)

- **PCI Passthrough**
 - ixgbe (for Intel 10 gig NIC)
 - enic (for Cisco VIC)

See the Hypervisor vNIC Requirements to determine the drivers supported for a particular release. PCI Passthrough: enic is not supported in Cisco IOS XE Denali 16.3.1 and higher.

Table 3: Driver Support for I/O Modes
Supported I/O Modes and Drivers

<table>
<thead>
<tr>
<th>Mode</th>
<th>Cisco CSR1000v Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-IOV</td>
<td>• ixgbevf</td>
</tr>
<tr>
<td></td>
<td>• i40evf</td>
</tr>
<tr>
<td>VM-FEX</td>
<td>Only applicable to Cisco VIC</td>
</tr>
<tr>
<td></td>
<td>There are 2 modes:</td>
</tr>
<tr>
<td></td>
<td>• ESXi DirectPath IO: VMXNET3</td>
</tr>
<tr>
<td></td>
<td>• PCI Passthrough: enic</td>
</tr>
</tbody>
</table>

Note: For releases Cisco IOS XE 3.16 or later, and Cisco IOS XE Denali 16.3 or later, the boot up process may take a long time (5 minutes) when using passthrough drivers. This is due to performing DHCP during a PXE boot. This issue can be resolved (as mentioned in resolved caveat CSCvd45286) by turning off rom bar for Ethernet PCI devices in the Cisco CSR 1000v xml file; for example:

```xml
<hostdev mode='subsystem' type='pci' managed='yes'>
  <source>
    <address domain='0x0000' bus='0x00' slot='0x00' function='0x0'/>
  </source>
  <rom bar='off'/>  <------ Add this line to xml file
  <address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>
</hostdev>
```

Limitations

See the Hypervisor vNIC Requirements to determine the drivers supported for a particular release.

The following table describes the limitations that apply to I/O modes.

Note

PCI Passthrough: enic is not supported in Cisco IOS XE Denali 16.3.1 and higher.
Table 4: I/O Mode Limitations

<table>
<thead>
<tr>
<th>Mode/Driver</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| PCI passthrough (enic) | • Interoperability with another NIC: If enic is connected to other NIC (for example, Intel NIC) and then that NIC is used for other CSR VM (Para virtual or Passthrough), traffic will not pass through if enic is configured with VLAN.
 • If a VLAN is configured, the other NIC receives a VLAN packet with VLAN id of 0.
 • Jumbo packet support: In this release, jumbo packet (MTU > 1518) is not supported.
 • CDP is not supported.
 • HSRP standby cannot ping the HSRP group address |
| SR-IOV (ixgbevf) | • MTU change: (Intel limitation) First change the VF MTU on the host PF using the `ip link set` command. Then change the corresponding interface MTU on the VM. Otherwise, no traffic will pass. (Intel limitation)
 • MAC address change: After changing the MAC address, it is necessary to change the MAC address of the VF on the host PF using the `ip link set` command. Otherwise, no traffic will pass. (Intel limitation.)
 • Maximum VLANs: The maximum number of VLANs supported on PF is 64. Together, all VFs can have a total of 64 VLANs. (Intel limitation.)
 • Maximum Multicast filtering: Intel VF supports registering a maximum of 30 multicast addresses. (Intel limitation.)
 • Layer2 Learning: The Intel SR-IOV VF does not support promiscuous mode, so Layer 2 functionality, such as EVC, does not work. (Intel limitation.) |
<table>
<thead>
<tr>
<th>Mode/Driver</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| SR-IOV (i40evf) | • MTU change: (Intel limitation) First change the VF MTU on the host PF using the `ip link set` command. Then change the corresponding interface MTU on the VM. Otherwise, no traffic will pass. (Intel limitation.)

 • MAC address change: After changing the MAC address, you must change the MAC address of the VF on the host PF using the `ip link set` command. Otherwise, no traffic will pass. (Intel limitation.)

 • Maximum VLANs: The maximum number of VLANs supported on PF is 512. Together, all VFs can have a total of 512 VLANs. (Intel limitation.) Per-VF resources are managed by the PF (host) device driver.

 • Maximum Multicast filtering: The maximum number of mac addresses supported on the PF is 1024. (Intel limitation.) Per-VF resources are managed by the PF (host) device driver.

 • Layer2 Learning: The Intel SR-IOV VF does not support promiscuous mode, so Layer 2 functionality, such as EVC, does not work. (Intel limitation.)
 This information about SR-IOV (i40evf) has partly been obtained from Table 7-132. "710 series Versus 82599 Virtualization Support" and Table 7-134. "VF resource allocation" in the Intel Ethernet Controller 710 Series Datasheet. |
| VM-FEX ESXi DirectPath IO (VMXNET3) | • VLAN is not supported in high-performance mode. |

Cisco CSR 1000v and Hypervisor Limitations

This section describes performance limitations due to how the Cisco CSR 1000v integrates with supported hypervisors.

Cisco CSR 1000v and Hypervisor Limitations for Cisco IOS XE Denali 16.3.1 and Later

In these releases, the Cisco CSR 1000v does not support the hot removal of interfaces and does not have the ability to modify vNIC MTU.

Cisco CSR 1000v and Hypervisor Limitations for Cisco IOS XE Denali 16.2

Note

Cisco IOS XE Denali 16.3.1 and later is recommended instead of Cisco IOS XE Denali 16.2.

Cisco CSR 1000v and Hypervisor Limitations for Cisco IOS XE Release 3.12S

- When the Cisco CSR 1000v is installed on Microsoft Hyper-V, the interface numbers can change after Microsoft Hyper-V fails over to a new server, or restarts after a live migration.

 - If the server is set to perform ungraceful failover, there is no workaround.
• If the server is set to perform graceful failover or restart, enter the `clear platform software vnic-if nvtable` command before executing the failover or restart.

This issue is not seen if the maximum number of interfaces is configured.

• When the Cisco CSR 1000v is installed on Microsoft Hyper-V, if you want to configure a VLAN, you must configure the VLAN interfaces on Microsoft Hyper-V using the Hyper-V Power Shell CLI.
• When the Cisco CSR 1000v is installed on Microsoft Hyper-V and an NSF-based virtual hard disk is used, if there is a network connectivity issue between the Cisco CSR 1000v and the NSF server, the Cisco CSR 1000v is unable to use the virtual hard disk even if the network connection is restored. You must reboot the Cisco CSR 1000v to restore access to the virtual hard disk.
• The Microsoft Hyper-V GUI only allows one VLAN to be specified for a Virtual Machine interface. This limits deployments where multiple VLANS for a Virtual Machine interface are used.
• When the MAC address of a Cisco CSR1000v interface is changed from the address assigned by the hypervisor, then traffic to and from external devices is unsuccessful. This occurs even when MAC address spoofing is enabled on the Microsoft Hyper-V vSwitch. Operation of protocols like FHRP, CLNS, and Etherchannel that use their own MAC address may be unsuccessful.

• In Microsoft Hyper-V environments, the following limitations apply when the Windows Power Shell CLI is used to configure VLANs:
 • The power shell CLI commands must be reapplied each time the Cisco CSR1000v is reloaded.
 • When a large AllowedVlanIdList is configured, only lower numbered VLANS may successfully pass traffic. For example, when the following Power Shell CLI command is used:

 Set-VMNetworkAdapterVlan -VMName dr-vm-6-1 -Trunk -AllowedVlanIdList 1-2000 -NativeVlanId 0

Only VLANS lower than 300 may successfully pass traffic.

Cisco CSR 1000v and Hypervisor Limitations for Cisco IOS XE Release 3.10S

• Configuring Network Based Application Recognition (NBAR), or Application Visibility and Control (AVC) support on the Cisco CSR 1000v requires a minimum of 4GB of DRAM on the VM, even when using the one vCPU configuration on the VM.
• On the Cisco CSR 1000v, all the NICs are logically named as the Gigabit Ethernet interface. The Cisco CSR 1000v does support the 10G IXGBE vNIC in passthrough mode; but that interface also is also logically named as a Gigabit Ethernet interface. Note that with emulated devices like VMXNET3/PV/VIRTIO from the hypervisor, the Cisco CSR 1000v is not aware of the underlying interfaces. The vSwitch may be connected to a 10-GB physical NIC or 1-GB physical NICs or multiple NICs (with NIC teaming on the hypervisor) as well.
• The Cisco CSR 1000v supports an MTU range from 1500 to 9216 bytes. However, the maximum MTU supported on your hypervisor version may be lower. The MTU value configured on the Cisco CSR 1000v should not exceed the maximum MTU value supported on the hypervisor.

Cisco CSR 1000v and Hypervisor Limitations for Cisco IOS XE Release 3.9S

The following are the Cisco CSR 1000v and VMware ESXi limitations for Cisco IOS XE Release 3.9S:

• The Cisco CSR 1000v interface bandwidth defaults to 1 GB, irrespective of the hypervisor’s physical NIC bandwidth. The routing protocols (OSPF, EIGRP) use the Cisco CSR 1000v interface bandwidth values for calculating the costs, not the physical NIC bandwidth.
• When a Cisco CSR 1000v interface is directly connected to a physical router, and that physical router’s connecting interface goes down, the change is not reflected on the Cisco CSR 1000v. This is because
the Cisco CSR 1000v is actually connected to the hypervisor’s vSwitch and the vSwitch uplink port is connected to the physical interface of the router. This behavior is expected.

- The Cisco CSR 1000v provides an MTU range from 1500 to 9216 bytes. However, ESXi 5.0 supports only a maximum value of 9000 bytes.

Server Requirements

The server and processor requirements are different depending on the Cisco CSR 1000v release.

Table 5: Server Requirements

<table>
<thead>
<tr>
<th>Cisco CSR 1000v Release</th>
<th>Intel</th>
<th>AMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 3.9S</td>
<td>Intel Nehalem and later generation processors</td>
<td>Not supported</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.10S and later</td>
<td>64-bit processors with VT extensions</td>
<td>64-bit processors with VT extensions</td>
</tr>
<tr>
<td>Cisco IOS XE Denali 16.3.1 and later</td>
<td>64-bit Intel Core2 and later generation processors with VT extensions and support for Streaming SIMD instructions: SSE, SSE2, SSE3 and SSSE3.</td>
<td>The equivalent of 64-bit Intel Core2 and later generation processors with VT extensions and support for Streaming SIMD instructions: SSE, SSE2, SSE3 and SSSE3.</td>
</tr>
</tbody>
</table>

(For Cisco IOS XE Release 3.9S) the Cisco CSR 1000v uses instructions not supported on Intel pre-Nehalem generation processors. The existence of the required Nehalem or later processor instruction set is determined at boot time. If the required instructions are not present, the following message is displayed:

```%IOSXEBOOT-4-BOOT_HALT: (rp/0): Halted boot due to missing CPU feature requirement(s)```

(For Cisco IOS XE Denali 16.3 and 16.4) the Cisco CSR 1000v uses instructions supported on Intel Core 2 and later generation processors including Streaming SIMD: SSE, SSE2, SSE3 and SSSE3. The existence of the required instruction set is not verified and the deployment of the Cisco CSR 1000v in an environment that does not meet these processor requirements may result in random system relogs.

(For Cisco IOS XE Everest 16.5 and later) the Cisco CSR 1000v uses instructions supported on Intel Core 2 and later generation processors including Streaming SIMD SSE, SSE2, SSE3 and SSSE3. The existence of the required streaming SIMD instruction sets is determined at boot time. If the required instructions are not present, a message similar to following is displayed:

```%CPPDRV-3-FATAL_CPU_FEATURE: F0: cpp_driver: CPP0: CPU lacks feature (Supplemental Streaming SIMD Extensions 3 (SSSE3)). Packet forwarding disabled.```

Cisco Software Licensing (CSL)

The Cisco CSR 1000v supports two types of license: Cisco Software Licensing and Cisco Smart Licensing. This section summarizes Cisco Software Licensing. For more details of both licensing methods, see Activating Cisco CSR 1000v Licenses, on page 163.
The Cisco CSR 1000v supports the following types of Cisco Software License, depending on the software release:

- Perpetual and subscription term licenses for 1, 3, and 5 years based on the following attributes:
 - (Cisco IOS XE 3.13S and later, and Denali 16.3.1 and later) Technology packages: IPBase, Security, AX and APPX (supported by Cisco Smart Licensing beginning with Cisco IOS XE 3.15S)
 - Maximum supported throughput level for the AX package: 10, 25, 50, 100, 250, or 500 Mbps; 1, 2.5, or 5 Gbps
 - Maximum supported throughput level for the Security and APPX packages: 10, 25, 50, 100, 250, or 500 Mbps; 1, 2.5, or 5 Gbps
 - Maximum supported throughput level for the IPBase package: 10, 25, 50, 100, 250, or 500 Mbps; 1, 2.5, 5, or 10 Gbps

- Memory upgrade licenses (selected technology packages and throughput levels only)

- Evaluation licenses (see Evaluation Licenses for Cisco IOS XE 3.13S and Later and Cisco IOS XE Denali 16.3.1 and Later, on page 36).

Note

Three legacy technology packages—Standard, Advanced, and Premium—were replaced in Cisco IOS XE Release 3.13 with the IPBase, Security, and AX technology packages.

The following table lists the available license types for your release.

Table 6: Cisco CSR 1000v Software Licenses

<table>
<thead>
<tr>
<th>Cisco CSR 1000v Version</th>
<th>License Type</th>
<th>License Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 3.9S</td>
<td>(Legacy) Base subscription technology package licenses (Standard, Advanced, and Premium) for the following throughput maximums: 10 Mbps, 25 Mbps, 50 Mbps</td>
<td>• 1, 3, and 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 60-day evaluation license</td>
</tr>
</tbody>
</table>
Cisco CSR 1000v and Cisco ISRv Software Configuration Guide

License Term

<table>
<thead>
<tr>
<th>Cisco CSR 1000v Version</th>
<th>License Type</th>
<th>License Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Releases 3.10S, 3.11S</td>
<td>(Legacy) Base subscription Standard technology package licenses for the following throughput maximums: 10 Mbps, 50 Mbps, 100 Mbps, 250 Mbps, 500 Mbps, 1 Gbps Base subscription Advanced and Premium technology package licenses for the following throughput maximums: 10 Mbps, 50 Mbps, 100 Mbps, 250 Mbps Feature Add-on License: - License to add 8 GB of memory with route reflector support. This is available for the Premium or AX packages only. The additional memory is allocated to IOSD processes on the router only. The memory upgrade license does not add available memory on the VM. Note Selected licenses are available through a Cisco service representative only.</td>
<td>• 1 and 3 years • Perpetual • 60-day evaluation license</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.12S</td>
<td>(Legacy) Base subscription Standard technology package licenses for the following throughput maximums: 10 Mbps, 50 Mbps, 100 Mbps, 250 Mbps, 500 Mbps, 1 Gbps, 2.5 Gbps, 5 Gbps Base subscription Advanced and Premium technology package licenses for the following throughput maximums: 10 Mbps, 50 Mbps, 100 Mbps, 250 Mbps, 1 Gbps Feature Add-on License: - License to add 8 GB of memory with route reflector support. This is available for the Premium or AX packages only. The additional memory is allocated to IOSD processes on the router only. The memory upgrade license does not add available memory on the VM. Selected licenses are only available through a Cisco service representative.</td>
<td>• 1 and 3 years • Perpetual • 60-day evaluation license</td>
</tr>
<tr>
<td>Cisco CSR 1000v Version</td>
<td>License Type</td>
<td>License Term</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Cisco IOS XE Release 3.12.1S | New technology package licenses are supported:
- **IPBase** package license, with the same feature set as the Standard package
- **Security** package license, with the same feature set as the Advanced package
- **AX** package license, with the same feature set as the **Premium** package | • 1 and 3 years
• Perpetual
• 60-day evaluation license |
| Cisco IOS XE Releases 3.13S, 3.14S, 3.15S, 3.16S, 3.17
Cisco IOS XE Denali 16.3.1 and later | Base subscription **IPBase** technology package licenses for the following maximum throughputs: 10 Mbps, 50 Mbps, 100 Mbps, 250 Mbps, 500 Mbps, 1 Gbps, 2.5 Gbps, 5 Gbps, 10 Gbps. (IPBase replaces the Standard package.)
Base subscription **Security** technology package licenses for the following maximum throughputs: 10, 25, 50, 100, 250, or 500 Mbps; 1, 2.5, or 5 Gbps (Security replaces the Advanced package.)
Base subscription **AX** technology package licenses for the following maximum throughputs: 10, 25, 50, 100, 250, or 500 Mbps; 1 or 2.5 Gbps (AX replaces the Premium package.)
Base subscription **Application Experience (APPX)** technology package licenses for the following maximum throughputs: 10 Mbps, 50 Mbps, 100 Mbps, 250 Mbps, 500 Mbps, 1 Gbps, 2.5 Gbps, 5 Gbps | • 1 and 3 years
• Perpetual
• 60-day evaluation license available through Cisco licensing portal |

The supported performance indicates the maximum throughput supported by the Cisco CSR 1000v for the license. If the throughput exceeds the supported performance, the router may experience dropped packets and you will receive notification that the supported performance has been exceeded. The Cisco CSR 1000v uses a performance limiter to regulate the throughput level. For example, this applies when using 10 Gbps throughput as part of the IPBase technology package licenses. For more information, see the Configuring an Interface for 10 Gbps Maximum Throughput, on page 169.

If additional performance is required, an additional license for a separate Cisco CSR 1000v VM must be purchased. The Cisco CSR 1000v supports only one router instance per VM.

The Cisco CSR 1000v software licenses operate as follows:

- Each software license can be used for only one VM.
- You can install more than one license on a VM, but the multiple licenses can only apply to that VM.
Similar to Cisco hardware products, the software license is node-locked to the unique device identifier (UDI) of that product. The Cisco CSR 1000v generates a Virtual UDI (vUDI) when first installed on the VM, and licenses are node-locked to that vUDI. One license per VM instance is required. Instances that are cloned from a repository must generate a new vUDI.

Note
When you clone the Cisco CSR 1000v, you will automatically get a new vUDI, and all the licenses from the original VM should be removed.

- You must purchase and install a new technology package license if you want to upgrade or downgrade the technology level. For example, if you have a Premium technology package license and you want to downgrade to the Standard technology package, you must purchase a new Standard technology package license.
- In Cisco IOS XE Release 3.10S, the default license will not enable advanced IPsec features and MPLS.
- The Cisco CSR 1000v does not provide or support Right-to-Use performance licenses.
- You will receive warning notices that the subscription term license will expire beginning eight weeks before license expiration.

The licenses must be activated in order for the Cisco CSR 1000v network ports to provide the supported throughput.

When the Cisco CSR 1000v is first booted, the router operates in evaluation mode, and provides limited feature support and limited throughput. To obtain the full feature support and throughput provided by your license, you must install the license using the license install command. The configuration requirements depend on the release version:

- In Cisco IOS XE 3.12S and earlier, to access the features supported in your license, you must enter the license boot level command and set it to the level supported by your license. The Cisco CSR 1000v must be rebooted for the new license level to take effect and to have the new license applied.
- In Cisco IOS XE 3.13S and later, the Cisco CSR 1000v first boots up in the AX technology mode by default, so all features in this package are supported. Installing an AX technology license applies the AX license immediately, and the throughput is increased to the maximum throughput of the installed license. Rebooting the router is not required.

If you install a different technology license (IPBase, Security or APPX), the corresponding license boot level command setting is automatically added to the running configuration, but you must reboot the router for the new license technology level to take effect and to have the license applied.

The installed license technology package must match the router’s current technology level (as shown with the show version command). If the license package does not match the current license level the throughput is limited to 100kbps. To apply a license belonging to a different technology package level, you must update the license level using the license boot level command and reboot the Cisco CSR 1000v for the new license level to take effect.

If the throughput license expires or becomes invalid, the maximum throughput of the router reverts to 2.5 Mbps (Cisco IOS XE 3.12S and earlier), or 100 Kbps (Cisco IOS XE 3.13S and later), upon reload.

The subscription term begins on the day the license is issued.

For more information about license activation, see the Activating Cisco CSR 1000v Licenses, on page 163.
If you rehost the Cisco CSR 1000v to a VM on another server, the following rules apply:

- You must purchase a new rehost software license that lasts for the period remaining on the original license.
- If the original license was renewed, the rehosted software license will last for the period remaining on the renewed license.
- You have a 60-day grace period to remove the software license from the original server hardware and activate it on the rehosted server hardware.

The Cisco CSR 1000v also supports Cisco License Manager and Cisco License Call Home. For more information about the standard Cisco IOS XE software activation procedure, and information about Cisco License Manager and Cisco License Call Home, see the Software Activation Configuration Guide, Cisco IOS XE Release 3S.

Evaluation Licenses for Cisco IOS XE 3.13S and Later and Cisco IOS XE Denali 16.3.1 and Later

Evaluation licenses are available to try out Cisco CSR 1000v features. Evaluation licenses are obtained differently depending on the Cisco IOS XE release version. This section describes versions Cisco IOS XE 3.13S or later and Cisco IOS XE Denali 16.3.1 or later.

Default

Beginning with the Cisco IOS XE 3.13S release, the CSR 1000v boots by default with the following features:

- AX technology package features
- 100 Kbps maximum throughput

Evaluation License Options

Evaluation licenses valid for 60 days are available at the Cisco licensing portal.

http://www.cisco.com/go/license

The evaluation license options enable test driving additional technology packages and higher throughputs. (The throughputs available through evaluation licenses are the highest supported throughput levels for the package type.)

- IPBase Technology package, 10 Gbps
- SEC Technology package, 5 Gbps
- APP Technology package, 5 Gbps
- AX Technology package, 2.5 Gbps
- 1000 broadband sessions
- 12 GB memory upgrade

Testing a Lower Maximum Throughput

To test a lower throughput license type not listed here, use the `platform hardware throughput level MB <throughput>` command to set the throughput to a supported level below that provided by the installed license.
This has the same effect as installing a license for that throughput level. For example, on a CSR 1000v with a 5 Gbps license installed, the following command sets the throughput level to 250 Mbps:

```
platform hardware throughput level MB 250
```

The supported throughput levels are: 10 Mbps, 50 Mbps, 100 Mbps, 250 Mbps, 500 Mbps, 1 Gbps, 2.5 Gbps, 5 Gbps, 10 Gbps

For any additional questions, contact your Cisco sales representative.

Obtaining an Evaluation License from the Cisco Licensing Portal

To obtain a 60-day evaluation license for the Cisco CSR 1000v, follow the instructions below.

When the 60-day evaluation license expires, the maximum throughput becomes limited to 100 Kbps upon reload. For more information, see Installing CSL Evaluation Licenses for Cisco IOS XE 3.13S and Later, on page 164.

Note

These instructions are subject to change.

Before you begin

Step 1 Navigate to https://www.cisco.com/go/license and log in.

Step 2 Navigate to the Product License Registration Portal.

Step 3 On the Product License Registration page, select “Continue to Product License Registration.”

Step 4 Click “Get Other Licenses” and select “Demo and Evaluation” from the dropdown menu.

Step 5 In the Product Family section, select “Routers & Switches.” In the Product section, select “Cisco Cloud Services Router 1000v.” Click Next.

Step 6 Select the desired license type. Enter the UDI Serial number, then click Next to generate the license. You can display the UDI Serial number on your router by entering the `show license udi` command.

Evaluation Licenses for Cisco IOS XE 3.12S and Earlier

Evaluation licenses are available to try out Cisco CSR 1000v features. Evaluation licenses are obtained differently depending on the IOS XE release version. This section describes versions Cisco IOS XE 3.12S or earlier.

Prior to the Cisco IOS XE 3.13S release, the Cisco CSR 1000v came bundled with a 60-day evaluation license included with the software image, providing:

- Premium technology package features
- 50 Mbps maximum throughput

The license is activated by entering the `license boot level` command and rebooting the router.

When the 60-day evaluation license expires, the maximum throughput reverts to 2.5 Mbps and to the Standard feature set upon reload.
Cisco Smart Licensing

The Cisco CSR 1000v supports two types of license: Cisco Software Licensing and Cisco Smart Licensing. This section summarizes Cisco Smart Licensing. For details, see Cisco Smart Licensing, on page 181.

Beginning with Cisco IOS XE Release 3.15S, the Cisco CSR 1000v supports activation using Cisco Smart Licensing (CSL). To use Cisco Smart Licensing, first configure the Call Home feature and obtain Cisco Smart Call Home Services. For details, see Cisco Smart Licensing, on page 181.

The Cisco CSR 1000v supports the following license types (Cisco IOS XE 3.14S and later):

- IPBase
- Security
- AX
- APPX

Differences Between Cisco CSR 1000v Series and ASR 1000 Series

Unlike traditional Cisco hardware router platforms, the Cisco CSR 1000V Series is a virtual router that runs independently on an x86 machine. As a result, the Cisco CSR 1000v Series architecture has unique attributes that differentiate it from hardware-based router platforms.

For example, the table below lists a comparison of some key areas where the Cisco CSR 1000v Series differs from the Cisco ASR 1000 series routers.

Table 7: Cisco CSR 1000v Series Architecture Differences with Cisco ASR 1000 Series Routers

<table>
<thead>
<tr>
<th>Feature</th>
<th>Cisco ASR 1000 Series</th>
<th>Cisco CSR 1000v Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Disk</td>
<td>Supported.</td>
<td>The Cisco CSR 1000v does not include a hard disk. The software image is stored on bootflash only (8 GB).</td>
</tr>
<tr>
<td>Physical resources</td>
<td>Managed by architecture of the hardware platform.</td>
<td>Managed by the hypervisor. Physical resources are shared among VMs.</td>
</tr>
<tr>
<td>Console types supported</td>
<td>Physical serial port.</td>
<td>• Virtual VGA console</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Virtual serial port network option (virtual terminal server)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Named pipe option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physical serial port on the ESXi or KVM host</td>
</tr>
<tr>
<td>Feature</td>
<td>Cisco ASR 1000 Series</td>
<td>Cisco CSR 1000v Series</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ROMMON</td>
<td>Supported.</td>
<td>The Cisco CSR 1000v does not include ROMMON, but uses GRUB to provide similar but more limited functionality.</td>
</tr>
<tr>
<td>Break Signal</td>
<td>Supported.</td>
<td>Not supported.</td>
</tr>
<tr>
<td>Port numbering</td>
<td>See the Cisco ASR1000 documentation.</td>
<td>Gigabit Ethernet x ports only.</td>
</tr>
<tr>
<td>ISSU</td>
<td>Supports In-Service Software Upgrades (ISSU).</td>
<td>Not supported.</td>
</tr>
<tr>
<td>Subpackage upgrades</td>
<td>Supports installation of subpackages for specific SPAs and SIP SPAs.</td>
<td>Subpackages not supported. The Cisco CSR 1000v does not support SPAs.</td>
</tr>
<tr>
<td>Diagnostic mode</td>
<td>Supported.</td>
<td>Not supported.</td>
</tr>
<tr>
<td>Dynamic addition/deletion of ports</td>
<td>Supported.</td>
<td>Supported. (Requires reload of the VM.)</td>
</tr>
</tbody>
</table>

Supported Cisco IOS XE Technologies

The Cisco CSR 1000v Series Cloud Services Router supports selected Cisco IOS XE technologies. The Cisco CSR 1000v supports a more limited set of functionality compared to other router platforms.

The table below lists the major Cisco IOS XE technologies the Cisco CSR 1000V supports. Technologies not listed are not currently supported on the Cisco CSR 1000v. Not all features in a given technology may be supported. To verify support for specific features, use Cisco Feature Navigator. For more information, see the Using Cisco Feature Navigator, on page 50.

The information listed in this table applies only if using the Cisco IOS XE CLI. Support for Cisco IOS XE technologies is more limited in the following scenarios:

- When deploying the Cisco CSR 1000v on Amazon Web Services (AWS):

 For more information, see: Cisco CSR 1000V Series Cloud Services Router Deployment Guide for Amazon Web Services.

 The following white paper includes information about the high availability solution: Deploying the Cisco Cloud Services Router 1000V Series in Amazon AWS: Design and Implementation Guide

- When deploying the Cisco CSR 1000v on Microsoft Azure:

 For more information, see: Cisco CSR 1000v Deployment Guide for Microsoft Azure

- When using the Cisco IOS XE REST API to manage the Cisco CSR 1000v:
For more information, see Enabling Management by REST API, on page 305. For information about Cisco IOS XE technologies supported by the REST API, see the Cisco IOS XE REST API Management Reference Guide.

- When using Cisco Prime Network Services Controller (PNSC) to remotely manage the Cisco CSR 1000v:

For more information on features supported, see Configuring Support for Remote Management by the Cisco Prime Network Services Controller, on page 331.

Note

The IPBase, Security, and AX license technology packages became available beginning with Cisco IOS XE 3.12.1.

<table>
<thead>
<tr>
<th>Technologies Supported</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.12S and Earlier (Legacy)</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</th>
<th>See the Following Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP:</td>
<td>• IPv4 Routing • IPv4 Fragmentation and Reassembly • IPv6 Forwarding • IP Base • Security • AX • APPX</td>
<td>• IP Base • Security • AX • APPX • IPv6 Configuration Guide Library, Cisco IOS XE Release 3S • Cisco IOS IPv6 Command Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standard • Advanced • Premium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 Routing</td>
<td>• Standard • Advanced • Premium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IP Base • Security • AX • APPX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generic Routing Encapsulation (GRE)</td>
<td>• Standard • Advanced • Premium</td>
<td>• IP Base • Security • AX • APPX</td>
<td>• Interface and Hardware Component Configuration Guide, Cisco IOS XE Release 3S • Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
<tr>
<td>Technologies Supported</td>
<td>Technology Package Licenses Supported in Cisco IOS XE Releases 3.12S and Earlier (Legacy)</td>
<td>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</td>
<td>See the Following Documentation:</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>• LISP</td>
<td>• Premium</td>
<td>• AX • APPX</td>
<td>• IP Routing: LISP Configuration Guide, Cisco IOS XE Release 3S • Cisco IOS IP Routing: LISP Command Reference</td>
</tr>
<tr>
<td>• Connectionless mode network service (CLNS)</td>
<td>—</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• ISO CLNS Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
</tbody>
</table>

Basic Routing:

<table>
<thead>
<tr>
<th>Technologies Supported</th>
<th>Technology Package Licenses Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BGP</td>
<td>• Standard • Advanced • Premium</td>
</tr>
<tr>
<td>• EIGRP</td>
<td>• Standard • Advanced • Premium</td>
</tr>
<tr>
<td>• ISIS</td>
<td>• Standard • Advanced • Premium</td>
</tr>
<tr>
<td>• OSPF</td>
<td>• Standard • Advanced • Premium</td>
</tr>
</tbody>
</table>

Cisco CSR 1000v and Cisco ISRv Software Configuration Guide
Supported Cisco IOS XE Technologies

<table>
<thead>
<tr>
<th>Technologies Supported</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.12S and Earlier (Legacy)</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</th>
<th>See the Following Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Performance Routing</td>
<td>• Standard • Advanced • Premium</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• Performance Routing Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS Performance Routing Command Reference</td>
</tr>
<tr>
<td>IP Multicast:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IGMP</td>
<td>• Advanced • Premium</td>
<td>• Security • AX</td>
<td>• IP Multicast: IGMP Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS IP Multicast Command Reference</td>
</tr>
<tr>
<td>• PIM</td>
<td>• Advanced • Premium</td>
<td>• Security • AX</td>
<td>• IP Multicast: PIM Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS IP Multicast Command Reference</td>
</tr>
<tr>
<td>IP Switching:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cisco Express Forwarding</td>
<td>• Standard • Advanced • Premium</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• IP Switching Cisco Express Forwarding Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Wide Area Networking:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• OTV (Supported beginning in Cisco IOS XE 3.10S.)</td>
<td>• Premium</td>
<td>• AX • APPX</td>
<td>• Wide-Area Networking Configuration Guide: Overlay Transport Virtualization, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td>• VxLAN (Supported beginning in Cisco IOS XE 3.11S.)</td>
<td>• Premium</td>
<td>• AX • APPX</td>
<td>• Cisco CSR 1000V VxLAN Support</td>
</tr>
</tbody>
</table>

Cisco CSR 1000v Series Cloud Services Router Overview

Cisco CSR 1000v and Cisco ISRv Software Configuration Guide
<table>
<thead>
<tr>
<th>Technologies Supported</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.12S and Earlier (Legacy)</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</th>
<th>See the Following Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• WCCPv2</td>
<td>• Premium</td>
<td>• AX</td>
<td>• IP Application Services Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• APPX</td>
<td>• Cisco IOS IP Application Services Command Reference</td>
</tr>
</tbody>
</table>

VPN:

	• Advanced	• Security	• Secure Connectivity Configuration Guide Library, Cisco IOS XE Release 3S
• IPsec VPN	• Premium	• AX	
• DMVPN	• Advanced	• Security	• Dynamic Multipoint VPN Configuration Guide, Cisco IOS XE Release 3S
	• Premium	• AX	
• Easy VPN	• Advanced	• Security	• Easy VPN Configuration Guide, Cisco IOS XE Release 3S
	• Premium	• AX	
• FlexVPN	• Advanced	• Security	• FlexVPN and Internet Key Exchange Version 2 Configuration Guide, Cisco IOS XE Release 3S
	• Premium	• AX	
• GETVPN (Supported beginning in Cisco IOS XE Everest 16.6.1)	• Advanced	• Security	• Cisco Group Encrypted Transport VPN Configuration Guide, Cisco IOS XE Release 3S
	• Premium	• AX	
• SSL VPN (Supported beginning in Cisco IOS XE 3.12.1S.)	• Advanced	• Security	• SSL VPN Configuration Guide, Cisco IOS XE Release 3S
	• Premium	• AX	

MPLS:

<p>| • MPLS | • Premium | • APPX | • AX | See the Multiprotocol Label Switching (MPLS) guides in the CSR 1000v Configuration Guides. |</p>
<table>
<thead>
<tr>
<th>Technologies Supported</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.12S and Earlier (Legacy)</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</th>
<th>See the Following Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• EoMPLS</td>
<td>• Premium</td>
<td>• APPX • AX</td>
<td>• See the Multiprotocol Label Switching (MPLS) guides in the CSR 1000v Configuration Guides.</td>
</tr>
<tr>
<td>• VRF</td>
<td>• Advanced • Premium</td>
<td>• IPBase</td>
<td>• MPLS: Layer 3 VPNs Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>• VPLS (Supported beginning in Cisco IOS XE 3.10S.)</td>
<td>• Premium</td>
<td>• APPX • AX</td>
<td>• MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Network Management:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SNMP</td>
<td>• Standard • Advanced • Premium</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• SNMP Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS Network Management Command Reference</td>
</tr>
<tr>
<td>• Flexible NetFlow</td>
<td>• Standard • Advanced • Premium</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• Flexible NetFlow Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS Flexible NetFlow Command Reference</td>
</tr>
<tr>
<td>• Secure Shell (SSH)</td>
<td>• Standard • Advanced • Premium</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• Secure Shell Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
</tbody>
</table>

QoS:
<table>
<thead>
<tr>
<th>Technologies Supported</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.12S and Earlier (Legacy)</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</th>
<th>See the Following Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS</td>
<td>• Standard (Cisco IOS XE 3.12S)</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• Quality of Service Solutions Configuration Guide Library, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td>• Advanced (Cisco IOS XE 3.10S and later)</td>
<td></td>
<td>• Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td></td>
<td>• Premium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT</td>
<td>• Standard</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• IP Addressing: NAT Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td>• Advanced</td>
<td></td>
<td>• Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td></td>
<td>• Premium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Control:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>• Standard</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• Authentication Authorization and Accounting Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td>• Advanced</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Premium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Control Lists</td>
<td>• Standard</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• Securing the Data Plane Configuration Guide Library, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td>• Advanced</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Premium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP SLA</td>
<td>• Premium</td>
<td>• AX • APPX</td>
<td>• IP SLAs Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS IP SLAs Command Reference</td>
</tr>
</tbody>
</table>
Supported Cisco IOS XE Technologies

<table>
<thead>
<tr>
<th>Technologies Supported</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.12S and Earlier (Legacy)</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</th>
<th>See the Following Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RADIUS</td>
<td>• Standard • Advanced • Premium</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• RADIUS Configuration Guide Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td>• TACACS+</td>
<td>• Standard • Advanced • Premium</td>
<td>• IPBase • Security • AX • APPX</td>
<td>• TACACS+ Configuration Guide Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td>• Layer3 Firewall</td>
<td>• Advanced • Premium</td>
<td>• Security • AX</td>
<td>• MPLS: Layer 3 VPNS Configuration Guide, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>• Zone-Based Firewall</td>
<td>• Advanced • Premium</td>
<td>• Security • AX</td>
<td>• Security Configuration Guide: Zone-Based Policy Firewall, Cisco IOS XE Release 3S</td>
</tr>
<tr>
<td>• Zone-Based Firewall</td>
<td>• NA</td>
<td>• Advanced • Premium</td>
<td>• Cloud Integrated Security Solution Guide</td>
</tr>
<tr>
<td>Multi-tenancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Cloud Integrated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security Solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Supported starting with Cisco IOS XE Denali 16.4.1.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application Services:

<table>
<thead>
<tr>
<th>Applications Supported</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</th>
<th>See the Following Documentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Application Visibility and Control (AVC)</td>
<td>• Premium • AX • APPX</td>
<td>• Application Visibility and Control Configuration Guide</td>
</tr>
</tbody>
</table>
Supported Cisco IOS XE Technologies

<table>
<thead>
<tr>
<th>Technologies Supported</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.12S and Earlier (Legacy)</th>
<th>Technology Package Licenses Supported in Cisco IOS XE Releases 3.13S and Later, and Denali 16.3.1 and Later</th>
<th>See the Following Documentation:</th>
</tr>
</thead>
</table>
| • NBAR2 | • Premium | • AX
| | | • APPX | • NBAR Protocol Library, Cisco IOS XE Release 3S
| | | |
| | | • QoS: NBAR Configuration Guide, Cisco IOS XE Release 3S |
| | | Download the NBAR2 protocol pack for your release on the Cisco CSR 1000V software download page. For more information, see the NBAR2 Protocol Library. |

Broadband:

| Broadband Network Gateway | NA | • APPX (Requires broadband add-on feature license (L-CSR-BB-1K=).) | Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS XE Release 3S
| (Supported beginning in Cisco IOS XE 3.13S.) | |
| | | | Cisco IOS Broadband Access Aggregation and DSL Command Reference |

| Intelligent Services Gateway | NA | • APPX (Requires broadband add-on feature license (L-CSR-BB-1K=).) | Intelligent Services Gateway Configuration Guide, Cisco IOS XE Release 3S
| (Supported beginning in Cisco IOS XE 3.13S.) | | | Cisco IOS Intelligent Services Gateway Command Reference |

Redundancy:

| HSRP | Standard
| | Advanced
| | Premium
| | IPBase
| | Security
| | AX
| | APPX | First Hop Redundancy Protocols Configuration Guide, Cisco IOS XE Release 3S

WAAS:

| Integrated AppNav-XE | Premium
| AX
| APPX | Configuration Guide for AppNav-XE for Cisco Cloud Services Router 1000V Series |

Cisco CSR 1000v Series Cloud Services Router Overview

Cisco CSR 1000v and Cisco ISrv Software Configuration Guide
Management Support

Managing the Router Using Cisco Configuration Professional

Beginning with Cisco IOS XE Release 3.12S, the Cisco CSR 1000v supports managing the router using Cisco Configuration Professional. The minimum version required is Cisco Configuration Professional 2.8. For more information, see the Cisco Configuration Professional documentation.

Managing the Router Using the Cisco IOS XE REST API

Beginning with Cisco IOS XE Release 3.10S, and including Cisco IOS XE Denali 16.2, a REST API is available as an alternative method for managing the Cisco CSR 1000v router.

Note

The Cisco CSR 1000v currently does not fully support IPv6 for the REST API.

The following requirements apply to the Cisco IOS XE REST API (formerly called the Cisco CSR 1000v REST API):

- The Cisco IOS XE REST API supports only selected features and technologies compared to the Cisco IOS XE command-line interface.
- The REST API is supported over HTTPS only.
- (Cisco IOS XE releases 3.13.2, 3.14.1, 3.15 and later, and Denali 16.3.1 and later) REST API (and PNSC) support is limited to TLS.
- The Cisco CSR 1000v Amazon Machine Image (AMI) does not support management of the router using the REST API.

For more information about configuring the router to support management using the REST API, see Enabling Management by REST API, on page 305. For more information about using the Cisco IOS XE REST API, see the Cisco IOS XE REST API Management Reference Guide.

Managing the Router Using Cisco Prime Network Services Controller

Beginning with Cisco IOS XE Release 3.11S, you can use the Cisco Prime Network Services Controller to provision, manage, and monitor the Cisco CSR 1000v. Cisco Prime Network Services Controller can be used to streamline configuration when you are provisioning and managing many Cisco CSR 1000v VMs.

If deploying the Cisco CSR 1000v on ESXi, support for remote management using PNSC can be configured while deploying the OVA template. If deploying the Cisco CSR 1000v on other hypervisors, or if launching the Cisco CSR 1000v on an AWS instance, the PNSC configuration settings are performed using the Cisco IOS CLI.

For more information about remote management using Cisco Prime Network Services Controller, see:

Configuring the Management Interface to Support Remote Management by the Cisco Prime Network Services Controller, on page 331
Enabling Remote Management by the Cisco Prime Network Services Controller Host, on page 334
Disabling Remote Management by the Cisco Prime Network Services Controller Host, on page 336

For more information about configuring Cisco Prime Network Services Controller and using the GUI for remote management, see the following documentation:

- Cisco Prime Network Services Controller Quick Start Guide
- Cisco Prime Network Services Controller User Guide

The table below lists the Cisco Prime Network Services Controller versions that are compatible with the Cisco CSR 1000v.

Table 9: Cisco CSR 1000v Compatibility with Cisco Prime Network Services Controller

<table>
<thead>
<tr>
<th>Cisco IOS XE Release for Cisco CSR 1000V</th>
<th>Cisco Prime Network Services Controller Version</th>
<th>Hypervisors Supported for Implementation</th>
<th>Feature Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 3.11S</td>
<td>Version 3.2.1Version 3.2.2</td>
<td>VMware ESXi</td>
<td>Baseline features:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KVM</td>
<td>- Hostname, DNS, User Credentials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Interfaces: cloud-facing, external-facing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Interface types: Gigabit Ethernet, loopback</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- NAT, NTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- ACL, Firewall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Routing: BGP, OSPF, static routes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Syslog</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.12S and later</td>
<td>Version 3.2.1Version 3.2.2</td>
<td>VMware ESXi</td>
<td>Features added in this release:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KVM</td>
<td>- Sub-interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- IPSec VPN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- DHCP Server/Relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Routing: EIGRP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- SNMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- NAT: Overload, PAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- VPN Tunnel interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Site-to-Site VPN</td>
</tr>
</tbody>
</table>
Cisco Unified Computing System (UCS) Products

Table 10: Cisco CSR 1000v Compatibility with Cisco UCS Servers, on page 50 lists Cisco CSR 1000v compatibility with Cisco Unified Computing System (UCS) products.

Table 10: Cisco CSR 1000v Compatibility with Cisco UCS Servers

<table>
<thead>
<tr>
<th>Cisco IOS XE Release 3.9S and later:</th>
<th>The Cisco UCS server requirements are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Unified Computing System (UCS) Products</td>
<td>• VMware-certified</td>
</tr>
<tr>
<td></td>
<td>• 4 or more cores configured</td>
</tr>
<tr>
<td></td>
<td>• 6 GB or more memory</td>
</tr>
<tr>
<td></td>
<td>• VMware vCenter or standalone VMware vSphere client installed to manage the ESXi server</td>
</tr>
</tbody>
</table>

See the Cisco UCS interoperability documentation to determine the UCS hardware and software that is compatible with the supported hypervisors.

Finding Support Information for Platforms and Cisco Software Images

Cisco software is packaged in feature sets consisting of software images that support specific platforms. The feature sets available for a specific platform depend on which Cisco software images are included in a release. To identify the set of software images available in a specific release or to find out if a feature is available in a given Cisco IOS XE software image, you can use Cisco Feature Navigator, the Software Advisor, or the Cisco CSR 1000v Release Notes, Cisco IOS XE Denali 16.3.

Using Cisco Feature Navigator

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS XE software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Using the Software Advisor

To see if a feature is supported by a Cisco IOS XE release, to locate the software document for that feature, or to check the minimum Cisco IOS XE software requirements with your router, Cisco maintains the Software Advisor tool on Cisco.com at:

http://tools.cisco.com/Support/Fusion/FusionHome.do

You must be a registered user on Cisco.com to access this tool.
Using the Software Release Notes

Cisco IOS XE software release notes provide the following information:

- Platform support
- Memory recommendations
- New features
- Open and resolved severity 1 and 2 caveats

Release notes are intended to be release-specific for the most current release, and the information provided in these documents may not be cumulative in providing information about features that first appeared in previous releases. See Cisco Feature Navigator for cumulative feature information.

Using Cisco IOS XE Software

This chapter provides information about the Cisco IOS XE software used to configure the Cisco CSR 1000v and Cisco Cisco ISRv. The software for the Cisco CSR 1000v and Cisco ISRv uses standard Cisco IOS XE CLI commands and conventions.

Commands are not case sensitive. You can abbreviate commands and parameters if the abbreviations contain enough letters to be different from any other currently available commands or parameters.

The table below lists the keyboard shortcuts for entering and editing commands.

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-B or the Left Arrow key</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td>Ctrl-F or the Right Arrow key</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl-E</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Esc B</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td>Esc F</td>
<td>Move the cursor forward one word.</td>
</tr>
</tbody>
</table>

The history buffer stores the last 10 commands you entered. History substitution allows you to access these commands without retyping them, by using special abbreviated commands.
Table 12: History Substitution Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-P or the Up Arrow key</td>
<td>Recall commands in the history buffer, beginning with the most recent</td>
</tr>
<tr>
<td></td>
<td>command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Ctrl-N or the Down Arrow key</td>
<td>Return to more recent commands in the history buffer after recalling</td>
</tr>
<tr>
<td></td>
<td>commands with Ctrl-P or the Up Arrow key.</td>
</tr>
<tr>
<td>Router# show history</td>
<td>While in EXEC mode, list the last several commands you have just entered.</td>
</tr>
</tbody>
</table>

The command modes available in the traditional Cisco IOS CLI are exactly the same as the command modes available in Cisco IOS XE.

Use the CLI to access Cisco IOS XE software. Because the CLI is divided into many different modes, the commands available to you at any given time depend on the mode that you are currently in. Entering a question mark (?) at the CLI prompt allows you to obtain a list of commands available for each command mode.

When you log in to the CLI, you are in user EXEC mode. User EXEC mode contains only a limited subset of commands. To have access to all commands, enter privileged EXEC mode, normally by using a password. From privileged EXEC mode, you can issue any EXEC command—user or privileged mode—or you can enter global configuration mode. Most EXEC commands are one-time commands. For example, show commands show important status information, and clear commands clear counters or interfaces. The EXEC commands are not saved when the software reboots.

Configuration modes allow you to make changes to the running configuration. If you later save the running configuration to the startup configuration, these changed commands are stored when the software is rebooted. To enter specific configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and a variety of other modes, such as protocol-specific modes.

The table below describes how to access and exit various common command modes of the Cisco IOS XE software. It also shows examples of the prompts displayed for each mode.

Table 13: Accessing and Exiting Command Modes

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in.</td>
<td>Router></td>
<td>Use the logout command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, use the enable EXEC command.</td>
<td>Router#</td>
<td>To return to user EXEC mode, use the disable command.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC mode, use the configure terminal privileged EXEC command.</td>
<td>Router(config)#</td>
<td>To return to privileged EXEC mode from global configuration mode, use the exit or end command.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode, specify an interface using an interface command.</td>
<td>Router(config-if)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, use the end command.</td>
</tr>
</tbody>
</table>
Entering a question mark (\?) at the CLI prompt displays a list of commands available for each command mode. You can also get a list of keywords and arguments associated with any command by using the context-sensitive help feature.

To get help specific to a command mode, a command, a keyword, or an argument, use one of the commands listed in the table below.

Table 14: Help Commands and Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Provides a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>abbreviated-command-entry?</td>
<td>Provides a list of commands that begin with a particular character string. (No space between command and question mark.)</td>
</tr>
<tr>
<td>abbreviated-command-entry<Tab></td>
<td>Completes a partial command name.</td>
</tr>
<tr>
<td>?</td>
<td>Lists all commands available for a particular command mode.</td>
</tr>
<tr>
<td>command ?</td>
<td>Lists the keywords or arguments that you must enter next on the command line. (Space between command and question mark.)</td>
</tr>
</tbody>
</table>

Finding Command Options

This section provides an example of how to display syntax for a command. The syntax can consist of optional or required keywords and arguments. To display keywords and arguments for a command, enter a question mark (\?) at the configuration prompt or after entering part of a command followed by a space. The Cisco IOS XE software displays a list and brief description of available keywords and arguments. For example, if you were in global configuration mode and wanted to see all the keywords or arguments for the `arap` command, you would type `arap ?`.

The \(<\text{cr}>\)` symbol in command help output stands for “carriage return.” On older keyboards, the carriage return key is the Return key. On most modern keyboards, the carriage return key is the Enter key. The \(<\text{cr}>\)` symbol at the end of command help output indicates that you have the option to press Enter to complete the command and that the arguments and keywords in the list preceding the \(<\text{cr}>\)` symbol are optional. The \(<\text{cr}>\)` symbol by itself indicates that no more arguments or keywords are available and that you must press Enter to complete the command.

The following examples show how you can use the question mark (?) to assist you in entering commands.

Table 15: Finding Command Options

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Router> `enable`
Password: `<password>`
Router# | Enter the `enable` command and password to access privileged EXEC commands. You are in privileged EXEC mode when the prompt changes to a “#” from the “>”; for example, Router> to Router# . |
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
</table>
| ```router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
router(config)#``` | Enter the **configure terminal** privileged EXEC command to enter global configuration mode. You are in global configuration mode when the prompt changes to `Router(config)#`. |

Note

Enter interface configuration mode by specifying the serial Gigabit Ethernet interface that you want to configure using the **interface GigabitEthernet number** global configuration command.

Enter `?` to display what you must enter next on the command line.

When the `<cr>` symbol is displayed, you can press Enter to complete the command.

You are in interface configuration mode when the prompt changes to `Router(config-if)#`.

Note

The Cisco CSR 1000v and Cisco ISRv support only Gigabit Ethernet interfaces.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
</table>
| ```router(config)# interface GigabitEthernet ?
<0-6> GigabitEthernet interface number
router(config)# interface GigabitEthernet 1
router(config-if)#``` | Enter `?` to display a list of all the interface configuration commands available for the Gigabit Ethernet interface. This example shows only some of the available interface configuration commands. |

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
</table>
| ```router(config-if)# ?
Interface configuration commands:
.
.
ip Interface Internet Protocol config commands
keepalive Enable keepalive
lan-name LAN Name command
llc2 LLC2 Interface Subcommands
load-interval Specify interval for load calculation for an interface
locaddr-priority Assign a priority group
logging Configure logging for interface
loopback Configure internal loopback on an interface
mac-address Manually set interface MAC address
mls mls router sub/interface commands
mpoa MPOA interface configuration commands
mtu Set the interface Maximum Transmission Unit (MTU)
netbios Use a defined NETBIOS access list or enable name-caching
no Negate a command or set its defaults
nrzi-encoding Enable use of NRZI encoding
ntp Configure NTP
.
.
router(config-if)#``` | Enter `?` to display a list of all the interface configuration commands available for the Gigabit Ethernet interface. This example shows only some of the available interface configuration commands. |
CommentCommand

Router(config-if)# ip ?
Interface IP configuration subcommands:
 access-group Specify access control for packets
 accounting Enable IP accounting on this interface
 address Set the IP address of an interface
 authentication authentication subcommands
 bandwidth-percent Set EIGRP bandwidth limit
 bgp BGP interface commands..<snipped for brevity>
Router(config-if)# ip

Enter the command that you want to configure for the interface. This example uses the ip command.
Enter ? to display what you must enter next on the command line. This example shows only some of the available interface IP configuration commands.

Enter the command that you want to configure for the interface. This example uses the ip address command.
Enter ? to display what you must enter next on the command line. In this example, you must enter an IP address or the negotiated keyword.

A carriage return (<cr>) is not displayed; therefore, you must enter additional keywords or arguments to complete the command.

Almost every configuration command has a no form. In general, use the no form to disable a function. Use the command without the no keyword to re-enable a disabled function or to enable a function that is disabled by default. For example, IP routing is enabled by default. To disable IP routing, use the no ip routing command;
to re-enable IP routing, use the `ip routing` command. The Cisco IOS XE software command reference publications provide the complete syntax for the configuration commands and describe what the `no` form of a command does.

Many CLI commands also have a `default` form. By issuing the command `default command-name`, you can configure the command to its default setting. The Cisco IOS XE software command reference publications describe the function of the `default` form of the command when the `default` form performs a different function than the plain and `no` forms of the command. To see what default commands are available on your system, enter `default ?` in the appropriate command mode.

Use the `copy running-config startup-config` command to save your configuration changes to the startup configuration so that the changes will not be lost if the software reloads or a power outage occurs. For example:

```plaintext
Router# copy running-config startup-config
Building configuration...

It might take a minute or two to save the configuration. After the configuration has been saved, the following output appears:

[OK]  
Router#  

This task saves the configuration to NVRAM.

On the Cisco CSR 1000v and ISRv, the startup configuration file is stored in the NVRAM partition. As a matter of routine maintenance on any Cisco router, users should backup the startup configuration file by copying the startup configuration file from NVRAM onto one of the router’s other file systems and, additionally, onto a network server. Backing up the startup configuration file provides an easy method of recovering the startup configuration file in the event the startup configuration file in NVRAM becomes unusable for any reason.

The `copy` command can be used to backup startup configuration files. The following examples show the startup configuration file in NVRAM being backed up:

**Example 1: Copying a Startup Configuration File to Bootflash**

```plaintext
Router# dir bootflash:
Directory of bootflash:/
11 drwx 16384 Jan 24 2012 04:53:55 -05:00 lost+found
12 -rw- 289243620 Jan 24 2012 04:54:55 -05:00
308257 drwx 4096 Jan 24 2012 04:57:06 -05:00 core
876097 drwx 4096 Jan 24 2012 04:57:07 -05:00 .prst_sync
63277 drwx 4096 Jan 24 2012 04:57:10 -05:00 .rollback_timer 13
 -rw- 0 Jan 24 2012 04:57:19 -05:00 tracelogs.
Router# copy nvram:startup-config bootflash:
Destination filename [startup-config]?
3517 bytes copied in 0.647 secs (5436 bytes/sec)
Directory of bootflash:/
11 drwx 16384 Jan 24 2012 04:53:55 -05:00 lost+found
12 -rw- 289243620 Jan 24 2012 04:54:55 -05:00
308257 drwx 4096 Jan 24 2012 04:57:06 -05:00 core
876097 drwx 4096 Jan 24 2012 04:57:07 -05:00 .prst_sync
63277 drwx 4096 Jan 24 2012 04:57:10 -05:00 .rollback_timer 13
 -rw- 0 Jan 24 2012 04:57:19 -05:00 tracelogs.
14 -rw- 7516 Jul 2 2012 15:01:39 -07:00 startup-config
```
Example 2: Copying a Startup Configuration File to a TFTP Server

Router# copy bootflash:startup-config tftp:  
Address or name of remote host []? 172.17.16.81  
Destination filename [pe24_asr-1002-config]? /auto/tftp-users/user/startup-config  
!!  
3517 bytes copied in 0.122 secs (28828 bytes/sec)


NVRAM File Security

The Cisco CSR 1000v and ISRv encrypt some of the disk partitions internal to the VM to provide extra security around sensitive data that may be stored on the routers. For example, information in NVRAM is encrypted so that it is not visible to administrative entities with access to the physical hard disk upon which the Cisco CSR 1000v is stored.

You can search and filter the output of `show` and `more` commands. This functionality is useful if you need to sort through large amounts of output or if you want to exclude output that you need not see.

To use this functionality, enter a `show` or `more` command followed by the “pipe” character ( | ); one of the keywords `begin`, `include`, or `exclude`; and a regular expression on which you want to search or filter (the expression is case sensitive):

```
show command {append | begin | exclude | exclude | include | redirect | section | tee} regular-expression

show command | {append | begin | exclude | include | redirect | section | tee} regular-expression
```

The output matches certain lines of information in the configuration file.

To power off a Cisco CSR 1000v, you must power off the VM upon which the router is installed. For information about powering off the VM, see your VM vendor documentation.
NVRAM File Security
Introduction

Cisco hardware routers are normally shipped with the Cisco IOS XE software pre-installed. Because the Cisco CSR 1000v Series Cloud Services Router is not hardware-based, you must download the Cisco IOS XE software from Cisco.com and install it directly onto the virtual machine. However, as part of the initial installation process, you must first provision the attributes of the VM so that the Cisco CSR 1000v software can install and boot.


The figure below ("Cisco CSR 1000v Installation Task Workflow") shows the high-level tasks required to install the Cisco CSR 1000v on the VM. The different installation options are dependent on the hypervisor being used. See the following sections for more information.
Obtaining the Cisco CSR 1000v VM Image

SUMMARY STEPS

2. Click Download Software.
3. Select the router model (Cloud Services Router 1000v).
4. Click IOS XE Software. The recommended Cisco IOS XE release is selected by default.
5. In the list of available images, click **Download Now** or **Add to Cart**. Follow the instructions for downloading the software.

**DETAILED STEPS**

**Step 1**  

**Step 2**  
Click **Download Software**.

**Step 3**  
Select the router model (Cloud Services Router 1000v).

**Step 4**  
Click **IOS XE Software**. The recommended Cisco IOS XE release is selected by default.

**Step 5**  
In the list of available images, click **Download Now** or **Add to Cart**. Follow the instructions for downloading the software.

---

**Cisco CSR 1000v Installation Files**

The following software images are available for installing the Cisco CSR 1000v on the supported hypervisors.

- **.ova**  
  Used for deploying the OVA template on the VM (in TAR format)

- **.iso**  
  Used for installing the software image on the VM (requires manually creating the VM)

- **.qcow2**  
  Used for installing the software image in KVM OpenStack environments.

- **.run**  
  (Cisco IOS XE 3.16 and later, and Cisco IOS XE Denali 16.3.1 and later) Self-installing image used for installation in a KVM environment.

  - **.bin**  
    These images are used for upgrading and downgrading the software only. For more information, see [Prerequisites for the Software Upgrade Process, on page 227](#) and subsequent sections.

---

**Note**  
(Cisco IOS XE Everest 16.5 and later) On AWS, you can use the Cisco CSR 1000v .bin file to upgrade the version of Cisco CSR 1000v, without having to recreate AWS EC2 instance from a new AMI. This inline upgrade process is not yet available on Microsoft Azure.
Cisco CSR 1000v Installation Options

The Cisco CSR 1000v supports the following installation options:

- **Deploy the OVA template on the VM.**
  Uses the .ova file. This template creates a VM using recommended preset values. See Deploying the Cisco CSR 1000v OVA to the VM using vSphere, on page 75 and Deploying the Cisco CSR 1000v OVA to the VM using COT, on page 83.

  The .ova file can be used only for first-time installation. It cannot be used for upgrading the Cisco IOS XE software version.

- **Deploy the .ova file on the VM using the Common OVF Tool (COT).**
  The COT application is included in the file package. However, to ensure that you are using the latest version of COT, download COT directly from the GitHub site: https://github.com/glennmatthews/cot/blob/master/README.md

  Using the COT application, you can customize the VM values and easily deploy the custom VM as part of the Cisco CSR 1000v installation process. See Editing the Basic Properties of Cisco CSR 1000v using vSphere, on page 80.

  The COT application is recommended in place of the BDEO tool, which is used in early releases of Cisco IOS XE.

- **Manually configure the VM using the .iso file.**
  Uses the .iso file. You can install the .iso file on your host and manually create the VM using your hypervisor software. For example, if you are installing the Cisco CSR 1000v on VMware, you would install the .iso file on the VMware ESXi host, and manually create the VM using the vSphere GUI. See the following sections:

  - Manually Creating the Cisco CSR 1000v VM Using the .iso File (VMware ESXi), on page 90
  - Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109
  - Creating the Cisco CSR 1000v VM Using virt-install with ISO Image, on page 124
  - Prerequisites for Manually Creating the CSR 1000v VM using the .iso File, on page 143

- Create the Cisco CSR 1000v instance in KVM using OpenStack
Uses the .qcow2 file. The qcow2 (QEMU Copy on Write) image format is used to create the Cisco CSR 1000v tenant in the KVM OpenStack cloud environment. See Selecting a Cisco CSR 1000v Installation Image, on page 126 onwards.

**BDEO Tool**

The Cisco Build, Deploy, Execute OVF (BDEO) tool is included in the OVA package. In past releases, this tool was recommended for Cisco CSR 1000v installation. The tool is no longer recommended, but is included in the package for unusual installation circumstances. You should use the COT application instead of the BDEO tool.

**Upgrading Cisco IOS XE Software**

For information about upgrading the Cisco IOS XE software, see Prerequisites for the Software Upgrade Process, on page 227 and subsequent sections.

**Installation Options and Requirements**

The following table lists the installation options for the supported hypervisors and the minimum Cisco IOS XE software release required.

<table>
<thead>
<tr>
<th>Installation Option</th>
<th>VMware ESXi</th>
<th>Citrix XenServer</th>
<th>KVM</th>
<th>Microsoft Hyper-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deploy OVA Template Using OVA Wizard</td>
<td>Cisco IOS XE 3.9S and later</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Deploy OVA Using COT</td>
<td>Cisco IOS XE 3.9S and later</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Manually Configure VM Using .iso File</td>
<td>Cisco IOS XE 3.9S and later. (Cisco IOS XE Denali 16.2 is not supported by CSR 1000v.)</td>
<td>Cisco IOS XE 3.10S and later. (Cisco IOS XE Denali 16.2 is not supported by CSR 1000v.)</td>
<td>Cisco IOS XE 3.10S and later. (Cisco IOS XE Denali 16.2 is not supported by CSR 1000v.)</td>
<td>Cisco IOS XE 3.12S and later. (Cisco IOS XE Denali 16.2 is not supported by CSR 1000v.)</td>
</tr>
<tr>
<td>Create the KVM instance on OpenStack Using .qcow2 File</td>
<td>NA</td>
<td>NA</td>
<td>Cisco IOS XE 3.12S and later. (Cisco IOS XE Denali 16.2 is not supported by CSR 1000v.)</td>
<td>NA</td>
</tr>
</tbody>
</table>

**Guidelines and Limitations**

Be aware of the following general guidelines and restrictions before installing the Cisco CSR 1000v in your network:

- The Cisco CSR 1000v may properly function within a nested VM, but this is not tested nor supported.
- If the hypervisor does not support vNIC Hot Add/Remove, do not make any changes to the VM hardware (memory, CPUs, hard drive size, and so on) while the VM is powered on.
• (Cisco IOS XE Release 3.11S and later) The GigabitEthernet0 interface is no longer available. You can designate any interface as the management interface.

• (Cisco IOS XE Release 3.10S and earlier) The GigabitEthernet0 interface is the default management port and cannot be changed.

• The Cisco IOS XE CLI can be accessed either through the virtual VGA console or the console on the virtual serial port. The console can be selected from GRUB mode during the first-time installation, or it can be changed using the Cisco IOS XE `platform console` command after the router boots. For more information, see Booting the Cisco CSR 1000v as the VM, on page 153.

• If you deploy a CSR 1000v 16.12 image, you can downgrade to the 16.11.x release only, and not any of the previous releases. When you attempt to downgrade directly to an earlier release, the device boots back with the 16.12 image. If you deploy a CSR1000v 16.10 or 16.9 image, and then upgrade to 16.12, you can downgrade the CSR 1000v instance to 16.10.x or 16.9.x releases.

---

**Note**

Some hypervisors may not support serial console access. Verify support using your hypervisor documentation.

---

**ROMMON and the Cisco CSR 1000v**

The Cisco CSR 1000v, which is software-based, does not include a ROMMON image. This differs from many Cisco hardware-based routers. During the initial bootloader process, the installation script creates a clean version of the Cisco CSR 1000v software image known as the Golden Image and places it in a non-accessible partition. This clean version can be used if the software image is not working properly or is not bootable.

Note that although the Cisco CSR 1000v does not include ROMMON, the platform does include a GNU GRand Unified Bootloader (GRUB)-based bootloader. The GRUB function on the Cisco CSR 1000v provides more limited functionality compared to the ROMMON available on other Cisco platforms.

Note that although ROMMON is not present on the Cisco CSR 1000v, some Cisco IOS XE commands such as `show version` may show references to ROMMON in the command output.

---

**Note**

After the Cisco CSR 1000v completes the first-time installation, you can configure the router to automatically enter GRUB mode when the router is booted. For more information, see Activating Cisco CSR 1000v Licenses, on page 163 and subsequent licensing sections.

---

**CSR and ISRv - VNF Secure Boot**

The secure boot feature prevents malicious software applications and unauthorized operating systems from loading into the system during the system startup process. If the secure boot feature is enabled, only the authorized software applications boots up from the device. This feature ensures that the software applications that boot up on the device are certified by Cisco. A secure compute system ensures that the intended software on the system runs without malware or tampered software. The UEFI (Unified Extensible Firmware Interface) specification defines a secure boot methodology that prevents loading software which is not signed with an acceptable digital signature.
To display the system boot mode and the bootloader version use `show platform software system boot` command.

Router#show platform software system boot
Boot mode: EFI
Bootloader version: 2.0

**Restrictions**

- The following secure boot environments are supported:
  - ESXi version 6.5 or higher
  - KVM RHEL 7.5 using open stack license
  - NFVIS release 3.11 or later

- Only EFI firmware modes support the secure boot.
- This feature is supported on VM created in Cisco IOS XE Gibraltar 16.12 or later releases.

GRUB2 and new disk partition layout available for Cisco IOS XE Gibraltar 16.12 or later releases.

---

**Note**
VMs created before Cisco IOS XE Gibraltar 16.12 release supports GRUB and BIOS mode and does not upgrade to GRUB2.

---

**Note**
Each hypervisor has a unique process to enable secure boot for the guest VMs. Refer to hypervisor specific documentation to enable secure boot. A set of high-level hypervisor specific steps to enable secure boot are mentioned below.

### ESXi Secure Boot Setup

- Create VM using ESXi 6.5 or later version using VM version 13 or greater. To choose the EFI firmware mode, navigate through **VM Options > Boot Options > Firmware > EFI**.
- Power down the VM after the initial boot and IOS prompt is complete.
- Enable the EFI secure boot in **Edit Settings > VM Options > Boot Options > Secure Boot**.
- Power up VM and the VNF boots up securely.

### KVM Secure Boot Setup

- Create the VM.
- Power down the VM after the VM is created and VNF IOS prompt is complete.
- Install PK, KEK, and db certificates from the **EFI Firmware** menu and reset.

To create the custom keys, see Custom Keys for Secure boot. For db certificates, see MicCorUEFCA2011_2011-06-27.crt and MicWinProPCA2011_2011-10-19.crt.
• Secure boot the VM.

**NFVIS Secure Boot Setup**

• Upgrade to NFVIS 3.11 release or later.
• Register an ISRv EFI tarball with the NFVIS repository.
• Create a VM using the registered EFI image.
• Secure boot the VM.

**Where to Go Next**

See the information in the sections below, about installing the Cisco CSR 1000v in different hypervisor environments:

• VMware ESXi Support Information, on page 69
• Microsoft Hyper-V Support Information, on page 141
• Citrix XenServer Support Information, on page 107
• Kernel Virtual Machine Support Information, on page 117

---

**Note**

For information about deploying the Cisco CSR 1000v in an Amazon Web Services environment, see the Cisco CSR 1000V Series Cloud Services Router Deployment Guide for Amazon Web Services.

---

**Note**

For information about deploying the Cisco CSR 1000v in a Microsoft Azure environment, see the Cisco CSR 1000v Deployment Guide for Microsoft Azure.
VMware ESXi Support Information

This chapter contains information about VMware tools/software and the VM requirements for Cisco CSR 1000v / Cisco IOS XE software.

The Cisco CSR 1000v can run on the VMware ESXi hypervisor. VMware ESXi runs on PCs with x86-based CPUs. You can use the same hypervisor to run several VMs.

VMware vSphere Web Client is a web application that runs on a PC and accesses VMware vCenter Server. You can use VMware vSphere Web Client software to create, configure, and manage VMs on the vCenter Server and to start/stop the Cisco CSR 1000v. The Cisco CSR 1000v boots from a virtual disk located on the data store.
If you upgrade VMware ESXi, and ESXi contains an existing Cisco CSR 1000v, the interfaces of the CSR 1000v may be renamed. For example, GigabitEthernet1 may appear as GigabitEthernet4. To recover the original interface names, perform the following two Cisco IOS XE configuration commands from the console or terminal of the CSR 1000v, immediately after upgrading the VMware ESXi hypervisor:

```plaintext
clear platform software vnic nvtable
reload
```

To find out more about installing VMware vSphere products, see VMware product documentation.

## VMware Requirements—Cisco IOS XE Gibraltar 16.11

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE Gibraltar 16.11 are as follows:

**Note**

For VMware requirements—Cisco IOS XE 3.x, see VMware Requirements—Cisco IOS XE 3.x, on page 101 and VMware VM Requirements—Cisco IOS XE 3.x, on page 103.

- VMware vSphere Web Client. The 6.5 Update 1 and 6.5 Update 2 versions of the VMware vSphere Web Client are supported.
- VMware vCenter Server. The following versions of VMware vCenter Server are supported:
  - VMware ESXi 6.5 Update 2 - This version is recommended. This version has been fully tested and meets performance benchmarks.
- VMware vCenter—installation tool.
- VMware vSwitch—standard or distributed vSwitches are supported.
- Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.
- Virtual Disk—a 8 GB virtual disk is supported.
- vCPUs—the following vCPU configurations are supported:

**Note**

The required vCPU configuration depends on the throughput license and technology package installed. For more information, see the data sheet for your release.

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
- 8 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU core—one virtual CPU core is required. This needs a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.
Virtual hard disk space—minimum size of 8 GB.

Virtual Network Interface Cards (vNICs)—Three or more vNICs (max. 10)—VMXNET3 or i40evf.

A default video, SCSI controller set is required, and an installed virtual CD/DVD drive.

Supported VMware Features and Operations

VMware supports various features and operations that allow you to manage your virtual applications and perform operations such as cloning, migration, shutdown and resume.

Some of these operations cause the runtime state of the VM to be saved and then restored upon restarting. If the runtime state includes traffic-related state, then on resumption or replaying the runtime state, additional errors, statistics, or messages are displayed on the user console. If the saved state is just configuration driven, you can use these features and operations without a problem.

The table "Supported VMware Features and Operations: Storage Options (for Both vCenter Server and vSphere Client)" lists the VMware features and operations that are supported on the Cisco CSR 1000v. For more information about VMware features and operations, see the VMware Documentation.

The following VMware features and operations are not supported in all versions of the Cisco CSR 1000v, but can still be used or performed on non-supported versions at the risk of encountering dropped packets, dropped connections, and other error statistics:

- Distributed Resource Scheduling (DRS)
- Fault Tolerance
- Resume
- Snapshot
- Suspend

See the following sections for more information.

- General Features (vCenter Server), on page 71
- Operations (for vCenter Server and vSphere Web Client), on page 72
- High Availability, on page 73
- Storage Options (for vCenter Server and vSphere Web Client), on page 74

General Features (vCenter Server)

Table 17: Supported VMware Features and Operations: General Features (for vCenter Server Only)

<table>
<thead>
<tr>
<th>Supported Entities</th>
<th>First Supported Cisco CSR 1000v Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloning</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>Enables cloning a virtual machine or template, or cloning a virtual machine to a template.</td>
</tr>
</tbody>
</table>
The entire state of the virtual machine as well as its configuration file, if necessary, is moved to the new host even while the data storage remains in the same location on shared storage.

Cisco IOS XE Release 3.9S

Enablesmovingthe VM from one physical server to another while the VM remains active.

Cisco IOS XE Release 3.9S

Usestemplatestocreatenewvirtualmachinesbycloningthetemplate as a virtual machine.

Table 18: Supported VMware Features and Operations: Operations (for vCenter Server and vSphere Client)

<table>
<thead>
<tr>
<th>Supported Entities</th>
<th>First Supported Cisco CSR 1000v Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migrating</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>The entire state of the virtual machine as well as its configuration file, if necessary, is moved to the new host even while the data storage remains in the same location on shared storage.</td>
</tr>
<tr>
<td>vMotion</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>Enables moving the VM from one physical server to another while the VM remains active.</td>
</tr>
<tr>
<td>Template</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>Uses templates to create new virtual machines by cloning the template as a virtual machine.</td>
</tr>
</tbody>
</table>

Operations (for vCenter Server and vSphere Web Client)

Table 18: Supported VMware Features and Operations: Operations (for vCenter Server and vSphere Client)

<table>
<thead>
<tr>
<th>Supported Entities</th>
<th>First Supported Cisco CSR 1000v Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power On</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>Powers on the virtual machine and boots the guest operating system if the guest operating system is installed.</td>
</tr>
<tr>
<td>Power Off</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>Stops the virtual machine until it is powered back. The power off option performs a “hard” power off, which is analogous to pulling the power cable on a physical machine and always works.</td>
</tr>
<tr>
<td>Shut Down</td>
<td>Not supported</td>
<td>Shut Down, or “soft” power off, leverages VMware Tools to perform a graceful shutdown of a guest operating system. In certain situations, such as when VMware Tools is not installed or the guest operating system is hung, shut down might not succeed and using the Power off option is necessary.</td>
</tr>
<tr>
<td>Suspend</td>
<td>Not supported</td>
<td>Suspends the virtual machine.</td>
</tr>
<tr>
<td>Reset/Restart</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>Stops the virtual machine and restarts (reboots) it.</td>
</tr>
<tr>
<td>OVF Creation</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>An OVF package consisting of several files in a directory captures the state of a virtual machine including disk files that are stored in a compressed format. You can export an OVF package to your local computer.</td>
</tr>
<tr>
<td>OVA Creation</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>You can create a single OVA package file from the OVF package/template. The OVA can then be distributed more easily; for example, it may be downloaded from a website or moved via a USB key.</td>
</tr>
</tbody>
</table>

Table 19: Supported VMware Features and Operations: Networking Features

<table>
<thead>
<tr>
<th>Supported Entities</th>
<th>First Supported Cisco CSR 1000v Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom MAC address</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>From both vCenter Server and vSphere Client. Allows you to set up the MAC address manually for a virtual network adapter.</td>
</tr>
</tbody>
</table>
## Supported Entities

<table>
<thead>
<tr>
<th>Supported Entities</th>
<th>First Supported Cisco CSR 1000v Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed VSwitch</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>From vCenter Server only. A vSphere distributed switch on a vCenter Server data center can handle networking traffic for all associated hosts on the data center.</td>
</tr>
<tr>
<td>Distributed Resources Scheduler</td>
<td>Cisco IOS XE Release 3.10S</td>
<td>Provides automatic load balancing across hosts.</td>
</tr>
<tr>
<td>NIC Load Balancing</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>From both vCenter Server and vSphere Client. Load balancing and failover policies allow you to determine how network traffic is distributed between adapters and how to reroute traffic if an adapter fails.</td>
</tr>
<tr>
<td>NIC Teaming</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>From both vCenter Server and vSphere Client. Allows you to set up an environment where each virtual switch connects to two uplink adapters that form a NIC team. The NIC teams can then either share the load of traffic between physical and virtual networks among some or all of its members, or provide passive failover in the event of a hardware failure or a network outage. <strong>Note</strong> NIC Teaming can cause a large number of ARP packets to flood the Cisco CSR 1000v and overload the CPU. To avoid this situation, reduce the number of ARP packets and implement NIC Teaming as Active-Standby rather than Active-Active.</td>
</tr>
<tr>
<td>vSwitch</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>From both vCenter Server and vSphere Client. A vSwitch is a virtualized version of a Layer 2 physical switch. A vSwitch can route traffic internally between virtual machines and link to external networks. You can use vSwitches to combine the bandwidth of multiple network adapters and balance communications traffic among them. You can also configure a vSwitch to handle a physical NIC failover.</td>
</tr>
</tbody>
</table>

## High Availability

Cisco IOS-based High Availability is not supported by the Cisco CSR 1000v. High Availability is supported on the VM host only.

### Table 20: Supported VMware Features and Operations: High Availability

<table>
<thead>
<tr>
<th>Supported Entities</th>
<th>First Supported Cisco CSR 1000v Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM-Level High Availability</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>To monitor operating system failures, VM-Level High Availability monitors heartbeat information in the VMware High Availability cluster. Failures are detected when no heartbeat is received from a given virtual machine within a user-specified time interval. VM-Level High Availability is enabled by creating a resource pool of VMs using VMware vCenter Server.</td>
</tr>
</tbody>
</table>
To monitor physical servers, an agent on each server maintains a heartbeat with the other servers in the resource pool such that a loss of heartbeat automatically initiates the restart of all affected virtual machines on other servers in the resource pool. Host-Level High Availability is enabled by creating a resource pool of servers or hosts, and enabling high availability in vSphere.

Using high availability, fault tolerance is enabled on the ESXi host. When you enable fault tolerance on the VM running the Cisco CSR 1000v, a secondary VM on another host in the cluster is created. If the primary host goes down, then the VM on the secondary host will take over as the primary VM for the Cisco CSR 1000v.

---

### Storage Options (for vCenter Server and vSphere Web Client)

**Table 21: Supported VMware Features and Operations: Storage Options (for Both vCenter Server and vSphere Client)

<table>
<thead>
<tr>
<th>Supported Entities</th>
<th>First Supported Cisco CSR 1000v Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Options (for both vCenter Server and vSphere Client)</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>Local storage is in the internal hard disks located inside your ESXi host. Local storage devices do not support sharing across multiple hosts. A datastore on a local storage device can be accessed by only one host.</td>
</tr>
<tr>
<td>Local Storage</td>
<td>Cisco IOS XE Release 3.9S</td>
<td></td>
</tr>
<tr>
<td>External Storage Target</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>You can deploy the Cisco CSR 1000v on external storage, that is, a Storage Area Network (SAN).</td>
</tr>
</tbody>
</table>
| Mount or Pass Through of USB Storage | Cisco IOS XE Release 3.9S | You can connect USB sticks to the Cisco CSR 1000v and use them as storage devices. In ESXi, you need to add a USB controller and then assign the disk devices to the Cisco CSR 1000v.  
  - Cisco CSR 1000v supports USB disk hot-plug.  
  - You can use only two USB disk hot-plug devices at a time.  
  - USB hub is not supported. |
Deploying the Cisco CSR 1000v OVA to the VM

You can use the provided CSR 1000v OVA file package to deploy the Cisco CSR 1000v to the VM. The OVA package includes an OVF file that contains a default VM configuration based on a Cisco IOS XE release and the supported hypervisor. (See the “Guidelines and Limitations” section of the installation configuration that is included in the OVA file.)

The OVA can be deployed using VMware vSphere or COT (Common OVF Tool).

- Deploying the Cisco CSR 1000v OVA to the VM using vSphere, on page 75
- Deploying the Cisco CSR 1000v OVA to the VM using COT, on page 83

Note

The Citrix XenServer, KVM and Microsoft Hyper-V implementations do not support deploying the VM using the .ova file. You must manually install the VM using the .iso file.

Deploying the Cisco CSR 1000v OVA to the VM using vSphere

You can use the provided CSR 1000v OVA file package to deploy the Cisco CSR 1000v to the VM. The OVA package includes an OVF file that contains a default VM configuration based on a Cisco IOS XE release and the supported hypervisor. (See the “Guidelines and Limitations” section of the installation configuration that is included in the OVA file.)

Note

The Citrix XenServer, KVM and Microsoft Hyper-V implementations do not support deploying the VM using the .ova file. You must manually install the VM using the .iso file.

- Restrictions and Requirements, on page 75
- Deploying the Cisco CSR 1000v OVA to the VM, on page 75
- Editing the Basic Properties of Cisco CSR 1000v using vSphere, on page 80
- Editing the Custom Properties of Cisco CSR 1000v using vSphere, on page 82

Restrictions and Requirements

The following restrictions apply when deploying the OVA package to the VM:

- (Cisco IOS XE Releases 3.10S and 3.11S) The OVA package only creates a VM with 4 virtual CPUs. To change to the 1 or 2 virtual CPU configuration, first deploy the OVA template, and then use vSphere to change the virtual CPU configuration and the required RAM allocation.
If the virtual CPU configuration is changed, the Cisco CSR 1000v must be rebooted. Changing the RAM allocation does not require rebooting the Cisco CSR 1000v. Beginning with Cisco IOS XE 3.12S, the OVA package provides an option to select the virtual CPU configuration.

- When deploying the OVA, the VM requires two virtual CD/DVD drives, one for the OVF environment file and one for the .iso file.

**Deploying the OVA to the VM**

Perform the following steps in VMware vSphere Client:

**SUMMARY STEPS**

1. Log in to the VMware vSphere Client.
2. From the vSphere Client Menu Bar, choose File > Deploy OVF Template.
3. In the OVA Wizard, point the source to the Cisco CSR 1000v OVA to be deployed. Click Next.
4. Under Name and Inventory Location, specify the name for the VM and click Next.
5. (Cisco IOS XE Release 3.12S and later): Under Deployment Configuration, select the desired hardware configuration profile from the drop-down menu and click Next.
6. Under Storage, select the Datastore to use for the VM. Click Next.
7. Under Disk Format, select the disk format option:
   - Thick Provision Lazy Zeroed
   - Thick Provision Eager Zeroed
   - The Thin Provision option is not supported. The Thick Provision Eager Zeroed option takes longer to install but provides better performance.
8. Under Network Mapping, allocate one or more virtual network interface card (vNIC) on the destination network using the drop-down list. The options for mapping the vNICs differ depending on the release version.
9. Configure the properties for the VM.
10. Select **Power on after deployment** to automatically power on the VM.
11. Click Finish to deploy the OVA.

**DETAILED STEPS**

**Step 1**
Log in to the VMware vSphere Client.

**Step 2**
From the vSphere Client Menu Bar, choose File > Deploy OVF Template.

**Step 3**
In the OVA Wizard, point the source to the Cisco CSR 1000v OVA to be deployed. Click Next.

OVF Template Details appears, showing information about the OVA. Click Next.

**Step 4**
Under Name and Inventory Location, specify the name for the VM and click Next.

**Step 5**
(Cisco IOS XE Release 3.12S and later): Under Deployment Configuration, select the desired hardware configuration profile from the drop-down menu and click Next.

**Step 6**
Under Storage, select the Datastore to use for the VM. Click Next.

**Step 7**
Under Disk Format, select the disk format option:
- Thick Provision Lazy Zeroed
- Thick Provision Eager Zeroed

**Note**
The Thin Provision option is not supported. The Thick Provision Eager Zeroed option takes longer to install but provides better performance.

Click Next.
Step 8  Under Network Mapping, allocate one or more virtual network interface card (vNIC) on the destination network using the drop-down list. The options for mapping the vNICs differ depending on the release version:

• (Cisco IOS XE Release 3.11S and later, and IOS XE Denali 16.2 and later): Select the network mappings for the 3 default vNICs created during the OVA deployment. You can choose which vNIC will map to the router’s management interface when setting the bootstrap properties (see table "Bootstrap Properties for Cisco IOS XE Release 3.11S and Later" below).

Note  After you make any change to the bootstrap properties the system assumes that you are starting with a fresh VM. So when the VM restarts, all pre-existing networking configuration will have been removed.

• (Cisco IOS XE Release 3.10S and earlier) The vNIC allocated in this step is mapped to the GigabitEthernet0 management interface on the router.

Select the vNIC to connect at Power On. Click Next.

When the Cisco CSR 1000v installation using the OVA is complete, two additional vNICs are allocated. The Cisco CSR 1000v supports up to ten vNICs; additional vNICs must be manually created on the VM.

The Properties screen displays.

Step 9  Configure the properties for the VM.

Note  After you make any change to the bootstrap properties the system assumes that you are starting with a fresh VM. So when the VM restarts, all pre-existing networking configuration will have been removed.

The available properties differ depending on the Cisco IOS XE release that you are using. See the tables below for the OVA bootstrap properties for the relevant release of Cisco IOS XE.

Note  The bootstrap properties are optional when creating the VM. You can set these properties to easily provision the VM before starting it up.

Table 22: OVA Bootstrap Properties for Cisco IOS XE Release 3.11S and Later

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bootstrap Properties</strong></td>
<td></td>
</tr>
<tr>
<td>Console</td>
<td>(Cisco IOS XE 3.17S and later, and Denali 16.2 and later) Configures the console mode. Possible values: auto, virtual, serial</td>
</tr>
<tr>
<td>Login Username</td>
<td>Sets the login username for the router.</td>
</tr>
<tr>
<td>Login Password</td>
<td>Sets the login password for the router.</td>
</tr>
<tr>
<td>Management Interface</td>
<td>Designates the management interface for the Cisco CSR 1000v. The format must be GigabitEthernetx or GigabitEthernetx.xxx. <strong>Note</strong> The GigabitEthernet0 interface is no longer supported beginning in Cisco IOS XE Release 3.11S.</td>
</tr>
<tr>
<td>Management vLAN</td>
<td>Configures the dot1Q VLAN interface. Requires the management interface to be configured using the GigabitEthernetx.xxx format.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Management Interface IPv4 Address/Mask</td>
<td>Configures the IPv4 address and subnet mask for the management interface.</td>
</tr>
<tr>
<td>Management IPv4 Default Gateway</td>
<td>(Cisco IOS XE Release 3.11S through 3.17S, and Denali 16.2 and later) Configures the IPv4 management default gateway address. If using DHCP, enter “dhcp” in the field.</td>
</tr>
<tr>
<td>Management IPv4 Gateway</td>
<td>(Cisco IOS XE Release 3.12S through 3.17S, and Denali 16.2 and later) Configures the IPv4 management default gateway address. If using DHCP, enter “dhcp” in the field.</td>
</tr>
<tr>
<td>Management IPv4 Network</td>
<td>(Cisco IOS XE Release 3.12S through 3.17S, and Denali 16.2 and later) Configures the IPv4 Network (such as “192.168.2.0/24” or “192.168.2.0 255.255.255.0”) that the management gateway should route to. If a default route (0.0.0.0/0) is desired, this may be left blank.</td>
</tr>
<tr>
<td>Remote Management IPv4 Address</td>
<td>(Optional) Configures the IP address used for remote management of the Cisco CSR 1000v by the REST API or by the Cisco Prime Network Services Controller. The address must be in the same subnet as the management interface address. <strong>Note</strong> Beginning with Cisco IOS XE 3.13S, this option is not used if configuring the shared management interface to support REST API. See Introduction to REST API Configuration Options, on page 307.</td>
</tr>
<tr>
<td>PNSC IPv4 Address</td>
<td>Configures the IP address of the Cisco Prime Network Services Controller. This setting is used if you plan to remotely manage the Cisco CSR 1000v using the Cisco Prime Network Services Controller.</td>
</tr>
<tr>
<td>PNSC Agent Local Port</td>
<td>(Optional) Configures the Cisco Prime Network Services Controller service agent SSL port on the local Cisco CSR 1000v to receive policies from the service manager. This setting is used if you plan to remotely manage the Cisco CSR 1000v using the Cisco Prime Network Services Controller.</td>
</tr>
<tr>
<td>PNSC Shared Secret Key</td>
<td>Configures the Cisco Prime Network Services Controller shared secret key for the Cisco Prime Network Services Controller agent to set the SSL certificate from the controller. This setting is used if you plan to remotely manage the Cisco CSR 1000v using the Cisco Prime Network Services Controller.</td>
</tr>
<tr>
<td>Router name</td>
<td>Configures the hostname of the router.</td>
</tr>
<tr>
<td>Resource Template</td>
<td>(Cisco IOS XE 3.16S2 and later, and Denali 16.2 and later) Configures the Resource Template. Possible values: default, service_plane_medium, service_plane_heavy</td>
</tr>
<tr>
<td>Features</td>
<td></td>
</tr>
<tr>
<td>Enable SCP Server</td>
<td>Enables the IOS SCP feature.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Enable SSH Login</td>
<td>(Enable SSH Login, Cisco IOS XE Release 3.11S) Enables remote login using SSH and disables remote login via Telnet. Requires that the login username and password are set.</td>
</tr>
<tr>
<td>Enable SSH Login and Disable Telnet Login</td>
<td>(Enable SSH Login and Disable Telnet Login, Cisco IOS XE Release 3.12S and later, and Denali 16.2 and later) Enables remote login using SSH and disables remote login via Telnet. Requires that the login username and password are set.</td>
</tr>
</tbody>
</table>

**Additional Configuration Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Password</td>
<td>Configures the password for privileged (enable) access.</td>
</tr>
<tr>
<td>Domain Name</td>
<td>Configures the network domain name.</td>
</tr>
<tr>
<td>License Boot Level</td>
<td>(Cisco IOS XE 3.13S and later, and Denali 16.2 and later) Configures the license technology level that is available when the Cisco CSR 1000v boots.</td>
</tr>
</tbody>
</table>

### Table 23: OVA Bootstrap Properties for Cisco IOS XE Release 3.9S and 3.10S

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap Properties</td>
<td></td>
</tr>
<tr>
<td>Login Username</td>
<td>Sets the login username for the router.</td>
</tr>
<tr>
<td>Login Password</td>
<td>Sets the login password for the router.</td>
</tr>
<tr>
<td>Management IPv4 Address/Mask</td>
<td>Sets the management gateway address/mask in IPv4 format for the GigabitEthernet0 management interface.</td>
</tr>
<tr>
<td>Management IPv4 Default Gateway</td>
<td>Sets the default management gateway IP address in IPv4 format for the GigabitEthernet0 management interface.</td>
</tr>
<tr>
<td>Router name</td>
<td>Configures the hostname of the router.</td>
</tr>
<tr>
<td>Features</td>
<td></td>
</tr>
<tr>
<td>Enable HTTP Server</td>
<td>(Cisco IOS XE Release 3.9S only) Enables an HTTP server for system configuration and administration via a web browser.</td>
</tr>
<tr>
<td>Enable HTTPS Server</td>
<td>(Cisco IOS XE Release 3.10S only) Enables an HTTPS server for system configuration and administration via a web browser. Required if using the REST API to perform system configuration. <strong>Note</strong> The HTTPS server is enabled by default beginning in Cisco IOS XE Release 3.11S. This field was removed.</td>
</tr>
<tr>
<td>Enable SSH Login</td>
<td>Enables remote login using SSH and disables remote login via Telnet. Requires that the login username and password are set.</td>
</tr>
</tbody>
</table>

**Additional Configuration Properties**
When finished configuring the router properties, click Next. The Ready to Complete screen displays, showing the settings to be used when the OVA is deployed.

You can also configure advanced properties after the router boots.

**Step 10** Select **Power on after deployment** to automatically power on the VM.

**Step 11** Click **Finish** to deploy the OVA.

The OVA deploys the .iso file and, if the “Power on after deployment” setting is selected, automatically powers on the VM. Once the VM is powered on, the Cisco CSR 1000v begins the installation and boot process. If a bootstrap configuration file was included in the OVA, the router configuration will automatically be enabled.

See [Booting the Cisco CSR 1000v and Accessing the Console](#) on page 153.

### Editing the Basic Properties of Cisco CSR 1000v using vSphere

When deploying the OVA template, you have the option to set basic router properties using the vSphere GUI prior to booting, as described in [Deploying the Cisco CSR 1000v OVA to the VM using vSphere](#) on page 75. You can also set custom properties matched to Cisco IOS XE CLI commands. See [Editing the Custom Properties of Cisco CSR 1000v using vSphere](#) on page 82.

---

**Note**

The functionality described in this chapter works only when using the vSphere GUI to connect to a vCenter server. If connecting directly to a host, these options are not available.

If the VM was manually created from the .iso file, then the vSphere GUI will not provide options to set basic router properties. However, you can still set custom properties as described in [Editing the Custom Properties of Cisco CSR 1000v using vSphere](#) on page 82. If you wish to do so, you will need to add a second virtual CD/DVD drive to the VM for vCenter to pass these properties into the VM.

To edit the vApp options to set basic Cisco CSR 1000v properties, do the following:

**SUMMARY STEPS**

1. In the vSphere GUI, select the Options tab.
2. Choose vApp Options > Properties.
3. Click on the Properties button.
4. Select the property to be edited and click Edit.
5. Once you have edited the property, click OK to close.

**DETAILED STEPS**

**Step 1** In the vSphere GUI, select the Options tab.
Step 2  Choose vApp Options > Properties.

*Figure 3: vApp Advanced Options for Cisco CSR 1000v*

Step 3  Click on the Properties button.

A new window opens that provides access to the properties that can be edited. See the example Advanced Property Configuration Screen below.

**Note**  These properties can also be set using selected steps of the procedure described in Deploying the Cisco CSR 1000v OVA to the VM using vSphere, on page 75.
Editing the Custom Properties of Cisco CSR 1000v using vSphere

You can add custom properties to the Cisco CSR 1000v based on Cisco IOS XE CLI commands using the vSphere GUI. You can add these properties either before or after you boot the Cisco CSR 1000v. If you set these custom properties after the Cisco CSR 1000v has booted, you will need to reload the router or power-cycle the VM for the properties settings to take effect.

To edit the vApp options to add custom Cisco CSR 1000v properties, do the following:

**SUMMARY STEPS**

1. In the vSphere GUI, select the Options tab.
2. Choose vApp Options > Advanced.
3. Click on the Properties button.
4. Click New to add a property.
5. Enter the information to create the new custom property based on a Cisco IOS XE CLI command:
6. When finished, click OK.
7. In the Advanced Property Configuration window, click OK.
8. Reboot the Cisco CSR 1000v.
DETAILED STEPS

Step 1  In the vSphere GUI, select the Options tab.
Step 2  Choose vApp Options > Advanced.
        The Advanced Property Configuration window appears.
Step 3  Click on the Properties button.
Step 4  Click New to add a property.
        The Edit Property Settings window appears.
Step 5  Enter the information to create the new custom property based on a Cisco IOS XE CLI command:
        **Note** Before adding a custom property, make sure that the Cisco IOS XE command upon which it is based is supported on the Cisco CSR 1000v in your release.
        a) (Optional) Enter the label. This is a descriptive string for the property.
        b) Enter the class ID as “com.cisco.csr1000v”.
        c) Assign the property an ID of “ios-config-xxxx” where xxxx is a sequence number from 0001 to 9999 that determines the order in which the custom properties are applied.
        d) (Optional) Enter a description for the property.
        e) Enter the property type as “string”. This is the only type supported.
        f) Enter the default value as the Cisco IOS XE CLI command the custom property is based on.
Step 6  When finished, click OK.
Step 7  In the Advanced Property Configuration window, click OK.
Step 8  Reboot the Cisco CSR 1000v.
        The router must reboot in order for the new or edited properties to take effect.

Deploying the Cisco CSR 1000v to the VM using COT

Deploying the Cisco CSR 1000v OVA to the VM using COT

You can use the provided CSR 1000v OVA file package to deploy the Cisco CSR 1000v to the VM. The OVA package includes an OVF file that contains a default VM configuration based on a Cisco IOS XE release and the supported hypervisor. (See the “Guidelines and Limitations” section of the installation configuration that is included in the OVA file.) The OVA can be deployed using VMware vSphere or COT (Common OVF Tool). This section describes how to deploy using the COT (Common OVF Tool).

The Common OVF Tool (COT) included in the Cisco CSR 1000v software package is a Linux-based application that enables you to create attributes for one or more VMs and quickly deploy VMs with the CSR 1000v software pre-installed. This tool can speed the process of deploying Cisco CSR 1000v on multiple VMs.

COT provides a simple command-line interface to enter the VM attributes into the .ova file. COT can be run either in a LINUX shell or on Mac OS X. VMware ovftools must be installed.
The Common OVF Tool (COT) is provided without official Cisco support. Use it at your own risk.

- Downloading COT, on page 84
- Editing the Basic Properties of Cisco CSR 1000v using COT, on page 84
- Editing the Custom Properties of Cisco CSR 1000v using COT, on page 85
- Deploying the Cisco CSR 1000v VM using COT, on page 88

COT Restrictions

- COT supports deployment of the OVA package directly onto an ESXi host. The tool does not support Citrix XenServer, KVM or Microsoft Hyper-V environments.

Downloading COT

Download and install the COT libraries and script according to the instructions on the GitHub site:

Editing the Basic Properties of Cisco CSR 1000v using COT

Before deploying Cisco CSR 1000v using COT, you can edit the basic or custom properties of the Cisco CSR 1000v VM in the OVA package using COT.

To edit the basic properties of the OVA, use the `cot edit-properties` command.

`cot edit-properties`

`-p key1=value1, --properties key1=value1`

Sets properties using key value pairs. Example: `-p "login-username=cisco"` sets the login username using a key value pair.

`-o output`

Specifies the name or path to a new OVA package, if you are creating a new OVA instead of updating the existing OVA.

For more information on COT command `cot edit-properties`, see:

Editing the Basic Properties of Cisco CSR 1000v using COT: Example

```
cot edit-properties csr1000v-universalk9.ova
-p "login-username=cisco"
-p "login-password=cisco"
-o csr1000v-universalk9-customized.ova
```

\# save modifications to a new OVA
```
cot info csr1000v-universalk9-customized.ova
```

\# verify the new values of properties in the OVA

```
(...) Properties:
```
Before doing the procedures shown in section Deploying the Cisco CSR 1000v VM using COT, on page 88, you can edit custom properties, for example to include Cisco IOS XE CLI commands.

To edit the custom properties of the OVA, use one of the following two commands:

- `cot edit-properties`; see cot edit-properties, on page 85.
- `cot inject-config`; see cot inject-config, on page 86.

**cot edit-properties**

Use the `cot edit-properties` command to pre-apply a small number of configuration commands to the OVA. (Otherwise, for a larger number of commands, consider using the `cot inject-config` command; see cot inject-config, on page 86.)

For further details about the `cot edit-properties` command, see http://cot.readthedocs.io/en/latest/usage_edit_properties.html.

**Synopsis and Description**

cot edit-properties  ova-filename
- `-o output`
  Specifies the name or path to a new OVA package, if you are creating a new OVA instead of updating the existing OVA.
- `-c config-file`
  Specifies the name of a text file containing IOS XE commands to be added to the OVA.
Example

In this example, a previously created text file, iosxe_config.txt, containing IOS XE config commands is added to the OVA using the `cot edit-properties` command. Finally the `cot info` command is used to show the modified OVA.

```
$ cat iosxe_config.txt

interface GigabitEthernet1
no shutdown
ip address 192.168.100.10 255.255.255.0
ip route 0.0.0.0 0.0.0.0 GigabitEthernet1 192.168.100.1
```

$ cot edit-properties csr1000v-universalk9.ova \
   -o csr1000v-universalk9-customized.ova \
   -c iosxe_config.txt

$ cot info csr1000v-universalk9-customized.ova

Properties:
  <config-version> "1.0"
  Router Name ""
  ...
  Intercloud Tunnel Interface Gateway IPv4 Address ""
  <ios-config-0001> "interface GigabitEthernet1"
  <ios-config-0002> "no shutdown"
  <ios-config-0003> "ip address 192.168.100.10 255.255.255.0"
  <ios-config-0004> "ip route 0.0.0.0 0.0.0.0 GigabitEthernet1 192.168.100.1"

The table below shows the `cot edit properties` command and arguments used in the example.

<table>
<thead>
<tr>
<th>Script Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cot edit properties</code> <code>csr1000v-universalk9.ova</code></td>
<td>Edits the custom environment properties of this OVA (csr1000v-universalk9.ova).</td>
</tr>
<tr>
<td><code>-o &quot;csr1000v-universalk9-customized.ova&quot;</code></td>
<td>New OVA, containing configuration commands from the text file.</td>
</tr>
<tr>
<td><code>-c iosxe_config.txt</code></td>
<td>Text file that contains IOS XE configuration commands. Each line of configuration in this file results in a entry such as com.cisco.csr1000v.ios-config-xxxx in the XML of the OVF.</td>
</tr>
</tbody>
</table>

**cot inject-config**

Use the `cot inject-config` command if you have a large set of configuration commands to pre-apply to the OVA; for example, if you want to add a complete running configuration. This is efficient in terms of file size and loading time as it uses plain text for the configuration commands (instead of XML). For further details about the `cot inject-config` command, see

Synopsis and Description

cot inject-config ova-filename

-o output

Specifies the name or path to a new OVA package, if you are creating a new OVA instead of updating the existing OVA.

-c config-file

Specifies the name of a text file, such as iosxe_config.txt, to be embedded in the OVA.

Example

In this example, the cot inject-config command adds Cisco IOS XE commands in text file iosxe_config.txt to the OVA.

$ cat iosxe_config.txt
interface GigabitEthernet1
  no shutdown
  ip address 192.168.100.10 255.255.255.0
  !
  ip route 0.0.0.0 0.0.0.0 GigabitEthernet1 192.168.100.1
$ cot inject-config csr1000v-universalk9.ova \
   -o csr1000v-universalk9-customized.ova \
   -c iosxe_config.txt
$ cot info csr1000v-universalk9-customized.ova
<.. other output snipped for brevity ..>

The table below shows the cot inject-config command and arguments used in the example.

<table>
<thead>
<tr>
<th>Script Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cot inject-config</td>
<td>Edits the custom environment properties of this OVA (csr1000v-universalk9.ova).</td>
</tr>
<tr>
<td>csr1000v-universalk9.ova</td>
<td></td>
</tr>
<tr>
<td>-o &quot;csr1000v-universalk9-customized.ova&quot;</td>
<td>Name of the new, modified OVA, containing config commands from the text file.</td>
</tr>
<tr>
<td>-c iosxe_config.txt</td>
<td>Name of the text file that contains IOS XE config commands.</td>
</tr>
</tbody>
</table>
Deploying the Cisco CSR 1000v VM using COT

To deploy the Cisco CSR 1000v VM, use the `cot deploy ... esxi` command as shown in the following step. Note that the following description provides general guidance. The exact steps that you need to perform may vary depending on the characteristics of your VMware environment and setup.

SUMMARY STEPS


DETAILED STEPS

Run the `cot deploy ... esxi` command to deploy the Cisco CSR 1000v. The script options are described at: [http://cot.readthedocs.io/en/latest/usage_deploy_esxi.html](http://cot.readthedocs.io/en/latest/usage_deploy_esxi.html)

Also see the example below.

Note: The default values may vary depending on the Cisco CSR 1000v version.

Example

The table below shows an example `cot deploy` command, and its arguments, that is used to deploy a Cisco CSR 1000v VM in a vCenter environment.

<table>
<thead>
<tr>
<th>Script Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cot deploy</code></td>
<td></td>
</tr>
<tr>
<td><code>-s '10.122.197.5/UCS/host/10.122.197.38'</code></td>
<td>vCenter server 10.122.197.5, target host UCS/host/10.122.197.38</td>
</tr>
<tr>
<td><code>-u administrator -p password</code></td>
<td>Credentials for the ESXi server. If unspecified, COT will use your userid and prompt for a password.</td>
</tr>
<tr>
<td><code>-n XE3.13</code></td>
<td>Name of the newly created CSR VM.</td>
</tr>
<tr>
<td><code>-c 1CPU-4GB</code></td>
<td>OVF hardware config profile. If this is not specified, COT displays a list of available profiles and prompts you to select one.</td>
</tr>
<tr>
<td><code>-N &quot;GigabitEthernet1=VM Network&quot;</code></td>
<td>Mapping each NIC in the Cisco CSR 1000v OVA to a vSwitch on the server.</td>
</tr>
<tr>
<td><code>-N &quot;GigabitEthernet2=VM Network&quot;</code></td>
<td></td>
</tr>
<tr>
<td><code>-N &quot;GigabitEthernet3=VM Network&quot;</code></td>
<td></td>
</tr>
<tr>
<td><code>esxi</code></td>
<td>Target hypervisor (currently always ESXi)</td>
</tr>
<tr>
<td><code>~/Downloads/csr1000v-universalk9.ova</code></td>
<td>OVA to deploy</td>
</tr>
</tbody>
</table>
Manually Creating the VM and Installing the Cisco CSR 1000v Software Using the .iso File (VMware ESXi)

Overview of Tasks for Manually Creating the Cisco CSR 1000v VM

The figure below shows the typical high-level tasks required to manually create the Cisco CSR 1000v VM. The specific procedures, terminology and the order the steps are performed may differ depending on the hypervisor being used. See the sections following for detailed steps for creating the VM.

---

<table>
<thead>
<tr>
<th>Script Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ds=datastore38a</td>
<td>Any ESXi-specific parameters—here, the datastore to use for disk storage.</td>
</tr>
</tbody>
</table>

---

Note

If you manually create the VM and you plan to use the Cisco CSR 1000v REST API, you must configure the HTTPS port using the Cisco IOS XE CLI.
Manually Creating the Cisco CSR 1000v VM Using the .iso File (VMware ESXi)

The following steps are performed using VMware VSphere.

- Location: Store with the virtual machine
While the following procedure provides general guidance for how to deploy the Cisco CSR 1000v, the exact steps that you need to perform may vary depending on the characteristics of your VMware environment and setup. The steps and screen displays in this procedure are based on VMware ESXi 5.0.

**SUMMARY STEPS**

1. Download the CSR1000_esxi.iso file from the Cisco CSR 1000v software installation image package and copy it onto the VM Datastore.
2. In the VSphere client, select Create a New Virtual Machine option.
3. Under Configuration, select the option to create a Custom configuration, and click Next.
4. Under Name and Location, specify the name for the VM and click Next.
5. Under Storage, select the datastore to use for the VM. Click Next.
7. Under Guest Operating System, select Linux and the “Other 2.6x Linux (64-bit) setting” from the drop-down menu. Click Next.
8. Under CPUs, select the following settings:
9. Under Memory, configure the supported memory size for your Cisco CSR 1000v release.
10. Under Network, allocate at least three virtual network interface cards (vNICs).
12. Under Select a Disk, click Create a new virtual disk.
13. Under Create a Disk, select the following:
14. Under Advanced Options, select SCSI (0:0) for the virtual device node.
15. On the Ready to Complete screen, click the Edit the virtual machine settings before completion. Click Continue checkbox.
16. In the Hardware tab, click New CD/DVD Drive.
17. In the Resources tab, click the CPU setting:
18. Click OK.
19. Click Finish.

**DETAILED STEPS**

**Step 1**  
Download the CSR1000_esxi.iso file from the Cisco CSR 1000v software installation image package and copy it onto the VM Datastore.

**Step 2**  
In the VSphere client, select Create a New Virtual Machine option.

**Step 3**  
Under Configuration, select the option to create a Custom configuration, and click Next.

**Step 4**  
Under Name and Location, specify the name for the VM and click Next.

**Step 5**  
Under Storage, select the datastore to use for the VM. Click Next.

**Step 6**  

**Note**  
The Cisco CSR 1000v is not compatible with ESXi Server versions prior to 5.0.

**Step 7**  
Under Guest Operating System, select Linux and the “Other 2.6x Linux (64-bit) setting” from the drop-down menu. Click Next.

**Step 8**  
Under CPUs, select the following settings:

- Number of virtual sockets (virtual CPUs)
- Number of cores per socket
The number of cores per socket should always be set to 1, regardless of the number of virtual sockets selected. For example, a Cisco CSR 1000v with a 4 vCPU configuration should be configured as 4 sockets and 1 core per socket. See the VMware Requirements—Cisco IOS XE Denali 16.3, on page 100 for the supported number of virtual CPUs and the corresponding required RAM allocation for your release.

Click Next.

**Step 9**  
Under Memory, configure the supported memory size for your Cisco CSR 1000v release.

Click Next.

**Step 10**  
Under Network, allocate at least three virtual network interface cards (vNICs).

a) Select the number of vNICs that you want to connect from the drop-down menu.

**Note**  
The VMware ESXi 5.0 interface only allows the creation of 4 vNICS during the initial VM creation. You can add more vNICs after the VM is created and the Cisco CSR 1000v is first booted.

b) Add the vNICs.

Select a different network for each vNIC.

Select the adapter type from the drop-down menu. See the requirements table in the VMware Requirements—Cisco IOS XE Denali 16.3, on page 100 for the supported adapter type in your release.

c) Select all vNICs to connect at power-on.

d) Click Next.

**Note**  
(Cisco IOS XE Release 3.10S and earlier) The first vNIC added is mapped to the GigabitEthernet0 management interface on the Cisco CSR 1000v. All remaining vNICs are mapped to the Cisco CSR 1000v network interfaces when the VM is powered on and the router boots for the first time. For more information about how the vNICs on the VM map to the network interfaces on the router, see Mapping the Router Network Interfaces to vNICs, on page 241.

**Note**  
You can add vNICs into the VM using vSphere while the Cisco CSR 1000v is running. For more information about adding vNICS to an existing VM, see the vSphere documentation.

**Step 11**  
Under SCSI Controller, select LSI Logic Parallel. Click Next.

**Step 12**  
Under Select a Disk, click Create a new virtual disk.

**Step 13**  
Under Create a Disk, select the following:

- **Capacity:** Disk Size

  See the VMware Requirements—Cisco IOS XE Denali 16.3, on page 100 for the virtual hard disk size required in your release.

- **Disk Provisioning:** select one of the following: Thick Provision Lazy Zeroed or Thick Provision Eager Zeroed.

  **Note**  
The Thin Provision option is not supported. The Thick Provision Eager Zeroed option takes longer to install but provides better performance.

- **Location:** Store with the Virtual Machine

  Click Next.

**Step 14**  
Under Advanced Options, select SCSI (0:0) for the virtual device node.

**Step 15**  
On the Ready to Complete screen, click the Edit the virtual machine settings before completion. Click Continue checkbox.
Step 16  In the Hardware tab, click **New CD/DVD Drive**.

a) Select the Device Type that the VM will boot from:

   Select the Datasstore ISO file option to boot from the Cisco CSR 1000v .iso file. Browse to the location of the .iso file on the datastore set in step 1.

b) In the Device Status field, select the Connect at power on checkbox.

c) Select the Virtual Device Node CD/DVD drive on the host that the VM will boot from.

Step 17  In the Resources tab, click the CPU setting:

Set the Resource Allocation setting to Unlimited.

Step 18  Click OK.

Step 19  Click Finish.

The VM is now configured for the Cisco CSR 1000v and is ready to boot. The Cisco CSR 1000v is booted when the VM is powered on. See Booting the Cisco CSR 1000v and Accessing the Console, on page 153.

**Note** To access and configure the Cisco CSR 1000v from the serial port on the ESXi host instead of the virtual VGA console, provision the VM to use this setting before powering on the VM and booting the router. For more information, see Booting the Cisco CSR 1000v and Accessing the Console, on page 153.

---

**Increasing Performance on VMware ESXi Configurations**

You can improve performance on VMware ESXi configurations by performing the following:

- Disable VMware ESXi power management.

  Choose the High Performance setting to disable power management in VMware ESXi 5.0, 5.1, 5.5, or 6.0. For more information, see the VMware Documentation.

---

**VMware Requirements—Cisco IOS XE Gibraltar 16.10**

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE Gibraltar 16.10 are as follows:

**Note** For VMware requirements—Cisco IOS XE 3.x, see VMware Requirements—Cisco IOS XE 3.x, on page 101 and VMware VM Requirements—Cisco IOS XE 3.x, on page 103.

- VMware vSphere Web Client. The 6.5 Update 1 and 6.5 Update 2 versions of the VMware vSphere Web Client are supported.

- VMware vCenter Server. The following versions of VMware vCenter Server are supported:
  - VMware ESXi 6.5. This version is recommended. This version has been fully tested and meets performance benchmarks.
  - VMware ESXi 6.0 update 2 (instance running vm11). This version is recommended. This version has been fully tested and meets performance benchmarks.
VMware vCenter—installation tool.
VMware vSwitch—standard or distributed vSwitches are supported.
Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.
Virtual Disk—a 8 GB virtual disk is supported.
vCPUs—the following vCPU configurations are supported:

<table>
<thead>
<tr>
<th>vCPU Configuration</th>
<th>RAM Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vCPU</td>
<td>4 GB</td>
</tr>
<tr>
<td>2 vCPUs</td>
<td>4 GB</td>
</tr>
<tr>
<td>4 vCPUs</td>
<td>4 GB</td>
</tr>
<tr>
<td>8 vCPUs</td>
<td>4 GB</td>
</tr>
</tbody>
</table>

Virtual CPU core—one virtual CPU core is required. This needs a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.
Virtual hard disk space—minimum size of 8 GB.
Virtual Network Interface Cards (vNICs)—Three or more vNICs (max. 10)—VMXNET3 or i40evf.
A default video, SCSI controller set is required, and an installed virtual CD/DVD drive.

VMware Requirements—Cisco IOS XE Fuji 16.9

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE Fuji 16.9 are as follows:

VMware vSphere Web Client. The 6.5 Update 1 version of the VMware vSphere Web Client is supported for this release.
VMware vCenter Server. The following versions of VMware vCenter Server are supported:
  • VMware ESXi 6.5. This version is recommended. This version has been fully tested and meets performance benchmarks.
  • VMware ESXi 6.0 update 2 (instance running vm11). This version is recommended. This version has been fully tested and meets performance benchmarks.
VMware vCenter—installation tool.
VMware vSwitch—standard or distributed vSwitches are supported.
Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.
Virtual Disk—a 8 GB virtual disk is supported.

vCPUs—the following vCPU configurations are supported:

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
- 8 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU core—one virtual CPU core is required. This needs a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.

Virtual hard disk space—minimum size of 8 GB.

Virtual Network Interface Cards (vNICs)—Three or more vNICs (max. 10)—VMXNET3 or i40evf.

A default video, SCSI controller set is required, and an installed virtual CD/DVD drive.

**VMware Requirements—Cisco IOS XE Fuji 16.8**

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE Fuji 16.8 are as follows:

**Note**

For VMware requirements—Cisco IOS XE 3.x, see VMware Requirements—Cisco IOS XE 3.x, on page 101 and VMware VM Requirements—Cisco IOS XE 3.x, on page 103.

VMware vSphere Web Client. The 6.5 version of the VMware vSphere Web Client is supported for this release.

VMware vCenter Server. The following versions of VMware vCenter Server are supported:

- VMware ESXi 6.5. This version is recommended. This version has been fully tested and meets performance benchmarks.
- VMware ESXi 6.0 update 2 (instance running vm11). This version is recommended. This version has been fully tested and meets performance benchmarks.

VMware vCenter—installation tool.

VMware vSwitch—standard or distributed vSwitches are supported.

Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.

Virtual Disk—a 8 GB virtual disk is supported.

vCPUs—the following vCPU configurations are supported:
The required vCPU configuration depends on the throughput license and technology package installed. For more information, see the data sheet for your release.

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
- 8 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU core—one virtual CPU core is required. This needs a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.

Virtual hard disk space—minimum size of 8 GB.

Virtual Network Interface Cards (vNICs)—Three or more vNICs (max. 10)—VMXNET3 or i40evf.

A default video, SCSI controller set is required, and an installed virtual CD/DVD drive.

VMware Requirements—Cisco IOS XE Fuji 16.7

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE Fuji 16.7 are as follows:

Note

For VMware requirements—Cisco IOS XE 3.x, see VMware Requirements—Cisco IOS XE 3.x, on page 101 and VMware VM Requirements—Cisco IOS XE 3.x, on page 103.

VMware vSphere Web Client. The 6.0 Update 3 version of the VMware vSphere Web Client is supported in this release.

VMware vCenter Server. The following versions of VMware vCenter Server are supported:

- VMware ESXi 6.5. This version is recommended. This version has been fully tested and meets performance benchmarks.
- VMware ESXi 6.0 update 2 (instance running vm11). This version is recommended. This version has been fully tested and meets performance benchmarks.

VMware vCenter—installation tool.

VMware vSwitch—standard or distributed vSwitches are supported.

Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.

Virtual Disk—a 8 GB virtual disk is supported.

vCPUs—the following vCPU configurations are supported:

Note

The required vCPU configuration depends on the throughput license and technology package installed. For more information, see the data sheet for your release.
Virtual CPU core—one virtual CPU core is required. This needs a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.

Virtual hard disk space—minimum size of 8 GB.

Virtual Network Interface Cards (vNICs)—Three or more vNICs (max. 10)—VMXNET3 or i40evf.

A default video, SCSI controller set is required, and an installed virtual CD/DVD drive.

VMware Requirements—Cisco IOS XE Everest 16.6

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE Everest 16.6 are as follows:

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
- 8 vCPUs: requires minimum 4 GB RAM allocation

Note

For VMware requirements—Cisco IOS XE 3.x, see VMware Requirements—Cisco IOS XE 3.x, on page 101 and VMware VM Requirements—Cisco IOS XE 3.x, on page 103.

VMware vSphere Web Client. The 6.0 Update 3 version of the VMware vSphere Web Client is supported in this release.

VMware vCenter Server. The following versions of VMware vCenter Server are supported:
- VMware ESXi 6.0 update 2 (instance running vm11). This version is recommended. This version has been fully tested and meets performance benchmarks.
- VMware ESXi 5.5 update 3 (instance running vm10). This version is supported. However, note that version 6.0 update 2 is recommended

VMware vCenter—installation tool.
VMware vSwitch—standard or distributed vSwitches are supported.
Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.
Virtual Disk—a 8 GB virtual disk is supported.
vCPUs—the following vCPU configurations are supported:

Note

The required vCPU configuration depends on the throughput license and technology package installed. For more information, see the data sheet for your release.

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
VMware Requirements—Cisco IOS XE Everest 16.5

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE Everest 16.5 are as follows:

**Note**

For VMware requirements—Cisco IOS XE 3.x, see VMware Requirements—Cisco IOS XE 3.x, on page 101 and VMware VM Requirements—Cisco IOS XE 3.x, on page 103.

VMware vSphere Web Client. The 6.0 Update 2 version of the VMware vSphere Web Client is supported in this release.

VMware vCenter Server. The following versions of VMware vCenter Server are supported:

- VMware ESXi 6.0 update 2 (instance running vm11). This version is recommended. This version has been fully tested and meets performance benchmarks.
- VMware ESXi 5.5 update 3 (instance running vm10). This version is supported. However, note that version 6.0 update 2 is recommended

VMware vCenter—installation tool.

VMware vSwitch—standard or distributed vSwitches are supported.

Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.

Virtual Disk—a 8 GB virtual disk is supported.

vCPUs—the following vCPU configurations are supported:

**Note**

The required vCPU configuration depends on the throughput license and technology package installed. For more information, see the data sheet for your release.

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
- 8 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU core—one virtual CPU core is required. This needs a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.
Virtual hard disk space—minimum 8 GB size is required.
Virtual Network Interface Cards (vNICs)—Three or more vNICs (max. 10)—VMXNET3—are supported.
A default video, SCSI controller set is required, and an installed virtual CD/DVD drive.

VMware Requirements—Cisco IOS XE Everest 16.4

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE Everest 16.4 are as follows:

For VMware requirements for earlier versions of Cisco IOS XE (before IOS XE Denali 16.3.1) see VMware Requirements—Cisco IOS XE 3.x, on page 101 and VMware VM Requirements—Cisco IOS XE 3.x, on page 103.

VMware vSphere Web Client. The following versions of VMware vSphere Web Client are supported:
- VMware vSphere Web Client 6.0
- VMware vSphere Web Client 5.5

VMware vCenter Server. The following versions of VMware vCenter Server are supported:
- VMware ESXi 6.0 update 2 (instance running vm11). This version is recommended. This version has been fully tested and meets performance benchmarks.
- VMware ESXi 5.5 update 3 (instance running vm10). This version is supported. However, note that version 6.0 update 2 is recommended

VMware vCenter—installation tool.
VMware vSwitch—standard or distributed vSwitches are supported.
Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.
Virtual Disk—a 8 GB virtual disk is supported.

vCPUs—the following vCPU configurations are supported:

The required vCPU configuration depends on the throughput license and technology package installed. For more information, see the data sheet for your release.

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
- 8 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU core—one virtual CPU core is required. This needs a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.
Virtual hard disk space—minimum 8 GB size is required.

Virtual Network Interface Cards (vNICs)—Three or more vNICs (max. 10)—VMXNET3—are supported.

A default video, SCSI controller set is required, and an installed virtual CD/DVD drive.

**VMware Requirements—Cisco IOS XE Denali 16.3**

The VMware tools supported by Cisco CSR 1000v using Cisco IOS XE 16.3.x are as follows:

---

**Note**

For VMware requirements for earlier versions of Cisco IOS XE (before IOS XE Denali 16.3) see *VMware Requirements—Cisco IOS XE 3.x, on page 101* and *VMware VM Requirements—Cisco IOS XE 3.x, on page 103*.

---

VMware vSphere Web Client. The following versions of VMware vSphere Web Client are supported:

- VMware vSphere Web Client 6.0
- VMware vSphere Web Client 5.5

VMware vCenter Server. The following versions of VMware vCenter Server are supported:

- VMware ESXi 6.0 update 2 (instance running vm11). This version is recommended. This version has been fully tested and meets performance benchmarks.
- VMware ESXi 5.5 update 3 (instance running vm10). This version is supported. However, note that version 6.0 update 2 is recommended

VMware vCenter—installation tool.

VMware vSwitch—standard or distributed vSwitches are supported.

Hard Drive—only a single hard disk drive is supported. Multiple hard disk drives on a VM are not supported.

Virtual Disk—a 8 GB virtual disk is supported.

vCPUs—the following vCPU configurations are supported:

---

**Note**

The required vCPU configuration depends on the throughput license and technology package installed. For more information, see the data sheet for your release.

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
- 8 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU core—one virtual CPU core is required. This needs a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.
Virtual hard disk space—minimum 8 GB size is required.
Virtual Network Interface Cards (vNICs)—Three or more vNICs (max. 10)—VMXNET3—are supported.
A default video, SCSI controller set is required, and an installed virtual CD/DVD drive.

**VMware Requirements—Cisco IOS XE 3.x**

The VMware requirements supported by Cisco CSR 1000v using old versions of Cisco IOS XE from 3.9 to 3.17 are shown in the table below.

(For VMware requirements of Cisco IOS XE Denali 16.3 or later, see sections such as VMware Requirements—Cisco IOS XE Denali 16.3, on page 100.)

**Table 24: VMware Requirements for Cisco CSR 1000v (Cisco IOS XE versions 3.x)**

<table>
<thead>
<tr>
<th>Cisco CSR 1000v Release</th>
<th>VM Configuration Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 3.9S</td>
<td>VMware ESXi 5.0</td>
</tr>
<tr>
<td></td>
<td>8 GB virtual disk</td>
</tr>
<tr>
<td></td>
<td>4 virtual CPUs</td>
</tr>
<tr>
<td></td>
<td>4 GB of RAM</td>
</tr>
<tr>
<td></td>
<td>3 or more virtual network interface cards</td>
</tr>
<tr>
<td></td>
<td>Single hard disk</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Multiple hard disk drives on a VM are not supported.</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.10S</td>
<td>VMware ESXi 5.0 or 5.1</td>
</tr>
<tr>
<td></td>
<td>8 GB virtual disk</td>
</tr>
<tr>
<td></td>
<td>The following virtual CPU configurations are supported:</td>
</tr>
<tr>
<td></td>
<td>• 1 virtual CPU, requiring 2.5 GB minimum of RAM</td>
</tr>
<tr>
<td></td>
<td>• 4 virtual CPUs, requiring 4 GB minimum of RAM</td>
</tr>
<tr>
<td></td>
<td>3 or more virtual network interface cards</td>
</tr>
<tr>
<td></td>
<td>Single hard disk</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Multiple hard disk drives on a VM are not supported.</td>
</tr>
</tbody>
</table>
### VMware Requirements

<table>
<thead>
<tr>
<th>Cisco CSR 1000v Release</th>
<th>VM Configuration Requirements</th>
</tr>
</thead>
</table>
| Cisco IOS XE Release 3.11S | VMware ESXi 5.0 or 5.1  
8 GB virtual disk  
The following virtual CPU configurations are supported:  
• 1 virtual CPU, requiring 2.5 GB minimum of RAM  
• 2 virtual CPUs, requiring 2.5 GB minimum of RAM  
• 4 virtual CPUs, requiring 4 GB minimum of RAM  
3 or more virtual network interface cards  
Single hard disk  
**Note** Multiple hard disk drives on a VM are not supported. |
| Cisco IOS XE Release 3.12 and 3.13 | VMware ESXi 5.0, 5.1, or 5.5  
8 GB virtual disk  
The following virtual CPU configurations are supported:  
• 1 virtual CPU, requiring 2.5 GB minimum of RAM  
• 2 virtual CPUs, requiring 2.5 GB minimum of RAM  
• 4 virtual CPUs, requiring 4 GB minimum of RAM  
• 8 virtual CPUs, requiring 4 GB minimum of RAM  
3 or more virtual network interface cards  
Single hard disk  
**Note** Multiple hard disk drives on a VM are not supported. |
| Cisco IOS XE Release 3.14, 3.15, 3.16, 3.17 | VMware ESXi 5.0, 5.1, 5.5 (VMware ESXi 5.5 update 3 is supported on Cisco IOS XE 3.16.1S and later, and on 3.17s and later.), 6.0 (VMware ESXi 6.0 is supported on Cisco IOS XE 3.16.1S and later, and 3.17S and later.)  
8 GB virtual disk  
The following virtual CPU configurations are supported:  
• 1 virtual CPU, requiring 4 GB minimum of RAM  
• 2 virtual CPUs, requiring 4 GB minimum of RAM  
• 4 virtual CPUs, requiring 4 GB minimum of RAM  
• 8 virtual CPUs, requiring 4 GB minimum of RAM  
3 or more virtual network interface cards  
Single hard disk  
**Note** Multiple hard disk drives on a VM are not supported. |
VMware VM Requirements—Cisco IOS XE 3.x

The VMware tools supported by Cisco CSR 1000v using versions of Cisco IOS XE from 3.9 to 3.17 are shown in the table below.

Note: The Cisco CSR 1000v does not support Cisco IOS XE Denali 16.2

(For the VMware requirements using Cisco IOS XE Denali 16.3 or later, see sections such as VMware Requirements—Cisco IOS XE Denali 16.3, on page 100.)

Table 25: VMware Virtual Machine Requirements (Cisco IOS XE versions 3.x)

<table>
<thead>
<tr>
<th>Cisco CSR 1000v Release</th>
<th>Supported Tools and Requirements</th>
<th>Supported vSwitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 3.9S</td>
<td>PC running the following:</td>
<td>VMware standard switch</td>
</tr>
<tr>
<td></td>
<td>• VMware vSphere Client 5.0</td>
<td>VMware distributed switch</td>
</tr>
<tr>
<td></td>
<td>Server running the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VMware ESXi 5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(For more information about server requirements, see the Cisco CSR 1000V Series Cloud Services Router Release Notes.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation Tool:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VMware vCenter</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.10S and 3.11S</td>
<td>PC running the following:</td>
<td>VMware standard switch</td>
</tr>
<tr>
<td></td>
<td>• VMware vSphere Client 5.0</td>
<td>VMware distributed switch</td>
</tr>
<tr>
<td></td>
<td>Server running the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VMware ESXi 5.0 or 5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation Tool:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VMware vCenter</td>
<td></td>
</tr>
</tbody>
</table>
### Installation Requirements—Cisco IOS XE 3.x

The table below lists the installation requirements for VMware ESXi using versions of Cisco IOS XE from 3.9 to 3.17. For Cisco IOS XE Denali 16.3 or later, see sections such as VMware Requirements—Cisco IOS XE Denali 16.3, on page 100.

**Note**

The Cisco CSR 1000v does not support Cisco IOS XE Denali 16.2.

#### Table 26: Installation Requirements for VMware ESXi (Cisco IOS XE 3.x)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware ESXi version(s) supported</td>
<td>5.0</td>
<td>5.0, 5.1</td>
<td>5.0, 5.1</td>
<td>5.0, 5.1, 5.5</td>
<td>5.0, 5.1, 5.5 (VMware ESXi 5.5 update 3 is supported on Cisco IOS XE 3.16.1S and later, and on 3.17S and later), 6.0 (VMware ESXi 6.0 supported on Cisco IOS XE 3.16.1S and later, and 3.17S and later)</td>
</tr>
</tbody>
</table>
## Installation Requirements—Cisco IOS XE 3.x

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported vCPU configurations</td>
<td>1 vCPU: requires minimum 4 GB RAM allocation</td>
<td>1 vCPU: requires minimum 2.5 GB RAM allocation (Not automatically supported when deploying the OVA)</td>
<td>1 vCPU: requires minimum 2.5 GB RAM allocation (Not automatically supported when deploying the OVA)</td>
<td>1 vCPU: requires minimum 2.5 GB RAM allocation</td>
<td>1 vCPU: requires minimum 4 GB RAM allocation (ESXi 6.0 supported on Cisco IOS XE 3.16.1S and later)</td>
</tr>
<tr>
<td>(The required vCPU configuration depends on the throughput license and technology package installed. For more information, see the data sheet for your release)</td>
<td>4 vCPUs: requires minimum 4 GB RAM allocation (If configuring Cisco Network Based Application Recognition (NBAR), or Cisco Application Visibility and Control (AVC), a 4-GB RAM allocation is required)</td>
<td>2 vCPUs: requires minimum 2.5 GB RAM allocation</td>
<td>4 vCPUs: requires minimum 2.5 GB RAM allocation</td>
<td>2 vCPUs: requires minimum 4 GB RAM allocation</td>
<td>4 vCPUs: requires minimum 4 GB RAM allocation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 vCPUs: requires minimum 4 GB RAM allocation</td>
<td></td>
<td>4 vCPUs: requires minimum 4 GB RAM allocation</td>
<td>8 vCPUs: requires minimum 4 GB RAM allocation</td>
</tr>
<tr>
<td>Virtual CPU cores required (Requires a 64-bit processor with Virtualization Technology (VT) enabled in the BIOS setup of the host machine.)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Virtual hard disk size</td>
<td>8 GB minimum</td>
</tr>
<tr>
<td>Supported vNICs</td>
<td>VMXNET3</td>
<td>VMXNET3</td>
<td>VMXNET3</td>
<td>VMXNET3</td>
<td>VMXNET3</td>
</tr>
<tr>
<td>Maximum number of vNICs supported</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Default video, SCSI controller set</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Virtual CD/DVD drive installed</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>
Installing the Cisco CSR 1000v in VMware ESXi Environments

Installation Requirements—Cisco IOS XE 3.x
Installing the Cisco CSR 1000v in Citrix XenServer Environments

- Citrix XenServer Support Information, on page 107
- Installation Requirements for Citrix XenServer: Cisco IOS XE Gibraltar 16.10 and 16.11 releases, on page 108
- Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109
- Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.9, on page 110
- Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.8, on page 111
- Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.7, on page 112
- Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.6, on page 112
- Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.5, on page 113
- Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.4, on page 113
- Installation Requirements for Citrix XenServer: Cisco IOS XE 16.3, on page 114
- Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x, on page 115

Citrix XenServer Support Information

Supported Releases
The Cisco CSR 1000v, using Cisco IOS XE 3.10S and later (Cisco IOS XE Denali 16.2 is not supported), is supported in the Citrix XenServer environment.

Other Support Information
The Cisco CSR 1000v installation on Citrix XenServer requires the manual creation of a VM and installation using the .iso file. Deploying the OVA template into a Citrix XenServer environment is not supported in this release.

The Cisco CSR 1000v supports the VIF vNIC type on the Citrix XenServer implementation.

The following Citrix XenServer features are supported:

- Virtual machine power-cycle
- Interface add and delete
This operation requires that the Cisco CSR 1000v is shutdown before performing interface add and delete.

- NIC bonding
- Virtual machine cloning

Only cold cloning is supported, meaning the VM must be powered down when the cloning takes place.

- Taking, restoring and deleting snapshots

Using Citrix XenServer, you can take a snapshot of the current state of the VM. Snapshots are supported when the Cisco CSR 1000v VM is either powered up or powered down.

- Remote storage
- Performance monitoring (CPU, network and disk)

The Cisco CSR 1000v does not support XenTools. The XenMotion operation is not supported on the Cisco CSR 1000v because it requires XenTools.

For more information, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109. For more information, see also the Citrix XenServer documentation.

**Installation Requirements for Citrix XenServer: Cisco IOS XE Gibraltar 16.10 and 16.11 releases**

The Citrix XenServer requirements for early versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x, on page 115.

- Citrix XenServer version supported: Citrix XenServer 6.5 is recommended—tested and meets performance benchmarks. Citrix XenServer 6.2 is supported
- Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet): 1 vCPU: requires minimum 4 GB RAM allocation; 2 vCPUs: requires minimum 4 GB RAM allocation; 4 vCPUs: requires minimum 4 GB RAM allocation
- Virtual CPU cores required: 1
- Supported vNICs: VIF-netfront (pmap)
- Maximum number of vNICs supported per VM instance: 7
- Virtual CD/DVD drive Installed: Required
- Virtual Disk—a 8 GB virtual disk is supported.
- Virtual CPU cores—1 vCPU is required
Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer)

While the following procedure provides a general guideline for how to manually create the VM for the Cisco CSR 1000v, the exact steps that you need to perform may vary depending on the characteristics of your Citrix XenServer environment and setup. For more information, see the Citrix XenServer documentation.

To determine, for example, the number of vNICs, when installing the Cisco CSR 1000v on a Citrix XenServer VM, see the relevant "Installation Requirements for Citrix XenServer" section for your Cisco IOS XE Denali release.

---

Note

The Cisco CSR 1000v does not support deploying the OVA file in KVM environments.

---

SUMMARY STEPS

1. Download the .iso file from the Cisco CSR 1000v software installation image package and copy it onto a local or network device.
2. In the Citrix XenCenter console, to create a new VM, select the server, and click New VM.
3. Click Template. Scroll through the templates and select Other Install Media.
4. In the Name field, enter the name of the VM.
5. When prompted for the installation media, choose from one of the following:
6. Select the server where the VM will be placed.
7. Enter the number of vCPUs and memory settings.
8. Add the virtual disks by inputting the following fields:
9. On the Networking screen, select the networks that will connect to the Cisco CSR 1000v through the vNICs.
10. Click Finish.

DETAILED STEPS

Step 1  Download the .iso file from the Cisco CSR 1000v software installation image package and copy it onto a local or network device.

Step 2  In the Citrix XenCenter console, to create a new VM, select the server, and click New VM.
        The Select a VM template screen displays.

Step 3  Click Template. Scroll through the templates and select Other Install Media.
        Click Next.

Step 4  In the Name field, enter the name of the VM.

Step 5  When prompted for the installation media, choose from one of the following:
        • Install from the ISO library or DVD drive
• Boot from network

Click Next.

**Step 6**
Select the server where the VM will be placed.
Select the checkbox for Place the VM on the server. Click Next.

**Step 7**
Enter the number of vCPUs and memory settings.

See Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.4, on page 113 or other ”Installation Requirements” sections, for the supported number of vCPUs and memory requirements for your release.

Click Next.

**Step 8**
Add the virtual disks by inputting the following fields:

• Enter the description (optional).

• Select the virtual disk size from the pull-down menu.

See Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.4, on page 113 or other ”Installation Requirements” sections, for the supported number of vCPUs and memory requirements for your release.

• Enter the location of the virtual disk.

Click Add and then click Next.

**Step 9**
On the Networking screen, select the networks that will connect to the Cisco CSR 1000v through the vNICs.

See Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.4, on page 113 or other ”Installation Requirements” sections, for the supported number of vCPUs and memory requirements for your release.

a) Select a network and click Add Network.
b) Select External and click Next.
c) Type in the network name. Click Next.
d) Select the NIC to use, the VLAN, and set the MTU value.

**Step 10**
Click Finish.

The new network is added. Repeat the procedure in the previous step for each vNIC.

For more information about booting the VM, see the documentation at: http://www.citrix.com/. When the VM is booted, the Cisco CSR 1000v begins the first-time boot process. See Booting the Cisco CSR 1000v and Accessing the Console, on page 153 to continue the boot process.

---

**Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.9**

The Citrix XenServer requirements for early versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x, on page 115.
• Citrix XenServer version supported: Citrix XenServer 6.5 is recommended—tested and meets performance benchmarks. Citrix XenServer 6.2 is supported

• Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet).: 1 vCPU: requires minimum 4 GB RAM allocation; 2 vCPUs: requires minimum 4 GB RAM allocation; 4 vCPUs: requires minimum 4 GB RAM allocation

• Virtual CPU cores required: 1

• Supported vNICs : VIF-netfront (pmap)

• Maximum number of vNICs supported per VM instance: 7

• Virtual CD/DVD drive Installed: Required

• Virtual Disk—a 8 GB virtual disk is supported.

• Virtual CPU cores—1 vCPU is required

Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.8

For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

The Citrix XenServer requirements for early versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x, on page 115.

• Citrix XenServer version supported: Citrix XenServer 6.5 is recommended—tested and meets performance benchmarks. Citrix XenServer 6.2 is supported

• Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet).: 1 vCPU: requires minimum 4 GB RAM allocation; 2 vCPUs: requires minimum 4 GB RAM allocation; 4 vCPUs: requires minimum 4 GB RAM allocation

• Virtual CPU cores required: 1

• Supported vNICs : VIF-netfront (pmap)

• Maximum number of vNICs supported per VM instance: 7

• Virtual CD/DVD drive Installed: Required

• Virtual Disk—a 8 GB virtual disk is supported.

• Virtual CPU cores—1 vCPU is required
Installation Requirements for Citrix XenServer: Cisco IOS XE Fuji 16.7

For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

The Citrix XenServer requirements for early versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x, on page 115.

- Citrix XenServer version supported: Citrix XenServer 6.5 is recommended—tested and meets performance benchmarks. Citrix XenServer 6.2 is supported.
- Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet): 1 vCPU: requires minimum 4 GB RAM allocation; 2 vCPUs: requires minimum 4 GB RAM allocation; 4 vCPUs: requires minimum 4 GB RAM allocation.
- Virtual CPU cores required: 1
- Supported vNICs: VIF-netfront (pmap)
- Maximum number of vNICs supported per VM instance: 7
- Virtual CD/DVD drive Installed: Required
- Virtual Disk—a 8 GB virtual disk is supported.
- Virtual CPU cores—1 vCPU is required

Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.6

Installation Requirements for Citrix XenServer (Cisco IOS XE Everest 16.6)

For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

The Citrix XenServer requirements for early versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x, on page 115.

- Citrix XenServer version supported: Citrix XenServer 6.5 is recommended—tested and meets performance benchmarks. Citrix XenServer 6.2 is supported.
- Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet): 1 vCPU: requires minimum 4 GB RAM allocation; 2 vCPUs: requires minimum 4 GB RAM allocation; 4 vCPUs: requires minimum 4 GB RAM allocation.
- Virtual CPU cores required: 1
- Supported vNICs: VIF-netfront (pmap)
- Maximum number of vNICs supported per VM instance: 7
• Virtual CD/DVD drive Installed: Required
• Virtual Disk—a 8 GB virtual disk is supported.
• Virtual CPU cores—1 vCPU is required

Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.5

Installation Requirements for Citrix XenServer (Cisco IOS XE Everest 16.5)
For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

The Citrix XenServer requirements for early versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x, on page 115.

• Citrix XenServer version supported: Citrix XenServer 6.5 is recommended—tested and meets performance benchmarks. Citrix XenServer 6.2 is supported
• Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet). 1 vCPU: requires minimum 4 GB RAM allocation; 2 vCPUs: requires minimum 4 GB RAM allocation; 4 vCPUs: requires minimum 4 GB RAM allocation
• Virtual CPU cores required: 1
• Supported vNICs : VIF-netfront (pmap)
• Maximum number of vNICs supported per VM instance: 7
• Virtual CD/DVD drive Installed: Required
• Virtual Disk—a 8 GB virtual disk is supported.
• Virtual CPU cores—1 vCPU is required

Installation Requirements for Citrix XenServer: Cisco IOS XE Everest 16.4

Installation Requirements for Citrix XenServer (Cisco IOS XE 16.4)
For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

The Citrix XenServer requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in the Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), page 5-3.

• Citrix XenServer version supported: 6.5 is recommended—tested and meets performance benchmarks. Citrix XenServer 6.2 is supported
• Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet): 1 vCPU: requires minimum 4 GB RAM allocation; 2 vCPUs: requires minimum 4 GB RAM allocation; 4 vCPUs: requires minimum 4 GB RAM allocation

• Virtual CPU cores required: 1

• Supported vNICs: VIF-netfront (pmap)

• Maximum number of vNICs supported per VM instance: 7

• Virtual CD/DVD drive Installed: Required

• Virtual Disk—a 8 GB virtual disk is supported.

• Virtual CPU cores—1 vCPU is required

### Installation Requirements for Citrix XenServer: Cisco IOS XE 16.3

**Installation Requirements for Citrix XenServer (Cisco IOS XE Denali 16.3)**

For installation procedures, see [Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109](#).

The Citrix XenServer requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in [Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109](#).

• Citrix XenServer version supported: Citrix XenServer 6.5 is recommended—tested and meets performance benchmarks. Citrix XenServer 6.2 is supported

• Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet): 1 vCPU: requires minimum 4 GB RAM allocation; 2 vCPUs: requires minimum 4 GB RAM allocation; 4 vCPUs: requires minimum 4 GB RAM allocation

• Virtual CPU cores required: 1

• Supported vNICs: VIF-netfront (pmap)

• Maximum number of vNICs supported per VM instance: 7

• Virtual CD/DVD drive Installed: Required

• Virtual Disk—a 8 GB virtual disk is supported.
Installation Requirements for Citrix XenServer: Cisco IOS XE 3.x

Installation Requirements for Citrix XenServer (Cisco IOS XE 3.14, 3.15, 3.16, 3.17)

For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

- Citrix XenServer version supported: 6.2
- The following supported vCPU configurations also depend on the throughput license and technology package installed—see Datasheet.
  1 vCPU: requires minimum 4 GB RAM allocation
  2 vCPUs: requires minimum 4 GB RAM allocation
  4 vCPUs: requires minimum 4 GB RAM allocation
- Virtual CPU cores required: 1
- Virtual hard disk size: 8 GB minimum
- Supported vNICs: VIF
- Maximum number of vNICs supported per VM instance: 7
- Virtual CD/DVD drive Installed: Required

Installation Requirements for Citrix XenServer (Cisco IOS XE 3.13)

For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

- Citrix XenServer version supported: 6.2
- Supported vCPU configurations (also depends on the throughput license and technology package installed—see Datasheet): 1 vCPU: requires minimum 2.5 GB RAM allocation
  2 vCPUs: requires minimum 2.5 GB RAM allocation
  4 vCPUs: requires minimum 4 GB RAM allocation
- Virtual CPU cores required: 1
- Virtual hard disk size: 8 GB minimum
- Supported vNICs: VIF
- Maximum number of vNICs supported per VM instance: 7
- Virtual CD/DVD drive Installed: Required
Installation Requirements for Citrix XenServer (Cisco IOS XE 3.11, 3.12)

For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

- Citrix XenServer version supported: 6.0.2, 6.1
- Supported vCPU configurations (also depends on the throughput license and technology package installed—see Datasheet): 1 vCPU: requires minimum 2.5 GB RAM allocation
  2 vCPUs: requires minimum 2.5 GB RAM allocation
  4 vCPUs: requires minimum 4 GB RAM allocation
- Virtual CPU cores required: 1
- Virtual hard disk size: 8 GB minimum
- Supported vNICs: VIF
- Maximum number of vNICs supported per VM instance: 7
- Virtual CD/DVD drive Installed: Required

Installation Requirements for Citrix XenServer (Cisco IOS XE 3.10)

For installation procedures, see Manually Creating the Cisco CSR 1000v VM Using the .iso File (Citrix XenServer), on page 109.

- Citrix XenServer version supported: 6.0.2
- Supported vCPU configurations. (Also depends on the throughput license and technology package installed—see Datasheet): 4 vCPUs: requires 4 GB minimum RAM allocation
- Virtual CPU cores required: 1
- Virtual hard disk size: 8 GB minimum
- Supported vNICs: VIF
- Maximum number of vNICs supported per VM instance: 7
- Virtual CD/DVD drive Installed: Required

Note

(Cisco IOS XE 3.10S Release and earlier) The network added to NIC0 maps to the Gigabit Ethernet 0 management interface on the Cisco CSR 1000v.
Installing the Cisco CSR 1000v in KVM Environments

- Kernel Virtual Machine Support Information, on page 117
- KVM Support on OpenStack, on page 118
- Installation Requirements for KVM—Cisco IOS XE Gibraltar 16.10 and 16.11 releases, on page 118
- Creating a Cisco CSR 1000v KVM Instance, on page 119
- Creating the Cisco CSR 1000v on OpenStack, on page 126
- Bootstrapping the CSR Configuration, on page 129
- Increasing Performance on KVM Configurations, on page 132
- Cloning the VM, on page 133
- Configure the halt_poll ns Parameter, on page 133
- Installation Requirements for KVM—Cisco IOS XE Fuji 16.9, on page 134
- Installation Requirements for KVM—Cisco IOS XE Fuji 16.8, on page 135
- Installation Requirements for KVM—Cisco IOS XE Fuji 16.7, on page 135
- Installation Requirements for KVM—Cisco IOS XE Everest 16.6, on page 136
- Installation Requirements for KVM—Cisco IOS XE Everest 16.5, on page 137
- Installation Requirements for KVM—Cisco IOS XE Denali 16.4, on page 137
- Installation Requirements for KVM Cisco using IOS XE Denali 16.3, on page 138
- Installation Requirements for KVM—Cisco IOS XE 3.x, on page 138

Kernel Virtual Machine Support Information

The CSR1000v supports the following Linux/KVM environments:

- Red Hat Enterprise Linux (RHEL)
- Red Hat Enterprise Virtualization (RHEV)
- Ubuntu (beginning with Cisco IOS XE Release 3.11S)

Red Hat Enterprise Linux (RHEL), an enterprise virtualization product produced by Red Hat, based on the Kernel-based Virtual Machine (KVM), is an open source, full virtualization solution for Linux on x86 hardware, containing virtualization extensions.

The Red Hat Enterprise Virtualization (RHEV) platform is a commercially packaged virtualization platform from Red Hat.
For more information on the KVM products and versions supported, see the "Installation Requirements for KVM" sections in the following few pages.

The Cisco CSR 1000v installation on KVM requires the manual creation of a VM and installation using the .iso file or the qcow2 file. Deploying the OVA template into a KVM environment is not supported.

The Cisco CSR 1000v supports the Virtio vNIC type on the KVM implementation. KVM supports a maximum of 26 vNICS.

KVM Support on OpenStack

(Cisco IOS XE 3.12S or later) The Cisco CSR 1000v supports the OpenStack environment. OpenStack support requires the qcow2 installation file available on the Cisco.com download page. For more information, see Creating the Instance Using the OpenStack Command Line Tool, on page 126 and Creating the Instance Using the OpenStack Dashboard, on page 127.

Installation Requirements for KVM—Cisco IOS XE Gibraltar 16.10 and 16.11 releases

The KVM requirements for Cisco CSR 1000v using Cisco IOS XE Gibraltar 16.10 and 16.11 releases are as follows:

Note

The KVM requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for KVM—Cisco IOS XE 3.x, on page 138.

KVM Versions: Linux KVM based on Red Hart Enterprise Linux 7.4 is recommended - tested and meets performance benchmarks.

• vCPUs. The following vCPU configurations are supported:
  • 1 vCPU: requires minimum 4 GB RAM allocation
  • 2 vCPUs: requires minimum 4 GB RAM allocation
  • 4 vCPUs: requires minimum 4 GB RAM allocation

• Virtual CPU cores—1 vCPU is required
• Virtual hard disk size—8 GB minimum
• Supported vNICs—Virtio, ixgbe, ixgbevf or i40evf

Note

If a vNIC with an i40evf driver is used, the maximum number of physical VLANs is limited to 512, shared across all VFs, and the number of VLANs for a VF can be further limited by the host (PF) driver for untrusted VFs. The latest Intel i40e PF driver limits untrusted VFs to a maximum of 8 VLANs/sub-interfaces.
Creating a Cisco CSR 1000v KVM Instance

Creating the Cisco CSR 1000v VM Using the Self-installing .Run Package

The Cisco CSR 1000v KVM Installer package (with .run extension) is a self-installing CSR package for KVM.

Default or Interactive

Installing a CSR instance using the .run package provides two options:

- Default mode
  Installation uses the bundled CSR image file and one of the default VM configuration options (small, medium, large, xlarge) described in the procedure below.

- Interactive mode
  Allows customization of VM configuration and option to install the bundled CSR image file or a separate .qcow2 image.

Installation Procedure

The following steps are performed on the KVM server.

Prerequisites

Download the .run executable from the Cisco CSR 1000v software installation image package and copy it onto a local device.

SUMMARY STEPS

1. Run the .run executable to launch the CSR VM.

DETAILED STEPS

Run the .run executable to launch the CSR VM.

Example:

csr1000v-universalk9.03.16.01a.S.155-3.51a-ext.run <option>

Values for <option>:

- interactive—Interactive mode
- small—Deploy CSR with: 1 vCPU, 4 GB RAM, 3 vNICs
- medium—Deploy CSR with: 2 vCPU, 4 GB RAM, 3 vNICs
Creating the Cisco CSR 1000v VM Using the virt-manager GUI Tool

Creating the Cisco CSR 1000v VM Using virt-manager with qcow2 or ISO Image

Before you begin

Download and install the virt-manager RPM package on the KVM server.

Download the .qcow2 or .iso image from the Cisco CSR 1000v software installation image package and copy it onto a local or network device.

Step 1 Launch the virt-manager GUI. Click Create a new virtual machine.
Step 2 Do one of the following: (For .qcow2) Select Import existing disk image. (For .iso) Select Local install media (ISO image or CDROM).
Step 3 Select the CSR qcow2 or iso file location.
Step 4 Configure the memory and CPU parameters.
Step 5 Configure virtual machine storage.
Step 6 Click Finish.

Note To add additional hardware before creating the VM, select Customize configuration before install before clicking Finish. If this option is selected, then the next screen displays an Add Hardware button that can be used one or more times to add various hardware options, such as additional disks or a serial port interface (see the following sections).

Step 7 Access the Cisco CSR 1000v console by using one of the following:
   a) (If using the virtual console) Double-click the VM instance to access the VM console
   b) (If using the serial console) See Booting the Cisco CSR 1000v and Accessing the Console, on page 153

What to do next

Creating the Cisco CSR 1000v VM Using virt-manager—Add Serial Port

Enables access to the CSR by adding a serial console. See Booting the Cisco CSR 1000v as the VM, on page 153.

SUMMARY STEPS

1. Click Add Hardware.
2. Select the Serial option from the menu.
3. From the Device type drop-down menu, select TCP net console (tcp).
4. Specify the port number, and select the Use Telnet checkbox.
5. Click Finish.
6. After adding all necessary hardware, click Begin Installation.

DETAILED STEPS

Step 1 Click Add Hardware.
Step 2 Select the Serial option from the menu.
Step 3 From the Device type drop-down menu, select TCP net console (tcp).
Step 4 Specify the port number, and select the Use Telnet checkbox.
Step 5 Click Finish.
Step 6 After adding all necessary hardware, click Begin Installation.

Creating the Cisco CSR 1000v VM Using virt-manager--Add Hard Disk

Describes the optional steps after selecting Customize configuration before install.
Before you begin

- Perform the task Creating a Bootstrap Day0 Configuration for virt-manager, on page 122 — Using .qcow2 or .iso Image, but during the task steps before clicking "Finish", select the Customize configuration before install option. A screen with "Add Hardware" button appears.

SUMMARY STEPS

1. Click Add Hardware.
2. Select the Storage option from the menu.
3. Select Select managed or other existing storage checkbox.
4. (Applicable only when adding a Bootstrap Day0 configuration) Click the Browse button and navigate to the csr_config.iso location. From the Device type drop-down menu, select the IDE CDROM option.
5. Click Finish.
6. After adding all necessary hardware, click Begin Installation.

DETAILED STEPS

Step 1 Click Add Hardware.
Step 2 Select the Storage option from the menu.
Step 3 Select Select managed or other existing storage checkbox.
Step 4 (Applicable only when adding a Bootstrap Day0 configuration) Click the Browse button and navigate to the csr_config.iso location. From the Device type drop-down menu, select the IDE CDROM option.
Step 5 Click Finish.
Step 6 After adding all necessary hardware, click Begin Installation.

Creating a Bootstrap Day0 Configuration for virt-manager

This procedure provides additional steps to be executed within Creating the Cisco CSR 1000v VM Using virt-manager with qcow2 or ISO Image, on page 120.

The following steps are performed on the KVM server.

SUMMARY STEPS

1. Create iosxe_config.txt or ovf-env.xml file. (For details, see Bootstrap Properties, on page 129.)
2. Create a disk image from this file using below command:
3. (This step must be performed within Creating the Cisco CSR 1000v VM Using virt-manager with qcow2 or ISO Image, on page 120.)

DETAILED STEPS

Step 1 Create iosxe_config.txt or ovf-env.xml file. (For details, see Bootstrap Properties, on page 129.)
Step 2 Create a disk image from this file using below command:
Step 3  
(This step must be performed within Creating the Cisco CSR 1000v VM Using virt-manager with qcow2 or ISO Image, on page 120.)

Mount the csr_config.iso as an additional disk during creation of the CSR virtual machine.

---

Creating the Cisco CSR 1000v VM Using virt-install with qcow2 Image

- Download and install the virt-install RPM package on the KVM server.
- Download the .qcow2 image from the Cisco CSR 1000v software installation image package and copy it onto a local or network device.

Before you begin

Using the virt-install command, create the instance and boot, using the following syntax:

Example:

```
virt-install
 --connect=qemu:///system
 --name=my_csr_vm
 --os-type=linux
 --os-variant=rhel4
 --arch=x86_64
 --cpu host
 --vcpus=1,sockets=1,cores=1,threads=1
 --hvm
 --ram=4096
 --import
 --disk path=<path_to_csr1000v_qcow2>,bus=ide,format=qcow2
 --network bridge=virbr0,model=virtio
 --noreboot
```

(Optional) To configure a Bootstrap Day0 configuration, perform the steps described in Creating a Bootstrap Day0 Configuration for virt-install, on page 125.

After the installation is complete, the CSR VM will be shutdown. You can start the CSR VM using the `virsh start` command.

---

What to do next

**Red Hat Enterprise Linux—Setting Host Mode**

Due to an issue specific to Red Hat Enterprise Linux, when launching the Cisco CSR1000v in a Red Hat Enterprise Linux environment using `virt-install`, set the host mode as follows:

- In Red Hat Enterprise Linux 6, use:
Creating the Cisco CSR 1000v VM Using virt-install with ISO Image

**Before you begin**

- Download and install the virt-install RPM package on the KVM server.
- Download the .iso image from the Cisco CSR 1000v software installation image package and copy it onto a local or network device.

---

**Step 1**

Create a 8G disk image in .qcow2 format using the **qemu-img** command.

**Example:**

```bash
qemu-img create -f qcow2 csr_disk.qcow2 8G
```

**Step 2**

Use the **virt-install** command to install the CSR. This requires the correct permissions to create a new VM. The following example creates a 1 vCPU CSR with 4G of RAM, one network interface, and one serial port.

**Example:**

```bash
virt-install
 --connect=qemu:///system
 --name=my_csr_vm
 --description "Test VM"
 --os-type=linux
 --os-variant=rhel4
 --arch=x86_64
 --cpu host
 --vcpus=1,sockets=1,cores=1,threads=1
 --hvm
 --ram=4096
 --cdrom=<path_to_csr1000v_iso>
 --disk path=csr_disk.qcow2,bus=virtio,size=8,sparse=false,cache=none,format=qcow2
 --network bridge=virbr0,model=virtio
 --noreboot
```

(Optional) To configure a Bootstrap Day0 configuration, perform the steps described in *Creating a Bootstrap Day0 Configuration for virt-install*, on page 125.

The **virt-install** command creates a new VM instance and the CSR installs the image onto the specified disk file. After the installation is complete, the CSR VM will be shutdown. You can start the CSR VM using the **virsh start** command.

**Step 3**
What to do next

Red Hat Enterprise Linux—Setting Host Mode

Due to an issue specific to Red Hat Enterprise Linux, when launching the Cisco CSR1000v in a Red Hat Enterprise Linux environment using `virt-install`, set the host mode as follows:

- In Red Hat Enterprise Linux 6, use:

  ```
 --cpu host
  ```

- In Red Hat Enterprise Linux 7, use:

  ```
 --cpu host-model
  ```

Creating a Bootstrap Day0 Configuration for `virt-install`

This procedure provides additional steps to execute within one of the following procedures, as noted within the procedures:

- Creating the Cisco CSR 1000v VM Using `virt-install` with qcow2 Image, on page 123
- Creating the Cisco CSR 1000v VM Using `virt-install` with ISO Image, on page 124

Note

The CSR1000v will read the day 0 configuration during initial bootup and will save the configuration after bootup.

In order to bootstrap, perform the following steps on the KVM server.

SUMMARY STEPS

1. Create an `iosxe_config.txt` or `ovf-env.xml` file. (For details, see Bootstrap Properties, on page 129.)
2. Create a disk image from the file using following command:
3. (This step must be performed within the VM creation procedure (see the options indicated above).

DETAILED STEPS

Step 1	Create an `iosxe_config.txt` or `ovf-env.xml` file. (For details, see Bootstrap Properties, on page 129.)
Step 2	Create a disk image from the file using following command:
	Example:
	`mkisofs -l -o /my/path/csr_config.iso <configuration_filename>`

| Step 3 | (This step must be performed within the VM creation procedure (see the options indicated above). Add an additional disk parameter to the `virt-install` command to include the csr_config.iso disk image, as follows: |
|        | Example: |
Creating the Cisco CSR 1000v on OpenStack

Selecting a Cisco CSR 1000v Installation Image

There are two different installation image packages available for downloading. Each package contains a different qcow2 file.

- csr1000v-universalk9.16.03.01a.qcow2
  — choose an image such as this (for Cisco IOS XE Denali 16.3.1) to use a virtual console. This is recommended for later use with the OpenStack dashboard.

- csr1000v-universalk9.16.03.01a-serial.qcow2
  — choose an image such as this (for Cisco IOS XE Denali 16.3.1) to use a serial console to access the VM. This is useful in the lab if you are using the Cisco Modeling Tool.

Creating the Instance Using the OpenStack Command Line Tool

Although the following procedure provides a general guideline for how to create the Cisco CSR 1000v tenant instance, the exact steps that you need to perform may vary depending on the characteristics of your KVM environment and setup. For more information, see the OpenStack documentation. See "Installation Requirements" sections.

The following steps are performed using the Nova (OpenStack Compute) console on your server.

Step 1
Download the .qcow2 file from the Cisco CSR 1000v software installation image package and copy it onto a local or network device

Step 2
Create the Nova flavor using the `nova flavor-create` command

```
 nova flavor-create <flavor_name> <flavor_id> <ram size MB> <disk size GB> <num_vCPUs>
```

See Installation Requirements for KVM Cisco using IOS XE Denali 16.3, on page 138 for the installation requirements. The disk size should be set to 0 for the Cisco CSR 1000v to boot. The following command example creates a KVM instance with 4096 MB RAM, a disk size of 0 and 2 vCPUs configured:

```
 nova flavor-create csr_flavor 6 4096 0 2
```

Step 3
Enter the `nova flavor-list` command to verify that the nova flavor created the previous step is available

Step 4
Use the `glance` command, to create the OpenStack image

```
 glance image-create --name <image_name> --disk-format qcow2 --container-format bare --file <Location-of-img-file>
```

The following example creates an OpenStack image using the Cisco CSR 1000v installation file:

```
Example:
```
glance image-create --name csr_image --disk-format qcow2 --container-format bare
--file /opt/stack/csr/files/images/csr1000v-universalk9.03.12.00.S.154-2.8-std.qcow2

**Step 5**

Use the `nova boot` command, to create the instance and boot:

```
nova boot <instance_name> --image <image_id> --flavor <flavor_id> --nic net-id=<uuid> --config-drive=<true/false>
--file <configuration_file_name>
```

The `--config-drive` option can be used to specify that the configuration is loaded on the Cisco CSR 1000v when it comes up. Set the `--config-drive` option to “true” and specify the name of the configuration file in which you enter the router configuration to be booted. There are two possible formats for the configuration file:

- “ovf-env.xml” (OVF format)
- “iosxe_config.txt”

**Note**
For details, see Bootstrap Properties, on page 129 and subsequent sections.

**Note**
These file names are hard-coded and required for the config-drive settings to boot.

Prior to Cisco IOS XE 3.16S, you could specify only one of the two configuration files in the `nova boot` command. Beginning with Cisco IOS XE 3.16S, and including Cisco IOS XE Denali 16.3.1 and later, you can specify both configuration files in the `nova boot` command line—for example:

**Example:**

```
nova boot csr-vm-316 --image csr-316 --flavor csr.2vcpu.4gb
--nic port-id=6773be11-7b95-48cd-b372-fb8a3ca2b5b --config-drive=true
--file ovf-env.xml=/home/stack/conf_files/ut/ovf-env.xml
--file iosxe_config.txt=/home/stack/conf_files/ut/iosxe_config.txt
```

**Example:**

This example shows the booting of the Cisco CSR 1000v image on OpenStack with the “ovf-env.xml” file containing the router configuration:

```
nova boot csr_instance --image csr_image --flavor 6 --nic net-id=546af738-bc0f-43cf-89f2-1e2c747d1764
--config-drive=true --file ovf-env.xml=/opt/stack/csr/files/ovf-env.xml
```

**Example:**

The following example boots the Cisco CSR 1000v image on OpenStack with the “iosxe_config.txt” file containing the router configuration:

```
nova boot csr_instance --image csr_image --flavor 6 --nic net-id=546af738-bc0f-43cf-89f2-1e2c747d1764
--config-drive=true --file iosxe_config.txt=/opt/stack/iosxe_config.txt
```

The Cisco CSR 1000v begins the boot process. See Booting the Cisco CSR 1000v as the VM, on page 153.

After the OpenStack image is created, you can access the instance on your OpenStack dashboard.

---

**Creating the Instance Using the OpenStack Dashboard**

Perform the following steps to create the instance using the OpenStack dashboard.
To configure the KVM to run with config-drive, you must select the serial image and use the procedure described in the Creating the Instance Using the OpenStack Command Line Tool, on page 126.

---

**Step 1**
Download the .qcow2 file from the Cisco CSR 1000v software installation image package and copy it onto a local or network device.

**Step 2**
From the OpenStack dashboard, access the OpenStack console.

**Step 3**
Login as the admin onto the OpenStack console.

**Step 4**
Create a new flavor using the **Flavor Create** tab on the screen, and specify the `<flavor_name>` `<flavor_id>` `<ram size MB>` `<disk size GB>` `<num_vCPUs>`.

See the "Installation Requirements" section required for your version of IOS XE Installing the Cisco CSR 1000v in KVM Environments, on page 117. The disk size should be set to 0 for the Cisco CSR 1000v to boot, as in the tables 6-1 and 6-2.

Select the required flavor from the **System Panel > Flavors** tab.

**Step 5**
Create a new image using the **Image Create** tab on the screen.

Specify the location of the image, the disk format (qcow2) and container-format (raw).

Select the **System Panel > Images** tab. The image should show up on the list of images shown on the screen.

**Step 6**
Create a new instance using the **Instance Create** tab on the screen.

Specify the image, the flavor, and the appropriate network interfaces to be attached to the instance.

Select the **System Panel > Instances** tab. The instance should show up on the list of instances shown on the screen, and you should be able to access the console by clicking on the instance name.

**Step 7**
To launch the instance, select the instance and select **Launch Instance**.

Click the **Details** tab. Review the instance information to ensure it is correct. When you ready to launch the instance, click **Launch**.

The instance is launched and the Cisco CSR 1000v begins the boot process. See Booting the Cisco CSR 1000v as the VM, on page 153.

---

**Troubleshooting for Creating the Instance using OpenStack**

The following issues may occur when creating the instance using the OpenStack Dashboard (see Creating the Instance Using the OpenStack Dashboard, on page 127).

- If you do not see any output on the OpenStack dashboard’s console it may be due to you having previously selected the incorrect type of image. Select the virtual qcow2 image (not the serial qcow2 image) before following the steps in Creating the Instance Using the OpenStack Dashboard, on page 127.
## Bootstrapping the CSR Configuration

### Bootstrap Properties

The Cisco CSR 1000v bootstrap properties are specified in the `ovf-env.xml` file. For an example `ovf-env.xml` file, see Example ovf-env.xml File, on page 130.

**Table 27: Bootstrap Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>console</td>
<td>(Cisco IOS XE 3.17S and later) Configures the console mode. Possible values: auto, virtual, serial</td>
</tr>
<tr>
<td>domain-name</td>
<td>Domain name of the router.</td>
</tr>
<tr>
<td>enable-scp-server</td>
<td>Enables the IOS SCP feature.</td>
</tr>
<tr>
<td>enable-ssh-server</td>
<td>Enables remote login using SSH and disables remote login via Telnet. Requires that the login username and password are set.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the router.</td>
</tr>
<tr>
<td>ios-config</td>
<td>Enables execution of a Cisco IOS command.</td>
</tr>
<tr>
<td></td>
<td>To execute multiple commands, use multiple instances of <code>ios-config</code>, with a number appended to each instance—for example, <code>ios-config-1</code>, <code>ios-config-2</code>. The commands are executed in numerical order according to the appended number.</td>
</tr>
<tr>
<td></td>
<td><strong>Example</strong></td>
</tr>
<tr>
<td></td>
<td><code>ios-config-1=&quot;username cisco priv 15 pass ciscoxyz&quot;</code></td>
</tr>
<tr>
<td></td>
<td><code>ios-config-2=&quot;ip scp server enable&quot;</code></td>
</tr>
<tr>
<td></td>
<td><code>ios-config-3=&quot;ip domain lookup&quot;</code></td>
</tr>
<tr>
<td></td>
<td><code>ios-config-4=&quot;ip domain name cisco.com&quot;</code></td>
</tr>
<tr>
<td>license</td>
<td>(Cisco IOS XE 3.13S and later) Configures the license technology level that is available when the Cisco CSR 1000v boots.</td>
</tr>
<tr>
<td>login-password</td>
<td>Login password for the router.</td>
</tr>
<tr>
<td>login-username</td>
<td>Login username for the router.</td>
</tr>
<tr>
<td>mgmt-interface</td>
<td>Designates the management interface for the Cisco CSR 1000v. The format must be GigabitEthernet or GigabitEthernet.xxx.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Beginning with Cisco IOS XE 3.11S, the GigabitEthernet0 interface is no longer supported.</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>mgmt-ipv4-addr</td>
<td>Management gateway address/mask in IPv4 format for the GigabitEthernet0 management interface.</td>
</tr>
<tr>
<td>mgmt-ipv4-gateway</td>
<td>IPv4 management default gateway address. If using DHCP, enter “dhcp” in the field.</td>
</tr>
<tr>
<td>mgmt-ipv4-network</td>
<td>Configures the IPv4 Network (such as “192.168.2.0/24” or “192.168.2.0 255.255.255.0”) that the management gateway should route to. If not specified, the default route (0.0.0.0/0) is used.</td>
</tr>
<tr>
<td>mgmt-vlan</td>
<td>Configures the dot1Q VLAN interface. Requires the management interface to be configured using the GigabitEthernetx.xxxx format.</td>
</tr>
<tr>
<td>pns-c-agent-local-port</td>
<td>(Optional) Configures the Cisco Prime Network Services Controller service agent SSL port on the local Cisco CSR 1000v to receive policies from the service manager. This setting is used if you plan to remotely manage the Cisco CSR 1000v using the Cisco Prime Network Services Controller.</td>
</tr>
<tr>
<td>pns-c-ipv4-addr</td>
<td>Configures the IP address of the Cisco Prime Network Services Controller. This setting is used if you plan to remotely manage the Cisco CSR 1000v using the Cisco Prime Network Services Controller.</td>
</tr>
<tr>
<td>pns-c-shared-secret-key</td>
<td>Configures the Cisco Prime Network Services Controller shared secret key for the Cisco Prime Network Services Controller agent to set the SSL certificate from the controller. This setting is used if you plan to remotely manage the Cisco CSR 1000v using the Cisco Prime Network Services Controller.</td>
</tr>
<tr>
<td>privilege-password</td>
<td>Configures the password for privileged (enable) access.</td>
</tr>
<tr>
<td>remote-mgmt-ipv4-addr</td>
<td>(Optional) Configures the IP address used for remote management of the Cisco CSR 1000v by the REST API or by the Cisco Prime Network Services Controller. The address must be in the same subnet as the management interface address. <strong>Note</strong> Beginning with Cisco IOS XE 3.13S, this option is not used if configuring the shared management interface to support REST API.</td>
</tr>
<tr>
<td>resource-template</td>
<td>(Cisco 3.16S2 and later) Configures the Resource Template. Possible values: default, service_plane_medium, service_plane_heavy</td>
</tr>
</tbody>
</table>

**Example ovf-env.xml File**

```xml
<?xml version="1.0" encoding="UTF-8"?>
<Environment xmlns:oe="http://schemas.dmtf.org/ovf/environment/1">
 <PropertySection>
 <Property oe:key="com.cisco.csr1000v.license.1" oe:value="security"/>
 </PropertySection>
</Environment>
```
Example iosxe_config.txt File

hostname ultra-ios_cfg
license smart enable
username lab privilege 15 password lab
ip domain-name cisco.com
crypto key generate rsa modulus 1024
interface GigabitEthernet1
ip address 10.0.0.5 255.255.255.0
no shut
exit
ip route 0.0.0.0 0.0.0.0 10.0.0.1
exit
line vty 0 4
login local
exit
Increasing Performance on KVM Configurations

You can increase the performance for a Cisco CSR 1000v in a KVM environment by changing settings on the KVM host. These settings are independent of the Cisco IOS XE configuration settings on the Cisco CSR 1000v. For information about Red Hat Enterprise Linux requirements, see Bootstrap Properties, on page 129 and subsequent sections.

Note

In releases earlier than Cisco IOS XE Release 3.13S, the Cisco CSR 1000v does not support jumbo packets larger than 1518 bytes for KVM on a Virtio interface. Packets larger than 1518 bytes are dropped.

You can improve performance on KVM configurations by "Enabling CPU Pinning" as follows.

Increase the performance for KVM environments by using the KVM CPU Affinity option to assign a virtual machine to a specific processor. To use this option, configure CPU pinning on the KVM host.

In the KVM host environment, verify the host topology to find out how many vCPUs are available for pinning by using the following command:

```
virsh nodeinfo
```

Use the following command to verify the available vCPU numbers:

```
virsh capabilities
```

Use the following command to pin the virtual CPUs to sets of processor cores:

```
virsh vcpupin <vmname> <vcpu#> <host core#>
```

This KVM command must be executed for each vCPU on your Cisco CSR 1000v. The following example pins virtual CPU 1 to host core 3:

```
virsh vcpupin csr1000v 1 3
```

The following example shows the KVM commands needed if you have a Cisco CSR 1000v configuration with four vCPUs and the host has eight cores:

```
virsh vcpupin csr1000v 0 2
virsh vcpupin csr1000v 1 3
virsh vcpupin csr1000v 2 4
virsh vcpupin csr1000v 3 5
```

The host core number can be any number from 0 to 7. For more information, see the KVM documentation.

Note

When configuring CPU pinning, carefully consider the CPU topology of the host server. If using a Cisco CSR 1000v configured with multiple cores, do not configure CPU pinning across multiple sockets.
Cloning the VM

In a KVM environment, cloning the Cisco CSR1000v virtual machine using the `virt-manager` virtual machine manager creates a Cisco CSR1000v virtual machine that may be un-bootable.

The issue is caused by an increase in the size of the cloned image size created by `virt-manager`, compared with the original Cisco CSR1000v VM image. The extra bytes (in the KB range) cause the boot failure.

**Workarounds**

There are three workarounds:

- Use the `virt-clone` command to clone the Cisco CSR 1000v VM image.
- For a cloned Cisco CSR 1000v VM image created by `virt-manager`, during the bootup, select the GOLDEN image to boot instead of packages.conf.
- In the “Create a new virtual machine” window, deselect “Allocate entire disk now” before the new Cisco CSR1000v VM is created. This ensures that the cloned Cisco CSR1000v VM image is able to boot up. However, this workaround does not support nested cloning. Use this method only on the first cloned Cisco CSR1000v VM image.

Configure the `halt_poll_ns` Parameter

On newer kernel releases (3.10.0-375.el7 and later), a KVM module parameter - `halt_poll_ns` has been introduced. You can use this parameter to alter the behaviour of how idle KVM guest virtual CPUs (vcpus) are handled.

When a virtual CPU in a KVM guest has no threads to run, the QEMU traditionally haltsthe idle CPU. This setting specifies a period of 400 nanoseconds by default, where a virtual CPU waits and polls before entering a CPU Idle state.

When new work arrives during the polling period before the vcpu is halted, the vcpu is immediately ready to execute the work. If the vcpu has been idle when new work arrives, the vcpu must be brought out of the idle state before the new work can be started. The time taken from idle to running state induces additional latency which negatively impacts latency sensitive workloads.

With the default kernel parameters, the guest Cloud Services Router (CSR1000v) CPU consumes 100% of the host CPU.

You can configure `halt_poll_ns` in two ways:

- Large `halt_poll_ns`: In this case, more CPU is spent busy-spinning for events that wake the virtual CPU, and less acpi deep sleeps occur. This means more power is consumed. However, there are less wakeups from deep states states, which depending on the state that’s configured, can cause issues like cache misses etc.
- Small `halt_poll_ns`: In this case, less CPU time is spent busy-spinning for events that wake the CPU, more acpi deep sleeps occur. Here, less power consumed, but more wakeups from deep sleep states are required. More wakeups can cause large amounts of deep sleep instances, which depending on the configuration, can cause large amounts of cache misses and long wakeup time.
Configuring the halt_poll_ns parameter

You can configure the halt_poll_ns parameter in the following ways:

1. At run time, run the following:
   ```bash
 echo 0 > /sys/module/kvm/parameters/halt_poll_ns
   ```

2. When you load the module, perform the following configuration:
   ```bash
 # rmmod kvm_intel
 # rmmod kvm
 # modprobe kvm halt_poll_ns=0
 # modprobe kvm_intel
   ```

3. When you boot the device, add `kvm.halt_poll_ns=<specify value>` in the parameters section of grub2.

Installation Requirements for KVM—Cisco IOS XE Fuji 16.9

The KVM requirements for Cisco CSR 1000v using Cisco IOS XE Fuji 16.9 are as follows:

Note

The KVM requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for KVM—Cisco IOS XE 3.x, on page 138.

KVM Versions: Linux KVM based on Red Hat Enterprise Linux 7.4 is recommended - tested and meets performance benchmarks.

- vCPUs. The following vCPU configurations are supported:
  - 1 vCPU: requires minimum 4 GB RAM allocation
  - 2 vCPUs: requires minimum 4 GB RAM allocation
  - 4 vCPUs: requires minimum 4 GB RAM allocation

- Virtual CPU cores—1 vCPU is required

- Virtual hard disk size—8 GB minimum

- Supported vNICs—Virtio, ixgbe, ixgbevf or i40evf

Note

If a vNIC with an i40evf driver is used, the maximum number of physical VLANs is limited to 512, shared across all VFs, and the number of VLANs for a VF can be further limited by the host (PF) driver for untrusted VFs. The latest Intel i40e PF driver limits untrusted VFs to a maximum of 8 VLANs/sub-interfaces.

- Maximum number of vNICs supported per VM instance—26

- Virtual CD/DVD drive installed (applicable only when installing using an .iso file)—required
Installation Requirements for KVM—Cisco IOS XE Fuji 16.8

The KVM requirements for Cisco CSR 1000v using Cisco IOS XE Fuji 16.8 are as follows:

Note
The KVM requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for KVM—Cisco IOS XE 3.x, on page 138.

KVM Versions: Linux KVM based on Red Hat Enterprise Linux 7.3 is recommended - tested and meets performance benchmarks.

• vCPUs. The following vCPU configurations are supported:
  • 1 vCPU: requires minimum 4 GB RAM allocation
  • 2 vCPUs: requires minimum 4 GB RAM allocation
  • 4 vCPUs: requires minimum 4 GB RAM allocation

• Virtual CPU cores—1 vCPU is required
• Virtual hard disk size—8 GB minimum
• Supported vNICs—Virtio, ixgbe, ixgbevf or i40evf

Note
If a vNIC with an i40evf driver is used, the maximum number of physical VLANs is limited to 512, shared across all VFs, and the number of VLANs for a VF can be further limited by the host (PF) driver for untrusted VFs. The latest Intel i40e PF driver limits untrusted VFs to a maximum of 8 VLANs/sub-interfaces.

• Maximum number of vNICs supported per VM instance—26
• Virtual CD/DVD drive installed (applicable only when installing using an .iso file)—required

Installation Requirements for KVM—Cisco IOS XE Fuji 16.7

The KVM requirements for Cisco CSR 1000v using Cisco IOS XE Fuji 16.7 are as follows:

Note
The KVM requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for KVM—Cisco IOS XE 3.x, on page 138.

KVM Versions: Linux KVM based on Red Hart Enterprise Linux 7.3 is recommended - tested and meets performance benchmarks.

• vCPUs. The following vCPU configurations are supported:
  • 1 vCPU: requires minimum 4 GB RAM allocation
Installation Requirements for KVM—Cisco IOS XE Everest 16.6

The KVM requirements for Cisco CSR 1000v using Cisco IOS XE Everest 16.6 are as follows:

KVM versions. The following KVM versions are supported:

- Linux KVM based on Red Hat Enterprise Linux 7.2 is recommended—tested and meets performance benchmarks. Red Hat Enterprise Linux 7.1 is supported, but RHEL 7.2 is recommended

vCPUs. The following vCPU configurations are supported:

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU cores—1 vCPU is required
Virtual hard disk size—8 GB minimum
Supported vNICs—Virtio, ixgbe or ixgbevf
Maximum number of vNICs supported per VM instance—26
Virtual CD/DVD drive installed (applicable only when installing using an .iso file)—required
Installation Requirements for KVM—Cisco IOS XE Everest 16.5

The KVM requirements for Cisco CSR 1000v using Cisco IOS XE Everest 16.5 are as follows:

KVM versions. The following KVM versions are supported:

- Linux KVM based on Red Hat Enterprise Linux 7.2 is recommended—tested and meets performance benchmarks. Red Hat Enterprise Linux 7.1 is supported, but RHEL 7.2 is recommended

vCPUs. The following vCPU configurations are supported:

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU cores—1 vCPU is required
Virtual hard disk size—8 GB minimum
Supported vNICs—Virtio, ixgbe or ixgbevf
Maximum number of vNICs supported per VM instance—26
Virtual CD/DVD drive installed (applicable only when installing using an .iso file)—required

Installation Requirements for KVM—Cisco IOS XE Denali 16.4

The KVM requirements for Cisco CSR 1000v using Cisco IOS XE Denali 16.4.x are as follows:

KVM versions. The following KVM versions are supported:

- Linux KVM based on Red Hat Enterprise Linux 7.2 is recommended—tested and meets performance benchmarks. Red Hat Enterprise Linux 7.1 is supported, but RHEL 7.2 is recommended

vCPUs. The following vCPU configurations are supported:

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation
Installation Requirements for KVM Cisco using IOS XE Denali 16.3

The KVM requirements for Cisco CSR 1000v using Cisco IOS XE Denali 16.3 are as follows:

- Virtual CPU cores—1 vCPU is required
- Virtual hard disk size—8 GB minimum
- Supported vNICs—Virtio, ixgbe or ixgbevf
- Maximum number of vNICs supported per VM instance—26
- Virtual CD/DVD drive installed (applicable only when installing using an .iso file)—required

Note

The KVM requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for KVM—Cisco IOS XE 3.x, on page 138.

KVM versions. The following KVM versions are supported:

- Linux KVM based on Red Hat Enterprise Linux 7.2 is recommended—tested and meets performance benchmarks. Red Hat Enterprise Linux 7.1 is supported, but RHEL 7.2 is recommended

vCPUs. The following vCPU configurations are supported:

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU cores—1 vCPU is required
Virtual hard disk size—8 GB minimum
Supported vNICs—Virtio, ixgbe or ixgbevf
Maximum number of vNICs supported per VM instance—26
Virtual CD/DVD drive installed (applicable only when installing using an .iso file)—required

Installation Requirements for KVM—Cisco IOS XE 3.x

This section contains information about VMware requirements for older Cisco IOS XE releases (before IOS XE Denali 16.3.1). To see the installation requirements for Cisco IOS XE Denali 16.3 or later, see sections such as Installation Requirements for KVM Cisco using IOS XE Denali 16.3, on page 138.

The table below lists the installation requirements for KVM environments. For installation procedures, see Creating the Cisco CSR 1000v VM Using the Self-installing .Run Package, on page 119 and subsequent sections.
### Table 28: Installation Requirements for KVM Environments (Cisco IOS XE versions 3.x)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KVM versions supported</td>
<td>• Linux KVM based on Red Hat Enterprise Linux 6.3 (Requires Kernel version 2.6.32 and QEMU 0.12.1.2.)</td>
<td>• Red Hat Enterprise Virtualization 3.1</td>
<td>• Ubuntu 12.04 LTS Server 64 Bits (Requires QEMU-x86_64 version 1.0 (qemu-kvm-1.0))</td>
<td>• Ubuntu 14.04 LTS Server 64 Bits (Requires QEMU-x86_64 version 1.0 (qemu-kvm-1.0))</td>
<td>• Linux KVM based on Red Hat Enterprise Linux 6.6 (Requires Kernel version 2.6.32-504 and QEMU 0.12.1.2.) (RHEL 7.1 (Requires Kernel version 3.10.0 and QEMU 1.5.3) supported in 3.17S)</td>
</tr>
<tr>
<td>Supported vCPU configurations(The required vCPU configuration depends on the throughput license and technology package installed. See the data sheet for your release for more information.)</td>
<td>4 vCPUs: requires 4 GB RAM minimum allocation</td>
<td>1 vCPU: requires minimum 2.5 GB RAM allocation</td>
<td>2 vCPUs: requires minimum 2.5 GB RAM allocation</td>
<td>4 vCPUs: requires minimum 4 GB RAM allocation</td>
<td>1 vCPU: requires minimum 4 GB RAM allocation</td>
</tr>
<tr>
<td>Virtual CPU cores required</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
### KVM Requirements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual hard disk size</td>
<td>8 GB minimum</td>
<td>8 GB minimum</td>
<td>8 GB minimum (Applies only to creating the VM using the .iso file. If using the .qcow2 file to install in an OpenStack environment, the hard disk size must be set to 0)</td>
<td>8 GB minimum (Applies only to creating the VM using the .iso file. If using the .qcow2 file to install in an OpenStack environment, the hard disk size must be set to 0)</td>
<td>8 GB minimum (Applies only to creating the VM using the .iso file. If using the .qcow2 file to install in an OpenStack environment, the hard disk size must be set to 0)</td>
</tr>
<tr>
<td>Supported vNICs</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio</td>
<td>Virtio</td>
</tr>
<tr>
<td>Maximum number of vNICs supported per VM instance</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Virtual CD/DVD drive installed (applicable only when installing using an .iso file)</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>
Installing the Cisco CSR 1000v in Microsoft Hyper-V Environments

- Microsoft Hyper-V Support Information, on page 141
- Microsoft Hyper-V Limitations, on page 142
- Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Gibraltar 16.10 and 16.11 releases, on page 142
- Manually Creating the Cisco CSR 1000v VM using the .iso File (Microsoft Hyper-V), on page 143
- Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.9, on page 147
- Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.8, on page 148
- Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.7, on page 149
- Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Everest 16.6, on page 149
- Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Everest 16.5, on page 150
- Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Everest 16.4, on page 151
- Installation Requirements for Microsoft Hyper-V Cisco IOS XE Denali 16.3.1, on page 151
- Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x, on page 152

Microsoft Hyper-V Support Information

(Cisco IOS XE Release 3.12S or later and Cisco IOS XE Release Denali 16.3.1 or later)—the Cisco CSR 1000v supports installation on Microsoft Hyper-V using Windows Server 2012 R2.

*(Cisco IOS XE Denali 16.2)—Installing Cisco CSR 1000v in a Microsoft Hyper-V environment is not supported.*

The Cisco CSR 1000v installation on Microsoft Hyper-V requires the manual creation of a VM and installation using the .iso file. Deploying the OVA template into a Microsoft Hyper-V environment is not supported.

The following Microsoft Hyper-V features are supported:

- Live Migration
- Snapshot
- Move
Microsoft Hyper-V Limitations

This section describes the limitations when specifying VLANs on a VM interface, using the Hyper-V Manager.

(Cisco IOS XE Denali 16.3.1 or later) You can only add one VLAN for a VM interface using the Virtual Switch Manager of Hyper-V Manager.

(Cisco IOS XE 3.17 or earlier) The Cisco CSR 1000v vNIC/interface numbering may change after the Cisco CSR 1000v (running on Hyper-V) is replicated or migrated to another server. To prevent the interface numbering from changing, as a workaround, execute the `clear platform software vnic-if nvtable` command before the failover/restart occurs.

(Cisco IOS XE 3.17 or earlier) You can only add one VLAN for a VM interface using the Virtual Switch Manager of Hyper-V Manager. However, using Cisco IOS XE 3.17 or earlier, you also have the option of using a powershell CLI command `Set-VMNetworkAdapterVlan` to specify multiple VLANs. See the following example:

```
Set-VMNetworkAdapterVlan -VMName dr-vm-6-1 -Trunk -AllowedVlanIdList 1-300 -NativeVlanId 0
```

---

**Note**

The `Set-VMNetworkAdapterVlan` command must be re-entered every time that the Cisco CSR 1000v is reloaded. We recommend that limit the number of VLANs to 300 or below—using the `AllowedVlanIdList` parameter.

For more information on the `Set-VMNetworkAdapterVlan` powershell command, see https://technet.microsoft.com/en-us/library/hh833027(v=ws.10). For more information about Microsoft Hyper-V, see the Microsoft Windows Server 2012 R2 documentation.

Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Gibraltar 16.10 and 16.11 releases

The Microsoft Hyper-V requirements for Cisco CSR 1000v using Cisco IOS XE Fuji 16.10 and 16.11 releases are as follows:

---

**Note**

The Microsoft Hyper-V requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x, on page 152.

- The following Microsoft Hyper-V versions are supported:
  - Windows Server 2016 is recommended - tested and meets the performance benchmarks.

For more information on the `Set-VMNetworkAdapterVlan` powershell command, see https://technet.microsoft.com/en-us/library/hh833027(v=ws.10).
• vCPUs. The following vCPU configurations are supported:
  • 1 vCPU: requires minimum 4 GB RAM allocation
  • 2 vCPUs: requires minimum 4 GB RAM allocation
  • 4 vCPUs: requires minimum 4 GB RAM allocation

• Virtual CPU cores—1 vCPU is required
• Virtual hard disk size—8 GB minimum
• Supported vNICs—NetVSC (pmap)
• Maximum number of vNICs supported per VM instance—8
• Virtual CD/DVD drive installed—required

Manually Creating the Cisco CSR 1000v VM using the .iso File (Microsoft Hyper-V)

Prerequisites

Prerequisites for Manually Creating the CSR 1000v VM using the .iso File

While the following procedure provides a general guideline for how to manually create the VM for the Cisco CSR 1000v, the exact steps that you need to perform may vary depending on the characteristics of your Microsoft Hyper-V environment and setup. For more information, see Microsoft Windows Server 2012 R2 documentation.

Note

The Cisco CSR 1000v does not support deploying the OVA file in Microsoft Hyper-V environments.

Before installing the Cisco CSR 1000v on a Microsoft Hyper-V VM, the following must be installed on the host:
  • Hyper-V Manager
  • Failover Cluster Manager
  • Virtual Switch

Although not required, it is recommended that you create the Virtual Switch prior to creating the VM for the Cisco CSR 1000v.

Configuring the Server Manager Settings

The following steps are performed on Server Manager on the host before creating the Cisco CSR 1000v VM.
SUMMARY STEPS

1. On the Server Manager, select Dashboard to configure the local server.
2. Select Manager from the top right, and then select Add Roles and Features from the drop-down menu.
3. Click Next.
4. Select Server Roles. In the Roles list, select the following options by clicking on the checkbox:
5. Select Features. In the Features list, select the following option by clicking on the checkbox:
6. Click Next.

DETAILED STEPS

Step 1  On the Server Manager, select Dashboard to configure the local server.
Step 2  Select Manager from the top right, and then select Add Roles and Features from the drop-down menu.
        The Add Roles and Features Wizard opens.
Step 3  Click Next.
Step 4  Select Server Roles. In the Roles list, select the following options by clicking on the checkbox:
        • File and Storage Services
        • Hyper-V
Step 5  Select Features. In the Features list, select the following option by clicking on the checkbox:
        • Failover Clustering
        Failover clustering is required. It is not automatically installed, so you must make sure this option is checked. This feature requires that Failover Cluster Manager is installed.
Step 6  Click Next.

Creating the VM

To create the VM, perform the following steps:

SUMMARY STEPS

1. In Hyper-V Manager, click on the host.
3. Click Specify Name and Location.
4. On the Assign Memory screen, enter the Startup Memory value.
5. On the Configure Networking screen, select a network connection to the virtual switch that was previously created.
6. On the Connect Virtual Hard Disk Screen, select the following option:
7. Review the VM settings, and if correct, click Finish.
**DETAILED STEPS**

**Step 1** In Hyper-V Manager, click on the host.

**Step 2** Select **New > Virtual Machine**.

**Step 3** Click **Specify Name and Location**.
   - Enter the name of the VM.
   - (Optional) Click the checkbox to store the VM in a different location.

Click **Next**.

**Step 4** On the **Assign Memory** screen, enter the **Startup Memory** value.

The Cisco CSR 1000v requires 4096 MB for the startup memory.

Click **Next**.

**Step 5** On the **Configure Networking** screen, select a network connection to the virtual switch that was previously created.

The network adapter selected in this step will become the first interface for the Cisco CSR 1000v once the VM is launched and the router boots. The other vNICs for the VM are created in the next procedure.

**Note** Changing the MAC address of the first interface and rebooting a licensed Cisco CSR 1000v will de-activate the license.

Click **Next**.

**Step 6** On the **Connect Virtual Hard Disk Screen**, select the following option:
   - Attach a virtual hard disk later.

**Note** The New Virtual Machine Wizard only supports creating a virtual hard disk using the .vhdx format. The Cisco CSR 1000v requires that the hard disk uses the .vhd format. You will create the virtual hard disk after the VM has been created.

Click **Next**. The **Summary** screen displays.

**Step 7** Review the VM settings, and if correct, click **Finish**.

The new VM is created.

---

**Configuring the VM Settings**

To configure the VM settings before launching the VM, perform the following steps:

**SUMMARY STEPS**

1. In Hyper-V Manager, select the host, and then right-click on the VM that was created in the previous steps.
2. Select **Settings**.
3. Specify the number of virtual processors, also known as virtual CPU’s (vCPU’s) for the VM.
4. Under IDE Controller 0, select the Hard Drive.
5. Under IDE Controller1, select the DVD Drive.
6. Select Network Adapter to verify that the network connection to the virtual switch is configured.
7. Select Com 1 to configure the serial port.
8. Select Hardware > Add Hardware to add the network interfaces (vNICs) to the VM.
9. Click BIOS to verify the boot sequence for the VM.

DETAILED STEPS

Step 1
In Hyper-V Manager, select the host, and then right-click on the VM that was created in the previous steps.

Step 2
Select Settings.

Step 3
Specify the number of virtual processors, also known as virtual CPU’s (vCPU’s) for the VM.
See table "Installation Requirements for Microsoft Hyper-V" below, for the supported configurations.

Step 4
Under IDE Controller 0, select the Hard Drive.
Click the Virtual Hard Disk checkbox and click New to create a new virtual hard disk.
The New Virtual Hard Disk Wizard opens. Click Next.

a) On the Choose Disk Format screen, click the VHD checkbox to create the virtual hard disk using the .vhd format. Click Next.
   
   Note    The Cisco CSR 1000v does not support the VHDX format.

b) On the Choose Disk Type screen, click on the Fixed Size option. Click Next.
   
   The Cisco CSR 1000v does not support the other disk type options.

c) Specify the Name and Location for the virtual hard disk. Click Next.
d) On the Configure Disk screen, click the option to create a new blank virtual hard disk. For the size, specify 8 GB.
e) Click Next to view the Summary of the virtual hard disk settings.
f) Click Finish to create the new virtual hard disk.
   When the new hard disk has been created, continue configuring the VM settings with the next step.

Step 5
Under IDE Controller1, select the DVD Drive.
The DVD Drive screen displays.
For the Media setting, click the Image File checkbox, and browse to the Cisco CSR 1000v .iso file that you downloaded from Cisco.com.
Click OK.

Step 6
Select Network Adapter to verify that the network connection to the virtual switch is configured.

Step 7
Select Com 1 to configure the serial port.
This port provides access to the Cisco CSR 1000v console.
Note    Telnet access to the Cisco CSR 1000v console is not supported for Microsoft Hyper-V. You must use a Putty session to access the console.

Step 8
Select Hardware > Add Hardware to add the network interfaces (vNICs) to the VM.
a) Select **Network Adapter** and click **Add**.

Microsoft Hyper-V adds the network adapter and highlights that hardware with the status Virtual Switch “Not Connected”.

b) Select a virtual switch on the drop-down menu to place the network adapter onto it.

Repeat these steps for each vNIC added. The Cisco CSR 1000v supports only the HV NETVSC vNIC type. The maximum number of vNICs supported is 8.

**Note** The hot-add of vNICs is not supported with Microsoft Hyper-V, so the network interfaces need to be added before launching the VM.

After the Cisco CSR 1000v boots, you can verify the vNICs and how they are mapped to the interfaces using the `show platform software vnic-if interface-mapping` command. See Mapping Cisco CSR 1000v Network Interfaces to VM Network Interfaces, on page 241.

---

**Step 9** Click **BIOS** to verify the boot sequence for the VM.

The VM should be set to boot from the CD.

---

**Launching the VM to Boot the Cisco CSR 1000v**

To launch the VM, perform the following steps:

**SUMMARY STEPS**

1. Select the virtual switch.
2. Select the VM and click **Start**.

**DETAILED STEPS**

**Step 1** Select the virtual switch.

**Step 2** Select the VM and click **Start**.

The Hyper-V Manager connects to the VM, and starts the launch process. Once the VM is launched, the Cisco CSR 1000v starts the boot process. For more information on the booting process, see Installing the Cisco CSR 1000v in Microsoft Hyper-V Environments, on page 141.

---

**Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.9**

The Microsoft Hyper-V requirements for Cisco CSR 1000v using Cisco IOS XE Fuji 16.9 are as follows:
The Microsoft Hyper-V requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x, on page 152.

- The following Microsoft Hyper-V versions are supported:
  - Windows Server 2016 is recommended - tested and meets the performance benchmarks.

- vCPUs. The following vCPU configurations are supported:
  - 1 vCPU: requires minimum 4 GB RAM allocation
  - 2 vCPUs: requires minimum 4 GB RAM allocation
  - 4 vCPUs: requires minimum 4 GB RAM allocation

- Virtual CPU cores—1 vCPU is required
- Virtual hard disk size—8 GB minimum
- Supported vNICs—NetVSC (pmap)
- Maximum number of vNICs supported per VM instance—8
- Virtual CD/DVD drive installed—required

The Microsoft Hyper-V requirements for Cisco CSR 1000v using Cisco IOS XE Fuji 16.8 are as follows:

- The following Microsoft Hyper-V versions are supported:
  - Windows Server 2016 is recommended - tested and meets the performance benchmarks.

- vCPUs. The following vCPU configurations are supported:
  - 1 vCPU: requires minimum 4 GB RAM allocation
  - 2 vCPUs: requires minimum 4 GB RAM allocation
  - 4 vCPUs: requires minimum 4 GB RAM allocation

- Virtual CPU cores—1 vCPU is required
- Virtual hard disk size—8 GB minimum

Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.8
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Fuji 16.7

The Microsoft Hyper-V requirements for Cisco CSR 1000v using Cisco IOS XE Fuji 16.7 are as follows:

- Supported vNICs—NetVSC (pmap)
- Maximum number of vNICs supported per VM instance—8
- Virtual CD/DVD drive installed—required

Note

The Microsoft Hyper-V requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x, on page 152.

- The following Microsoft Hyper-V versions are supported:
  - Windows Server 2016 is recommended - tested and meets the performance benchmarks.
  - vCPUs. The following vCPU configurations are supported:
    - 1 vCPU: requires minimum 4 GB RAM allocation
    - 2 vCPUs: requires minimum 4 GB RAM allocation
    - 4 vCPUs: requires minimum 4 GB RAM allocation
  - Virtual CPU cores—1 vCPU is required
  - Virtual hard disk size—8 GB minimum
  - Supported vNICs—NetVSC (pmap)
  - Maximum number of vNICs supported per VM instance—8
  - Virtual CD/DVD drive installed—required

Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Everest 16.6

The Microsoft Hyper-V requirements for Cisco CSR 1000v using Cisco IOS XE Everest 16.6 are as follows:

Note

The Microsoft Hyper-V requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x, on page 152.

The following Microsoft Hyper-V versions are supported:
• Windows Server 2016 is recommended - tested and meets the performance benchmarks.

vCPUs. The following vCPU configurations are supported:
• 1 vCPU: requires minimum 4 GB RAM allocation
• 2 vCPUs: requires minimum 4 GB RAM allocation
• 4 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU cores—1 vCPU is required
Virtual hard disk size—8 GB minimum
Supported vNICs—NetVSC (pmap)
Maximum number of vNICs supported per VM instance—8
Virtual CD/DVD drive installed—required

Installation Requirements for Microsoft Hyper-V—Cisco IOS XE Everest 16.5

The Microsoft Hyper-V requirements for Cisco CSR 1000v using Cisco IOS XE Everest 16.5 are as follows:

The following Microsoft Hyper-V versions are supported:
• Windows Server 2016 is recommended - tested and meets the performance benchmarks.

vCPUs. The following vCPU configurations are supported:
• 1 vCPU: requires minimum 4 GB RAM allocation
• 2 vCPUs: requires minimum 4 GB RAM allocation
• 4 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU cores—1 vCPU is required
Virtual hard disk size—8 GB minimum
Supported vNICs—NetVSC (pmap)
Maximum number of vNICs supported per VM instance—8
Virtual CD/DVD drive installed—required
The Microsoft Hyper-V requirements for Cisco CSR 1000v using Cisco IOS XE Everest 16.4 are as follows:

**Note**

The Microsoft Hyper-V requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3) are shown in *Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x*, on page 152.

The following Microsoft Hyper-V versions are supported:

- Windows Server 2012-R2, Hyper-V Mgr 6.3.9600.16384 is recommended—tested and meets performance benchmarks.

vCPUs. The following vCPU configurations are supported:

- 1 vCPU: requires minimum 4 GB RAM allocation
- 2 vCPUs: requires minimum 4 GB RAM allocation
- 4 vCPUs: requires minimum 4 GB RAM allocation

Virtual CPU cores—1 vCPU is required

Virtual hard disk size—8 GB minimum

Supported vNICs—NetVSC (pmap)

Maximum number of vNICs supported per VM instance—8

Virtual CD/DVD drive installed—required

---

The Microsoft Hyper-V requirements for Cisco CSR 1000v using Cisco IOS XE Denali 16.3.1 are as follows:

**Note**

For the Microsoft Hyper-V requirements for older versions of Cisco IOS XE (before IOS XE Denali 16.3.1), see: "Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x" below.

Microsoft Hyper-V versions. The following Microsoft Hyper-V versions are supported:

- Windows Server 2012-R2, Hyper-V Mgr 6.3.9600.16384 is recommended—tested and meets performance benchmarks.

vCPUs. The following vCPU configurations are supported:

- 1 vCPU: requires minimum 4 GB RAM allocation
Installation Requirements for Microsoft Hyper-V—Cisco IOS XE 3.x

This section contains information about Microsoft Hyper-V requirements for older Cisco IOS XE releases (the releases supported by Cisco CSR 1000v before IOS XE Denali 16.3.1).

The table below lists the installation requirements for Microsoft HyperV.

Table 29: Installation Requirements for Microsoft Hyper-V (Cisco IOS XE versions 3.x)

<table>
<thead>
<tr>
<th>Microsoft Hyper-V Requirements</th>
<th>Cisco IOS XE 3.12S and 3.13S</th>
<th>Cisco IOS XE 3.14S, 3.15S, 3.16S, 3.17</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Supported vCPU configurations</strong></td>
<td>1 vCPU: requires minimum 2.5 GB RAM allocation</td>
<td>1 vCPU: requires minimum 4 GB RAM allocation</td>
</tr>
<tr>
<td></td>
<td>2 vCPUs: requires minimum 2.5 GB RAM allocation</td>
<td>2 vCPUs: requires minimum 4 GB RAM allocation</td>
</tr>
<tr>
<td></td>
<td>4 vCPUs: requires minimum 4 GB RAM allocation</td>
<td>4 vCPUs: requires minimum 4 GB RAM allocation</td>
</tr>
<tr>
<td><strong>Virtual CPU cores required</strong></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><strong>Virtual hard disk size</strong></td>
<td>8 GB</td>
<td>8 GB</td>
</tr>
<tr>
<td><strong>Supported vNICs</strong></td>
<td>HV driver</td>
<td>HV driver</td>
</tr>
<tr>
<td><strong>Maximum number of vNICs supported per VM instance</strong></td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td><strong>Virtual CD/DVD drive Installed</strong></td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>

10 The required vCPU configuration depends on the throughput license and technology package installed. See the data sheet for your release for more information.

11 The VHD format is supported only. The VHDX format is not supported.
Booting the Cisco CSR 1000v and Accessing the Console

- Booting the Cisco CSR 1000v as the VM, on page 153
- Accessing the Cisco CSR 1000v Console, on page 156
- License Installation, on page 161

Booting the Cisco CSR 1000v as the VM

The Cisco CSR 1000v boots when the VM is powered on. Depending on your configuration, you can monitor the installation process on the virtual VGA console or the console on the virtual serial port.

If you want to access and configure the Cisco CSR 1000v from the serial port on the hypervisor instead of the virtual VGA console, you should provision the VM to use this setting before powering on the VM and booting the router. For more information, see the Introduction to Accessing the Cisco CSR 1000v through the Virtual Serial Port, on page 156

SUMMARY STEPS

1. Power-up the VM. Within 5 seconds of powering on the VM, choose a console described from one of the following three steps (2, 3, or 4) to select a console to view the router bootup and to access the Cisco CSR 1000v CLI.
2. (Optional) Select Auto Console: (Cisco IOS XE 3.13S and later, and IOS XE Denali 16.3.1 and later)
3. (Optional) Select Virtual Console
4. (Optional) Select Serial Console
5. Telnet to the VM using one of the following two commands: telnet://host-ipaddress:portnumber or, from a UNIX xTerm terminal: telnet host-ipaddress portnumber The following example shows the Cisco CSR 1000v initial boot output on the VM.
6. After booting, the system presents a screen showing the main software image and the Golden Image, with an instruction that the highlighted entry is booted automatically in three seconds. Do not select the option for the Golden Image and allow the main software image to boot.
DETAILED STEPS

Step 1  Power-up the VM. Within 5 seconds of powering on the VM, choose a console described from one of the following three steps (2, 3, or 4) to select a console to view the router bootup and to access the Cisco CSR 1000v CLI.

Step 2  (Optional) Select Auto Console: (Cisco IOS XE 3.13S and later, and IOS XE Denali 16.3.1 and later)

Choose this option to use automatic console detection. When two virtual serial ports are detected, the IOS XE CLI will be available on the first virtual serial port and the IOS XE diagnostic CLI will be available on the second virtual serial port. If two virtual serial ports are not detected, the IOS XE CLI will be available on the virtual VGA console. This is the default setting and the Cisco CSR 1000v will boot using the automatic console detection if another option is not selected within the 5 second timeframe.

Note (for VMware ESXi): If you are installing on VMware ESXi without a virtual serial port concentrator (vSPC), this option may not be able to properly detect virtual serial ports when there is an active connection to the virtual serial ports. If you are not using a vSPC and wish to use virtual serial ports, choose the Serial Console option.

Note (for Microsoft Hyper-V): If you are installing on Microsoft Hyper-V, this option may be unable to properly detect virtual serial ports when there is an active connection to the virtual serial ports. If you wish to use virtual serial ports, you should choose the Serial Console option.

(Optional) Automatic selection of virtual serial ports

For this option, the virtual serial ports must already be present on the VM. The virtual serial port must already be present on the VM for this option to work.

If you are installing on VMware ESXi, see Creating Serial Console Access in VMware ESXi, on page 156.

If you are installing in KVM environments, see Creating the Serial Console Access in KVM, on page 157.

If you are installing in Microsoft Hyper-V environments, see Creating the Serial Console Access in Microsoft Hyper-V, on page 158.

The Cisco CSR 1000v starts the boot process.

Step 3  (Optional) Select Virtual Console

Choose this option to use the virtual VGA console. If you choose to use the virtual console, the rest of the steps in this procedure do not apply. On Cisco IOS XE 3.12S and earlier, this is the default setting and the Cisco CSR 1000v boots using the Virtual Console if another option is not selected within the 5 second timeframe.

The Cisco CSR 1000v starts the boot process.

Step 4  (Optional) Select Serial Console

Choose this option to use the virtual serial port console on the VM (not supported on Citrix XenServer VMs).

The virtual serial port must already be present on the VM for this option to work.

If you are installing on VMware ESXi, see Creating Serial Console Access in VMware ESXi, on page 156.

If you are installing in KVM environments, see Creating the Serial Console Access in KVM, on page 157.

If you are installing in Microsoft Hyper-V environments, see Creating the Serial Console Access in Microsoft Hyper-V, on page 158.

Note The option to select the console port during the boot process is available only the first time the Cisco CSR 1000v boots. To change the console port access after the Cisco CSR 1000v has first booted, see Changing the Console Port Access After Installation, on page 160 the “Changing the Console Port Access After Installation” section on page 8-7.

The Cisco CSR 1000v starts the boot process.
Step 5

Telnet to the VM using one of the following two commands: `telnet://host-ipaddress:portnumber` or, from a UNIX xTerm terminal: `telnet host-ipaddress portnumber`  The following example shows the Cisco CSR 1000v initial boot output on the VM.

Example:

```
%IOSXEBOOT-4-BOOT_SRC: (rp/0): CD-ROM Boot%IOSXEBOOT-4-BOOT_CDROM: (rp/0):
Installing GRUB%IOSXEBOOT-4-BOOT_CDROM: (rp/0): Copying super packagecsr1000v-universalk9
2011-10-20_13.09.SSA.bin%IOSXEBOOT-4-BOOT_CDROM: (rp/0):
Creating /boot/grub/menu.lst%IOSXEBOOT-4-BOOT_CDROM: (rp/0):
CD-ROM Installation finished%IOSXEBOOT-4-BOOT_CDROM: (rp/0): Ejecting CD-ROM tray
```

The system first calculates the SHA-1, which may take a few minutes. Once the SHA-1 is calculated, the kernel is brought up. Once the initial installation process is complete, the .iso package file is removed from the virtual CD-ROM, and the VM is rebooted. This enables the Cisco CSR 1000v to boot normally off the virtual Hard Drive.

Note

The system reboots during first-time installation only.

The time required for the Cisco CSR 1000v to boot may vary depending on the release and the hypervisor used.

Step 6

After booting, the system presents a screen showing the main software image and the Golden Image, with an instruction that the highlighted entry is booted automatically in three seconds. Do not select the option for the Golden Image and allow the main software image to boot.

Note

The Cisco CSR 1000v does not include a ROMMON image that is included in many Cisco hardware-based routers. During installation, a “backup” copy of the installed version is stored in a backup partition. This copy can be selected to boot from in case you upgraded your boot image, deleted the original boot image, or somehow corrupted your disk. Booting from the backup copy is equivalent to booting a different image from ROMMON. For more information on changing the configuration register settings to access GRUB mode, see Accessing and Using GRUB Mode, on page 253.

You can now enter the router configuration environment by entering the standard commands `enable` and then `configure terminal`. The following should be noted for the initial installation:

When the Cisco CSR 1000v is booted for the first time, the mode the router boots in depends on the release version.

For Cisco IOS XE 3.13S and later, and IOS XE Denali 16.3.1 and later, the Cisco CSR 1000v boots with the AX package set of features and throughput is limited to 100 Kbps. For Cisco IOS XE 3.12S and earlier, the Cisco CSR 1000v boots in a limited mode that provides limited feature support and throughput is limited to 2.5 Mbps.

You must install the software license or enable an evaluation license to obtain the supported throughput and features. Depending on the release version, you must enable the boot level or change the maximum throughput level, and reboot the Cisco CSR 1000v. For more information, see Installing Cisco CSR 1000v Licenses, on page 163.

For Cisco IOS XE 3.13S and later, and IOS XE Denali 16.3.1 and later, the installed license technology package must match the package level configured with the `license boot level` command. If the license package does not match the configured setting, throughput is limited to 100 Kbps.

(VMware ESXi only) If you manually created the VM using the .iso file, then you need to configure the basic router properties. You can use either the Cisco IOS XE CLI commands or you can manually configure the properties in the vSphere GUI. For more information, see Editing the Basic Properties of Cisco CSR 1000v using vSphere, on page 80.
Accessing the Cisco CSR 1000v Console

Accessing the Cisco CSR 1000v Through the Virtual VGA Console

When installing the Cisco CSR 1000v software image, the setting to use is as follows:

- (Cisco IOS XE 3.12S and earlier, Cisco IOS XE 3.17S and later, and IOS XE Denali 16.3.1 and later) Virtual VGA console
- (Cisco IOS XE 3.12S through Cisco IOS XE 3.16S) Automatic console detection

No other configuration changes are required to access the Cisco CSR 1000v CLI through the virtual VGA console if:

- You do not change the console setting during the bootup process

and

- (If using automatic console detection) You do not add two virtual serial ports to the VM configuration

Accessing the Cisco CSR 1000v Through the Virtual Serial Port

Introduction to Accessing the Cisco CSR 1000v through the Virtual Serial Port

By default, the Cisco CSR 1000v is accessed using the virtual VGA console. If using automatic console detection and two virtual serial ports are detected, the Cisco CSR 1000v CLI will be available on the first virtual serial port.

You can also configure the VM to use the Serial Console, which always attempts to use the first virtual serial port for the Cisco CSR 1000v CLI. See the following sections to configure the virtual serial port on your hypervisor.

Note

The Citrix XenServer does not support access through a serial console.

Creating Serial Console Access in VMware ESXi

Perform the following steps using VMware VSphere. For more information, refer to the VMware VSphere documentation.

SUMMARY STEPS

1. Power-down the VM.
2. Select the VM and configure the virtual serial port settings.
3. Select Select Network Backing.
4. Power on the VM.
5. When the VM is powered on, access the virtual serial port console.
6. Configure the security settings for the virtual serial port.
DETAILED STEPS

**Step 1**  Power-down the VM.

**Step 2**  Select the VM and configure the virtual serial port settings.
   a) Choose Edit Settings > Add.
   b) Choose Device Type > Serial port.
      
      Click Next.
   c) Choose Select Port Type.
      Select Connect via Network and click Next.

**Step 3**  Select Select Network Backing.
   Select the Server (VM listens for connection) option.
   Enter the Port URI using the following syntax:
   
   telnet://:portnumber
   
   where portnumber is the port number for the virtual serial port.
   
   Under I/O mode, select the option Yield CPU on poll and click Next.

**Step 4**  Power on the VM.

**Step 5**  When the VM is powered on, access the virtual serial port console.

**Step 6**  Configure the security settings for the virtual serial port.
   a) Select the ESXi host for the virtual serial port.
   b) Click the Configuration tab and click Security Profile.
   c) In the Firewall section, click Properties, and then select the VM serial port connected over Network value.

   You can now access the Cisco IOS XE console using the Telnet port URI. When you configure the virtual serial port, the CSR 1000v is no longer accessible from the VM’s virtual console. See Opening a Telnet Session to the Cisco CSR 1000v Console on the Virtual Serial Port, on page 159.

   **Note**  To use these settings, either the Auto Console option or the Serial Console option in the GRUB menu must have been selected during the Cisco CSR 1000v bootup. If you have already installed the Cisco CSR 1000v software using the virtual VGA console, you must configure either the Cisco IOS XE platform console auto command or the Cisco IOS XE platform console serial command and reload the VM for the console access through the virtual serial port to work. See Changing the Console Port Access After Installation, on page 160.

Creating the Serial Console Access in KVM

Perform the following steps using the KVM console on your server. For more information, refer to the KVM documentation.

SUMMARY STEPS

1. Power off the VM.
2. Click on the default Serial 1 device (if it exists) and then click Remove. This removes the default pty-based virtual serial port which would otherwise count as the first virtual serial port.

3. Click Add Hardware.

4. Select Serial to add a serial device.

5. Under Character Device, choose the TCP Net Console (tcp) device type from the drop-down menu.

6. Under Device Parameters, choose the mode from the drop-down menu.

7. Under Host, enter 0.0.0.0. The server will accept a telnet connection on any interface.

8. Choose the port from the drop-down menu.

9. Choose the Use Telnet option.

10. Click Finish.

**DETAILED STEPS**

**Step 1**  
Power off the VM.

**Step 2**  
Click on the default Serial 1 device (if it exists) and then click Remove. This removes the default pty-based virtual serial port which would otherwise count as the first virtual serial port.

**Step 3**  
Click Add Hardware.

**Step 4**  
Select Serial to add a serial device.

**Step 5**  
Under Character Device, choose the TCP Net Console (tcp) device type from the drop-down menu.

**Step 6**  
Under Device Parameters, choose the mode from the drop-down menu.

**Step 7**  
Under Host, enter 0.0.0.0. The server will accept a telnet connection on any interface.

**Step 8**  
Choose the port from the drop-down menu.

**Step 9**  
Choose the Use Telnet option.

**Step 10**  
Click Finish.

You can now access the Cisco IOS XE console using the Telnet port URI. See the Opening a Telnet Session to the Cisco CSR 1000v Console on the Virtual Serial Port, on page 159.

**Note**  
To use these settings, either the Auto Console option or the Serial Console option in the GRUB menu must have been selected while the Cisco CSR 1000v booted. If you have already installed the Cisco CSR 1000v software using the virtual VGA console, you must configure either the Cisco IOS XE platform console auto command or platform console serial command and reload the VM in order for the console access through the virtual serial port to work. See the Changing the Console Port Access After Installation, on page 160.

**Creating the Serial Console Access in Microsoft Hyper-V**

The console port access for Microsoft Hyper-V is created when configuring the VM settings. For more information, see the “Configuring the VM Settings” section on page 7-4.

**Note**  
Telnet access to the Cisco CSR 1000v console is not supported for Microsoft Hyper-V. You must use a Putty session to access the console.
Opening a Telnet Session to the Cisco CSR 1000v Console on the Virtual Serial Port

Perform the following steps using the Cisco IOS XE CLI commands:

**SUMMARY STEPS**

1. Telnet to the VM
2. At the Cisco CSR 1000v IOS XE password prompt, enter your login password. The following example shows entry of the password `mypass`:
3. From user EXEC mode, enter the `enable` command as shown in the following example:
4. At the password prompt, enter your system password. The following example shows entry of the password `enablepass`:
5. When the enable password is accepted, the privileged EXEC mode prompt appears:
6. You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.
7. To exit the Telnet session, use the `exit` or `logout` command as shown in the following example:

**DETAILED STEPS**

**Step 1** Telnet to the VM

- Use the following command `telnet://host-ipaddress:portnumber`
- Or, from a UNIX terminal use the command `telnet host-ipaddress portnumber`

**Step 2** At the Cisco CSR 1000v IOS XE password prompt, enter your login password. The following example shows entry of the password `mypass`:

**Example:**

```
User Access Verification
Password: mypass
```

**Note** If no password has been configured, press `Return`.

**Step 3** From user EXEC mode, enter the `enable` command as shown in the following example:

**Example:**

```
Router> enable
```

**Step 4** At the password prompt, enter your system password. The following example shows entry of the password `enablepass`:

**Example:**

```
Password: enablepass
```

**Step 5** When the enable password is accepted, the privileged EXEC mode prompt appears:

**Example:**

```
Router#`
Changing the Console Port Access After Installation

After the Cisco CSR 1000v has booted successfully, you can change the console port access to the router using Cisco IOS XE commands. After you change the console port access, you must reload or power-cycle the router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. Do one of the following:
 - `platform console auto`
 - `platform console virtual`
 - `platform console serial`
4. `end`
5. `copy system:running-config nvram:startup-config`
6. `reload`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td>Options for <code>platform console x</code>:</td>
</tr>
<tr>
<td></td>
<td>• <code>auto</code>— Specifies that the Cisco CSR 1000v console is detected automatically. This is the default setting during the initial installation boot process (Cisco IOS XE 3.13S and later). For additional information, see Booting the Cisco CSR 1000v as the VM, on page 153.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| `Router(config)# platform console auto`
Example:
`Router(config)# platform console virtual`
Example:
`Router(config)# platform console serial` | • **virtual**—Specifies that the Cisco CSR 1000v is accessed through the hypervisor virtual VGA console. This is the default setting during the initial installation boot process (on Cisco IOS XE 3.12S and earlier).
• **serial**—Specifies that the Cisco CSR 1000v is accessed through the serial port on the VM.
Note: Use this option only if your hypervisor supports serial port console access. |
| **Step 4**
Example:
`Router(config)# end` | Exits configuration mode. |
| **Step 5**
Example:
`Router# copy system:running-config nvram:startup-config` | Copies the running configuration to the NVRAM startup configuration. |
| **Step 6**
Example:
`Router# reload` | Reloads the operating system. |

License Installation

One of the first steps you need to perform after obtaining console access is to install the Cisco CSR 1000v software licenses. For more information, see [Installing Cisco CSR 1000v Licenses](#), on page 163.
CHAPTER 10

Installing Cisco CSR 1000v Licenses

- Activating Cisco CSR 1000v Licenses, on page 163
- Cisco Software Licensing (CSL), on page 164
- Troubleshooting CSL License Issues, on page 178
- Cisco Smart Licensing, on page 181
- Prerequisites for Cisco Smart Licensing, on page 181
- Configuring Call Home for Smart Licensing, on page 181
- Enabling Cisco Smart Licensing, on page 183
- Smart Licensing System Messages, on page 184
- Registering the Router with the Cisco Licensing Cloud, on page 202
- Registering the Router with the Cisco Licensing Cloud (CSSM satellite), on page 203
- Re-establishing Connectivity to the Cisco Smart Call Home Server when IPv6 is Configured, on page 205
- Requesting Cisco Smart License Throughput Level Licenses, on page 205
- Requesting Memory Add-on License, on page 207
- Requesting Smart License Broadband license, on page 207
- Manually Renewing the ID Certificate, on page 208
- Manually Renewing the License, on page 208
- Unregistering a Device from Cisco Smart Licensing, on page 209
- Disabling Cisco Smart Licensing, on page 209
- License Out-of-Compliance Behavior, on page 210
- License Behavior with no Connectivity to the Smart Licensing Server, on page 210
- Activating Permanent License Reservation, on page 212
- Enabling Utility Reporting, on page 214
- Troubleshooting Cisco Smart License Issues, on page 217
- Understanding the License-Based Restriction on Aggregate Bandwidth, on page 217
- Managing Throughput Notifications, on page 219
- Requesting a New Virtual UDI, on page 220
- Cisco Software Licensing (IOS XE 3.12 or Earlier), on page 221

Activating Cisco CSR 1000v Licenses

When the Cisco CSR 1000v or Cisco ISRv first boots, it boots in evaluation mode. The network interfaces are activated but throughput is limited to 2.5 Mbps and the feature support is limited. Activate the software
licenses to obtain the throughput and feature support provided by the license. For information about the available licenses in your software version, see the Cisco CSR 1000v Release Notes. The Cisco CSR 1000v and Cisco ISRv support the following options to activate the software licenses:

<table>
<thead>
<tr>
<th>Cisco Software Licensing (CSL)</th>
<th>Installing the Cisco CSR 1000v/ISRv licenses using Cisco Software Licensing (CSL) uses a similar process to that of other Cisco router platforms. See Installing CSL Evaluation Licenses for Cisco IOS XE 3.13S and Later, on page 164 and subsequent sections.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Smart Licensing</td>
<td>Cisco CSR 1000v and Cisco ISRv support activation using Cisco Smart Licensing. (Cisco IOS XE Release 3.15S and later.) See Cisco Smart Licensing, on page 181.</td>
</tr>
</tbody>
</table>

Cisco Software Licensing (CSL)

Installing CSL Evaluation Licenses for Cisco IOS XE 3.13S and Later

In Cisco IOS XE 3.13S and later, including IOS XE Denali 16.2 and later, the Cisco CSR 1000v/ISRv first boots with the AX feature set enabled and the maximum throughput limited to 100 Kbps. The following evaluation licenses are available:

- AX feature set with 50 Mbps maximum throughput
- APPX feature set with 5 Gbps maximum throughput

The evaluation licenses are available for download at the Cisco Software Licensing portal.

Note

If you are installing an evaluation license for a feature set with a maximum throughput of 10 Gbps, then additional configuration is required to support the 10 Gbps interface. See Configuring an Interface for 10 Gbps Maximum Throughput, on page 169.

Perform the following steps after the router first boots:

SUMMARY STEPS

1. enable
2. show license udi
3. Log on to the Cisco Software Licensing portal to obtain the evaluation license: http://www.cisco.com/go/license.
4. license install stored-location-url
5. configure terminal
6. license boot level {ax | appx}
7. end
8. write memory
9. reload
10. show license detail
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
enable</td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>show license udi
Example:
show license udi</td>
<td>Displays all the UDI values that can be licensed in a system.
• You need the UDI of the device to obtain the evaluation license.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Log on to the Cisco Software Licensing portal to obtain the evaluation license: http://www.cisco.com/go/license.
1. Click on Continue to Product Registration.
2. Click on Get Other Licenses and select Demo and Evaluation.
3. Under Product Family, select Router & Switches.
4. Under Product, select Cisco Cloud Services Router 1000v.
5. Click Next.
6. Select the evaluation license.
7. Select whether the evaluation license will be used on an Amazon AWS instance, a standalone deployment, or other deployment.
8. In the UDI Serial Number field, enter the 11-character UDI obtained in step 2. Note that the UDI is case-sensitive, and should be entered in all capital letters.
9. Specify the Product ID; for example, CSR1000v.
10. Download the evaluation license.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>license install stored-location-url
Example:
license install
bootflash:90NVHJ3C26E_20140724194119019.lic</td>
<td>Installs the evaluation license obtained in the previous steps.
• Accept the End-User License Agreement when prompted.</td>
</tr>
<tr>
<td>Step 5</td>
<td>configure terminal
Example:
configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| license boot level {ax | appx} | Activates the evaluation license on the router upon the next reload.
Example:
license boot level ax | |
| **Step 7** | | |
| end | Exits global configuration mode.
Example:
end | |
| **Step 8** | | |
| write memory | Saves the running configuration to NVRAM.
Example:
write memory | |
| **Step 9** | | |
| reload | Restarts the router to enable the feature set and the maximum throughput supported by the evaluation license.
The router reloads with the evaluation license activated.
The evaluation license expires 60 days from the time it is activated.
Example:
reload | |
| **Step 10** | | |
| show license detail | Displays the license information.
Example:
show license detail | |

What to do next

Note

If you are installing an evaluation license for a feature set with a maximum throughput of 10 Gbps, then additional configuration is required to support the 10 Gbps interface. See Configuring an Interface for 10 Gbps Maximum Throughput, on page 169.

Installing CSL Regular Licenses for Cisco IOS XE 3.13S and Later

In Cisco IOS XE 3.13S and later, including IOS XE Denali 16.3 and later, the Cisco CSR 1000v/ISRv first boots in limited mode with the AX feature set enabled and the maximum throughput limited to 100 Kbps. You can generate multiple licenses for the router from one PAK. The purchased PAK determines the number of licenses you can generate.

Repeat these steps for each license available for your PAK.
If you installed a license that supports a maximum throughput of 10 Gbps, then additional configuration is required to support the 10 Gbps interface. See Configuring an Interface for 10 Gbps Maximum Throughput, on page 169.

SUMMARY STEPS

1. Obtain the PAK.
2. enable
3. show license udi
4. Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License registration portal: http://www.cisco.com/go/license
5. license install stored-location-url
6. configure terminal
7. license boot level {ipbase | security | ax | appx}
8. end
9. write memory
10. reload
11. show license detail
12. platform hardware throughput level MB {10 | 100 | 1000 | 10000 | 250 | 2500 | 50 | 500 | 5000}

DETAILED STEPS

Step 1
Obtain the PAK.
The PAK is provided to you when you order or purchase the right to use a feature set.
• The PAK serves as a receipt and is used as part of the process to obtain a license.

Step 2
enable
Enables privileged EXEC mode.
• Enter your password if prompted.

Step 3
show license udi
Displays all the UDI values that can be licensed in a system.
• You need the UDI of the device as part of the process to obtain a license.

Step 4
Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License registration portal: http://www.cisco.com/go/license

Example:
When entering the UDI, enter only the 11-character serial number; for example, 966975BITWG
• The UDI is case-sensitive, and should be entered in all capital letters.
After entering the appropriate information, you will receive an e-mail containing the license information that you can use to install the license:

- Copy the license file received from the Cisco Product License Registration portal to the appropriate file system on the device.

Step 5
`license install stored-location-url`
Example:
```
Router# license install bootflash:90NVHJ3C26E_20140724194119019.lic
```
Installs the license.
- Accept the end-user license agreement if prompted.

Step 6
`configure terminal`
Example:
```
Router# configure terminal
```
Enter global configuration mode.

Step 7
`license boot level {ipbase | security | ax | appx}`
Example:
```
Router(config)# license boot level ax
```
Activates the license on the router upon the next reload.

Step 8
`end`
Example:
```
Router(config)# end
```
Exits configuration mode.

Step 9
`write memory`
Example:
```
Router# write memory
```
Saves the running configuration to NVRAM.

Step 10
`reload`
Example:
```
Router# reload
```
Restarts the router to enable the feature set and the maximum throughput supported by the license.

Note: If you are installing an AX license, you do not need to restart the router.

Step 11
`show license detail`
Example:
The following is an example of the `show license detail` command showing an installed active license:

```
Router# show license detail
Index: 1 Feature: sec_100M Version: 1.0
  License Type: Permanent
  License State: Active, In Use
  License Count: Non-Counted
  License Priority: Medium
  Store Index: 0
  Store Name: Primary License Storage
```

Displays the license information.

Step 12

```
platform hardware throughput level MB {10 | 100 | 1000 | 10000 | 250 | 2500 | 50 | 500 | 5000}
```

Example:

```
Router(config)# platform hardware throughput level 500
```

(Optional) Changes the maximum throughput level.

Note: After issuing this command, you do not need to restart the router.

Configuring an Interface for 10 Gbps Maximum Throughput

If you installed a license with maximum throughput with 10 Gbps, then additional configuration is required to obtain the 10 Gbps throughput on an interface. Perform the following additional steps.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface GigabitEthernet number`
4. `no negotiation auto`
5. `speed 10000`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

```
Router> enable
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface GigabitEthernet number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface GigabitEthernet1</td>
<td></td>
</tr>
<tr>
<td>Step 4 no negotiation auto</td>
<td>Disables the autonegotiation protocol setting on the interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# no negotiation auto</td>
<td></td>
</tr>
<tr>
<td>Step 5 speed 10000</td>
<td>Configures the interface speed to 10 Gbps.</td>
</tr>
<tr>
<td>Example: Router(config-if)# speed 10000</td>
<td></td>
</tr>
</tbody>
</table>

Installing CSL Feature Add-on Licenses for Cisco IOS XE 3.13S and Later

Understanding the Cisco CSR 1000v Memory Allocation

You can use feature add-on licenses to add memory to the Cisco CSR 1000v/Cisco ISRv. Memory is allocated to both the IOSd component and the data plane component. The amount of the memory allocation is dependent on the licenses installed.

You can install multiple 4 GB add-on licenses. You can add 4 GB of additional memory by installing the broadband feature license and then install further 4 GB add-on licenses.

The following table lists how the memory is allocated depending on the amount of VM Memory and the feature licenses installed.

Note

Restrictions apply when installing memory add-on licenses with a broadband feature license. For more information, see [Information About Installing Broadband Feature License](#) on page 175 and [Installing Broadband Feature License](#) on page 175.

Note

The Cisco CSR 1000v is no longer available with a VM Memory of either 2.5 GB or 6 GB.
Table 30: Cisco CSR 1000v Memory Allocation with Memory Add-on Licenses

<table>
<thead>
<tr>
<th>VM Memory</th>
<th>Default Memory Allocation</th>
<th>One 4 GB add-on license or one broadband license</th>
<th>(Two 4 GB add-on licenses) or (one broadband license + one 4 GB add-on license)</th>
<th>(Three 4 GB add-on licenses) or (one broadband license + two 4 GB add-on licenses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 GB</td>
<td>IOSd = 2.5 GB Dataplane = 1.5 GB</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8 GB</td>
<td>IOSd = 2.5 GB Dataplane = 1.5 GB</td>
<td>IOSd = 5.5 GB Dataplane = 2.5G</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>12 GB</td>
<td>IOSd = 2.5 GB Dataplane = 1.5 GB</td>
<td>IOSd = 5.5 GB Dataplane = 2.5G</td>
<td>IOSd = 9.5 GB Dataplane = 2.5G</td>
<td>NA</td>
</tr>
<tr>
<td>16 GB</td>
<td>IOSd = 2.5 GB Dataplane = 1.5 GB</td>
<td>IOSd = 5.5 GB Dataplane = 2.5G</td>
<td>IOSd = 9.5 GB Dataplane = 2.5G</td>
<td>IOSd = 13.5 GB Dataplane = 2.5G</td>
</tr>
</tbody>
</table>

Further Information about Memory Add-on Licenses

This section seeks to explain some misleading memory usage values that may be shown after installing add-on licenses. Installing add-on memory provides additional memory that is assigned to the main IOS-XE process (IOSd). For example, if you add three 4 GB add-on licenses you may gain approximately 11 GB memory. However, bear in mind that adding memory may not solve underlying issues with your configuration and the additional memory may not be necessary.

If you add two or three memory add-on licenses, you may see misleading messages such as the following error log message:

```
%PLATFORM-3-ELEMENT_CRITICAL: R0/0: smand: RP/0: Used Memory value 96% exceeds critical level 93%
```

A similar high usage value is displayed by a `show platform` command such as `show platform software status control-processor brief`. See Example 1 below.

Example 1

In this example a Cisco CSR 1000v running Cisco IOS XE 16.6.2 has 2 x 4 GB memory add-on licenses. The displayed information indicates a critically high memory usage.

```
# show platform software status control-processor brief
...
Memory (kB)
```
If you were able to have access to the underlying Linux system you could find that only less memory than 96% is being used. For example, internally the following Linux command shows only 81% usage—based on used memory as a percentage of total memory.

```
free -m
```

```
total  used  free  shared  buff/cache  available
Mem:    11955  9708   76   758   2169   1383
```

If you were then to add a third 4 GB add-on license, making a total of three add-on licenses, the 96% memory usage that is displayed by the `show platform` command would not be significantly reduced.

If you use the `show processes memory sorted` command, as shown in Example 2 below, you get a better indication of the memory usage.

Example 2

This example shows the difference between using a Cisco CSR 1000v with no add-on licenses, and a Cisco CSR 1000v with two add-on licenses.

1. **CSR 1000v with no add-on licenses.**

   ```
   # show processes memory sorted
   ...
   Processor Pool Total: 2458193040 Used: 239241616 Free: 2218951424 << 239 MB used
   ```

2. **CSR 1000v with two add-on licenses.**

   ```
   # show processes memory sorted
   ...
   Processor Pool Total: 9625210000 Used: 1231337528 Free: 8393872472 << 1.2 GB used
   ```

This shows that even considering the additional 700 MB extra processing needs, the memory that is being used is quite low. Therefore, using two add-on licenses for this processing requirement may be unnecessary.

Installing Memory Add-on License

Beginning with Cisco IOS XE 3.13S, you can add memory in 4 GB increments to enable control plane scaling using the memory add-on license (L-CSR-MEM-4G=). The following prerequisites apply:

- The base feature license must be installed.
- The VM must have enough memory allocated to accommodate the additional memory. See the table in *Understanding the Cisco CSR 1000v Memory Allocation*, on page 170 for more information.

SUMMARY STEPS

1. Obtain the PAK.
2. `enable`
3. `show license udi`
4. Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License registration portal: http://www.cisco.com/go/license
5. `show platform software vmemory info`
6. `configure terminal`
7. `platform memory add memory`
8. `end`
9. `license install stored-location-url`
10. `write memory`
11. `reload`
12. `show license detail`
13. `show platform software vmemory info`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Obtain the PAK. | The PAK is provided to you when you order or purchase the right to use a feature set.
- The PAK serves as a receipt and is used as part of the process to obtain a license. |
| **Step 2** | `enable`
Example:
`Router> enable` | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 3** | `show license udi`
Example:
`Router# show license udi` | Displays all the UDI values that can be licensed in a system.
- You need the UDI of the device as part of the process to obtain a license. |
| **Step 4** | Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License registration portal: http://www.cisco.com/go/license | After entering the appropriate information, you will receive an e-mail containing the license information that you can use to install the license:
- Copy the license file received from the Cisco Product License Registration portal to the appropriate file system on the device. |
| **Step 5** | `show platform software vmemory info` | Verifies the current memory allocation on the Cisco CSR 1000v/Cisco ISRv. The display shows the memory upgrade license limit, indicating the maximum amount of additional memory you can add. |
| **Step 6** | `configure terminal`
Example:
`Router# configure terminal` | Enters global configuration mode. |
| **Step 7** | `platform memory add memory`
Example:
`Router(config)# platform memory add 4096` | Adds the memory allocation to the router to accommodate added memory license(s).
Add 4096 MB for each memory license you are planning to install. For example, if you plan to add three memory licenses, you would add 12288 MB of memory. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 8**
end
Example:
Router(config)# end | Exits configuration mode. |
| **Step 9**
license install stored-location-url
Example:
Router# license install
bootflash:90NVHJ3C26E_20140724194119019.lic
Example:
4096 MB memory has been added to the system
Example:
Execute 'write memory' to persist this change | Installs the memory add-on license. |
| **Step 10**
write memory
Example:
Router# write memory | Saves the running configuration to NVRAM. |
| **Step 11**
reload
Example:
Router# reload | Restarts the router to enable the memory add-on license to be activated. |
| **Step 12**
show license detail
Example:
Router# show license detail | Displays the license information to verify the installation of the memory license(s). |
| **Step 13**
show platform software vmemory info
Example:
Router# show platform software vmemory info
Memory Upgrade Limits:
Total System Memory:3894 MB
Memory From Upgrade Licenses:N/A(Smart License Enabled)
Memory From Feature Licenses:N/A(Smart License Enabled)
Memory Available For Upgrade:
Available System Memory:0 MB
Available Upgrade Licensed Memory:N/A(Smart License Enabled)
Available Feature Licensed Memory:N/A(Smart License Enabled)
Current Memory Allocation: | Verifies the updated memory allocation on the router. |
Information About Installing Broadband Feature License

The Cisco CSR 1000v/ Cisco ISR v support the Broadband Network Gateway feature set and the Intelligent Services Gateway feature set. The required broadband feature license (For the Cisco CSR 1000v: L-CSR-BB-1K=) provides up to 4 GB of additional memory and support for up to 1000 broadband sessions. The following restrictions apply:

• The APPX feature license with a minimum of 1 Gbps maximum throughput must be installed.

• You can install multiple broadband feature licenses to increase the number of broadband sessions. However, installing additional broadband feature licenses will not add more memory. To add more memory beyond the 4 GB installed with the first broadband feature license, you must install a separate memory add-on license.

• If both a broadband feature license and memory add-on licenses are installed, then the broadband license takes higher priority than any memory add-on licenses installed. When the Cisco CSR 1000v/ Cisco ISRv is reloaded, the broadband feature license takes effect first, before any installed memory add-on licenses.

• We recommend that you install the broadband feature license before installing any memory add-on licenses.

• The VM must have enough memory allocated to accommodate the additional memory. See Understanding the Cisco CSR 1000v Memory Allocation, on page 170 for more information.

For more information about configuring broadband support, see Broadband Access Aggregation and DSL Configuration Guide and Intelligent Services Gateway Configuration Guide.

Installing Broadband Feature License

SUMMARY STEPS

1. Obtain the PAK.
2. enable
3. show license udi
4. Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License registration portal http://www.cisco.com/go/license
5. show platform software vmemory info
6. configure terminal
7. platform broadband \{1K | 2K | 3K | 4K | 5K | 6K | 7K | 8K\}
8. platform memory add memory
9. end
10. license install stored-location-url
11. write memory
12. reload
13. show license detail
14. show platform software vmemory info
15. (Optional) Install memory add-on licenses as needed. See Installing Memory Add-on License, on page 172.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Obtain the PAK. The PAK is provided to you when you order or purchase the right to use a feature set.
| | • The PAK serves as a receipt and is used as part of the process to obtain a license. |
| **Step 2** | enable
| Example: | Enter your password if prompted.
| Router> enable | |
| **Step 3** | show license udi
| Example: | You need the UDI of the device as part of the process to obtain a license.
| Router# show license udi | |
| **Step 4** | Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License registration portal http://www.cisco.com/go/license
| | After entering the appropriate information, you will receive an e-mail containing the license information that you can use to install the license:
| | • Copy the license file received from the Cisco Product License Registration portal to the appropriate file system on the device. |
| **Step 5** | show platform software vmemory info
| | Verifies the current memory allocation on the router. The display shows the memory upgrade license limit, indicating the maximum amount of additional memory you can add. |
| **Step 6** | configure terminal
<p>| Example: | Enters global configuration mode. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 7 platform broadband {1K</td>
<td>2K</td>
</tr>
<tr>
<td>Example: Router(config)# platform broadband 1K</td>
<td>(Optional) Adds the memory allocation to the router to accommodate added memory license(s). Add 4096 MB for each memory license you are planning to install. For example, if you plan to add two memory licenses, add 8192 MB of memory.</td>
</tr>
<tr>
<td>Step 8 platform memory add memory</td>
<td>The broadband feature license adds 4 MB of additional memory. If you want to add more memory, you must use this command. Adding more broadband feature licenses does not add more memory.</td>
</tr>
<tr>
<td>Example: Router(config)# platform memory add 4096</td>
<td></td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 10 license install stored-location-url</td>
<td>Installs the broadband feature license and any additional memory add-on licenses.</td>
</tr>
<tr>
<td>Example: Router# license install bootflash:90NVHJ3C26E_20140724194119019.lic</td>
<td></td>
</tr>
<tr>
<td>Example: bootflash:90NVHJ3C26E_20140724194119019.lic</td>
<td></td>
</tr>
<tr>
<td>Example: 4096 MB memory has been added to the system</td>
<td></td>
</tr>
<tr>
<td>Example: Execute 'write memory' to persist this change</td>
<td></td>
</tr>
<tr>
<td>Step 11 write memory</td>
<td>Saves the running configuration to NVRAM.</td>
</tr>
<tr>
<td>Example: Router# write memory</td>
<td></td>
</tr>
<tr>
<td>Step 12 reload</td>
<td>Restarts the router to enable the memory add-on license to be activated.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting CSL License Issues

Determining the License Status

You can install multiple licenses on a Cisco CSR 1000v/ISRv. To determine if a license is active, enter the `show license` or `show license detail` command. The display indicates the license status. The following are the possible states for the license:

- **Active, In Use**

 This state indicates that the license is active and is in use by the Cisco CSR 1000v.

- **Active, Not in Use**

 This state indicates that the license is installed on the Cisco CSR 1000v, but is not currently being used.

- **Inactive**

 This state indicates that the license is installed on the Cisco CSR 1000v but is no longer valid. For example, a license that has reached the end of the subscription term is shown as inactive.

The following example shows that a Cisco CSR 1000v has two licenses installed: an AX technology license and a Security technology license:

```
# show license | begin bb
Index 76 Feature: bb_1K
  Period left: Life time
  License Type: Permanent
  License State: Active, In Use
  License Count: 1/1/0 (Active/In-use/Violation)
  License Priority: Medium
Index 77 Feature: mem_4G
```
The AX technology license is shown as Active and in use, while the Security technology license is Active but not in use. To use the Security technology license, the `license boot level` command needs to be configured to “security” and the Cisco CSR 1000v must then be reloaded.

The following example of the `show version` command shows that the Cisco CSR 1000v has an AX technology license installed, but that the license boot level command has been set to “security”, but the Cisco CSR 1000v has not yet been reloaded.

```
router# show version | inc Level
License Level: ax    Next reload license Level: security
```

Migrating Technology Package Licenses to Cisco IOS XE 3.13S

Starting with Cisco IOS XE 3.13S, the names of the technology package licenses changed as shown below.

- The Standard technology package was changed to the IPBase technology package.
- The Advanced technology package was changed to the Security technology package.
- The Premium technology package was changed to the AX package.

The base feature content for each license is the same as previously, but the names as shown in the licenses and display output have changed. If you migrated either a Standard or Advanced technology package license from a previous version to Cisco IOS XE 3.13S, then the show version and show license commands display the old license names, which is expected behavior. The new license names display when you enter the `show running configuration` command.

In the following example, the `show running configuration` command following the migration shows the new “security” technology package:

```
Router# show running | include level
license boot level security
```

However, in the `show version` output, the migrated license displays as the old “advanced” technology package name, as shown in the following example:

```
Router# show version | inc License Level
License Level: advanced
```

In the `show license detail` output, the feature license also shows the old advanced license package name, as shown in the following example:

```
Router# show license detail
Index: 1    Feature: adv_100M    Version: 1.0
            License Type: Permanent
            License State: Active, In Use
```
No further configuration is required. To verify the correct feature set name for the migrated license, use the `show running configuration` command.

Determining the AWS License Type

When you deploy a Cisco CSR 1000v instance from a Cisco CSR 1000v Amazon Machine Image (AMI), the license that is displayed differs depending on whether you deployed a Bring Your Own License (BYOL) or an hourly-usage license.

- If the `show license` command shows the license as “advance, internal_service” or a similar designation, then the instance uses an hourly-usage license purchased on Amazon Web Services.

The following example displays the license information for an hourly-usage instance:

```text
router# show license
Index 1 Feature: ax
Index 2 Feature: internal_service
```

- If the `show license` command shows a list of supported licenses with various throughput levels, then the instance is a BYOL instance.

The following example displays the license information for a BYOL instance:

```text
router# show license
Index 1 Feature: advanced
Index 2 Feature: standard
Index 3 Feature: ax
Index 4 Feature: security
Index 5 Feature: lite
Index 6 Feature: appx
Index 7 Feature: ipbase
Index 8 Feature: prem_10M
Index 9 Feature: prem_50M
Index 10 Feature: prem_100M
Index 11 Feature: prem_250M
Index 12 Feature: prem_500M
Index 13 Feature: prem_500M_8G
Index 14 Feature: prem_1G
Index 15 Feature: prem_1G_16G
Index 16 Feature: prem_2500M
Index 17 Feature: prem_5G
Index 18 Feature: prem_10G
Index 19 Feature: prem_200G
Index 20 Feature: ax_10M
Index 21 Feature: ax_50M
Index 22 Feature: ax_100M
Index 23 Feature: ax_250M
Index 24 Feature: ax_500M
Index 25 Feature: ax_500M_8G
Index 26 Feature: ax_1G
```

- The `license boot level` and `platform hardware throughput-level` commands are not available with hourly-usage license. These commands are only supported on Cisco CSR 1000v instances with BYOL licenses.
Cisco Smart Licensing

If you are using CSR1000v release 16.10.1 or later, for Smart Licensing information, refer to the Smart Licensing Guide for Access and Edge Routers.

Beginning with Cisco IOS XE Release 3.15S, the Cisco CSR 1000v/ Cisco ISRx support activation using Cisco Smart Licensing.

- To use Cisco Smart Licensing, you must first configure the Call Home feature and obtain Cisco Smart Call Home Services.
- For Cisco IOS XE 3.15S and later, and IOS XE Denali 16.3 and later, the following Cisco IOS XE technology packages are supported: IPBase, Security, AX and APPx
- Cisco Smart Licensing uses the Cisco Smart Software Manager for managing licenses. To access the Cisco Smart Software Manager, use the following URL: https://software.cisco.com/#module/SmartLicensing

For more information about Cisco Smart Software Manager, see the Cisco Smart Software Manager User Guide, which is accessible from the Cisco Smart Software Manager tool.

Prerequisites for Cisco Smart Licensing

Before enabling Cisco Smart Licensing on the router, Cisco Smart Call Home must be configured by following the steps in Configuring Call Home for Smart Licensing, on page 181.

For further information on Smart Call Home, see Obtaining Smart Call Home Services, on page 262 and Configuring and Enabling Smart Call Home, on page 265.

Configuring Call Home for Smart Licensing

Describes how to configure and activate Call Home specifically for Smart Licensing. This is a prerequisite for configuring Smart Licensing on the Cisco CSR 1000v/ ISRx.

For more information in general about configuring Call Home, see Configuring Call Home for the Cisco CSR 1000v, on page 261.

SUMMARY STEPS

1. configure terminal
2. service call-home
3. call-home
4. profile name
5. destination transport-method http
6. no destination transport-method email
7. destination address http url

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
configure terminal
Example:
Router# configure terminal | Enters configuration mode. |
| **Step 2**
service call-home
Example:
Router(config)# call-home | Activates the call-home feature. |
| **Step 3**
call-home
Example:
Router(config)# call-home | Enters the Call Home configuration submode. |
| **Step 4**
profile name
Example:
Router(config-call-home)# profile profile1 | Enters the Call Home destination profile configuration submode for the specified destination profile. If the specified destination profile does not exist, it is created. |
| **Step 5**
destination transport-method http
Example:
Router(cfg-call-home-profile)# destination transport-method email | Enables the HTTP message transport method. |
| **Step 6**
no destination transport-method email
Example:
Router(cfg-call-home-profile)# no destination transport-method email | Disables email as the transport method. |
| **Step 7**
destination address http url
url = https://tools.cisco.com/its/service/oddce/services/DDCEService
Example:
Router(cfg-call-home-profile)# destination address email
https://tools.cisco.com/its/service/oddce/services/DDCEService | Configures the destination email address or URL to which Call Home messages are sent. |
Enabling Cisco Smart Licensing

To enable Cisco Smart Licensing and register your device, perform the following steps:

Step 1 Execute the `configure terminal` command.

Example:

```
Router# configure terminal
```

Enters the global configuration mode.

Step 2 Execute the `license smart enable` command.

Example:

```
Router(config)# license smart enable
```

This command enables Cisco Smart Licensing and disables Cisco Software Licensing (CSL).

Step 3 To further establish connectivity, perform the following optional steps:

a) Execute the `ip http client source-interface <interface>` command.
b) Execute the `ip domain lookup source-interface <interface>` command.
c) Execute the `ip name-server vrf mgmt <ip address>` command.

Step 4 `exit`

Example:

```
Router(config)# exit
```

Exits the configuration mode.

What to do next

After you enable the Cisco Smart Licensing, the Cisco CSR 1000v instance is no longer in the evaluation mode. The technology level and the throughput level supported by your license takes effect. For more information about managing the technology package and throughput license attributes, see Understanding the License-Based Restriction on Aggregate Bandwidth, on page 217 and Managing Throughput Notifications, on page 219.

Use the `show running-config` command to verify whether the Cisco Smart Call Home is enabled. The following configuration should be included:

```
call-home
```
profile "CiscoTAC-1"
active
destination transport-method http
no destination transport-method email
destination address http https://tools.cisco.com/its/service/oddce/services/DDCEService

Verify that the destination address command points to the URL of the Cisco Smart Software Agent as shown above. If the URL is not configured, you must manually configure the destination address http command to point to the URL.

After the connectivity is established, register the router with the Cisco Licensing Cloud. For example, see the Registering the Router with the Cisco Licensing Cloud, on page 202 section.

Smart Licensing System Messages

This section lists the smart licensing system messages for the Cisco CSR 1000v and Cisco ISRv. The more severe system messages are listed first. For more information on system messages, see System Message Logging. For more information on system logging commands, see the Cisco IOS Configuration Fundamentals Command Reference.

%SMART_LIC-2-PLATFORM_ERROR

Message:
Smart Licensing has encountered an internal software error. Contact TAC: %s

Explanation:
Smart Licensing Agent has encountered an internal problem with the platform.

Recommended Action:
Contact Cisco TAC.

%SMART_LIC-2-XDM_DISPATCH_LOOP_FAILURE

Message:
Smart Agent Admin Init Failed due to failure at XdmDispatchLoop in creating handle

Explanation:
This is an internal error that occurred during scheduler initialization, when trying to create an xdm handle.

Recommended Action:
Contact Cisco TAC.

%SMART_LIC-3-APPHA_DUPLICATED_INSTANCE

Message:
The Application, is trying set HA information for a duplicate instance.

Explanation:
The application is attempting to set the HA information for an entitlement instance (handle) when another duplicate instance already exists (with same entitlement tag, appName and appHaInstanceId).
%SMART_LIC-3-APPHA_DUPLICATED_INSTANCE

Message:
The Application, is trying set HA information for a duplicate instance.

Explanation:
The application is attempting to set the HA information for an entitlement instance (handle) when another
duplicate instance already exists (with same entitlement tag, appHaName and appHaInstanceId).

%SMART_LIC-3-PLR_CONFIG_OUT_OF_SYNC

Message:
Trusted Store PLR Enable flag not in sync with System Configuration, TS \%s Config \%s

Explanation:
The Smart Licensing configuration does not match the value of the PLR enable flag in Trusted Store. This
can happen if a configuration is copied onto the system and a reload occurs. If the new configuration does
not contain the Smart Licensing Enable command, the value in Trusted Store does not match.

Recommended Action:
Apply the desired Smart Licensing PLR Configuration Command and persist the configuration.

%SMART_LIC-3-NOT_AUTHORIZED

Message:
The entitlement \%s in Not Authorized to be used. Reason: \%s

Explanation:
You are using a license without authorization.

Recommended Action:
Go to the Smart Licensing portal to view your entitlements and attempt to find out why you are not authorized
to use this license.

%SMART_LIC-3-CONFIG_NOT_SAVED_TSCLEAR

Message:
The smart agent for Licensing will now be disabled because the config was not saved before
the reload

Explanation:
During Smart Agent initialization, if the Smart Agent state is registered and the config with the smart license
enabled flag was saved before the reboot, then the configuration was not saved before the reload.

Recommended Action:
Save the configuration before reloading.

%SMART_LIC-3-AUTH_RENEW_FAILED

Message:
Authorization renewal with the Cisco Smart Software Manager or satellite: \%s

Explanation:

Recommended Action:
Please verify your Call Home setting and that the device has connectivity to the Cisco Smart Software Manager or satellite.

%SMA
Recommended Action:
Please verify your Call Home settings and that the device has connectivity to the Cisco Smart Software Manager or satellite.

%SIMGAR-3-CONVERT_LIC_FAIL
Message:
%s Failed to convert %s: %s

%SIMGAR-3-UTILITY_REPORT_FAILED
Message:
Smart Agent for Licensing Utility has failed to send usage Report

%SIMGAR-3-EVAL_EXPIRED
Message:
Evaluation period expired
Explanation:
Your evaluation period has expired. Some features may have restricted usage.
Recommended Action:
You must obtain a new ID token from the Cisco Smart Software Manager or satellite and register the device.

%SIMGAR-3-OUT_OF_COMPLIANCE
Message:
One or more entitlements are out of compliance
Explanation:
The customer is using a license that they have not purchased or they are using more licenses than they have purchased.
Recommended Action:
You can go to the Smart Licensing portal and view your entitlements, to try and find out why the entitlements are out of compliance.

%SIMGAR-3-INVALID_ROLE_STATE
Message:
The current role is not allowed to move to the new role: Current %s New %s
Explanation:
From the last role event, we can only move to certain roles. The device has moved to a role which the Smart Agent cannot follow.
Recommended Action:
Report this problem to Cisco
%SMART_LIC-3-DEPRECATED_API
Message:
The Deprecated function \%s has been called. This call should be replaced by \%s
Explanation:
This error indicates the Cisco platform team is using deprecated API functions. The platform code is calling a deprecated function. The code needs to be changed to call the new function.
Recommended Action:
Contact Cisco TAC.

%SMART_LIC-3-BAD_MODE
Message:
An unknown mode was specified: \%d
Explanation:
An invalid entitlement enforcement mode was received by the smart agent in the process of logging a syslog message. This is an internal error and should be reported to Cisco.
Recommended Action:
This is a Smart Licensing internal error. Please report this to Cisco TAC.

%SMART_LIC-3-UTILITY_EXPIRED
Message:
Smart Agent for Licensing Utility certificate has expired
Explanation:
Smart Agent for Licensing utility certificate has expired.

%SMART_LIC-3-UTILITY_RENEW_FAILED
Message:
Smart Agent for Licensing Utility certificate renewal failed
Explanation:
Smart Agent for Licensing Utility cert renew failed, this will occur once per day until the renewal is successful or the current certificate expires.

%SMART_LIC-3-INVALID_TAG
Message:
The entitlement tag is invalid: \%s
Explanation:
The entitlement tag for a license is not defined in the Cisco Smart Software Manager. This is a Cisco internal problem and should be reported to Cisco.
Recommended Action:
Report this error to Cisco

%SMART_LIC-3-BAD_NOTIF

Message:

A bad notification type was specified: \%d

Explanation:

This is a Cisco internal error. Report it to Cisco TAC.

Recommended Action:

Report this error to Cisco TAC.

%SMART_LIC-3-AGENT_REG_FAILED

Message:

Smart Agent for Licensing Registration with the Cisco Smart Software Manager or satellite failed: \%s

Explanation:

Smart Licensing registration failed. The included error string should give a more detailed reason for the failure. This may have been due to an invalid ID token or because the device is already registered

Recommended Action:

If the ID token was invalid it may have expired or you may be using an ID token from the Smart Software Manager and you are registering with a satellite. If the device is already registered you can use the force option to force the registration with a new ID token. Please verify your Call Home setting and that the device has connectivity to the Cisco Smart Software Manager or satellite.

%SMART_LIC-3-ID_CERT_EXPIRED

Message:

Registration period has expired. Smart Licensing will transition to the unregistered state. Please re-register this product to correct the problem.

Explanation:

The current time is outside the valid registration period in the ID certificate. This could be caused by a change in the system clock or multiple communications failures with the Cisco Smart Software Manager or satellite.

Recommended Action:

Please check the Smart Call Home settings and network connectivity to the Cisco Smart Software Manager or satellite. Also verify that your system clock is correct.

%SMART_LIC-3-ID_CERT_EXPIRED_WARNING

Message:

This device's registration will expire in \%s.

Explanation:
The registration for this device will expire at the specified time. This usually indicates a communications failure with the Cisco licensing authority.

Recommended Action:

Please verify your Call Home settings and that the device has connectivity to the Cisco Smart Software Manager or satellite.

%SMART_LIC-3-APPHA_DUPLICATED_PEER

Message:

The Application HA Cluster already have a member with given identity. Use the show license usage command to see more details.

Explanation:

When setting up peer informations for an entitlement that supports attribute, the given peer information already exists. One of the devices may not be configured correctly or that the logic that is supposed to remove peer information is not working correctly.

%SMART_LIC-3-RESERVE_HA_FAILURE

Message:

The license reservation information on the active and standby does not match. Licensing HA will not work properly: %s

Explanation:

The license reservation configuration is not the same on both the active and standby. If the standby takes over as active, you will not have the same licenses available and your device may not work properly.

Recommended Action:

Change the reservation configuration in either of the nodes or both of the nodes so that they match each other.

%SMART_LIC-3-CONFIG_OUT_OF_SYNC

Message:

Trusted Store Enable flag not in sync with System Configuration, TS %s Config %s

Explanation:

The Smart Licensing configuration does not match the value of the enable flag in Trusted Store. This can happen if a configuration is copied onto the system and a reload occurs. If the new configuration does not contain the Smart Licensing Enable command, the value in Trusted Store does not match.

Recommended Action:

Apply the desired Smart Licensing Configuration Command and persist the configuration.

%SMART_LIC-3-REG_EXPIRED_CLOCK_CHANGE

Message:

Smart Licensing registration has expired because the system time was changed outside the validity period of the registration period. The agent will transition to the un-registered state in 60 minutes.
Explanation:
The system clock has been changed so that it is now outside the valid registration period. If the clock is reset to a value inside the registration validity period of 1 hour, smart licensing continues to function normally. If the clock is not reset, the device becomes de-registered and a new id token must be obtained to re-register the device. The registration validity period is defined by the start and end date in the ID certificate. Use the `show license tech support` command to get the ID certificate information.

Recommended Action:
Set the system clock back to the correct date and time.

%SMART_LIC-3-ROOT_CERT_MISMATCH_PROD
Message:
Certificate type mismatch

Explanation:
Smart Agent received an incorrect certificate for validation. Please contact your product support team.

%SMART_LIC-3-APPHA_MISSING_PEER
Message:
The Application HA Cluster do not have a member with given identity. Use the 'show license usage' command to see the exact error.

Explanation:
When removing peer information for an entitlement that supports the attribute, the given peer information does not exist. This means that one of the devices may not be configured correctly or that the logic that is supposed to add/update peer information is not working correctly.

%SMART_LIC-3-APPHA_ADD_ITSELF
Message:
The Application, is trying to add itself as its own Application HA peer.

Explanation:
When adding peer information for an entitlement that supports an attribute, the peer information contains the same data as its own HA attribute. This means that it has tried to add itself as its own peer.

%SMART_LIC-3-CERTIFICATE_VALIDATION
Message:
Certificate validation failed by smart agent: \\

Explanation:
The ID certificate validation failed during a reboot, registration or renewal. The included error message should give more information about the failure.

%SMART_LIC-3-HOT_STANDBY_OUT_OF_SYNC
Message:
The Smart Licensing Agent on hot standby failed to process the data necessary to stay in sync with the active agent. If a switch over occurs the the new active agent will not be in the same state as the current active agent. The configuration does not match the value of the enable flag in Trusted Store. This can happen if a configuration is copied onto the system and a reload occurs. If the new configuration does not contain the Smart Licensing Enable command, the value in Trusted Store will not match.

%SMART_LIC-3-ENTITLEMENT_RENEW_FAILED

Message:
Entitlement authorization with Cisco licensing cloud failed: \%s

Explanation:
The device has failed to communicate with Cisco to renew the entitlement authorization.

Recommended Action:
Please verify your Call Home setting and that the device has connectivity to the Cisco Smart Software Manager or satellite

%SMART_LIC-3-COMM_FAILED

Message:
Communications failure with the Cisco Smart Software Manager or satellite: \%s

Explanation:
The device communication with the Cisco Smart Software Manager or satellite failed.

Recommended Action:
Please verify your Call Home setting and that the device has connectivity to the Cisco Smart Software Manager or satellite

%SMART_LIC-3-CONVERT_FAILED

Message:
\%s License conversion failed: \%s

%SMART_LIC-3-ID_CERT_RENEW_NOT_STARTED

Message:
ID certificate start date not reached yet

Explanation:
The device registration failed. The ID Certificate start date is later than the device current time.

Recommended Action:
Please adjust your device clock to be correct, and retry the registration again.
%SMART_LIC-3-ID_CERT_RENEW_FAILED
Message:
Automatic registration renewal failed: \%s
Explanation:
The automatic ID certificate renewal failed. The included error message should give a better idea of what the failure was.
Recommended Action:
Please verify your Call Home setting and that the device has connectivity to the Cisco Smart Software Manager or satellite

%SMART_LIC-3-EVAL_EXPIRED_WARNING
Message:
Evaluation period expired on \%s
Explanation:
The device evaluation period will expire in the specified amount of time.
Recommended Action:
Register this device with the Cisco Smart Software Manager or satellite before the evaluation period expires.

%SMART_LIC-3-ROOT_CERT_MISMATCH_DEV
Message:
Certificate Mismatch: Development \%s Certificate being used with a Production Root Certificate. Use the 'test license smart dev-cert enable' CLI to set the DEV root cert.
Explanation:
The Production Root Certificate is being used with Development certificates.
Recommended Action:
Please activate the Development Root Certificate from the CLI. (ie. 'test license smart dev-cert enable')

%SMART_LIC-4-CONFIG_NOT_SAVED
Message:
Smart Licensing configuration has not been saved
Explanation:
This is an informational message to remind you to save the configuration.
Recommended Action:
Save the configuration.

%SMART_LIC-4-HANDLE_ATTR_VERSION_MISMATCH
The handle attribute version between two devices are different. \%s

Explanation:
The devices inside a cluster do not have the same operational capability. This is not an issue if all devices only use the functionality that all members of a cluster support. However, it is good practice to have all devices in a cluster using the same software version.

%SMART_LIC-4-RESERVE_IN_PROGRESS

Message: License Reservation process must be completed with the 'license smart reservation install' command. Reservation started on \%s

Recommended Action:
You must obtain a reservation authorization code from Cisco Smart Software Manager and install it on the device.

%SMART_LIC-4-IN_OVERAGE

Message: One or more entitlements are in overage

Explanation:
This is for information only. No action is necessary. You are still in compliance and within the overage amount as specified in your contract.

Recommended Action:
This message is informational only and no action is required.

%SMART_LIC-4-SMART_TRANSPORT_NOT_CONFIG

Message: Smart Agent for Licensing Smart transport is not configured for utility reporting

Explanation:
Smart Agent for Licensing Utility is enabled and there is a subscription, but Smart transport is not configured.

%SMART_LIC-4-UTILITY_FQDN_MISMATCH

Message:
Smart Agent for Licensing Utility URL setting does not match the FQDN in the utility certificate.

Explanation:
The Smart Agent for Licensing Smart licensing URL must match the FQDN embedded in the utility certificate.

Recommended Action:
Obtain a new utility certificate from Cisco.

%SMART_LIC-4-EVAL_WILL_EXPIRE_WARNING

Message:
Evaluation period will expire in \%s.

Explanation:
The device is operating within the evaluation period and this period ends in the specified amount of time.
Recommended Action:
Register this device with the Cisco Smart Software Manager or satellite before the evaluation period ends.

%%SMART_LIC-4-EVAL_WILL_EXPIRE_WARNING
Message:
Evaluation period will expire in \%s.
Explanation:
The device is using the evaluation period which will expire in the specified time
Recommended Action:
Register this device with the Cisco Smart Software Manager or satellite before the evaluation period expires.

%%SMART_LIC-5-IN_COMPLIANCE
Message: All entitlements and licenses in use on this device are authorized.
Explanation:
All your requested entitlements are authorized by Cisco licensing services.
Recommended Action:
This message is informational only and no action is required.

%%SMART_LIC-5-COMM_RESTORED
Message:
Communications with the Cisco Smart Software Manager or satellite restored
Explanation:
Smart Agent communication with the Cisco Smart Software Manager or satellite has been restored.
Recommended Action:
This is informational only and no action is required

%%SMART_LIC-5-SYSTEM_CLOCK_CHANGED
Message:
Smart Agent for Licensing System clock has been changed
Explanation:
The system clock has changed and the Smart Agent for Licensing has updated its internal timers
Recommended Action:
This is informational only and no action is required

%%SMART_LIC-5-UTILITY_RENEW_SUCCESS
Message:
Smart Agent for Licensing Utility certificate renewal successful

%SMART_LIC-5-IN_COMPLIANCE

Message:
All entitlements and licenses in use on this device are authorized

Explanation:
All customer requested entitlements are authorized by Cisco licensing services.

Recommended Action:
This is informational only and no action is required

%SMART_LIC-5-EVAL_START

Message:
Entering evaluation period

Explanation:
The device is not registered with the Cisco Smart Software Manager or satellite and is using licenses. An evaluation period of 90 days is available

Recommended Action:
Register this device with the Cisco Smart Software Manager or satellite using an ID token

%SMART_LIC-5-COMM_INIT_FAILED

Message:
Failed to initialize communications with the Cisco Smart Software Manager or satellite: \%s

Explanation:
Smart Agent could not initialize communication with the Cisco Smart Software Manager or satellite.

Recommended Action:
Please verify your Call Home setting and check that the device has connectivity to the Cisco Smart Software Manager or satellite.

%SMART_LIC-5-AUTHORIZATION_EXPIRED

Message:
Authorization period expired

Explanation:
The device has not communicated with the Cisco Smart Software Manager or satellite for 90 days and the device has not automatically renewed the entitlement authorizations. Some features may restrict functionality

Recommended Action:
Please verify your Call Home setting and that the device has connectivity to the Cisco Smart Software Manager or satellite.
%SMART_LIC-6-ID_CERT_RENEW_SUCCESS
Message:
Automatic registration renewal successful
Explanation:
Customer ID certificate has been renewed successfully
Recommended Action:
This is informational only and no action is required

%SMART_LIC-6-DISABLED
Message:
Smart Agent for Licensing disabled
Explanation:
Smart Agent has been disabled from either the CLI or because of a configuration mismatch

%SMART_LIC-6-AUTH_RENEW_SUCCESS
Message:
Authorization renewal with the Cisco Smart Software Manager or satellite. State=%s
Explanation:
The automatic authorization renewal was successful
Recommended Action:
This is informational only and no action is required

%SMART_LIC-6-HA_ROLE_CHANGED
Message:
Smart Agent HA role changed to %s.
Explanation:
Smart Agent role on HA RP has been changed to either active or standby.
Recommended Action:
This is informational only and no action is required

%SMART_LIC-6-HA_CHASSIS_ROLE_CHANGED
Message:
Smart Agent HA chassis role changed to %s.
Explanation:
Smart Agent chassis role on HA has been changed to either active or standby.
Recommended Action:
This is informational only and no action is required

%SMART_LIC-6-AGENT_ALREADY_REGISTER
Message:
This device is already registered with the Cisco Smart Software Manager or satellite.
Explanation:
Smart Licensing on this device has already registered with the Cisco Smart Software Manager or satellite
Recommended Action:
Use the force option when registering or remove this device from your virtual account on the Cisco Smart Software Manager or satellite

%SMART_LIC-6-AGENT_ALREADY_DEREGISTER
Message:
Smart Agent is already Deregistered with the CSSM.
Explanation:
Smart Licensing has already de-registered with Cisco.

%SMART_LIC-6-EXPORT CONTROLLED
Message:
Usage of export controlled features is \%
Explanation:
This tells you if you are allowed to use export controlled features.
Recommended Action:
This is informational only and no action is required.

%SMART_LIC-6-HOSTNAME_MATCHED_UDI
Message:
The host name has been changed to match a field in the device identifier (UDI). Since the device identifier is sent to Cisco this may bypass your host name privacy settings
Explanation:
The host name has been changed to match a field in the device identifier (UDI). Since the device identifier is sent to Cisco this may bypass your host name privacy settings. You can view the device identifier using the command: `show license udi`.
Recommended Action:
Change the host name so it does not include any fields in the device identifier.

%SMART_LIC-6-RESERVED_INSTALLED
Message:
License Reservation Authorization code installed

Recommended Action:
This is informational only and no action is required.

SMART_LIC-6-ENTITLEMENT_RENEW_SUCCESS

Message:
Entitlement authorization renewal with Cisco licensing cloud successful

Explanation:
Authorization renewal request is successful.

Recommended Action:
This is informational only and no action is required

SMART_LIC-6-RESERVE_RETURNED

Message:
License Reservation returned. Smart Agent is now unregistered.

Recommended Action:
This is informational only and no action is required.

SMART_LIC-6-RESERVE_CANCELED

Message:
License Reservation request canceled. Smart Agent is now unregistered.

Explanation:
Sent when you cancel a reservation request by using the reservation cancel command.

Recommended Action:
This is informational only and no action is required.

SMART_LIC-6-RESERVE_AUTH_FAILED

Message:
Failed to validate the Reservation Authorization Code. Changing to the unregistered state.

Explanation:
The reservation authorization code is not valid on this device

SMART_LIC-6-RESERVE_HA_MISMATCH

Message:
The reserved licenses on the active and standby do not match. Use the show license status command to see the error details.

Explanation:
The Licenses reserved using the Specified License Reservation (SLR) feature in Smart Licensing and installed on the active and standby or member devices in an HA configuration are not the same. If the standby takes over as active you will not have the same licenses available and your device may not work properly.

`%SMART_LIC-6-PLR_DISABLED_INIT_COMM`

Message:
Permanent License Reservation has been disabled. Please reboot the system to initialize Smart Licensing communications with Cisco.

Explanation:
During bootup, Smart Licensing communication is not initialized if Permanent License Reservation (PLR) is enabled. To enable Smart Licensing communication with Cisco when PLR is disabled, the system needs to be rebooted.

`%SMART_LIC-6-CONVERT_START`

Message:
Smart License Conversion has started

`%SMART_LIC-6-CONVERT_LIC_SUCCESS`

Message:
`` License has been converted to with a count of
``

`%SMART_LIC-6-CONVERT_LIC_ALREADY`

Message:
`` License has been converted to with a count of
``

`%SMART_LIC-6-CONVERT_SUCCESS`

Message:
`` Smart License Conversion successful
``

`%SMART_LIC-6-CONVERT_ALREADY`

Message:
`` Smart License Conversion successful
``

`%SMART_LIC-6-THIRDPARTY_MODE_ENABLED`

Message:
Smart Agent for Licensing is in Thirdparty Mode

Explanation:
Smart Agent for Licensing is in thirdparty mode, and ready to collect and process RUM reports.
%SMART_LIC-6-THIRDPARTY_MODE_DISABLED
Message:
Smart Agent for Licensing is out of Thirdparty Mode
Explanation:
Smart Agent for Licensing is out of thirdparty mode, and has stopped collecting and processing RUM reports.

%SMART_LIC-6-UTILITY_STARTED
Message:
Smart Agent for Licensing Utility has started sending usage reports
Explanation:
Smart Agent for Licensing utility has been enabled and is sending usage reports.

%SMART_LIC-6-UTILITY_STOPPED
Message:
Smart Agent for Licensing Utility has stopped sending usage reports: \%s
Explanation:
Smart Agent for Licensing Utility is not available and no longer sending usage reports.

%SMART_LIC-6-AGENT_READY
Message:
Smart Agent for Licensing is initialized
Explanation:
Smart Agent for Licensing is fully initialized and ready for use.
Recommended Action:
This is informational only and no action is required

%SMART_LIC-6-AGENT_ENABLED
Message:
Smart Agent for Licensing is enabled
Explanation:
Smart Agent for Licensing is enabled and ready to process licensing requests.
Recommended Action:
This is informational only and no action is required

%SMART_LIC-6-AGENT_REG_SUCCESS
Message:
Smart Agent for Licensing Registration with the Cisco Smart Software Manager or satellite
Explanation:
Smart Licensing registration was successful.

```%
SMART_LIC-6-AGENT_DEREG_SUCCESS

Message:
Smart Agent for Licensing De-registration with the Cisco Smart Software Manager or satellite was successful

Explanation:
Smart Licensing de-registration successful.

Recommended Action:
This is informational only and no action is required
```

```%
SMART_LIC-7-DAILY_JOB_TIMER_RESET

Message:
Daily job timer reset

Explanation:
This message is used only for testing and does not indicate an error

Recommended Action:
This is informational only and no action is required
```

Registering the Router with the Cisco Licensing Cloud

Note
If you are registering the router and using CSSM satellite, go to the following section instead: Registering the Router with the Cisco Licensing Cloud (CSSM satellite), on page 203.

After you have enabled Cisco Smart Licensing, you must register the router with Cisco. Using the ID token, the license agent on the router registers the product with Cisco and then receives back an identity certificate. This certificate is used for all future communications with Cisco. The license agent on the router automatically renews the registration information with Cisco every 30 days. This registration step is performed once for each product instance.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>license smart register idtoken id-token</code></td>
<td>Registers the device instance with the Cisco licensing cloud. This step only needs to be performed once per device instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# license smart register idtoken Yj8kGWM5T1cMDFi0OSU2jBmLT1y2YtODEzMTg1</code></td>
<td>The license agent registers the product with Cisco and receives back an identity certificate. This certificate is saved</td>
</tr>
</tbody>
</table>
Installing Cisco CSR 1000v Licenses

Registering the Router with the Cisco Licensing Cloud (CSSM satellite)

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP4zJEBCHyUeXbLU/y4EdpUpuN4w7/7zvXfGx00</td>
<td>and automatically used for all future communications with Cisco. The license agent automatically renews the registration information with Cisco every 30 days.</td>
</tr>
<tr>
<td>TPE%0EekCOD%3D%0A</td>
<td></td>
</tr>
<tr>
<td>The system will now contact the Cisco Smart Licensing servers</td>
<td></td>
</tr>
<tr>
<td>to obtain authorization for Smart Licensing</td>
<td></td>
</tr>
</tbody>
</table>

The device is registered with Cisco.

Note

Smart licensing may fail when IPv6 is configured on any interface and the device does not have IPv6 connectivity to the Internet or the Cisco Smart Software Agent at tools.cisco.com, resulting in log file error messages such as those shown below.

(Note that these messages may also appear as a result of other conditions being true.)

%SMART_LIC-3-AGENT_REG_FAILED: Smart Agent for Licensing Registration with Cisco licensing cloud failed: Fail to send out Call Home HTTP message.

%SMART_LIC-3-COMM_FAILED: Communications failure with Cisco licensing cloud: Fail to send out Call Home HTTP message.

If connectivity failed due to this issue, see Re-establishing Connectivity to the Cisco Smart Call Home Server when IPv6 is Configured, on page 205.

What to do next

Go to Requesting Cisco Smart License Throughput Level Licenses, on page 205.

Registering the Router with the Cisco Licensing Cloud (CSSM satellite)

Note

If you are registering the router and using CSSM satellite, go to the following section instead: Registering the Router with the Cisco Licensing Cloud, on page 202.

After you have enabled Cisco Smart Licensing, you must register the router with Cisco. Using the ID token, the license agent on the router registers the product with Cisco and then receives back an identity certificate. This certificate is used for all future communications with Cisco. The license agent on the router automatically renews the registration information with Cisco every 30 days. This renewal of registration is done once for each product instance. See http://www.software.cisco.com to determine the id-token.

SUMMARY STEPS

1. profile CiscoTAC-I
2. no destination address http default-url
3. destination address http satellite-url
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables TAC profile configuration mode.</td>
</tr>
</tbody>
</table>
| *profile* CiscoTAC-1 **Example:**

 Router(cfg-call-home)# profile CiscoTAC-1 | |
| **Step 2** | Removes the previously configured destination address for the Cisco Smart Software Agent. |
| *no destination address* http default-url **Example:**

 Router(cfg-call-home-profile)# no destination address

 https://tools.cisco.com/its/service/oddce/services/DDCEService | |
Step 3	Satellite-url—To determine the URL of the transport gateway, see the CSSM Satellite documentation. The *satellite-url* is similar to this example:
destination address http satellite-url	http://<ip-address>/Transportgateway/services/DeviceRequestHandler
Step 4	Exits TAC profile configuration mode.
exit	
Step 5	Starts ca-trustpoint configuration mode and create a name, SLA-Trustpoint, for the CertificateAuthority server.
crypto pki trustpoint SLA-TrustPoint	
Step 6	Certificate checking is ignored. Use this command if you are configuring software using Cisco Smart Software Manager satellite (CSSM satellite). This command ensures that revocation checking of the certificate is disabled when the trust policy is in use.
revocation-check none	
Step 7	Exits ca-trustpoint configuration mode and returns to global configuration mode.
exit	
Step 8	Registers the device instance with the Cisco licensing cloud. This step only needs to be performed once per device instance.
license smart register idtoken id-token **Example:**	

 Router# license smart register idtoken

 YjbKOWMSYTtMDFIOS00Z

 jBmLTlyY2ytCDEzMrq1YTMz2DvhLZe0DE0MJe0%0ANz5DF8UIB

 lU2y5EOF3mKg2Zm1LZUy35g2Y5S0%0M9yLPF90%0eObCTDE0%390A

 The system now contacts the Cisco Smart Licensing servers to obtain authorization for Smart Licensing | The license agent registers the product with Cisco and receives back an identity certificate. This certificate is saved and automatically used for all future communications with Cisco. The license agent automatically renews the registration information with Cisco every 30 days. |
What to do next

Go to Requesting Cisco Smart License Throughput Level Licenses, on page 205

Re-establishing Connectivity to the Cisco Smart Call Home Server when IPv6 is Configured

This section describes what to do if there is a failure to connect to the Cisco Smart Call Home Server when IPv6 is configured, as mentioned previously in Enabling Cisco Smart Licensing, on page 183.

To re-establish connectivity with the Cisco Smart Call Home Server, use one of the following two methods, depending on the version of Cisco IOS XE that you are using:

If you are using one of the following recent versions of Cisco IOS XE: 3.16.6, Denali 16.3.4 and later, Everest 16.4.2 and later, Everest 16.5.1 and later, see Re-establishing Connectivity, on page 205.

Note that in some cases, after configuring the previous steps, you may need to restart the router to fully re-establish connectivity.

Re-establishing Connectivity

This method applies to the following Cisco IOS XE releases: Cisco IOS XE 3.16.6, Cisco IOS XE Denali 16.3.4 and later, Everest 16.4.2 and later, and Everest 16.5.1 and later.

If there is an IPv6 address on an interface and the device cannot connect to the Internet or Smart software agent, configure the interface to only use IPv4 for smart licensing, with the following configuration mode command:

```
ip http client source-interface interface
```

Example:

```
Router(config)# ip http client source-interface GigabitEthernet1
```

Note: The interface GigabitEthernet1 needs to have an IPv4 address, not an IPv6 address.

Configures the interface to use IPv4.

Note: The call-home profile configuration with the static IP address corresponding to FQDN `tools.cisco.com` is not recommended as a long-term solution, since the IP address might change in future.

Requesting Cisco Smart License Throughput Level Licenses

Request a license corresponding to the configured technology package level and throughput level.

Prerequisites

Register the device with the Smart License server.

Changing Throughput Licenses
When working with Cisco Smart Licenses, using the `platform hardware throughput level` command requests a license for the new throughput level. Typically, the activation process requires several minutes. During this time, the new license remains “pending.”

Before the Cisco IOS XE 3.17 release, when changing throughput, the effective throughput would drop to 100 kbps while the new throughput license was pending. When the new license was activated, throughput would change to the newly configured level.

Beginning in the Cisco IOS XE 3.17 release, and including Cisco IOS XE Denali 16.2 and later, the transition is smoother. The router maintains the original throughput level until the license for the new throughput is activated.

In the following example, the router has been authorized previously for a throughput of 100M. The first line in the example is a request for a 250M throughput license. While the request is pending, the `show license all` command indicates the current authorized level (100M) and the pending license (250M), both shown in bold.

```
ultra-mcp(config)#platform hardware throughput level MB 250
Wait for 250M license request to succeed, continue to use existing 100M license until then
ultra-mcp(config)#end
ultra-mcp#show license all
Smart Licensing Status
======================
Smart Licensing is ENABLED
Registration:
  Status: REGISTERED
  Smart Account: CSR1000v
  Virtual Account: AX_SEC_IPB
  Export-Controlled Functionality: Allowed
  Initial Registration: SUCCEEDED on Nov 06 11:59:12 2015 UTC
  Last Renewal Attempt: None
  Next Renewal Attempt: May 04 11:59:11 2016 UTC
  Registration Expires: Nov 05 11:56:09 2016 UTC
License Authorization:
  Status: AUTHORIZED on Nov 09 13:37:00 2015 UTC
  Last Communication Attempt: SUCCEEDED on Nov 09 13:37:00 2015 UTC
  Next Communication Attempt: Nov 09 13:39:20 2015 UTC
  Communication Deadline: Feb 07 13:33:58 2016 UTC
License Usage
===============
regid.2014-05.com.cisco.ax_100M,1.0_2fff5ed6-e23c-455d-ade3-83ba3c8ed890 (ax_100M):
  Description: 
  Count: 1
  Version: 1.0
  Status: AUTHORIZED
(ax_250M):
  Description: 
  Count: 1
  Version: 1.0
  Status: PENDING
Product Information
--------------------
UDI: PID:CSR1000v,SN:9R8ORIT8CB0
Agent Version
-------------
Smart Agent for Licensing: 1.4.0_rel/28
Component Versions: SA:(1_4_rel)1.1.7, SI:(rel22)1.1.0, CH:(rel5)1.0.1, PK:(rel18)1.0.0
```
SUMMARY STEPS

1. configure terminal
2. license boot level {ipbase | security | ax | appx}
3. platform hardware throughput level MB {10 | 100 | 1000 | 10000 | 250 | 2500 | 50 | 500 | 5000 }

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter config mode.</td>
</tr>
<tr>
<td>Step 2 license boot level {ipbase</td>
<td>security</td>
</tr>
<tr>
<td>Step 3 platform hardware throughput level MB {10</td>
<td>100</td>
</tr>
</tbody>
</table>

Requesting Memory Add-on License

For information about memory add-on licenses, see Understanding the Cisco CSR 1000v Memory Allocation, on page 170. For Cisco Smart Licensing, the procedure for requesting the license is as follows:

SUMMARY STEPS

1. configure terminal
2. platform memory add memory
3. show platform software vmemory info

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter config mode.</td>
</tr>
<tr>
<td>Step 2 platform memory add memory</td>
<td></td>
</tr>
<tr>
<td>Step 3 show platform software vmemory info</td>
<td>Verifies the updated memory allocation.</td>
</tr>
</tbody>
</table>

Requesting Smart License Broadband license

For information about broadband licenses, see Information About Installing Broadband Feature License, on page 175 and Installing Broadband Feature License, on page 175. For Cisco Smart Licensing, the procedure for requesting the license is as follows:

SUMMARY STEPS

1. configure terminal
2. platform broadband {1K | 2K | 3K | 4K}
Manually Renewing the ID Certificate

By default, the ID certificate is automatically renewed every 6 months. You can manually renew the ID certificate using this procedure.

This may be useful in either of the following circumstances:
- If you have a limited window of Internet access
- After making licensing changes in the Smart Software Manager

SUMMARY STEPS

1. `license smart renew id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>license smart renew id</code></td>
<td>Renews the ID certificate.</td>
</tr>
</tbody>
</table>

Manually Renewing the License

By default, the license (also called “entitlement”) is automatically renewed every 30 days. You can manually renew the license using this procedure.

This may be useful in either of the following circumstances:
- Only a limited window of Internet access is available.
- After making licensing changes in the Smart Software Manager.
The terms “license” and “entitlement” are equivalent and are used interchangeably.

SUMMARY STEPS

1. license smart renew auth

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>license smart renew auth</td>
</tr>
<tr>
<td>Example:</td>
<td>Renews the license (also called “entitlement”).</td>
</tr>
<tr>
<td></td>
<td>Router# license smart renew auth</td>
</tr>
</tbody>
</table>

Unregistering a Device from Cisco Smart Licensing

SUMMARY STEPS

1. license smart deregister

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>license smart deregister</td>
</tr>
<tr>
<td></td>
<td>Removes the Cisco Smart Licensing registration for the device instance. All Cisco Smart Licensing certificates are removed on the router and the entitlements are released from the Smart Call Home backend server.</td>
</tr>
</tbody>
</table>

Disabling Cisco Smart Licensing

Describes how you can disable Cisco Smart Licensing and switch back to standard Cisco Software Licensing (CSL) mode.

SUMMARY STEPS

1. no license smart enable
2. reload
License Out-of-Compliance Behavior

A successfully licensed router may receive an "out of compliance" syslog message during reload or renewal/reauthorization of license from the Smart Licensing server if an attempt is made to contact the Smart Licensing server for a license and the number of available licenses recorded on the Smart Licensing account is exceeded. This message may also occur as a result of the router having been configured to have a higher performance level compared to the previously purchased feature set.

After the "out of compliance" message appears, the system continues to operate at the previously licensed throughput rate.

License Behavior with no Connectivity to the Smart Licensing Server

When a successfully licensed Cisco CSR 1000v/Cisco ISRv is unable to contact the Smart Licensing server, during reload or reauthorization or renewal of license, then the router continues to operate at the previously licensed state.

The license authorization expires if the CSSM satellite server has had no connectivity with the Smart Licensing server for more than 90 days. The license then changes to a License Authorization Expired State and the router continues to operate at the previously licensed state and runs in the Feature Restricted mode.

The following example shows a typical license expiry message that appears on the console.

*Aug 4 08:02:19.056: %VXE_THROUGHPUT-6-CLI_RESTRICTED_LICENSE_EXPIRE: System is in feature restricted mode due to license expire. Configuration CLIs have been blocked. nvram:startup-config is write protected (read-only). Valid license and reboot is required to recover from this state. Use configuration CLI - platform hardware throughput restricted-throughput-rate-mode if startup-config changes are needed.
In the Feature Restricted mode, the feature configuration commands are blocked except for those commands that are needed for licensing. Also, the commands for setting the technology features and the throughput rate are available.

Note

In the Feature Restricted mode you cannot save or write the running configuration. However, from the 17.1 release, you can execute the copy command except while copying to startup config/nvram, as startup configuration is write protected.

From the 17.1 release, when your device is in the Feature Restricted mode, if the hostname was previously Router#, it changes to (restricted)Router#.

Example 1

This example shows that if you enter a write command an error message appears.

```
router# write
nvram config write protected
```

Example 2.

This example shows that if you enter a reload command an error message appears.

```
router# reload
System configuration has been modified. Save? [yes/no]: yes
nvram config write protected
Proceed with reload? [confirm]
```

After you confirm by pressing Enter and proceed with the reload, the existing configuration is retained and the router continues to run. Note that the existing configuration cannot be modified.

If you further attempt to authorize or renew licenses with the Smart Licensing server, and if communication cannot be achieved with the Smart Licensing server (e.g., after rebooting the router), the syslog messages about being in the Feature Restricted mode, are generated. The following example displays this scenario:

```
*Aug 4 08:02:19.056: %VXE_THRU\_6-CLI\_RESTRICTED\_LICENSE\_EXPIRE:

System is in feature restricted mode due to communication fault to license server. Configuration CLIs have been blocked. nvram:startup-config is write protected (read-only). Valid license and reboot is required to recover from this state. Use configuration CLI – platform hardware throughput restricted-throughput-rate-mode if startup-config changes are needed.
```

In the Feature Restricted mode, the `platform hardware throughput restricted-throughput-rate-mode` command is enabled. This command is only visible in the Feature Restricted mode. After issuing this command, the throughput rate becomes 100 Kbps after the next reload. See the following example:

```
router(config)# platform hardware throughput restricted-throughput-rate-mode
```

After you enter the `platform hardware throughput restricted-throughput-rate-mode` command, the system displays the following message:

```
% The config will take effect on next reboot. This device will need to be re-licensed
```

After the next reload, the throughput rate restricted mode is in operation, and the traffic throughput rate is 100 Kbps.

When the modification of the start-up configuration is disabled, changes you make (such as registering a new license or configuring the license server connectivity) in the Feature Restricted mode are lost if you reboot.
Activating Permanent License Reservation

Introduction to Activating Permanent License Reservation

Activating a license using Permanent License Reservation (PLR) allows a device to use a license without having to be connected to Cisco Smart Software Manager (CSSM) or CSSM satellite. This feature is available using release Cisco IOS XE Everest 16.5.1a or later.

Activating Permanent License Reservation

This process describes how to activate permanent license reservation (PLR), which allows a product instance or device to have universal entitlement to a license. After activating PLR, the device does not need to communicate with Cisco Smart Software Manager (SSM) or a Cisco SSM server to maintain its ability to use features associated with a license. The license will not become out of compliance.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode on the device onto which you want to install a license using PLR.</td>
</tr>
<tr>
<td>Step 2 license smart enable</td>
<td>Enable smart licensing.</td>
</tr>
<tr>
<td>Step 3 license smart reservation</td>
<td>Enables reservation mode.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 5** license smart reservation request universal | Request a reservation request code, which you will later enter in Cisco SSM. For example:

```
license smart reservation request universal
```

Enter this request code in the Cisco Smart Software Manager portal:

```
BC-ZCSR1000V:959Z2A5VVQ-AB5nwN3rt-09
```

Make a note of the request code.

Step 6 Log into Cisco Smart Software Manager (SSM) and navigate to the virtual account that contains the licenses that you need.

Note In the list of licenses listed in the virtual account, ensure that there is a permanent license reservation (PLR) license available. (Click the license name and see if the license expiration is "Perpetual").
Purpose

Command or Action

Step 7 | In Cisco SSM, in the Licenses tab, click License Reservation and enter the request code obtained in Step 5. The authorization code is displayed on the screen (short ASCII character string).

Step 8 | Make a note of the authorization code. The authorization code is securely tied to the Universal Device Identifier (UDI) of the device.

Step 9 | Enter global config (EXEC) mode on the device where you want to activate PLR.

Step 10 | license smart reservation install auth-code (auth-code is the authorization code obtained in Step 7.) PLR is now active. This reservation is permanent until it is manually returned or deactivated after it is no longer required.

Step 11 | platform hardware throughput level MB throughput Set the throughput level (MB) (Range 10 to 10000).

What to do next

Later, to return or deactivate PLR, see Deactivating Permanent License Reservation, on page 213.

Deactivating Permanent License Reservation

Follow these steps to deactivate (return) Permanent License Reservation (PLR). For example, if you want to change the licensing on the device and save the cost of using PLR.

Step 1 | Enter EXEC mode.
Step 2 | license smart reservation return {auth-code}

 • license smart reservation return
 • license smart reservation return auth-code

 Note In rare cases, you can use this second form of the command, when you input a value for the auth-code. This is useful when the current reservation status of the license was previously cleared; for example, after the license smart reservation cancel command was used to cancel a request.

This command generates a reservation return code.

Example:

```
license smart reservation return
Reservation return code: BAAeUF-rz6E1G-PXLMQB-CRBnrX-TsaeEp-A3x
```

Step 3 | Make a note of the return code.
Step 4 | In CSSM, log in and navigate to the Product Instances tab for the virtual account in which the product is registered. Locate the entry that matches the Unique Device Identifier (UDI) of the device that you want to remove from the list.
Step 5 | Select Actions, click Remove Product Instance.

Cisco SSM removes the product instance.
Step 6 Paste the return code and click Remove.
The device is unregistered and operates with a default throughput of 1 Mbps.

Enabling Utility Reporting

Utility Reporting—Overview

Utility Reporting allows you to pay for features based on usage, instead of paying in advance for feature licenses. Utility Reporting is available for the Cisco CSR 1000v or Cisco ISRv using Cisco IOS XE Fuji 16.8.1 or higher.

Utility Reporting collects usage data from products that have Cisco Smart Licensing and Utility Reporting enabled and sends the usage data via the CSSM satellite to the Cisco Service Billing Platform (SBP), which produces daily reports. Usage data is produced in the Resource Utilization Measurement (RUM) format (ISO/IEC 19770-4).

The device collects usage data every 15 minutes and sends it to the CSSM satellite every four hours. Every 8 hours the CSSM satellite sends data to the Cisco SBP. The device stores usage data for up to 30 days and the CSSM satellite saves data for 90 days. This data backup allows recovery after, for example, the CSSM satellite becomes disconnected from the Cisco SBP. If there is a lack of connection for more than 30 days, the Cisco accounts team should contact you to communicate any issues.

Utility Reporting—Prerequisites

Before enabling Utility Reporting, perform the following steps:

• Add the licenses that are going to be used for utility reporting (using a post-payment method) into a smart account. For example, see Smart Software Licensing Overview.

• Enable Smart Licensing on the device.

 Summary steps:

 configure terminal
 license smart enable
 exit

 See Enabling Cisco Smart Licensing, in this document.

• Install and configure CSSM satellite. For further information, see Smart Software Manager satellite.

• Register the device. For further information, see Registering the Router with the Cisco Licensing Cloud (CSSM satellite), on page 203, in this document.

How to Enable Utility Reporting

Step 1 configure terminal
Enters global configuration mode.

Example:

Step 2 license smart utility

Registers your intention to use the Utility Reporting feature on the device.

Use the "no" form of the command, `no license smart utility`, to signal your intention to remove the Utility Reporting feature.

Example:

Device(config)# license smart utility

Step 3 license smart transport smart

Sets the transport type as `smart` (4th keyword above). This is required for utility reporting communications between the smart agent and the CSSM or CSSM satellite.

Example:

Device(config)# license smart transport smart

Step 4 license smart url `registration-url`

Sets the URL to be used by the smart transport between smart agent and CSSM or CSSM satellite.

`registration-url`—The transport gateway URL. Refer to this documentation: [CSSM Satellite](#). `registration-url` has the following form: `https://ip-address/Transportgateway/services/DeviceRequestHandler`

Use the "no" form of the command, `no license smart url`, to clear the value of the `registration-url`.

Example:

Device(config)# license smart url https://server/path

Verifying Utility Reporting

To verify that utility reporting data is being sent from the CSSM satellite to Cisco, enter the command shown in the following example, in configuration mode:

show license all

In the sample output shown below, in the "Utility" section, the line "Last attempt: SUCCEEDED on Dec 19 18:23:02 2017 UTC" shows when the utility report data was last sent successfully. Other data shows the date and time that the report was sent, and the expected date and time of the next utility report (4 hours later).

Smart Licensing Status

Smart Licensing is ENABLED

Registration:

- Status: REGISTERED
- Export-Controlled Functionality: Allowed
- Initial Registration: SUCCEEDED on Dec 13 16:11:51 2017 UTC
- Last Renewal Attempt: None
- Next Renewal Attempt: Feb 19 16:24:44 2018 UTC
- Registration Expires: Jul 05 16:50:33 2018 UTC
License Authorization:
Status: AUTHORIZED on Dec 13 18:23:51 2017 UTC
Last Communication Attempt: NOT STARTED
 Failure reason: Device in Thirdparty Utility Mode
Next Communication Attempt: None
Communication Deadline: Mar 19 18:23:02 2018 UTC

Utility:
Status: ENABLED
Utility report:
 Last success: Dec 19 18:23:03 2017 UTC
 Last attempt: SUCCEEDED on Dec 19 18:23:02 2017 UTC
 Next attempt: Dec 19 22:23:02 2017 UTC

Customer Information:
 Id: <empty>
 Name: <empty>
 Street: <empty>
 City: <empty>
 State: <empty>
 Country: <empty>
 Postal Code: <empty>

Data Privacy:
 Sending Hostname: yes
 Callhome hostname privacy: DISABLED
 Smart Licensing hostname privacy: DISABLED
 Version privacy: DISABLED

Transport:
 Type: Smart
 Registration URL: http://10.87.9.106/Transportgateway/services/DeviceRequestHandler
 Utility URL: http://10.87.9.106/Transportgateway/services/DeviceRequestHandler

License Usage
==============
(ax_1G):
 Description:
 Count: 1
 Version: 1.0
 Status: AUTHORIZED
 Utility Subscription id: 81

Product Information
====================
UDI: PID:CSR1000V, SN: 9ZT6BK18CXG

Agent Version
=============
Smart Agent for Licensing: 4.3.0_rel/8
Component Versions: SA:(1_3_dev)1.0.15, SI:(dev22)1.2.1, CH:(rel5)1.0.3, PK:(dev18)1.0.3

To set the information that will appear in the "Customer Information" section of the show license command above, use the following command:

license smart utility customer_info info_type info_value, where info_type is one of the following: city, country, id, name, postalcode, state, street.

Example

license smart utility customer_info city New York
Troubleshooting Cisco Smart License Issues

Determining Device Registration Information

Use the `show license all` command to display the device registration information.

```
Router#show license all
Smart Licensing Status
------------------------
Smart Licensing is ENABLED
Registration:
  Status: REGISTERED
  Smart Account: BU Production Test
  Virtual Account: CRDC_SH_3
  Export-Controlled Functionality: Allowed
  Initial Registration: SUCCEEDED on Jul 08 20:45:54 2015 UTC
  Last Renewal Attempt: None
  Next Renewal Attempt: Jan 04 20:45:54 2016 UTC
  Registration Expires: Jul 07 05:59:29 2016 UTC
License Authorization:
  Status: AUTHORIZED on Jul 08 20:46:05 2015 UTC
  Last Communication Attempt: SUCCEEDED on Jul 08 20:46:05 2015 UTC
  Next Communication Attempt: Aug 07 20:46:05 2015 UTC
  Communication Deadline: Oct 06 05:59:43 2015 UTC
License Usage
-------------
CSR 1KV AX 500M (ax_500M):
  Description: CSR 1KV AX 500M
  Count: 1
  Version: 1.0
  Status: AUTHORIZED
Product Information
---------------------
UDI: PID:CSR1000v,SN:9Q0BWG3BHL0
Agent Version
-------------
Smart Agent for Licensing: 1.4.0_rel11
Component Versions: SA:(1_4_rel)1.0.10, SI:(rel21)1.2.0, CH:(rel4)1.0.23, PK:(rel17)1.0.5
```

Additional Commands for Troubleshooting

The `show call-home profile all` and `show license tech support` commands may be helpful during troubleshooting.

Understanding the License-Based Restriction on Aggregate Bandwidth

The router includes a license shaper that may restrict the aggregate bandwidth of the router’s interfaces. For example, if a 50 Mbps license is installed, then a maximum of 25 Mbps of bidirectional traffic is possible.

The license shaper regulates the throughput on interfaces for both priority traffic and non-priority traffic:
• (Cisco IOS XE 3.10S and earlier) The license shaper regulates the throughput on non-management interfaces only. The GigabitEthernet 0 dedicated management interface is not counted.

• (Cisco IOS XE 3.11S and later, and IOS XE Denali 16.2 and later) The license shaper regulates the throughput on all interfaces.

Throughput limits are checked globally, not on a per-interface basis. The license shaper does not distinguish between different types of traffic, such as for IPSec or NAT. If the throughput level is exceeded, then packets may get discarded.

The figure below shows how the license shaper, also known as a traffic shaper, works. In this example, the four interfaces on a Cisco CSR 1000v are passing an aggregated traffic level of 60 Mbps. Because this exceeds the 50 Mbps license-enforced maximum throughput, 10 Mbps of traffic is discarded.

To check the license-based performance limiter value, use the following command for your interface:

```bash
Router# show platform hardware qfp active feature qos queue out int GigabitEthernet1 hier det inc max:
  orig_max : 0 , max: 33333  child policy-map
  orig_max : 0 , max: 500000  parent policy-map
  orig_max : 0 , max: 105000000  interface rate limiter
  orig_max : 0 , max: 250000  license performance limiter
  orig_max : 0 , max: 10000000000  entry for ROOT/SIP infra (ignore rate)
```

The value for the license performance limiter field should match the current maximum throughput level as shown with the `show platform hardware throughput level` command.

Note

The license shaper includes an extra scheduler node in the default HQF hierarchy. The router does not provide an option to detect congestion for a particular node in the HQF hierarchy.

For more information about verifying the VM performance indicators, see your hypervisor documentation.

To verify the actual throughput, use the following command:

```bash
Router# show platform hardware qfp active datapath utilization summary
CPP 0:     5 secs     1 min     5 min     60 min
Input:  Total (pps)  59232  59234  59237  59234
        (bps)  58757104  58757824  58760840  58757880
Output: Total (pps)  48839  48835  48833  48833
        (bps)  50011264  50012072  50009312  498768736
Processing: Load (pct)  33  34  34  34
```
In the example, the input rate shown in bold is close to 60 Mbps. The output rate shown in bold is close to 50 Mbps. In this case, the input rate exceeds 50 Mbps, the maximum license rate allowed.

The following command displays the number of packages dropped when the maximum throughput is exceeded:

```
Router# show platform hardware qfp active statistics drop clear | exc _0_
```

![Global Drop Stats](image)

<table>
<thead>
<tr>
<th>Global Drop Stats</th>
<th>Packets</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>TailDrop</td>
<td>2018258</td>
<td>25633010</td>
</tr>
</tbody>
</table>

When the actual throughput level approaches the maximum allowed by the installed license, you will receive an alert message similar to the following (the message may differ depending on the release version):

```
Dec 13 22:00:29.699: %BW_LICENSE-3-THROUGHPUT_THRESHOLD_LEVEL: F0: cpp_ha:
Average throughput rate exceeded 95 percent of licensed bandwidth 3 times, sample period 300 seconds, in last 24 hours
```

When the throughput exceeds the maximum allowed bandwidth set by the license, you will receive an alert message similar to the following (Cisco IOS XE 3.12S and later):

```
*Dec 13 22:00:29.699: %BW_LICENSE-4-THROUGHPUT_MAX_LEVEL: F0: cpp_ha:
Average throughput rate exceeded the total licensed bandwidth 50000000 bps and dropped 7 times, sample period 300 seconds, in last 24 hours
```

You can configure the QoS policies at the interface level to guarantee that high-priority traffic is not dropped. For more information, see the QoS configuration guides: https://www.cisco.com/c/en/us/support/routers/cloud-services-router-1000v-series/products-installation-and-configuration-guides-list.html.

Managing Throughput Notifications

You can configure the Cisco CSR 1000v/ ISRv to notify you when a certain percentage of the maximum throughput level is reached. The maximum allowable throughput is based on the installed throughput license.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
This feature is available on Cisco IOS XE 3.13S or later, and Cisco IOS XE Denali 16.3.1 and later.

By default, when the router first boots, the throughput level notification is enabled, and notifications are sent when the router reaches 95 percent of the maximum throughput level. The throughput level is measured every 300 seconds. When the router is rebooted, the threshold and interval level settings configured using the set platform hardware throughput-monitor command are retained.

The following command configures the hardware throughput monitor settings. The `threshold percentage` value represents the percentage of the maximum throughput at which the system notifies you. The valid range is from 75 to 95, and the default value is 95 percent.

The `interval` value represents how often the system measures the throughput level. The valid range is from 30 to 86400 seconds. The default value is 300 seconds.

```
set platform hardware throughput-monitor threshold percentage interval seconds
```
Example

Router# set platform hardware throughput-monitor threshold 85 interval 30

To display the platform hardware throughput monitor settings, use the `show platform hardware throughput-monitor parameters` command, as shown in the following example:

```
Router# show platform hardware throughput-monitor parameters

Throughput monitor parameters
Throughput monitor threshold: 95 percent
Throughput monitor interval: 300 seconds
Throughput monitor status: enabled
```

The following example shows a console log message received when the average throughput has exceeded 95 percent of the maximum throughput with a sample period of 300 seconds:

```
Dec 13 22:00:29.699: %BW_LICENSE-3-THROUGHPUT_THRESHOLD_LEVEL: F0: cpp_ha: Average throughput rate exceeded 95 percent of licensed bandwidth 3 times, sample period 300 seconds, in last 24 hours
```

The following example shows a console log message received when the average throughput approaches maximum allowed throughput set by the installed license:

```
Dec 13 22:00:29.699: %BW_LICENSE-4-THROUGHPUT_MAX_LEVEL: F0: cpp_ha: Average throughput rate exceeded the total licensed bandwidth 50000000 bps and dropped packets 7 times, sample period 300 seconds, in last 24 Hours
```

To disable the platform hardware throughput monitor, perform the following command:

```
set platform hardware throughput-monitor disable
```

Requesting a New Virtual UDI

The router's license is node-locked to the vUDI. If you clone the router's VM to a new VM instance, the vUDI is in most cases automatically updated when the router first boots up on the cloned machine. However, if the vUDI is not automatically updated, you must manually request a new vUDI on the cloned VM instance.

Caution

Requesting a new vUDI will invalidate the existing license. If you later need to rehost the license due to a system failure, you may need to perform additional steps on the Cisco Software Licensing portal. For more information on rehosting the router license, see Voluntarily Rehosting the License to a New VM, on page 401 and Obtaining a Rehost License if the System Fails, on page 403.

Perform the following step in EXEC mode:

```
1. request license new-udi
```
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>request license new-udi</td>
<td>Requests that a new virtual UDI be assigned</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>to the router's VM instance.</td>
</tr>
<tr>
<td></td>
<td>Router# request license new-udi</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Once you enter the `request license new-udi` command, you will be prompted to confirm, and then you will receive a series of system messages confirming the request:

```
Executing this command will invalidate the existing license, proceed with generating new-udi?[confirm]
New udi CSR1000v:9MF19951DMU
Router#*
*Aug 21 11:24:27.275: found an eval license info: csr1kv_medium
*Aug 21 11:24:27.276: Step 3. deletion of NOT-in-use licenses
*Aug 21 11:24:27.276: Step 4. deletion of in-use licenses
*Aug 21 11:24:27.440: %LICENSE-2-UDI_CHANGED: UDI of this instance changed from OLD: CSR1000V:9YA3086B993 to
New: CSR1000V:9MF19951DMU
```

To display the UDI history of the router's feature license, including previous virtual UIDs, enter the `show license udi history` command. The following example displays the UDI history of the feature license of a Cisco CSR 1000v:

```
Router# show license udi history
SlotID PID SN UDI
--------------------------------------------------------------------------------
* CSR1000V 9MF19951DMU CSR1000V:9MF19951DMU
Invalidated UDIs:
--------------------------------------------------------------------------------
1. CSR1000V : 9YA3086B993
```

Cisco Software Licensing (IOS XE 3.12 or Earlier)

Activating CSL Evaluation Licenses for Cisco IOS XE 3.12S and Earlier

Note

Licenses provided in Cisco IOS XE 3.12S and earlier (Standard, Advanced, and Premium) are no longer available. This material is provided as legacy information.

When the Cisco CSR 1000v first boots, the network interfaces are activated but feature support is limited and the throughput is limited to 2.5 Mbps. The evaluation license is bundled with the software, but you must activate the evaluation license to access the features.

The evaluation license expires 60 days from the time it is activated.
SUMMARY STEPS

1. enable
2. configure terminal
3. license boot level {standard | advanced | premium}
4. end
5. write memory
6. reload
7. show license detail
8. show platform hardware throughput level

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 license boot level {standard</td>
<td>advanced</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# license boot level</td>
<td></td>
</tr>
<tr>
<td>advanced</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Expires global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 write memory</td>
<td>Saves the running configuration to NVRAM.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# write memory</td>
<td></td>
</tr>
<tr>
<td>Step 6 reload</td>
<td>Restarts the Cisco CSR 1000v to boot to the feature level set using</td>
</tr>
<tr>
<td>Example:</td>
<td>the license boot level command.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# reload</td>
<td></td>
</tr>
</tbody>
</table>

Step 7

show license detail

Example:

Router# show license detail

After the Cisco CSR 1000v restarts, verifies that the license has been installed and is active.

Step 8

show platform hardware throughput level

Example:

Router# **show platform hardware throughput level**

Example:

The current throughput level is 2500 kb/s

What to do next

The evaluation license expires 60 days from the time it is activated.

Installing CSL Regular Licenses for Cisco IOS XE 3.12S and Earlier

Note

Licenses provided in Cisco IOS XE 3.12S and earlier (Standard, Advanced, and Premium) are no longer available. This material is provided as legacy information.

In Cisco IOS XE 3.12S and earlier, the Cisco CSR 1000v first boots in limited mode with the Standard feature set enabled and the maximum throughput limited to 2.5 Mbps.

You can generate multiple licenses for the Cisco CSR 1000v from one PAK. The purchased PAK determines the number of licenses you can generate.

Repeat these steps for each license available for your PAK.

SUMMARY STEPS

1. Obtain the PAK.
2. enable
3. show license udi
4. Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License registration portal: “http://www.cisco.com/go/license”
5. license install stored-location-url
6. configure terminal
7. license boot level {standard | advanced | premium}
8. end
9. write memory
10. reload
11. show license detail
12. end
13. configure terminal
14. platform hardware throughput level MB {10 | 100 | 1000 | 250 | 2500 | 50 | 500 | 5000}
15. end
16. show platform hardware throughput level

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** Obtain the PAK. | The PAK is provided to you when you order or purchase the right to use a feature set.
- The PAK serves as a receipt and is used as part of the process to obtain a license. |
| **Step 2** enable
Example:
Router> enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 3** show license udi
Example:
Router# show license udi | Displays all the UDI values that can be licensed in a system.
- You need the UDI of the device as part of the process to obtain a license. |
| **Step 4** Convert the PAK to a license by entering the PAK and the UDI into the Cisco Product License registration portal: "http://www.cisco.com/go/license"
Example:
When entering the UDI, enter only the 11-character serial number, for example, 966975BITWG. The UDI is case-sensitive, and should be entered in all capital letters. | After entering the appropriate information, you will receive an e-mail containing the license information that you can use to install the license:
- Copy the license file received from the Cisco Product License Registration portal to the appropriate file system on the device. |
| **Step 5** license install stored-location-url
Example:
Router# license install bootflash:90NVHj3C26E_20140724194119019.lic | Installs the license.
- Accept the end-user license agreement if prompted. |
| **Step 6** configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
Installing Cisco CSR 1000v Licenses

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Purpose</td>
</tr>
<tr>
<td>`license boot level {standard</td>
<td>advanced</td>
</tr>
<tr>
<td>Example: <code>Router(config)# license boot level advanced</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>Router(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Saves the running configuration to NVRAM.</td>
</tr>
<tr>
<td><code>write memory</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>Router# write memory</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Restarts the Cisco CSR 1000v to enable the feature set and the maximum throughput supported by the license.</td>
</tr>
<tr>
<td><code>reload</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>Router# reload</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>After the Cisco CSR 1000v restarts, verifies that the license has been installed and is active.</td>
</tr>
<tr>
<td><code>show license detail</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>Router# show license detail</code></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>Router(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>(Optional) Changes the maximum throughput level for the Cisco CSR 1000v. The available throughput options vary depending on the release version. Note Rebooting the Cisco CSR 1000v is not required.</td>
</tr>
<tr>
<td>`platform hardware throughput level {10</td>
<td>100</td>
</tr>
<tr>
<td><code>Example: Router(config)# platform hardware throughput level 500</code></td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>Router(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Step 16

show platform hardware throughput level

Example:

Router# `show platform hardware throughput level`

Example:

The current throughput level is 50 000 kb/s

Verifies that the Cisco CSR 1000v maximum throughput level matches that of the installed license.

What to do next

Repeat these steps for each license available for your PAK.

The following is an example of the `show license detail` command showing an installed active license:

```
Router# show license detail
Index: 1     Feature: prem_100M     Version: 1.0
License Type: Permanent
License State: Active, In Use
License Count: Non-Counted
License Priority: Medium
Store Index: 0
Store Name: Primary License Storage
```
Prerequisites for the Software Upgrade Process

This section describes how to upgrade the Cisco IOS XE software for an existing Cisco CSR 1000v or Cisco ISRv installation on a VM. For information on installing a new Cisco CSR 1000v, see Cisco CSR 1000v Series Cloud Services Router Overview, on page 5.

This procedure is for upgrading to a new software version on the same VM only. It does not describe how to install or rehost an existing router running the same or upgraded software version on a different VM.

Note: The router does not support In-Service Software Upgrade (ISSU).

Note: (Cisco IOS XE Everest 16.5 and later) On Amazon Web Services (AWS), you can use the Cisco CSR 1000v .bin file to upgrade the version of the router, without having to recreate the AWS EC2 instance from a new AMI.

Note: (Cisco IOS XE Everest 16.4 and earlier) On Amazon Web Services (AWS), you cannot use the Cisco CSR 1000v .bin file to upgrade AMIs obtained from AWS. You must create a new AMI instance and migrate your configuration and licenses.
(Cisco IOS XE Fuji 16.7 or later) On Microsoft Azure, to do an in-place upgrade of the Cisco CSR 1000v .bin file you must follow the steps in Upgrading a Cisco IOS XE Image on Microsoft Azure. This is within the Configuring Cisco CSR 1000v on Microsoft Azure section of the Cisco CSR 1000v Deployment Guide for Microsoft Azure.

(Cisco IOS XE Everest 16.6 and earlier) On Microsoft Azure, you cannot use the Cisco CSR 1000v .bin file to upgrade a Cisco CSR1000v instance. You must re-deploy a new instance from the Microsoft Azure Portal and migrate your configuration and licenses.

If upgrading to Cisco IOS XE Release 3.11S from an earlier release, we recommend that you update your configuration to remove the GigabitEthernet0 management interface before upgrading. Because the GigabitEthernet0 interface is no longer supported beginning with Cisco IOS XE Release 3.11S, you will receive system errors if the upgraded configuration includes this interface. If downgrading from Cisco IOS XE Release 3.11S to an earlier release, note also that the management interface will need to change to GigabitEthernet0 for the earlier release.

Be sure to complete the following prerequisites for upgrading the Cisco IOS XE version of the router software image:

Read the Cisco CSR 1000v Series Cloud Services Router Release Notes to verify the following:

- This is a note about the compatibility between the hypervisor vendor and Cisco IOS XE version. If you want to upgrade to a new hypervisor version not supported by your current version of Cisco IOS XE on the Cisco CSR 1000v/ISRv, you need to upgrade the version before upgrading to the new hypervisor version.

- System requirements for the x86 hardware that may differ from those of the currently running on the router.

- Memory requirements of the VM for the Cisco CSR 1000v/ISRv software image.

If the new router's version requires more memory than your previous version, you must increase the memory allocation on the VM before beginning the upgrade process.

- Software features supported on the upgraded Cisco IOS XE version.

- Any upgrade restrictions.

Obtain the Cisco CSR 1000v/ISRv software image from Cisco.com. For the Cisco CSR 1000v, see Obtaining the Cisco CSR 1000v VM Image, on page 62.
You must use the .bin file to upgrade or downgrade your software. The .iso and .ova files are used for first-time installation only.

Saving Backup Copies of Your Old System Image and Configuration

To avoid unexpected downtime in the event you encounter serious problems using a new system image or startup configuration, we recommend that you save backup copies of your current startup configuration file and Cisco IOS XE software system image file on a server.

For more detailed information, see the “Managing Configuration Files” chapter in the Managing Configuration Files Configuration Guide, Cisco IOS XE Everest 16.6.

To save backup copies of the startup configuration file and the system image file, complete the following steps.

SUMMARY STEPS

1. `enable`
2. `copy nvram:startup-config {ftp: | rcp: | tftp:}`
3. `dir bootflash:
4. `copy bootflash: {ftp: | rcp: | tftp:}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 copy nvram:startup-config {ftp:	rcp:	tftp:}	Copies the startup configuration file to a server.
Example:	• The configuration file copy can serve as a backup copy.		
Router# copy nvram:startup-config ftp:	• Enter the destination URL when prompted.		

Step 3 dir bootflash:	Displays the layout and contents of a bootflash memory file system. **bootflash:** is aliased onto **flash**:
Example:	• Learn the name of the system image file.
Router# dir bootflash:	

Step 4 copy bootflash: {ftp:	rcp:	tftp:}	Copies a file from bootflash memory to a server.
Example:	• Copy the system image file to a server. This file can serve as a backup copy.		
Router# copy bootflash: ftp:			
The following examples show the startup configuration being copied to a TFTP server:

Router# copy nvram:startup-config tftp:
Remote host[]? 192.0.2.1
Name of configuration file to write [rtr2-config]? rtr2-config-b4upgrade
Write file rtr2-config-b4upgrade on host 192.0.0.1?[confirm] <cr>

The following example uses the `dir bootflash:` command in privileged EXEC mode to learn the name of the system image file and the `copy bootflash: tftp:` command in privileged EXEC mode to copy the system image to a TFTP server. The router uses the default username and password.

Router# dir bootflash:
Directory of bootflash:/
 1 -rw- 48311224 Mar 2 1901 11:32:50 +00:00 csr1000v-universalk9-mz.SSA.XFR_20090407
 2 -rw- 983 Feb 14 2021 12:41:52 +00:00 running-config
260173824 bytes total (211668992 bytes free)

Router# copy bootflash: tftp:
Source filename [running-config]? csr1000v-universalk9-mz.SSA.XFR_20090407
Address or name of remote host []? 192.0.2.1
Destination filename [router-config]? running-config
983 bytes copied in 0.048 secs (20479 bytes/sec)
Router#

Using TFTP or Remote Copy Protocol to Copy the System Image into Boot Flash Memory

The following details the logistics of upgrading the system image:

Install a TFTP server or an RCP server application on a TCP/IP-ready workstation or PC. Many third-party vendors provide free TFTP server software, which you can find by searching for “TFTP server” in a web search engine.

If you use TFTP:

- Configure the TFTP application to operate as a TFTP server, not a TFTP client.
- Specify the outbound file directory to which you will download and store the system image.
• Download the new Cisco IOS XE software image into the workstation or PC.
• Verify that the TFTP or RCP server has IP connectivity to the router. If you cannot successfully ping between the TFTP or RCP server and the router, either configure a default gateway on the router or make sure that the router and server each have an IP address in the same network or subnet.

SUMMARY STEPS

1. enable
2. Use one of the following commands to copy a file from a server to bootflash memory:
 • copy tftp bootflash:
 • copy rcp bootflash
3. When prompted, enter the IP address of the TFTP or RCP server:
4. When prompted, enter the filename of the Cisco IOS software image to be installed:
5. When prompted, enter the filename as you want it to appear on the router. Typically, the same filename is entered as was used in the previous step.
6. If an error message appears that says, “Not enough space on device,” do the following:
7. If the error message does not appear, enter no when prompted to erase the bootflash memory before copying:

DETAILED STEPS

Step 1 enable
Use this command to enter privileged EXEC mode. Enter your password if prompted:
Example:

Router> enable
Password: <password>
Router>

Step 2 Use one of the following commands to copy a file from a server to bootflash memory:
• copy tftp bootflash:
• copy rcp bootflash
Example:

Router> copy tftp bootflash:

Step 3 When prompted, enter the IP address of the TFTP or RCP server:
Example:

Address or name of remote host []?: 10.10.10.2

Step 4 When prompted, enter the filename of the Cisco IOS software image to be installed:
Example:
Source filename: csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin

Note: The filename is case sensitive.

Step 5
When prompted, enter the filename as you want it to appear on the router. Typically, the same filename is entered as was used in the previous step.

Example:

Destination filename: csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin

Step 6
If an error message appears that says, “Not enough space on device,” do the following:

• If you are certain that all the files in bootflash memory should be erased, enter y when prompted twice to confirm that bootflash memory will be erased before copying:

Example:

Accessing tftp://10.10.10.2/csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin...

Erase bootflash: before copying? [confirm] y
Erasing the flash filesystem will remove all files! Continue? [confirm] y
Erasing device...

• If you are not certain that all files in bootflash memory should be erased, press Ctrl-Z.

Step 7
If the error message does not appear, enter no when prompted to erase the bootflash memory before copying:

Example:

Accessing tftp://10.10.10.2/csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin...

Erase bootflash: before copying? [confirm] no

Loading the New System Image from the Cisco IOS XE Software

SUMMARY STEPS

1. dir bootflash:
2. configure terminal
3. no boot system
4. boot system bootflash: system-image-filename.bin
5. (Optional) Repeat the previous step to specify the order in which the router should attempt to load any backup system images.
6. exit
7. write
8. show version
9. If the last digit in the configuration register is 0 or 1, proceed to the next step. However, if the last digit in the configuration register is between 2 and F, proceed to the step "copy running-config startup-config" below.
10. configure terminal
11. config-register 0x2102
12. exit
13. copy running-config startup-config
14. write memory
15. reload
16. When prompted to save the system configuration, enter no:
17. When prompted to confirm the reload, enter y:
18. show version

DETAILED STEPS

Step 1
\textbf{dir bootflash:}
Use this command to display a list of all files and directories in bootflash memory:

\textbf{Example:}

```
Router# dir bootflash:
```
```
Directory of bootflash:
3 -rw- 6458388 Mar 01 1993 00:00:58 csr1000v.tmp
1580 -rw- 6462268 Mar 06 1993 06:14:02 csr1000v-ata
63930368 bytes total (51007488 bytes free)
```

Step 2
\textbf{configure terminal}
Use this command to enter global configuration mode:

\textbf{Example:}

```
Router# configure terminal
Router(config)#
```

Step 3
\textbf{no boot system}
Use this command to delete all entries in the bootable image list, which specifies the order in which the router attempts to load the system images at the next system reload or power cycle:

\textbf{Example:}

```
Router(config)# no boot system
```

Step 4
\textbf{boot system bootflash:system-image-filename.bin}
\textbf{Note}
If the new system image is the first file or the only file displayed in the \textbf{dir bootflash:} command output in Step 1, you do not need to perform this step.

Use this command to load the new system image after the next system reload or power cycle. For example:

\textbf{Example:}

```
Router(config)# boot system bootflash:
csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin
```
Step 5 (Optional) Repeat the previous step to specify the order in which the router should attempt to load any backup system images.

Step 6 exit

Use this command to exit global configuration mode:

Example:

Router(config)# exit
Router#

Step 7 write

or

write memory

Example:

Router# write memory

Note This step is required beginning with Cisco IOS XE Release 3.9S if upgrading to a later version. Entering the write or write memory command updates the GRUB menu list of images available on the bootflash disk.

Step 8 show version

Use this command to display the configuration register setting:

Example:

Router# show version
Cisco Internetwork Operating System Software
...
Configuration register is 0x0
Router#

Step 9 If the last digit in the configuration register is 0 or 1, proceed to the next step. However, if the last digit in the configuration register is between 2 and F, proceed to the step "copy running-config startup-config" below.

Step 10 configure terminal

Use this command to enter global configuration mode:

Example:

Router# configure terminal
Router(config)#

Step 11 config-register 0x2102

Use this command to set the configuration register so that, after the next system reload or power cycle, the router loads a system image from the boot system commands in the startup configuration file:

Example:

Router(config)# config-register 0x2102
The 0x2102 value is the default configuration register setting. If you didn’t change this setting from the default, this step is not required.

Step 12
exit

Use this command to exit global configuration mode:

Example:

```
Router(config)# exit
Router#
```

Step 13
copy running-config startup-config

Use this command to copy the running configuration to the startup configuration:

Example:

```
Router# copy running-config startup-config
```

Step 14
write memory

Note
This step is required beginning with Cisco IOS XE Release 3.9S if upgrading to a later version. Entering the `write memory` command updates the GRUB menu list of images available on the bootflash disk.

Step 15
reload

Use this command to reload the operating system:

Example:

```
Router# reload
```

Step 16
When prompted to save the system configuration, enter no:

Example:

```
System configuration has been modified. Save? [yes/no]: no
```

Step 17
When prompted to confirm the reload, enter y:

Example:

```
Proceed with reload? [confirm] y
```

Step 18
show version

Use this command to verify that the router loaded the proper system image:

Example:

```
Router# show version
00:22:25: %SYS-5-CONFIG_I: Configured from console by console
Cisco Internetwork Operating System Software
. .
System returned to ROM by reload
```
System image file is "bootflash:
csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin"

Loading the New System Image from GRUB Mode

To load the new system image from GRand Unified Bootloader (GRUB) mode, follow these steps, beginning in EXEC mode.

SUMMARY STEPS

1. dir bootflash:
2. configure terminal
3. boot system bootflash:system-image-filename.bin
4. do write
5. config-register 0x0000
6. At the grub> prompt, enter ESC to access the GRUB menu.
7. Select the .bin file to upgrade the software image on the router to the new version.
8. Press Enter to boot the selected image to begin the upgrade process.

DETAILED STEPS

Step 1 dir bootflash:
Use this command to display a list of all files and directories in bootflash memory:

Example:

Router# dir bootflash:
Directory of bootflash:/
 3 -rw- 6458388 Mar 01 1993 00:00:58 csr1000v.tmp
 1580 -rw- 6462268 Mar 06 1993 06:14:02 csr1000v-ata
63930368 bytes total (51007488 bytes free)

Step 2 configure terminal
Use this command to enter global configuration mode:

Example:

Router# configure terminal
Router(config)#

Step 3 boot system bootflash:system-image-filename.bin

Note If the new system image is the first file or the only file displayed in the dir bootflash: command output, you do not need to perform this step.

Use this command to load the new system image after the next system reload or power cycle. For example:

Example:
Router(config)# boot system bootflash:
csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin

Step 4
do write
or
do write memory

Example:
Router(config)# do write memory

Note This step is required beginning with Cisco IOS XE Release 3.9S if upgrading to a later version. Entering the do write or do write memory command updates the GRUB menu list of images available on the bootflash disk.

Step 5
config-register 0x0000

Use this command to enter GRUB mode.

The following shows an example of entering GRUB mode.

Example:
Router(config)# config-register 0x0000

GNU GRUB version 0.97 (638K lower / 3143616K upper memory)
| Minimal BASH-like line editing is supported. For the first word, TAB
| lists possible command completions. Anywhere else TAB lists the possible
| completions of a device/filename. ESC at any time exits to menu. |
grub> help
| Minimal BASH-like line editing is supported. For the first word, TAB
| lists possible command completions. Anywhere else TAB lists the possible
| completions of a device/filename. ESC at any time exits to menu. |
confreg [VALUE] help [--all] [PATTERN ...]
grub>

Step 6
At the grub> prompt, enter ESC to access the GRUB menu.

The GRUB menu displays, showing the images that are available to boot.

Example:
GNU GRUB version 0.97 (638K lower / 3143616K upper memory)
+---+
| CSR1000v - csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin |
| CSR1000v - packages.conf |
| CSR1000v - GOLDEN IMAGE |
| |
| |
| |
| |
| |
| |
+---+

Use the ^ and v keys to select which entry is highlighted.
Press enter to boot the selected OS, or 'c' for a command-line.
Select the image to boot the router from using the up and down arrow key. To return to the GRUB prompt, enter the letter c.

Step 7
Select the .bin file to upgrade the software image on the router to the new version.

Step 8
Press Enter to boot the selected image to begin the upgrade process.

Saving Backup Copies of Your New System Image and Configuration

To aid file recovery and to minimize downtime in the event of file corruption, we recommend that you save backup copies of the startup configuration file and the Cisco IOS software system image file on a server.

Tip
Do not erase any existing backup copies of your configuration and system image that you saved before upgrading your system image. If you encounter serious problems using your new system image or startup configuration, you can quickly revert to the previous working configuration and system image.

To save backup copies of the startup configuration file and the system image file, complete the following steps.

SUMMARY STEPS

1. enable
2. copy nvram:startup-config {ftp: | rcp: | tftp:}
3. dir bootflash:
4. copy bootflash: {ftp: | rcp: | tftp:}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Router> enable |
| **Step 2** copy nvram:startup-config {ftp: | rcp: | tftp:} | Copies the startup configuration file to a server.
 Example:
 Router# copy nvram:startup-config ftp: |
| **Step 3** dir bootflash: | Displays the layout and contents of a bootflash memory file system.
 Example:
 Router# dir bootflash: |
What to do next

The following example shows the startup configuration being copied to a TFTP server:

```plaintext
Router# copy nvram:startup-config tftp:
Remote host[]? 172.16.101.101
Name of configuration file to write [rtr2-config]? <cr>
Write file rtr2-config on host 172.16.101.101?[confirm] <cr>
! [OK]
```

The following example uses the `dir bootflash:` privileged EXEC command to obtain the name of the system image file and the `copy bootflash: tftp:` privileged EXEC command to copy the system image to a TFTP server. The router uses the default username and password.

```plaintext
Router# dir bootflash:
System flash directory:  
File Length Name/status  
1 4137888 csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin  
[4137952 bytes used, 12639264 available, 16777216 total]  
16384K bytes of processor board System flash (Read/Write)\ 
Router# copy bootflash: tftp:
IP address of remote host [255.255.255.255]? 192.0.2.1
filename to write on tftp host? csr1000v-advernterprisek9-mz
writing csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA!!!!!!...
successful ftp write.
```

Rebooting the Cisco CSR 1000v

Once you have copied the new system image into bootflash memory, loaded the new system image and saved a backup copy of the new system image and configuration, you need to reboot the VM. See your VM vendor documentation for more information about rebooting the VM. After rebooting, the router VM should include the new system image with a newly installed version of the Cisco IOS XE software.
Mapping Cisco CSR 1000v Network Interfaces to VM Network Interfaces

Mapping Cisco CSR 1000v Network Interfaces with vSwitch Interfaces, on page 245

Mapping Cisco CSR 1000v Network Interfaces to VM Network Interfaces

Mapping the Router Network Interfaces to vNICs

The Cisco CSR 1000v maps the GigabitEthernet network interfaces to the logical virtual network interface card (vNIC) name assigned by the VM. The VM in turn maps the logical vNIC name to a physical MAC address.

When the Cisco CSR 1000v is booted for the first time, the router interfaces are mapped to the logical vNIC interfaces that were added when the VM was created. The figure below shows the relationship between the vNICs and the Cisco CSR 1000v router interfaces.
After the Cisco CSR 1000v boots, you need to display the mapping between the logical interface on the router with the vNIC and the vNIC MAC address using the `show platform software vnic-if interface-mapping` command. The display for this command is different depending on your Cisco IOS XE release version. (Note: For Cisco IOS XE Release 3.11 or later, the GigabitEthernet0 interface is no longer supported.)

```
Router# show platform software vnic-if interface-mapping
--------------------------------------------------------------------------
Interface Name | Short Name | vNIC Name   | Mac Addr
--------------------------------------------------------------------------
GigabitEthernet0 | Gi0 | eth0 (vmxnet3) | 000c.2946.3f4d
GigabitEthernet2 | Gi2 | eth2 (vmxnet3) | 0050.5689.0034
GigabitEthernet1 | Gi1 | eth1 (vmxnet3) | 0050.5689.000b
--------------------------------------------------------------------------
```

The vNIC name shown in the display is a logical interface that the Cisco CSR 1000v uses to map to the interface on the hypervisor. It does not always map to the corresponding NIC name added during the VM installation. For example, the logical “eth1” vNIC name in the display may not necessarily map to “NIC1” that was added in the VM installation process.
It is important that you verify the interface mapping before you begin configuring the Gigabit Ethernet network interfaces on the Cisco CSR 1000v. This ensures that the network interface configuration will apply to the correct physical MAC address interface on the VM host.

If you reboot the router and do not add or delete any vNICs, the interface mapping remains the same as before. If you reboot the router and delete vNICs, special care must be taken to ensure that the configuration for the remaining interfaces remains intact. For more information, see Adding and Deleting Network Interfaces on the Cisco CSR 1000v, on page 243.

In Cisco IOS XE Release 3.10S and earlier, the first vNIC added is automatically mapped to the GigabitEthernet0 management interface. All subsequent vNICs added are mapped to router interfaces. Support for the GigabitEthernet0 interface was removed in Cisco IOS XE Release 3.11S.

Adding and Deleting Network Interfaces on the Cisco CSR 1000v

The Cisco CSR 1000v maps the router GigabitEthernet interfaces to the logical vNIC name assigned by the VM, which in turn is mapped to a MAC address on the VM host. You can add or delete vNICs on the VM to add or delete GigabitEthernet interfaces on the Cisco CSR 1000v. You can add vNICs while the router is active.

To delete a vNIC from the VM, you must first power down the VM. If you delete any vNICs, the router must be rebooted. For more information about adding and deleting vNICs, see the VMware Documentation.

If you remove a vNIC without first updating the Cisco CSR 1000v network interface configuration, you risk a configuration mismatch when the router reboots. When the router reboots and a vNIC has been removed, the remaining logical vNIC names could get reassigned to different MAC addresses. As a result, the GigabitEthernet network interfaces on the Cisco CSR 1000v can be reassigned to different physical interfaces on the hypervisor.

Before you add or delete network interfaces, first verify the interface-to-vNIC mapping using the show platform software vnic-if interface-mapping command.

csr1000v# show platform software vnic-if interface-mapping

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Driver Name</th>
<th>Mac Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet3</td>
<td>vmxnet3</td>
<td>000c.2946.3f4d</td>
</tr>
<tr>
<td>GigabitEthernet2</td>
<td>vmxnet3</td>
<td>0050.5689.003c</td>
</tr>
<tr>
<td>GigabitEthernet1</td>
<td>vmxnet3</td>
<td>0050.5689.003b</td>
</tr>
<tr>
<td>GigabitEthernet0</td>
<td>vmxnet3</td>
<td>000c.2946.3f4d</td>
</tr>
</tbody>
</table>

After adding or deleting network interfaces on the VM, always verify the new interface-to-vNIC mapping before making configuration changes to the network interfaces. The following example shows the interface mapping after a new vNIC has been added. The new vNIC maps to the GigabitEthernet4 network interface on the Cisco CSR 1000v.
Removing a vNIC from a Running VM

To remove a vNIC from a running VM, use the clear platform software command (described below). Perform this command before removing a vNIC from the hypervisor configuration. This is part of a "two-step hot remove". To see which hypervisors support a two-step hot remove, look for hypervisors with vNIC Two-Step Hot Remove Support = Yes in Hypervisor Support, on page 8.

```
clear platform software vnic-if interface GigabitEthernetinterface-number
```

interface-number—value from 0–32.

Example:
```
csr1000v# clear platform software vnic-if interface GigabitEthernet4
```

Next, remove the vNIC from the hypervisor configuration.

Cisco CSR 1000v Network Interfaces and VM Cloning

When first installed, the Cisco CSR 1000v creates a database that maps the vNIC name to the MAC address. This database is used to maintain a persistent mapping between the router interfaces and the vNIC-to-MAC address mapping in case vNICs are added or deleted. The interfaces are mapped to the stored Universal Unique Identification (UUID) maintained by VMware.

The mapping between the router network interfaces and the vNICs only applies to the current VM that the Cisco CSR 1000v is installed on. If the VM is cloned, then the stored UUID will not match the current UUID and the interface mapping will not match the router configuration.

To prevent the interface mapping from becoming mis-matched, you need to perform the following steps on the original VM before cloning:

SUMMARY STEPS

1. Make sure the original VM includes the number of configured vNICs required on the cloned VM before beginning the cloning process.
2. Enter the clear platform software vnic-if nvtable command on the original VM.
3. Reboot the Cisco CSR 1000v.
4. On the cloned VM, verify the interface mapping using the show platform software vnic-if interface-mapping command.
5. Configure the router interfaces on the cloned VM accordingly.
DETAILED STEPS

Step 1 Make sure the original VM includes the number of configured vNICs required on the cloned VM before beginning the cloning process.

Step 2 Enter the `clear platform software vnic-if nvtable` command on the original VM.
This command clears the persistent interface database on the original VM and updates the interface mapping to the hypervisor.

Step 3 Reboot the Cisco CSR 1000v.

Step 4 On the cloned VM, verify the interface mapping using the `show platform software vnic-if interface-mapping` command.

Step 5 Configure the router interfaces on the cloned VM accordingly.
If you follow these steps, the router configuration on the cloned VM should match the configuration of the original VM.

Mapping Cisco CSR 1000v Network Interfaces with vSwitch Interfaces

You can configure the network interfaces in ESXi in different ways to accommodate the Cisco CSR 1000v interfaces. The figure below shows an example where each Cisco CSR 1000v router interface is mapped to one host Ethernet interface.
The figure below shows an example with multiple Cisco CSR 1000v interfaces sharing one host ESXi Ethernet interface.
The next figure shows one of the Cisco CSR 1000v interfaces mapped directly to a trunk interface on the vSwitch.
Figure 9: Cisco CSR 1000v Interfaces Directly Mapped to vSwitch Trunk

Mapping Cisco CSR 1000v Network Interfaces to VM Network Interfaces

Mapping Cisco CSR 1000v Network Interfaces with vSwitch Interfaces
CHAPTER 13

Configuring the vCPU Distribution across the Data, Control and Service Planes

• Information About vCPU Allocation and Distribution, on page 249
• How to Boot the Cisco CSR 1000v with an OVA image, on page 251
• How to Configure vCPU Distribution across the Data, Control and Service Planes, on page 252
• Determine the Active vCPU Distribution Template, on page 252

Information About vCPU Allocation and Distribution

You can allocate and distribute the vCPUs of the following planes: Control Plane(CP), Data Plane(DP), and Service Plane(SP) by using templates. Note that the Service Plane includes containers running SNORT.

Use one of the following templates for vCPU distribution:

vCPU Distribution: Control Plane Extra heavy

The following table shows the vCPU distribution for the Control Plane Extra heavy template.

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Service Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Data Plane</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Note

Using an Control Plane Extra heavy template, a service plane app can obtain 1.5 full cores for its operation. Example: WAAS.
vCPU Distribution: Control Plane heavy

The following table shows the vCPU distribution for the Control Plane heavy template.

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Service Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Data Plane</td>
<td>1/3</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Note: The Control Plane heavy template allocates an extra core to the Control Plane/Service Plane services, compared to the Data Plane heavy template (there is one core for the Control Plane and another core for the Service Plane). If there is no Service Plane application, the Control Plane can utilize all of the resources (2 cores).

vCPU Distribution: Data Plane heavy

Note: This Data Plane heavy template is the default vCPU Distribution template.

The following table shows the vCPU distribution for the Data Plane heavy template.

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Service Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Data Plane</td>
<td>1/3</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: By default, the Cisco CSR 1000v core allocation favors a larger data plane for performance. If there is no Service Plane application, the Control Plane can utilize the Service Plane's resources.

vCPU Distribution: Data Plane normal

You can use the vCPU distribution for the Data Plane normal template to force the Cisco CSR 1000v to behave in the same way as before using a template for vCPU distribution.
For example, after creating a Cisco CSR 1000v VM using the Data Plane heavy template for vCPU distribution, specified in the ovf-env.xml file, you can later use CLI commands in the Data Plane normal template to override the XML file settings that were previously applied by the Data Plane heavy template.

vCPU Distribution: Service Plane heavy

The following table shows the vCPU distribution for the Service Plane heavy template.

Table 34: Service Plane heavy - vCPU Distribution

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Service Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Data Plane</td>
<td>1/3</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Note

Using a Service Plane heavy template, a Service Plane application (such as Snort IPS) can use up to 2 full cores for its operation.

vCPU Distribution: Service Plane medium

The following table shows the vCPU distribution for the Service Plane medium template.

Table 35: Service Plane medium—vCPU Distribution

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Service Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Data Plane</td>
<td>1/3</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

How to Boot the Cisco CSR 1000v with an OVA image

To boot the Cisco CSR 1000v with an OVA image, boot from a CDROM containing the ovf-env.xml file. This XML file contains the vCPU distribution templates. A template is simply an additional bootstrap property. For more information about bootstrap properties, see Bootstrapping the CSR Configuration.

This is an example of the part of the XML file that specifies a Service Plane medium template: `<Property oe:key="com.cisco.csr1000v.resource-template.1" oe:value="service_plane_medium"/>`
How to Configure vCPU Distribution across the Data, Control and Service Planes

Enter the `platform resource` command on the Cisco CSR 1000v to select a template for vCPU distribution.

```
configure template
platform resource template
```

Example:

```
Router(config)# configure template
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# platform resource ?
core-plane-extra-heavy Use Control Plane Extra Heavy template
core-plane-heavy Use Control Plane Heavy template
data-plane-heavy Use Data Plane Heavy template
data-plane-normal Use Data Plane Normal template
data-plane-service-heavy Use Service Plane Heavy template
data-plane-service-medium Use Service Plane Medium template
Router(config)# platform resource service-plane-heavy
```

Note

After entering the `platform resource` command, you must reboot the Cisco CSR 1000v to activate the template.

Determine the Active vCPU Distribution Template

To determine which template is being used for vCPU distribution, use the following command:

```
show platform software cpu alloc
```

Example:

```
Router# show platform software cpu alloc
CPU alloc information:
Control plane cpu alloc: 0-1
Data plane cpu alloc: 2-3
Service plane cpu alloc: 0-1
Template used: CLI-service_plane_heavy
```

Note

The Control plane and the Service plane share cores 0 and 1.
ACCESSING AND USING GRUB MODE

- About GRUB Mode and the Configuration Register, on page 253
- Accessing GRUB Mode, on page 254
- Using the GRUB Menu, on page 255
- Modifying the Configuration Register (confreg), on page 255
- Changing the Configuration Register Settings, on page 257
- Displaying the Configuration Register Settings, on page 259

ABOUT GRUB MODE AND THE CONFIGURATION REGISTER

The Cisco CSR 1000v/ISRv has a 16-bit configuration register in NVRAM. Each bit has value 1 (on or set) or value 0 (off or clear), and each bit setting affects the router behavior upon the next reload power cycle. The GRUB mode supports a subset of configuration register options compared to ROMMON options on other Cisco routers.

You can use the configuration register to:

- Force the router to boot into the GRUB (bootstrap program)
- Select a boot source and default boot filename
- Recover a lost password

The table below describes the configuration register bits.

<table>
<thead>
<tr>
<th>BitNumber</th>
<th>Hexadecimal</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00–03</td>
<td>0x0000–0x000F</td>
<td>Boot field. The boot field setting determines whether the router loads an operating system and where it obtains the system image. See the table "Boot Field Configuration Register Bit Descriptions" for details.</td>
</tr>
<tr>
<td>06</td>
<td>0x0040</td>
<td>Causes the system software to ignore the contents of NVRAM. This can be used for password recovery.</td>
</tr>
</tbody>
</table>

The next table describes the boot field, which is the lowest four bits of the configuration register (bits 3, 2, 1, and 0). The boot field setting determines whether the router loads an operating system.
Table 37: Boot Field Configuration Register Bit Descriptions

<table>
<thead>
<tr>
<th>Boot Field (Bits 3, 2, 1, and 0)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 (0x0)</td>
<td>At the next power cycle or reload, the router boots to the GRUB (bootstrap program). In GRUB mode, you must manually boot the system image or any other image by using the <code>boot</code> command.</td>
</tr>
<tr>
<td>0001 - 1111 (0x01 - 0x0F)</td>
<td>At the next power cycle or reload, the router sequentially processes each <code>boot system</code> command in global configuration mode that is stored in the configuration file until the system boots successfully. If no <code>boot system</code> commands are stored in the configuration file, or if executing those commands is unsuccessful, then the router attempts to boot the first image file in flash memory.</td>
</tr>
</tbody>
</table>

Note
Use the 0x000 setting to configure the router to automatically enter GRUB mode when the router reboots.

Accessing GRUB Mode

Perform the following step to access GRUB mode:

SUMMARY STEPS

1. enable
2. config-register 0x0000

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 config-register 0x0000</td>
<td>Enters the GRUB mode by entering the “0000” value (0x0).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# config-register 0x0000</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

The following shows an example of entering GRUB mode.
Router(config)# config-register 0x0000

GNU GRUB version 0.97 (638K lower / 3143616K upper memory)
[Minimal BASH-like line editing is supported. For the first word, TAB
lists possible command completions. Anywhere else TAB lists the possible
completions of a device/filename. ESC at any time exits to menu.]
grub> help
[Minimal BASH-like line editing is supported. For the first word, TAB
lists possible command completions. Anywhere else TAB lists the possible
completions of a device/filename. ESC at any time exits to menu.]
confreg [VALUE] help [--all] [PATTERN ...]
grub>

If you enter a question mark at the grub> prompt, the system shows you the two options available, for either
viewing the system help or for entering the confreg command.

Using the GRUB Menu

The GRUB menu is used to display the software images loaded on the router, and to select which image to
boot from. To access the GRUB menu, enter ESC at the GRUB prompt. The following shows the GRUB menu display.

GNU GRUB version 0.97 (638K lower / 3143616K upper memory)
+---+
| CSR1000v - csr1000v-universalk9.03.10.00.S.153-3.S-ext.SPA.bin |
| CSR1000v - packages.conf |
| CSR1000v - GOLDEN IMAGE |
| |
| |
| |
| |
| |
+---+

Use the ^ and v keys to select which entry is highlighted.
Press enter to boot the selected OS, or 'c' for a command-line.

Select the image to boot the router from using the up and down arrow key. To return to the GRUB prompt, enter the letter c.

Modifying the Configuration Register (confreg)

This section describes how to modify the configuration register by using the confreg GRUB command. This
command is similar to the confreg ROMMON command on other Cisco hardware routers. Because the router
does not include a ROMMON mode, the similar functionality is handled in GRUB command mode.

You can also modify the configuration register setting from the Cisco IOS XE CLI by using the config-register
command in global configuration mode.
The modified configuration register value is automatically written into NVRAM, but the new value does not take effect until you reset or power-cycle the router.

SUMMARY STEPS

1. `confreg [value]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Changes the configuration register settings while in GRUB command mode.</td>
</tr>
</tbody>
</table>
| `confreg [value]` | - Optionally, enter the new hexadecimal value for the configuration register. The value range is from 0x0 to 0xFFFF.
- If you do not enter the value, the router prompts for each bit of the 16-bit configuration register. |

What to do next

The following shows an example of entering GRUB mode and using the configuration register. You access the GRUB mode by entering the Cisco IOS XE `config-register` command and specifying the value as “0000”.

```
Router(config)# config-register 0x0000
GNU GRUB version 0.97  (638K lower / 3143616K upper memory)
[ Minimal BASH-like line editing is supported. For the first word, TAB lists possible command completions. Anywhere else TAB lists the possible completions of a device/filename. ESC at any time exits to menu. ]
grub> help
[ Minimal BASH-like line editing is supported. For the first word, TAB lists possible command completions. Anywhere else TAB lists the possible completions of a device/filename. ESC at any time exits to menu. ]
confreg [VALUE] help [--all] [PATTERN ...]
grub> confreg
   Configuration Summary
   (Virtual Configuration Register: 0x0)
   enabled are:
   boot: the boot loader
   do you wish to change the configuration? y/n [n ]:
   ignore system config info? y/n [n ]:
   automatically boot default system image? y/n [n ]:
   Configuration Register: 0x0
grub> confreg
   Configuration Summary
   (Virtual Configuration Register: 0x0)
   enabled are:
   boot: the boot loader
   do you wish to change the configuration? y/n [n ]:
```

Note

Accessing and Using GRUB Mode

Cisco CSR 1000v and Cisco ISRv Software Configuration Guide
Changing the Configuration Register Settings

You can change the configuration register settings from either the GRUB or the Cisco IOS XE CLI. This section describes how to modify the configuration register settings from the Cisco IOS XE CLI.

To change the configuration register settings from the Cisco IOS XE CLI, complete the following steps:

SUMMARY STEPS

1. Power on the router.
2. If you are asked whether you would like to enter the initial dialog, answer no:
3. Enter privileged EXEC mode by typing enable and, if prompted, enter your password:
4. Enter global configuration mode:
5. To change the configuration register settings, enter the `config-register value` command, where value is a hexadecimal number preceded by 0x:
6. Exit global configuration mode:
7. Save the configuration changes to NVRAM:

DETAILED STEPS

Step 1 Power on the router.

Step 2 If you are asked whether you would like to enter the initial dialog, answer no:

Example:

Would you like to enter the initial dialog? [yes]: no

After a few seconds, the user EXEC prompt (Router>) appears.

Step 3 Enter privileged EXEC mode by typing enable and, if prompted, enter your password:

Example:

Router> enable
Password: password
Router#

Step 4 Enter global configuration mode:

Example:

Router# configure terminal
Enter configuration commands, one per line.
Edit with DELETE, CTRL/W, and CTRL/U; end with CTRL/Z

Step 5 To change the configuration register settings, enter the `config-register value` command, where `value` is a hexadecimal number preceded by `0x`:

Example:

Router(config)# config-register 0x value

Step 6 Exit global configuration mode:

Example:

Router(config)# end
Router#

Step 7 Save the configuration changes to NVRAM:

Router# copy running-config startup-config

The new configuration register settings are saved to NVRAM, but they do not take effect until the next router reload or power cycle.
Displaying the Configuration Register Settings

To display the configuration register settings that are currently in effect and the settings that will be used at the next router reload, enter the `show version` command in privileged EXEC mode.

The configuration register settings are displayed in the last line of the `show version` command output:

```
Configuration register is 0x142 (will be 0x142 at next reload)
```
Displaying the Configuration Register Settings
Prerequisites for Call Home

The Call Home feature provides email-based and web-based notification of critical system events. A versatile range of message formats are available for optimal compatibility with pager services, standard email, or XML-based automated parsing applications. Common uses of this feature may include direct paging of a network support engineer, email notification to a network operations center, XML delivery to a support website, and use of Cisco Smart Call Home services for direct case generation with the Cisco Systems Technical Assistance Center (TAC).

Note

The router supports the Call Home feature beginning with Cisco IOS XE Release 3.12S.

Consider the following points before you configure Call Home:

• Contact email address (required for full registration with Smart Call Home, optional if Call Home is enabled in anonymous mode), phone number (optional), and street address information (optional) should be configured so that the receiver can determine the origin of messages received.

• At least one destination profile (predefined or user-defined) must be configured. The destination profile you use depends on whether the receiving entity is a pager, an email address, or an automated service such as Cisco Smart Call Home.
• If the destination profile uses email message delivery, you must specify a Simple Mail Transfer Protocol (SMTP) server. Configuring the trustpoint CA is not required for HTTPS server connection since the trustpool feature enabled by default.

• The router must have IP connectivity to an email server or the destination HTTP(S) server.

• If Cisco Smart Call Home is used, an active service contract covering the device is required to provide full SCH service.

Information About Call Home

The Call Home feature can deliver alert messages containing information on configuration, inventory, syslog, snapshot, and crash events. It provides these alert messages as either email-based or web-based messages. Multiple message formats are available, allowing for compatibility with pager services, standard email, or XML-based automated parsing applications. This feature can deliver alerts to multiple recipients, which are Call Home destination profiles. Each destination profile has configurable message formats and content categories. A predefined destination profile is provided for sending alerts to the Cisco Smart Call Home server. The predefined profile defines both the email address and the HTTP(S) URL; the transport method configured in the profile determines whether the email address or the HTTP(S) URL is used.

Flexible message delivery and format options make it easy to integrate specific support requirements.

Benefits of Using Call Home

The Call Home feature offers the following benefits:

• Multiple message-format options
 • Short Text—Suitable for pagers or printed reports.
 • Long Text—Full formatted message information suitable for human reading.
 • XML—Machine-readable format using XML. The XML format enables communication with the Cisco TAC.

• Multiple concurrent message destinations
• Multiple message categories including configuration, inventory, syslog, snapshot, and crash events
• Filtering of messages by severity and pattern matching
• Scheduling of periodic message sending

Obtaining Smart Call Home Services

If you have a service contract directly with Cisco, you can register for the Smart Call Home service. Smart Call Home analyzes Call Home messages and provides background information and recommendations. For critical issues, Automatic Service Requests are generated with the Cisco TAC.

Smart Call Home offers the following features:

• Continuous device health monitoring and real-time alerts.
• Analysis of Smart Call Home messages and, if needed, Automatic Service Request generation routed to the correct TAC team, including detailed diagnostic information to speed problem resolution.
• Secure message transport directly from your device or through an HTTP proxy server or a downloadable Transport Gateway (TG). You can use a TG aggregation point to support multiple devices or in cases where security dictates that your devices may not be connected directly to the Internet.

• Web-based access to Smart Call Home messages and recommendations, inventory, and configuration information for all Smart Call Home devices provides access to associated field notices, security advisories, and end-of-life information.

You need the following items to register for Smart Call Home:

• SMARTnet contract number for your router
• Your email address
• Your Cisco.com username

For detailed information on Smart Call Home, see www.cisco.com/go/smartcallhome/index.html.

Anonymous Reporting

Smart Call Home is a service capability included with many Cisco service contracts and helps you to resolve problems. In addition, information is gained from; for example, crash messages to help Cisco understand issues occurring in the field. If you decide not to use Smart Call Home, you can still enable Anonymous Reporting to allow Cisco to securely receive minimal error and health information from the device. If you enable Anonymous Reporting, your customer identity will remain anonymous, and no identifying information is sent.

When you enable Anonymous Reporting, you acknowledge your consent to transfer the specified data to Cisco or to vendors operating on behalf of Cisco (including countries outside the United States). Cisco maintains the privacy of all customers. For information about how Cisco treats personal information, see the Cisco Online Privacy Statement.

When Call Home is configured in an anonymous way, only crash, inventory, and test messages are sent to Cisco. No identifying information is sent.

For more information about what is sent in these messages, see the Alert Group Trigger Events and Commands, on page 298.

How to Configure Call Home

The following sections show how you can configure Call Home using a single command:

• Configuring Smart Call Home (Single Command), on page 264

• Configuring and Enabling Smart Call Home, on page 265

The following sections show detailed or optional configurations:

• Enabling and Disabling Call Home, on page 265
Configuring Smart Call Home (Single Command)

To enable all Call Home basic configurations using a single command, perform the following steps:

SUMMARY STEPS

1. configure terminal
2. call-home reporting {anonymous | contact-email-addr email-address} [http-proxy {ipv4-address | ipv6-address | name} port port-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Enables all Call Home basic configurations using a single command.			
call-home reporting {anonymous	contact-email-addr email-address} [http-proxy {ipv4-address	ipv6-address	name} port port-number]	
Example:				
Router(config)# call-home reporting contact-email-addr email@company.com				

- **anonymous**—Enables Call-Home TAC profile to only send crash, inventory, and test messages and send the messages in an anonymous way.
- **contact-email-addr**—Enables Smart Call Home service full reporting capability and sends a full inventory message from Call-Home TAC profile to Smart Call Home server to start full registration process.
- **http-proxy {ipv4-address | ipv6-address | name}**—An ipv4 or ipv6 address or server name. Maximum length is 64.
Configuring and Enabling Smart Call Home

For application and configuration information about the Cisco Smart Call Home service, see the [Smart Call Home User Guide](#). See also the [Cisco Support Community](#) page for Smart Call Home.

The user guide includes configuration examples for sending Smart Call Home messages directly from your device or through a transport gateway (TG) aggregation point.

Note

For security reasons, we recommend that you use the HTTPS transport options, due to the additional payload encryption that HTTPS offers. The Transport Gateway software is downloadable from Cisco.com and is available if you require an aggregation point or a proxy for connection to the Internet.

The implementation on the Cisco CSR 1000v/ISRv supports the trustpool feature (embedded CA certificates in IOS images). The trustpool feature simplifies configuration to enable Smart Call Home service on configured devices. It eliminates the requirement of manually configuring the trustpoint and provides automatic update of the CA certificate should it change in the future.

Enabling and Disabling Call Home

SUMMARY STEPS

1. configure terminal
2. service call-home
3. no service call-home
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables the Call Home feature. By default, Call Home is disabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>service call-home</td>
<td></td>
</tr>
<tr>
<td>Router(config)# service call-home</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Disables the Call Home feature.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>no service call-home</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no service call-home</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Contact Information

Each router must include a contact email address (except if Call Home is enabled in anonymous mode). You can optionally include a phone number, street address, contract ID, customer ID, and site ID.

To assign the contact information, perform the following steps:

SUMMARY STEPS

1. configure terminal
2. call-home
3. contact-email-addr email-address
4. phone-number +phone-number
5. street-address street-address
6. customer-id text
7. site-id text
8. contract-id text

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>call-home</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

```plaintext
Router(config)# call-home
```

Step 3

contact-email-addr email-address

Example:

```plaintext
Router(cfg-call-home)# contact-email-addr username@example.com
```

Purpose

Designates your email address. Enter up to 200 characters in email address format with no spaces.

Step 4

phone-number +phone-number

Example:

```plaintext
Router(cfg-call-home)# phone-number +1-800-555-4567
```

Note

The number must begin with a plus (+) prefix and may contain only dashes (-) and numbers. Enter up to 17 characters. If you include spaces, you must enclose your entry in quotes ("").

Step 5

street-address street-address

Example:

```plaintext
Router(cfg-call-home)# street-address "1234 Picaboo Street, Any city, Any state, 12345"
```

Purpose

(Optional) Assigns your street address where RMA equipment can be shipped. Enter up to 200 characters. If you include spaces, you must enclose your entry in quotes ("").

Step 6

customer-id text

Example:

```plaintext
Router(cfg-call-home)# customer-id Customer1234
```

Purpose

(Optional) Identifies customer ID. Enter up to 64 characters. If you include spaces, you must enclose your entry in quotes (""").

Step 7

site-id text

Example:

```plaintext
Router(cfg-call-home)# site-id Site1ManhattanNY
```

Purpose

(Optional) Identifies customer site ID. Enter up to 200 characters. If you include spaces, you must enclose your entry in quotes (""").

Step 8

contract-id text

Example:

```plaintext
Router(cfg-call-home)# contract-id Company1234
```

Purpose

(Optional) Identifies your contract ID for the router. Enter up to 64 characters. If you include spaces, you must enclose your entry in quotes (""").

Information About Destination Profiles

A destination profile contains the required delivery information for an alert notification. At least one destination profile is required. You can configure multiple destination profiles of one or more types.

You can create and define a new destination profile or copy and use the predefined destination profile. If you define a new destination profile, you must assign a profile name.

You can control which profile to be used for Smart Licensing by enabling or disabling smart-licensing data of that profile. Only one active profile can have smart-license data enabled. For more information about Smart Licensing, see Installing Cisco CSR 1000v Licenses, on page 163.
If you use the Cisco Smart Call Home service, the destination profile must use the XML message format.

You can configure the following attributes for a destination profile:

- **Profile name**—String that uniquely identifies each user-defined destination profile. The profile name is limited to 31 characters and is not case-sensitive. You cannot use `all` as a profile name.

- **Transport method**—Transport mechanism, either email or HTTP (including HTTPS), for delivery of alerts.

 For both the CiscoTAC-1 profile and user-defined destination profiles, email is the default, and you can enable either or both transport mechanisms. If you disable both methods, email is enabled.

 For the predefined CiscoTAC-1 profile, you can enable either transport mechanism, but not both.

- **Destination address**—The actual address related to the transport method by which the alert should be sent.

In this version of the Call Home feature, you can change the destination of the CiscoTAC-1 profile.

- **Message formatting**—The message format used for sending the alert. The format options for a user-defined destination profile are long-text, short-text, or XML. The default is XML. For the predefined CiscoTAC-1 profile, only XML is allowed.

- **Message size**—The maximum destination message size. The valid range is 50 to 3,145,728 bytes. The default is 3,145,728 bytes.

- **Reporting method**—You can choose which data to report for a profile. You can enable reporting of Smart Call Home data or Smart Licensing Data, or both. Only one active profile is allowed to report Smart Licensing data at a time.

- **Anonymous reporting**—You can choose for your customer identity to remain anonymous, and no identifying information is sent.

- **Subscribing to interesting alert-groups**—You can choose to subscribe to alert-groups highlighting your interests.

This section contains the following subsections:

Creating a New Destination Profile

To create and configure a new destination profile, perform the following steps:

SUMMARY STEPS

1. `configure terminal`
2. `call-home`
3. `profile name`
4. `[no] destination transport-method {email | http}`
5. `destination address {email email-address | http url}`
6. `destination preferred-msg-format {long-text | short-text | xml}`
7. `destination message-size-limit bytes`
8. active
9. reporting \{all | smart-call-home-data| smart-licensing-data \}
10. end
11. show call-home profile \{name | all\}
12. show call-home smart-licensing
13. show call-home smart-licensing statistics

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td>Enters the Call Home configuration submode.</td>
</tr>
<tr>
<td>Example: Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td>Step 3 profile name</td>
<td>Enters the Call Home destination profile configuration submode for the specified destination profile. If the specified destination profile does not exist, it is created.</td>
</tr>
<tr>
<td>Example: Router(config-call-home)# profile profile1</td>
<td></td>
</tr>
<tr>
<td>Step 4 [no] destination transport-method {email</td>
<td>http}</td>
</tr>
<tr>
<td>Example: Router(cfg-call-home-profile)# destination transport-method email</td>
<td></td>
</tr>
<tr>
<td>Step 5 destination address {email email-address</td>
<td>http url}</td>
</tr>
<tr>
<td>Example: Router(cfg-call-home-profile)# destination address email myaddress@example.com</td>
<td>Note When entering a destination URL, include either http:// or https://, depending on whether the server is a secure server.</td>
</tr>
<tr>
<td>Step 6 destination preferred-msg-format {long-text</td>
<td>short-text</td>
</tr>
<tr>
<td>Example: Router(cfg-call-home-profile)# destination preferred-msg-format xml</td>
<td></td>
</tr>
<tr>
<td>Step 7 destination message-size-limit bytes</td>
<td>(Optional) Configures a maximum destination message size for the destination profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(cfg-call-home-profile)# destination</code></td>
<td>Enables the destination profile. By default, the profile is enabled when it is created.</td>
</tr>
<tr>
<td><code>message-size-limit 3145728</code></td>
<td></td>
</tr>
<tr>
<td>Step 8 <code>active</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(cfg-call-home-profile)# active</code></td>
<td></td>
</tr>
<tr>
<td>Step 9 `reporting {all</td>
<td>smart-call-home-data</td>
</tr>
<tr>
<td>Step 10 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(cfg-call-home-profile)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 11 `show call-home profile {name</td>
<td>all}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# show call-home profile profile1</code></td>
<td></td>
</tr>
<tr>
<td>Step 12 <code>show call-home smart-licensing</code></td>
<td>Displays the current Call Home Smart Licensing settings for the configured destination profiles.</td>
</tr>
<tr>
<td>Step 13 <code>show call-home smart-licensing statistics</code></td>
<td>Displays the Call Home Smart Licensing statistics.</td>
</tr>
</tbody>
</table>

Copying a Destination Profile

To create a new destination profile by copying an existing profile, perform the following steps:

SUMMARY STEPS

1. `configure terminal`
2. `call-home`
3. `copy profile source-profile target-profile`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2</td>
<td><code>call-home</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# call-home</code></td>
</tr>
<tr>
<td>3</td>
<td><code>copy profile source-profile target-profile</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(cfg-call-home)# copy profile profile1 profile2</code></td>
</tr>
</tbody>
</table>

Setting Profiles to Anonymous Mode

To set an anonymous profile, perform the following steps:

SUMMARY STEPS

1. `configure terminal`
2. `call-home`
3. `profile name`
4. `anonymous-reporting-only`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>call-home</code></td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# call-home</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>profile name</code></td>
<td>Enables profile configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(cfg-call-home) profile CiscoTAC-1</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>anonymous-reporting-only</code></td>
<td>Sets the profile to anonymous mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(cfg-call-home-profile)# anonymous-reporting-only</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>By default, the profile sends a full report of all types of events subscribed in the profile. When <code>anonymous-reporting-only</code> is set, only crash, inventory, and test messages are sent.</td>
</tr>
</tbody>
</table>
Subscribing to Alert Groups

An alert group is a predefined subset of Call Home alerts supported in all routers. Different types of Call Home alerts are grouped into different alert groups depending on their type. The following alert groups are available:

- Configuration
- Inventory
- Syslog
- Crash
- Snapshot

This section contains the following subsections:

- Periodic Notification, on page 274
- Message Severity Threshold, on page 275
- Configuring Snapshot Command List, on page 275

The triggering events for each alert group are listed in Alert Group Trigger Events and Commands, on page 298, and the contents of the alert group messages are listed in Message Contents, on page 298.

You can select one or more alert groups to be received by a destination profile.

Note

A Call Home alert is sent only to destination profiles that have subscribed to the alert group containing that Call Home alert. In addition, the alert group must be enabled.

To subscribe a destination profile to one or more alert groups, perform the following steps:

SUMMARY STEPS

1. configure terminal
2. call-home
3. alert-group {all | configuration | environment | inventory | syslog | crash | snapshot}
4. profile name
5. subscribe-to-alert-group configuration[periodic {daily hh:mm | monthly date hh:mm | weekly day hh:mm}]
6. subscribe-to-alert-group inventory [periodic {daily hh:mm | monthly date hh:mm | weekly day hh:mm}]
7. subscribe-to-alert-group syslog[severity {catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging}][pattern string]
8. subscribe-to-alert-group crash
9. subscribe-to-alert-group snapshot [periodic {daily hh:mm | hourly mm | interval mm | monthly date hh:mm | weekly day hh:mm}]
10. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

 Example:

 `Router# configure terminal`

| Step 2 | call-home | Enters Call Home configuration submode. |

 Example:

 `Router(config)# call-home`

| Step 3 | alert-group **|** all | Enables the specified alert group. Use the keyword all to enable all alert groups. By default, all alert groups are enabled. |

 Example:

 `Router(cfg-call-home)# alert-group all`

| Step 4 | profile **name** | Enters Call Home destination profile configuration submode for the specified destination profile. |

 Example:

 `Router(cfg-call-home)# profile profile1`

| Step 5 | subscribe-to-alert-group configuration **[periodic {daily hh:mm | monthly date hh:mm | weekly day hh:mm}]** | Subscribes this destination profile to the Configuration alert group. The Configuration alert group can be configured for periodic notification, as described in **Periodic Notification**, on page 274. |

 Example:

 `Router(cfg-call-home-profile)# subscribe-to-alert-group configuration periodic daily 12:00`

| Step 6 | subscribe-to-alert-group inventory **/periodic {daily hh:mm | monthly date hh:mm | weekly day hh:mm}]** | Subscribes this destination profile to the Inventory alert group. The Inventory alert group can be configured for periodic notification, as described in **Periodic Notification**, on page 274. |

 Example:

 `Router(cfg-call-home-profile)# subscribe-to-alert-group inventory periodic monthly 1 12:00`

| Step 7 | subscribe-to-alert-group syslog **[severity {catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging}] [pattern string]** | Subscribes this destination profile to the Syslog alert group. The Syslog alert group can be configured to filter messages based on severity, as described in **Message Severity Threshold**, on page 275. You can specify a text pattern to be matched within each syslog message. If you configure a pattern, a Syslog alert group message is sent only if it contains the specified pattern and meets the severity threshold. If the pattern contains spaces, you must enclose it in quotes ("""). You can specify up to five patterns for each destination profile. |

 Example:

 `Router(cfg-call-home-profile)# subscribe-to-alert-group syslog severity major`
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>SubscribestotheCrashalertgroupinuserprofile. By default, theCiscoTAC-1profilesubscribestotheCrash alertgroupandcannotbeunsubscribed.</td>
</tr>
<tr>
<td>subscribe-to-alert-group crash</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(cfg-call-home-profile)# subscribe-to-alert-group crash</td>
<td></td>
</tr>
</tbody>
</table>

Step 9	SubscribesthisdestinationprofiletotheSnapshotalert group. TheSnapshotalertgroupcanbeconfiguredfor periodicnotification, as described in Periodic Notification, on page 274.				
subscribe-to-alert-group snapshot [periodic {daily hh:mm	hourly mm	interval mm	monthly date hh:mm	weekly day hh:mm}]	Example:
Router(cfg-call-home-profile)# subscribe-to-alert-group snapshot periodic daily 12:00	By default, theSnapshotalertgrouphasnocommandtorun. Youcanaddcommandsinthealertgroup, as described in Configuring Snapshot Command List, on page 275. In doing so, theoutputofthecommandsaddedinthe Snapshotalertgroupwillbeincludedinthesnapshot message.				

Step 10	Exitsconfigurationmode.
end	Example:
Router(cfg-call-home-profile)# end	

What to do next

As an alternative to subscribing to individual alert groups, you can subscribe to all alert groups by entering the subscribe-to-alert-group all command. However, entering this command causes a large number of syslog messages to generate. We recommend subscribing to alert groups individually, using appropriate severity levels and patterns when possible.

Periodic Notification

When you subscribe a destination profile to the Configuration, Inventory, or Snapshot alert group, you can choose to receive the alert group messages asynchronously or periodically at a specified time. The sending period can be one of the following:

- Daily—Specifies the time of day to send, using an hour:minute format hh:mm, with a 24-hour clock (for example, 14:30).
- Weekly—Specifies the day of the week and time of day in the format day hh:mm, where the day of the week is spelled out (for example, Monday).
- Monthly—Specifies the numeric date, from 1 to 31, and the time of day, in the format date hh:mm.
- Interval—Specifies the interval at which the periodic message is sent, from 1 to 60 minutes.
- Hourly—Specifies the minute of the hour at which the periodic message is sent, from 0 to 59 minutes.
Hourly and by interval periodic notifications are available for the Snapshot alert group only.

Message Severity Threshold

When you subscribe a destination profile to the Syslog alert group, you can set a threshold for the sending of alert group messages based on the level of severity of the message. Any message with a value lower than the destination profile specified threshold is not sent to the destination.

The severity threshold is configured using the keywords in Table 38: Severity and Syslog Level Mapping, on page 275 and ranges from catastrophic (level 9, highest level of urgency) to debugging (level 0, lowest level of urgency).

Other alert groups do not allow setting a threshold for severity.

Call Home severity levels are not the same as system message logging severity levels.

<table>
<thead>
<tr>
<th>Level</th>
<th>Keyword</th>
<th>Syslog Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>catastrophic</td>
<td>—</td>
<td>Network-wide catastrophic failure.</td>
</tr>
<tr>
<td>8</td>
<td>disaster</td>
<td>—</td>
<td>Significant network impact.</td>
</tr>
<tr>
<td>7</td>
<td>fatal</td>
<td>Emergency (0)</td>
<td>System is unusable.</td>
</tr>
<tr>
<td>6</td>
<td>critical</td>
<td>Alert (1)</td>
<td>Critical conditions, immediate attention needed.</td>
</tr>
<tr>
<td>5</td>
<td>major</td>
<td>Critical (2)</td>
<td>Major conditions.</td>
</tr>
<tr>
<td>4</td>
<td>minor</td>
<td>Error (3)</td>
<td>Minor conditions.</td>
</tr>
<tr>
<td>3</td>
<td>warning</td>
<td>Warning (4)</td>
<td>Warning conditions.</td>
</tr>
<tr>
<td>2</td>
<td>notification</td>
<td>Notice (5)</td>
<td>Basic notification and informational messages. Possibly independently insignificant.</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>Information (6)</td>
<td>Normal event signifying return to normal state.</td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>call-home</td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# call-home</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[no</td>
<td>default] alert-group-config snapshot</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>The no or default command will remove all snapshot command.</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home)# alert-group-config snapshot</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[no</td>
<td>default] add-command command string</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home-snapshot)# add-command “show version”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Exits and saves the configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home-snapshot)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring General email Options

To use the email message transport, you must configure at least one Simple Mail Transfer Protocol (SMTP) email server address. You can configure the from and reply-to email addresses, and you can specify up to four backup email servers.

Note the following guidelines when configuring general email options:

- Backup email servers can be defined by repeating the `mail-server` command using different priority numbers.
- The `mail-server priority number` parameter can be configured from 1 to 100. The server with the highest priority (lowest priority number) is tried first.

To configure general email options, perform the following steps:
SUMMARY STEPS

1. configure terminal
2. call-home
3. mail-server \{ipv4-address | ipv6-address | name\} priority number
4. sender from email-address
5. sender reply-to email-address
6. source-interface interface-name
7. source-ip-address ipv4/ipv6 address
8. vrf vrf-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td>Step 3 mail-server {ipv4-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Provide either of these:</td>
</tr>
<tr>
<td>Router(config-call-home)# mail-server smtp.example.com priority 1</td>
<td>• The email server’s IP address or</td>
</tr>
<tr>
<td></td>
<td>• The email server’s fully qualified domain name (FQDN) of 64 characters or less.</td>
</tr>
<tr>
<td></td>
<td>Assign a priority number between 1 (highest priority) and 100 (lowest priority).</td>
</tr>
<tr>
<td>Step 4 sender from email-address</td>
<td>(Optional) Assigns the email address that appears in the from field in Call Home email messages. If no address is specified, the contact email address is used.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-call-home)# sender from username@example.com</td>
<td></td>
</tr>
<tr>
<td>Step 5 sender reply-to email-address</td>
<td>(Optional) Assigns the email address that appears in the reply-to field in Call Home email messages.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-call-home)# sender reply-to username@example.com</td>
<td></td>
</tr>
<tr>
<td>Step 6 source-interface interface-name</td>
<td>Assigns the source interface name to send call-home messages.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(cfg-call-home)# source-interface loopback1</td>
<td>• interface-name—Source interface name. Maximum length is 64.</td>
</tr>
<tr>
<td>Note</td>
<td>For HTTP messages, use the <code>ip http client source-interface interface-name</code> command in global configuration mode to configure the source interface name. This allows all HTTP clients on the device to use the same source interface.</td>
</tr>
</tbody>
</table>

Step 7 source-ip-address ipv4/ipv6 address
Example:
Router(cfg-call-home)# source-ip-address 209.165.200.226
Assigns source IP address to send call-home messages.
• ipv4/ipv6 address—Source IP (ipv4 or ipv6) address. Maximum length is 64.

Step 8 vrf vrf-name
Example:
Router(cfg-call-home)# vrf vpn1
(Optional) Specifies the VRF instance to send call-home email messages. If no vrf is specified, the global routing table is used.
Note
For HTTP messages, if the source interface is associated with a VRF, use the `ip http client source-interface interface-name` command in global configuration mode to specify the VRF instance that will be used for all HTTP clients on the device.

Example

The following example shows the configuration of general email parameters, including a primary and secondary email server:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)# call-home

Router(cfg-call-home)# mail-server smtp.example.com priority 1

Router(cfg-call-home)# mail-server 192.168.0.1 priority 2

Router(cfg-call-home)# sender from username@example.com

Router(cfg-call-home)# sender reply-to username@example.com

Router(cfg-call-home)# source-interface america
Specifying Rate Limit for Sending Call Home Messages

To specify the rate limit for sending Call Home messages, perform the following steps:

SUMMARY STEPS

1. `configure terminal`
2. `call-home`
3. `rate-limit number`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>call-home</code></td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# call-home</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>rate-limit number</code></td>
<td>Specifies a limit on the number of messages sent per minute.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(cfg-call-home)# rate-limit 40</code></td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>• Range is 1 to 60. The default is 20.</td>
</tr>
</tbody>
</table>

Specifying HTTP Proxy Server

To specify an HTTP proxy server for sending Call Home HTTP(S) messages to a destination, perform the following steps:

SUMMARY STEPS

1. `configure terminal`
2. `call-home`
3. `http-proxy {ipv4-address | ipv6-address | name} port port-number`
Enabling AAA Authorization to Run IOS Commands for Call Home Messages

To enable AAA authorization to run IOS commands that enable the collection of output for a Call Home message, perform the following steps:

SUMMARY STEPS

1. configure terminal
2. call-home
3. aaa-authorization
4. aaa-authorization [username username]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>call-home</td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# call-home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>http-proxy {ipv4-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(cfg-call-home)# http-proxy 1.1.1.1 port 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Syslog Throttling

To enable or disable Call Home syslog message throttling and avoid sending repetitive Call Home syslog messages, perform the following steps:

SUMMARY STEPS

1. `configure terminal`
2. `call-home`
3. `[no] syslog-throttling`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>call-home</code></td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# call-home</code></td>
<td></td>
</tr>
<tr>
<td><code>[no] syslog-throttling</code></td>
<td>Enables or disables Call Home syslog message throttling and avoids sending repetitive Call Home syslog messages. Repeating syslog messages will only display after 24 hours. By default, syslog message throttling is enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(cfg-call-home)# syslog-throttling</code></td>
<td>Note: Debug level syslogs like debug trace are not throttled.</td>
</tr>
</tbody>
</table>

Configuring Call Home Data Privacy

The `data-privacy` command scrubs data, such as IP addresses, from running configuration files to protect the privacy of customers. Enabling the `data-privacy` command can affect CPU utilization when scrubbing a large amount of data. Currently, `show` command output is not being scrubbed except for configuration messages in the `show running-config all` and `show startup-config` data.
SUMMARY STEPS

1. configure terminal
2. call-home
3. data-privacy {level {normal | high} | hostname}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td>Enters the Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td>Step 3 data-privacy {level {normal</td>
<td>high}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(cfg-call-home)# data-privacy level high</td>
<td></td>
</tr>
</tbody>
</table>

Sending Call Home Communications Manually

Sending Call Home Communications Manually

You can manually send several types of Call Home communications. To send Call Home communications, perform any necessary tasks in sections from Sending a Call Home Test Message Manually, on page 282 to Manually Sending Command Output Message for One Command or a Command List, on page 285.

Sending a Call Home Test Message Manually

You can use the `call-home test` command to send a user-defined Call Home test message.

To manually send a Call Home test message, perform the following step:
SUMMARY STEPS

1. **call-home test ["test-message"] profile name**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends a test message to the specified destination profile. The user-defined test message text is optional but must be enclosed in quotes ("") if it contains spaces. If no user-defined message is configured, a default message is sent.</td>
</tr>
</tbody>
</table>

Sending Call Home Alert Group Messages Manually

You can use the **call-home send** command to manually send a specific alert group message.

Note the following guidelines when manually sending a Call Home alert group message:

- Only the snapshot, crash, configuration, and inventory alert groups can be sent manually. Syslog alert groups cannot be sent manually.
- When you manually trigger a snapshot, configuration, or inventory alert group message and you specify a destination profile name, a message is sent to the destination profile regardless of the profile’s active status, subscription status, or severity setting.
- When you manually trigger a snapshot, configuration, or inventory alert group message and do not specify a destination profile name, a message is sent to all active profiles that have either a normal or periodic subscription to the specified alert group.

To manually trigger Call Home alert group messages, perform the following steps:

SUMMARY STEPS

1. **call-home send alert-group snapshot [profile name]**
2. **call-home send alert-group crash [profile name]**
3. **call-home send alert-group configuration [profile name]**
4. **call-home send alert-group inventory [profile name]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends a snapshot alert group message to one destination profile if specified or to all subscribed destination profiles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends a crash alert group message to one destination profile if specified or to all subscribed destination profiles.</td>
</tr>
</tbody>
</table>

Sending Call Home Alert Group Messages Manually

You can use the **call-home send** command to manually send a specific alert group message.

Note the following guidelines when manually sending a Call Home alert group message:

- Only the snapshot, crash, configuration, and inventory alert groups can be sent manually. Syslog alert groups cannot be sent manually.
- When you manually trigger a snapshot, configuration, or inventory alert group message and you specify a destination profile name, a message is sent to the destination profile regardless of the profile’s active status, subscription status, or severity setting.
- When you manually trigger a snapshot, configuration, or inventory alert group message and do not specify a destination profile name, a message is sent to all active profiles that have either a normal or periodic subscription to the specified alert group.

To manually trigger Call Home alert group messages, perform the following steps:

SUMMARY STEPS

1. **call-home send alert-group snapshot [profile name]**
2. **call-home send alert-group crash [profile name]**
3. **call-home send alert-group configuration [profile name]**
4. **call-home send alert-group inventory [profile name]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends a snapshot alert group message to one destination profile if specified or to all subscribed destination profiles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends a crash alert group message to one destination profile if specified or to all subscribed destination profiles.</td>
</tr>
</tbody>
</table>
Submitting Call Home Analysis and Report Requests

You can use the `call-home request` command to submit information about your system to Cisco to receive helpful analysis and report information specific to your system. You can request a variety of reports, including security alerts, known bugs, best practices, and command references.

Note the following guidelines when manually sending Call Home analysis and report requests:

- If a `profile name` is specified, the request is sent to the profile. If no profile is specified, the request is sent to the CiscoTAC-1 profile. The recipient profile does not need to be enabled for the call-home request. The profile should specify the email address where the transport gateway is configured so that the request message can be forwarded to the CiscoTAC-1 profile and the user can receive the reply from the Smart Call Home service.
- The `ccoid user-id` is the registered identifier of the Smart Call Home user. If the `user-id` is specified, the response is sent to the email address of the registered user. If no `user-id` is specified, the response is sent to the contact email address of the device.
- Based on the keyword specifying the type of report requested, the following information is returned:
 - `config-sanitity`—Information on best practices as related to the current running configuration.
 - `bugs-list`—Known bugs in the running version and in the currently applied features.
 - `command-reference`—Reference links to all commands in the running configuration.
 - `product-advisory`—Product Security Incident Response Team (PSIRT) notices, End of Life (EOL) or End of Sales (EOS) notices, or field notices (FN) that may affect devices in your network.

To submit a request for analysis and report information from the Cisco Output Interpreter tool, perform the following steps:

SUMMARY STEPS

1. `call-home request output-analysis “show-command” [profile name] [ccoid user-id]`
2. `call-home request {config-sanitity | bugs-list | command-reference | product-advisory} [profile name] [ccoid user-id]`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Sends the output of the specified <code>show</code> command for analysis. The <code>show</code> command must be contained in quotes (“”).</td>
</tr>
<tr>
<td><code>call-home request output-analysis "show-command" [profile name] [ccoid user-id]</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# call-home request output-analysis "show diag" profile TG</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Sends the output of a predetermined set of commands such as the `show running-config all`, `show version` or `show module` commands, for analysis. In addition, the `call home request product-advisory` subcommand includes all inventory alert group commands. The keyword specified after `request` specifies the type of report requested.			
`call-home request {config-sanity	bugs-list	command-reference	product-advisory} [profile name] [ccoid user-id]`	
Example:				
Router# call-home request config-sanity profile TG				

Manually Sending Command Output Message for One Command or a Command List

You can use the `call-home send` command to execute an IOS command or a list of IOS commands and send the command output through HTTP or email protocol.

Note the following guidelines when sending the output of a command:

- The specified IOS command or list of IOS commands can be any run command, including commands for all modules. The command must be contained in quotes (“”).
- If the email option is selected using the “email” keyword and an email address is specified, the command output is sent to that address.
- If neither the email nor the HTTP option is specified, the output is sent in long-text format with the specified service request number to the Cisco TAC (attach@cisco.com).
- If neither the “email” nor the “http” keyword is specified, the service request number is required for both long-text and XML message formats and is provided in the subject line of the email.
- If the HTTP option is specified, the CiscoTAC-1 profile destination HTTP or HTTPS URL is used as the destination. The destination email address can be specified so that Smart Call Home can forward the message to the email address. The user must specify either the destination email address or an SR number but they can also specify both.

To execute a command and send the command output, perform the following step:

Summary Steps

1. `call-home send {cli command | cli list} [email email msg-format {long-text | xml} | http {destination-email-address email}] [tac-service-request SR#]`
Configuring Diagnostic Signatures

The Diagnostic Signatures feature downloads digitally signed signatures to devices. Diagnostic Signatures (DS) files are formatted files that collate knowledge of diagnostic events and provide methods to troubleshoot them without a need to upgrade the Cisco software. The aim of DS is to deliver flexible intelligence that can detect and collect troubleshooting information that can be used to resolve known problems in customers networks.
Prerequisites for Diagnostic Signatures

Before you download and configure diagnostic signatures (DSs) on a device, you must ensure that the following conditions are met:

- You must assign one or more DSs to the device. See the Diagnostic Signature Downloading, on page 288 for more information on how to assign DSs to devices.
- HTTP/Secure HTTP (HTTPS) transport is required for downloading DS files. You must install the certification authority (CA) certificate to enable the authentication of the destination HTTPS server.

Note

If you configure the trustpool feature, the CA certificate is not required.

Information About Diagnostic Signatures

Diagnostic Signatures Overview

Diagnostic signatures (DS) for the Call Home system provides a flexible framework that allows the defining of new events and corresponding CLIs that can analyze these events without upgrading the Cisco software.

DSs provide the ability to define more types of events and trigger types than the standard Call Home feature supports. The DS subsystem downloads and processes files on a device as well as handles callbacks for diagnostic signature events.

The Diagnostic Signature feature downloads digitally signed signatures that are in the form of files to devices. DS files are formatted files that collate the knowledge of diagnostic events and provide methods to troubleshoot these events.

DS files contain XML data to specify the event description, and these files include CLI commands or scripts to perform required actions. These files are digitally signed by Cisco or a third party to certify their integrity, reliability, and security.

The structure of a DS file can be one of the following formats:

- Metadata-based simple signature that specifies the event type and contains other information that can be used to match the event and perform actions such as collecting information by using the CLI. The signature can also change configurations on the device as a workaround for certain bugs.
- Embedded Event Manager (EEM) Tool Command Language (Tcl) script-based signature that specifies new events in the event register line and additional action in the Tcl script.
- Combination of both the formats above.

The following basic information is contained in a DS file:

- ID (unique number): unique key that represents a DS file that can be used to search a DS.
- Name (ShortDescription): unique description of the DS file that can be used in lists for selection.
- Description: long description about the signature.
- Revision: version number, which increments when the DS content is updated.
- Event & Action: defines the event to be detected and the action to be performed after the event happens.
Diagnostic Signature Downloading

To download the diagnostic signature (DS) file, you require the secure HTTP (HTTPS) protocol. If you have already configured an email transport method to download files on your device, you must change your assigned profile transport method to HTTPS to download and use DS.

Cisco software uses a PKI Trustpool Management feature, which is enabled by default on devices, to create a scheme to provision, store, and manage a pool of certificates from known certification authorities (CAs). The trustpool feature installs the CA certificate automatically. The CA certificate is required for the authentication of the destination HTTPS servers.

There are two types of DS update requests to download DS files: regular and forced-download. Regular download requests DS files that were recently updated. You can trigger a regular download request either by using a periodic configuration or by initiating an on-demand CLI. The regular download update happens only when the version of the requested DS is different from the version of the DS on the device. Periodic download is only started after there is any DS assigned to the device from DS web portal. After the assignment happens, the response to the periodic inventory message from the same device will include a field to notify device to start its periodic DS download/update. In a DS update request message, the status and revision number of the DS is included such that only a DS with the latest revision number is downloaded.

Forced-download downloads a specific DS or a set of DSes. You can trigger the forced-download update request only by initiating an on-demand CLI. In a force-download update request, the latest version of the DS file is downloaded irrespective of the current DS file version on the device.

The DS file is digitally signed, and signature verification is performed on every downloaded DS file to make sure it is from a trusted source.

Diagnostic Signature Workflow

The diagnostic signature feature is enabled by default in Cisco software. The following is the workflow for using diagnostic signatures:

1. Find the DS(es) you want to download and assign them to the device. This step is mandatory for regular periodic download, but not required for forced download.

2. The device downloads all assigned DS(es) or a specific DS by regular periodic download or by on-demand forced download.

3. The device verifies the digital signature of every single DS. If verification passes, the device stores the DS file into a non-removable disk, such as bootflash or hard disk. This is so that DS files can be read after the device is reloaded. For example, on the Cisco CSR 1000v, the DS file is stored in the bootflash:/call home directory.

4. The device continues sending periodic regular DS download requests to get the latest revision of DS and replace the older one in device.

5. The device monitors the event and executes the actions defined in the DS when the event happens.

Diagnostic Signature Events and Actions

The events and actions sections are the key areas used in diagnostic signatures. The event section defines all event attributes that are used for event detection. The action section lists all actions which should be performed after the event happens, such as collecting show command outputs and sending them to Smart Call Home to parse.
Diagnostic Signature Event Detection

Event detection in a DS is defined in two ways: single event detection and multiple event detection.

Diagnostic Signature Actions

The diagnostic signature (DS) file consists of various actions that must be initiated when an event occurs. The action type indicates the kind of action that will be initiated in response to a certain event.

Variables are elements within a DS that are used to customize the files.

DS actions are categorized into the following four types:

- call-home
- command
- emailto
- script

DS action types call-home and emailto collect event data and send a message to call-home servers or to the defined email addresses. The message uses “diagnostic-signature” as its message type and DS ID as the message sub-type.

The commands defined for the DS action type initiate CLI commands that can change configuration of the device, collect show command outputs, or run any EXEC command on the device. The DS action type script executes Tcl scripts.

Diagnostic Signature Variables

Variables are referenced within a DS and are used to customize the DS file. All DS variable names have the prefix ds_ to separate them from other variables. The following are the supported DS variable types:

- System variable: variables assigned automatically by the device without any configuration changes. The Diagnostic Signatures feature supports two system variables: ds_hostname and ds_signature_id.
- Environment variable: values assigned manually by using the `environment variable-name variable-value` command in call-home diagnostic-signature configuration mode. Use the `show call-home diagnostic-signature` command to display the name and value of all DS environment variables. If the DS file contains unresolved environment variables, this DS will stay in pending status until the variable gets resolved.
- Prompt variable: values assigned manually by using the `call-home diagnostic-signature install ds-id` command in privileged EXEC mode. If you do not set this value, the status of the DS indicates pending.
- Regular expression variable: values assigned from a regular expression pattern match with predefined CLI command outputs. The value is assigned during the DS run.
- Syslog event variable: values assigned during a syslog event detection in the DS file. This variable is valid only for syslog event detection.

How to Configure Diagnostic Signatures

Configuring the Call Home Service for Diagnostic Signatures

Configure the Call Home Service feature to set attributes such as the contact email address where notifications related with diagnostic signatures (DS) are sent and destination HTTP/secure HTTP (HTTPS) URL to download the DS files from.
You can also create a new user profile, configure correct attributes and assign it as the DS profile. For periodic downloads, the request is sent out just following full inventory message. By changing the inventory periodic configuration, the DS periodic download also gets rescheduled.

Note
The predefined CiscoTAC-1 profile is enabled as a DS profile by default and we recommend using it. If used, you only need to change the destination transport-method to the http setting.

SUMMARY STEPS

1. configure terminal
2. service call-home
3. call-home
4. contact-email-addr email-address
5. mail-server {ipv4-addr | name} priority number
6. profile profile-name
7. destination transport-method {email | http}
8. destination address {email address | http url}
9. subscribe-to-alert-group inventory [periodic {daily hh:mm | monthly day hh:mm | weekly day hh:mm}]
10. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 service call-home</td>
<td>Enables Call Home service on a device.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# service call-home</td>
<td></td>
</tr>
<tr>
<td>Step 3 call-home</td>
<td>Enters call-home configuration mode for the</td>
</tr>
<tr>
<td>Example:</td>
<td>configuration of Call Home settings.</td>
</tr>
<tr>
<td>Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td>Step 4 contact-email-addr email-address</td>
<td>(Optional) Assigns an email address to be</td>
</tr>
<tr>
<td>Example:</td>
<td>used for Call Home customer contact.</td>
</tr>
<tr>
<td>Router(cfg-call-home)# contact-email-addruserid@example.com</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 5
mail-server `{ipv4-addr | name} priority number`
Example:
Router(cfg-call-home)# mail-server 10.1.1.1 priority 4
(Optional) Configures a Simple Mail Transfer Protocol (SMTP) email server address for Call Home. This command is only used when sending email is part of the actions defined in any DS.

Step 6
profile profile-name
Example:
Router(cfg-call-home)# profile user1
Configures a destination profile for Call Home and enters call-home profile configuration mode.

Step 7
destination transport-method `{email | http}`
Example:
Router(cfg-call-home-profile)# destination transport-method http
Specifies a transport method for a destination profile in the Call Home.
Note To configure diagnostic signatures, you must use the **http** option.

Step 8
destination address `{email address | http url}`
Example:
Router(cfg-call-home-profile)# destination address http https://tools.cisco.com/its/service/oddce/services/DDCEService
Configures the address type and location to which call-home messages are sent.
Note To configure diagnostic signatures, you must use the **http** option.

Step 9
subscribe-to-alert-group inventory `[periodic {daily hh:mm | monthly day hh:mm | weekly day hh:mm}]`
Example:
Router(cfg-call-home-profile)# subscribe-to-alert-group inventory periodic daily 14:30
Configures a destination profile to send messages for the Inventory alert group for Call Home.
- This command is used only for the periodic downloading of DS files.

Step 10
exit
Example:
Router(cfg-call-home-profile)# exit
Exits call-home profile configuration mode and returns to call-home configuration mode.

What to do next
Set the profile configured in the previous procedure as the DS profile and configure other DS parameters.

Configuring Diagnostic Signatures

The Diagnostic Signatures feature downloads digitally signed signatures to devices. Diagnostic Signatures (DS) files are formatted files that collate knowledge of diagnostic events and provide methods to troubleshoot them without a need to upgrade the Cisco software. The aim of DS is to deliver flexible intelligence that can
detect and collect troubleshooting information that can be used to resolve known problems in customers networks.

Configuration Examples for Diagnostic Signatures

The following example shows how to enable the periodic downloading request for diagnostic signature (DS) files. This configuration will send download requests to the service call-home server daily at 2:30 p.m. to check for updated DS files. The transport method is set to HTTP.

```
Router> enable
Router# configure terminal
Router(config)# service call-home
Router(config)# call-home
Router(cfg-call-home)# contact-email-addr userid@example.com
Router(cfg-call-home)# mail-server 10.1.1.1 priority 4
Router(cfg-call-home)# profile user-1
Router(cfg-call-home-profile)# destination transport-method http
Router(cfg-call-home-profile)# destination address http https://tools.cisco.com/its/service/oddce/services/DDCEService
Router(cfg-call-home-profile)# subscribe-to-alert-group inventory periodic daily 14:30
Router(cfg-call-home-profile)# exit
Router(cfg-call-home)# diagnostic-signature
Router(cfg-call-home-diag-sign)# profile user1
Router(cfg-call-home-diag-sign)# environment ds_env1 envarval
Router(cfg-call-home-diag-sign)# end
```

The following is sample output from the `show call-home diagnostic-signature` command for the configuration displayed above:

```
Router# show call-home diagnostic-signature
Current diagnostic-signature settings:
Diagnostic-signature: enabled
Profile: user1 (status: ACTIVE)
Environment variable:
ds_env1: abc
Downloaded DSeS:
<table>
<thead>
<tr>
<th>DS ID</th>
<th>DS Name</th>
<th>Revision</th>
<th>Status</th>
<th>Last Update (GMT+00:00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6015</td>
<td>CronInterval</td>
<td>1.0</td>
<td>registered</td>
<td>2013-01-16 04:49:52</td>
</tr>
<tr>
<td>6030</td>
<td>ActCH</td>
<td>1.0</td>
<td>registered</td>
<td>2013-01-16 06:10:22</td>
</tr>
<tr>
<td>6032</td>
<td>MultiEvents</td>
<td>1.0</td>
<td>registered</td>
<td>2013-01-16 06:10:37</td>
</tr>
<tr>
<td>6033</td>
<td>PureTCL</td>
<td>1.0</td>
<td>registered</td>
<td>2013-01-16 06:11:48</td>
</tr>
</tbody>
</table>
```

Displaying Call Home Configuration Information

You can use variations of the `show call-home` command to display Call Home configuration information.

SUMMARY STEPS

1. `show call-home`
2. `show call-home detail`
3. `show call-home alert-group`
4. `show call-home mail-server status`
5. `show call-home profile {all | name}`
6. `show call-home statistics [detail | profile profile-name]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** show call-home
 Example: Router# show call-home | Displays the Call Home configuration in summary. |
| **Step 2** show call-home detail
 Example: Router# show call-home detail | Displays the Call Home configuration in detail. |
| **Step 3** show call-home alert-group
 Example: Router# show call-home alert-group | Displays the available alert groups and their status. |
| **Step 4** show call-home mail-server status
 Example: Router# show call-home mail-server status | Checks and displays the availability of the configured email server(s). |
| **Step 5** show call-home profile {all | name}
 Example: Router# show call-home profile all | Displays the configuration of the specified destination profile. Use the all keyword to display the configuration of all destination profiles. |
| **Step 6** show call-home statistics [detail | profile profile-name]
 Example: Router# show call-home statistics | Displays the statistics of Call Home events. |

Examples

Examples 1 to 7 show sample output when using different options of the `show call-home` command.

Call Home Information in Summary

Router# show call-home
Current call home settings:
call home feature : enable
call home message's from address: router@example.com
call home message's reply-to address: support@example.com
vrf for call-home messages: Not yet set up
contact person's email address: technical@example.com
contact person's phone number: +1-408-555-1234
street address: 1234 Picaboo Street, Any city, Any state, 12345
customer ID: ExampleCorp
contract ID: X123456789
site ID: SantaClara
source ip address: Not yet set up
source interface: GigabitEthernet1
Mail-server[1]: Address: 192.168.2.1 Priority: 1
Mail-server[2]: Address: 209.165.254.254 Priority: 2
http proxy: 192.168.1.1:80
aaa-authorization: disable
aaa-authorization username: callhome (default)
data-privacy: normal
syslog throttling: enable
Rate-limit: 20 message(s) per minute
Snapshot command[0]: show version
Snapshot command[1]: show clock

Available alert groups:
<table>
<thead>
<tr>
<th>Keyword</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration</td>
<td>Enable</td>
<td>configuration info</td>
</tr>
<tr>
<td>crash</td>
<td>Enable</td>
<td>crash and traceback info</td>
</tr>
<tr>
<td>inventory</td>
<td>Enable</td>
<td>inventory info</td>
</tr>
<tr>
<td>snapshot</td>
<td>Enable</td>
<td>snapshot info</td>
</tr>
<tr>
<td>syslog</td>
<td>Enable</td>
<td>syslog info</td>
</tr>
</tbody>
</table>

Profiles:
Profile Name: campus-noc
Profile Name: CiscoTAC-1

Call Home Information in Detail

Router# show call-home detail

Current call home settings:
call home feature : enable
call home message's from address: router@example.com
call home message's reply-to address: support@example.com
vrfs for call-home messages: Not yet set up
contact person's email address: technical@example.com
contact person's phone number: +1-408-555-1234
street address: 1234 Picaboo Street, Any city, Any state, 12345
customer ID: ExampleCorp
contract ID: X123456789
site ID: SantaClara
source ip address: Not yet set up
source interface: GigabitEthernet1
Mail-server[1]: Address: 192.168.2.1 Priority: 1
Mail-server[2]: Address: 209.165.254.254 Priority: 2
http proxy: 192.168.1.1:80
aaa-authorization: disable
aaa-authorization username: callhome (default)
data-privacy: normal
syslog throttling: enable
Rate-limit: 20 message(s) per minute
Snapshot command[0]: show version
Snapshot command[1]: show clock

Available alert groups:
<table>
<thead>
<tr>
<th>Keyword</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration</td>
<td>Enable</td>
<td>configuration info</td>
</tr>
<tr>
<td>crash</td>
<td>Enable</td>
<td>crash and traceback info</td>
</tr>
<tr>
<td>inventory</td>
<td>Enable</td>
<td>inventory info</td>
</tr>
<tr>
<td>snapshot</td>
<td>Enable</td>
<td>snapshot info</td>
</tr>
<tr>
<td>syslog</td>
<td>Enable</td>
<td>syslog info</td>
</tr>
</tbody>
</table>

Profiles:
Profile Name: campus-noc
Profile status: ACTIVE
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
HTTP address(es): Not yet set up
Alert-group
configuration normal
crash normal
inventory normal
Syslog-Pattern Severity

Profile Name: CiscoTAC-1
Profile status: INACTIVE
Profile mode: Full Reporting
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
HTTP address(es): callhome@cisco.com
Periodic configuration info message is scheduled every 14 day of the month at 11:12
Periodic inventory info message is scheduled every 14 day of the month at 10:57
Alert-group
configuration normal

Available Call Home Alert Groups

Router# show call-home alert-group

Available alert groups:

Keyword State Description
------------------------ ------- -------------------------------
configuration Enable configuration info
crash Enable crash and traceback info
inventory Enable inventory info
snapshot Enable snapshot info
syslog Enable syslog info

email Server Status Information

Router# show call-home mail-server status
Please wait. Checking for mail server status ...
Mail-server[1]: Address: 192.168.2.1 Priority: 1 [Not Available]
Mail-server[2]: Address: 209.165.254.254 Priority: 2 [Available]

Information for All Destination Profiles

Router# show call-home profile all
Profile Name: campus-noc
Profile status: ACTIVE
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): noc@example.com
HTTP address(es): Not yet set up
Alert-group Severity
------------------------ ------------
configuration normal

crash normal

inventory normal

Syslog-Pattern Severity
------------------------ ------------

."CALL_LOOP.*" debug
Profile Name: CiscoTAC-1
Profile status: INACTIVE
Profile mode: Full Reporting
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): callhome@cisco.com
HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService
Periodic configuration info message is scheduled every 14 day of the month at 11:12
Periodic inventory info message is scheduled every 14 day of the month at 10:57
Alert-group Severity
------------------------ ------------

crash normal

Syslog-Pattern Severity
------------------------ ------------

."CALL_LOOP.*" debug

Information for a User-Defined Destination Profile

Router# show call-home profile campus-noc
Profile Name: campus-noc
Profile status: ACTIVE
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): noc@example.com
HTTP address(es): Not yet set up
Alert-group Severity
------------------------ ------------

crash normal

inventory normal

Syslog-Pattern Severity
------------------------ ------------

."CALL_LOOP.*" debug

Call Home Statistics

Router# show call-home statistics
Message Types Total Email HTTP
------------------------ -------------------- --------------------
Total Success 3 3 0
Config 3 3 0
Crash 0 0 0
Inventory 0 0 0
Snapshot 0 0 0
SysLog 0 0 0
Test 0 0 0
Request 0 0 0
Send-CLI 0 0 0
Default Settings

Table 39: Default Call Home Settings, on page 297 lists the default Call Home settings.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Home feature status</td>
<td>Disabled</td>
</tr>
<tr>
<td>User-defined profile status</td>
<td>Active</td>
</tr>
<tr>
<td>Predefined CiscoTAC-1 profile status</td>
<td>Inactive</td>
</tr>
<tr>
<td>Transport method</td>
<td>email</td>
</tr>
<tr>
<td>Message format type</td>
<td>XML</td>
</tr>
<tr>
<td>Alert group status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Call Home message severity threshold</td>
<td>Debug</td>
</tr>
<tr>
<td>Message rate limit for messages per minute</td>
<td>20</td>
</tr>
<tr>
<td>AAA authorization</td>
<td>Disabled</td>
</tr>
<tr>
<td>Call Home syslog message throttling</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Alert Group Trigger Events and Commands

Call Home trigger events are grouped into alert groups, with each alert group assigned commands to execute when an event occurs. The command output is included in the transmitted message. Table 40: Call Home Alert Groups, Events, and Actions , on page 298 lists the trigger events included in each alert group, including the severity level of each event and the executed commands for the alert group.

Table 40: Call Home Alert Groups, Events, and Actions

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash</td>
<td>SYSTEM_CRASH</td>
<td>—</td>
<td>—</td>
<td>Events related to system crash.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commands executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show version, show logging, show region, show stack.</td>
</tr>
<tr>
<td>—</td>
<td>TRACEBACK</td>
<td>—</td>
<td>—</td>
<td>Detects software traceback events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commands executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show version, show logging, show region, show stack.</td>
</tr>
<tr>
<td>Configuration</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>User-generated request for configuration or configuration change event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commands executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show platform, show running-config all, show startup-config, show version.</td>
</tr>
<tr>
<td>Inventory</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>User-generated request for inventory event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commands executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show diag all eeprom detail</td>
</tr>
<tr>
<td>Syslog</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>User-generated Syslog event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commands executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show logging</td>
</tr>
</tbody>
</table>

Message Contents

The following tables display the content formats of alert group messages:
The section and table below, "Format for a Short Text Message," shows the content fields of a short text message.

The section and table below, "Common Fields for All Long Text and XML Messages," shows the content fields that are common to all long text and XML messages. The fields specific to a particular alert group message are inserted at a point between the common fields. The insertion point is identified in the table.

To see a sample syslog message alert, see Sample Syslog Alert Notification in XML Format, on page 302.

Table 41: Format for a Short Text Message

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device identification</td>
<td>Configured device name</td>
</tr>
<tr>
<td>Date/time stamp</td>
<td>Time stamp of the triggering event</td>
</tr>
<tr>
<td>Error isolation message</td>
<td>Plain English description of triggering event</td>
</tr>
<tr>
<td>Alarm urgency level</td>
<td>Error level such as that applied to a system message</td>
</tr>
</tbody>
</table>

Table 42: Common Fields for All Long Text and XML Messages

<table>
<thead>
<tr>
<th>Data Item(Plain Text and XML)</th>
<th>Description(Plain Text and XML)</th>
<th>Call-Home Message Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time stamp</td>
<td>Date and time stamp of event in ISO time notation: <code>YYYY-MM-DD HH:MM:SS GMT+HH:MM.</code></td>
<td>CallHome/EventTime</td>
</tr>
<tr>
<td>Message name</td>
<td>Name of message. Specific event names are listed in Alert Group Trigger Events and Commands, on page 298.</td>
<td>For short text message only</td>
</tr>
<tr>
<td>Message type</td>
<td>Specifically “Call Home”.</td>
<td>CallHome/Event/Type</td>
</tr>
<tr>
<td>Message subtype</td>
<td>Specific type of message: full, delta, test</td>
<td>CallHome/Event/SubType</td>
</tr>
<tr>
<td>Message group</td>
<td>Specifically “reactive”. Optional because default is “reactive”.</td>
<td>For long-text message only</td>
</tr>
<tr>
<td>Severity level</td>
<td>Severity level of message (see table "Severity and Syslog Level Mapping" in section Message Severity Threshold, on page 275.).</td>
<td>Body/Block/Severity</td>
</tr>
<tr>
<td>Data Item (Plain Text and XML)</td>
<td>Description (Plain Text and XML)</td>
<td>Call-Home Message Tag (XML Only)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Source ID</td>
<td>Product type for routing through the workflow engine. This is typically the product family name.</td>
<td>For long-text message only</td>
</tr>
</tbody>
</table>
| Device ID | Unique device identifier (UDI) for end device generating message. This field should be empty if the message is nonspecific to a fabric switch. The format is `type@Sid@serial`.
 * `type` is the product model number from backplane IDPROM.
 * `@` is a separator character.
 * `Sid` is C, identifying the serial ID as a chassis serial number.
 * `serial` is the number identified by the Sid field.
 Example: `CISCO3845@C@12345678` | CallHome/CustomerData/ContractData/DeviceId |
<p>| Customer ID | Optional user-configurable field used for contract information or other ID by any support service. | CallHome/CustomerData/ContractData/CustomerId |
| Contract ID | Optional user-configurable field used for contract information or other ID by any support service. | CallHome/CustomerData/ContractData/ContractId |
| Site ID | Optional user-configurable field used for Cisco-supplied site ID or other data meaningful to alternate support service. | CallHome/CustomerData/ContractData/SiteId |</p>
<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>Call-Home Message Tag (XML Only)</th>
</tr>
</thead>
</table>
| Server ID | If the message is generated from the fabric switch, this is the unique device identifier (UDI) of the switch. The format is `type@Sid@serial`.
 - **type** is the product model number from backplane IDPROM.
 - **@** is a separator character.
 - **Sid** is C, identifying the serial ID as a chassis serial number.
 - **serial** is the number identified by the Sid field.
 Example: `CISCO3845@C@12345678` | For long text message only |
| Message description | Short text describing the error. | CallHome/MessageDescription |
| Device name | Node that experienced the event. This is the host name of the device. | CallHome/CustomerData/SystemInfo/NameName |
| Contact name | Name of person to contact for issues associated with the node experiencing the event. | CallHome/CustomerData/SystemInfo/Contact |
| Contact email | email address of person identified as contact for this unit. | CallHome/CustomerData/SystemInfo/ContactEmail |
| Contact phone number | Phone number of the person identified as the contact for this unit. | CallHome/CustomerData/SystemInfo/ContactPhoneNumber |
| Street address | Optional field containing street address for RMA part shipments associated with this unit. | CallHome/CustomerData/SystemInfo/StreetAddress |
Table 43: Inserted Fields Specific to a Particular Alert Group Message

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>Call-Home Message Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model name</td>
<td>Model name of the router. This is the “specific model as part of a product family name.</td>
<td>CallHome/Device/Cisco_Chassis/Model</td>
</tr>
<tr>
<td>Serial number</td>
<td>Chassis serial number of the unit.</td>
<td>CallHome/Device/Cisco_Chassis/SerialNumber</td>
</tr>
<tr>
<td>System object ID</td>
<td>System Object ID that uniquely identifies the system.</td>
<td>CallHome/Device/Cisco_Chassis/AdditionalInformation/AD@name="sysObjectID"</td>
</tr>
<tr>
<td>System description</td>
<td>System description for the managed element.</td>
<td>CallHome/Device/Cisco_Chassis/AdditionalInformation/AD@name="sysDescr"</td>
</tr>
</tbody>
</table>

The following fields may be repeated if multiple commands are executed for this alert group.

- **Command output name**: Exact name of the issued command. /aml/Attachments/Attachment/Name
- **Attachment type**: Attachment type. Usually “inline”. /aml/Attachments/Attachment@type
- **MIME type**: Normally “text” or “plain” or encoding type. /aml/Attachments/Attachment/Data@encoding
- **Command output text**: Output of command automatically executed (see table "Call Home Alert Groups, Events, and Actions" in section Alert Group Trigger Events and Commands, on page 298). /mml/attachments/attachment/ata-data

Sample Syslog Alert Notification in XML Format

```xml
<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope">
  <soap-env:Header>
  </soap-env:Header>
  <soap-env:Body>
    <aml:CallHome xmlns:aml="http://www.cisco.com/aml">
      <aml:Message>
        <aml:MessageText>Sample Syslog Alert Notification in XML Format</aml:MessageText>
      </aml:Message>
    </aml:CallHome>
  </soap-env:Body>
</soap-env:Envelope>
```
Jun 5 03:11:36.041: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console

Console logging: level debugging, 391 messages logged, xml disabled, filtering disabled
Monitor logging: level debugging, 0 messages logged, xml disabled
filtering disabled
Buffer logging: level debugging, 391 messages logged, xml disabled,
filtering disabled
Exception Logging: size (4096 bytes)
Count and timestamp logging messages: disabled
Persistent logging: disabled
No active filter modules.
Trap logging: level informational, 56 message lines logged
Logging Source-Interface: VRF Name:
Log Buffer (4096 bytes):
*Jun 5 03:11:18.295: %SYS-5-CONFIG_I: Configured from console by console qiang-vm#]]</aml-block:Data> </aml-block:Attachment> </aml-block:Attachments>
</aml-block:Block> </soap-env:Body> </soap-env:Envelope>
Enabling Management by REST API

Introduction
You can use the Cisco IOS XE REST API to manage the Cisco CSR 1000v as an alternative to configuring and managing selected features on the router using the Cisco IOS XE CLI. This chapter describes how to configure the Cisco CSR 1000v to enable management using the REST API. For detailed information about using the REST API, see Cisco IOS XE REST API Management Reference Guide.

Note
REST API is not supported from the IOS-XE 16.7.x release onwards. If you are using the 16.7.x version or above, Cisco recommends that you use Restconf. For more information on using Restconf, see the Restconf documentation.

Enabling REST API Support During Cisco CSR 1000v OVA Deployment
If you are deploying the Cisco CSR 1000v OVA template, support for REST API is configured in the Bootstrap Properties screen of the OVA Wizard. The required fields are different depending on the Cisco IOS XE release. The tables below list the fields required to enable REST API support when deploying the OVA template.

For more information on deploying the OVA template, see Deploying the Cisco CSR 1000v OVA to the VM, on page 75.

Table 44: Cisco CSR 1000v OVA Template Bootstrap Properties Required for REST API Support (Cisco IOS XE Release 3.12S and Later)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Interface</td>
<td>Designates the management interface for the Cisco CSR 1000v. The format must be GigabitEthernetx or GigabitEthernet.xxx.</td>
</tr>
</tbody>
</table>
Table 45: Cisco CSR 1000v OVA Template Bootstrap Properties Required for REST API Support (Cisco IOS XE Release 3.11S and Later)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Interface IPv4 Address/Mask</td>
<td>Configures the IPv4 address and subnet mask for the management interface.</td>
</tr>
<tr>
<td>Management IPv4 Gateway (Cisco IOS XE Release 3.12S)</td>
<td>Configures the IPv4 management default gateway address. If using DHCP, enter “dhcp” in the field.</td>
</tr>
<tr>
<td>Management IPv4 Network (Cisco IOS XE Release 3.12S)</td>
<td>Configures the IPv4 Network (such as “192.168.2.0/24” or “192.168.2.0 255.255.255.0”) that the management gateway should route to. If a default route (0.0.0.0/0) is desired, this may be left blank.</td>
</tr>
</tbody>
</table>

Table 46: Cisco CSR 1000v OVA Template Bootstrap Properties Required for REST API Support (Cisco IOS XE Release 3.10S)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Interface</td>
<td>Designates the management interface for the Cisco CSR 1000v. The format must be GigabitEthernet or GigabitEthernet.xxx.</td>
</tr>
<tr>
<td>Management Interface IPv4 Address/Mask</td>
<td>Configures the IPv4 address and subnet mask for the management interface.</td>
</tr>
<tr>
<td>Management IPv4 Default Gateway</td>
<td>Configures the IPv4 management default gateway address. If using DHCP, enter “dhcp” in the field.</td>
</tr>
<tr>
<td>Remote Management IPv4 Address (not used if configuring the shared management interface to support REST API)</td>
<td>Configures the IP address used for remote management of the Cisco CSR 1000v by the REST API or by Cisco PNSC. The address must be in the same subnet as the management interface address.</td>
</tr>
</tbody>
</table>

Note: The GigabitEthernet0 interface is no longer supported beginning in Cisco IOS XE Release 3.11S.

Enable HTTPS Server Enables an HTTPS server for system configuration and administration via a web browser. Required if using the REST API to perform system management in Cisco IOS XE Release 3.10S.
Enabling REST API Support Using the Cisco IOS XE CLI

Introduction to REST API Configuration Options

You need to configure the management interface to support REST API using the Cisco IOS XE CLI if you installed the Cisco CSR 1000v in either of the following ways:

- If you installed the Cisco CSR 1000v using the .iso file.
- If you deployed the Cisco CSR 1000v using an Amazon Machine Image (AMI).

Note

If upgrading a REST API configuration from Cisco IOS XE Release 3.10S to a later release, you must add your REST API configuration to the IOS configuration.

Before configuring the shared management interface, perform the steps in Enabling REST API Support, on page 307.

The REST API management is located in a management virtual services container that is separate from the router components, including the router management interface. You have two choices for configuring the REST API management support, and the steps for each of these are in the following two sections:

- Configuring the Shared Management Interface to Support the REST API, on page 308
 (Cisco IOS XE 3.13S and later, and IOS XE Denali 16.3 and later) The router management interface and the virtual services management container can share the same IP address. This can be used to save an IP address to be allocated for other purposes.

- Configuring the Dual Management Interface to Support the REST API, on page 310
 (Required in Cisco IOS XE 3.11S and 3.12S, optional in later releases.) The router management interface and the virtual services management container use different IP addresses.

The remainder of this section contains information about:

- Configuring the REST API Local Port and AutoSave Options, on page 312
- Configuring HTTPS Support for the REST API Using the Cisco IOS XE CLI, on page 313
- Disabling REST API Support, on page 314
- Viewing the REST API Container Status, on page 315

Enabling REST API Support

Beginning with Cisco IOS XE Release 3.11S, and including IOS XE Denali 16.3.1 and later, you can enable REST API support on the remote management interface. To disable REST API support, see Disabling REST API Support, on page 314. To enable the REST API, perform the following steps.
SUMMARY STEPS

1. enable
2. configure terminal
3. remote-management
4. restful-api
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 remote-management</td>
<td>Enters remote-management configuration mode.</td>
</tr>
<tr>
<td>Example: router(config)# remote-management</td>
<td></td>
</tr>
<tr>
<td>Step 4 restful-api</td>
<td>Enables support for the REST API.</td>
</tr>
<tr>
<td>Example: router(cfg-remote-mgmt)# restful-api</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits remote-management configuration mode and enters configuration mode.</td>
</tr>
<tr>
<td>Example: router(cfg-remote-mgmt)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Shared Management Interface to Support the REST API

SUMMARY STEPS

1. enable
2. configure terminal
3. interface mgmt-interface
4. ip address mgmt-ipv4-addr subnet-mask
5. no shutdown
6. exit
7. virtual-service csr_mgmt
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Enables privileged EXEC mode.
Example:
Router> enable |
| **Step 2** | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** | Enters interface configuration mode for the management interface.
Example:
Router(config)# interface gigabitethernet1 |
| **Step 4** | Configures the IP address for the management interface.
Example:
Router(config-if)# ip address 172.25.29.235 255.255.255.128 |
| **Step 5** | Enables the management interface.
Example:
Router(config-if)# no shutdown |
| **Step 6** | Exits interface configuration mode.
Example:
Router(config-if)# exit |
| **Step 7** | Configures the `csr_mgmt` virtual services container and enters virtual services configuration mode.
Example:
router(config)# virtual-service csr_mgmt |
| **Step 8** | Deactivates the `csr_mgmt` virtual services container.
Example:
router(config-virt-serv)# no activate |
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td><code>ip shared host-interface mgmt-interface</code></td>
<td>Maps the virtual service container to the management interface.</td>
</tr>
</tbody>
</table>
| Example| `router(config-virt-serv)# ip shared host-interface
gigabitethernet 1` | |
| Step 10| `activate` | Activates the `csr_mgmt` virtual services container. |
| Example| `router(config-virt-serv)# activate` | |
| Step 11| `end` | Exits virtual services configuration mode and enters global configuration mode. |
| Example| `router(config-virt-serv)# end` | |

Configuring the Dual Management Interface to Support the REST API

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface GigabitEthernetx`
4. `ip address ipv4-addr subnet-mask`
5. `no shutdown`
6. `exit`
7. `interface virtualportgroup virtualportgroup-number`
8. `ip unnumbered GigabitEthernetx`
9. `no shutdown`
10. `exit`
11. `virtual-service csr_mgmt`
12. `vnic gateway virtualportgroup virtualportgroup_number`
13. `guest ip address remote-mgmt-ipv4-addr`
14. `exit`
15. `end`
16. `ip route ipaddress subnetmask virtualportgroup virtualportgroupnumber`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
</tbody>
</table>

- Enter your password if prompted.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>interface GigabitEthernet x</code></td>
<td>Enters interface configuration mode for the interface designated by x.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface gigabitethernet1</code></td>
<td>The range of GigabitEthernet ports depends on the platform.</td>
</tr>
<tr>
<td>4</td>
<td><code>ip address ipv4-addr subnet-mask</code></td>
<td>Configures the IP address for the management interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip address 172.25.29.235 255.255.255.128</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>no shutdown</code></td>
<td>Enables the management interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# no shutdown</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>exit</code></td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# exit</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>interface virtualportgroup virtualportgroup-number</code></td>
<td>Creates a virtual port group and enters virtual port group interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface virtualportgroup 0</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>ip unnumbered GigabitEthernet x</code></td>
<td>Enables IP processing on an interface without assigning it an explicit IP address.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>router(config-if)# ip unnumbered gigabitethernet1</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>no shutdown</code></td>
<td>Enables the virtual port group interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>router(config-if)# no shutdown</code></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>exit</code></td>
<td>Exits virtual port group interface mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>router(config-if)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring the REST API Local Port and AutoSave Options

Beginning with Cisco IOS XE 3.13S, you can configure the REST API local port and autosave options.

SUMMARY STEPS

1. remote-management
2. restful-api local-port local-port-number
3. restful-api autosave interval
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 remote-management Example: router(config)# remote-management</td>
<td>Enters remote-management configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** restful-api local-port *local-port-number** **Example:** router(cfg-remote-mgmt)# restful-api local-port 55443 | Configures the REST API local port number. The valid range depends on whether the REST API virtual services container uses the same IP address as the management interface, or if it uses a different IP address:
 - Valid range if the dual management interface is configured is from 1 to 61000.
 - Valid range if the shared management interface is configured is from 55001 to 61000.
 In both cases, the default value is 55443. |
| **Step 3** restful-api autosave *interval** **Example:** Router(cfg-remote-mgmt)# restful-api autosave 60 | Configures the REST API autosave interval. The range is from 30-300 seconds, and the default is 30. |

Configuring HTTPS Support for the REST API Using the Cisco IOS XE CLI

The REST API requires HTTPS server support. Beginning with Cisco IOS XE Release 3.11S, HTTPS server support is enabled by default and no additional configuration is required. However, if using Cisco IOS XE Release 3.10S, you must manually configure HTTPS support for the REST API in the following situations:

- If you did not specify the Enable HTTPS Server option when deploying the OVA.
- If you installed the Cisco CSR 1000v using the .iso file.

The HTTPS session must have an identity certificate. For more information, see the “HTTPS-HTTP Server and Client with SSL 3.0” section of the HTTP Services Configuration Guide, Cisco IOS XE Release 3S.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip http secure-server
4. transport-map type persistent webui *transport-map-name*
5. secure-server
6. transport type persistent webui input *transport-map-name*
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td></td>
</tr>
</tbody>
</table>
| Example: | Enables privileged EXEC mode.
| • Enteryourpasswordifprompted. |
| router> enable |
| **Step 2** configure terminal |
| Example: | Enters global configuration mode. |
| router# configure terminal |
| **Step 3** ip http secure-server |
| Example: | Enables HTTPS on port 443 (the default HTTPS port). A self-signed identity certificate is automatically generated. |
| router(config)# ip http secure-server |
| **Step 4** transport-map type persistent webui transport-map-name |
| Example: | Creates and names a persistent web user interface transport map. |
| router(config)# transport-map type persistent webui https-webui |
| **Step 5** secure-server |
| Example: | Enables the secure HTTPS server. |
| router(config)# secure-server |
| **Step 6** transport type persistent webui input transport-map-name |
| Example: | Enables the transport map to support HTTPS. |
| router(config)# transport type persistent webui input https-webui |

Disabling REST API Support

Beginning with Cisco IOS XE Release 3.11S, and including IOS XE Denali 16.3.1 and later, you can disable REST API support on the remote management interface. To enable REST API support, see Enabling REST API Support, on page 307. To disable the REST API, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. remote-management
4. no restful-api
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>remote-management</td>
<td>Enters remote-management configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: router(config)# remote-management</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>no restful-api</td>
<td>Disables support for the REST API.</td>
</tr>
<tr>
<td></td>
<td>Example: router(cfg-remote-mgmt)# no restful-api</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Exits remote-management configuration mode and enters configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: router(cfg-remote-mgmt)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

When REST API support is disabled using the **no restful-api** command, the REST API PUT, POST and DELETE operations are disabled. However, the GET operation is still available.

Viewing the REST API Container Status

Use the **show virtual-service detail** command to view the REST API container status.

The following example shows the enabled status of the REST API container, along with the detailed guest status with a list of processes, status showing when these processes are up and running, and the number of restarts:

```
Router# show virtual-service detail
Virtual service csr_mgmt detail
    State : Activated
    Package information
```
Enabling Management by REST API

Viewing the REST API Container Status

<table>
<thead>
<tr>
<th>Process</th>
<th>Status</th>
<th>Uptime</th>
<th># of restarts</th>
</tr>
</thead>
<tbody>
<tr>
<td>nginx</td>
<td>UP</td>
<td>0Y 0W 0D 0:1:1</td>
<td>0</td>
</tr>
<tr>
<td>climgr</td>
<td>UP</td>
<td>0Y 0W 0D 0:1:1</td>
<td>0</td>
</tr>
<tr>
<td>restful_api</td>
<td>UP</td>
<td>0Y 0W 0D 0:1:1</td>
<td>0</td>
</tr>
<tr>
<td>fcgicpa</td>
<td>UP</td>
<td>0Y 0W 0D 0:0:13</td>
<td>0</td>
</tr>
<tr>
<td>pnsccag</td>
<td>UP</td>
<td>0Y 0W 0D 0:0:13</td>
<td>0</td>
</tr>
<tr>
<td>pnsccdme</td>
<td>UP</td>
<td>0Y 0W 0D 0:0:12</td>
<td>0</td>
</tr>
</tbody>
</table>

Feature Status Configuration

- Restful API: Enabled, UP

 (GET only) auto-save-timer: 8 seconds

 socket: unix:/usr/local/nginx/csrapi-fcgi.sock;

- PNSC: Enabled, UP

 host: 172.25.223.233

 port: 8443

 socket: unix:/usr/local/cpa-fcgi.sock;

Network stats:
- eth0: RX packets:38, TX packets:6
- eth1: RX packets:87, TX packets:80

Coredump file(s):
- Activated profile name: None

Resource reservation
- Disk: 540 MB
- Memory: 512 MB
- CPU: 30% system CPU

Attached devices

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial/Trace</td>
<td>serial3</td>
<td></td>
</tr>
<tr>
<td>Serial/Syslog</td>
<td>serial2</td>
<td></td>
</tr>
<tr>
<td>Serial/aux</td>
<td>serial1</td>
<td></td>
</tr>
<tr>
<td>Serial/shell</td>
<td>serial0</td>
<td></td>
</tr>
<tr>
<td>Disk</td>
<td>/opt/var</td>
<td></td>
</tr>
<tr>
<td>Disk</td>
<td>_rootfs</td>
<td></td>
</tr>
<tr>
<td>NIC</td>
<td>dp_2_0</td>
<td>net2</td>
</tr>
<tr>
<td>NIC</td>
<td>ieobc_2</td>
<td>ieobc</td>
</tr>
</tbody>
</table>

Network interfaces

<table>
<thead>
<tr>
<th>MAC address</th>
<th>Attached to interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:1E:BD:DE:F8:BA</td>
<td>VirtualPortGroup0</td>
</tr>
<tr>
<td>54:0E:00:0B:0C:03</td>
<td>ieobc_2</td>
</tr>
</tbody>
</table>

Guest interface

- Interface: eth1
- ip address: 172.25.223.147/25

Guest routes

<table>
<thead>
<tr>
<th>Address/Mask</th>
<th>Next Hop</th>
<th>Intf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>172.25.223.137</td>
<td>eth1</td>
</tr>
</tbody>
</table>

Resource admission (without profile): passed
- Disk space: 540MB
- Memory: 512MB
- CPU: 30% system CPU
- VCPUs: Not specified
Enabling Management by REST API

Viewing the REST API Container Status
Radio Aware Routing

Radio-Aware Routing (RAR) is a mechanism that uses radios to interact with the routing protocol OSPFv3 to signal the appearance, disappearance, and link conditions of one-hop routing neighbors.

In a large mobile networks, connections to the routing neighbors are often interrupted due to distance and radio obstructions. When these signals do not reach the routing protocols, protocol timers are used to update the status of a neighbor. Routing protocols have lengthy timer, which is not recommended in mobile networks.

The RAR feature is supported on Cisco ISR G2 and G3 Series Routers, Cisco ISR 4000 Series Routers.

PPPoE Extensions is the RAR protocol supported in Cisco 4000 Series ISR. PPPoE Extensions with Aggregate support is introduce from Cisco IOS XE Fuji 16.7. release. OSPFv3 and EIGRP are the supported routing protocols.

Benefits of Radio Aware Routing

The Radio Aware Routing feature offers the following benefits:

• Provides faster network convergence through immediate recognition of changes.
• Enables routing for failing or fading radio links.
• Allows easy routing between line-of-sight and non-line-of-sight paths.
• Provides faster convergence and optimal route selection so that delay-sensitive traffic, such as voice and video, is not disrupted.
• Provides efficient radio resources and bandwidth usage.
• Reduces impact on the radio links by performing congestion control in the router.
• Allows route selection based on radio power conservation.
• Enables decoupling of the routing and radio functionalities.
• Provides simple Ethernet connection to RFC 5578, R2CP, and DLEP compliant radios.

Restrictions and Limitations

The Radio Aware Routing feature has the following restrictions and limitations:
• The DLEP and R2CP protocols are not supported in Cisco 4000 Series ISRs.
• Multicast traffic is not supported in aggregate mode.
• Cisco High Availability (HA) technology is not supported.

License Requirements

This feature is available with the AX license.

Performance

The Radio Aware Routing feature has the ability to support a maximum of 10 neighbors per radio or VMI interface; and a total of 30 to 40 neighbors.

System Components

The Radio Aware Routing (RAR) feature is implemented using the MANET (Mobile adhoc network) infrastructure comprising of different components such as PPPoE, Virtual multipoint interface (VMI), QoS, routing protocol interface and RAR protocols.

Point-to-Point Protocol over Ethernet PPPoE or PPPoE

PPPoE is a well-defined communication mechanism between the client and the server. In the RAR implementation, radio takes the role of the PPPoE client and router takes the role of the PPPoE server. This allows a loose coupling of radio and router, while providing a well-defined and predictable communication mechanism.

As PPPoE is a session or a connection oriented protocol, it extends the point-to-point radio frequency (RF) link from an external radio to an IOS router.

PPPoE Extensions

PPPoE extensions are used when the router communicates with the radio. In the Cisco IOS implementation of PPPoE, each individual session is represented by virtual access interface (connectivity to a radio neighbor) on which, QoS can be applied with these PPPoE extensions.

RFC5578 provides extensions to PPPoE to support credit-based flow control and session-based real time link metrics, which are very useful for connections with variable bandwidth and limited buffering capabilities (such as radio links).
Virtual Multipoint Interface (VMI)

Though PPPoE Extensions provides the most of the setup to communicate between a router and a radio, VMI addresses the need to manage and translate events that higher layers (example, routing protocols) consume. In addition, VMI operates in the Bypass mode.

In Bypass mode, every Virtual Access Interface (VAI) representing a radio neighbor is exposed to routing protocols OSPFv3 and EIGRP, so that, the routing protocol directly communicates with the respective VAI for both unicast and multicast routing protocol traffic.

In Aggregae mode, VMI is exposed to the routing protocols (OSPF) so that the routing protocols can leverage VMI for their optimum efficiency. When the network neighbors are viewed as a collection of networks on a point-to-multipoint link with broadcast and multicast capability at VMI, VMI helps in aggregating the multiple virtual access interfaces created from PPPoE. VMI presents a single multi access layer 2 broadcast capable interface. The VMI layer handles re-directs unicast routing protocol traffic to the appropriate P2P link (Virtual-Access interface), and replicates any Multicast/Broadcast traffic that needs to flow. Since the routing protocol communicates to a single interface, the size of the topology database is reduced, without impacting the integrity of the network.

QoS Provisioning on PPPoE Extension Session

The following example describes QoS provisioning on PPPoE extension session:

```
policy-map rar_policer
  class class-default
  police 10000 2000 1000 conform-action transmit exceed-action drop violate-action drop
policy-map rar_shaper
  class class-default
  shape average percent 1
interface Virtual-Template2
  ip address 92.92.2.1 255.255.255.0
  no peer default ip address
  no keepalive
  service-policy input rar_policer
end
```

Example: Configuring the RAR Feature in Bypass Mode

The following example is an end-to-end configuration of RAR in the bypass mode:

```
Note
Before you being the RAR configuration, you must first configure the subscriber authorization enable command to bring up the RAR session. Without enabling authorization, the Point-to-Point protocol does not recognize this as a RAR session and may not tag manet_radio in presentation of a PPPoE Active Discovery Initiate (PADI). By default, bypass mode does not appears in the configuration. It appears only if the mode is configured as bypass.

Configure a Service for RAR
```
Configure Broadband

bba-group pppoe VMI2
 virtual-template 2
 service profile rar-lab
 interface GigabitEthernet0/0/0
description Connected to Client1
 negotiation auto
 no ip redirects
 pppoe enable group VMI2

Configure a Service for RAR

policy-map type service rar-lab
 pppoe service manet_radio //note: Enter the pppoe service policy name as manet_radio

Configuration in Bypass Mode

• IP Address Configured under Virtual-Template Explicitly

 interface Virtual-Template2
 ip address 90.90.90.3 255.255.255.0
 no ip redirects
 peer default ip address pool PPPoEpool2
 ipv6 enable
 ospfv3 1 network manet
 ospfv3 1 ipv4 area 0
 ospfv3 1 ipv6 area 0
 no keepalive
 service-policy input rar_policer Or/And
 service-policy output rar_shaper

• VMI Unnumbered Configured under Virtual Template

 interface Virtual-Template2
 ip unnumbered vmi2
 no ip redirects
 peer default ip address pool PPPoEpool2
 ipv6 enable
 ospfv3 1 network manet
 ospfv3 1 ipv4 area 0
 ospfv3 1 ipv6 area 0
 no keepalive
 service-policy input rar_policer Or/And
 service-policy output rar_shaper

Configure the Virtual Multipoint Interface in Bypass Mode

interface vmi2 //configure the virtual multi interface
ip address 92.92.2.1 255.255.255.0
physical-interface GigabitEthernet0/0/0
mode bypass

interface vmi3//configure the virtual multi interface
ip address 93.93.2.1 255.255.255.0
physical-interface GigabitEthernet0/0/1
mode bypass

Configure OSPF Routing

router ospfv3 1
router-id 1.1.1.1
!
 address-family ipv4 unicast
 redistribute connected metric 1 metric-type 1
 log-adjacency-changes
 exit-address-family
!
 address-family ipv6 unicast
 redistribute connected metric-type 1
 log-adjacency-changes
 exit-address-family
!
ip local pool PPPoEpool2 92.92.2.3 92.92.2.254

Verifying RAR Session Details

To retrieve RAR session details, use the following show commands:

Router#show pppoe session packets all
Total PPPoE sessions 2

 session id: 9
 local MAC address: 006b.f10e.a5e0, remote MAC address: 0050.56bc.424a
 virtual access interface: Vl2.1, outgoing interface: G10/0/0
 1646 packets sent, 2439363 received
 176216 bytes sent, 117250290 received

PPPoE Flow Control Stats
 Local Credits: 65535 Peer Credits: 65535 Local Scaling Value 64 bytes
 Credit Grant Threshold: 28000 Max Credits per grant: 65535
 PADG xmit Seq Num: 32928 PADG Timer index: 0
 PADG last rcvd Seq Num: 17313
 PADG last nonzero Seq Num: 17306
 PADG last nonzero rcvd amount: 2
 PADG Timers: (ms) [0]-1000 [1]-2000 [2]-3000 [3]-4000 [4]-5000
 PADG xmit: 33308 rcvd: 17313
 PADG xmit: 17313 rcvd: 19709
 In-band credit pkt xmit: 7 rcvd: 2434422

Last credit packet snapshot
 PADG xmit: seq_num = 32928, fcn = 0, bcn = 65535
 PADG rcvd: seq_num = 32928, fcn = 65535, bcn = 65535
 PADQ xmit: seq_num = 32928, fcn = 65535, bcn = 65535
 PADQ xmit: seq_num = 32928, fcn = 65535, bcn = 65535
 PADQ xmit: seq_num = 32928, fcn = 65535, bcn = 65535
 PADQ xmit: seq_num = 32928, fcn = 65535, bcn = 65535

==== PADQ Statistics ====
 PADQ xmit: 0 rcvd: 0
Verifying RAR Session Details

session id: 10
local MAC address: 006b.f10e.a5e1, remote MAC address: 0050.56bc.7dcb
virtual access interface: V12.2, outgoing interface: Gi0/0/1
1389302 packets sent, 1852 received
7786922 bytes sent, 142156 received

PPPoE Flow Control Stats
Local Credits: 65535 Peer Credits: 65535 Local Scaling Value 64 bytes
Credit Grant Threshold: 28000 Max Credits per grant: 65535
Credit Starved Packets: 0
PADG xmit Seq Num: 18787 PADG Timer index: 0
PADG last rcvd Seq Num: 18784
PADG last nonzero Seq Num: 18768
PADG last nonzero rcvd amount: 2
PADG xmit: 18787 rcvd: 18784
PADC xmit: 18784 rcvd: 18787
In-band credit pkt xmit: 1387764 rcvd: 956
Last credit packet snapshot
PADG xmit: seq_num = 18787, fcn = 0, bcn = 65535
PADC rcvd: seq_num = 18787, fcn = 65535, bcn = 65535
PADC xmit: seq_num = 18784, fcn = 65535, bcn = 65535
In-band credit pkt rcvd: fcn = 0, bcn = 65534

Router#show pppoe session packets
Total PPPoE sessions 2

<table>
<thead>
<tr>
<th>SID</th>
<th>Pkts-In</th>
<th>Pkts-Out</th>
<th>Bytes-In</th>
<th>Bytes-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2439391</td>
<td>1651</td>
<td>117252098</td>
<td>176714</td>
</tr>
<tr>
<td>10</td>
<td>1858</td>
<td>1389306</td>
<td>142580</td>
<td>77869914</td>
</tr>
</tbody>
</table>

Router#show vmi counters
Interface vmi2: - Last Clear Time -

Input Counts:
- Process Enqueue = 0 (VMI)
- Fastswitch = 0
- VMI Punt Drop:
 - Queue Full = 0

Output Counts:
- Transmit:
 - VMI Process DQ = 4280
 - Fastswitch VA = 0
 - Fastswitch VMI = 0
- Drops:
 - Total = 0
 - QOS Error = 0
 - VMI State Error = 0
 - Mcast NBR Error = 0
 - Ucast NBR Error = 0

Interface vmi3: - Last Clear Time -

Input Counts:
- Process Enqueue = 0 (VMI)
- Fastswitch = 0
- VMI Punt Drop:
Queue Full = 0

Output Counts:
Transmit:
- VMI Process DQ = 2956
- Fastswitch VA = 0
- Fastswitch VMI = 0
Drops:
- Total = 0
- QOS Error = 0
- VMI State Error = 0
- Mcast NBR Error = 0
- Ucast NBR Error = 0

Interface vmi4: - Last Clear Time -

Input Counts:
- Process Enqueue = 0 (VMI)
- Fastswitch = 0

VMI Punt Drop:
- Queue Full = 0

Output Counts:
Transmit:
- VMI Process DQ = 0
- Fastswitch VA = 0
- Fastswitch VMI = 0
Drops:
- Total = 0
- QOS Error = 0
- VMI State Error = 0
- Mcast NBR Error = 0
- Ucast NBR Error = 0

Router# show vmi neighbor details

1 vmi2 Neighbors
1 vmi3 Neighbors
0 vmi4 Neighbors
2 Total Neighbors

vmi2 IPV6 Address=FE80::21E:E6FF:FE43:F500
IPV6 Global Addr=::
IPV4 Address=92.92.2.2, Uptime=05:15:01
Output pkts=89, Input pkts=0
No Session Metrics have been received for this neighbor.
Transport PPPoE, Session ID=9

INTERFACE STATS:
- VMI Interface=vmi2,
 Input qcount=0, drops=0, Output qcount=0, drops=0
- V-Access intf=Virtual-Access2.1,
 Input qcount=0, drops=0, Output qcount=0, drops=0
- Physical intf=GigabitEthernet0/0/0,
 Input qcount=0, drops=0, Output qcount=0, drops=0

PPPoE Flow Control Stats
Local Credits: 65535 Peer Credits: 65535 Local Scaling Value 64 bytes
Credit Grant Threshold: 28000 Max Credits per grant: 65535
Credit Starved Packets: 0
PADG xmit Seq Num: 33038 PADG Timer index: 0
PADG last rcdv Seq Num: 17423
PADG last nonzero Seq Num: 17420
PADG last nonzero rcdvd amount: 2
Verifying RAR Session Details

Router#show vmi neighbor details vmi 2
1 vmi2 Neighbors

vmi2 IPv6 Address=FE80::21E:E6FF:FE43:F500
IPv6 Global Addr=::
Output pkts=6, Input pkts=0
METRIC DATA: Total rcvd=1, Avg arrival rate (ms)=0
 CURRENT: MDR=128000 bps, CDR=128000 bps
 Lat=0 ms, Res=100, RLQ=100, load=0
 MDR Max=128000 bps, Min=128000 bps, Avg=128000 bps
 CDR Max=128000 bps, Min=128000 bps, Avg=128000 bps
 Latency Max=0, Min=0, Avg=0 (ms)
 Resource Max=100%, Min=100%, Avg=100%
 RLQ Max=100, Min=100, Avg=100
 Load Max=0%, Min=0%, Avg=0%
Transport PPPoE, Session ID=10
INTERFACE STATS:
 VNI Interface=vmi3,
 Input qcount=0, drops=0, Output qcount=0, drops=0
 V-Access intf=Virtual-Access2.2,
 Input qcount=0, drops=0, Output qcount=0, drops=0
 Physical intf=GigabitEthernet0/0/1,
 Input qcount=0, drops=0, Output qcount=0, drops=0
PPPoE Flow Control Stats
Local Credits: 65535 Peer Credits: 65535 Local Scaling Value 64 bytes
Credit Grant Threshold: 28000 Max Credits per grant: 65535
Credit Starved Packets: 0
PADG xmit Seq Num: 18896 PADG Timer index: 0
PADG last rcvd Seq Num: 18894
PADG last nonzero Seq Num: 18884
PADG last nonzero rcvd amount: 2
PADG Timers: (ms) [0]-1000 [1]-2000 [2]-3000 [3]-4000 [4]-5000
PADG xmit: 18896 rcvd: 18894
PADG xmit: 18894 rcvd: 18896
In-band credit pkt xmit: 1387764 rcvd: 961
Last credit packet snapshot
 PADG xmit: seq_num = 18896, fcn = 0, bcn = 65535
 PADG rcvd: seq_num = 18896, fcn = 65535, bcn = 65535
 PADG rcvd: seq_num = 18894, fcn = 0, bcn = 65535
 PADG rcvd: seq_num = 18894, fcn = 0, bcn = 65535
 PADG xmit: seq_num = 18894, fcn = 65535, bcn = 65535
 PADG xmit: seq_num = 18894, fcn = 65535, bcn = 65535
In-band credit pkt xmit: fcn = 0, bcn = 64222
In-band credit pkt rcvd: fcn = 0, bcn = 65534

--- PADQ Statistics ---
PADQ xmit: 0 rcvd: 1
IPV4 Address=92.92.2.2, Uptime=05:16:03
Output pkts=89, Input pkts=0
No Session Metrics have been received for this neighbor.
Transport PPoE, Session ID=9

INTERFACE STATS:
VMI Interface=vmi2,
Input qcount=0, drops=0, Output qcount=0, drops=0
V-Access intf=Virtual-Access2.1,
Input qcount=0, drops=0, Output qcount=0, drops=0
Physical intf=GigabitEthernet0/0/0,
Input qcount=0, drops=0, Output qcount=0, drops=0

PPPoE Flow Control Stats
Local Credits: 65535 Peer Credits: 65535 Local Scaling Value 64 bytes
Credit Grant Threshold: 28000 Max Credits per grant: 65535
Credit Starved Packets: 0
PADG xmit Seq Num: 33100 PADG Timer index: 0
PADG last rcvd Seq Num: 17485
PADG last nonzero Seq Num: 17449
PADG last nonzero rcvd amount: 2
PADG Timers: (ms) [0]-1000 [1]-2000 [2]-3000 [3]-4000 [4]-5000
PADG xmit: 33480 rcvd: 17485
PADG xmit: 17485 rcvd: 19881
In-band credit pkt xmit: 7 rcvd: 2434460
Last credit packet snapshot
PADG xmit: seq_num = 33100, fcn = 0, bcn = 65535
PADG rcvd: seq_num = 33100, fcn = 65535, bcn = 65535
PADG rcvd: seq_num = 17485, fcn = 0, bcn = 65535
PADG xmit: 33595 rcvd: 17600
PADC xmit: 17600 rcvd: 19996
In-band credit pkt xmit: fcn = 61, bcn = 65533
In-band credit pkt rcvd: fcn = 0, bcn = 65534

Router#show platform hardware qfp active feature ess session
Current number sessions: 2
Current number TC flow: 0
Feature Type: A=Accounting D=Policing(DRL) F=FFR M=DSCP Marking L=L4redirect P=Portbundle T=TC

<table>
<thead>
<tr>
<th>Session</th>
<th>Type</th>
<th>Segment1</th>
<th>SegType1</th>
<th>Segment2</th>
<th>SegType2</th>
<th>Feature</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>PPP</td>
<td>0x00000001500001022</td>
<td>PPPOE 0x00000001500002023</td>
<td>LTERM</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>PPP</td>
<td>0x0000001800004027</td>
<td>PPPOE 0x0000001800004027</td>
<td>LTERM</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Router#show platform software subscriber pppoe_fctl evsi 21
PPPoE Flow Control Stats
Local Credits: 65535 Peer Credits: 65535 Local Scaling Value 64 bytes
Credit Grant Threshold: 28000 Max Credits per grant: 65535
Credit Starved Packets: 0
PADG xmit Seq Num: 33215 PADG Timer index: 0
PADG last rcvd Seq Num: 17600
PADG last nonzero Seq Num: 17554
PADG last nonzero rcvd amount: 2
PADG Timers: (ms) [0]-1000 [1]-2000 [2]-3000 [3]-4000 [4]-5000
PADG xmit: 33595 rcvd: 17600
PADC xmit: 17600 rcvd: 19996
In-band credit pkt xmit: 7 rcvd: 2434485
Last credit packet snapshot
PADG xmit: seq_num = 33215, fcn = 0, bcn = 65535
PADG rcvd: seq_num = 33215, fcn = 65535, bcn = 65535
PADG rcvd: seq_num = 17600, fcn = 0, bcn = 65535

Cisco CSR 1000v and Cisco ISRx Software Configuration Guide
Verifying RAR Session Details

Router# show platform hardware qfp active feature ess session id 21
Session ID: 21

EVSI type: PPP
SIP Segment ID: 0x15000001022
SIP Segment type: PPPoE
FSP Segment ID: 0x1500002023
FSP Segment type: LTERM
QFP if handle: 16
QFP interface name: EVSI21
SIP TX Seq num: 0
SIP RX Seq num: 0
FSP TX Seq num: 0
FSP RX Seq num: 0
Condition Debug: 0x00000000

Router# show ospfv3 neighbor
OSPFv3 1 address-family ipv4 (router-id 3.3.3.3)
Neighbor ID Pri State Dead Time Interface ID Interface
1.1.1.1 0 FULL/ - 00:01:32 19 Virtual-Access2.1

OSPFv3 1 address-family ipv6 (router-id 3.3.3.3)
Neighbor ID Pri State Dead Time Interface ID Interface
1.1.1.1 0 FULL/ - 00:01:52 19 Virtual-Access2.1

Router# sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
I - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
L - IS-IS inter area, * - candidate default, U - per-user static route
O - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

90.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
C 90.0.0.0/24 is directly connected, Virtual-Access2.1
O 90.90.0.4/32 [110/1] via 90.90.0.4, 00:00:03, Virtual-Access2.1
L 90.90.0.5/32 is directly connected, Virtual-Access2.1
92.0.0.0/32 is subnetted, 1 subnets
C 92.92.2.21 is directly connected, Virtual-Access2.1
CHAPTER 18

Configuring Support for Remote Management by the Cisco Prime Network Services Controller

- Configuring the Management Interface to Support Remote Management by the Cisco Prime Network Services Controller, on page 331
- Enabling Remote Management by the Cisco Prime Network Services Controller Host, on page 334
- Disabling Remote Management by the Cisco Prime Network Services Controller Host, on page 336

Configuring the Management Interface to Support Remote Management by the Cisco Prime Network Services Controller

Note

The Cisco Prime Network Services Controller is unsupported using Cisco IOS XE Denali 16.3.1 or later, on the Cisco CSR 1000v.

(Cisco IOS XE Denali 16.3 or earlier) You can use the Cisco Prime Network Services Controller to provision, manage and monitor the Cisco CSR 1000v. This procedure configures the Cisco CSR 1000v management interface to support remote management using the Cisco Prime Network Services Controller.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface mgmt-interface
4. ip address mgmt-ipv4-addr subnet-mask
5. no shutdown
6. exit
7. interface virtualportgroup virtual-port-group-number-number
8. ip unnumbered management-interface
9. no shutdown
10. exit
11. virtual-service csr_mgmt
12. vnic gateway virtualportgroup virtual-port-group-number
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
<p>| Example: Router> enable | |
| Step 2 configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal | |
| Step 3 interface mgmt-interface | Enters interface configuration mode for the management interface. |
| Example: Router(config)# interface gig1 | |
| Step 4 ip address mgmt-ipv4-addr subnet-mask | Configures the IP address for the management interface. |
| Example: Router(config-if)# ip address 172.25.29.235 255.255.255.128 | |
| Step 5 no shutdown | Enables the management interface. |
| Example: Router(config-if)# no shutdown | |
| Step 6 exit | Exits interface configuration mode. |
| Example: Router(config-if)# exit | |
| Step 7 interface virtualportgroup virtual-port-group-number-number | Creates a virtual port group and enters virtual port group interface configuration mode. |
| Example: Router(config)# interface virtualportgroup 0 | |
| Step 8 ip unnumbered management-interface | Enables IP processing on an interface without assigning it an explicit IP address. |
| Example: | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# ip unnumbered gigabitethernet1</code></td>
<td>Enables the management interface.</td>
</tr>
<tr>
<td>Step 9 no shutdown</td>
<td>Exits virtual port group interface mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Configures the <code>csr_mgmt</code> virtual services container and enters virtual services configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11 virtual-service csr_mgmt</td>
<td>Creates a vNIC gateway interface for the virtual services container and maps the vNIC gateway interface to the virtual port group.</td>
</tr>
<tr>
<td>Example: Router(config)# virtual-service csr_mgmt</td>
<td></td>
</tr>
<tr>
<td>Step 12 vnic gateway virtualportgroup virtual-port-group-number</td>
<td>Configures the remote-management IP address for the vNIC gateway interface for the virtual services container.</td>
</tr>
<tr>
<td>Example: Router(config-virt-serv)# vnic gateway virtualportgroup 0</td>
<td></td>
</tr>
<tr>
<td>Step 13 guest ip address remote-mgmt-ipv4-addr</td>
<td>Exits virtual services interface configuration mode and enters virtual services configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-virt-serv-intf) guest ip address 172.25.29.236</td>
<td></td>
</tr>
<tr>
<td>Step 14 exit</td>
<td>Activates the <code>csr_mgmt</code> virtual services container.</td>
</tr>
<tr>
<td>Example: Router(config-virt-serv-intf)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 15 activate</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-virt-serv)# activate</td>
<td></td>
</tr>
<tr>
<td>Step 16 end</td>
<td>Exits virtual services configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-virt-serv)# end</td>
<td></td>
</tr>
</tbody>
</table>
Enabling Remote Management by the Cisco Prime Network Services Controller Host

Purpose

Command or Action

Step 17

ip route ip-address subnet-mask virtualportgroup virtual-port-group-number

Example:

Router(config)# ip route 172.25.29.236 255.255.255.255 VirtualPortGroup0

Purpose

Creates an IP route that maps to the virtual port group. Use the same IP address that was configured using the guest ip address command.

Enabling Remote Management by the Cisco Prime Network Services Controller Host

Note

The Cisco Prime Network Services Controller is unsupported using Cisco IOS XE Denali 16.3.1 or later, on the Cisco CSR 1000v.

The Cisco Prime Network Services Controller control point agent (CPA) is used to manage the interface between the Cisco CSR 1000v and the Cisco Prime Network Services Controller host. The Cisco Prime Network Services Controller CPA must be activated on the Cisco CSR 1000v before Cisco Prime Network Services Controller can be used to remotely manage the router.

You must use the Cisco IOS XE CLI to manually activate the Cisco Prime Network Services Controller CPA in the following situations:

• If you did not enable Cisco Prime Network Services Controller support through bootstrap when you deployed the OVA.

• If you are manually configuring the Cisco CSR 1000v when it is up and running.

For more information about installing the Cisco CSR 1000v by deploying the OVA, see Deploying the Cisco CSR 1000v OVA to the VM using vSphere, on page 75 and Deploying the Cisco CSR 1000v OVA to the VM using COT, on page 83.

SUMMARY STEPS

1. enable
2. configure terminal
3. remote-management
4. pnscc host ipv4-addr local-port number shared-secret string
5. end
6. show remote-management status

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 remote-management</td>
<td>Enters remote-management configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# remote-management</td>
<td></td>
</tr>
<tr>
<td>Step 4 pnsc host ipv4-addr local-port number shared-secret string</td>
<td>Enables remote management by Cisco Prime Network Services Controller and sets up the access to the Cisco Prime Network Services Controller host.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-remote-mgmt)# pnsc host 172.25.29.234 local-port 8443 shared-secret ********</td>
<td>• The ipv4-address represents the IP address of the Cisco Prime Network Services Controller host.</td>
</tr>
<tr>
<td></td>
<td>• The local-port is the TCP port number for receiving the HTTPS requests from Cisco Prime Network Services Controller. The valid range is from 1 to 65535. There is no default port number. The local-port number should not be the same port number configured with the ip http port command.</td>
</tr>
<tr>
<td></td>
<td>• The shared-secret configured in this step should match the shared-secret configured on Cisco Prime Network Services Controller. Once configured, only the encrypted version of the shared secret is displayed.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When remote management by Cisco Prime Network Services Controller is enabled using this command, the REST API PUT, POST, and DELETE operations are disabled. However, the GET operation is still available.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-remote-mgmt)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show remote-management status</td>
<td>Displays the Cisco CSR 1000v remote management settings.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show remote-management status</td>
<td>RESTful-API: enabled</td>
</tr>
</tbody>
</table>
What to do next

Once remote management by Cisco Prime Network Services Controller is enabled, the following warning is displayed when entering the Cisco IOS XE CLI mode directly on the router:

WARNING: This device is managed by Prime Network Services Controller. RESTful API is read only. Changing configuration using CLI is not recommended.

See documentation for Cisco Prime Network Services Controller.

Disabling Remote Management by the Cisco Prime Network Services Controller Host

SUMMARY STEPS

1. enable
2. configure terminal
3. remote-management
4. no pnsc host ipv4-addr local-port number shared-secret string
5. end
6. show remote-management status

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>remote-management</td>
<td>Enters remote-management configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# remote-management</td>
<td>Disables remote management by Cisco Prime Network Services Controller.</td>
</tr>
<tr>
<td>Step 4 no pnsc host ipv4-addr local-port number shared-secret string</td>
<td>Step 4 no pnsc host 172.25.29.234 local-port 8443 shared-secret ********
Example:
Router(cfg-remote-mgmt)# no pnsc host 172.25.29.234 local-port 8443 shared-secret ********</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Step 5 end
Example:
Router(cfg-remote-mgmt)# end</td>
</tr>
<tr>
<td>Step 6 show remote-management status</td>
<td>Step 6 show remote-management status
Example:
Router# show remote-management status
RESTful-API: enabled
https port: 443
PNSC CPA: disabled
Host 172.27.208.125 port 8443 shared-secret ********</td>
</tr>
</tbody>
</table>
CHAPTER 19

Configuring the vCPU Distribution across the Data, Control and Service Planes

- Information About vCPU Allocation and Distribution, on page 339
- How to Boot the Cisco CSR 1000v with an OVA image, on page 341
- How to Configure vCPU Distribution across the Data, Control and Service Planes, on page 342
- Determine the Active vCPU Distribution Template, on page 342

Information About vCPU Allocation and Distribution

You can allocate and distribute the vCPUs of the following planes: Control Plane(CP), Data Plane(DP), and Service Plane(SP) by using templates. Note that the Service Plane includes containers running SNORT.

Use one of the following templates for vCPU distribution:

vCPU Distribution: Control Plane Extra heavy

The following table shows the vCPU distribution for the Control Plane Extra heavy template.

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Service Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Data Plane</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Note

Using an Control Plane Extra heavy template, a service plane app can obtain 1.5 full cores for its operation. Example: WAAS.
vCPU Distribution: Control Plane heavy

The following table shows the vCPU distribution for the Control Plane heavy template.

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Service Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Data Plane</td>
<td>1/3</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

The Control Plane heavy template allocates an extra core to the Control Plane/Service Plane services, compared to the Data Plane heavy template (there is one core for the Control Plane and another core for the Service Plane). If there is no Service Plane application, the Control Plane can utilize all of the resources (2 cores).

vCPU Distribution: Data Plane heavy

This Data Plane heavy template is the default vCPU Distribution template.

The following table shows the vCPU distribution for the Data Plane heavy template.

<table>
<thead>
<tr>
<th>Number of vCPUs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Service Plane</td>
<td>1/3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Data Plane</td>
<td>1/3</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

By default, the Cisco CSR 1000v core allocation favors a larger data plane for performance. If there is no Service Plane application, the Control Plane can utilize the Service Plane's resources.

vCPU Distribution: Data Plane normal

You can use the vCPU distribution for the Data Plane normal template to force the Cisco CSR 1000v to behave in the same way as before using a template for vCPU distribution.
For example, after creating a Cisco CSR 1000v VM using the Data Plane heavy template for vCPU distribution, specified in the ovf-env.xml file, you can later use CLI commands in the Data Plane normal template to override the XML file settings that were previously applied by the Data Plane heavy template.

vCPU Distribution: Service Plane heavy

The following table shows the vCPU distribution for the Service Plane heavy template.

<table>
<thead>
<tr>
<th>Table 50: Service Plane heavy - vCPU Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of vCPUs</td>
</tr>
<tr>
<td>Control Plane</td>
</tr>
<tr>
<td>Service Plane</td>
</tr>
<tr>
<td>Data Plane</td>
</tr>
</tbody>
</table>

Note

Using a Service Plane heavy template, a Service Plane application (such as Snort IPS) can use up to 2 full cores for its operation.

vCPU Distribution: Service Plane medium

The following table shows the vCPU distribution for the Service Plane medium template.

<table>
<thead>
<tr>
<th>Table 51: Service Plane medium—vCPU Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of vCPUs</td>
</tr>
<tr>
<td>Control Plane</td>
</tr>
<tr>
<td>Service Plane</td>
</tr>
<tr>
<td>Data Plane</td>
</tr>
</tbody>
</table>

How to Boot the Cisco CSR 1000v with an OVA image

To boot the Cisco CSR 1000v with an OVA image, boot from a CDROM containing the ovf-env.xml file. This XML file contains the vCPU distribution templates. A template is simply an additional bootstrap property. For more information about bootstrap properties, see Bootstrapping the CSR Configuration.

This is an example of the part of the XML file that specifies a Service Plane medium template: `<Property oe:key="com.cisco.csr1000v.resource-template.1" oe:value="service_plane_medium"/>`
How to Configure vCPU Distribution across the Data, Control and Service Planes

Enter the `platform resource` command on the Cisco CSR 1000v to select a template for vCPU distribution.

```console
configure template
platform resource template
```

Example:

```console
Router# configure template
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# platform resource ?
  control-plane-extra-heavy Use Control Plane Extra Heavy template
  control-plane-heavy Use Control Plane Heavy template
  data-plane-heavy Use Data Plane Heavy template
  data-plane-normal Use Data Plane Normal template
  service-plane-heavy Use Service Plane Heavy template
  service-plane-medium Use Service Plane Medium template
Router(config)# platform resource service-plane-heavy
```

Note
After entering the `platform resource` command, you must reboot the Cisco CSR 1000v to activate the template.

Determine the Active vCPU Distribution Template

To determine which template is being used for vCPU distribution, use the following command:

```console
show platform software cpu alloc
```

Example:

```console
Router# show platform software cpu alloc
CPU alloc information:
Control plane cpu alloc: 0-1
Data plane cpu alloc: 2-3
Service plane cpu alloc: 0-1
Template used: CLI-service_plane_heavy
```

Note
The Control plane and the Service plane share cores 0 and 1.
CHAPTER 20

Performing a Factory Reset

This chapter provides information on performing a factory reset for a CSR 1000v instance. The factory reset feature helps remove any sensitive information from the router, or to reset the router to a fully functional state.

- Information About Factory Reset, on page 343
- Prerequisites for Performing Factory Reset, on page 344
- Restrictions for Performing a Factory Reset, on page 344
- How to Perform a Factory Reset, on page 344
- What Happens after a Factory Reset, on page 346

Information About Factory Reset

The factory reset is a process of clearing the current running and start up configuration information on a router, and resetting the router to an earlier, fully functional state. The factory reset process uses the `factory-reset all` command.

Note

The time taken for factory reset on a CSR 1000v instance is dependent on factors such as the type of storage and the devices present on the router.

Information deleted:

When you perform a factory reset, the following information is deleted:

- Licenses – user installed, and manufacturer provided
- Non-volatile random-access memory data
- User credentials
- Start-up configuration
- All writable file systems and personal data
- ROMMON variable
- Persistent storage devices
- Any containers running on bootflash
Information retained:

However, the following information will be retained even after the factory reset:

- Critical information including files that provide access to the router after the reset is complete
- The software packages that are installed before you perform factory reset
- UDI and Smart Licensing files

Supported Scenarios:

You can use the factory reset feature in the following scenarios:

- When you want to delete a CSR 1000v instance in a secure manner.
- If the router data is compromised due to a malicious attack, you must reset the router to factory configuration and then reconfigure once again for further use.

Supported Platforms:

Factory reset is supported on a CSR 1000v instance running on all the platforms including Amazon Web Services, Microsoft Azure, GCP cloud, VMware ESXi, and Hyper-V.

Prerequisites for Performing Factory Reset

- Ensure that your CSR 1000v instance is running on 16.11.x release or later.
- Ensure that you take a backup of all the software images, configurations and personal data before performing the factory reset operation.
- Ensure that there is uninterrupted power supply when the feature reset process is in progress.
- Ensure that the instance has at least 8 GB memory in the bootflash.

Restrictions for Performing a Factory Reset

- Any software patches that are installed on the router are not restored after the factory reset operation.
- You must not restart the CSR 1000v instance during the factory reset process.
- If the factory reset command is issued through a Virtual Teletype (VTY) session, the session is not restored after the completion of the factory reset process.
- Any CSR 1000v instance running on 16.10.x release or earlier does not support this functionality.

How to Perform a Factory Reset

Step 1 Log in to a CSR 1000v instance running a 16.11 IOS-XE image or later.
Step 2
At the command prompt, execute the **factory-reset all** command.

The system displays the following:

```
factoryreset#factory-reset all
The factory reset operation is irreversible for all operations. Are you sure? [confirm]
The following will be deleted as a part of factory reset:
1: All writable file systems and personal data
2: Licenses
3: Configuration
4: User Credentials
The system will reload to perform a factory reset.
Do not stop or interrupt the power during reset
Are you sure you want to continue? [confirm]
Connection to 35.231.25.29 closed by remote host.
Connection to 135.231.25.29 closed.
```

Step 3
Enter **confirm** to proceed with the factory reset.

Note
The time taken for the factory reset process depends on the type of storage and on which cloud service you deploy the CSR instances.

Note
If you want to quit the factory reset process, press the **Escape** key.

What to do next

After the factory reset process is completed, you receive a log file in the bootflash that indicates whether the process was successful or not.

Restoring Smart Licensing after a Factory Reset

After the reset, Smart Licensing configuration is also deleted. You must reconfigure Smart Licensing on the router by using the token ID. In the connected mode, when you register your instance for Smart Licensing, you must use the force option. That is, you must use the `license smart register id token *****token***** force` command. The registration process begins.

When you do not use the force option, and configure Smart Licensing directly, the license registration fails. The following is an example of a failed registration output:

```
router#show license status
csr1#show license status
Smart Licensing is ENABLED

Utility:
  Status: DISABLED

Data Privacy:
  Sending Hostname: yes
  Callhome hostname privacy: DISABLED
  Smart Licensing hostname privacy: DISABLED
  Version privacy: DISABLED

Transport:
  Type: Callhome

Registration:
  Status: UNREGISTERED - REGISTRATION FAILED
```
What Happens after a Factory Reset

After the factory reset is successfully completed, the router boots up. However, before the factory reset process started, if the configuration register was set to manually boot from ROMMON, the router stops at ROMMON.

Important

If the current boot image is a remote image or is stored in a USB or a NIM-SSD, ensure that you take a backup of the image before starting the factory reset process.
Factory reset does not change the UDI of the CSR 1000v instance. To verify whether the UDI is the same after the factory reset, execute the `factoryreset#show license udi` command before and after the factory reset process.

After you configure Smart Licensing, execute the `#show license status` command, to check whether Smart Licensing is enabled for your instance.

Note

If you had SLR enabled before you performed the factory reset, use the same license and enter the same license key that you received from the smart agent.
Configure High Availability

High Availability refers to the ability to establish redundancy of networking functionality and configuration data between two peer routers. This chapter provides overview information on high availability, and how you can configure high availability on a Cisco CSR 1000v instance running on different cloud service providers.

- Overview of High Availability Version 3, on page 349
- Configure High Availability Version 3, on page 353
- Configure High Availability for CSR 1000v Running on Azure, on page 363
- Configure High Availability on CSR Running on Amazon Web Services, on page 379
- Configure High Availability in CSR 1000v Running On Google Cloud Platform, on page 385
- Example Configurations, on page 391
- Verify High Availability, on page 391
- Troubleshoot High Availability Issues, on page 391

Overview of High Availability Version 3

The High Availability feature is supported for Cisco CSR 1000v Routers running on Microsoft Azure, Google Cloud Platform (GCP), and Amazon Web Services (AWS). A typical use case for the CSR 1000v is to interconnect two subnets within a virtual network. You can deploy Cisco CSR 1000v routers between the front-end (public) and the back-end (private) subnets. The Cisco CSR 1000v router represents a single point of failure for access to back-end resources. To mitigate this single point of failure, you must deploy two CSR 1000v routers between the two subnets.

The back-end subnet contains a routing table with entries pointing to the next hop router, which is one of the two Cisco CSR 1000vs. The peer Cisco CSR 1000v routers communicate with one another over a tunnel using the Bi-directional Forwarding Detection (BFD) protocol. If the connection is lost between a router and a peer, BFD generates an event. This event causes the active router that is working to update the entries in the route table so that the routing table points to the default route.

The routing table controls the upstream traffic of the Cisco CSR 1000v router and the routing protocol configured on the router determines the path of the downstream traffic.

In cloud environments, it is common for virtual networks to implement a simplistic mechanism for routing, which is based on a centralized route table. However, you can also create multiple route tables, where each route table has a subnet assigned. This subnet acts as the source of route information, and the route table is populated automatically which includes one or more individual routes depending on the network topology. You can also configure the routes in the route table.
A subnet has a centralized route table, which allows two Cisco CSR 1000v routers to operate in a redundant mode. You can deploy two Cisco CSR 1000v routers in the same virtual network with their interfaces directly connected to subnets in the virtual network. You can add routes to the route table to point to one of the two redundant CSR 1000v routers. At any given time, one of the two Cisco CSR 1000v routers serves as the next-hop router for a subnet. This router is the active router for the subnet. The peer router is referred to as the passive router. The active router is the next hop for a given route destination.

The Cisco CSR 1000v router uses the Bi-directional Failure Detection (BFD) protocol to detect whether a peer router is operating properly. An IP tunnel is created between the two peer routers and each router periodically sends a BFD protocol message to the other router. If one router fails to receive a BFD message from the peer for a specific period, the active router concludes that the peer router has failed.

If the active router fails, the route table for the subnet can be dynamically updated to change the next hop address for one or more routes so that they refer to the passive router. If the peer router detects the failure of the active router, the peer router uses the programmatic API to update the route table entries.

For a route table entry, configure which of the two Cisco CSR 1000v routers is the “primary” router. The other router is the passive router if it is configured as a “secondary” router. By default, all routes are configured as secondary.

Figure 10: High Availability Version 3

The subnet on the right has an address block of 12.1.0.0/24. The two Cisco CSR 1000v routers that are connected to this subnet provide a redundant path for traffic leaving this leaf subnet. The subnet is associated with a route table which provides the route information to the virtual machines attached to the subnet.

Consider this scenario: Initially the default route in the route table has the IP address of the next hop router - 12.1.0.4 (CSR A). All the traffic leaving the subnet goes through CSR A. CSR A is currently the active router for the default route. When CSR A fails, CSR B detects the failure as this router stops receiving BFD protocol messages from CSR A. CSR B writes to the route table via a RESTAPI to change the default route to the
interface of CSR B on the 12.1.0.0/24 subnet, which is IP address 12.1.0.5. CSR B then becomes the active router for the route to the 15.0.0.0 network.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CSR A with address 12.1.0.4 is the active router for the 15.0.0.0 network.</td>
</tr>
<tr>
<td>B</td>
<td>CSR A fails. CSR B detects the failure using the BFD protocol.</td>
</tr>
<tr>
<td>C</td>
<td>CSR B uses an HTTP request to the Azure REST API.</td>
</tr>
<tr>
<td>D</td>
<td>Azure updates the 15.0.0.0 route in the user-defined route table to the IP address of CSR B.</td>
</tr>
<tr>
<td>E</td>
<td>Virtual machines see the route table update.</td>
</tr>
<tr>
<td>F</td>
<td>Packets from the virtual machines are now directed to CSR B.</td>
</tr>
</tbody>
</table>

Topologies Supported

1-for-1 redundancy topology: If both the Cisco CSR 1000v routers have a direct connection to the same subnet, the routers provide a 1-for-1 redundancy. An example of 1-for-1 redundancy is shown in the preceding figure. All the traffic that is intended for a Cisco CSR 1000v only goes to one of the routers - the Cisco CSR 1000v that is currently active. The active Cisco CSR 1000v router is the next-hop router for a subnet. The other Cisco CSR 1000v router is the passive router for all the routes.

Load sharing topology: In this topology, both the Cisco CSR 1000v routers have direct connections to different subnets within the same virtual network. Traffic from subnet A goes to router A and traffic from subnet B goes to router B. Each of these subnets is bound to different route tables. If router A fails, the route table for subnet A is updated. Instead of router A being the next hop, the route entry is changed to router B as the next hop. If router B fails, the route table for subnet B is updated. Instead of router B being the next hop, the route entry is changed to router A as the next hop.

Redundancy Nodes

A redundancy node is a set of configuration parameters that specifies an entry in a route table. The next hop of a route is updated when an active router fails. To configure a redundancy node, you require the following information:

- Route Table – The identity of the route table in the cloud. Route table includes a region or group in which the table was created, an identifier for the creator or the owner of the table, and a name or identifier for the specific table. Optionally, you can specify an individual route within the table. If you do not specify an individual route, the redundancy node represents all the routes in the table.

- Credentials - Authentication of the identity of the Cisco CSR 1000v router. Each cloud provider handles the process of obtaining and specifying the credentials differently.

- Next Hop - The next hop address that is written to the route entry when a trigger event occurs. Next Hop is usually the interface of the CSR 1000v routers on the subnet that is protected.
Event Types

The high availability feature recognizes and responds to three types of events:

- **Peer Router Failure**: When the peer route fails, it is detected as a Peer Router Failure event. In response to this event, the event handler writes the route entry with the next hop address that is defined in the redundancy node. To enable this event to be generated, configure the BFD protocol to a peer router and associate the BFD peer under redundancy for cloud high availability.

- **Revert to Primary Router**: After a router recovers from a failure, the *Revert to Primary Router* event occurs. The purpose of this event is to ensure that the primary router for the route is re-established as the active router. This event is triggered by a timer and you need not configure this event. In the route table entry, the event handler changes the next hop address that is defined in the redundancy node only if it is different from the next hop address that is currently set for the route. This *Revert to Primary Router* event is generated periodically using a CRON job in the guestshell environment. The job is scheduled to run every 5 minutes and checks if each redundancy node that is configured in the primary mode has this router’s next hop interface set in the route table. If the route table entry already points to this router’s next hop interface, then an update is not required. If a redundancy node configuration of the mode parameter is secondary, then the *Revert to Primary Router* event is ignored.

- **Redundancy Node Verification**: The event handler detects a Redundancy Node Verification event and reads the route entry that is specified by the redundancy node. The event handler writes the same data back to the route entry. This event is not generated automatically or algorithmically. This event verifies the ability of the event handler to execute its functions. Execute a script, manually or programmatically, to trigger the Redundancy Node verification event. For further information about the verification event, see *User-Defined Triggers*, in the *Advanced Programming for High Availability on Microsoft Azure* section.

High Availability Versions and OS Compatibility

Choose one of the following deployment options for High Availability on Microsoft Azure, on Cisco IOS XE Fuji 16.11.x:

- **High Availability Version 1**: This version is supported in Cisco IOS XE Fuji 16.11.x. However, this will be deprecated in a future release. If you attempt to configure redundancy nodes in IOS, you will receive a warning that the configuration will be deprecated.

- **High Availability Version 2 with Redundancy Node Configuration**: This version allows you to continue using your existing redundancy node configurations. However, this deployment option will be deprecated in a future release of Cisco IOS XE.
What’s New in High Availability Version 3

The first version of high availability in the AWS cloud was introduced in Cisco IOS XE 16.3.1. The second version of high availability or HA Version 2 was released in Cisco IOS XE Fuji 16.5.1.

HA Version 3 is released in Cisco IOS XE Gibraltar 16.11.1. This high availability version supports several new features, a new configuration, and a deployment mechanism. Here’s an overview of what’s new in high availability version 3:

- **Cloud Agnostic**: This version of high availability is functional on CSR 1000v routers running on any cloud service provider. While there are some differences in the cloud terminology and parameters, the set of functions and scripts used to configure, control, and show the high availability features are common across the different cloud service providers. High Availability Version 3 (HAv3) is supported in CSR 1000v routers running on AWS, Azure, and GCP. Support for the GCP provider has been added in 16.11.1. Check with Cisco for current support of high availability in the individual provider’s clouds.

- **Active/active operation**: You can configure both Cisco CSR 1000v routers to be active simultaneously, which allows for load sharing. In this mode of operation, each route in a route table has one of the two routers serve as the primary router and the other router as the secondary router. To enable load sharing, take all the routes and split them between the two Cisco CSR 1000v routers. Note that this functionality is new for AWS-based clouds.

- **Reversion to Primary CSR After Fault Recovery**: You can designate a Cisco CSR 1000v as the primary router for a given route. While this Cisco CSR 1000v is up and running, it is the next hop for the route. If this Cisco CSR 1000v fails, the peer Cisco CSR 1000v takes over as the next hop for the route, maintaining network connectivity. When the original router recovers from the failure, it reclaims ownership of the route and is the next hop router. This functionality is also new for the AWS-based clouds.

- **User-supplied Scripts**: The guestshell is a container in which you can deploy your own scripts. HAv3 exposes a programming interface to user-supplied scripts. This implies that you can now write scripts that can trigger both failover and reversion events. You can also develop your own algorithms and triggers to control which Cisco CSR 1000v provides the forwarding services for a given route. This functionality is new for AWS-based clouds.

- **New Configuration and Deployment Mechanism**: The implementation of HA has been moved out of the Cisco IOS XE code. High availability code now runs in the guestshell container. For further information on guestshell, see the "Guest Shell" section in the Programmability Configuration Guide. In HAv3, the configuration of redundancy nodes is performed in the guestshell using a set of Python scripts. This feature has now been introduced for AWS-based clouds.

Configure High Availability Version 3

The following sections specify the common configuration steps to configure High Availability Version 3 for a CSR 1000v running on any cloud service provider.
Configuring IOX and the Guestshell on Cisco IOS XE

The following Cisco IOS XE configuration shows the commands that are required to access the guestshell. You do not need to configure these prerequisites as they are included automatically in the startup-config file.

SUMMARY STEPS

1. Perform the following configuration:
2. To configure High Availability, you must verify whether IOX is configured and running:
3. Enter the following command to verify that the guest application is defined and running:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Perform the following configuration:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>iox</td>
<td></td>
</tr>
<tr>
<td>ip nat inside source list GS_NAT_ACL interface</td>
<td></td>
</tr>
<tr>
<td>GigabitEthernet1 vrf GS overload ip route vrf GS</td>
<td></td>
</tr>
<tr>
<td>0.0.0.0 0.0.0.0 GigabitEthernet1 192.168.35.1 global</td>
<td></td>
</tr>
<tr>
<td>interface VirtualPortGroup0 vrf forwarding GS</td>
<td></td>
</tr>
<tr>
<td>ip address 192.168.35.101 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>ip nat inside no mop enabled no mop sysid</td>
<td></td>
</tr>
<tr>
<td>ip access-list standard GS_NAT_ACL permit</td>
<td></td>
</tr>
<tr>
<td>192.168.35.0 0.0.0.255</td>
<td></td>
</tr>
<tr>
<td>app-hosting appid guestshell</td>
<td></td>
</tr>
<tr>
<td>app-vnic gateway1 virtualportgroup 0</td>
<td></td>
</tr>
<tr>
<td>guest-interface 0</td>
<td></td>
</tr>
<tr>
<td>guest-ipaddress 192.168.35.102 netmask 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>app-default-gateway 192.168.35.101 guest-interface 0</td>
<td></td>
</tr>
<tr>
<td>name-server 0 8.8.8.8</td>
<td></td>
</tr>
<tr>
<td>Step 2 To configure High Availability, you must verify whether IOX is configured and running:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>show iox</td>
<td></td>
</tr>
<tr>
<td>Virtual Service Global State and Virtualization Limits: Infrastructure version : 1.7</td>
<td></td>
</tr>
<tr>
<td>Total virtual services installed : 0 Total virtual services activated : 0 Machine types supported : LXC Machine types disabled : KVM Maximum VCPUs per virtual service : 1 Resource virtualization limits: Name Quota Committed Available</td>
<td></td>
</tr>
<tr>
<td>system CPU (%) 75 0 75</td>
<td></td>
</tr>
<tr>
<td>memory (MB) 3072 0 3072</td>
<td></td>
</tr>
<tr>
<td>bootflash (MB) 20000 0 5745</td>
<td></td>
</tr>
<tr>
<td>IOx Infrastructure Summary:</td>
<td></td>
</tr>
<tr>
<td>IOx service (CAF) : Running</td>
<td></td>
</tr>
<tr>
<td>IOx service (HA) : Not Running IOx service (IOxman) : Running</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Step 3
Enter the following command to verify that the guest application is defined and running:

Example:

```
show app-hosting list
show app-hosting list
App id State
---------------------------------------------------------------------------------------------------------------------
guestshell RUNNING
```

Purpose

If the state of the guestshell displays DEPLOYED in the output of the preceding command, you must enable the guestshell by using the following command:

```
guestshell enable
```

Interface will be selected if configured in app-hosting Please wait for completion
guestshell activated successfully Current state is: ACTIVATED guestshell started successfully
Current state is: RUNNING Guestshell enabled successfully

Configure a Tunnel Between Cisco CSR 1000v Routers

You must configure a tunnel between the Cisco CSR 1000v routers and enable Bi-directional Forwarding Detection (BFD) and a routing protocol (EIGRP or BGP) on the tunnel for peer failure detection. To authenticate and encrypt IP traffic as it traverses a network, either use an IPsec tunnel or VxLAN GPE tunnel.

SUMMARY STEPS

1. To configure an IPsec tunnel, enter the configuration mode commands to give the following configuration. The command crypto isakmp policy 1 defines an IKE policy, with a high priority (1), and enters config-isakmp configuration mode.
2. To create a VxLAN GPE tunnel, enter the following configuration

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>To configure an IPsec tunnel, enter the configuration mode commands to give the following configuration. The command crypto isakmp policy 1 defines an IKE policy, with a high priority (1), and enters config-isakmp configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
Crypto isakmp policy 1
encr aes 256 authentication pre-share
crypto isakmp key cisco address 0.0.0.0
!
crypto ipsec transform-set uni-perf esp-aes 256
esp-sha-hmac mode tunnel
!
crypto ipsec profile vti-1
set security-association lifetime kilobytes disable
set security-association lifetime seconds 86400
set transform-set uni-perf
set pfs group2
!
interface Tunnel1
ip address 192.168.101.1 255.255.255.252
load-interval 30
tunnel source GigabitEthernet1 tunnel mode ipsec
ipv4
tunnel destination 23.96.91.169 tunnel protection
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipsec profile vti-1</td>
<td></td>
</tr>
<tr>
<td>bfd interval 100 min_rx 100 multiplier 3</td>
<td></td>
</tr>
</tbody>
</table>

Step 2

To create a VxLAN GPE tunnel, enter the following configuration

```bash
interface Tunnel100
ip address 192.168.101.1 255.255.255.0
bfd interval 100 min_rx 100 multiplier 3 tunnel source GigabitEthernet1
tunnel mode vxlan-gpe ipv4 tunnel destination 40.114.93.164
tunnel vxlan vni 10000
```

For further information on configuring a VxLAN GPE tunnel, see:

The tunnel destination address must be the public IP address of the corresponding Cisco CSR 1000v. For the tunnel IP address, use any unique IP address. However, the tunnel endpoints of each redundant Cisco CSR 1000v must be in the same subnet.

Note
To allow VxLAN to pass traffic through the tunnel, you must ensure that UDP ports 4789 and 4790 are allowed in the cloud’s network security group. See the cloud provider’s documentation for configuring network security filters.

Configuring EIGRP over Virtual Tunnel Interfaces

Configure EIGRP over the virtual tunnel interfaces using the following steps.

Note
Other than using EIGRP, which is the protocol that is used in the following steps, you also have the option of using either BGP, or OSPF.

Before you begin

Configure either a VxLAN or IPsec tunnel between the Cisco CSR 1000v routers.

SUMMARY STEPS

1. `router eigrp as-number`
2. `network ip-address subnet-mask`
3. `bfd all-interfaces`
4. `end`
5. `show bfd neighbors`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>router eigrp as-number</code></td>
<td>Enables the EIGRP routing process and enters the router configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# router eigrp 1</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>network ip-address subnet-mask</code></td>
<td>Share the network of the tunnel using EIGRP.</td>
</tr>
<tr>
<td>Example: network 192.168.101.0 0.0.0.255</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>bfd all-interfaces</code></td>
<td>Enables BFD globally on all the interfaces that are associated with the EIGRP routing process.</td>
</tr>
<tr>
<td>Example: Device(config-router)# bfd all-interfaces</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>end</code></td>
<td>Exits the router configuration mode and returns the router to the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-router)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>show bfd neighbors</code></td>
<td>Verifies that the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>Example: Device# show bfd neighbors</td>
<td></td>
</tr>
</tbody>
</table>

Verify the Tunnel Surface

SUMMARY STEPS

1. To verify that the tunnel interface is configured and enabled, run the `show ip interface brief` command.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>To verify that the tunnel interface is configured and enabled, run the <code>show ip interface brief</code> command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td># show ip interface brief</td>
<td></td>
</tr>
<tr>
<td>IP-Address OK? Method Status Protocol</td>
<td></td>
</tr>
<tr>
<td>GigabitEthernet1 192.168.35.20 YES DHCP up up</td>
<td></td>
</tr>
<tr>
<td>GigabitEthernet2 192.168.36.12 YES DHCP up up</td>
<td></td>
</tr>
<tr>
<td>Tunnel1 172.17.1.1 YES NVRAM up up</td>
<td></td>
</tr>
<tr>
<td>VirtualPortGroup0 192.168.35.101 YES NVRAM up up</td>
<td></td>
</tr>
</tbody>
</table>
Configure the BFD Peer Router

SUMMARY STEPS

1. Run the following command:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Run the following command:</td>
</tr>
<tr>
<td>Example:</td>
<td>This configuration command identifies the peer router. The IP address is that of the peer Cisco CSR 1000v within the tunnel carrying the BFD protocol between the two CSR 1000v routers.</td>
</tr>
<tr>
<td><code>redundancy cloud-ha bfd peer <peer_router_ip_address></code></td>
<td></td>
</tr>
</tbody>
</table>

Install the High Availability Package

SUMMARY STEPS

1. Execute the #Router>guestshell command to enter the guestshell.
2. Install the appropriate Python package based on the cloud provider on which the CSR 1000v instance is running:
3. Install the package that is appropriate for your cloud service provider by using the command:
 `[guestshell@guestshell]$ pip install <package_name> --user`
4. From the home directory, navigate to the subdirectory named cloud:
 `[guestshell@guestshell]$ cd cloud`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Execute the #Router>guestshell command to enter the guestshell.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Install the appropriate Python package based on the cloud provider on which the CSR 1000v instance is running:</td>
</tr>
<tr>
<td>Cloud Provider</td>
<td>Package Name</td>
</tr>
<tr>
<td>Microsoft Azure</td>
<td>csr_azure_ha</td>
</tr>
<tr>
<td>Amazon Web Services</td>
<td>csr_aws_ha</td>
</tr>
<tr>
<td>Google Cloud Platform</td>
<td>csr_gcp_ha</td>
</tr>
</tbody>
</table>

Note: The package name for Microsoft Azure is the same for both HAv2 and HAv3. If you perform an install by executing the `pip install csr_azure_ha --user` command, the latest HA V3 is downloaded.
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Install the package that is appropriate for your cloud service provider by using the <code>pip install <package_name> --user</code> command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>From the home directory, navigate to the subdirectory named cloud: <code>cd cloud</code>.</td>
</tr>
</tbody>
</table>

Verify High Availability in Guestshell

Execute the `systemctl status csr_ha` command.

Example:

```
guestshell@guestshell cloud$ systemctl status csr_ha
```

```
azure-ha.service - Azure High Availability service
Loaded: loaded (/etc/systemd/user/azure-ha.service; enabled; vendor preset: disabled) Active
active (running) since Wed 2018-06-13 19:56:00 UTC; 7min ago Main PID: 29 (python)
CGroup: /system.slice/libvirtd.service/system.slice/csr_ha.service
 |
 └─ 29 python
   /home/guestshell/.local/lib/python2.7/site-packages/csr_ha/server/ha_server...
   └─103 python
   /home/guestshell/.local/lib/python2.7/site-packages/csr_ha/server/ha_server...
```

Note If the service is not running, start the service by running the `sudo systemctl start csr_ha` command.

Set the Path Environment Variable

SUMMARY STEPS

1. Update the path environment in the guest shell to specify the location of the configuration scripts.
2. Execute the `source ~/.bashrc` command in the guestshell.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Update the path environment in the guest shell to specify the location of the configuration scripts.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Execute the <code>source ~/.bashrc</code> command in the guestshell.</td>
</tr>
</tbody>
</table>
Configure the Redundancy Nodes

You can use Python scripts to create and modify redundancy nodes. Python scripts use the parameters that are shown in the following table. These parameters are described here in general for edification. To see the actual parameters, see the “Configure Redundancy Nodes” section specific for each cloud provider section.

<table>
<thead>
<tr>
<th>Name of the parameter</th>
<th>Is this parameter required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Index</td>
<td>Yes</td>
<td>The index that is used to uniquely identify this node. Valid values: 1–1023</td>
</tr>
<tr>
<td>Cloud Provider</td>
<td>Yes</td>
<td>Specifies the specific cloud offer from the cloud provider.</td>
</tr>
<tr>
<td>User Identifier</td>
<td>Yes</td>
<td>A cloud-specific parameter which identifies a user or subscriber to the cloud service.</td>
</tr>
<tr>
<td>Scope</td>
<td>Yes</td>
<td>Some cloud providers offer a mechanism to bundle resources in a logical container. This parameter is used to identify this container.</td>
</tr>
<tr>
<td>Route table</td>
<td>Yes</td>
<td>The name or identifier of the route table to be updated.</td>
</tr>
<tr>
<td>Route</td>
<td>No</td>
<td>IP address of the route to be updated in CIDR format. Can be IPv4 or IPv6 address. If a route is unspecified, then the redundancy node is considered to apply to all valid routes in the routing table. Different clouds may have restrictions on what constitutes a valid route.</td>
</tr>
<tr>
<td>Next hop address</td>
<td>Yes</td>
<td>Interface or IP address of the next hop router. Use the IP address that is assigned to this CSR 1000v on the subnet which utilizes this route table. Can be an interface with an IPv4 or IPv6 address.</td>
</tr>
<tr>
<td>Mode</td>
<td>No</td>
<td>Indicates whether this router is the primary or secondary router for servicing this route. Default value is secondary.</td>
</tr>
</tbody>
</table>
Show Node

SUMMARY STEPS

1. Run the following script to display the parameter values of an existing redundancy node: `show_node.py -i value`.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Run the following script to display the parameter values of an existing redundancy node: `show_node.py -i value`.
| Example: | `show_node.py -i 10` |
| | Here, `-i` specifies the index of the redundancy node (1-1023). If the script is successful, the system displays the parameters of the specified node. If the script is unsuccessful, the system displays an error message. |

Delete a Node

SUMMARY STEPS

1. Execute the `delete_node.py -i value` command to delete an existing redundancy node.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Execute the `delete_node.py -i value` command to delete an existing redundancy node.
| Example: | `delete_node.py -i 10` |
| | Here, `-i` specifies the index of the redundancy node (0–255). The `-i` parameter is mandatory. The node is expected to exist in the database. If the client tries to delete a node that is not in the database, an error is not generated. If successful, the script returns a value of zero and the system displays the parameters of the specified node. If the script is unsuccessful, a non-zero value is returned. An error message is written to the log file. |
| Note | The database of redundancy nodes is maintained on a virtual disk that is allocated to the guestshell. If you issue the guestshell `destroy Cisco IOS XE` command, the virtual disk is deleted and all the node configurations are lost. |

Recover deleted virtual disk

SUMMARY STEPS

1. Enable the guestshell.
2. Install the appropriate HA Python package for your cloud provider.
3. Run the Python scripts to reconfigure all the redundancy nodes. You can reapply the node configuration by using the create_node script.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Enable the guestshell.</td>
<td></td>
</tr>
<tr>
<td>Step 2 Install the appropriate HA Python package for your cloud provider.</td>
<td></td>
</tr>
<tr>
<td>Step 3 Run the Python scripts to reconfigure all the redundancy nodes. You can reapply the node configuration by using the create_node script.</td>
<td></td>
</tr>
</tbody>
</table>

Configuring High Availability in the Cloud Provider Network

To complete the configuration for the high availability service, you must also execute configuration changes in the cloud provider’s network. This section discusses these configuration requirements in general. The details of these steps are specific to each cloud provider. For specific configuration steps, see the appropriate cloud provider sections configuration sections.

- **Authenticate the CSR 1000v**: For the CSR 1000 router to access any resource in the cloud, you must first provide the proof of its identity. That is, you must authenticate the router.

- **Grant Access to the Route Table**: You must authorize the router to read and write to the route table. This usually involves configuring some form of identity and access management on the route table itself.

- **Network Security**: Cloud providers usually support a mechanism for filtering traffic which can pass to and from various network resources such as subnets and network interfaces. To enable the exchange of the BFD protocol messages between the pair of peer routers, it is necessary for the network security group that is associated with the CSR interfaces hosting the tunnel to allow ports 4789 and 4790 to be passed.

- **Verify a Redundancy Node**: If all the above configuration is complete, you must verify that a route that is represented by a redundancy node is successfully updated by the CSR 1000v router. You can verify this by simulating a peer failure for this redundancy node. This is a diagnostic tool that verifies whether the CSR 1000v router is capable of reading and writing the route table that is specified by the redundancy node.

Trigger the failover Using EEM

Enter configuration mode in the Cisco IOS XE CLI of the Cisco CSR 1000v.

```
event manager applet Interface_GigabitEthernet2
event syslog pattern “Interface GigabitEthernet2, changed state to administratively down”
action 1 cli command “enable”
action 2 cli command “guestshell run node-event.py -i 10 -e peerFail” exit
exit
```
Set user-defined Triggers

You can write your own Python script to recognize an event or condition and call the node_event script. You can also enter the command manually at the guestshell prompt.

To process the redundancy node and update an associated route table entry, run the node_event Python script. In this example, node_event.py -i node_index -e peerFail processes the redundancy node, and updates the associated route table entry.

Configure High Availability for CSR 1000v Running on Azure

The first version of high availability in the Azure cloud was introduced in Cisco IOS XE Everest 16.5.1. The second version of high availability, or HA Version 2, was released in Cisco IOS XE Fuji 16.9.1. High Availability Version 3 is supported on Cisco IOS XE Gibraltar 16.11.1 release and later. The configuration of the BFD peer router is simplified in HAv3.

Create Binding to BFD Peer

SUMMARY STEPS

1. When you want to trigger a failover based on a BFD session going down between the two peer CSR routers, you must configure the IP address of the peer router. In HAv2, the BFD peer IP address was configured for each defined node.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>When you want to trigger a failover based on a BFD session going down between the two peer CSR routers, you must configure the IP address of the peer router. In HAv2, the BFD peer IP address was configured for each defined node.</td>
<td>In HAv3, this configuration has been simplified. You have to configure the IP address for the BFD peer only once: redundancy cloud-ha bfd peer peerIpAddress</td>
</tr>
</tbody>
</table>

Example:

redundancy
cloud provider azure index
bfd peer peerIpAddress

Configure Cloud Specific Redundancy Parameters

The following table specifies the redundancy parameters that are specific to Microsoft Azure:

<table>
<thead>
<tr>
<th>Parameter Switch</th>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Index</td>
<td>-i</td>
<td>The index that is used to uniquely identify this node. Valid values: 1–255.</td>
</tr>
<tr>
<td>Cloud Provider</td>
<td>-p</td>
<td>Specifies the type of Azure cloud: azure, azusgov, or azchina.</td>
</tr>
</tbody>
</table>
Create a Redundancy Node

SUMMARY STEPS

1. Run the following script to create a redundancy node and add it to the database:
   ```bash
create_node { switch value } [...{ switch value }].
   ```

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>You must configure the following parameters for a valid redundancy node:</td>
</tr>
<tr>
<td></td>
<td>• Node Index</td>
</tr>
<tr>
<td></td>
<td>• Cloud Provider</td>
</tr>
<tr>
<td></td>
<td>• Subscription ID</td>
</tr>
<tr>
<td></td>
<td>• Resource Group Name</td>
</tr>
<tr>
<td></td>
<td>• Route Table Name</td>
</tr>
</tbody>
</table>
Set Redundancy Node Parameters

SUMMARY STEPS

1. To change the value of parameters in an existing redundancy node, run the following script: `set_params { switch value } [... {{ switch value }}].`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>To change the value of parameters in an existing redundancy node, run the following script: <code>set_params { switch value } [... {{ switch value }}].</code> The index parameter (-i) is mandatory. This command sets the values of the specified parameters. If the specified parameter is already defined for the redundancy node, the value of the parameter is updated. Example: <code>set_params.py -i 10 -r 15.0.0.0/16 -n 192.168.7.5</code>.</td>
</tr>
</tbody>
</table>

Clear Redundancy Node Parameters

SUMMARY STEPS

1. If you want to clear the value of specified parameters for an existing redundancy node, run the following script: `clear_params -i value { switch } [... {{ switch }}].`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>If you want to clear the value of specified parameters for an existing redundancy node, run the following script: <code>clear_params -i value { switch } [... {{ switch }}].</code> In this example, the clear_params script clears both the route and next hop address parameters. Specify only the switch parameter when you clear an associated value. Do not include the current value of the parameter. Example: <code>clear_params -i 10 -r -n</code>.</td>
</tr>
</tbody>
</table>
Authenticate the CSR 1000v

To update a routing table in the Azure network, you must first authenticate the CSR 1000v router. This is accomplished by creating an application which represents the CSR 1000v router in the Azure Active Directory. You can use the application that is granted permissions, to access the Azure network resources.

You can create the application by using the following two mechanisms:

- **System-assigned managed identity** - Azure automatically creates an application and binds it to the router. This mechanism was previously called as Managed Service Identity by Azure.

- **Manual application registration in Azure Active Directory** - Here, the user creates an application in the Azure Active Directory, which represents the CSR 1000v router.

You can manually create a managed identity in Azure Active Directory by creating an application which represents the router. The application is assigned a set of identifiers: tenant ID, application ID, and application key. These application identifiers must be configured in the high availability feature either as the default AAD application or within an individual redundancy node.

Alternatively, when you create the CSR 1000v, you can configure Azure to create a system-assigned managed identity for the CSR 1000v instance. In this case, you need not configure any application identifiers in the high availability feature. That is, in the absence of the configuration of an application’s tenant ID, application ID, and application key, the high availability feature assumes that the CSR 1000v router is using a system-assigned managed identity.

System Assigned Managed Identity

When you create the CSR 1000v router, you can enable for it to be assigned a system managed identity by Azure. There are two ways in which you can create a CSR 1000v router from the Azure marketplace:

- **Solution template** – A CSR 1000v router is created along with other Azure resources to create a networking solution in a single step.

- **Standalone** – A standalone CSR 1000v router is created, usually within an existing virtual network, with the base CSR image.

If you create a CSR 1000v router by using one of the solution template offerings in the Azure marketplace, a system-assigned managed identify for the CSR 1000v is enabled by default. If you create a standalone CSR 1000v by using a base CSR image, then a system-managed identity is enabled as shown in the following image:
Authentication Using Azure Active Directory Service Principal

This section explains how to create an application in a Microsoft Azure Active Directory with permissions to access Microsoft Azure Resource Manager APIs.

SUMMARY STEPS

1. See the latest instructions on registering an application with Azure Active Directory in Microsoft Azure documentation. See also: https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v1-add-azure-ad-app.
3. Choose your account name and sign in using your Microsoft Azure password.
4. In the left navigation, click Azure Active Directory and select an Active Directory in the main pane. Click Switch Directory at the top of the pane to select the active directory.
5. Verify whether you are authorized to create a new application. See the following Microsoft Azure documentation for creating an application in the Azure Active Directory: Use portal to create an Azure Active Directory application and service principal that can access resources.
6. Navigate to the Active Directory that you want to use.
7. To create a new application, select Create > New Application Registration.
8. Specify the name of the application and ensure that Web App / API is selected as the Application type.
9. Specify the Sign-on URL. Use a name for the sign-on URL which is in the URI format, but it does not have to be reachable. You can use a string in the following format:
 http://<your_directory_domain_name>/<app_name>. For example, if your application name is myapp, and the domain name of your directory is \mydir.onmicrosoft.com, use the following is the sign-on URL: http://mydir.onmicrosoft.com/myapp.

10. Click Create.

11. Navigate to the Azure Active Directory page. Search for the application that you created. Make a note of the assigned Application ID.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>See the latest instructions on registering an application with Azure Active Directory in Microsoft Azure documentation. See also: https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v1-add-azure-ad-app.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Go to the portal for Microsoft Azure by visiting https://portal.azure.com.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose your account name and sign in using your Microsoft Azure password.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the left navigation, click Azure Active Directory and select an Active Directory in the main pane. Click Switch Directory at the top of the pane to select the active directory.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Verify whether you are authorized to create a new application. See the following Microsoft Azure documentation for creating an application in the Azure Active Directory: Use portal to create an Azure Active Directory application and service principal that can access resources.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Navigate to the Active Directory that you want to use.</td>
</tr>
<tr>
<td>Step 7</td>
<td>To create a new application, select Create > New Application Registration.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Specify the name of the application and ensure that Web App / API is selected as the Application type</td>
</tr>
<tr>
<td>Step 9</td>
<td>Specify the Sign-on URL. Use a name for the sign-on URL which is in the URI format, but it does not have to be reachable. You can use a string in the following format: http://<your_directory_domain_name>/<app_name>. For example, if your application name is myapp, and the domain name of your directory is \mydir.onmicrosoft.com, use the following is the sign-on URL: http://mydir.onmicrosoft.com/myapp.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Click Create.</td>
</tr>
</tbody>
</table>
Obtain the Application ID and Tenant ID

Before you begin

Create an application in the Microsoft Azure Active Directory.

SUMMARY STEPS

1. After you create the application, the registered app should appear on the screen as shown in the following image:

2. Use the portal to create an Azure Active Directory application and service principal that can access resources. Make a note of the Application ID. See step 2 in the *Get application ID and authentication key* section in the Microsoft Documentation.

3. Select **Azure Active Directory**.

4. Select **Properties**. Make a note of the value in the **Directory ID** field. This is your tenant ID.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>After you create the application, the registered app should appear on the screen as shown in the following image:</td>
</tr>
</tbody>
</table>

![Application ID and Tenant ID](image)

| **Step 2** | Use the portal to create an Azure Active Directory application and service principal that can access resources. Make a note of the Application ID. See step 2 in the *Get application ID and authentication key* section in the Microsoft Documentation. |
| **Step 3** | Select **Azure Active Directory**. |
| **Step 4** | Select **Properties**. Make a note of the value in the **Directory ID** field. This is your tenant ID. |
Create an Authentication key for the Application

SUMMARY STEPS

1. From the Microsoft Azure portal, select the Azure Active Directory.
2. Select App Registrations.
3. Select the application that you previously created in the Obtain the Application ID and Tenant ID section.
4. Click Settings.
5. To create a key for API access, select Keys and specify a value for Duration. Duration is the length of time after which the key becomes invalid.
6. Make a note of the API key from the Value field.
7. You must convert the API key to URL unencoded format. To find a suitable conversion tool, enter URL encoder into an Internet search engine. You might need the unencoded API key for procedures such as Configure Failure Detection for the Cisco CSR 1000v on Microsoft Azure.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the Microsoft Azure portal, select the Azure Active Directory.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Select App Registrations.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Select the application that you previously created in the Obtain the Application ID and Tenant ID section.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click Settings.</td>
</tr>
<tr>
<td>Step 5</td>
<td>To create a key for API access, select Keys and specify a value for Duration. Duration is the length of time after which the key becomes invalid.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Make a note of the API key from the Value field. Caution: Store the API key carefully as it cannot be retrieved later.</td>
</tr>
<tr>
<td>Step 7</td>
<td>You must convert the API key to URL unencoded format. To find a suitable conversion tool, enter URL encoder into an Internet search engine. You might need the unencoded API key for procedures such as Configure Failure Detection for the Cisco CSR 1000v on Microsoft Azure. Example:</td>
</tr>
</tbody>
</table>

\[
\text{URL encoded API Key: 5yOhH593dD%2FO8gzAlWgulrkWz5dH02d2STk3LdbI4c%3D} \\
\text{URL unencoded API Key: 5yOhH593dD/08gzAlWgulrkWz5dH02d2STk3LdbI4c=}
\]

Manage Azure Active Directory Applications in Guestshell

There are a set of utility scripts that can be run in the guestshell environment to manage applications in the Azure Active Directory, whether they were created manually as user-assigned identities or system-assigned...
identities. The following sections describe the use of these scripts and how to configure the binding between a redundancy node and the application used to authenticate the CSR 1000v router.

- Managing user-defined applications: If you have chosen to use a user-assigned identity for the CSR 1000v router, the application that was created in Azure Active Directory must be configured in the high availability feature. The application can be configured as the default application used for all the redundancy nodes, or for individual redundancy nodes.

- Set the default application: If you configure a user-assigned application as the default application using the `set_default_aad_app` script, all the redundancy nodes use the specified application for authentication, unless a redundancy node has an individual application configured.

Set the Default Application

Set the default application by running the `set_default_aad_app.py [switch value]` script. See the following table for the AAD Redundancy Node Parameters:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Provider</td>
<td>-p</td>
<td>Specifies which Azure cloud is in use {azure</td>
</tr>
<tr>
<td>Tenant ID</td>
<td>-d</td>
<td>Identifies the AAD instance.</td>
</tr>
<tr>
<td>Application ID</td>
<td>-a</td>
<td>Identifies the application in AAD.</td>
</tr>
<tr>
<td>Application Key</td>
<td>-k</td>
<td>Access key that is created for the application. Key should be specified in unencoded URL format.</td>
</tr>
</tbody>
</table>

[guestshell@guestshell]$ set_default_aad_app.py -p azure -d c4426c0b-036f-4bfb-b2dd-5c910c5389d6 -a 3d6e2ef4-8160-4092-911d-53c8f68ba808 -k hZfVg5fzJuwFluke27e/duyztom1b7Qr0Yyix+KY9c-

[guestshell@guestshell]$ set_default_aad_app.py -h
usage: set_default_aad_app.py [-h] -p {azure,azusgov,azchina} -a A -d D -k K

AAD Application

required arguments:
- p {azure,azusgov,azchina} <cloud_provider> {azure | azusgov | azchina}
- a A to add the applicationId
- d D to add the tenantId
- k K to add the applicationKey

Clear the Default Application

You can clear the default user-assigned application configuration by using the `clear_default_aad_app` script.

[guestshell@guestshell]$ clear_default_aad_app.py

Clear the Application List

If you create a user-assigned application and associate the application with individual redundancy nodes, information about these applications is cached in memory. You can display the list of known applications by using the `show_auth_applications.py` script. Clear the cache using the `clear_aad_application_list.py` script.

```
(guestshell@guestshell) $ clear_aad_application_list.py
```

Managing all Applications

Use the following scripts to manage all the applications - user-assigned or system-assigned.

Showing Authentication Applications

The CSR 1000v router maintains a list of configured applications. You can view this list by using the `show_auth_applications.py` script.

```
(guestshell@guestshell) $ show_auth_applications.py
```

Clearing the Authentication Token

When an event is triggered on a redundancy node, the CSR 1000v router uses the configured application to obtain an authentication token from the Azure network. This token is cached up to five minutes in the router. You can clear the cached token by using the `clear_token.py` script.

This script clears either the default user-assigned application or the system-assigned application. The script does not clear the token on any user assigned application which is explicitly configured on an individual redundancy node.

```
(guestshell@guestshell) $ clear_token.py
```

Refreshing the Authentication Token

The CSR 1000v router can be forced to obtain a new token for the active application by using the `refresh_token.py` script.

This script refreshes either the default user-assigned application or the system-assigned application. This script does not refresh the token on any user-assigned application which is explicitly configured on an individual redundancy node.

```
(guestshell@guestshell) $ refresh_token.py
```

Select the Authentication Application

You can choose either system-assigned or user-assigned applications to identify a CSR 1000v router for the purpose of authentication. You can use the same mechanism for all the applications within a single CSR 1000v router. You can also have multiple user-assigned applications across multiple redundancy nodes.

The following table summarizes which application is used by the CSR 1000v router when processing a redundancy node:
Table 52:

<table>
<thead>
<tr>
<th>Is A Default Application Configured?</th>
<th>Does Node Have a User Assigned Application Configured?</th>
<th>Will CSR Use This Application?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>System assigned application</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>User assigned application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configured on this redundancy</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>User assigned application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configured as the default by</td>
</tr>
<tr>
<td></td>
<td></td>
<td>set_default_aad_app.py</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>User assigned application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configured on this redundancy</td>
</tr>
</tbody>
</table>

Configuring IAM for the Route Table

SUMMARY STEPS

1. To add an application into an existing network, in the **All Resources** pane, choose a private side subnet from the left pane. For example, `noem-sub1-RouteTable`.
2. In the center pane, select **Access control (IAM)**. Select the plus icon to add a role assignment.
3. In the Add Role Assignment screen, set the **Role to Network Contributor**.
4. Select the **Assign Access to Pulldown** menu. If you are using system-assigned managed identity, select the **Virtual Machine** sub option and go to Step 6. If you are using user-assigned managed identity, select the option and go to step 5.
5. In the **Select** field, enter the name of the user-assigned application that you created in **Azure Active Directory**. Click **Save**.
6. In the **Select** field, enter the name given to the CSR 1000v instance. If you have configured the CSR 1000v instance properly for system-assigned identity, the CSR 1000v instance appears in the search results.
7. Select the CSR 1000v instance by name, and click **Save**.
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>To add an application into an existing network, in the All Resources pane, choose a private side subnet from the left pane. For example, <code>noeem-sub1-RouteTable</code>.</td>
</tr>
</tbody>
</table>

Microsoft Azure

- Create a resource
- Home
- Dashboard
- All services
- **FAVORITES**
 - All resources
 - Virtual machines
 - Resource groups
 - Storage accounts
 - Virtual networks
 - Azure Active Directory
 - Security Center
 - Function Apps
 - Advisor
 - Azure Cosmos DB
 - **Access control**
 - Tags
 - Diagnose an outage

Settings

- **Configuration**
- Routes
- Subnets
- Properties
- Locks
- Automation
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>In the center pane, select Access control (IAM). Select the plus icon to add a role assignment.</td>
</tr>
</tbody>
</table>

Step 2

In the Add Role Assignment screen, set the **Role** to **Network Contributor**.

Step 3

Select the **Assign Access to Pulldown** menu. If you are using system-assigned managed identity, select the **Virtual Machine** sub option and go to Step 6. If you are using user-assigned managed identity, select the option and go to step 5.

Step 4

In the **Select** field, enter the name of the user-assigned application that you created in **Azure Active Directory**. Click **Save**.

Step 5

In the **Select** field, enter the name given to the CSR 1000v instance. If you have configured the CSR 1000v instance properly for system-assigned identity, the CSR 1000v instance appears in the search results.

Step 6

Select the CSR 1000v instance by name, and click **Save**.
Route Table Entry Types

The route tables in Microsoft Azure support different entry types. The entry type for a route can be one of the following: Virtual network gateway, Internet, or Virtual Appliance. The next hop address identifies a resource in the Azure network.

Routes with an entry type of Virtual network gateway or Internet do not have an explicit IP address for the next hop and are not supported by the High Availability feature.

Cisco IOS XE Everest 16.6) When you configure High Availability on the Cisco CSR 1000v, all the routes within a route table must have an entry type of Virtual Appliance. These routes require an explicit IP address for the next hop.

(Cisco IOS XE Everest 16.7 or later) When you configure High Availability on the Cisco CSR 1000v, you can specify individual routes to be updated in the case of failure. Ensure that you configure each individual route as having an entry type of Virtual Appliance. If you configure a redundancy node that represents all the entries in the route table, ensure that all the routes have an entry type of Virtual Appliance.

Configuring the Network Security Group

If you have a network security group attached to NIC0 of the router, you must allow the BFD protocol to pass the interface. Configure an inbound and outbound security rule that allows ports 4789 and 4790 to be passed.

Configuring the Console Timeout

When you start an SSH session to the Cisco CSR 1000v router, ensure that you do not configure the terminal VTY timeout as infinite. That is, do not configure: exec-timeout 0 0. Use a non-zero value for the timeout; for example, exec-timeout 4 0. This command specifies a timeout of four minutes and zero seconds. The exec-timeout 0 0 command causes an issue as Azure enforces a timeout for the console idle period of 4 to 30 minutes. When the idle timer expires, Azure disconnects the SSH session. However, the session is not cleared from the point of view of the Cisco CSR 1000v as the timeout was set to infinite (by the exec-timeout 0 0 configuration command). The disconnection causes a terminal session to be orphaned. The session in the Cisco CSR 1000v remains open indefinitely. If you try to establish a new SSH session, a new virtual terminal session is used. If this pattern continues, the maximum number of simultaneous terminal sessions allowed is reached and no new sessions can be established. In addition to configuring the exec-timeout command correctly, it is also a good practice to delete idle virtual terminal sessions using the commands that are shown in the following example:

```
CSRA# show users
Line User Host(s) Idle Location
2 vty 0 cisco idle 00:07:40 128.107.241.177
* 3 vty 1 cisco idle 00:00:00 128.107.241.177
CSRA# clear line 2
```

If the workaround in the preceding scenarios are ineffective, as a last resort, you can restart the Cisco CSR 1000v router in the Azure portal.
High Availability across the Cisco IOS XE Releases

<table>
<thead>
<tr>
<th>Aspect</th>
<th>16.5.x to 16.8.x</th>
<th>16.9.x</th>
<th>16.10.x</th>
<th>16.11.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA Version 1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HA Version 2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HA Version 3</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundancy node configuration in</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cisco IOSXE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redundancy node configuration in guestshell</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Revert to primary router after recovery</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CSR1000v authentication by an application in</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Azure Active Directory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSR 1000v authentication by Managed Identity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(formerly known as Managed Service Identity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Migrate from High Availability Version 1 to Version 3

In high availability version 3, configuration of redundancy nodes is no longer supported via the IOS configuration command line interface. Attempts to configure a redundancy node via IOS will result in a warning message indicating such operations are deprecated. To migrate from high availability version 1 you must convert the IOS configuration to the format supported in guestshell.

If you are performing an in-place upgrade or a binary upgrade to the IOSXE release 16.11, then the configuration of redundancy nodes in IOS will be automatically copied to guestshell by performing the following steps:

If you are running the guestshell in the current IOS release, copy all important files out of the guestshell, as they will be erased as part of this upgrade.

SUMMARY STEPS

1. In IOS executive mode, run the guestshell destroy command.
2. Perform the binary upgrade to IOS XE release 16.11. Wait for the CSR 1000v router to reboot and stabilize.
3. Enable the guestshell and enter the shell.
4. Install the CSR HA package for Azure, version 3. For more information, see Installing the CSR HA Package.

5. In IOS, configure the binding to the BFD peer router:

6. Wait for the transfer to complete. As each node is transferred, its configuration is added to a file in guestshell `~/cloud/HA/node_file`. When the size of this file stabilizes, the transfer is done. Open this file in the guestshell and examine its contents. Execute the script `cat node_file`.

7. Verify whether all the nodes and their parameters have been successfully transferred. Use the `create_node` and the `set_params` scripts to make any adjustments.

8. Restore any files copied out of the guestshell in step 1.

9. Delete configuration of all redundancy nodes in IOS.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In IOS executive mode, run the guestshell destroy command.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 2 | Perform the binary upgrade to IOS XE release 16.11. Wait for the CSR 1000v router to reboot and stabilize. | |

| Step 3 | Enable the guestshell and enter the shell. | |

| Step 4 | Install the CSR HA package for Azure, version 3. For more information, see Installing the CSR HA Package. | |

| Step 5 | In IOS, configure the binding to the BFD peer router: `conf t redundancy cloud-ha bfd peer <peer-ip-addr> end` | This launches a process in the IOS to translate the configuration of redundancy nodes from IOS to guestshell. This process can take several minutes to complete, as each node is verified before the node is transferred. |

| Step 6 | Wait for the transfer to complete. As each node is transferred, its configuration is added to a file in guestshell `~/cloud/HA/node_file`. When the size of this file stabilizes, the transfer is done. Open this file in the guestshell and examine its contents. Execute the script `cat node_file`. | |

| Step 7 | Verify whether all the nodes and their parameters have been successfully transferred. Use the `create_node` and the `set_params` scripts to make any adjustments. | |

| Step 8 | Restore any files copied out of the guestshell in step 1. | |

| Step 9 | Delete configuration of all redundancy nodes in IOS. | |
Migrate from High Availability Version 2 to Version 3

Step 1
If you are currently running high availability version 2, a majority of the configuration of redundancy nodes should already be in guestshell. These nodes are stored in a file in the ~/azure/HA/node_file location. Copy this file to bootflash by executing the (guestshell#) cp ~/azure/HA/node_file /bootflash command.

A redundancy node configuration in IOS still contains the binding between the node and the BFD peer. For example:

Router(config)#redundancy
Router(config-red)#cloud provider azure 4
Router(cloud-azure)#bfd peer 172.17.1.1

Step 2
To migrate this configuration to high availability version 3, add a global binding of all redundancy nodes to the BFD peer:

Router(config)#redundancy
Router(config-red)#cloud-red bfd peer 172.17.1.1

And delete the individual redundancy nodes:

Router(config-red)#no cloud provider azure 4

Step 3
Delete all the existing nodes. This removes the nodes from the IOS configuration and deletes the same nodes configured in the guestshell. Once you delete all the nodes and you install the new HA version 3 python package, restore the configured nodes by copying the node file back by running the (guestshell#) cp /bootflash/node_file ~/cloud/HA/node_file script.

Step 4
Restart the High Availability setup after you copy the node_file. To manually restart the High Availability setup, run the sudo systemctl start csr_ha command.

Configure High Availability on CSR Running on Amazon Web Services

Table 53: Cloud Specific Configuration of Redundancy Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Index</td>
<td>-i</td>
<td>Index that is used to uniquely identify this node. Valid values: 1–1023.</td>
</tr>
<tr>
<td>Region Name</td>
<td>-rg</td>
<td>Name of the region that contains the route table. For example, us-west-2.</td>
</tr>
<tr>
<td>Route Table Name</td>
<td>-t</td>
<td>Name of the route table to be updated. The name of the route table must begin with the substring rtb-. For example, rtb-001333c29ef2acc5f</td>
</tr>
</tbody>
</table>
Create a Redundancy Node

SUMMARY STEPS

1. Run the following script to create a redundancy node and add it to the database.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Run the following script to create a redundancy node and add it to the database.</td>
<td></td>
</tr>
<tr>
<td>Example: create_node { switch value } [...]</td>
<td>• Node Index</td>
</tr>
<tr>
<td></td>
<td>• Region Name</td>
</tr>
<tr>
<td></td>
<td>• Route Table Name</td>
</tr>
<tr>
<td></td>
<td>• Next Hop Interface Name</td>
</tr>
<tr>
<td></td>
<td>For example, create_node.py -i 2 -t rtb-001333c29ef2aec5e -rg us-west-2 -n eni-07160c7e740ac8ef3 -r 2600:1f14:49b:9b03::/64</td>
</tr>
</tbody>
</table>
Set Redundancy Node Parameters

SUMMARY STEPS

1. To change the value of parameters in an existing redundancy node, run the following script: `set_params -i node_index { switch value } [...{ switch value }]`.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To change the value of parameters in an existing redundancy node, run the following script: <code>set_params -i node_index { switch value } [...{ switch value }]</code>.</td>
<td>The index parameter (-i) is mandatory. This command sets the values of the specified parameters. If the specified parameter is already defined for the redundancy node, the value of the parameter is updated. If this configuration is successful, the script returns a value of zero.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>set_params.py -i 10 -r 15.0.0.0/16 -m primary</code></td>
<td></td>
</tr>
</tbody>
</table>

Clear Redundancy Node Parameters

SUMMARY STEPS

1. If you want to clear the value of specified parameters for an existing redundancy node, run the following script: `clear_params -i node_index {switch ... switch}`.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If you want to clear the value of specified parameters for an existing redundancy node, run the following script: <code>clear_params -i node_index {switch ... switch}</code>.</td>
<td>In this example, the clear_params script clears both the route and next hop address parameters. Specify only the switch parameter when you clear an associated value. Do not provide the existing values for the parameters to be cleared. If the clearing is successful, the script returns a value of zero.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>clear_params -i 10 -r -n</code></td>
<td></td>
</tr>
</tbody>
</table>

Authenticate the CSR1000v Router

If you want the CSR 1000v router to update a routing table in the AWS network, you must first authenticate the router. In AWS, you must create a policy that permits the CSR 1000v router to access the route table. For example:

```json
{
    "Version": "2012-10-17",
    "Statement": [
      {
        "Sid": "VisualEditor0",
        "Effect": "Allow",
        "Action": [ ...
```
"logs:CreateLogStream",
"cloudwatch:",
"s3:",
"ec2:AssociateRouteTable",
"ec2:CreateRoute",
"ec2:CreateRouteTable",
"ec2:DeleteRoute",
"ec2:DeleteRouteTable",
"ec2:DescribeRouteTables",
"ec2:DescribeVpcs",
"ec2:ReplaceRoute",
"ec2:DescribeRegions",
"ec2:DescribeNetworkInterfaces",
"ec2:DisassociateRouteTable",
"ec2:ReplaceRouteTableAssociation",
"logs:CreateLogGroup",
"logs:PutLogEvents"
},
"Resource": "*"
}
}

An IAM role is then created using this policy and applied to the EC2 resource.

After the CSR 1000v EC2 instances are created, the IAM role created above needs to be attached to each router.

Note
See the AWS documentation for instructions on how to create policies, IAM roles, and how to associate a role to an EC2 instance.

Disable Source/Destination Address Checking

By default, network interfaces created in AWS have source and destination address checking enabled. The interface verifies all the traffic that passes through matches the source or destination address of the interface, otherwise it is dropped. For the CSR1000v to perform routing, this setting must be disabled on each CSR1000v interface.

Note
See the AWS documentation for instructions on how to disable source/destination address checking on a network interface

Route Table Entry Types

The route tables in AWS cloud support different target types. These route targets include multiple types of gateways and connections. The CSR 1000v router is only capable of updating routes with a network interface target. Routes with other target types are ignored for the purposes of high availability.

If you configure a redundancy node without a specific route destination, the CSR 1000v attempts to update all the routes within a route table with a target type of network interface. All the other routes are ignored.
Configure Security Group

If you have a security group in use by the eth0 interface of the EC2 instance of the CSR 1000v, you must allow the BFD protocol to pass through the interface. Configure an inbound and outbound security rule that allows ports 4789 and 4790 to be passed.

Note

See the AWS documentation for instructions on configuring security groups and attaching them to subnets and network interfaces.

Differences in High Availability across Cisco IOS XE Releases

The following table shows some of the differences between running high availability in various IOS releases.

Table 54:

<table>
<thead>
<tr>
<th>Aspect</th>
<th>16.3.1 to 16.4.x</th>
<th>16.5.x to 16.10.x</th>
<th>16.11.x</th>
<th>Upcoming releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA Version 1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>HA Version 2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>HA Version 3</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Redundancy node configuration in Cisco IOS XE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Redundancy node configuration in guestshell</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Revert to the primary router after recovery</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

By default, in Cisco IOS XE Gibraltar 16.11.x, the Cisco CSR 1000v on AWS runs HA Version 2. To run HA Version 3, you must manually install and enable guestshell, and install the `csr_aws_ha` Python package in guestshell.

Migrate from High Availability Version 2 to Version 3

In the high availability feature version 3, the configuration of redundancy nodes is temporarily supported via the IOS configuration command line interface. However, attempts to configure a redundancy node via IOS will result in a warning message indicating such operations are deprecated. To migrate from a CSR running high availability version 2 requires the configuration in IOS to be converted to the format supported in guestshell.
If you are performing an in-place upgrade or a binary upgrade to the IOS XE release 16.11.x, then the configuration of the redundancy nodes in IOS can be automatically copied to guestshell by performing the following steps:

If you are running the guestshell in the current IOS release, copy all important files out of the guestshell, as they will be erased as part of this upgrade. Files can be temporarily stored in /bootflash for example.

SUMMARY STEPS

1. Perform the binary upgrade to IOS XE release 16.11. Wait for the CSR to reboot and stabilize.
2. Enable the guestshell and enter the shell:
3. Install the CSR HA package for AWS, version 3 by using the script (guestshell) pip install csr/aws_ha_v3--user.
4. In the IOS, configure the binding to the BFD peer router:
5. Wait for the transfer to complete. As each node is transferred, its configuration is added to a file in guestshell ~/cloud/HA/node_file. When the size of this file stabilizes, the transfer is done. Open this file in the guestshell and examine its contents by running the script cat node_file.
6. Verify whether all the nodes and their parameters have been successfully transferred. Use the create_node and/or set_params scripts to make any adjustments.
7. Restore any files copied out of the guestshell in step 1.
8. Delete the configuration of all the redundancy nodes in IOS.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Perform the binary upgrade to IOS XE release 16.11. Wait for the CSR to reboot and stabilize.</td>
<td></td>
</tr>
<tr>
<td>Step 2 Enable the guestshell and enter the shell:</td>
<td>guestshell enable</td>
</tr>
<tr>
<td>Step 3 Install the CSR HA package for AWS, version 3 by using the script (guestshell) pip install csr/aws_ha_v3--user.</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 4** In the IOS, configure the binding to the BFD peer router: | conf t redundancy
cloud-ha bfd peer <peer-ip-addr> end
This launches a process in the IOS to translate the configuration of redundancy nodes in IOS to guestshell. This process can take several minutes to complete, as each node is verified as it is transferred. |
| **Step 5** Wait for the transfer to complete. As each node is transferred, its configuration is added to a file in guestshell ~/cloud/HA/node_file. When the size of this file stabilizes, the transfer is done. Open this file in the guestshell and examine its contents by running the script cat node_file. | |
Verify whether all the nodes and their parameters have been successfully transferred. Use the `create_node` and/or `set_params` scripts to make any adjustments.

Step 7: Restore any files copied out of the guestshell in step 1.

Step 8: Delete the configuration of all the redundancy nodes in IOS.

Configure High Availability in CSR 1000v Running On Google Cloud Platform

In the Google cloud, each static route belongs to the route table associated with a VPC and consists of the following fields:

- **Name and Description**: These fields identify the route. A name is required, but a description is optional. Every route in your project must have a unique name.

- **Network**: Each route must be associated with exactly one VPC network.

- **Destination range**: The destination range is a single IPv4 CIDR block containing the IP addresses of systems that receive incoming packets. GCP does not support IPv6 destination ranges. Destinations must be expressed in CIDR notation, and the broadest destination possible is 0.0.0.0/0.

- **Priority**: Priority is used to determine which route should be used if multiple routes have identical destinations. Lower numbers indicate higher priorities; for example, a route with a priority value of 100 has a higher priority than one with a priority value of 200.

- **Next hop**: Static routes can have next hops that point to the default Internet gateway, a GCP instance, or a Cloud VPN tunnel. Refer to static route next hops for more information.

- **Tags**: You can specify a list of network tags so that the route will only apply to instances that have at least one of the listed tags. If you don't specify tags, GCP applies the route to all instances in the network.

For more information, see https://cloud.google.com/vpc/docs/routes. To configure High Availability in an active/active operation for two CSR 1000v routers in the Google network, you must create two routes in the route collection for each destination range, where each route points to one of the two routers as the next hop.

To understand this better, consider the following topology:
In the above topology, there are two routers configured in the HA mode. Both the routers have one interface in VPC1 and another in VPC. These two CSR 1000v routers have a Tunnel configured to another CSR that has an interface in VPC2. In this scenario, the following are the route entries in VPC1 for destination range of VPC2 (172.31.0.0/16):

<table>
<thead>
<tr>
<th>Route Entry</th>
<th>Prefix</th>
<th>Priority</th>
<th>Nexthop</th>
<th>NextHopIP</th>
<th>TestVPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>route-vpc2-csr1</td>
<td>172.31.0.0/16</td>
<td>100</td>
<td>None</td>
<td>IP:10:1:0:3</td>
<td>test-vpc</td>
</tr>
<tr>
<td>route-vpc2-csr2</td>
<td>172.31.0.0/16</td>
<td>200</td>
<td>None</td>
<td>IP:10.0.2.3</td>
<td>test-vpc</td>
</tr>
</tbody>
</table>

The active route is decided based on the route priority. Since route-vpc2-csr1 has a lower value, this route has a higher priority, thereby making CSR 1 as the active route.

Reversion to Primary CSR After Fault Recovery

If CSR 1 fails, CSR 2 detects a peer fail event through the BFD tunnel and deletes route-vpc2-csr1 from route collection making route-vpc2-csr2 as the active route for destination range 172.31.0.0/16.

When CSR 1 recovers, it adds route-vpc2-csr1 route back to the route collection which makes it the primary route again for all traffic to VPC 2. Please note it is possible to set equal route priority for both route entries in which case Google cloud uses both routes to send traffic to destination range.

On each CSR, you must create nodes corresponding to each route entry in route collection with next hop as the two CSRs.

When using mode (primary or secondary) option in HA to create a new node, ensure that the route with the higher priority (lower number) is marked as primary and the route with lower priority is marked as secondary.

User-Supplied Scripts

The guestshell is a container in which you can deploy your own scripts. HA Version 3 exposes a programming interface to user-supplied scripts, so you can write scripts that can trigger both failover and reversion events. You can develop your own algorithms and triggers to control which Cisco CSR 1000v provides the forwarding services for a given route.
Cloud Specific Configuration of Redundancy Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Is this parameter required?</th>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Index</td>
<td>Yes</td>
<td>-i</td>
<td>The index that is used to uniquely identify this node. Valid values: 1–255.</td>
</tr>
<tr>
<td>Cloud Provider</td>
<td>Yes</td>
<td>-p</td>
<td>Specify gcp for this parameter.</td>
</tr>
<tr>
<td>Project</td>
<td>Yes</td>
<td>-g</td>
<td>Specify the Google Project ID.</td>
</tr>
<tr>
<td>routeName</td>
<td>Yes</td>
<td>-a</td>
<td>The route name for which this CSR is next hop. For example from Fig. 2, if we are configuring node on CSR 1, this would be route-vpc2-csr1.</td>
</tr>
<tr>
<td>peerRouteName</td>
<td>Yes</td>
<td>-b</td>
<td>The route name for which the BFD peer CSR is next hop. For example from Fig. 2, if we are configuring node on CSR 1, this would be route-vpc2-csr2.</td>
</tr>
<tr>
<td>Route</td>
<td>yes</td>
<td>-r</td>
<td>The IP address of the route to be updated in CIDR format. Can be IPv4 or IPv6 address.</td>
</tr>
</tbody>
</table>

If a route is unspecified, then the redundancy node is considered to apply to all routes in the routing table of type virtual appliance.

Note: Currently Google cloud does not have IPv6 support in VPC.
Create a Redundancy Node

SUMMARY STEPS

1. Run the following script to create a redundancy node and add it to the database: `create_node { switch value } [...{ switch value }].`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run the following script to create a redundancy node and add it to the database: <code>create_node { switch value } [...{ switch value }].</code></td>
<td>You must configure the following parameters for a valid redundancy node:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Node Index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cloud Provider</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Project ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Route Name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Peer Route Name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Route</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Next Hop Address</td>
</tr>
</tbody>
</table>
Set Redundancy Node Parameters

SUMMARY STEPS

1. To change the value of parameters in an existing redundancy node, run the following script:
   ```bash
   set_params{ switch value } [...] [{ switch value }].
   ```

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>To change the value of parameters in an existing redundancy node, run the following script:</td>
<td><code>set_params{ switch value } [...] [{ switch value }].</code></td>
<td>The index parameter (-i) is mandatory. This command sets the values of the specified parameters. If the specified parameter is already defined for the redundancy node, the value of the parameter is updated. When a node index value of zero is specified, the values that are provided by the command for the specified parameters are treated as the default values for these parameters. If this configuration is successful, the script returns a value of zero.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create_node -i 1 -g <project-id> -r dest_network -o 200 -n nexthop_ip_addr -a route-name1 -b route-name2 -p gcp -v vpc_name</code></td>
<td>If the configuration is successful, the script returns a value of zero.</td>
</tr>
</tbody>
</table>

Authenticate the CSR 1000v Router

SUMMARY STEPS

1. Ensure that the service account associated with the CSR 1000v routers at least have a Compute Network Admin permission.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Ensure that the service account associated with the CSR 1000v routers at least have a Compute Network Admin permission.</td>
<td></td>
</tr>
</tbody>
</table>

You can also provide the required permissions in a credentials file with name 'credentials.json' and place it under the /home/guestshell directory. The credentials file overrides the permissions supplied through the service account associated with the CSR 1000v instance.
Example Configurations

Example: Redundancy Nodes with Active/Active Configuration

Consider the HA configuration where route-name1 corresponds to route entry with next hop as CSR 1 and route-name2 corresponds to route entry with next hop as CSR 2 for destination network ‘dest_network’. To configure the routers in an active/active mode, set equal route priority for route-name1 and route-name2. In this case, Google cloud distributes the traffic between the routes using a five-tuple hash for affinity, thus implementing an ECMP routing design.

The node configuration on both routers corresponding to the route entries in Google route collection for the VPC would be:

```plaintext
create_node -i 1 -g <project-id> -r dest_network -o 200 -n nexthop_ip_addr_csr1 -a route-name1 -b route-name2 -p gcp -v vpc_name
create_node -i 2 -g <project-id> -r dest_network -o 200 -n nexthop_ip_addr_csr2 -a route-name2 -b route-name1 -p gcp -v vpc_name
```

Example: Redundancy Nodes with Active-Passive Configuration

Similarly, to configure CSRs in an active-passive mode, set the priority of one route higher than the other. In this case, Google cloud routes all the traffic from the VPC vpc_name to dest_network via the higher priority route (route-name1 for this example).

The node configuration on both routers corresponding to the route entries in Google route collection for the VPC would be:

```plaintext
create_node -i 1 -g <project-id> -r dest_network -o 200 -n nexthop_ip_addr_csr1 -a route-name1 -b route-name2 -p gcp -v vpc_name
create_node -i 2 -g <project-id> -r dest_network -o 400 -n nexthop_ip_addr_csr2 -a route-name2 -b route-name1 -p gcp -v vpc_name
```

Verify High Availability

Perform the following verification procedure by checking the log files. You can write a verbose log file to the directory ~/cloud/HA/events. Examine this log file to verify whether the operation is successful.

```plaintext
[guestshell@guestshell events]$ node_event.py -i node_index -e verify
[guestshell@guestshell events]$ cd /home/guestshell/cloud/HA/events
[guestshell@guestshell events]$ ls event.2018-06-13 20:10:21.093942
```

Troubleshoot High Availability Issues

Open the event file that is generated. This file is a debug log of the attempt to read and update the route described by the redundancy node. If the HA setup works as expected, the configuration output displays the status Event handling completed. If the system does not display this status, examine the log file in detail to determine which step of the verification failed.

Some of the common causes for failure include:
- Inability to obtain authentication credentials.
- The guestshell does not have network access.
- The authentication service is not running in Guestshell.
- The credentials for the CSR 1000v router are missing or incorrect.
- The router cannot access the route table entry.
- The route table was not correctly identified in the redundancy node.
- The router was not granted permission to access the route table.
- The specific route specified in the redundancy node does not exist.

Cisco recommends that you use the `node_event` script with the `verify` event to test the configuration and the operation of the redundancy node.

Example: Troubleshooting Issues for High Availability Version 3

Execute the following command: `router#show iox`. See the following examples that provide the possible issues and how you can check and resolve these issues:

```
CSR#show iox

IOx Infrastructure Summary:
---------------------------
IOx service (CAF) : Running
IOx service (HA) : Not Supported
IOx service (IOxman) : Running
Libvirtd : Running

CSR@guestshell enable

CSR#show app-hosting list
App id State
------------------------------------------------------
guestshell RUNNING

CSR@guestshell
[guestshell@guestshell ~]$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=38 time=25.7 ms

Possible Cause:
The configuration of IOX and the creation of the VirtualPortGroup interface to provide the guestshell network access is part of the "day zero" configuration of the CSR. If any of the above steps did not work, check that the startup configuration of the CSR has been altered.

How to Fix:
A reload of the CSR will re-apply the day zero configuration.

---------

Problem:
HA package installation failure

How to Check:
CSR#guestshell
gsday0-csr#guestshell
[guestshell@guestshell ~]$
ls
cloud
[guestshell@guestshell ~]$
cd cloud
[guestshell@guestshell cloud]$
ls
HA

You should see the directory ~/cloud/HA.
On an Azure provided cloud, you should also see a ~/cloud/authMgr directory.

Possible Cause:
The HA package was not installed, or was not installed using the --user option.

How to Fix:
Install the package and set up the environment:
`pip install csr_<provider>_ha --user`
source ~/.bashrc

---------

Problem:
HA server not running.

How to Check:
[guestshell@guestshell ~]$
systemctl status csr_ha
- csr_ha.service - CSR High Availability service
  Loaded: loaded (/etc/systemd/user/csr_ha.service; enabled; vendor preset: disabled)
  Active: active (running) since Mon 2019-04-08 15:01:51 UTC; 2h 1min ago
  Main PID: 286 (python)
  CGroup: /system.slice/libvirtd.service/system.slice/csr_ha.service
     └─286 python /home/guestshell/.local/lib/python2.7/site-packages/c...

On an Azure provided network, the auth-token service should also be running.
[guestshell@guestshell ~]$
systemctl status csr_ha
- csr_ha.service - CSR High Availability service
  Loaded: loaded (/etc/systemd/user/csr_ha.service; enabled; vendor preset: disabled)
  Active: active (running) since Mon 2019-04-08 15:01:51 UTC; 2h 1min ago
  Main PID: 286 (python)
  CGroup: /system.slice/libvirtd.service/system.slice/csr_ha.service
     └─286 python /home/guestshell/.local/lib/python2.7/site-packages/c...

[guestshell@guestshell ~]$
systemctl status auth-token
- auth-token.service - Authentication Token service
  Loaded: loaded (/etc/systemd/user/auth-token.service; enabled; vendor preset: disabled)
  Active: active (running) since Mon 2019-04-08 16:08:15 UTC; 57min ago
  Main PID: 542 (python)
  CGroup: /system.slice/libvirtd.service/system.slice/auth-token.service
     └─542 /usr/bin/python /home/guestshell/.local/lib/python2.7/site-p...

Possible Cause:
If the HA server has an error and crashes, it is automatically restarted.

How to Fix:
A service can be restarted manually
[guestshell@guestshell ~]$
sudo systemctl start csr_ha
Configure High Availability
Troubleshoot High Availability Issues

Problem:
CSR authentication not working on Azure.
This is an Azure specific error.
How to check:
If you perform a node_event on a redundancy node, and it fails while trying to read the
route table, it will generate a file ~/cloud/HA/events/routeTableGetRsp.
[guestshell@guestshell ~]$ cat routeTableGetRsp
{"error":{"code":"AuthenticationFailedMissingToken","message":"Authentication failed. The
'Authorization' header is missing the access token."}}
Possible Cause:
There are multiple possible causes. And it depends upon the authentication mechanism you
are using:
- System assigned managed identity
- Registered application in Azure Active Directory (AAD)
Likely cause of a failure using system assigned managed identity is that it is not enabled
on the CSR.
How to Fix:
Verify the CSR is enabled for system assigned managed identity.
In the Azure portal, navigate to the virtual machine running the CSR.
Under the Settings menu, select the Identity item.
Under the system assigned tab, verify the status is set to On.
When using AAD for authentication, the likely cause of the error is a mis-configuration of
the application or a mis-match in the identifiers for the application configured in the
guestshell.
How to Fix:
The application in AAD must be given the proper permissions to read and write a route table.
In the Azure portal, navigate to the registered application you have created.
Under the API Access menu, select the Required permissions item.
Select the Windows Azure Active Directory API. In the Enable Access pane, verify the
following permissions are set:
- Application permission to read and write directory data
- Delegated permission to sign in and read user profile
Select the Windows Azure Service Management API. In the Enable Access pane, verify the
following permissions are set:
- Delegated permission to access Azure service management as organization users
How to Fix:
In the Azure portal, navigate to the registered application you have created.
Select the Setting button for the application.
Verify the application_id, tenant_id, and application key in the portal match the values
configured in guestshell. Verify the application key configured in guestshell is in URL
unencoded format.
------------Problem:
Route table entry not updated by a peer failure event.
How to Check:
For every node event a log file is generated in the directory ~/cloud/HA/events.
This file will indicate the event that was processed and its result. Examine this file for
possible errors. It is likely in the case of an error that a file
~/cloud/HA/events/routeTableGetRsp is also written. Also examine this file for additional
insights.
Possible Causes:
A route was not correctly identified in a redundancy node. Depending upon what parameter
in the redundancy node is in error, you may see different results.

Cisco CSR 1000v and Cisco ISRv Software Configuration Guide
394


Some examples:
[guestshell@guestshell events]$ cat routeTableGetRsp
{"error":{"code":"SubscriptionNotFound","message":"The subscription 'b0b1a9e2-444c-4ca5-acd9-bebd1e6874ef' could not be found."}}
This implies the Azure subscription ID was not entered correctly.

[guestshell@guestshell events]$ cat node*
Route GET request failed with code 403
Route table get response:
{"error":{"code":"AuthorizationFailed","message":"The client 'b3ce41c0-bce4-41d7-9741-26bea31221c1' with object id 'b3ce41c0-bce4-41d7-9741-26bea31221c1' does not have authorization to perform action 'Microsoft.Network/routeTables/read' over scope '/subscriptions/b0b1a9e2-444c-4ca5-acd9-bebd1e6874ef/resourceGroups/gsday0-rg/providers/Microsoft.Network/routeTables/gsday0-sub4-RouteTable'."}}
Route table not found.
This implies the name of the route table was incorrect or does not exist.

[guestshell@guestshell events]$ cat node*
Did not find route 17.0.0.0/8 event type peerFail
This implies that the route does not exist.

How to Fix:
Make sure the identifiers in the redundancy node match the values in the cloud provider's portal.

Problem:
Route table entry not updated by a peer failure event.

How to Check:
For every node event a log file is generated in the directory ~/cloud/HA/events. This file will indicate the event that was processed and its result. Examine this file for possible errors. It is likely in the case of an error that a file ~/cloud/HA/events/routeTableGetRsp is also written. Also examine this file for additional insights.

Possible Causes:
The CSR has not been given permission to access the route table.

If none of these troubleshooting tips have resolved your problem, run this command:
[guestshell@guestshell ~]$ cd ~/cloud/HA
[guestshell@guestshell ~]$ bash debug_ha.sh
[guestshell@guestshell ~]$ ls /bootflash
You should see a file name ha_debug.tar. Copy this file off the CSR and provide it to Cisco Technical Support for analysis.
Troubleshooting Cisco CSR 1000v VM Issues

Verifying the Cisco CSR 1000v Hardware and VM Requirements

To help troubleshoot issues with the Cisco CSR 1000v, make sure that the router is installed on supported hardware and that the VM requirements are being met:

• Verify that the server hardware is supported by the hypervisor vendor.
  If using VMware, verify that the server is listed on the VMware Hardware Compatibility List. See the VMware documentation for more information.

• Verify that the I/O devices (for example, FC, iSCSI, SAS) being used are supported by the VM vendor.

• Verify that sufficient RAM is allocated on the server for the VMs and the hypervisor host.
  If using VMware, make sure the server has enough RAM to support both the VMs and VMware ESXi.

• Verify the hypervisor version is supported by the Cisco CSR 1000v.

• Verify that the correct VM settings for the amount of memory, number of CPUs, and disk size are configured.

• Verify that the vNICs are configured using a supported network driver. See Introduction.

Also see Cisco CSR 1000v Release Notes.

Troubleshooting Network Connectivity Issues

To troubleshoot network connectivity issues for the Cisco CSR 1000v, do the following:

• Verify that there is an active and unexpired license installed on the VM.

Enter the `show license` command. The License State should be shown as “Active, In Use”.
• Verify that the vNIC for the VMs are connected to the correct physical NIC, or to the proper vSwitch.
• If using virtual LANS (VLANs), make sure the vSwitch is configured with the correct VLAN.
• If using static MAC addresses, or VMs that are cloned, make sure there are no duplicate MAC addresses. Duplicate MAC addresses can cause the Cisco CSR 1000v feature license to become invalidated, which will disable the router interfaces.

Troubleshooting VM Performance Issues

The Cisco CSR 1000v operates within a set of supported VM parameters and settings to provide certain levels of performance that have been tested by Cisco. Use the vSphere Client to view data to troubleshoot VM performance. If you are using vCenter, you can view historical data. If you are not using vCenter, you can view live data from the host.

This is a list of troubleshooting tips for performance issues:

Troubleshooting—MTU

Verify that the router has the correct setting for maximum MTU.

By default, the maximum MTU on the router is 1500. To support jumbo frames, edit the default VMware vSwitch settings. For more information, see the VMware vSwitch documentation.

Note: ESXi 5.0 supports a maximum MTU of 9000, even if jumbo frames are enabled on the router.

Troubleshooting—Memory

The Cisco CSR 1000v does not support memory sharing between VMs. On the ESXi host, check the memory counters to find out how much used memory and shared memory is on the VM. Verify that the balloon and swap used counters are zero.

If a given VM does not have enough memory to support the Cisco CSR 1000v, increase the size of the VM’s memory. Insufficient memory on the VM or the host can cause the Cisco CSR 1000v console to hang and be non-responsive.

Note: When troubleshooting performance issues, note that other VMs on the same host as the Cisco CSR 1000v can impact the performance of the Cisco CSR 1000v VM. Verify that other VMs on the host are not causing memory issues that are impacting the Cisco CSR 1000v VM.

Troubleshooting—Network Packets

Verify that no network packets are being dropped. On the ESXi host, check the network performance and view the counters to measure the number of receive packets and transmit packets dropped.
Troubleshooting—Throughput

Verify the current maximum throughput level with the `show platform hardware throughput level` command.

Troubleshooting—Instruction Extensions

Some x86 processors support instruction extensions for performing certain cryptographic transforms. Using these instructions is more efficient than not using them. The Cisco CSR 1000v/ISRv detects at runtime if the instruction extensions are available and will use them if they are available. To determine if the extensions are available, enter the `show platform software system all` command. (See the example below.)

If the output shows that "Crypto Supported" is "No", then the Cisco CSR 1000v/ISRv may not exhibit the expected throughput. This is an issue with either the underlying physical hardware or the hypervisor. Check to see if the underlying physical hardware is capable of exposing the extensions and also check to see if the hypervisor can expose the extensions.

If the output shows that "Crypto Supported" is "Yes", then the Cisco CSR 1000v/ISRv should provide the expected throughput, because the physical hardware and the hypervisor can expose the extensions.

In the following example, "Crypto Supported" is "Yes". Therefore the cryptographic transforms can use instruction extensions, and perform efficiently.

```
CSR1# show platform software system all
Processor Details

Number of Processors : 4
Processor : 1 - 4
vendor_id : GenuineIntel
cpu MHz : 3192.307
cache size : 20480 KB
Crypto Supported : Yes
```

IP address Inconsistency Issues on the vSphere Web Client

As a user who's using CSR 1000v running on IOS XE 16.9.1 release or later, you might face inconsistencies in the IP addresses that is configured on the router and what is shown on the vSphere Web Client. At this moment there are no resolutions for this issue. See the following list to know why these inconsistencies might occur:

- ipv4 addresses for interfaces that are up or down are detected, while ipv6 addresses are only detected for interfaces that are up.

- After you perform an Interface Hot Delete, the vSphere Web Client continues to display the IP Address of the deleted interface.

- When you perform a reload on a CSR 1000v with addresses configured but not written to memory, the vSphere Web client continues to display the addresses even after the router comes up again. This occurs even though there are no addresses configured on the router. For example, configure Loopback, port-channel, port-group, and subinterfaces on a CSR 1000v router so that 63 addresses are displayed by the vSphere Web Client. Do not write the configuration to memory and reload the CSR 1000v. After the reload completes, all the 63 addresses are displayed on the Web Client. This occurs even though no addresses are configured on the CSR 1000v router. You can resolve this issue by configuring an address...
on the CSR 1000v router. When you do so, the web client then removes the 63 address and just displays the newly configured address.

- When you configure multiple ipv6 addresses on an interface, only the last address that you configured is detected. If you unconfigure that address, none of the remaining configured ipv6 address on that interface are detected. This creates a state with multiple ipv6 addresses configured on an interface, but none displayed by the Web Client.

- When you delete interfaces, some of the addresses of the new interfaces are not displayed. This happens when the maximum number of IP Addresses are displayed and then you delete interfaces. For example, configure 32 Loopack interfaces with addresses and then delete each interface. Then, configure 32 GigabitEthernet subinterfaces with addresses. The addresses for the subinterfaces are not detected. This is because the router maintains entries for the deleted Loopback interfaces and is not able to add new interfaces.

- Addresses are detected for GigabitEthernet, Loopback, PortChannel, and VirtualPort-Group Interfaces as well as subinterfaces. However, Tunnel interface addresses are not detected.

- Secondary IP Addresses for IPv4 interfaces are not detected
CHAPTER 23

Rehosting the Cisco CSR 1000v License

- Voluntarily Rehosting the License to a New VM, on page 401
- Obtaining a Rehost License if the System Fails, on page 403

Voluntarily Rehosting the License to a New VM

The process for rehosting a license on the Cisco CSR 1000v is different compared to other Cisco platforms. Because the license is not mapped to a Cisco hardware device, additional steps may be necessary for rehosting the license.

If you plan to voluntarily rehost the Cisco CSR 1000v to a new VM and the router is operating properly, you can use the self-service rehosting process on the Cisco Software Licensing Tool.

Note

The self-service rehosting process is only available for permanent licenses on the Cisco CSR 1000v. If you have subscription term licenses installed, you must contact licensing@cisco.com for assistance.

SUMMARY STEPS

1. Access the Cisco Software Licensing portal at the following URL: https://tools.cisco.com/SWIFT/LicensingUI/Home
2. Click Continue to Product License Registration.
3. On the Product License Registration page, choose Transfer > License for Transfer - Initiate.
4. Specify the Source License.
5. Specify the Target and Options for the rehost license.
6. Review the license rehost information for accuracy. If the license information is valid, click Submit.

DETAILED STEPS

Step 1 Access the Cisco Software Licensing portal at the following URL: https://tools.cisco.com/SWIFT/LicensingUI/Home
Step 2 Click Continue to Product License Registration.
Step 3 On the Product License Registration page, choose Transfer > License for Transfer - Initiate.

See the "License to Initiate Transfer" figure below.
Voluntarily Rehosting the License to a New VM

**Step 4** Specify the Source License.

Select the license with the original node-locked UDI for your system. See the "Source Rehost License" figure below.

**Note** If you changed the virtual UDI on the Cisco CSR 1000v using the `request license new-udi` command, the original node-locked UDI is invalidated on the router. Use the `show license udi history` command to obtain the node-locked UDI for your license that is stored in the Cisco Software Licensing Tool records. You can also verify the original node-locked UDI with the Cisco email confirmation you received when the license was purchased.

Click Next.

**Figure 13: Source Rehost License**

**Step 5** Specify the Target and Options for the rehost license.

Click Next.
Note When specifying the Target rehost license, use the new vUDI.

Step 6 Review the license rehost information for accuracy. If the license information is valid, click Submit. See the "License Reshot Review" figure below.

Figure 14: License Reshot Review

The license portal processes the license request. You will receive an email confirming the new rehost licenses.

Obtaining a Rehost License if the System Fails

There may be cases when the Cisco CSR 1000v is not accessible due to a system failure and you need to rehost the existing licenses to a replacement device. Examples of a system failure may include:

- The VM instance that the Cisco CSR 1000v was installed on was removed.
- The system server or host that the Cisco CSR 1000v VM instance was installed on experienced a hardware failure.

In this case, you need to obtain a rehost license and install it on a new VM. If you have a perpetual license, you can use the self-service rehosting process in the Cisco Software Licensing portal to obtain a rehost license.

Note The self-service rehosting process is only available for permanent licenses on the Cisco CSR 1000v. If you have subscription term licenses installed, you must contact licensing@cisco.com for assistance.

The following caveats apply if you are rehosting a perpetual license:

1. Do not select the Transfer > License for RMA option. The RMA option does not support licenses for the Cisco CSR 1000v. Use the Transfer > License for Transfer - Initiate option.
2. If you have the original Cisco license email confirmation with the original node-locked UDI, you can use the rehost option on the Cisco Software Licensing portal.

3. If you do not have the original Cisco license email confirmation with the original node-locked UDI, you must contact licensing@cisco.com for assistance. You will need to provide the PAK number from the original license purchase.

4. If you changed the virtual UDI on the Cisco CSR 1000v using the `request license new-udi` command and the VM is lost due to a system failure, the installed licenses will be destroyed. You must contact Cisco for assistance. You will need to provide the PAK number from the original license purchase.

For information about licensing assistance for perpetual licenses, see the Cisco Software Licensing portal at https://tools.cisco.com/SWIFT/LicensingUI/Home.
Configuring VRF Route Sharing between Multiple VRFs

In certain deployment scenarios such as the ACI Anywhere deployment, the CSR 1000v instance acts as the L3 Gateway that provides the IP connectivity between the multi-tenant Data Center sites. This chapter specifies how you can configure VRF Route Sharing across VxLAN peers on CSR 1000v instances to support common services in a public cloud.

- Information About VRF Route sharing for Multiple VRFs, on page 405
- Benefits of VRF Route Sharing, on page 406
- Limitations of VRF Route Sharing, on page 406
- Prerequisites of VRF Route Sharing, on page 407
- Configuring VRF Route Sharing, on page 407
- Verifying VRF Route Sharing, on page 409

Information About VRF Route sharing for Multiple VRFs

In some deployment scenarios such as the ACI Anywhere deployment, a Cisco device such as a CSR 1000v instance or an ISR 1000 Series Router can serve as a Data Center Interconnect (DCI) L3 Gateway to provide IP connectivity between multi-tenant remote Data Center sites. The multi-tenant Data Centers use VxLAN encapsulation to carry the IP traffic from each tenant. The VXLAN-enabled Data Center sites use MP-BGP EVPN control plane for distributing both Layer-2 and Layer-3 forwarding information, within the site. Further, RFC 5512 and draft-ietf-bess-evpn-inter-subnet-forwarding-00 define how the MP-BGP Network Layer Reachability Information (NLRI) carries VXLAN encapsulation as well as L2/L3 forwarding information details, to provide an integrated routing and bridging solution within the Data Center site.

The Cisco CSR 1000v instance functions as a Data Center Interconnect (DCI) gateway by intermediating between the two MP-BGP control planes, one on the Data Center site and the other on the MPLS L3VPN network. To enable this exchange of forwarding information between the two MP-BGP control planes, the DCI router has a VRF instance configured with two sets of import and export route-targets. One set of the import/export route-target is associated with the Data Center BGP neighbour router that uses MP-BGP EVPN with route type 5 NLRI to exchange VXLAN encapsulation and L3 routing information with the DCI router.

The other set of import/export route-target is associated with the L3VPN BGP neighbour in the service provider network that uses VPNv4 or VPNv6 address-family to exchange L3 and MPLS information. The DCI router exchanges the IP prefixes in the VRF instance as L3VPN NLRIs with the L3VPN BGP neighbour and as EVPN NLRIs with the EVPN BGP neighbour and thus, effectively stitches these two sets of route targets. This enables the DCI router to convert the received Data Center EVVPN forwarding information into VPNv4...
or VPNv6 routes that, in turn, is to be forwarded to the remote DCI router and vice versa. The remote DCI router connected to the remote Data Center performs the same functions. This enables L3 connectivity between the two hosts located across the remote Data Center sites. The DCI Gateway enables the tenant Layer 3 data traffic movement across remote Data Centers by stitching the per-tenant VXLAN encapsulation in the DCI Gateway router to the per-tenant MPLS encapsulation in the L3VPN service provider network.

When you deploy a CSR 1000v instance or an ISR 1000 Series Router is thus used as a stitching route between the EVPN and the IP BGP. In the case of a CSR 1000v instance, to support common services in public cloud, the router supports VRF Route Sharing across VxLAN peers. That is, the CSR 1000v instance shares the L3 prefix to multiple VRFs on the On-premise ACI.

The following image provides a high-level overview of VRF Route Sharing:

In the topology, note that the CSR 1000v instance is deployed on the public cloud. The BGP-EVPN fabric is present between the ACI and the CSR 1000v instance in the public cloud and the IP BGP protocol is used between the CSR 1000v instance and the Cloud Service Provider such as Azure. The BGP-EVPN fabric redistributes the stitching routes between EVPN and the IP BGP.

**Benefits of VRF Route Sharing**

- Route Sharing enables shared services across the different clouds.
- If you deploy a shared service in a site, the shared service can be consumed by endpoints across other sites as well.

**Limitations of VRF Route Sharing**

- The VRF Sharing functionality is not supported in Cisco ASR1k.
- VRF Route Sharing is only supported for IPv4 and not IPv6.
- When you configure VRF Route Sharing, if you use a scale number that is larger than the Scale limitation, the system displays an error.
Prerequisites of VRF Route Sharing

Before you configure the VRF Route Sharing functionality to enable the traffic between the ACI and the public cloud, ensure that:

- You configure VRF1 and VRF2 on the vPC pair of ACI.
  
  VRF1 - RT:RT-EVPN-1, prefix:1.1.1.1  
  VRF2 - RT:RT-EVPN-2, prefix:2.2.2.2

- VRF3 and VRF4 on the CSR 1000v instance which peers with VGW have two RTs for each VRF. For example,
  
  VRF3 - RT for EVPN: RT-EVPN-3, RT for IP BGP: RT-3, prefix:3.3.3.3  
  VRF4 - RT for EVPN: RT-EVPN-4, RT for IP BGP: RT-4, prefix:4.4.4.4

- The CSR 1000v instance imports EVPN routes of VRF1&2 from ACI into VRF3&4.

- The IP BGP on the CSR 1000v side redistributes the routes to the Voice Gateway in the public cloud.

- The next-hop of routes from ACI are the VPC peer of the border leaf of the ACI.

- There are no overlaps of prefix across the Route Sharing VRF.

Configuring VRF Route Sharing

Step 1  When VRF1 and VRF2 can talk to VRF3, but VRF3 and VRF4 cannot talk to each other, perform the following configuration:

Example:

```bash
vrf definition VRF3
 rd 300:1
 address-family ipv4
 route-target export RT-EVPN-3 stitching
 route-target import RT-EVPN-1 stitching
 route-target import RT-EVPN-2 stitching

definition VRF4
 rd 400:1
 address-family ipv4
```

Step 2  When VRF1 and VRF2 can talk to VRF3&4, but VRF3 and VRF4 cannot talk to each other, perform the following configuration:

Example:

```bash
vrf definition VRF3
 rd 300:1
 address-family ipv4
 route-target export RT-EVPN-3 stitching
 route-target import RT-EVPN-1 stitching
 route-target import RT-EVPN-2 stitching

definition VRF4
 rd 400:1
 address-family ipv4
```

Step 3  When VRF1 and VRF2 can talk to VRF3, but VRF3 and VRF4 can talk to each other, perform the following configuration:
Example:

```plaintext
vrf definition VRF3
rd 300:1
 address-family ipv4
 route-target export RT-EVPN-3 stitching
 route-target import RT-EVPN-1 stitching
 route-target import RT-EVPN-2 stitching
 route-target export RT-3
 route-target import RT-4
vrf definition VRF4
rd 400:1
 address-family ipv4
 route-target import RT-3
 route-target export RT-4
```

Step 4  When VRF1 and VRF2 can talk to VRF3 and VRF4, but VRF3 and VRF4 can talk to each other, perform the following configuration:

Example:

```plaintext
vrf definition VRF3
rd 300:1
 address-family ipv4
 route-target export RT-EVPN-3 stitching
 route-target import RT-EVPN-1 stitching
 route-target import RT-EVPN-2 stitching
 route-target export RT-3
 route-target import RT-4
vrf definition VRF4
rd 400:1
 address-family ipv4
 route-target export RT-EVPN-4 stitching
 route-target import RT-EVPN-1 stitching
 route-target import RT-EVPN-2 stitching
 route-target import RT-3
 route-target export RT-4
```

Example:

Note  For the above-mentioned use case, the CSR 1000v instance must configure EVPN on both VRF3 and VRF4.

Even IP BGP already imports all the routes of VRF3 and VRF4, BGP does not advertise the imported routes of the VRF to the EVPN peer.

Example

What to do next

•
Verifying VRF Route Sharing

Step 1  Run the **Show ip bgp l2vpn evpn summary** command. This command provides the BGP summary information for the VRF default address family (L2VPN EVPN).

**Example:**

```
show ip bgp l2vpn evpn summary
BGP router identifier 11.11.11.11, local AS number 100
BGP table version is 8, main routing table version 8
7 network entries using 2408 bytes of memory
....
BGP activity 14/0 prefixes, 16/0 paths, scan interval 60 secs
7 networks peaked at 17:34:38 Aug 14 2019 CST (00:00:26.895 ago)
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
22.22.22.22 4 200 6 5 4 0 0 00:01:23 4
Minuet#
```

Step 2  Run the **show ip route vrf vrf3 bgp | in binding** command. This command displays the IP routing table information associated with the VRF.

**Example:**

```
+++ 17:35:05 Minuet(default) exec +++
show ip route vrf vrf3 bgp | in binding
B 10.2.1.0/24 [20/0] via binding label: 0x3000001, 00:00:26
B 10.2.2.0/24 [20/0] via binding label: 0x3000002, 00:00:26
B 192.168.1.0/24 [20/0] via binding label: 0x3000001, 00:00:26
B 192.168.2.0/24 [20/0] via binding label: 0x3000002, 00:00:26
Minuet#
```
Verifying VRF Route Sharing
Using the Web User Interface

- Web User Interface Management, on page 411

Web User Interface Management

You can access your router using a web user interface, which allows you to monitor router performance using an easy-to-read graphical interface.

**Note**

To manage and configure crypto map tunnels use CLI. The tunnels can also be configured with Virtual Tunnel Interface (VTI) and then the tunnels can be created with CLI and GUI.

You can basically configure a router by performing the steps in one of the following tasks:

Setting Up Factory Default Device Using Web UI

Quick Setup Wizard allows you perform the basic router configuration. To configure the router:

**Note**

Before you access the Web UI, you need to have the basic configuration on the device.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Connect the RJ-45 end of a serial cable to the RJ-45 console port on the router.</td>
</tr>
<tr>
<td>Step 2</td>
<td>After the device initial configuration wizard appears, enter No to get into the device prompt when the following system message appears on the router. Would you like to enter the initial configuration dialog? [yes/no]: no</td>
</tr>
<tr>
<td>Step 3</td>
<td>From the configuration mode, enter the following configuration parameters.</td>
</tr>
</tbody>
</table>

```plaintext
ip dhcp pool WEBUIPool
network 192.168.1.0 255.255.255.0
default-router 192.168.1.1

username admin privilege 15 password 0 default
```

Cisco CSR 1000v and Cisco ISRv Software Configuration Guide
interface gig 0/0/1
ip address 192.168.1.1 255.255.255.0
!

Step 4 Connect the PC to the router using an Ethernet cable to the gig 0/0/1 interface.
Step 5 Set up your PC as a DHCP client to obtain the IP address of the router automatically.
Step 6 Launch the browser and enter the device IP address in your browser’s address line. For a secure connection, type https://192.168.1.1/#/dayZeroRouting. For a less secure connection, enter http://192.168.1.1/#/dayZeroRouting.
Step 7 Enter the default username (admin) and the password as default.

Using Basic or Advanced Mode Setup Wizard

To configure the router using the basic or advanced mode setup:

Step 1 Choose the Basic Mode or Advanced Mode and click Go To Account Creation Page.
Step 2 Enter the username and password. Reenter the password to confirm.
Step 3 Click Create and Launch Wizard.
Step 4 Enter the device name and domain name.
Step 5 Select the appropriate time zone from the TimeZone drop-down list.
Step 6 Select the appropriate date and time mode from the Date and Time drop-down list.
Step 7 Click LAN Settings.
Configure LAN Settings

**Step 1** Choose the Web DHCP Pool/DHCP Pool name or the Create and Associate Access VLAN option.

a) If you choose the Web DHCP Pool, specify the following:
   - **Pool Name**—Enter the DHCP Pool Name.
   - **Network**—Enter network address and the subnet mask.

b) If you choose the Create and Associate Access VLAN option, specify the following:
   - **Access VLAN**—Enter the Access VLAN identification number. The range is from 1 to 4094.
   - **Network**—Enter the IP address of the VLAN.
   - **Management Interfaces**—Select the interface and move to the selected list box using the right and left arrows. You can also double click or drag and drop to move the interface to the selected list box.

**Step 2** Click Primary WAN Settings.

Configure Primary WAN Settings

**Step 1** Select the primary WAN type. You can configure Serial, 3G/4G, Ethernet, or Broadband (xDSL) as primary WAN depending on the WAN types supported by the router.

**Step 2** Select the interface from the drop-down list.

**Step 3** Check the Get DNS Server info directly from ISP check box to get the DNS server information directly from the service provider. You can also manually enter the Primary DNS and Secondary DNS.

**Step 4** Check the Get IP automatically from ISP check box to get the IP address information directly from the service provider. You can also manually enter the IP address and subnet mask.

**Step 5** Check the Enable NAT check box to enable NAT. It is recommended to enable NAT.

**Step 6** Check the Enable PPPoE check box to enable PPPoE. If you have enabled PPPoE, select the required authentication mode. The options are: PAP and CHAP.

**Step 7** Enter the username and password provided by the service provider.
Configure Secondary WAN Settings

For advanced configuration, you should configure the secondary WAN connection.

**Step 1** Select the secondary WAN type. You can configure Serial, 3G/4G, Ethernet, or Broadband (xDSL) as a secondary WAN depending on the WAN types supported by the router.

**Step 2** Select the interface from the drop-down list.

**Step 3** Check the **Get DNS Server info directly from ISP** check box to get the DNS server information directly from the service provider. You can also manually enter the Primary DNS and Secondary DNS.

**Step 4** Check the **Get IP automatically from ISP** check box to get the IP address information directly from the service provider. You can also manually enter the IP address and subnet mask.

**Step 5** Check the **Enable NAT** check box to enable NAT. It is recommended to enable NAT.

**Step 6** Check the **Enable PPPoE** check box to enable PPPoE. If you have enabled PPPoE, select the required authentication mode. The options are PAP and CHAP.

**Step 7** Enter the username and password provided by the service provider.

**Step 8** Click **Security / APP Visibility WAN Settings**.

---

Configure Security Settings

**Step 1** Check the **Enable Cisco Recommended Security Settings** check box to ensure that all passwords are not shown in plain text. The passwords are encrypted.

**Step 2** Click **Day 0 Config Summary**.

**Step 3** To preview the configuration, click **CLI Preview** to preview the configuration.

**Step 4** Click **Finish** to complete the Day Zero setup.